Sample records for national agricultural biotechnology

  1. The costly benefits of opposing agricultural biotechnology.

    PubMed

    Apel, Andrew

    2010-11-30

    Rigorous application of a simple definition of what constitutes opposition to agricultural biotechnology readily encompasses a wide array of key players in national and international systems of food production, distribution and governance. Even though the sum of political and financial benefits of opposing agricultural biotechnology appears vastly to outweigh the benefits which accrue to providers of agricultural biotechnology, technology providers actually benefit from this opposition. If these barriers to biotechnology were removed, subsistence farmers still would not represent a lucrative market for improved seed. The sum of all interests involved ensures that subsistence farmers are systematically denied access to agricultural biotechnology. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Biotechnology and Agriculture.

    ERIC Educational Resources Information Center

    Kenney, Martin

    Even at this early date in the application of biotechnology to agriculture, it is clear that agriculture may provide the largest market for new or less expensive biotechnologically manufactured products. The chemical and pharmaceutical industries that hold important positions in agricultural inputs are consolidating their positions by purchasing…

  3. Agricultural Biotechnology Technician. National Voluntary Occupational Skill Standards.

    ERIC Educational Resources Information Center

    National Future Farmers of America Foundation, Madison, WI.

    The skill standards in this document were developed as a result of meetings between representatives of the agricultural industry and educational institutions to determine the skills and educational preparation required of an agricultural biotechnology technician, verified by technicians working in laboratories, greenhouses, animal facilities, and…

  4. "Othering" agricultural biotechnology: Slovenian media representation of agricultural biotechnology.

    PubMed

    Zajc, Jožica; Erjavec, Karmen

    2014-08-01

    While studies on media representations of agricultural biotechnology mostly analyse media texts, this work is intended to fill a research gap with an analysis of journalistic interpretations of media representations. The purpose of this project was to determine how news media represent agricultural biotechnology and how journalists interpret their own representations. A content and critical discourse analysis of news texts published in the Slovenian media over two years and in-depth interviews with their authors were conducted. News texts results suggest that most of the news posts were "othering" biotechnology and biotechnologists: biotechnology as a science and individual scientists are represented as "they," who are socially irresponsible, ignorant, arrogant, and "our" enemies who produce unnatural processes and work for biotechnology companies, whose greed is destroying people, animals, and the environment. Most journalists consider these representations to be objective because they have published the biotechnologists' opinions, despite their own negative attitudes towards biotechnology.

  5. The integrated web service and genome database for agricultural plants with biotechnology information.

    PubMed

    Kim, Changkug; Park, Dongsuk; Seol, Youngjoo; Hahn, Jangho

    2011-01-01

    The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage.

  6. The integrated web service and genome database for agricultural plants with biotechnology information

    PubMed Central

    Kim, ChangKug; Park, DongSuk; Seol, YoungJoo; Hahn, JangHo

    2011-01-01

    The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage. PMID:21887015

  7. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    PubMed

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  8. Preface: Biocatalysis and Agricultural Biotechnology

    USDA-ARS?s Scientific Manuscript database

    This book was assembled with the intent of bringing together current advances and in-depth reviews of biocatalysis and agricultural biotechnology with emphasis on bio-based products and agricultural biotechnology. Recent energy and food crises point out the importance of bio-based products from ren...

  9. Biotechnologies for the management of genetic resources for food and agriculture.

    PubMed

    Lidder, Preetmoninder; Sonnino, Andrea

    2012-01-01

    In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can

  10. Agricultural biotechnology and its contribution to the global knowledge economy.

    PubMed

    Aerni, Philipp

    2007-01-01

    The theory of neoclassical welfare economics largely shaped international and national agricultural policies during the Cold War period. It treated technology as an exogenous factor that could boost agricultural productivity but not necessarily sustainable agriculture. New growth theory, the economic theory of the new knowledge economy, treats technological change as endogenous and argues that intangible assets such as human capital and knowledge are the drivers of sustainable economic development. In this context, the combined use of agricultural biotechnology and information technology has a great potential, not just to boost economic growth but also to empower people in developing countries and improve the sustainable management of natural resources. This article outlines the major ideas behind new growth theory and explains why agricultural economists and agricultural policy-makers still tend to stick to old welfare economics. Finally, the article uses the case of the Cassava Biotechnology Network (CBN) to illustrate an example of how new growth theory can be applied in the fight against poverty. CBN is a successful interdisciplinary crop research network that makes use of the new knowledge economy to produce new goods that empower the poor and improve the productivity and nutritional quality of cassava. It shows that the potential benefits of agricultural biotechnology go far beyond the already known productivity increases and pesticide use reductions of existing GM crops.

  11. Development of agriculture biotechnology in Pakistan.

    PubMed

    Zafar, Yusuf

    2007-01-01

    Agriculture plays an important role in the national economy of Pakistan, where most of the rapidly increasing population resides in rural areas and depends on agriculture for subsistence. Biotechnology has considerable potential for promoting the efficiency of crop improvement, food production, and poverty reduction. Use of modern biotechnology started in Pakistan since 1985. Currently, there are 29 biotech centers/institutes in the country. However, few centers have appropriate physical facilities and trained manpower to develop genetically modified (GM) crops. Most of the activities have been on rice and cotton, which are among the top 5 crops of Pakistan. Biotic (virus/bacterial/insect) and abiotic (salt) resistant and quality (male sterility) genes have already been incorporated in some crop plants. Despite acquiring capacity to produce transgenic plants, no GM crops, either produced locally or imported, have been released in the country. Pakistan is signatory to the World Trade Organization, Convention on Biological Diversity, and Cartagena protocols. Several legislations under the Agreement on Trade-Related Aspects of Intellectual Property Rights have been promulgated in the country. National Biosafety Guidelines have been promulgated in April 2005. The Plant Breeders Rights Act, Amendment in Seed Act-1976, and Geographical Indication for Goods are still passing through discussion, evaluation, and analysis phases. Meanwhile, an illegal GM crop (cotton) has already sneaked into farmer's field. Concerted and coordinated efforts are needed among various ministries for implementation of regulation and capacity building for import/export and local handling of GM crops. Pakistan could easily benefit from the experience of Asian countries, especially China and India, where conditions are similar and the agriculture sector is almost like that of Pakistan. Thus, the exchange of information and experiences is important among these nations.

  12. Agricultural biotechnologies in developing countries and their possible contribution to food security.

    PubMed

    Ruane, John; Sonnino, Andrea

    2011-12-20

    -governmental organisations, including delegations from 42 FAO Member States. At the end of ABDC-10, the Member States reached a number of key conclusions, agreeing, inter alia, that FAO and other relevant international organisations and donors should significantly increase their efforts to support the strengthening of national capacities in the development and appropriate use of pro-poor agricultural biotechnologies. Copyright © 2011 FAO. Published by Elsevier B.V. All rights reserved.

  13. Current and Future Leaders' Perceptions of Agricultural Biotechnology

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Miller, Rene P.

    2009-01-01

    Were elected state FFA officers' attitudes toward agricultural biotechnology significantly different from elected Texas legislators' attitudes about the same topic? The purpose of this study was to determine if differences existed in agricultural biotechnology perceptions or information source preferences when compared by leadership status:…

  14. The use of GMOs (genetically modified organisms): agricultural biotechnology or agricultural biopolitics?

    PubMed

    Nuti, Marco; Felici, Cristiana; Agnolucci, Monica

    2007-01-01

    Agricultural biotechnologies embrace a large array of conventional and modern technologies, spanning from composting organic by-products of agriculture to innovative improvement of quality traits of about twenty out of the mostly cultivated plants. In EU a rather restrictive legislative framework has been installed for GMOs, requiring a risk assessment disproportionate with respect to conventional agriculture and organic farming products. The latter are far from being proved safe for human and animal health, and for the environment. Biotechnology of GMOs has been overtaken by biopolitics. On one side there are biotechnological challenges to be tackled, on another side there is plenty of ground for biopolitical decisions about GMOs. Perhaps the era of harsh confrontation could be fruitfully replaced by sensible cooperation, in order to get a sustainable agricultural development.

  15. 78 FR 7387 - Advisory Committee on Biotechnology and 21st Century Agriculture; Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Biotechnology and 21st Century Agriculture; Renewal AGENCY: Agricultural Research Service, USDA. ACTION: Advisory Committee on Biotechnology and 21st Century Agriculture Renewal. SUMMARY: Notice is hereby given... agricultural biotechnology. The AC21 has been established to provide information and advice to the Secretary of...

  16. Biotechnology and the developing world. Finding ways to bridge the agricultural technology gap.

    PubMed

    Platais, K W; Collinson, M P

    1992-03-01

    Biotechnology is a controversial subject that involves a range of scientific principles from basic tissue culture to genetic manipulation. Proponents include private sector capitalists, public sector researchers, and developing nation governments. Opponents include environmental organizations and social organizations involved in protecting the rights of developing nations. Biotechnology is being presented as the next step after the Green Revolution and the only way that the people of the developing world will be able to feed themselves in the next half century. Research by industrialized nations world wide total an estimated $11 billion with 66% being contributed by the private sector. Biotechnology represents somewhat of a dilemma. Since the majority of the work is being done by the private sector the interests of shareholders and profit are greater done by the private sector the interests of shareholders and profit are greater than that of public welfare or safety. The Consultative Group on International Agricultural Research (CGIAR) is one public sector group that is concerned about this problem. The countries of the developing world fall into 2 categories in relation to use of biotechnology: (1) those that have the potential to adapt imported biotechnologies to local conditions; (2) those that have little or no applied research capacity to effectively use biotechnologies. Currently only Brazil, China, India, and Thailand belong in the 1st category, all other developing countries fall into the 2nd. CGIAR believes it can help in 2 ways: (1) it can provide a bridge for needed information and germplasm between developed and developing countries; (2) it can help to ensure that the agricultural needs of developing countries are not lost. In 1990 CGIAR's plant and animal biotechnology research totaled $14.5 million which was less than 5% of the total CGIAR budget. Networking and institutions building are areas that CGIAR focuses on in an attempt to increase its affect

  17. Social Science Research on Biotechnology and Agriculture: A Critique.

    ERIC Educational Resources Information Center

    Buttel, Frederick H.

    1989-01-01

    Examines trends in social science research on biotechnology and agriculture. Discusses role of private industry's biotechnology "hype" in defining social science research policy in universities. Suggests that widespread promotion of biotechnology as "revolutionary" contributed to lack of academic scrutiny. Examines social…

  18. Development of agricultural biotechnology and biosafety regulations used to assess the safety of genetically modified crops in Iran.

    PubMed

    Mousavi, Amir; Malboobi, Mohammad A; Esmailzadeh, Nasrin S

    2007-01-01

    Rapid progress in the application of biotechnological methodologies and development of genetically modified crops in Iran necessitated intensive efforts to establish proper organizations and prepare required rules and regulations at the national level to ensure safe application of biotechnology in all pertinent aspects. Practically, preparation of a national biotechnology strategic plan in the country coincided with development of a national biosafety framework that was the basis for the drafted biosafety law. Although biosafety measures were observed by researchers voluntarily, the establishment of national biosafety organizations since the year 2000 built a great capacity to deal with biosafety issues in the present and future time, particularly with respect to food and agricultural biotechnology.

  19. Popular misconceptions: agricultural biotechnology.

    PubMed

    McHughen, Alan; Wager, Robert

    2010-12-31

    Agricultural biotechnology, especially genetic engineering or genetic modification (GM), is a topic of considerable controversy worldwide. The public debate is fraught with polarized views and opinions, some are held with religious zeal. Unfortunately, it is also marked with much ignorance and misinformation. Here we explore some popular misconceptions encountered in the public debate. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. How Japanese students reason about agricultural biotechnology.

    PubMed

    Maekawa, Fumi; Macer, Darryl

    2004-10-01

    Many have claimed that education of the ethical issues raised by biotechnology is essential in universities, but there is little knowledge of its effectiveness. The focus of this paper is to investigate how university students assess the information given in class to make their own value judgments and decisions relating to issues of agricultural biotechnology, especially over genetically modified organisms (GMOs). Analysis of homework reports related with agricultural biotechnology after identification of key concepts and ideas in each student report is presented. The ideas were sorted into different categories. The ideas were compared with those in the reading materials using the same categories. These categories included: concern about affects on humans, affects on the environment, developing countries and starvation, trust in industry, responsibility of scientists, risk perception, media influence, need for (international) organizations or third parties, and information dissemination. What was consistent through the different years was that more than half of the students took a "neutral" position. A report was scored as "neutral" when the report included both the positive and negative side of an issue, or when the student could not make a definite decision about the use of GMOs and GM food. While it may be more difficult to defend a strong ''for" or "against" position, some students used logical arguments successfully in doing so. Sample comments are presented to depict how Japanese students see agricultural technology, and how they value its application, with comparisons to the general social attitudes towards biotechnology.

  1. Plant biotechnology patents: applications in agriculture and medicine.

    PubMed

    Hefferon, Kathleen

    2010-06-01

    Recent advances in agricultural biotechnology have enabled the field of plant biology to move forward in great leaps and bounds. In particular, recent breakthroughs in molecular biology, plant genomics and crop science have brought about a paradigm shift of thought regarding the manner by which plants can be utilized both in agriculture and in medicine. Besides the more well known improvements in agronomic traits of crops such as disease resistance and drought tolerance, plants can now be associated with topics as diverse as biofuel production, phytoremediation, the improvement of nutritional qualities in edible plants, the identification of compounds for medicinal purposes in plants and the use of plants as therapeutic protein production platforms. This diversification of plant science has been accompanied by the great abundance of new patents issued in these fields and, as many of these inventions approach commercial realization, the subsequent increase in agriculturally-based industries. While this review chapter is written primarily for plant scientists who have great interest in the new directions being taken with respect to applications in agricultural biotechnology, those in other disciplines, such as medical researchers, environmental scientists and engineers, may find significant value in reading this article as well. The review attempts to provide an overview of the most recent patents issued for plant biotechnology with respect to both agriculture and medicine. The chapter concludes with the proposal that the combined driving forces of climate change, as well as the ever increasing needs for clean energy and food security will play a pivotal role in leading the direction for applied plant biotechnology research in the future.

  2. Challenges facing European agriculture and possible biotechnological solutions.

    PubMed

    Ricroch, Agnès; Harwood, Wendy; Svobodová, Zdeňka; Sági, László; Hundleby, Penelope; Badea, Elena Marcela; Rosca, Ioan; Cruz, Gabriela; Salema Fevereiro, Manuel Pedro; Marfà Riera, Victoria; Jansson, Stefan; Morandini, Piero; Bojinov, Bojin; Cetiner, Selim; Custers, René; Schrader, Uwe; Jacobsen, Hans-Joerg; Martin-Laffon, Jacqueline; Boisron, Audrey; Kuntz, Marcel

    2016-10-01

    Agriculture faces many challenges to maximize yields while it is required to operate in an environmentally sustainable manner. In the present study, we analyze the major agricultural challenges identified by European farmers (primarily related to biotic stresses) in 13 countries, namely Belgium, Bulgaria, the Czech Republic, France, Germany, Hungary, Italy, Portugal, Romania, Spain, Sweden, UK and Turkey, for nine major crops (barley, beet, grapevine, maize, oilseed rape, olive, potato, sunflower and wheat). Most biotic stresses (BSs) are related to fungi or insects, but viral diseases, bacterial diseases and even parasitic plants have an important impact on yield and harvest quality. We examine how these challenges have been addressed by public and private research sectors, using either conventional breeding, marker-assisted selection, transgenesis, cisgenesis, RNAi technology or mutagenesis. Both national surveys and scientific literature analysis followed by text mining were employed to evaluate genetic engineering (GE) and non-GE approaches. This is the first report of text mining of the scientific literature on plant breeding and agricultural biotechnology research. For the nine major crops in Europe, 128 BS challenges were identified with 40% of these addressed neither in the scientific literature nor in recent European public research programs. We found evidence that the private sector was addressing only a few of these "neglected" challenges. Consequently, there are considerable gaps between farmer's needs and current breeding and biotechnology research. We also provide evidence that the current political situation in certain European countries is an impediment to GE research in order to address these agricultural challenges in the future. This study should also contribute to the decision-making process on future pertinent international consortia to fill the identified research gaps.

  3. 76 FR 3599 - Renewal of the Advisory Committee on Biotechnology and 21st Century Agriculture

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Service Renewal of the Advisory Committee on Biotechnology and 21st Century Agriculture AGENCY: Office of... of Agriculture intends to renew the Advisory Committee on Biotechnology and 21st Century Agriculture... responsible development and application of biotechnology within the global food and agricultural system...

  4. Essential Features of Responsible Governance of Agricultural Biotechnology

    PubMed Central

    Hartley, Sarah; Wickson, Fern

    2016-01-01

    Agricultural biotechnology continues to generate considerable controversy. We argue that to address this controversy, serious changes to governance are needed. The new wave of genomic tools and products (e.g., CRISPR, gene drives, RNAi, synthetic biology, and genetically modified [GM] insects and fish), provide a particularly useful opportunity to reflect on and revise agricultural biotechnology governance. In response, we present five essential features to advance more socially responsible forms of governance. In presenting these, we hope to stimulate further debate and action towards improved forms of governance, particularly as these new genomic tools and products continue to emerge. PMID:27144921

  5. Essential Features of Responsible Governance of Agricultural Biotechnology.

    PubMed

    Hartley, Sarah; Gillund, Frøydis; van Hove, Lilian; Wickson, Fern

    2016-05-01

    Agricultural biotechnology continues to generate considerable controversy. We argue that to address this controversy, serious changes to governance are needed. The new wave of genomic tools and products (e.g., CRISPR, gene drives, RNAi, synthetic biology, and genetically modified [GM] insects and fish), provide a particularly useful opportunity to reflect on and revise agricultural biotechnology governance. In response, we present five essential features to advance more socially responsible forms of governance. In presenting these, we hope to stimulate further debate and action towards improved forms of governance, particularly as these new genomic tools and products continue to emerge.

  6. Agricultural Communications Students' Awareness and Perceptions of Biotechnology Issues.

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Rutherford, Tracy A.; Dunsford, Deborah W.

    2003-01-01

    Agricultural communications students (n=330) from 11 universities were most aware of biotechnology effects on food, less aware of effects on health and the environment. They were somewhat accepting of genetic modifications for plants, not humans. Sources of biotechnology knowledge were science classes, labs, and university professors' beliefs.…

  7. Factors Influencing the Intent of North Carolina Agricultural Educators To Adopt Agricultural Biotechnology Curriculum.

    ERIC Educational Resources Information Center

    Wilson, Elizabeth; Kirby, Barbara; Flowers, Jim

    2002-01-01

    North Carolina secondary agriculture teachers (n=126) recognized the benefits of integrating biotechnology. Funding, equipment, and teacher knowledge were the greatest barriers to integration. Those most likely to teach biotechnology have some training and believe that the state-adopted integration course fulfills their curriculum needs. (Contains…

  8. Factors Related to the Intent of Agricultural Educators To Adopt Integrated Agricultural Biotechnology Curriculum.

    ERIC Educational Resources Information Center

    Wilson, Elizabeth; Kirby, Barbara; Flowers, Jim

    2002-01-01

    Recent legislation encourages the integration of academic content in agricultural education. In North Carolina, high school agricultural education programs can now choose to offer a state adopted integrated biotechnology curriculum. Empirical evidence was needed to identify and describe factors related to the intent of agricultural educators to…

  9. Putting concerns about nature in context: the case of agricultural biotechnology.

    PubMed

    Kaebnick, Gregory E

    2007-01-01

    Concerns about nature are playing increasingly prominent roles in a variety of social debates, including medical biotechnology, environmental protection, and agricultural biotechnology. These concerns are often simply rejected as incoherent: critics argue that there is no good account for how natural states of affairs can have moral value, and that the concept of "nature" is too multifarious and vague to be deployed in moral argument anyway. When these concerns are defended, they are frequently formulated as strong claims that make implausible ontological commitments and that ignore the linkages between these different debates. Agricultural biotechnology provides an especially challenging case study for evaluating concerns about nature. I offer a qualified defense that recognizes these concerns as conceptually linked, attends to social context at appropriate points, and overcomes the charges of incoherence. This defense supports a restrained treatment of concerns about nature in public policy: public policy can neither endorse nor dismiss them. In the case of agricultural biotechnology, this stance probably mandates some form of labeling.

  10. Biotechnology: Applications in Agriculture. Instructor Guide [and] Student Reference.

    ERIC Educational Resources Information Center

    Nevils, Aaron

    This curriculum guide incorporates the needed components to aid agriculture teachers in the implementation of the Vocational Instructional Management System in biotechnology: applications in agriculture. The guide begins with a list of the competencies/objectives found in the six units; list of references and materials; list of materials and…

  11. 76 FR 14895 - Request for Nominations to the Advisory Committee on Biotechnology and 21st Century Agriculture

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... DEPARTMENT OF AGRICULTURE Agricultural Research Service Request for Nominations to the Advisory Committee on Biotechnology and 21st Century Agriculture AGENCY: Office of the Under Secretary, Research... Biotechnology and 21st Century Agriculture. SUMMARY: The Secretary of Agriculture requests nominations for...

  12. Considerations for conducting research in agricultural biotechnology.

    PubMed

    Shelton, Anthony M

    2003-06-01

    Science has shown its increased vulnerability because of two recent high-profile articles published in major journals on corn produced through biotechnology: a laboratory report suggesting profound consequences to monarch butterfly populations due to Bt corn pollen and a report suggesting transgenic introgression into Mexican maize. While both studies have been widely regarded as having flawed methodology, publishing these studies has created great consternation in the scientific community, regulatory agencies and the general public. There are roles and responsibilities of scientists, scientific journals, the public media, public agencies, and those who oppose or advocate a specific technology, and serious consequences when those roles and responsibilities go awry. Modern communication may exacerbate the flow of misinformation and easily lead to a decline in public confidence about biotechnology and science. However, common sense tells us that scientific inquiry and the publication and reporting of results should be performed with high standards of ethical behavior, regardless of one's personal perspective on agricultural biotechnology.

  13. The impact of biotechnology on agricultural worker safety and health.

    PubMed

    Shutske, J M; Jenkins, S M

    2002-08-01

    Biotechnology applications such as the use and production of genetically modified organisms (GMOs) have been widely promoted, adopted, and employed by agricultural producers throughout the world. Yet, little research exists that examines the implications of agricultural biotechnology on the health and safety of workers involved in agricultural production and processing. Regulatory frameworks do exist to examine key issues related to food safety and environmental protection in GMO applications. However, based on the lack of research and regulatory oversight, it would appear that the potential impact on the safety and health of workers is of limited interest. This article examines some of the known worker health and safety implications related to the use and production of GMOs using the host, agent, and environment framework. The characteristics of employers, workers, inputs, production practices, and socio-economic environments in which future agricultural workers perform various tasks is likely to change based on the research summarized here.

  14. Students' knowledge of, and attitudes towards biotechnology revisited, 1995-2014: Changes in agriculture biotechnology but not in medical biotechnology.

    PubMed

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-09-10

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and attitudes towards biotechnology for nearly two decades. Not surprisingly, knowledge of biotechnology of current students has increased significantly (p < 0.001) and most students have learned some definitions and examples of biotechnology. There was a positive correlation between biotechnology knowledge and attitudes toward biotechnology for current students who study Advanced Biology (AB). However, for current students who did not study AB, there was a negative correlation.The attitude results showed that students today expressed less favorable opinions toward agricultural biotechnology (p < 0.001) despite studying AB or not. However, there is no significant difference between students today and 18 years ago in opinions towards medical biotechnology. In addition, current students showed a greater concern involving environmental risks than former students. Interestingly, the high school curriculum did affect students' attitudes toward genetically engineered (GE) plants but not GE animals. Our current study also found that the students' attitude towards GE animals was influenced more by their limited knowledge than by their moral belief. On the basis of findings from this study, we suggest that more materials of emerging animal biotechnology should be included in high school curriculum and recommend that high school teachers and university faculty establish a collaborative framework in the near future. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):475-491, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  15. Evaluation of protein safety in the context of agricultural biotechnology.

    PubMed

    Delaney, Bryan; Astwood, James D; Cunny, Helen; Conn, Robin Eichen; Herouet-Guicheney, Corinne; Macintosh, Susan; Meyer, Linda S; Privalle, Laura; Gao, Yong; Mattsson, Joel; Levine, Marci

    2008-05-01

    One component of the safety assessment of agricultural products produced through biotechnology is evaluation of the safety of newly expressed proteins. The ILSI International Food Biotechnology Committee has developed a scientifically based two-tiered, weight-of-evidence strategy to assess the safety of novel proteins used in the context of agricultural biotechnology. Recommendations draw upon knowledge of the biological and chemical characteristics of proteins and testing methods for evaluating potential intrinsic hazards of chemicals. Tier I (potential hazard identification) includes an assessment of the biological function or mode of action and intended application of the protein, history of safe use, comparison of the amino acid sequence of the protein to other proteins, as well as the biochemical and physico-chemical properties of the proteins. Studies outlined in Tier II (hazard characterization) are conducted when the results from Tier I are not sufficient to allow a determination of safety (reasonable certainty of no harm) on a case-by-case basis. These studies may include acute and repeated dose toxicology studies and hypothesis-based testing. The application of these guidelines is presented using examples of transgenic proteins applied for agricultural input and output traits in genetically modified crops along with recommendations for future research considerations related to protein safety assessment.

  16. Biotechnology: An Assessment of Agricultural Science Teachers' Knowledge and Attitudes

    ERIC Educational Resources Information Center

    Mowen, Diana L.; Roberts, T. Grady; Wingenbach, Gary J.; Harlin, Julie F.

    2007-01-01

    The purpose of this study was to explore agricultural science teachers' knowledge levels and attitudes toward biotechnology topics. The average agricultural science teacher in this study was a 37-year-old male who had taught for 12 years. He had a bachelor's degree and had lived or worked on a farm or ranch. He had not attended…

  17. Agricultural biotechnology and smallholder farmers in developing countries.

    PubMed

    Anthony, Vivienne M; Ferroni, Marco

    2012-04-01

    Agricultural biotechnology holds much potential to contribute towards crop productivity gains and crop improvement for smallholder farmers in developing countries. Over 14 million smallholder farmers are already benefiting from biotech crops such as cotton and maize in China, India and other Asian, African and Central/South American countries. Molecular breeding can accelerate crop improvement timescales and enable greater use of diversity of gene sources. Little impact has been realized to date with fruits and vegetables because of development timescales for molecular breeding and development and regulatory costs and political considerations facing biotech crops in many countries. Constraints to the development and adoption of technology-based solutions to reduce yield gaps need to be overcome. Full integration with broader commercial considerations such as farmer access to seed distribution systems that facilitate dissemination of improved varieties and functioning markets for produce are critical for the benefits of agricultural biotechnology to be fully realized by smallholders. Public-private partnerships offer opportunities to catalyze new approaches and investment while accelerating integrated research and development and commercial supply chain-based solutions. Copyright © 2011. Published by Elsevier Ltd.

  18. 77 FR 48948 - Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture Meeting; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... Service Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture Meeting; Correction... Biotechnology and 21st Century Agriculture (AC21). The notice was published in the Federal Register on August 6...

  19. Reducing agricultural greenhouse gas emissions: role of biotechnology, organic systems, and consumer behavior

    USDA-ARS?s Scientific Manuscript database

    All agricultural systems have environmental and societal costs and benefits that should be objectively quantified before recommending specific management practices. Agricultural biotechnology, which takes advantage of genetically engineered organisms (GEOs), along with organic cropping systems, econ...

  20. College Students' View of Biotechnology Products and Practices in Sustainable Agriculture Systems

    ERIC Educational Resources Information Center

    Anderson, William A.

    2008-01-01

    Sustainable agriculture implies the use of products and practices that sustain production, protect the environment, ensure economic viability, and maintain rural community viability. Disagreement exists as to whether or not the products and practices of modern biotechnological support agricultural sustainability. The purpose of this study was to…

  1. Development and application of modern agricultural biotechnology in Botswana: The potentials, opportunities and challenges

    PubMed Central

    Batlang, Utlwang; Tsurupe, Gorata; Segwagwe, Amogelang; Obopile, Motshwari

    2014-01-01

    In Botswana, approximately 40% of the population live in rural areas and derive most of their livelihood from agriculture by keeping livestock and practising arable farming. Due to the nature of their farming practises livestock and crops are exposed to diseases and environmental stresses. These challenges offer opportunities for application of biotechnology to develop adaptable materials to the country's environment. On the other hand, the perceived risk of genetically modified organisms (GMOs) has dimmed the promise of the technology for its application in agriculture. This calls for a holistic approach to the application of biotechnology to address issues of biosafety of GMOs. We have therefore assessed the potentials, challenges and opportunities to apply biotechnology with specific emphasis on agriculture, taking cognisance of requirement for its research, development and application in research and teaching institutions. In order to achieve this, resource availability, infrastructure, human and laboratory requirements were analyzed. The analysis revealed that the country has the capacity to carry out research in biotechnology in the development and production of genetically modified crops for food and fodder crops. These will include gene discovery, genetic transformation and development of systems to comply with the world regulatory framework on biosafety. In view of the challenges facing the country in agriculture, first generation biotech crops could be released for production. Novel GM products for development may include disease diagnosis kits, animal disease vaccines, and nutrient use efficiency, drought, and pest and disease resistant food and fodder crops. PMID:25437237

  2. Development and application of modern agricultural biotechnology in Botswana: the potentials, opportunities and challenges.

    PubMed

    Batlang, Utlwang; Tsurupe, Gorata; Segwagwe, Amogelang; Obopile, Motshwari

    2014-07-03

    In Botswana, approximately 40% of the population live in rural areas and derive most of their livelihood from agriculture by keeping livestock and practising arable farming. Due to the nature of their farming practises livestock and crops are exposed to diseases and environmental stresses. These challenges offer opportunities for application of biotechnology to develop adaptable materials to the country's environment. On the other hand, the perceived risk of genetically modified organisms (GMOs) has dimmed the promise of the technology for its application in agriculture. This calls for a holistic approach to the application of biotechnology to address issues of biosafety of GMOs. We have therefore assessed the potentials, challenges and opportunities to apply biotechnology with specific emphasis on agriculture, taking cognisance of requirement for its research, development and application in research and teaching institutions. In order to achieve this, resource availability, infrastructure, human and laboratory requirements were analyzed. The analysis revealed that the country has the capacity to carry out research in biotechnology in the development and production of genetically modified crops for food and fodder crops. These will include gene discovery, genetic transformation and development of systems to comply with the world regulatory framework on biosafety. In view of the challenges facing the country in agriculture, first generation biotech crops could be released for production. Novel GM products for development may include disease diagnosis kits, animal disease vaccines, and nutrient use efficiency, drought, and pest and disease resistant food and fodder crops.

  3. Transgenic barley: a prospective tool for biotechnology and agriculture.

    PubMed

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming. © 2013 Elsevier Inc. All rights reserved.

  4. Chinese public understanding of the use of agricultural biotechnology--a case study from Zhejiang Province of China.

    PubMed

    Lü, Lan

    2006-04-01

    This study explores the Chinese public's perceptions of, and attitudes to, agriculture and food applications of biotechnology; and investigates the effect of socio-demographic factors on attitudes. A questionnaire survey and interviews were used in an attempt to combine quantitative analysis with qualitative review. The main finding of this study is that the Chinese population has a superficial, optimistic attitude to agricultural biotechnology; and that, in accordance with public attitudes, a cautious policy, with obligatory labelling, should be adopted. The study reveals that education is the factor among socio-demographic variables with the strongest impact on public attitudes. Higher education leads to a more positive evaluation of GM (genetically modified) foods and applications of biotechnology with respect to usefulness, moral acceptability, and suitability for encouragement. In addition, public attitudinal differences depend significantly on area of residence. Compared with their more urban compatriots, members of the public in less developed areas of China have more optimistic attitudes, perceive more benefits, and are more risk tolerant in relation to GM foods and agricultural biotechnology. Finally we obtained a very high rate of "don't know" answers to our survey questions. This suggests that many people do not have settled attitudes, and correspondingly, that the overall public attitude to agricultural biotechnology and GM foods in China is at present somewhat unstable.

  5. Agricultural Science Teachers' Barriers, Roles, and Information Source Preferences for Teaching Biotechnology Topics

    ERIC Educational Resources Information Center

    Mowen, Diana L.; Wingenbach, Gary J.; Roberts, T. Grady; Harlin, Julie F.

    2007-01-01

    The purpose of this study was to determine barriers, roles, and information source preferences for teaching agricultural biotechnology topics. Agricultural science teachers were described primarily as 37 year-old males who had taught for 12 years, had bachelor's degrees, and had lived or worked on a farm or ranch. Equipment was perceived as the…

  6. Agricultural Products | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag News Contact Us Search  Log inRegister Home Home Agricultural Products NEWT: National Extension Web , tables, graphs), Agricultural Products html National Animal Nutrition Program (NANP) Feed Composition

  7. Biotechnology: The U.S. Department of Agriculture's Biotechnology Research Efforts. Briefing Report. To the Chairman, Committee on Science and Technology, House of Representatives.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    Information pertaining to biotechnology research that was funded in whole or in part by the U.S. Department of Agriculture (USDA) is presented in this report. Findings obtained from state agricultural experimental stations and colleges of veterinary medicine are discussed in 11 appendices. These include: (1) information on USDA's biotechnology…

  8. Agriculture Breaks New Ground. How Biotechnology and Regrowing Materials Are Being Used in the Federal Republic of Germany. Sonderdienst Special Report SO1.

    ERIC Educational Resources Information Center

    Grimm, Fritz; Born, Sigrid

    This document provides an overview of the major research priorities of biotechnology and the use of what is known as "regrowing raw materials" in agriculture in the Federal Republic of Germany. Following an introduction, section 2 addresses biotechnology in agriculture, including biotechnology and genetic engineering, the significance of…

  9. RNAi technologies in agricultural biotechnology: The Toxicology Forum 40th Annual Summer Meeting.

    PubMed

    Sherman, James H; Munyikwa, Tichafa; Chan, Stephen Y; Petrick, Jay S; Witwer, Kenneth W; Choudhuri, Supratim

    2015-11-01

    During the 40th Annual Meeting of The Toxicology Forum, the current and potential future science, regulations, and politics of agricultural biotechnology were presented and discussed. The meeting session described herein focused on the technology of RNA interference (RNAi) in agriculture. The general process by which RNAi works, currently registered RNAi-based plant traits, example RNAi-based traits in development, potential use of double stranded RNA (dsRNA) as topically applied pesticide active ingredients, research related to the safety of RNAi, biological barriers to ingested dsRNA, recent regulatory RNAi science reviews, and regulatory considerations related to the use of RNAi in agriculture were discussed. Participants generally agreed that the current regulatory framework is robust and appropriate for evaluating the safety of RNAi employed in agricultural biotechnology and were also supportive of the use of RNAi to develop improved crop traits. However, as with any emerging technology, the potential range of future products, potential future regulatory frameworks, and public acceptance of the technology will continue to evolve. As such, continuing dialogue was encouraged to promote education of consumers and science-based regulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. An Overview on Indian Patents on Biotechnology.

    PubMed

    Mallick, Anusaya; Chandra Santra, Subhas; Samal, Alok Chandra

    2015-01-01

    The application of biotechnology is a potential tool for mitigating the present and future fooding and clothing demands in developing countries like India. The commercialization of biotechnological products might benefiting the poor`s in developing countries are unlikely to be developed. Biotechnology has the potential to provide a wide range of products and the existing production skills in the industrial, pharmaceuticals and the agricultural sector. Ownership of the intellectual property rights is the key factors in determining the success of any technological invention, which was introduced in the market. It provides the means for technological progress to continue of the industry of the country. The new plans, animal varieties, new methods of treatments, new crops producing food articles as such are the inventions of biotechnology. Biotechnology is the result of the application of human intelligence and knowledge to the biological processes. Most of the tools of biotechnology have been developed, by companies, governments, research in- stitutes and universities in developed nations. These human intellectual efforts deserve protection. India is a developing country with advance biotechnology based segments of pharmaceutical and agricultural industries. The Trade Related Intellectual Property Rights (TRIPS) is not likely to have a significant impact on incentives for innovation creation in the biotechnology sectors. In the recent years, the world has seen the biotechnology sector as one of greatest investment area through the Patent Law and will giving huge profit in future. The Research and Development in the field of biotechnology should be encouraged for explor- ing new tools and improve the biological systems for interest of the common people. Priority should be given to generation, evaluation, protection and effective commercial utilization of tangible products of intellectual property in agriculture and pharmaceuticals. To support the future growth and

  11. Governing nanobiotechnology: lessons from agricultural biotechnology regulation

    NASA Astrophysics Data System (ADS)

    Johnson, Robbin S.

    2011-04-01

    This article uses lessons from biotechnology to help inform the design of oversight for nanobiotechnology. Those lessons suggest the following: first, oversight needs to be broadly defined, encompassing not just regulatory findings around safety and efficacy, but also public understanding and acceptance of the technology and its products. Second, the intensity of scrutiny and review should reflect not just risks but also perceptions of risk. Finally, a global marketplace argues for uniform standards or commercially practical solutions to differences in standards. One way of designing oversight to achieve these purposes is to think about it in three phases—precaution, prudence, and promotion. Precaution comes early in the technology or product's development and reflects real and perceived uncertainties. Prudence governs when risks and hazards have been identified, containment approaches established, and benefits broadly defined. Transparency and public participation rise to the fore. The promotional phase moves toward shaping public understanding and acceptance and involves marketing issues rather than safety ones. This flexible, three-phase approach to oversight would have avoided some of the early regulatory problems with agricultural biotechnology. It also would have led to a more risk-adjusted pathway to regulatory approval. Furthermore, it would avoid some of the arbitrary, disruptive marketing issues that have arisen.

  12. Agricultural Transportation Challenges for the 21st Century: Transportation and Logistical Challenges of Biotechnology

    DOT National Transportation Integrated Search

    1998-07-01

    Biotechnology is beginning to revolutionize agricultural production, especially for grains and oilseeds. Varietal improvements that have resulted in herbicide tolerance and insect resistance are : increasing yields and reducing production costs for f...

  13. National Strategy for Modernizing the Regulatory System for Biotechnology Products

    EPA Pesticide Factsheets

    This National Strategy for Modernizing the Regulatory System for Biotechnology Products sets forth a vision for ensuring that the federal regulatory system is prepared to efficiently assess the risks, if any, of the future products of biotechnology.

  14. Public perceptions of biotechnology.

    PubMed

    McHughen, Alan

    2007-09-01

    The very term 'Biotechnology' elicits a range of emotions, from wonder and awe to downright fear and hostility. This is especially true among non-scientists, particularly in respect of agricultural and food biotechnology. These emotions indicate just how poorly understood agricultural biotechnology is and the need for accurate, dispassionate information in the public sphere to allow a rational public debate on the actual, as opposed to the perceived, risks and benefits of agricultural biotechnology. This review considers first the current state of public knowledge on agricultural biotechnology, and then explores some of the popular misperceptions and logical inconsistencies in both Europe and North America. I then consider the problem of widespread scientific illiteracy, and the role of the popular media in instilling and perpetuating misperceptions. The impact of inappropriate efforts to provide 'balance' in a news story, and of belief systems and faith also impinges on public scientific illiteracy. Getting away from the abstract, we explore a more concrete example of the contrasting approach to agricultural biotechnology adoption between Europe and North America, in considering divergent approaches to enabling coexistence in farming practices. I then question who benefits from agricultural biotechnology. Is it only the big companies, or is it society at large--and the environment--also deriving some benefit? Finally, a crucial aspect in such a technologically complex issue, ordinary and intelligent non-scientifically trained consumers cannot be expected to learn the intricacies of the technology to enable a personal choice to support or reject biotechnology products. The only reasonable and pragmatic alternative is to place trust in someone to provide honest advice. But who, working in the public interest, is best suited to provide informed and accessible, but objective, advice to wary consumers?

  15. The role of biotechnology for agricultural sustainability in Africa.

    PubMed

    Thomson, Jennifer A

    2008-02-27

    Sub-Saharan Africa could have a shortfall of nearly 90Mt of cereals by the year 2025 if current agricultural practices are maintained. Biotechnology is one of the ways to improve agricultural production. Insect-resistant varieties of maize and cotton suitable for the subcontinent have been identified as already having a significant impact. Virus-resistant crops are under development. These include maize resistant to the African endemic maize streak virus and cassava resistant to African cassava mosaic virus. Parasitic weeds such as Striga attack the roots of crops such as maize, millet, sorghum and upland rice. Field trials in Kenya using a variety of maize resistant to a herbicide have proven very successful. Drought-tolerant crops are also under development as are improved varieties of local African crops such as bananas, cassava, sorghum and sweet potatoes.

  16. Biotechnology: Education and Training. Special Reference Briefs Series No. SRB 96-08.

    ERIC Educational Resources Information Center

    Dobert, Raymond

    This document, prepared by The Biotechnology Information Center at the National Agricultural Library, contains sources of information that can provide a starting point for teachers, university faculty, extension agents, and other education leaders who have an interest in biotechnology education and training. Sections include a bibliography of the…

  17. Agricultural biotechnology for crop improvement in a variable climate: hope or hype?

    PubMed

    Varshney, Rajeev K; Bansal, Kailash C; Aggarwal, Pramod K; Datta, Swapan K; Craufurd, Peter Q

    2011-07-01

    Developing crops that are better adapted to abiotic stresses is important for food production in many parts of the world today. Anticipated changes in climate and its variability, particularly extreme temperatures and changes in rainfall, are expected to make crop improvement even more crucial for food production. Here, we review two key biotechnology approaches, molecular breeding and genetic engineering, and their integration with conventional breeding to develop crops that are more tolerant of abiotic stresses. In addition to a multidisciplinary approach, we also examine some constraints that need to be overcome to realize the full potential of agricultural biotechnology for sustainable crop production to meet the demands of a projected world population of nine billion in 2050. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Position of the American Dietetic Association: Agricultural and food biotechnology.

    PubMed

    Bruhn, Christine; Earl, Robert

    2006-02-01

    It is the position of the American Dietetic Association that agricultural and food biotechnology techniques can enhance the quality, safety, nutritional value, and variety of food available for human consumption and increase the efficiency of food production, food processing, food distribution, and environmental and waste management. The American Dietetic Association encourages the government, food manufacturers, food commodity groups, and qualified food and nutrition professionals to work together to inform consumers about this new technology and encourage the availability of these products in the marketplace.

  19. Bioanalysis-related highlights from the 2011 AAPS National Biotechnology Conference.

    PubMed

    Crisino, Rebecca M; Dulanto, Beatriz

    2011-08-01

    The American Association of Pharmaceutical Scientists is a dynamic international forum for the exchange of knowledge among scientists to enhance their contributions to drug development. The annual National Biotechnology Conference, conducted and organized by the American Association of Pharmaceutical Scientists, is a forum dedicated to advancements in science and technology related to discovery, development and manufacture of medical biotechnology products. The 2011 National Biotechnology Conference meeting convened in San Francisco, CA, USA on 16-18 May. Over 300 abstracts were submitted and approximately 50 sessions examined topics pertaining to advances in drug development, emerging analytical technologies, bioanalysis-related issues, biosimilar therapies, updates on global regulatory documents and expectations, and other topics. The focus of this article is to highlight key developments relevant to immunogenicity and pharmacokinetic drug concentration bioanalysis.

  20. Working Towards Disease Resistance in Peanuts Through Biotechnology

    USDA-ARS?s Scientific Manuscript database

    Resistant cultivars are the most desirable approach to disease control in agriculture. Early and late leaf spot are the most important foliar diseases of peanut worldwide. Significant progress for leaf spot resistance in peanut can be achieved through biotechnology. The National Peanut Research ...

  1. Transgenic proteins in agricultural biotechnology: The toxicology forum 40th annual summer meeting.

    PubMed

    Sherman, James H; Choudhuri, Supratim; Vicini, John L

    2015-12-01

    During the 40th Annual Meeting of The Toxicology Forum, the current and potential future science, regulations, and politics of agricultural biotechnology were presented and discussed. The range of current commercial crops and commercial crop traits related to transgenic proteins were reviewed and example crop traits discussed, including insecticidal resistance conferred by Bt proteins and the development of nutritionally enhanced food such as Golden Rice. The existing regulatory framework in the USA, with an emphasis on US FDA's role in evaluating the safety of genetically engineered crops under the regulatory umbrella of the FD&C Act was reviewed. Consideration was given to the polarized politics surrounding agricultural biotechnology, the rise of open access journals, and the influence of the internet and social media in shaping public opinion. Numerous questions related to misconceptions regarding current products and regulations were discussed, highlighting the need for more scientists to take an active role in public discourse to facilitate public acceptance and adoption of new technologies and to enable science-based regulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Current state of biotechnology in Turkey.

    PubMed

    Dundar, Munis; Akbarova, Yagut

    2011-09-01

    Biotechnology is an interdisciplinary branch of science that encompasses a wide range of subjects like genetics, virology, microbiology, immunology, engineering to develop vaccines, and so on and plays a vital role in health systems, crop and seed management, yield improvement, agriculture, soil management, ecology, animal farming, cellular process, bio statistics, and so on. This article is about activities in medical and pharmaceutical biotechnology, environmental biotechnology, agricultural biotechnology and nanobiotechnology carried out in Turkey. Turkey has made some progress in biotechnology projects for research and development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. News | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag Instruction Series on the National Agricultural Library's YouTube channel. These video tutorials review much our Ag Data Commons User Instruction Series on the National Agricultural Library's YouTube channel

  4. Food and agricultural biotechnology: a summary and analysis of ethical concerns.

    PubMed

    Thompson, Paul B; Hannah, William

    2008-01-01

    The range of social and ethical concerns that have been raised in connection with food and agricultural biotechnology is exceedingly broad. Many of these deal with risks and possible outcomes that are not unique to crops or animals developed using recombinant DNA. Food safety, animal welfare, socio-economic and environmental impacts, as well as shifts in power relations or access to technology raise concerns that might be generalized to many technologies. These aspects of the controversy over biotechnology are analyzed below as elements of general technological ethics, and key norms or values pertinent to each of these categories are specified in some detail. However, a number of special concerns unique to the use of rDNA in manipulating plant and animal genomes have been raised, and these are reviewed as well. The chapter concludes by reviewing two broad policy strategies for responding to the issues, one involving labels and consumer consent, the other applying the precautionary principle.

  5. Agriculture: About EPA's National Agriculture Center

    EPA Pesticide Factsheets

    EPA's National Agriculture Center (Ag Center), with the support of the United States Department of Agriculture, serves growers, livestock producers, other agribusinesses, and agricultural information/education providers.

  6. Biotechnology in agriculture, 1986-May 1992. Citation from agricola concerning diseases and other environmental considerations. Bibliographies and literature of agriculture (Final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bebee, C.N.

    1992-08-01

    The citations in this bibliography, Biotechnology in Agriculture, 1986 - May 1992, are selected from the AGRICOLA database and cover diseases, insects, nematodes, weeds, chemicals, and other environmental considerations. This is the 46th volume in a series of commodity-oriented listings of citations from AGRICOLA. Entries in the bibliography are subdivided into a series of section headings used in the contents of the Bibliography of Agriculture. Each item appears under every section heading assigned to the cited document. A personal author index accompanies this publication.

  7. National Agricultural Library | United States Department of Agriculture

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag is a data access system maintained by the US Department of Agriculture's (USDA) National Agricultural websites. The Ag Data Commons provides access to a wide variety of open data relevant to agricultural

  8. Crop Biotechnology. Where Now?

    PubMed Central

    Miflin, B. J.

    2000-01-01

    Abstract Nature Biotechnology organized a conference in London on Agbiotech 99: Biotechnology and World Agriculture (November 14-16, 1999). The conference focused entirely on crop biotechnology and covered both societal and scientific aspects. Below is an account of the more important issues raised by the speakers and the audience. PMID:10806221

  9. National Agricultural Library | United States Department of Agriculture

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag User Instruction Series on the National Agricultural Library's YouTube channel. These video tutorials Home | USDA.gov | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement

  10. Beyond knowledge transfer: The social construction of autonomous academic science in university-industry agricultural biotechnology research collaborations

    NASA Astrophysics Data System (ADS)

    Biscotti, Dina Louise

    Autonomy is a social product. Although some might view autonomy as the absence of social interference in individual action, it is in fact produced through social institutions. It enables social actors to act; it is the justification for the allocation of enormous public resources into institutions classified as "public" or "nonprofit;" it can lead to innovation; and, significantly, it is key to the public acceptance of new technologies. In this dissertation, I analyze the social construction of autonomy for academic science in U.S. university-industry agricultural biotechnology research collaborations. University-industry relationships (UIRs) are a site of concern about the influence of commercial interests on academic science. Agricultural biotechnology is a contentious technology that has prompted questions about the ecological and public health implications of genetically-modified plants and animals. It has also spurred awareness of the industrialization of agriculture and accelerating corporate control of the global food system. Through analysis of in-depth interviews with over 200 scientists and administrators from nine U.S. research universities and thirty agricultural biotechnology companies, I find that both the academy and industry have a vested interest in the social construction of the academy as an autonomous space from which claims to objective, disinterested scientific knowledge can be made. These claims influence government regulation, as well as grower and public acceptance of agricultural biotechnology products. I argue that the social production of autonomy for academic science can be observed in narratives and practices related to: (1) the framing of when, how and why academic scientists collaborate with industry, (2) the meanings ascribed to and the uses deemed appropriate for industry monies in academic research, and (3) the dissemination of research results into the public domain through publications and patents. These narratives and practices

  11. Potential Applications of Polyamines in Agriculture and Plant Biotechnology.

    PubMed

    Tiburcio, Antonio F; Alcázar, Rubén

    2018-01-01

    The polyamines putrescine, spermidine and spermine have been implicated in a myriad of biological functions in many organisms. Research done during the last decades has accumulated a large body of evidence demonstrating that polyamines are key modulators of plant growth and development. Different experimental approaches have been employed including the measurement of endogenous polyamine levels and the activities of polyamine metabolic enzymes, the study of the effects resulting from exogenous polyamine applications and chemical or genetic manipulation of endogenous polyamine titers. This chapter reviews the role of PAs in seed germination, root development, plant architecture, in vitro plant regeneration, flowering and plant senescence. Evidence presented here indicates that polyamines should be regarded as plant growth regulators with potential applications in agriculture and plant biotechnology.

  12. National Agricultural Library | United States Department of Agriculture

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag agricultural research. We are a centralized registry for data already on the web, as well as a repository for . We use keywords from the National Agricultural Library Thesaurus, and from a customized Ag Data

  13. Induction Strategies that Work: Keeping Agricultural, Health and Biotechnology Career Development Beginning Teachers in the Classroom.

    ERIC Educational Resources Information Center

    Kirby, Barbara M.; LeBude, Anthony V.

    1998-01-01

    A survey of 27 agriculture, 13 biotechnology, and 44 health occupations teachers found that fewer than half experienced adequate materials, facilities, and continuing education reimbursement during induction. Better retention strategies matching teachers' stages of concern were needed during the first five years of teaching. (SK)

  14. Ascendancy of agricultural biotechnology in the Australian political mainstream coexists with technology criticism by a vocal-minority.

    PubMed

    Tribe, David

    2014-07-03

    Australia is a federation of States. This political structure necessitates collaborative arrangements between Australian governments to harmonize national regulation of gene technology and food standards. Extensive political negotiation among institutions of federal government has managed regulation of GM crops and food. Well-developed human resources in Australian government provided numerous policy documents facilitating a transparent political process. Workable legislation has been devised in the face of criticisms of gene technology though the political process. Conflicts between potential disruptions to food commodity trade by precautionary proposals for environmental protection were one cause of political tensions, and differences in policy priorities at regional political levels versus national and international forums for negotiation were another. Australian policy outcomes on GM crops reflect (a) strong economic self-interest in innovative and productive farming, (b) reliance on global agricultural market reforms through the Cairns trade group and the WTO, and (c) the importance of Codex Alimentarius and WTO instruments SPS and TBT. Precautionary frameworks for GM food safety assurance that are inconsistent with WTO obligations were avoided in legislation. Since 2008 the 2 major parties, Australian Labor Party (ALP) and the Liberals appear to have reached a workable consensus at the Federal policy level about an important role for agricultural biotechnology in Australia's economic future.

  15. Ascendancy of agricultural biotechnology in the Australian political mainstream coexists with technology criticism by a vocal-minority

    PubMed Central

    Tribe, David

    2014-01-01

    Australia is a federation of States. This political structure necessitates collaborative arrangements between Australian governments to harmonize national regulation of gene technology and food standards. Extensive political negotiation among institutions of federal government has managed regulation of GM crops and food. Well-developed human resources in Australian government provided numerous policy documents facilitating a transparent political process. Workable legislation has been devised in the face of criticisms of gene technology though the political process. Conflicts between potential disruptions to food commodity trade by precautionary proposals for environmental protection were one cause of political tensions, and differences in policy priorities at regional political levels versus national and international forums for negotiation were another. Australian policy outcomes on GM crops reflect (a) strong economic self-interest in innovative and productive farming, (b) reliance on global agricultural market reforms through the Cairns trade group and the WTO, and (c) the importance of Codex Alimentarius and WTO instruments SPS and TBT. Precautionary frameworks for GM food safety assurance that are inconsistent with WTO obligations were avoided in legislation. Since 2008 the 2 major parties, Australian Labor Party (ALP) and the Liberals appear to have reached a workable consensus at the Federal policy level about an important role for agricultural biotechnology in Australia's economic future. PMID:25437242

  16. The Challenge in Teaching Biotechnology

    ERIC Educational Resources Information Center

    Steele, F.; Aubusson, P.

    2004-01-01

    Agriculture, industry and medicine are being altered by new biotechnologies. Biotechnology education is important because today's students and citizens will make decisions about the development and application of these new molecular biologies. This article reports an investigation of the teaching of biotechnology in an Australian state, New South…

  17. Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy.

    PubMed

    Phitsuwan, Paripok; Laohakunjit, Natta; Kerdchoechuen, Orapin; Kyu, Khin Lay; Ratanakhanokchai, Khanok

    2013-03-01

    Cellulase (CEL) presently constitutes a major group of industrial enzyme based on its diverse ranges of utilization. Apart from such current and well-established applications-as in cotton processing, paper recycling, detergent formulation, juice extraction, and animal feed additives-their uses in agricultural biotechnology and bioenergy have been exploited. Supplementation of CELs to accelerate decomposition of plant residues in soil results in improved soil fertility. So far, applying CELs/antagonistic cellulolytic fungi to crops has shown to promote plant growth performance, including enhanced seed germination and protective effects. Their actions are believed mainly to trigger plant defense mechanisms and/or to act as biocontrol agents that mediate disease suppression. However, the exact interaction between the enzymes/fungi and plants has not been clearly elucidated. Under mild conditions, removal of plant cell wall polysaccharides by CELs for protoplast preparation results in reduced protoplast damage and increased viability and yields. CELs have recently shown great potential in enzyme aid extraction of bioactive compounds from plant materials before selective extraction through enhancing release of target molecules, especially those associated with the wall matrix. To date, attempts have been made to formulate CEL preparation for cellulosic-based bioethanol production. The high cost of CELs has created a bottleneck, resulting in an uneconomic production process. The utilization of low-cost carbohydrates, strain improvement, and gene manipulations has been alternatively aimed at reducing the cost of CEL production. In this review, we focus on and discuss current knowledge of CELs and their applications in agriculture, biotechnology, and bioenergy.

  18. Animals & Livestock | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag (maps, tables, graphs), Agricultural Products html National Animal Nutrition Program (NANP) Feed | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement | Information Quality | Privacy

  19. Recent Patents in Agricultural Biotechnology; Focus on Health.

    PubMed

    Makhzoum, Abdullah; Venkataraman, Srividhya; Tremouillaux-Guiller, Jocelyne; Hefferon, Kathleen

    2016-01-01

    Agricultural biotechnology, including the generation of genetically modified food crops, has been the subject of much controversy over the last few years. Initially serving the basic needs of farmers, Ag Biotech has more recently gained much appeal for its opportunities with respect to both the nutritional and pharmaceutical sciences. The following review describes a number of recently approved patents that could have direct implications for the field of medicine. Topics range from the development of pharmaceuticals in plants using hairy roots or virus expression vectors, to the role of epigenetics for improving the nutritional value of food crops. Many of these patents were developed by smaller companies or publically funded research institutes, disproving the perception that intellectual property in Ag Biotech is restricted to only large multinational corporations. The review concludes with a discussion of the future of these technologies in the face of the current negative political climate. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Application of agricultural biotechnology to improve food nutrition and healthcare products.

    PubMed

    Sun, Samuel S M

    2008-01-01

    Crop plants provide essential food nutrients to humans and livestock, including carbohydrates, lipids, proteins, minerals and vitamins, directly or indirectly. The level and composition of food nutrients vary significantly in different food crops. As a result, plant foods are often deficient in certain nutrient components. Relying on a single food crop as source of nutrients thus will not achieve a balanced diet and results in malnutrition and deficiency diseases, especially in the developing countries, due mainly to poverty. The development and application of biotechnology offers opportunities and novel possibilities to enhance the nutritional quality of crops, particularly when the necessary genetic variability is not available. While initial emphasis of agricultural biotechnology has been placed on input traits of crops such as herbicide tolerance, insect resistance and virus resistance, increasing effort and promising proof-of-concept products have been made in output traits including enhancing the nutritional quality of crops since 1990s. Advancements in plant transformation and transgene expression also allow the use of plants as bioreactors to produce a variety of bio-products at large scale and low cost. Many proof-of-concept plant-derived healthcare products have been generated and several commercialized.

  1. ENVIRONMENTAL RISK MANAGEMENT OF BIOTECHNOLOGY

    EPA Science Inventory

    The last two decades have shown remarkable advances in the field of biotechnology. We have processes using biotechnology to produce materials from commodity chemicals to pharmaceuticals. The application to agriculture has shown the introduction of transgenic crops with pesticidal...

  2. ENVIRONMENTAL RISK MANAGEMENT OF BIOTECHNOLOGY

    EPA Science Inventory

    The last two decades have shown remarkable advances in the field of biotechnology. We hav processes using biotechnology to produce materials from commodity chemicals to pharmaceuticals. The application to agriculture gas shown the introduction of transgenic crops with pesticidal ...

  3. National Agricultural Library | United States Department of Agriculture

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag | USDA.gov | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement | Information

  4. Green biotechnology and European competitiveness.

    PubMed

    Enriquez, J

    2001-04-01

    Europe has led many aspects of gene research and yet it has been unable to translate these discoveries into a globally dominant industrial sector. There are valid societal, political and financial reasons for its reluctance to deploy agricultural biotechnology but this reluctance might have unintended consequences. It will be hard to de-commoditize agriculture and improve farmer's lives. Research in medical biotechnology and the global environment might suffer. Europe could damage its overall economy and its global competitive standing.

  5. The emerging international regulatory framework for biotechnology.

    PubMed

    Komen, John

    2012-01-01

    Debate about the potential risks of genetically modified organisms (GMOs) to the environment or human health spurred attention to biosafety. Biosafety is associated with the safe use of GMOs and, more generally, with the introduction of non-indigenous species into natural or managed ecosystems. Biosafety regulation--the policies and procedures adopted to ensure the environmentally safe application of modern biotechnology--has been extensively discussed at various national and international forums. Much of the discussion has focused on developing guidelines, appropriate legal frameworks and, at the international level, a legally binding international biosafety protocol--the Cartagena Protocol on Biosafety. The Protocol is one among various international instruments and treaties that regulate specific aspects relevant to agricultural biotechnology. The present article presents the main international instruments relevant to biosafety regulation, and their key provisions. While international agreements and standards provide important guidance, they leave significant room for interpretation, and flexibility for countries implementing them. Implementation of biosafety at the national level has proven to be a major challenge, particularly in developing countries, and consequently the actual functioning of the international regulatory framework for biotechnology is still in a state of flux.

  6. National Agricultural Library | United States Department of Agriculture

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag Policy Drupal is a registered trademark of Dries Buytaert. NAL Home | USDA.gov | Agricultural Research

  7. Bioenergy | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag , graphs), Agricultural Products html Data from: Comparative farm-gate life cycle assessment of oilseed registered trademark of Dries Buytaert. NAL Home | USDA.gov | Agricultural Research Service | Plain Language

  8. Current challenges and future perspectives of plant and agricultural biotechnology.

    PubMed

    Moshelion, Menachem; Altman, Arie

    2015-06-01

    Advances in understanding plant biology, novel genetic resources, genome modification, and omics technologies generate new solutions for food security and novel biomaterials production under changing environmental conditions. New gene and germplasm candidates that are anticipated to lead to improved crop yields and other plant traits under stress have to pass long development phases based on trial and error using large-scale field evaluation. Therefore, quantitative, objective, and automated screening methods combined with decision-making algorithms are likely to have many advantages, enabling rapid screening of the most promising crop lines at an early stage followed by final mandatory field experiments. The combination of novel molecular tools, screening technologies, and economic evaluation should become the main goal of the plant biotechnological revolution in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Students' Knowledge of, and Attitudes towards Biotechnology Revisited, 1995-2014: Changes in Agriculture Biotechnology but Not in Medical Biotechnology

    ERIC Educational Resources Information Center

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-01-01

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and…

  10. Home | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag /items/collectionKey.... 5/2/2018: Data Science and Agriculture Webinar Join us for our next webinar on Akshat Pant discuss applications and aspects of data science as it relates to agriculture. Read further

  11. An intellectual property sharing initiative in agricultural biotechnology: development of broadly accessible technologies for plant transformation.

    PubMed

    Chi-Ham, Cecilia L; Boettiger, Sara; Figueroa-Balderas, Rosa; Bird, Sara; Geoola, Josef N; Zamora, Pablo; Alandete-Saez, Monica; Bennett, Alan B

    2012-06-01

    The Public Intellectual Property Resource for Agriculture (PIPRA) was founded in 2004 by the Rockefeller Foundation in response to concerns that public investments in agricultural biotechnology benefiting developing countries were facing delays, high transaction costs and lack of access to important technologies due to intellectual property right (IPR) issues. From its inception, PIPRA has worked broadly to support a wide range of research in the public sector, in specialty and minor acreage crops as well as crops important to food security in developing countries. In this paper, we review PIPRA's work, discussing the failures, successes, and lessons learned during its years of operation. To address public sector's limited freedom-to-operate, or legal access to third-party rights, in the area of plant transformation, we describe PIPRA's patent 'pool' approach to develop open-access technologies for plant transformation which consolidate patent and tangible property rights in marker-free vector systems. The plant transformation system has been licensed and deployed for both commercial and humanitarian applications in the United States (US) and Africa, respectively. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  12. On Teaching Biotechnology in Kentucky.

    ERIC Educational Resources Information Center

    Brown, Dan C.; Kemp, Michael C.; Hall, Jennifer

    1998-01-01

    One study surveyed 187 Kentucky teachers (36% agriculture, 32% science, 32% technology education); they rated importance of content organizers, topics, transferable skills, and delivery methods for biotechnology. A second study received responses from 70 of 150 teachers; 45 thought science teachers or an integrated team should teach biotechnology;…

  13. AgBioData | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag National Invertebrate Genetic Resources Insects impact American agriculture both as destructive and , biotypes, and other genetic entities and to document their different interactions with agriculture and the

  14. Food biotechnology and nutrition in Africa: a case for Kenya.

    PubMed

    Ngichabe, Christopher K

    2002-12-01

    Household food consumption surveys indicate that the diet in Kenya is ill balanced and that many families cannot afford nutrient-rich foods such as meat and fruits. In this regard, rural populations-the majority of the Kenyan population-are much worse off than urban populations. Agriculture, the most important sector in the Kenyan economy, contributes 27% of the gross domestic product and generates 65% of the country's export earnings. Food-enhancing biotechnologies thus could increase national food yields and fill nutrition gaps by contributing to household and national food security and poverty reduction in Kenya. To overcome barriers to adopting biotechnology to improve food crops in Kenya and elsewhere in Africa, policy makers must create a receptive environment for, increase public understanding of, and stimulate investment in the new technology.

  15. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture.

    PubMed

    Pérez-García, Alejandro; Romero, Diego; de Vicente, Antonio

    2011-04-01

    The increasing demand for a steady, healthy food supply requires an efficient control of the major pests and plant diseases. Current management practices are based largely on the application of synthetic pesticides. The excessive use of agrochemicals has caused serious environmental and health problems. Therefore, there is a growing demand for new and safer methods to replace or at least supplement the existing control strategies. Biological control, that is, the use of natural antagonists to combat pests or plant diseases has emerged as a promising alternative to chemical pesticides. The Bacilli offer a number of advantages for their application in agricultural biotechnology. Several Bacillus-based products have been marketed as microbial pesticides, fungicides or fertilisers. Bacillus-based biopesticides are widely used in conventional agriculture, by contrast, implementation of Bacillus-based biofungicides and biofertilizers is still a pending issue. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. User account | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement | Information Quality | Privacy

  17. Fungal biodiversity to biotechnology.

    PubMed

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  18. Relevance of chemistry to white biotechnology

    PubMed Central

    Gupta, Munishwar N; Raghava, Smita

    2007-01-01

    White biotechnology is a fast emerging area that concerns itself with the use of biotechnological approaches in the production of bulk and fine chemicals, biofuels, and agricultural products. It is a truly multidisciplinary area and further progress depends critically on the role of chemists. This article outlines the emerging contours of white biotechnology and encourages chemists to take up some of the challenges that this area has thrown up. PMID:17880746

  19. Development of an agricultural biotechnology crop product: testing from discovery to commercialization.

    PubMed

    Privalle, Laura S; Chen, Jingwen; Clapper, Gina; Hunst, Penny; Spiegelhalter, Frank; Zhong, Cathy X

    2012-10-17

    "Genetically modified" (GM) or "biotech" crops have been the most rapidly adopted agricultural technology in recent years. The development of a GM crop encompasses trait identification, gene isolation, plant cell transformation, plant regeneration, efficacy evaluation, commercial event identification, safety evaluation, and finally commercial authorization. This is a lengthy, complex, and resource-intensive process. Crops produced through biotechnology are the most highly studied food or food component consumed. Before commercialization, these products are shown to be as safe as conventional crops with respect to feed, food, and the environment. This paper describes this global process and the various analytical tests that must accompany the product during the course of development, throughout its market life, and beyond.

  20. Polymerase chain reaction technology as analytical tool in agricultural biotechnology.

    PubMed

    Lipp, Markus; Shillito, Raymond; Giroux, Randal; Spiegelhalter, Frank; Charlton, Stacy; Pinero, David; Song, Ping

    2005-01-01

    The agricultural biotechnology industry applies polymerase chain reaction (PCR) technology at numerous points in product development. Commodity and food companies as well as third-party diagnostic testing companies also rely on PCR technology for a number of purposes. The primary use of the technology is to verify the presence or absence of genetically modified (GM) material in a product or to quantify the amount of GM material present in a product. This article describes the fundamental elements of PCR analysis and its application to the testing of grains. The document highlights the many areas to which attention must be paid in order to produce reliable test results. These include sample preparation, method validation, choice of appropriate reference materials, and biological and instrumental sources of error. The article also discusses issues related to the analysis of different matrixes and the effect they may have on the accuracy of the PCR analytical results.

  1. User account | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag registered trademark of Dries Buytaert. NAL Home | USDA.gov | Agricultural Research Service | Plain Language

  2. Agroecosystems & Environment | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag useful formats (maps, tables, graphs), Agricultural Products html Useful to Usable: Developing usable integrated expertise in applied climatology, crop modeling, agronomy, cyber-technology, agricultural

  3. Plants & Crops | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag , tables, graphs), Agricultural Products html Useful to Usable: Developing usable climate science for climatology, crop modeling, agronomy, cyber-technology, agricultural economics, sociology, Extension and

  4. 77 FR 16846 - National Science Advisory Board for Biosecurity Meeting; Office of Biotechnology Activities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Science Advisory Board for Biosecurity Meeting; Office of Biotechnology Activities, Office of Science Policy, Office of..., as amended (5 U.S.C. App.), notice is hereby given of the following meeting of the National Science...

  5. Genomics & Genetics | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag agricultural and environmental settings. Deadpool proximal sensing cart docx xlsx 3x jpeg 5x pdf Data from Buytaert. NAL Home | USDA.gov | Agricultural Research Service | Plain Language | FOIA | Accessibility

  6. Maps & Multimedia | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag , tables, graphs), Agricultural Products html A how-to-build guide for Deadpool, a proximal sensing cart platform suitable for proximal sensing and imaging in a wide range of agricultural and environmental

  7. Biotechnology: from university to industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, M.F.

    1984-01-01

    This study examines the birth of the biotechnology industry in the US. It is argued that biotechnology may have important implications for the future of American capitalism. The study is contextualized theoretically through the use of the idea of the capitalism experiences waves of innovations at certain historical periods. Finally, the idea of a new regime of accumulation based on information technologies is explored and biotechnology's potential position in the information society is explored. The first section of the study examines the role of the university in biotechnology. The various objectives of administrators and professors are explored as is themore » role of corporate gift giving in transforming the university into an institution more useful for capitalist accumulation. The second section examines the corporate role in biotechnology: both from the viewpoint of the small venture capital-financed biotechnology firms and the large multinational oil, chemical, and pharmaceutical companies that have made a number of important investments in biotechnology. The last chapter describes the unique effects that biotechnology will have upon the US agricultural sector.« less

  8. Life Cycle Assessment | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag ; Livestock (3) Apply Animals & Livestock filter Agricultural Products (1) Apply Agricultural Products filter agricultural equipment (1) Apply agricultural equipment filter agricultural machinery (1) Apply

  9. The new policy of the Food and Agriculture Organization of the United Nations and its Reference Centres for the Animal Production and Health Division.

    PubMed

    Lubroth, J

    2007-01-01

    The article explains the current procedures to be followed for institutes that are, were or would like to become Reference Centres for the Food and Agriculture Organization (FAO) of the United Nations. Within the realm of animal health many of the Reference Laboratories and Reference Centres of the World Organisation for Animal Health (OIE) are the same as those of the Animal and Health Division of FAO, particularly for diseases that are transboundary in nature, but they also address other aspects concerning health, production, standard setting, agriculture, conservation, water, and biotechnology.

  10. Biotechnology: Education.

    ERIC Educational Resources Information Center

    Airozo, Diana; Warmbrodt, Robert D.

    Biotechnology is the latest in a series of technological innovations that have revolutionized the fields of agriculture and the health sciences; however, there are concerns with this technology. This document is designed to help foster dialogue with emphasis on education and the development of a public understanding of the principals involved in…

  11. Agenda 21: biotechnology at the United Nations Conference on Environment and Development.

    PubMed

    Taylhardat, A R; Zilinskas, R A

    1992-04-01

    Preparation has yet to be completed for the 1992 Earth Summit, UN Conference on Environment and Development (UNCED), in Rio de Janeiro, Brazil. Nonetheless, it has been planned as a forum in which recommendations will be made to governments and international organizations on how to alleviate environmental damage caused by human activities and how to prevent future damage without retarding development in the Third World. It will declare basic principles for national and individual conduct regarding environmental preservation and sustainable development; adopt international conventions to protect biodiversity and manage climatic change; lay out Agenda 21 activities as specified by UNCED; provide an agenda to help Third World governments manage environmental matters; and provide an agenda for improving the transfer of technology to developing countries. Where biotechnology is concerned, scientists and policy makers in developing countries have shown their interest. Limited resources and capabilities, however, constrain their abilities to engage in serious research and development. International organizations such as the UN Industrial Development Organization (UNIDO) may help UNCED and developing countries with biotechnology. Since 1986, UNIDO has held the International Centre for Genetic Engineering and Biotechnology (ICGEB) as a special project. The ICGEB conducts research and development (R&D) on high priority topics in developing countries; trains scientific and technical personnel from member countries in advanced biotechnology techniques; helps member countries implement and operate ICGEB-affiliated R&D and training centers; and manages an information exchange for internationally affiliated centers. To maximize the potential of biotechnology to help Third World nations clear their environments of pollutants while safely exploiting natural resources, organizations should promote full use of available training resources; promote biosafety and the dissemination of

  12. Information resources at the National Center for Biotechnology Information.

    PubMed Central

    Woodsmall, R M; Benson, D A

    1993-01-01

    The National Center for Biotechnology Information (NCBI), part of the National Library of Medicine, was established in 1988 to perform basic research in the field of computational molecular biology as well as build and distribute molecular biology databases. The basic research has led to new algorithms and analysis tools for interpreting genomic data and has been instrumental in the discovery of human disease genes for neurofibromatosis and Kallmann syndrome. The principal database responsibility is the National Institutes of Health (NIH) genetic sequence database, GenBank. NCBI, in collaboration with international partners, builds, distributes, and provides online and CD-ROM access to over 112,000 DNA sequences. Another major program is the integration of multiple sequences databases and related bibliographic information and the development of network-based retrieval systems for Internet access. PMID:8374583

  13. Space Biotechnology and Commercial Applications University of Florida

    NASA Technical Reports Server (NTRS)

    Phillips, Winfred; Evanich, Peggy L.

    2004-01-01

    The Space Biotechnology and Commercial Applications grant was funded by NASA's Kennedy Space Center in FY 2002 to provide dedicated biotechnology and agricultural research focused on the regeneration of space flight environments with direct parallels in Earth-based applications for solving problems in the environment, advances in agricultural science, and other human support issues amenable to targeted biotechnology solutions. This grant had three project areas, each with multiple tasks. They are: 1) Space Agriculture and Biotechnology Research and Education, 2) Integrated Smart Nanosensors for Space Biotechnology Applications, and 3) Commercial Applications. The Space Agriculture and Biotechnology Research and Education (SABRE) Center emphasized the fundamental biology of organisms involved in space flight applications, including those involved in advanced life support environments because of their critical role in the long-term exploration of space. The SABRE Center supports research at the University of Florida and at the Space Life Sciences Laboratory (SLSL) at the Kennedy Space Center. The Integrated Smart Nanosensors for Space Biotechnology Applications component focused on developing and applying sensor technologies to space environments and agricultural systems. The research activities in nanosensors were coordinated with the SABRE portions of this grant and with the research sponsored by the NASA Environmental Systems Commercial Space Technology Center located in the Department of Environmental Engineering Sciences. Initial sensor efforts have focused on air and water quality monitoring essential to humans for living and working permanently in space, an important goal identified in NASA's strategic plan. The closed environment of a spacecraft or planetary base accentuates cause and effect relationships and environmental impacts. The limited available air and water resources emphasize the need for reuse, recycling, and system monitoring. It is essential to

  14. Biotechnology as the engine for the Knowledge-Based Bio-Economy.

    PubMed

    Aguilar, Alfredo; Bochereau, Laurent; Matthiessen, Line

    2010-01-01

    The European Commission has defined the Knowledge-Based Bio-Economy (KBBE) as the process of transforming life science knowledge into new, sustainable, eco-efficient and competitive products. The term "Bio-Economy" encompasses all industries and economic sectors that produce, manage and otherwise exploit biological resources and related services. Over the last decades biotechnologies have led to innovations in many agricultural, industrial, medical sectors and societal activities. Biotechnology will continue to be a major contributor to the Bio-Economy, playing an essential role in support of economic growth, employment, energy supply and a new generation of bio-products, and to maintain the standard of living. The paper reviews some of the main biotechnology-related research activities at European level. Beyond the 7th Framework Program for Research and Technological Development (FP7), several initiatives have been launched to better integrate FP7 with European national research activities, promote public-private partnerships and create better market and regulatory environments for stimulating innovation.

  15. New Developments in Biotechnology: U.S. Investment in Biotechnology. Summary.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    Since the discovery of recombinant DNA in the early 1970s, biotechnology has become an essential tool for many industries. The potential of biotechnology to improve the Nation's health, food supply, and the quality of the environment leads logically to questions of whether current levels of investment in research and development, human resources,…

  16. The Challenge in Teaching Biotechnology

    NASA Astrophysics Data System (ADS)

    Steele, F.; Aubusson, P.

    2004-08-01

    Agriculture, industry and medicine are being altered by new biotechnologies. Biotechnology education is important because todays students and citizens will make decisions about the development and application of these new molecular biologies. This article reports an investigation of the teaching of biotechnology in an Australian state, New South Wales (NSW). In NSW few students were electing to answer examination questions related to biotechnology, suggesting that few students were studying the topic. This study looks at why electives relating to biotechnology are chosen or not chosen by students and teachers, with the intention of developing a greater understanding of the requirements for provision of a successful unit of study in this subject. Data was obtained through a survey of secondary science teachers, interviews with teachers and two case studies of the teaching of a biotechnology unit. Teachers reported a range of obstacles to the teaching of biotechnology including the difficulty of the subject matter and a lack of practical work that was suited to the content of the teaching unit. If biotechnology is worth learning in school science, then further research is needed to identify ways to promote the effective teaching of this topic, which teachers regard as important for, and interesting to, students but which most teachers choose not to teach.

  17. Biotechnology: Commercialization and Economic Aspects, January 1993-June 1996. Quick Bibliography Series no. QB 96-10.

    ERIC Educational Resources Information Center

    Leonard, Scott A., Comp.; Dobert, Raymond, Comp.

    This bibliography on the commercialization and economic aspects of biotechnology was produced by the National Agricultural Library. It contains 151 citations in English from the AGRICOLA database. The search strategy is included, call numbers are given for each entry, and abstracts are provided for some citations. The bibliography concludes with…

  18. Teaching biotechnology in NSW schools

    NASA Astrophysics Data System (ADS)

    Steele, Frances A.

    Agriculture, industry and medicine are being altered by new biological technologies. Today's students are the citizens who will make decisions about associated ethical issues. They need to have the knowledge that will enable them to make informed choices. Hence biotechnology has an important place in science education. The aims of the research were to: 1. describe the state of biotechnology teaching in NSW; 2. determine whether teachers in NSW do not teach biotechnology because they do not have the necessary knowledge and experience; 3. identify other reasons why NSW teachers choose not to teach biotechnology; 4. describe problems encountered in teaching biotechnology in NSW; 5. suggest ways in which the problems encountered in the teaching of biotechnology can be overcome. Quantitative and qualitative methods were used in a complementary way to investigate these aims. In a sample of teachers surveyed, many reported that they chose not to teach biotechnology because they did not have adequate knowledge and experience. Other obstacles were identified. These were: 1. the difficulty of the subject matter; 2. the lack of practical work; 3. lack of a program for biotechnology in junior science. The results of this trial suggested that a biotechnology unit should be developed in collaboration with the teacher and that time needs to be made available for school based program development.

  19. Cassava: constraints to production and the transfer of biotechnology to African laboratories.

    PubMed

    Bull, Simon E; Ndunguru, Joseph; Gruissem, Wilhelm; Beeching, John R; Vanderschuren, Hervé

    2011-05-01

    Knowledge and technology transfer to African institutes is an important objective to help achieve the United Nations Millennium Development Goals. Plant biotechnology in particular enables innovative advances in agriculture and industry, offering new prospects to promote the integration and dissemination of improved crops and their derivatives from developing countries into local markets and the global economy. There is also the need to broaden our knowledge and understanding of cassava as a staple food crop. Cassava (Manihot esculenta Crantz) is a vital source of calories for approximately 500 million people living in developing countries. Unfortunately, it is subject to numerous biotic and abiotic stresses that impact on production, consumption, marketability and also local and country economics. To date, improvements to cassava have been led via conventional plant breeding programmes, but with advances in molecular-assisted breeding and plant biotechnology new tools are being developed to hasten the generation of improved farmer-preferred cultivars. In this review, we report on the current constraints to cassava production and knowledge acquisition in Africa, including a case study discussing the opportunities and challenges of a technology transfer programme established between the Mikocheni Agricultural Research Institute in Tanzania and Europe-based researchers. The establishment of cassava biotechnology platform(s) should promote research capabilities in African institutions and allow scientists autonomy to adapt cassava to suit local agro-ecosystems, ultimately serving to develop a sustainable biotechnology infrastructure in African countries.

  20. New Developments in Biotechnology: U.S. Investment in Biotechnology. [Special Report.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    Since the discovery of recombinant DNA in the early 1970s, biotechnology has become an essential tool for many industries. The potential of biotechnology to improve the Nation's health, food supply, and the quality of the environment leads logically to questions of whether current levels of investment in research and development, human resources,…

  1. White biotechnology: ready to partner and invest in.

    PubMed

    Kircher, Manfred

    2006-01-01

    It needs three factors to build an industry: market demand, product vision and capital. White biotechnology already produces high volume products such as feed additive amino acids and specialty products like enzymes for enantioselective biocatalysis. It serves large and diverse markets in the nutrition, wellness, pharmaceutical, agricultural and chemical industry. The total volume adds up to $ 50 billion worldwide. In spite of its proven track record, white biotechnology so far did not attract as much capital as red and even green biotechnology. However, the latest finance indicators confirm the continuously growing attractiveness of investment opportunities in white biotechnology. This article discusses white biotechnology's position and potential in the finance market and success factors.

  2. NABIC: A New Access Portal to Search, Visualize, and Share Agricultural Genomics Data.

    PubMed

    Seol, Young-Joo; Lee, Tae-Ho; Park, Dong-Suk; Kim, Chang-Kug

    2016-01-01

    The National Agricultural Biotechnology Information Center developed an access portal to search, visualize, and share agricultural genomics data with a focus on South Korean information and resources. The portal features an agricultural biotechnology database containing a wide range of omics data from public and proprietary sources. We collected 28.4 TB of data from 162 agricultural organisms, with 10 types of omics data comprising next-generation sequencing sequence read archive, genome, gene, nucleotide, DNA chip, expressed sequence tag, interactome, protein structure, molecular marker, and single-nucleotide polymorphism datasets. Our genomic resources contain information on five animals, seven plants, and one fungus, which is accessed through a genome browser. We also developed a data submission and analysis system as a web service, with easy-to-use functions and cutting-edge algorithms, including those for handling next-generation sequencing data.

  3. NABIC: A New Access Portal to Search, Visualize, and Share Agricultural Genomics Data

    PubMed Central

    Seol, Young-Joo; Lee, Tae-Ho; Park, Dong-Suk; Kim, Chang-Kug

    2016-01-01

    The National Agricultural Biotechnology Information Center developed an access portal to search, visualize, and share agricultural genomics data with a focus on South Korean information and resources. The portal features an agricultural biotechnology database containing a wide range of omics data from public and proprietary sources. We collected 28.4 TB of data from 162 agricultural organisms, with 10 types of omics data comprising next-generation sequencing sequence read archive, genome, gene, nucleotide, DNA chip, expressed sequence tag, interactome, protein structure, molecular marker, and single-nucleotide polymorphism datasets. Our genomic resources contain information on five animals, seven plants, and one fungus, which is accessed through a genome browser. We also developed a data submission and analysis system as a web service, with easy-to-use functions and cutting-edge algorithms, including those for handling next-generation sequencing data. PMID:26848255

  4. Veterinary Pest Genomics Center | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag Department of Agriculture's Agricultural Research Service (ARS). The vision for this initiative is to collaborator for the Bioinformatics Education in Agricultural Sciences (BEAS) project funded by the Hispanic

  5. [Biotechnology's macroeconomic impact].

    PubMed

    Dones Tacero, Milagros; Pérez García, Julián; San Román, Antonio Pulido

    2008-12-01

    This paper tries to yield an economic valuation of biotechnological activities in terms of aggregated production and employment. This valuation goes beyond direct estimation and includes the indirect effects derived from sectorial linkages between biotechnological activities and the rest of economic system. To deal with the proposed target several sources of data have been used, including official data from National Statistical Office (INE) such us national accounts, input-output tables, and innovation surveys, as well as, firms' level balance sheets and income statements and also specific information about research projects compiled by Genoma Spain Foundation. Methodological approach is based on the estimation of a new input-output table which includes the biotechnological activities as a specific branch. This table offers both the direct impact of these activities and the main parameters to obtain the induced effects over the rest of the economic system. According to the most updated available figures, biotechnological activities would have directly generated almost 1,600 millions of euros in 2005, and they would be employed more than 9,000 workers. But if we take into account the full linkages with the rest of the system, the macroeconomic impact of Biotechnological activities would reach around 5,000 millions euros in production terms (0.6% of total GDP) and would be responsible, directly or indirectly, of more than 44,000 employments.

  6. Biotechnology in Agriculture. Teacher Edition.

    ERIC Educational Resources Information Center

    Peterson, Dennis R.; Rehberger, Thomas

    This curriculum guide is designed to help teachers to present a course that emphasizes the interrelationship of science and technology and the impact of this technology on agriculture and agricultural products. The guide contains six units that each contain some or all of the following basic components of a unit of instruction: objective sheet,…

  7. Tension on the Farm Fields: The Death of Traditional Agriculture?

    ERIC Educational Resources Information Center

    Oguamanam, Chidi

    2007-01-01

    Taking into account the historic transitions and progressions in agricultural science, this article examines the emergence of the phenomenon of agricultural biotechnology. It identifies pivotal sites of tension between agricultural biotechnology and alternative approaches to agriculture. The article identifies two distinct sources of contemporary…

  8. Biotechnology opportunities on Space Station

    NASA Technical Reports Server (NTRS)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  9. Theme: The Role of Science in the Agricultural Education Curriculum.

    ERIC Educational Resources Information Center

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)

  10. 7 CFR 2.68 - Administrator, National Agricultural Statistics Service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... committees concerned with agricultural science, education, and development activities, including library and... Under Secretary for Research, Education, and Economics § 2.68 Administrator, National Agricultural..., Education, and Economics to the Administrator, National Agricultural Statistics Service: (1) Prepare crop...

  11. 7 CFR 2.68 - Administrator, National Agricultural Statistics Service.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... committees concerned with agricultural science, education, and development activities, including library and... Under Secretary for Research, Education, and Economics § 2.68 Administrator, National Agricultural..., Education, and Economics to the Administrator, National Agricultural Statistics Service: (1) Prepare crop...

  12. Department of Agriculture

    MedlinePlus

    ... provide is transmitted securely. Menu U.S. Department of Agriculture Main navigation Home Topics Topics Animals Biotechnology Climate ... Agencies and Staff Offices New farmers, start here. Agriculture is full of exciting and rewarding opportunities. Farming ...

  13. Re-Framing Biotechnology Regulation.

    PubMed

    Peck, Alison

    Biotechnology is about to spill the banks of federal regulation. New genetic engineering techniques like CRISPR-Cas9 promise revolutionary breakthroughs in medicine, agriculture, and public health—but those techniques would not be regulated under the terms of the Coordinated Framework for Regulation of Biotechnology. This revolutionary moment in biotechnology offers an opportunity to correct the flaws in the framework, which was hastily patched together at the advent of the technology. The framework has never captured all relevant technologies, has never satisfied the public that risk is being effectively managed, and has never been accessible to small companies and publicly-funded labs that increasingly are positioned to make radical, life-saving innovations. This Article offers a proposal for new legislation that would reshape biotechnology regulation to better meet these goals. Key reforms include tying regulation to risk rather than technology category; consolidating agency review; capturing distinct regulatory expertise through inter-agency consultations; creating a clearinghouse to help guide applicants and disseminate information; setting up more comprehensive monitoring of environmental effects; and providing federal leadership to fill key data gaps and address socio-economic impacts.

  14. Conference report: Bioanalysis highlights from the 2012 American Association of Pharmaceutical Scientists National Biotechnology Conference.

    PubMed

    Crisino, Rebecca M; Geist, Brian; Li, Jian

    2012-09-01

    The American Association of Pharmaceutical Scientists (AAPS) is an international forum for the exchange of knowledge among scientists to enhance their contributions to drug development. The annual National Biotechnology Conference, organized by the AAPS on 21-23 May 2012 in San Diego, CA, USA, brings together experts from various disciplines representing private industry, academia and governing institutions dedicated toward advancing the scientific and technological progress related to discovery, development and manufacture of medical biotechnology products. Over 300 scientific poster presentations and approximately 50 oral presentation and discussion sessions examined a breadth of topics pertaining to biotechnology drug development, such as the advancement of vaccines and biosimilars, emerging and innovative technologies, nonclinical and clinical bioanalysis, and regulatory updates. This conference report highlights the existing challenges with ligand-binding assays, emerging challenges, innovative integration of various technology platforms and applicable regulatory considerations as they relate to immunogenicity and pharmacokinetic bioanalytical assessments.

  15. Healthcare biotechnology in India.

    PubMed

    Srivastava, L M

    2005-01-01

    Biotechnology in India has made great progress in the development of infrastructure, manpower, research and development and manufacturing of biological reagents, biodiagnostics, biotherapeutics, therapeutic and, prophylactic vaccines and biodevices. Many of these indigenous biological reagents, biodiagnostics, therapeutic and prophylactic vaccines and biodevices have been commercialized. Commercially when biotechnology revenue has reached $25 billions in the U.S. alone in 2000 excluding the revenues of biotech companies that were acquired by pharmaceutical companies, India has yet to register a measurable success. The conservative nature and craze of the Indian Industry for marketing imported biotechnology products, lack of Government support, almost non-existing national healthcare system and lack of trained managers for marketing biological and new products seem to be the important factors responsible for poor economic development of biotechnology in India. With the liberalization of Indian economy, more and more imported biotechnology products will enter into the Indian market. The conditions of internal development of biotechnology are not likely to improve in the near future and it is destined to grow only very slowly. Even today biotechnology in India may be called to be in its infancy.

  16. National Agricultural Library 1975 Annual Report.

    ERIC Educational Resources Information Center

    National Agricultural Library (USDA), Washington, DC.

    The primary service of the National Agricultural Library (NAL), the distribution of information about agricultural literature, is accomplished through: (1) establishment of on-line data bases: Cataloging and Indexing (CAIN) containing bibliographic records of documents in the Library, and Serials Titles Automated Records (STAR); (2) automated…

  17. 7 CFR 2.68 - Administrator, National Agricultural Statistics Service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Administrator, National Agricultural Statistics... Statistics Service. (a) Delegations. Pursuant to § 2.21 (a)(3) and (a)(8), subject to reservations in § 2.21..., Education, and Economics to the Administrator, National Agricultural Statistics Service: (1) Prepare crop...

  18. Long Term Agroecosystem Research Landing | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag Agroecosystem Research Overview Agriculture faces tremendous challenges in meeting multiple, diverse societal > ENVIRONMENTAL ASSESSMENTS filter EARTH SCIENCE > AGRICULTURE > SOILS (1) Apply EARTH

  19. Avian Biotechnology.

    PubMed

    Nakamura, Yoshiaki

    2017-01-01

    Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.

  20. State FFA Officers' Confidence and Trustworthiness of Biotechnology Information Sources

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Rutherford, Tracy A.

    2007-01-01

    Are state FFA officers' awareness levels of agricultural topics reported in mass media superior to those who do not serve in leadership roles? The purpose of this study was to determine elected state FFA officers' awareness of biotechnology, and their confidence and trust of biotechnology information sources. Descriptive survey methods were used…

  1. Environmental protection: applying the precautionary principle and proactive regulation to biotechnology.

    PubMed

    Richmond, Robert H

    2008-08-01

    Biotechnology is a broad field encompassing diverse disciplines from agriculture to zoology. Advances in research are occurring at a rapid pace, and applications that have broad implications socially, economically, ecologically and politically are emerging. Along with notable benefits, environmental consequences that affect core quality-of-life issues for present and future generations are materializing. The precautionary principle should be applied to biotechnology research, activities and products, and a strengthened, enforceable and proactive regulatory framework is needed. The environmental impacts of agriculture, aquaculture, genetically modified organisms (GMOs) and even pharmaceuticals are raising public concerns and demonstrate the need for guidance from a variety of social, economic and scientific disciplines to insure the benefits of biotechnology are enjoyed without unacceptable and irreversible environmental costs.

  2. Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diane E. Hoffmann

    2003-09-12

    On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of geneticallymore » engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The goal was not to provide answers to any of

  3. Current biotechnological developments in Belgium.

    PubMed

    Masschelein, C A; Callegari, J P; Laurent, M; Simon, J P; Taeymans, D

    1989-01-01

    In recent years, actions have been undertaken by the Belgian government to promote process innovation and technical diversification. Research programs are initiated and coordinated by the study committee for biotechnology setup within the Institute for Scientific Research in Industry and Agriculture (IRSIA). As a result of this action, the main areas where biotechnological processes are developed or commercially exploited include plant genetics, protein engineering, hybridoma technology, biopesticides, production by genetic engineering of vaccines and drugs, monoclonal detection of human and animal deseases, process reactors for aerobic and anaerobic wastewater treatment, and genetic modification of yeast and bacteria as a base for biomass and energy. Development research also includes new fermentation technologies principally based on immobilization of microorganisms, reactor design, and optimization of unit operations involved in downstream processing. Food, pharmaceutical, and chemical industries are involved in genetic engineering and biotechnology and each of these sectors is overviewed in this paper.

  4. Current status of biotechnology in Slovakia.

    PubMed

    Stuchlík, Stanislav; Turna, Ján

    2013-07-01

    The United Nations Convention on Biological Diversity defines biotechnology as: 'Any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use.' In other words biotechnology is 'application of scientific and technical advances in life science to develop commercial products' or briefly 'the use of molecular biology for useful purposes'. This short overview is about different branches of biotechnology carried out in Slovakia and it shows that Slovakia has a good potential for further development of modern biotechnologies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Progress towards the 'Golden Age' of biotechnology.

    PubMed

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come. Copyright © 2013

  6. Microgravity: New opportunities to facilitate biotechnology development

    NASA Astrophysics Data System (ADS)

    Johnson, Terry; Todd, Paul; Stodieck, Louis S.

    1996-03-01

    New opportunities exist to use the microgravity environment to facilitate biotechnology development. BioServe Space Technologies Center for the Commercial Development of Space offers access to microgravity environments for companies who wish to perform research or develop products in three specific life-science fields: Biomedical and Pharmaceutical Research, Biotechnology and Bioprocessing Research, and Agricultural and Environmental Research. Examples of each include physiological testing of new pharmaceutical countermeasures against symptoms that are exaggerated in space flight, crystallization and testing of novel, precompetitive biopharmaceutical substances in a convection-free environment, and closed life-support system product development.

  7. Biotechnology Works!

    ERIC Educational Resources Information Center

    Cohen, Libby G.; Spenciner, Loraine

    There have been few initiatives addressing the improvement of science education for students with disabilities. Funded by the National Science Foundation, Biotechnology Works is a summer institute in immunology and genetics for students with disabilities, high school science teachers, and high school counselors. During the 1998 summer session,…

  8. Biotechnology of siderophores in high-impact scientific fields.

    PubMed

    De Serrano, Luis O

    2017-09-26

    Different aspects of bacterial and fungal siderophore biotechnological applications will be discussed. Areas of application presented include, but are not limited to agriculture, medicine, pharmacology, bioremediation, biodegradation and food industry. In agriculture-related applications, siderophores could be employed to enhance plant growth due to their uptake by rhizobia. Siderophores hindered the presence of plant pathogens in biocontrol strategies. Bioremediation studies on siderophores discuss mostly the mobilization of heavy metals and radionuclides; the emulsifying effects of siderophore-producing microorganisms in oil-contaminated environments are also presented. The different applications found in literature based in medicine and pharmacological approaches range from iron overload to drug delivery systems and, more recently, vaccines. Additional research should be done in siderophore production and their metabolic relevance to have a deeper understanding for future biotechnological advances.

  9. Opportunities for biotechnology and policy regarding mycotoxin issues in international trade.

    PubMed

    Kendra, David F; Dyer, Rex B

    2007-10-20

    Despite being introduced more than a decade ago, agricultural biotechnology still remains framed in controversy impacting both the global economy and international regulations. Controversies surrounding agricultural biotechnology produced crops and foods commonly focus on human and environmental safety, intellectual property rights, consumer choice, ethics, food security, poverty reduction and environmental conservation. Originally, some consumers were reluctant to accept the first generation agricultural biotechnology products because they appeared to primarily benefit agricultural producers; however, it is clear from continued evaluations that these technologies also improved both the safety and wholesomeness of food and helped improve the environment. Plants engineered to resist insect pests and tolerate less toxic pesticides resulted in improved yields thereby enabling farmers to produce more food per acre while reducing the need for herbicides, pesticides, and water and tilling. An indirect benefit of reduced pest damage in transgenic corn expressing genes to control insect pests is lower levels of mycotoxins, most notably those caused by the genus Fusarium. Mycotoxins are an important regulatory issue globally because of their toxic and carcinogenic potential to humans and animals. Complicating this issue is the fact that toxicological databases for mycotoxins are relatively incomplete compared to other food contaminants. Current debates about agricultural biotechnology and mycotoxins reveal significant differences in perception of associated risks and benefits. When faced with uncertainty, regulators tend to set limits as low as possible. Additionally, some regulators invoke the "Precautionary Principle" when limited information is available or disputes over interpretation exist for possible contaminants, including mycotoxins. A major concern regarding use of the "Precautionary Principle" is the appearance that regulators can justify setting any limit on the

  10. Herbicide-resistant crop biotechnology: potential and pitfalls

    USDA-ARS?s Scientific Manuscript database

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  11. Analysis of the frontier technology of agricultural IoT and its predication research

    NASA Astrophysics Data System (ADS)

    Han, Shuqing; Zhang, Jianhua; Zhu, Mengshuai; Wu, Jianzhai; Shen, Chen; Kong, Fantao

    2017-09-01

    Agricultural IoT (Internet of Things) develops rapidly. Nanotechnology, biotechnology and optoelectronic technology are successfully integrated into the agricultural sensor technology. Big data, cloud computing and artificial intelligence technology have also been successfully used in IoT. This paper carries out the research on integration of agricultural sensor technology, nanotechnology, biotechnology and optoelectronic technology and the application of big data, cloud computing and artificial intelligence technology in agricultural IoT. The advantages and development of the integration of nanotechnology, biotechnology and optoelectronic technology with agricultural sensor technology were discussed. The application of big data, cloud computing and artificial intelligence technology in IoT and their development trend were analysed.

  12. BIOFAC-An investment in space infrastructure for biotechnology

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.

    2000-01-01

    During the last half century, biotechnology has contributed to the development of many important new and useful products that have improved our quality of life. To a large extent, these contributions are attributable to advances in cellular and molecular biology that can be traced to the discovery of DNA. What began as a science involved with manipulations of whole organisms has transcended into an ability to influence organisms at the cellular and molecular levels with greater speed, flexibility and precision than ever before. This has produced significantly improved pharmaceutical, textile, diagnostic, and environmental products, to name just a few. Early in this new century, biotechnology research is expected to literally explode with exciting new and promising opportunities. More importantly, biotechnology research in the low gravity environment of space is expected to play a significant part in this biotechnology revolution by expediting the discovery of important new medical, agricultural and environmental products. .

  13. Global Transformations and Agriculture.

    ERIC Educational Resources Information Center

    Campbell, Rex R.

    1990-01-01

    Examines worldwide political, economic, and social transformations and their impact on agriculture, focusing on biotechnology. Discusses rise of international corporations and accompanying constraints on government power. Sees trend toward increasing agribusiness role in world food and agricultural sectors. Calls for broader views and research in…

  14. Frontiers in biomedical engineering and biotechnology.

    PubMed

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  15. Biosafety legislation and biotechnology development gains momentum in Africa.

    PubMed

    Wafula, David; Waithaka, Michael; Komen, John; Karembu, Margaret

    2012-01-01

    Opinion in Africa over the use of genetically modified crops for food has been divided, honed by more than a decade of arguments in Europe and elsewhere. Fortunately, the perceived image of a passive Africa in this game is changing rapidly with clear positions on how to harness modern biotechnology. This article examines the status of biosafety regulation across Africa, pertinent challenges and the extent to which regulation fosters or constrains the development of agricultural biotechnology.

  16. A National Scale Sustainable Agriculture Matrix of Indicators to Inform Policy

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Zhang, X.

    2017-12-01

    The ratification of Sustainable Development Goals (SDGs) by all member countries of the United Nations demonstrates the determination of the international community in moving towards a sustainable future. To enable and encourage accountability, independent and transparent measurements of national sustainability efforts are essential. Among all sectors, agriculture is fundamental to all three pillars of sustainability, namely environment, society, and economy. However, the definition of a sustainable agriculture and the feasibility of measuring it remain elusive, in part because it encompasses both biophysical and socio-economic components that are still poorly integrated. Therefore, we have been developing a Sustainable Agriculture Matrix (SAM) on a national scale in order to measure country-level performance in agriculture. First proposed by Swaminathan for agricultural research and policy in 1990s, SAM is a collection of indicators measuring sustainable agriculture from environmental, social, and economic dimensions. The environmental dimension evaluates various impacts of agricultural production on the environment, such as water consumption and nutrient pollution. The economic dimension quantifies the costs and benefits for major stakeholders involved in agricultural production, including government, industry, farmers, and consumers. The social dimension considers three major aspects: 1) social welfare (e.g., hunger and poverty rate, nutritional quality, demography of rural community); 2) equity over sectors, space, and gender (e.g., access to resources/services and opportunities, distribution of income, land ownership and tenure rights); 3) systemic risk (e.g., fragility of the global agricultural production and trade system, resilience of a farm or a country to market and natural shocks). Translating the illustrative concepts into measureable indicators will not only provide an independent and transparent measurement of national performance in the

  17. Fossil energy biotechnology: A research needs assessment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects intomore » three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.« less

  18. Organisation of biotechnological information into knowledge.

    PubMed

    Boh, B

    1996-09-01

    The success of biotechnological research, development and marketing depends to a large extent on the international transfer of information and on the ability to organise biotechnology information into knowledge. To increase the efficiency of information-based approaches, an information strategy has been developed and consists of the following stages: definition of the problem, its structure and sub-problems; acquisition of data by targeted processing of computer-supported bibliographic, numeric, textual and graphic databases; analysis of data and building of specialized in-house information systems; information processing for structuring data into systems, recognition of trends and patterns of knowledge, particularly by information synthesis using the concept of information density; design of research hypotheses; testing hypotheses in the laboratory and/or pilot plant; repeated evaluation and optimization of hypotheses by information methods and testing them by further laboratory work. The information approaches are illustrated by examples from the university-industry joint projects in biotechnology, biochemistry and agriculture.

  19. The Omics Revolution in Agricultural Research.

    PubMed

    Van Emon, Jeanette M

    2016-01-13

    The Agrochemicals Division cosponsored the 13th International Union of Pure and Applied Chemistry International Congress of Pesticide Chemistry held as part of the 248th National Meeting and Exposition of the American Chemical Society in San Francisco, CA, USA, August 10-14, 2014. The topic of the Congress was Crop, Environment, and Public Health Protection; Technologies for a Changing World. Over 1000 delegates participated in the Congress with interactive scientific programming in nine major topic areas including the challenges and opportunities of agricultural biotechnology. Plenary speakers addressed global issues related to the Congress theme prior to the daily technical sessions. The plenary lecture addressing the challenges and opportunities that omic technologies provide agricultural research is presented here. The plenary lecture provided the diverse audience with information on a complex subject to stimulate research ideas and provide a glimpse of the impact of omics on agricultural research.

  20. The Omics Revolution in Agricultural Research

    PubMed Central

    2015-01-01

    The Agrochemicals Division cosponsored the 13th International Union of Pure and Applied Chemistry International Congress of Pesticide Chemistry held as part of the 248th National Meeting and Exposition of the American Chemical Society in San Francisco, CA, USA, August 10–14, 2014. The topic of the Congress was Crop, Environment, and Public Health Protection; Technologies for a Changing World. Over 1000 delegates participated in the Congress with interactive scientific programming in nine major topic areas including the challenges and opportunities of agricultural biotechnology. Plenary speakers addressed global issues related to the Congress theme prior to the daily technical sessions. The plenary lecture addressing the challenges and opportunities that omic technologies provide agricultural research is presented here. The plenary lecture provided the diverse audience with information on a complex subject to stimulate research ideas and provide a glimpse of the impact of omics on agricultural research. PMID:26468989

  1. Biotechnology's foreign policy.

    PubMed

    Feldbaum, Carl

    2002-01-01

    From its inception, biotechnology has been a uniquely international enterprise. An American and an Englishman working together elucidated the structure of DNA almost 50 years ago; more recently, the Human Genome Project linked researchers around the world, from the Baylor College of Medicine in Houston to the Beijing Human Genome Center. Today our industry's researchers hail from African villages and Manhattan high rises; from Munich and Melbourne; from London, Ontario, and London, England; from Scotland and Nova Scotia--New Scotland; from Calcutta and Calgary. But in the beginning, the infrastructure that supported these efforts--intellectual property, venture capital, streamlined technology transfer--was less widely dispersed and the world's brightest biotech researchers clustered in only half a dozen scientific Meccas. Previous technological revolutions have spread around the world. Following in their footsteps, biotechnology's global diaspora seems inevitable, especially since governments are promoting it. But as our science and business emigrate from early strongholds in the United States, Canada and Europe across oceans and borders and into new cultures, international tensions over biotechnology continue to grow. In just the last few years, controversies have rolled over R&D spending priorities, genetic patents, bioprospecting, transgenic agriculture and drug pricing. My premise today is that our industry needs to formulate its first foreign policy, one which is cognizant of the miserable judgments and mistakes of other industries--and avoids them.

  2. The Development of a National Agricultural Extension Policy in Bangladesh.

    ERIC Educational Resources Information Center

    Walker, M.; Sarkar, A. A.

    1996-01-01

    The background of agriculture in Bangladesh and the process of developing a national agricultural extension policy focused on sustainable development are described. The policy explicates the meaning of agricultural extension, use of agricultural knowledge and information systems, and 11 core principles. (SK)

  3. Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture

    USGS Publications Warehouse

    Brown, Jesslyn; Pervez, Md Shahriar

    2014-01-01

    Over 22 million hectares (ha) of U.S. croplands are irrigated. Irrigation is an intensified agricultural land use that increases crop yields and the practice affects water and energy cycles at, above, and below the land surface. Until recently, there has been a scarcity of geospatially detailed information about irrigation that is comprehensive, consistent, and timely to support studies tying agricultural land use change to aquifer water use and other factors. This study shows evidence for a recent overall net expansion of 522 thousand ha across the U.S. (2.33%) and 519 thousand ha (8.7%) in irrigated cropped area across the High Plains Aquifer (HPA) from 2002 to 2007. In fact, over 97% of the net national expansion in irrigated agriculture overlays the HPA. We employed a modeling approach implemented at two time intervals (2002 and 2007) for mapping irrigated agriculture across the conterminous U.S. (CONUS). We utilized U.S. Department of Agriculture (USDA) county statistics, satellite imagery, and a national land cover map in the model. The model output, called the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset for the U.S. (MIrAD-US), was then used to reveal relatively detailed spatial patterns of irrigation change across the nation and the HPA. Causes for the irrigation increase in the HPA are complex, but factors include crop commodity price increases, the corn ethanol industry, and government policies related to water use. Impacts of more irrigation may include shifts in local and regional climate, further groundwater depletion, and increasing crop yields and farm income.

  4. Progress and Challenges for Implementation of the Common Market for Eastern and Southern Africa Policy on Biotechnology and Biosafety

    PubMed Central

    Waithaka, Michael; Belay, Getachew; Kyotalimye, Miriam; Karembu, Margaret

    2015-01-01

    In 2001, the Meeting of the COMESA Ministers of Agriculture raised concerns that proliferation of genetically modified organisms (GMOs) could impact significantly on trade and food security in the region. This triggered studies on a regional approach to biotechnology and biosafety policy in Eastern and Southern Africa. The studies and stakeholder consultations revealed that farm incomes would increase if they switched from conventional varieties of cotton and maize to genetically modified (GM) counterparts. Commercial risks associated with exports to GM sensitive destinations, e.g., EU were negligible. Intra-regional trade would be affected since exports of GM sensitive commodities, such as maize, cotton, and soya bean, mainly go to other African countries. These findings justified the need to consider a regional approach to biosafety and led to the drafting of a regional policy in 2009. The draft policies were discussed in regional and national workshops between 2010 and 2012 for wider ownership. The workshops involved key stakeholders including ministries of agriculture, trade, environment, national biosafety focal points, biosafety competent authorities, academia, seed traders, millers, the media, food relief agencies, the industry, civil society, competent authorities, and political opinion leaders. The COMESA Council of Ministers in February 2014 adopted the COMESA policy on biotechnology and biosafety that takes into account the sovereign right of each member state. Key provisions of the policy include recognition of the benefits and risks associated with GMOs; establishment of a regional-level biosafety risk-assessment system; national-level final decision, and capacity building assistance to member states. The policies are the first regional effort in Africa to develop a coordinated mechanism for handling biosafety issues related to GMO use. A regional approach to biotechnology and biosafety is expected to foster inter-country cooperation through the

  5. Progress and Challenges for Implementation of the Common Market for Eastern and Southern Africa Policy on Biotechnology and Biosafety.

    PubMed

    Waithaka, Michael; Belay, Getachew; Kyotalimye, Miriam; Karembu, Margaret

    2015-01-01

    In 2001, the Meeting of the COMESA Ministers of Agriculture raised concerns that proliferation of genetically modified organisms (GMOs) could impact significantly on trade and food security in the region. This triggered studies on a regional approach to biotechnology and biosafety policy in Eastern and Southern Africa. The studies and stakeholder consultations revealed that farm incomes would increase if they switched from conventional varieties of cotton and maize to genetically modified (GM) counterparts. Commercial risks associated with exports to GM sensitive destinations, e.g., EU were negligible. Intra-regional trade would be affected since exports of GM sensitive commodities, such as maize, cotton, and soya bean, mainly go to other African countries. These findings justified the need to consider a regional approach to biosafety and led to the drafting of a regional policy in 2009. The draft policies were discussed in regional and national workshops between 2010 and 2012 for wider ownership. The workshops involved key stakeholders including ministries of agriculture, trade, environment, national biosafety focal points, biosafety competent authorities, academia, seed traders, millers, the media, food relief agencies, the industry, civil society, competent authorities, and political opinion leaders. The COMESA Council of Ministers in February 2014 adopted the COMESA policy on biotechnology and biosafety that takes into account the sovereign right of each member state. Key provisions of the policy include recognition of the benefits and risks associated with GMOs; establishment of a regional-level biosafety risk-assessment system; national-level final decision, and capacity building assistance to member states. The policies are the first regional effort in Africa to develop a coordinated mechanism for handling biosafety issues related to GMO use. A regional approach to biotechnology and biosafety is expected to foster inter-country cooperation through the

  6. Food & Nutrition | National Agricultural Library

    Science.gov Websites

    News Contact Us Search  Log inRegister Home Home Food & Nutrition Data from: The data of change years. Ag Data Commons 2x zip html National Animal Nutrition Program (NANP) Feed Composition Database degrees related to agriculture; USDA partner institution snapshots; Food and nutrition research; 4-H

  7. Public Acceptance of Plant Biotechnology and GM Crops.

    PubMed

    Lucht, Jan M

    2015-07-30

    A wide gap exists between the rapid acceptance of genetically modified (GM) crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths-also affecting the development of virus resistant transgenic crops-of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer's attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion-including calls for labeling of GM food-in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers' concerns with transgenic crops, but it is not clear yet how consumers' attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values.

  8. Job Prospects for Agricultural Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1986-01-01

    Discusses the career outlook for agricultural engineers. Explains that the number of bachelor degrees awarded yearly continues to drop, and that the traditional industries that hire agricultural engineers are employing fewer each year. Suggests that future opportunities exist in the areas of information technology, biotechnology, and research. (TW)

  9. 75 FR 28811 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... Yersinia pestis has been submitted to the NIH Office of Biotechnology Activities (OBA) by the Institutional... Biotechnology Activities, National Institutes of Health. [FR Doc. 2010-12453 Filed 5-21-10; 8:45 am] BILLING...

  10. 7 CFR 2.66 - Director, National Institute of Food and Agriculture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Director, National Institute of Food and Agriculture. 2.66 Section 2.66 Agriculture Office of the Secretary of Agriculture DELEGATIONS OF AUTHORITY BY THE SECRETARY OF AGRICULTURE AND GENERAL OFFICERS OF THE DEPARTMENT Delegations of Authority by the Under...

  11. 7 CFR 2.66 - Director, National Institute of Food and Agriculture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Director, National Institute of Food and Agriculture. 2.66 Section 2.66 Agriculture Office of the Secretary of Agriculture DELEGATIONS OF AUTHORITY BY THE SECRETARY OF AGRICULTURE AND GENERAL OFFICERS OF THE DEPARTMENT Delegations of Authority by the Under...

  12. 7 CFR 2.66 - Director, National Institute of Food and Agriculture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Director, National Institute of Food and Agriculture. 2.66 Section 2.66 Agriculture Office of the Secretary of Agriculture DELEGATIONS OF AUTHORITY BY THE SECRETARY OF AGRICULTURE AND GENERAL OFFICERS OF THE DEPARTMENT Delegations of Authority by the Under...

  13. 7 CFR 2.66 - Director, National Institute of Food and Agriculture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Director, National Institute of Food and Agriculture. 2.66 Section 2.66 Agriculture Office of the Secretary of Agriculture DELEGATIONS OF AUTHORITY BY THE SECRETARY OF AGRICULTURE AND GENERAL OFFICERS OF THE DEPARTMENT Delegations of Authority by the Under...

  14. 4/4/2018: The Ag Data Commons Metrics | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement | Information Quality | Privacy

  15. Advanced Manufacturing and Value-added Products from US Agriculture

    NASA Technical Reports Server (NTRS)

    Villet, Ruxton H.; Child, Dennis R.; Acock, Basil

    1992-01-01

    An objective of the US Department of Agriculture (USDA) Agriculture Research Service (ARS) is to develop technology leading to a broad portfolio of value-added marketable products. Modern scientific disciplines such as chemical engineering are brought into play to develop processes for converting bulk commodities into high-margin products. To accomplish this, the extremely sophisticated processing devices which form the basis of modern biotechnology, namely, genes and enzymes, can be tailored to perform the required functions. The USDA/ARS is a leader in the development of intelligent processing equipment (IPE) for agriculture in the broadest sense. Applications of IPE are found in the production, processing, grading, and marketing aspects of agriculture. Various biotechnology applications of IPE are discussed.

  16. Database resources of the National Center for Biotechnology

    PubMed Central

    Wheeler, David L.; Church, Deanna M.; Federhen, Scott; Lash, Alex E.; Madden, Thomas L.; Pontius, Joan U.; Schuler, Gregory D.; Schriml, Lynn M.; Sequeira, Edwin; Tatusova, Tatiana A.; Wagner, Lukas

    2003-01-01

    In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's Web site. NCBI resources include Entrez, PubMed, PubMed Central (PMC), LocusLink, the NCBITaxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR (e-PCR), Open Reading Frame (ORF) Finder, References Sequence (RefSeq), UniGene, HomoloGene, ProtEST, Database of Single Nucleotide Polymorphisms (dbSNP), Human/Mouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes and related tools, the Map Viewer, Model Maker (MM), Evidence Viewer (EV), Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), and the Conserved Domain Architecture Retrieval Tool (CDART). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov. PMID:12519941

  17. 3/29/2018: Making Data Machine-Readable Webinar | National Agricultural

    Science.gov Websites

    Library Skip to main content Home National Agricultural Library United States Department of | USDA.gov | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement | Information

  18. To amend the Agricultural Adjustment Act to exclude raisins from agricultural marketing orders.

    THOMAS, 113th Congress

    Rep. Radel, Trey [R-FL-19

    2013-07-25

    House - 08/13/2013 Referred to the Subcommittee on Horticulture, Research, Biotechnology, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  19. Editorial: Biotechnology Journal brings more than biotechnology.

    PubMed

    Jungbauer, Alois; Lee, Sang Yup

    2015-09-01

    Biotechnology Journal always brings the state-of-the-art biotechnologies to our readers. Different from other topical issues, this issue of Biotechnology Journal is complied with a series of exiting reviews and research articles from spontaneous submissions, again, addressing society's actual problems and needs. The progress is a real testimony how biotechnology contributes to achievements in healthcare, better utilization of resources, and a bio-based economy. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The biotechnology and bioeconomy landscape in Malaysia.

    PubMed

    Arujanan, Mahaletchumy; Singaram, Muthu

    2018-01-25

    Since 1990s Malaysia aspired to make biotechnology and bioeconomy as her engines of economic growth to utlise the abundance of natural resources and biodiversity. The public sector plays an integral role in developing the sector and various incentives are in place for the private sector to be actively involved and to forge collaboration with the public sector. The country launched its National Biotechnology Policy in 2005 and later launched its National Bioeconomy Programme in 2010 to become the first country in South East Asia and second in Asia after China to have such an initiative. Malaysia is also very proactive in its biosafety law and regulations and has most of the related legal instrument in place. A lot of success has been recorded since the inception of the National Biotechnology Policy in terms of job creation, contribution to GDP through biobusinesses and investment from foreign companies, but the sector is not spared from challenges too. Due to the nature of the discipline that is multidisciplinary and that requires huge amount of investment, expertise and political will, there are a lot of barriers before the country emerges as a bioeconomy player. This paper discusses the public policies, initiatives and funding mechanisms in place in Malaysia that drive its research, development and commercialisation in the area of biotechnology and bioeconomy. The authors also discuss the challenges faced in Malaysia in implementing the policies. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Priorities for Research in Agricultural Education.

    ERIC Educational Resources Information Center

    Silva-Guerrero, Luis; Sutphin, H. Dean

    1990-01-01

    Twenty agricultural education experts identified research topics and categories, which were then rated by 34 research experts (92 percent) and 49 department heads (79 percent). Highest ratings went to biotechnology, high technology, and agribusiness; agricultural education curriculum; and long-term impact and cost effectiveness of agricultural…

  2. Public Acceptance of Plant Biotechnology and GM Crops

    PubMed Central

    Lucht, Jan M.

    2015-01-01

    A wide gap exists between the rapid acceptance of genetically modified (GM) crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths—also affecting the development of virus resistant transgenic crops—of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer’s attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion—including calls for labeling of GM food—in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers’ concerns with transgenic crops, but it is not clear yet how consumers’ attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values. PMID:26264020

  3. Plant biotechnology in China.

    PubMed

    Huang, Jikun; Rozelle, Scott; Pray, Carl; Wang, Qinfang

    2002-01-25

    A survey of China's plant biotechnologists shows that China is developing the largest plant biotechnology capacity outside of North America. The list of genetically modified plant technologies in trials, including rice, wheat, potatoes, and peanuts, is impressive and differs from those being worked on in other countries. Poor farmers in China are cultivating more area of genetically modified plants than are small farmers in any other developing country. A survey of agricultural producers in China demonstrates that Bacillus thuringiensis cotton adoption increases production efficiency and improves farmer health.

  4. Past, Present, and Future Industrial Biotechnology in China

    NASA Astrophysics Data System (ADS)

    Li, Zhenjiang; Ji, Xiaojun; Kan, Suli; Qiao, Hongqun; Jiang, Min; Lu, Dingqiang; Wang, Jun; Huang, He; Jia, Honghua; Ouyuang, Pingkai; Ying, Hanjie

    Fossil resources, i.e. concentrated carbon from biomass, have been irrecoverably exhausted through modern industrial civilization in the last two hundred years. Serious consequences including crises in resources, environment and energy, as well as the pressing need for direct and indirect exploitation of solar energy, pose challenges to the science and technology community of today. Bioenergy, bulk chemicals, and biomaterials could be produced from renewable biomass in a biorefinery via biocatalysis. These sustainable industries will match the global mass cycle, creating a new form of civilization with new industries and agriculture driven by solar energy. Industrial biotechnology is the dynamo of a bioeconomy, leading to a new protocol for production of energy, bulk chemicals, and materials. This new mode of innovation will place the industry at center stage supported by universities and research institutes. Creativity in industrial biotechnology will be promoted and China will successfully follow the road to green modernization. China's rapid economic development and its traditional capacity in fermentation will place it in an advantageous position in the industrial biotechnology revolution. The development and current status of industrial biotechnology in China are summarized herein.

  5. Past, present, and future industrial biotechnology in China.

    PubMed

    Li, Zhenjiang; Ji, Xiaojun; Kan, Suli; Qiao, Hongqun; Jiang, Min; Lu, Dingqiang; Wang, Jun; Huang, He; Jia, Honghua; Ouyuang, Pingkai; Ying, Hanjie

    2010-01-01

    Fossil resources, i.e. concentrated carbon from biomass, have been irrecoverably exhausted through modern industrial civilization in the last two hundred years. Serious consequences including crises in resources, environment and energy, as well as the pressing need for direct and indirect exploitation of solar energy, pose challenges to the science and technology community of today. Bioenergy, bulk chemicals, and biomaterials could be produced from renewable biomass in a biorefinery via biocatalysis. These sustainable industries will match the global mass cycle, creating a new form of civilization with new industries and agriculture driven by solar energy. Industrial biotechnology is the dynamo of a bioeconomy, leading to a new protocol for production of energy, bulk chemicals, and materials. This new mode of innovation will place the industry at center stage supported by universities and research institutes. Creativity in industrial biotechnology will be promoted and China will successfully follow the road to green modernization. China's rapid economic development and its traditional capacity in fermentation will place it in an advantageous position in the industrial biotechnology revolution. The development and current status of industrial biotechnology in China are summarized herein.

  6. Biotechnology essay competition: biotechnology and sustainable food practices.

    PubMed

    Peng, Judy; Schoeb, Helena; Lee, Gina

    2013-06-01

    Biotechnology Journal announces our second biotechnology essay competition with the theme "biotechnology and sustainable food practices", open to all undergraduate students. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Database resources of the National Center for Biotechnology Information

    PubMed Central

    Wheeler, David L.; Barrett, Tanya; Benson, Dennis A.; Bryant, Stephen H.; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M.; DiCuccio, Michael; Edgar, Ron; Federhen, Scott; Geer, Lewis Y.; Helmberg, Wolfgang; Kapustin, Yuri; Kenton, David L.; Khovayko, Oleg; Lipman, David J.; Madden, Thomas L.; Maglott, Donna R.; Ostell, James; Pruitt, Kim D.; Schuler, Gregory D.; Schriml, Lynn M.; Sequeira, Edwin; Sherry, Stephen T.; Sirotkin, Karl; Souvorov, Alexandre; Starchenko, Grigory; Suzek, Tugba O.; Tatusov, Roman; Tatusova, Tatiana A.; Wagner, Lukas; Yaschenko, Eugene

    2006-01-01

    In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups, Retroviral Genotyping Tools, HIV-1, Human Protein Interaction Database, SAGEmap, Gene Expression Omnibus, Entrez Probe, GENSAT, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of the resources can be accessed through the NCBI home page at: . PMID:16381840

  8. Database resources of the National Center for Biotechnology Information

    PubMed Central

    Wheeler, David L.; Church, Deanna M.; Lash, Alex E.; Leipe, Detlef D.; Madden, Thomas L.; Pontius, Joan U.; Schuler, Gregory D.; Schriml, Lynn M.; Tatusova, Tatiana A.; Wagner, Lukas; Rapp, Barbara A.

    2001-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources that operate on the data in GenBank and a variety of other biological data made available through NCBI’s Web site. NCBI data retrieval resources include Entrez, PubMed, LocusLink and the Taxonomy Browser. Data analysis resources include BLAST, Electronic PCR, OrfFinder, RefSeq, UniGene, HomoloGene, Database of Single Nucleotide Polymorphisms (dbSNP), Human Genome Sequencing, Human MapViewer, GeneMap’99, Human–Mouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, Cancer Genome Anatomy Project (CGAP), SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheri­tance in Man (OMIM), the Molecular Modeling Database (MMDB) and the Conserved Domain Database (CDD). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov. PMID:11125038

  9. Biotechnological Production of Organic Acids from Renewable Resources.

    PubMed

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  10. [Health risks in the biotechnological industry].

    PubMed

    Colombi, A; Maroni, M; Foà, V

    1989-01-01

    Biotechnology has been defined as the application of biological organisms, systems or processes to manufacturing and service industries. In considering health aspects of biotechnological development it must be underlined that the use of microorganisms in traditional industries, such as the production of food, bread, beer and dairy products, has not added significantly to the more usual industrial hazards. The risk factors encountered in the biotechnology industry can be defined as general, i.e., common to other industrial activities, and specific, i.e., depending on the presence of microorganisms and/or their metabolic products. The specific health risks vary according to the type of process, but can be grouped into three main categories: immunological diseases, toxic effects; pathological effects of microorganisms. Allergic immunological diseases such as bronchial asthma, contact dermatitis, oculo-rhinitis and extrinsic allergic alveolitis are by far the most frequent and well known diseases occurring among workers employed on biotechnological production. Toxic effects were observed among workers employed on the production of antibiotics and hormones or single cell proteins, where absorption of endotoxins has been described. Infectious diseases may arise from uncontrolled dissemination of pathogenic microorganisms through aerosols, dusts, aqueous and semisolid sludge effluents from biotechnological plants. The greatest risks occur in the production of antiviral vaccines, in research laboratories and in waste-water treatment plants. Risk of pathogenic effects has also been speculated from exposure to engineered microorganisms in laboratory and environmental or agricultural applications. Safety precautions consisting of protective measures, and effective barriers of containment (both physical and biological) have to be advised according to the hazardous characteristics of the organisms.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Developing the 2012 national action plan for protecting children in agriculture.

    PubMed

    Lee, Barbara C; Gallagher, Susan S; Liebman, Amy K; Miller, Mary E; Marlenga, Barbara

    2012-01-01

    In 1996 the US launched a National Childhood Agricultural Injury Prevention Initiative, guided by an action plan generated by a 42-member multidisciplinary committee. A major update to the plan was released following the 2001 Summit on Childhood Agricultural Injury Prevention. From the year 2010 through 2011 a comprehensive assessment of progress to date was conducted followed by the drafting, review and finalizing of a new action plan-"The 2012 Blueprint for Protecting Children in Agriculture." This paper briefly describes the purpose and process for generating the new action plan then provides a listing of the 7 goals and 26 strategies within the plan. These goals and strategies account for trends in childhood agricultural injuries, changes in agricultural production and the demographics of its workforce, effectiveness of interventions, and the increasing use of social media, marketing and social networking. Primary funding for this project was provided by the National Institute for Occupational Safety and Health (NIOSH), which continues to serve as the lead federal agency for the national initiative.

  12. National land-cover data and national agricultural census estimates of agricultural land use in the northeastern United States

    USDA-ARS?s Scientific Manuscript database

    The landscape of the northeastern United States is diverse and patchy, a complex mixture of forest, agriculture, and developed lands. Many urgent social and environmental issues require spatially-referenced information on land use, a need filled by the National Land-Cover Data (NLCD). The accuracy o...

  13. Possible effect of biotechnology on plant gene pools in Turkey.

    PubMed

    Demir, Aynur

    2015-01-02

    The recent rapid developments in biotechnology have made great contributions to the study of plant gene pools. The application of in vitro methods in freeze storage and DNA protection techniques in fast production studies has made major advances. From that aspect, biotechnology is an indispensable means for the protection of plant gene pools, which includes the insurance of sustainable agriculture and development of species. Besides all the positive developments, one of the primary risks posed by the uncontrolled spreading of genetically modified organisms is the possibility for other non-target organisms to be negatively affected. Genes of plant origin should be given priority in this type of studies by taking into consideration such negative effects that may result in disruption of ecological balance and damage to plant genetic pools. Turkey, due to its ecological conditions and history, has a very important position in terms of plant gene pools. This richness ought to be protected without corrupting its natural quality and natural evolution process in order to provide the sources of species that will be required for future sustainable agricultural applications. Thus, attention should be paid to the use of biotechnological methods, which play an important role especially in the protection and use of local and original plant gene pools.

  14. Possible effect of biotechnology on plant gene pools in Turkey

    PubMed Central

    Demir, Aynur

    2015-01-01

    The recent rapid developments in biotechnology have made great contributions to the study of plant gene pools. The application of in vitro methods in freeze storage and DNA protection techniques in fast production studies has made major advances. From that aspect, biotechnology is an indispensable means for the protection of plant gene pools, which includes the insurance of sustainable agriculture and development of species. Besides all the positive developments, one of the primary risks posed by the uncontrolled spreading of genetically modified organisms is the possibility for other non-target organisms to be negatively affected. Genes of plant origin should be given priority in this type of studies by taking into consideration such negative effects that may result in disruption of ecological balance and damage to plant genetic pools. Turkey, due to its ecological conditions and history, has a very important position in terms of plant gene pools. This richness ought to be protected without corrupting its natural quality and natural evolution process in order to provide the sources of species that will be required for future sustainable agricultural applications. Thus, attention should be paid to the use of biotechnological methods, which play an important role especially in the protection and use of local and original plant gene pools. PMID:26019612

  15. 78 FR 44092 - Request for Nominations of Members for the National Agricultural Research, Extension, Education...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... DEPARTMENT OF AGRICULTURE Request for Nominations of Members for the National Agricultural Research, Extension, Education, and Economics Advisory Board AGENCY: Agricultural Research Service, USDA... the National Agricultural Research, Extension, Education, and Economics Advisory Board. The notice was...

  16. Independent Biotechnology: The Innovation-Regulation Dilemma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Althouse, P.; Prosnitz, D.; Velsko, S.

    The Center for Global Security Research at Lawrence Livermore National Laboratory convened a workshop on August 19, 2016 to consider “Independent Biotechnology: The Innovation-­Regulation Dilemma”. The topic was motivated by the observation that non-­government funded biotechnology research and development activities have grown and diversified tremendously over the past decade. This sector encompasses a broad range of actors and activities: individuals with private laboratories, community “hackerspaces,” biotechnology incubators, and individual startups. Motivations and aspirations are diverse and include such things as personal curiosity, community education, the invention of new products or services, and even the realization of certain economic, political, ormore » social goals. One driving force is the “democratization” of ever more powerful biological technologies, allowing individual citizens and groups access to capabilities that have traditionally only been available to researchers in universities, research institutes, national laboratories, and large commercial concerns. Another is the rise of alternative financing mechanisms such as “crowdsourcing,” which ostensibly provide greater freedom to innovate, and greater public visibility, but entail looser management oversight and transparency.« less

  17. Expediting Agriculture Through Science Act

    THOMAS, 112th Congress

    Rep. Fincher, Stephen Lee [R-TN-8

    2011-05-26

    House - 06/08/2011 Referred to the Subcommittee on Rural Development, Research, Biotechnology, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. Workshop proceedings: challenges and opportunities in evaluating protein allergenicity across biotechnology industries.

    PubMed

    Stagg, Nicola J; Ghantous, Hanan N; Ladics, Gregory S; House, Robert V; Gendel, Steven M; Hastings, Kenneth L

    2013-01-01

    A workshop entitled "Challenges and Opportunities in Evaluating Protein Allergenicity across Biotechnology Industries" was held at the 51st Annual Meeting of the Society of Toxicology (SOT) in San Francisco, California. The workshop was sponsored by the Biotechnology Specialty Section of SOT and was designed to present the science-based approaches used in biotechnology industries to evaluate and regulate protein allergenicity. A panel of experts from industry and government highlighted the allergenicity testing requirements and research in the agricultural, pharmaceutical/biopharma, and vaccine biotechnology industries and addressed challenges and opportunities for advancing the science of protein allergenicity. The main learning from the workshop was that immunoglobulin E-mediated allergenicity of biotechnology-derived products is difficult to assess without human data. The approaches currently being used to evaluate potential for allergenicity across biotechnology industries are very different and range from bioinformatics, in vitro serology, in vivo animal testing, in vitro and in vivo functional assays, and "biosimilar" assessments (ie, biotherapeutic equivalents to innovator products). The challenge remains with regard to the different or lack of regulatory requirements for allergenicity testing across industries, but the novel approaches being used with bioinformatics and biosimilars may lead to opportunities in the future to collaborate across biotechnology industries.

  19. How can developing countries harness biotechnology to improve health?

    PubMed Central

    Daar, Abdallah S; Berndtson, Kathryn; Persad, Deepa L; Singer, Peter A

    2007-01-01

    Background The benefits of genomics and biotechnology are concentrated primarily in the industrialized world, while their potential to combat neglected diseases in the developing world has been largely untapped. Without building developing world biotechnology capacity to address local health needs, this disparity will only intensify. To assess the potential of genomics to address health needs in the developing world, the McLaughlin-Rotman Centre for Global Health, along with local partners, organized five courses on Genomics and Public Health Policy in the developing world. The overall objective of the courses was to collectively explore how to best harness genomics to improve health in each region. This article presents and analyzes the recommendations from all five courses. Discussion In this paper we analyze recommendations from 232 developing world experts from 58 countries who sought to answer how best to harness biotechnology to improve health in their regions. We divide their recommendations into four categories: science; finance; ethics, society and culture; and politics. Summary The Courses' recommendations can be summarized across the four categories listed above: Science - Collaborate through national, regional, and international networks - Survey and build capacity based on proven models through education, training, and needs assessments Finance - Develop regulatory and intellectual property frameworks for commercialization of biotechnology - Enhance funding and affordability of biotechnology - Improve the academic-industry interface and the role of small and medium enterprise Ethics, Society, Culture - Develop public engagement strategies to inform and educate the public about developments in genomics and biotechnology - Develop capacity to address ethical, social and cultural issues - Improve accessibility and equity Politics - Strengthen understanding, leadership and support at the political level for biotechnology - Develop policies outlining

  20. How can developing countries harness biotechnology to improve health?

    PubMed

    Daar, Abdallah S; Berndtson, Kathryn; Persad, Deepa L; Singer, Peter A

    2007-12-03

    The benefits of genomics and biotechnology are concentrated primarily in the industrialized world, while their potential to combat neglected diseases in the developing world has been largely untapped. Without building developing world biotechnology capacity to address local health needs, this disparity will only intensify. To assess the potential of genomics to address health needs in the developing world, the McLaughlin-Rotman Centre for Global Health, along with local partners, organized five courses on Genomics and Public Health Policy in the developing world. The overall objective of the courses was to collectively explore how to best harness genomics to improve health in each region. This article presents and analyzes the recommendations from all five courses. In this paper we analyze recommendations from 232 developing world experts from 58 countries who sought to answer how best to harness biotechnology to improve health in their regions. We divide their recommendations into four categories: science; finance; ethics, society and culture; and politics. The Courses' recommendations can be summarized across the four categories listed above: SCIENCE: - Collaborate through national, regional, and international networks- Survey and build capacity based on proven models through education, training, and needs assessments FINANCE: - Develop regulatory and intellectual property frameworks for commercialization of biotechnology- Enhance funding and affordability of biotechnology- Improve the academic-industry interface and the role of small and medium enterprise ETHICS, SOCIETY, CULTURE: - Develop public engagement strategies to inform and educate the public about developments in genomics and biotechnology- Develop capacity to address ethical, social and cultural issues- Improve accessibility and equity POLITICS: - Strengthen understanding, leadership and support at the political level for biotechnology- Develop policies outlining national biotechnology strategy

  1. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    PubMed

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  2. Land-Grant University-Industry Relationships in Biotechnology: A Comparison with the Non-Land-Grant Research Universities.

    ERIC Educational Resources Information Center

    Curry, James; Kenney, Martin

    1990-01-01

    Presents study of industrial involvement in biotechnology research, comparing faculty surveys from land-grant colleges of agriculture and nonagricultural research universities. Agricultural biotechnologists report higher industrial involvement and more optimism about it. Industrial funding levels shown as significant factor in activities and…

  3. The Role of the National Agricultural Library.

    ERIC Educational Resources Information Center

    Howard, Joseph H.

    1989-01-01

    Describes the role, users, collections and services of the National Agricultural Library. Some of the services discussed include a machine readable bibliographic database, an international interlibrary loan system, programs to develop library networks and cooperative cataloging, and the development and use of information technologies such as laser…

  4. Toward a national core course in agricultural medicine and curriculum in agricultural safety and health: the "building capacity" consensus process.

    PubMed

    Rudolphi, Josie M; Donham, Kelley J

    2015-01-01

    ABSTRACT The agricultural industry poses specific hazards and risks to its workers. Since the 1970s, the University of Iowa has been establishing programs to educate rural health care and safety professionals who in turn provide education and occupational health and safety services to farm families and farm workers. This program has been well established in the state of Iowa as a program of Iowa's Center for Agricultural Safety and Health (I-CASH). However, the National 1989 Agriculture at Risk Report indicated there was a great need for agricultural medicine training beyond Iowa's borders. In order to help meet this need, Building Capacity: A National Resource of Agricultural Medicine Professionals was initiated as a project of the National Institute for Occupational Safety and Health (NIOSH)-funded Great Plains Center for Agricultural Health in 2006. Before the first phase of this project, a consensus process was conducted with a group of safety and health professionals to determine topics and learning objectives for the course. Over 300 students attended and matriculated the agricultural medicine course during first phase of the project (2007-2010). Beginning the second phase of the project (2012-2016), an expanded advisory committee (38 internationally recognized health and safety professionals) was convened to review the progress of the first phase, make recommendations for revisions to the required topics and competencies, and discuss updates to the second edition of the course textbook (Agricultural Medicine: Occupational and Environmental Health for the Health Professions). A formal consensus process was held and included an online survey and also a face-to-face meeting. The group was charged with the responsibility of developing the next version of this course by establishing best practices and setting an agenda with the long-term goal of developing a national course in agricultural medicine.

  5. Turkish university students' knowledge of biotechnology and attitudes toward biotechnological applications.

    PubMed

    Öztürk-Akar, Ebru

    2017-03-04

    This study questions the presumed relation between formal schooling and scientific literacy about biotechnologies. Comparing science and nonscience majors' knowledge of and attitudes toward biotechnological applications, conclusions are drawn if their formal learnings improve pupils' understandings of and attitudes toward biotechnology applications. Sample of the study consists of 403 undergraduate and graduate students, 198 nonscience, and 205 science majors. The Biotechnology Knowledge Questionnaire and the Biotechnology Attitude Questionnaire were administered. Descriptive statistics (mean and percentages), t test, and correlations were used to examine the participants' knowledge of biotechnology and attitudes toward biotechnological applications and differences as regards their majors. Although the science majors had higher knowledge and attitude scores than the nonscience majors, it is not possible to say that they have sufficient knowledge of biotechnologies. Besides, the participants' attitudes toward biotechnological applications were not considerably related to their knowledge of biotechnology. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):115-125, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  6. Education resources of the National Center for Biotechnology Information.

    PubMed

    Cooper, Peter S; Lipshultz, Dawn; Matten, Wayne T; McGinnis, Scott D; Pechous, Steven; Romiti, Monica L; Tao, Tao; Valjavec-Gratian, Majda; Sayers, Eric W

    2010-11-01

    The National Center for Biotechnology Information (NCBI) hosts 39 literature and molecular biology databases containing almost half a billion records. As the complexity of these data and associated resources and tools continues to expand, so does the need for educational resources to help investigators, clinicians, information specialists and the general public make use of the wealth of public data available at the NCBI. This review describes the educational resources available at NCBI via the NCBI Education page (www.ncbi.nlm.nih.gov/Education/). These resources include materials designed for new users, such as About NCBI and the NCBI Guide, as well as documentation, Frequently Asked Questions (FAQs) and writings on the NCBI Bookshelf such as the NCBI Help Manual and the NCBI Handbook. NCBI also provides teaching materials such as tutorials, problem sets and educational tools such as the Amino Acid Explorer, PSSM Viewer and Ebot. NCBI also offers training programs including the Discovery Workshops, webinars and tutorials at conferences. To help users keep up-to-date, NCBI produces the online NCBI News and offers RSS feeds and mailing lists, along with a presence on Facebook, Twitter and YouTube.

  7. Database resources of the National Center for Biotechnology Information

    PubMed Central

    Sayers, Eric W.; Barrett, Tanya; Benson, Dennis A.; Bolton, Evan; Bryant, Stephen H.; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M.; DiCuccio, Michael; Federhen, Scott; Feolo, Michael; Fingerman, Ian M.; Geer, Lewis Y.; Helmberg, Wolfgang; Kapustin, Yuri; Krasnov, Sergey; Landsman, David; Lipman, David J.; Lu, Zhiyong; Madden, Thomas L.; Madej, Tom; Maglott, Donna R.; Marchler-Bauer, Aron; Miller, Vadim; Karsch-Mizrachi, Ilene; Ostell, James; Panchenko, Anna; Phan, Lon; Pruitt, Kim D.; Schuler, Gregory D.; Sequeira, Edwin; Sherry, Stephen T.; Shumway, Martin; Sirotkin, Karl; Slotta, Douglas; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A.; Wagner, Lukas; Wang, Yanli; Wilbur, W. John; Yaschenko, Eugene; Ye, Jian

    2012-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. PMID:22140104

  8. Database resources of the National Center for Biotechnology Information.

    PubMed

    Sayers, Eric W; Barrett, Tanya; Benson, Dennis A; Bolton, Evan; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; Dicuccio, Michael; Federhen, Scott; Feolo, Michael; Fingerman, Ian M; Geer, Lewis Y; Helmberg, Wolfgang; Kapustin, Yuri; Krasnov, Sergey; Landsman, David; Lipman, David J; Lu, Zhiyong; Madden, Thomas L; Madej, Tom; Maglott, Donna R; Marchler-Bauer, Aron; Miller, Vadim; Karsch-Mizrachi, Ilene; Ostell, James; Panchenko, Anna; Phan, Lon; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Stephen T; Shumway, Martin; Sirotkin, Karl; Slotta, Douglas; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A; Wagner, Lukas; Wang, Yanli; Wilbur, W John; Yaschenko, Eugene; Ye, Jian

    2012-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.

  9. Database resources of the National Center for Biotechnology Information

    PubMed Central

    2013-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, the Genetic Testing Registry, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Probe, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page. PMID:23193264

  10. Education resources of the National Center for Biotechnology Information

    PubMed Central

    Lipshultz, Dawn; Matten, Wayne T.; McGinnis, Scott D.; Pechous, Steven; Romiti, Monica L.; Tao, Tao; Valjavec-Gratian, Majda; Sayers, Eric W.

    2010-01-01

    The National Center for Biotechnology Information (NCBI) hosts 39 literature and molecular biology databases containing almost half a billion records. As the complexity of these data and associated resources and tools continues to expand, so does the need for educational resources to help investigators, clinicians, information specialists and the general public make use of the wealth of public data available at the NCBI. This review describes the educational resources available at NCBI via the NCBI Education page (www.ncbi.nlm.nih.gov/Education/). These resources include materials designed for new users, such as About NCBI and the NCBI Guide, as well as documentation, Frequently Asked Questions (FAQs) and writings on the NCBI Bookshelf such as the NCBI Help Manual and the NCBI Handbook. NCBI also provides teaching materials such as tutorials, problem sets and educational tools such as the Amino Acid Explorer, PSSM Viewer and Ebot. NCBI also offers training programs including the Discovery Workshops, webinars and tutorials at conferences. To help users keep up-to-date, NCBI produces the online NCBI News and offers RSS feeds and mailing lists, along with a presence on Facebook, Twitter and YouTube. PMID:20570844

  11. Database resources of the National Center for Biotechnology Information.

    PubMed

    Sayers, Eric W; Barrett, Tanya; Benson, Dennis A; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; DiCuccio, Michael; Edgar, Ron; Federhen, Scott; Feolo, Michael; Geer, Lewis Y; Helmberg, Wolfgang; Kapustin, Yuri; Landsman, David; Lipman, David J; Madden, Thomas L; Maglott, Donna R; Miller, Vadim; Mizrachi, Ilene; Ostell, James; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Stephen T; Shumway, Martin; Sirotkin, Karl; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A; Wagner, Lukas; Yaschenko, Eugene; Ye, Jian

    2009-01-01

    In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs), Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART) and the PubChem suite of small molecule databases. Augmenting many of the web applications is custom implementation of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.

  12. Database resources of the National Center for Biotechnology Information

    PubMed Central

    Wheeler, David L.; Barrett, Tanya; Benson, Dennis A.; Bryant, Stephen H.; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M.; DiCuccio, Michael; Edgar, Ron; Federhen, Scott; Feolo, Michael; Geer, Lewis Y.; Helmberg, Wolfgang; Kapustin, Yuri; Khovayko, Oleg; Landsman, David; Lipman, David J.; Madden, Thomas L.; Maglott, Donna R.; Miller, Vadim; Ostell, James; Pruitt, Kim D.; Schuler, Gregory D.; Shumway, Martin; Sequeira, Edwin; Sherry, Steven T.; Sirotkin, Karl; Souvorov, Alexandre; Starchenko, Grigory; Tatusov, Roman L.; Tatusova, Tatiana A.; Wagner, Lukas; Yaschenko, Eugene

    2008-01-01

    In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data available through NCBI's web site. NCBI resources include Entrez, the Entrez Programming Utilities, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genome, Genome Project and related tools, the Trace, Assembly, and Short Read Archives, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups, Influenza Viral Resources, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Database of Genotype and Phenotype, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool and the PubChem suite of small molecule databases. Augmenting the web applications are custom implementations of the BLAST program optimized to search specialized data sets. These resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. PMID:18045790

  13. Database resources of the National Center for Biotechnology Information

    PubMed Central

    Acland, Abigail; Agarwala, Richa; Barrett, Tanya; Beck, Jeff; Benson, Dennis A.; Bollin, Colleen; Bolton, Evan; Bryant, Stephen H.; Canese, Kathi; Church, Deanna M.; Clark, Karen; DiCuccio, Michael; Dondoshansky, Ilya; Federhen, Scott; Feolo, Michael; Geer, Lewis Y.; Gorelenkov, Viatcheslav; Hoeppner, Marilu; Johnson, Mark; Kelly, Christopher; Khotomlianski, Viatcheslav; Kimchi, Avi; Kimelman, Michael; Kitts, Paul; Krasnov, Sergey; Kuznetsov, Anatoliy; Landsman, David; Lipman, David J.; Lu, Zhiyong; Madden, Thomas L.; Madej, Tom; Maglott, Donna R.; Marchler-Bauer, Aron; Karsch-Mizrachi, Ilene; Murphy, Terence; Ostell, James; O'Sullivan, Christopher; Panchenko, Anna; Phan, Lon; Pruitt, Don Preussm Kim D.; Rubinstein, Wendy; Sayers, Eric W.; Schneider, Valerie; Schuler, Gregory D.; Sequeira, Edwin; Sherry, Stephen T.; Shumway, Martin; Sirotkin, Karl; Siyan, Karanjit; Slotta, Douglas; Soboleva, Alexandra; Soussov, Vladimir; Starchenko, Grigory; Tatusova, Tatiana A.; Trawick, Bart W.; Vakatov, Denis; Wang, Yanli; Ward, Minghong; John Wilbur, W.; Yaschenko, Eugene; Zbicz, Kerry

    2014-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, PubReader, Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Primer-BLAST, COBALT, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, the Genetic Testing Registry, Genome and related tools, the Map Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, ClinVar, MedGen, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Probe, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All these resources can be accessed through the NCBI home page. PMID:24259429

  14. The relationship of knowledge, attitudes and perceptions regarding biotechnology in college students

    NASA Astrophysics Data System (ADS)

    Sohan, Donna Elizabeth

    Biotechnology is the latest in a series of technological innovations that have revolutionized such fields as agriculture and the health sciences. However, along with the benefits of biotechnology are concerns. For biotechnology's potential to be realized, it must be accepted on public and governmental levels. Although many studies focus on adult consumer attitudes, it will be the students of today who will be the consumers and leaders of tomorrow. Therefore, this study focused on the knowledge, attitudes, and perceptions of college students regarding biotechnology. More than 3,000 undergraduate students were surveyed from a variety of undergraduate courses at Texas A&M University in College Station, Texas during the 1997-1998 academic year. Information sought included students' knowledge regarding recent applications of biotechnology, demographic information, and their agreement or disagreement with statements regarding different aspects and applications of biotechnology. This study found that despite a low awareness or knowledge of biotechnology, students were accepting of specific applications or products of biotechnology. Those applications or products viewed as beneficial without involving animals had the highest acceptance levels. A majority of the students identified mass media as their major source of biotechnology while also indicating a high level of distrust of the media. Students also indicated that biotechnology information is needed and that such information is appropriate for high school students. Relationships between knowledge and attitudes were also investigated. A greater knowledge level correlated with a more favorable view of biotechnology. In addition, relationships between demographic variables such as gender and race were investigated. Individuals who identified themselves as scientists were found more accepting of biotechnology while females in general were found less accepting. Females majoring in education were found to be the least

  15. 75 FR 69091 - Office of the Director, Office of Biotechnology Activities; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ..., Office of Biotechnology Activities; Notice of Meeting There will be a workshop entitled ``Retroviral and.... Time: 8 a.m. to 1 p.m. Agenda: The Office of Biotechnology Activities (OBA), NIH Recombinant DNA... Biotechnology Activities, National Institutes of Health, 6705 Rockledge Drive, Suite 750, Bethesda, MD 20892...

  16. Biotechnological and industrial significance of cyanobacterial secondary metabolites.

    PubMed

    Rastogi, Rajesh P; Sinha, Rajeshwar P

    2009-01-01

    Cyanobacteria are considered to be a rich source of novel metabolites of a great importance from a biotechnological and industrial point of view. Some cyanobacterial secondary metabolites (CSMs), exhibit toxic effects on living organisms. A diverse range of these cyanotoxins may have ecological roles as allelochemicals, and could be employed for the commercial development of compounds with applications such as algaecides, herbicides and insecticides. Recently, cyanobacteria have become an attractive source of innovative classes of pharmacologically active compounds showing interesting and exciting biological activities ranging from antibiotics, immunosuppressant, and anticancer, antiviral, antiinflammatory to proteinase-inhibiting agents. A different but not less interesting property of these microorganisms is their capacity of overcoming the toxicity of ultraviolet radiation (UVR) by means of UV-absorbing/screening compounds, such as mycosporine-like amino acids (MAAs) and scytonemin. These last two compounds are true 'multipurpose' secondary metabolites and considered to be natural photoprotectants. In this sense, they may be biotechnologically exploited by the cosmetic industry. Overall CSMs are striking targets in biotechnology and biomedical research, because of their potential applications in agriculture, industry, and especially in pharmaceuticals.

  17. Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA).

    PubMed

    Bruschi, F; Dundar, M; Gahan, P B; Gartland, K; Szente, M; Viola-Magni, M P; Akbarova, Y

    2011-09-01

    The European Biotechnology Congress 2011 held under the auspices of the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association brings together a broad spectrum of biotechnologists from around the world. The subsequent abstracts indicate the manner in which biotechnology has permeated all aspects of research from the basic sciences through to small and medium enterprises and major industries. The brief statements before the presentation of the abstracts aim to introduce not only Biotechnology in general and its importance around the world, but also the European Biotechnology Thematic Network Association and its aims especially within the framework of education and ethics in biotechnology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. 7 CFR 3402.4 - Food and agricultural sciences areas targeted for National Needs Graduate and Postdoctoral...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Food and agricultural sciences areas targeted for... AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description § 3402.4 Food and agricultural sciences areas targeted for National Needs Graduate and...

  19. 7 CFR 3402.4 - Food and agricultural sciences areas targeted for National Needs Graduate and Postdoctoral...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Food and agricultural sciences areas targeted for... AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description § 3402.4 Food and agricultural sciences areas targeted for National Needs Graduate and...

  20. 7 CFR 3402.4 - Food and agricultural sciences areas targeted for National Needs Graduate and Postdoctoral...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Food and agricultural sciences areas targeted for... AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description § 3402.4 Food and agricultural sciences areas targeted for National Needs Graduate and...

  1. 7 CFR 3402.4 - Food and agricultural sciences areas targeted for National Needs Graduate and Postdoctoral...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Food and agricultural sciences areas targeted for... AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description § 3402.4 Food and agricultural sciences areas targeted for National Needs Graduate and...

  2. Databases on biotechnology and biosafety of GMOs.

    PubMed

    Degrassi, Giuliano; Alexandrova, Nevena; Ripandelli, Decio

    2003-01-01

    Due to the involvement of scientific, industrial, commercial and public sectors of society, the complexity of the issues concerning the safety of genetically modified organisms (GMOs) for the environment, agriculture, and human and animal health calls for a wide coverage of information. Accordingly, development of the field of biotechnology, along with concerns related to the fate of released GMOs, has led to a rapid development of tools for disseminating such information. As a result, there is a growing number of databases aimed at collecting and storing information related to GMOs. Most of the sites deal with information on environmental releases, field trials, transgenes and related sequences, regulations and legislation, risk assessment documents, and literature. Databases are mainly established and managed by scientific, national or international authorities, and are addressed towards scientists, government officials, policy makers, consumers, farmers, environmental groups and civil society representatives. This complexity can lead to an overlapping of information. The purpose of the present review is to analyse the relevant databases currently available on the web, providing comments on their vastly different information and on the structure of the sites pertaining to different users. A preliminary overview on the development of these sites during the last decade, at both the national and international level, is also provided.

  3. Students' Biotechnology Literacy: The Pillars of STEM Education in Malaysia

    ERIC Educational Resources Information Center

    Bahri, Nurnadiah Mohamed; Suryawati, Evi; Osman, Kamisah

    2014-01-01

    Biotechnology has been widely applied in various products throughout the 21st century. Malaysia selected the biotechnology sector as one of the key strategic technologies that would enable Malaysia to transform into a fully developed nation by the year 2020. However, to date, there has been very little research on the level of biotechnology…

  4. Biotechnology and the bioeconomy-Towards inclusive and sustainable industrial development.

    PubMed

    Lokko, Yvonne; Heijde, Marc; Schebesta, Karl; Scholtès, Philippe; Van Montagu, Marc; Giacca, Mauro

    2018-01-25

    To transform developing and least developing countries into industrialised ones, biotechnology could be deployed along the value chain, to provide support to the development of the bio-based industries in such a way to ensure sustainability of the sector and to reduce negative environmental impacts that might otherwise occur. In agribusiness development, for instance, interventions could start from inputs and agricultural mechanization, modern processing technologies, packaging of perishable products, the promotion of food safety in the processing and regulatory environment; and interventions to improve competitiveness and productivity. Worth over USD 300 billion in revenue, the role of the biotechnology goes beyond industrial growth, since it provides opportunities for progress towards many of the UN sustainable development goals (SDGs). This paper reviews the status of industrial biotechnology as it relates to inclusive and sustainable industrial development. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. NABIC marker database: A molecular markers information network of agricultural crops.

    PubMed

    Kim, Chang-Kug; Seol, Young-Joo; Lee, Dong-Jun; Jeong, In-Seon; Yoon, Ung-Han; Lee, Gang-Seob; Hahn, Jang-Ho; Park, Dong-Suk

    2013-01-01

    In 2013, National Agricultural Biotechnology Information Center (NABIC) reconstructs a molecular marker database for useful genetic resources. The web-based marker database consists of three major functional categories: map viewer, RSN marker and gene annotation. It provides 7250 marker locations, 3301 RSN marker property, 3280 molecular marker annotation information in agricultural plants. The individual molecular marker provides information such as marker name, expressed sequence tag number, gene definition and general marker information. This updated marker-based database provides useful information through a user-friendly web interface that assisted in tracing any new structures of the chromosomes and gene positional functions using specific molecular markers. The database is available for free at http://nabic.rda.go.kr/gere/rice/molecularMarkers/

  6. Disclosing Biology Teachers' Beliefs about Biotechnology and Biotechnology Education

    ERIC Educational Resources Information Center

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Teachers have been shown to frequently avoid addressing biotechnology topics. Aiming to understand the extent to which teachers' scarce engagement in biotechnology teaching is influenced by their beliefs and/or by extrinsic constraints, such as practical limitations, this study evaluates biology teachers' beliefs about biotechnology and…

  7. Mannan biotechnology: from biofuels to health.

    PubMed

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted.

  8. Classification and Mapping of Agricultural Land for National Water-Quality Assessment

    USGS Publications Warehouse

    Gilliom, Robert J.; Thelin, Gail P.

    1997-01-01

    Agricultural land use is one of the most important influences on water quality at national and regional scales. Although there is great diversity in the character of agricultural land, variations follow regional patterns that are influenced by environmental setting and economics. These regional patterns can be characterized by the distribution of crops. A new approach to classifying and mapping agricultural land use for national water-quality assessment was developed by combining information on general land-use distribution with information on crop patterns from agricultural census data. Separate classification systems were developed for row crops and for orchards, vineyards, and nurseries. These two general categories of agricultural land are distinguished from each other in the land-use classification system used in the U.S. Geological Survey national Land Use and Land Cover database. Classification of cropland was based on the areal extent of crops harvested. The acreage of each crop in each county was divided by total row-crop area or total orchard, vineyard, and nursery area, as appropriate, thus normalizing the crop data and making the classification independent of total cropland area. The classification system was developed using simple percentage criteria to define combinations of 1 to 3 crops that account for 50 percent or more or harvested acreage in a county. The classification system consists of 21 level I categories and 46 level II subcategories for row crops, and 26 level I categories and 19 level II subcategories for orchards, vineyards, and nurseries. All counties in the United States with reported harvested acreage are classified in these categories. The distribution of agricultural land within each county, however, must be evaluated on the basis of general land-use data. This can be done at the national scale using 'Major Land Uses of the United States,' at the regional scale using data from the national Land Use and Land Cover database, or at

  9. 77 FR 11584 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Gila National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    .... Department of Agriculture, Forest Service, Gila National Forest, Silver City, NM, and Field Museum of Natural... of Agriculture, Forest Service, Gila National Forest and the Field Museum of Natural History have... contact the U.S. Department of Agriculture, Forest Service, Gila National Forest. Repatriation of the...

  10. 76 FR 43718 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Gila National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    .... Department of Agriculture, Forest Service, Gila National Forest, Silver City, NM and Field Museum of Natural... of Agriculture, Forest Service, Gila National Forest and the Field Museum of Natural History have... may contact the U.S. Department of Agriculture, Forest Service, Gila National Forest. Repatriation of...

  11. 7 CFR 3402.4 - Food and agricultural sciences areas targeted for National Needs Graduate and Postdoctoral...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Food and agricultural sciences areas targeted for..., AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS... sciences areas targeted for National Needs Graduate and Postdoctoral Fellowship Grants Program support...

  12. Advanced genetic tools for plant biotechnology.

    PubMed

    Liu, Wusheng; Yuan, Joshua S; Stewart, C Neal

    2013-11-01

    Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis of large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.

  13. Recent Major Advances of Biotechnology and Sustainable Aquaculture in China

    PubMed Central

    Xiang, Jianhai

    2015-01-01

    Background: Global aquaculture production has increased continuously over the last five decades, and particularly in China. Its aquaculture has become the fastest growing and most efficient agri-sector, with production accounting for more than 70% of the world’s aquaculture output. In the new century, with serious challenges regarding population, resources and the environment, China has been working to develop high-quality, effective, healthy, and sustainable blue agriculture through the application of modern biotechnology. Sound knowledge related to the biology and ecology of aquatic organisms has laid a solid foundation and provided the innovation and technology for rapid development of the aquaculture industry. Marine biotechnology, which is enabling solutions for ocean productivity and sustainability, has been promoted since the last decades of the 20th Century in China. Objective: In this article, priority areas of research, mainly genetic breeding, omics studies, novel production systems, biosecurity, bioprocesses and biorefinery, as well as the major progress of marine biotechnology R&D in China are reviewed. Conclusion: Current innovative achievements in China are not enough and the level and frequency of academic advancements must be improved. International cooperation and assistance remain crucial for the success of marine biotechnology. PMID:28553577

  14. Enrichment and Strengthening of Indian Biotechnology Industry along with Academic Interface

    ERIC Educational Resources Information Center

    Singh, Shalini

    2014-01-01

    For many years, humankind has been incorporating biosciences in different places--from agriculture to food and medicine. Today, the nomenclature of biology has been recoined as Biotechnology, a technological science with a perfect blend of sophisticated techniques, manuals and application of fast delivery equipment and vehicles. It encompasses…

  15. a Study on the Document Information Service of the National Agricultural Library for Agricultural Sci-Tech Innovation in China

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Meng, Xianxue

    This paper presents the significant function of the Chinese National Agricultural Library (CNAL) in the agricultural sci-tech innovation system in China, analyses the development of collection and service in the CNAL, explores the challenge towards sustain and develop information services for the agricultural sci-tech research and innovation, at last proposes the strategy for sci-tech document information service development.

  16. Database resources of the National Center for Biotechnology Information

    PubMed Central

    2015-01-01

    The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (Bookshelf, PubMed Central (PMC) and PubReader); medical genetics (ClinVar, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen); genes and genomics (BioProject, BioSample, dbSNP, dbVar, Epigenomics, Gene, Gene Expression Omnibus (GEO), Genome, HomoloGene, the Map Viewer, Nucleotide, PopSet, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser, Trace Archive and UniGene); and proteins and chemicals (Biosystems, COBALT, the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB), Protein Clusters, Protein and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for many of these databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov. PMID:25398906

  17. Database resources of the National Center for Biotechnology Information

    PubMed Central

    2016-01-01

    The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (PubMed Central (PMC), Bookshelf and PubReader), health (ClinVar, dbGaP, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen), genomes (BioProject, Assembly, Genome, BioSample, dbSNP, dbVar, Epigenomics, the Map Viewer, Nucleotide, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser and the Trace Archive), genes (Gene, Gene Expression Omnibus (GEO), HomoloGene, PopSet and UniGene), proteins (Protein, the Conserved Domain Database (CDD), COBALT, Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB) and Protein Clusters) and chemicals (Biosystems and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for most of these databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. PMID:26615191

  18. Database resources of the National Center for Biotechnology Information.

    PubMed

    Sayers, Eric W; Barrett, Tanya; Benson, Dennis A; Bolton, Evan; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; DiCuccio, Michael; Federhen, Scott; Feolo, Michael; Fingerman, Ian M; Geer, Lewis Y; Helmberg, Wolfgang; Kapustin, Yuri; Landsman, David; Lipman, David J; Lu, Zhiyong; Madden, Thomas L; Madej, Tom; Maglott, Donna R; Marchler-Bauer, Aron; Miller, Vadim; Mizrachi, Ilene; Ostell, James; Panchenko, Anna; Phan, Lon; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Stephen T; Shumway, Martin; Sirotkin, Karl; Slotta, Douglas; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A; Wagner, Lukas; Wang, Yanli; Wilbur, W John; Yaschenko, Eugene; Ye, Jian

    2011-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Electronic PCR, OrfFinder, Splign, ProSplign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), IBIS, Biosystems, Peptidome, OMSSA, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.

  19. Database resources of the National Center for Biotechnology Information.

    PubMed

    Wheeler, David L; Barrett, Tanya; Benson, Dennis A; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; DiCuccio, Michael; Edgar, Ron; Federhen, Scott; Geer, Lewis Y; Kapustin, Yuri; Khovayko, Oleg; Landsman, David; Lipman, David J; Madden, Thomas L; Maglott, Donna R; Ostell, James; Miller, Vadim; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Steven T; Sirotkin, Karl; Souvorov, Alexandre; Starchenko, Grigory; Tatusov, Roman L; Tatusova, Tatiana A; Wagner, Lukas; Yaschenko, Eugene

    2007-01-01

    In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's Web site. NCBI resources include Entrez, the Entrez Programming Utilities, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link(BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genome, Genome Project and related tools, the Trace and Assembly Archives, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs), Viral Genotyping Tools, Influenza Viral Resources, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART) and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. These resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.

  20. 77 FR 64794 - Cancellation of the National Agricultural Research, Extension, Education, and Economics Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... Cancellation of the National Agricultural Research, Extension, Education, and Economics Advisory Board Meeting AGENCY: Research, Education, and Economics, USDA. ACTION: Notice of intent to cancel meeting. SUMMARY: The meeting of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

  1. 78 FR 25691 - Meeting Notice of the National Agricultural Research, Extension, Education, and Economics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... Meeting Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, USDA. ACTION: Notice of meeting. SUMMARY: In accordance with...) announces a meeting of the National Agricultural Research, Extension, Education, and Economics Advisory...

  2. [Current estate of biotechnology in Costa Rica].

    PubMed

    Valdez, Marta; López, Rebeca; Jiménez, Luis

    2004-09-01

    A study was carried out on the construction of indicators in biotechnology in Costa Rica as part of the project "SYMBIOSIS, Cooperative Program for the Construction of Indicators in Biotechnology adapted to Latin American and Caribbean countries, to motivate the application and transference of industrial technologies". The study focused on two units: researchers and research projects developed in Costa Rica, between 1998 and 2002. For researchers, information was collected about indicators related to sex, age, teaching activities, number of projects, academic degree, area of speciality and number of publications. For research projects we obtained information about: speciality, sector of application, duration of projects and number of researchers per project. Very interesting results include the high participation of the women in this area of investigation (54%); the low participation of young researchers (13% younger than 30), and a high proportion of the investigators that are responsible for 4 or more projects (42%). With relation to the specialities of the projects, the majority are in the category Bio-Agro (39%) whereas in Acuaculture only 1% was found. The sectors of application with the most number of projects are: Agriculture and Livestock (37%) and Human Health (35%). The main strengthts and limitatations for the development of biotechnology in Costa Rica are discussed.

  3. Construction Biotechnology: a new area of biotechnological research and applications.

    PubMed

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian

    2015-09-01

    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits.

  4. Biotechnology in Switzerland: high on the public agenda, but only moderate support.

    PubMed

    Bonfadelli, Heinz; Dahinden, Urs; Leonarz, Martina

    2002-04-01

    In Switzerland, there have been intensive public debates about biotechnology because of the specific Swiss political system of direct democracy that led, in 1992 and 1998, to two national referenda on biotechnology regulation. As a result, the Swiss population is well informed but skeptical about this technology. These findings contrast with the deficit model of public understanding of science, which predicts a positive correlation between knowledge of, and support for, a specific technology. What role did the media play in the development of public opinion? This question is discussed because of a content analysis (time series) of national newspapers. In addition, representative surveys and focus groups yield insights into the public perception of biotechnology and the influence of mass communication for opinion formation.

  5. 75 FR 45656 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Siuslaw National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Siuslaw National Forest, Waldport, OR AGENCY: National Park Service... of the U.S. Department of Agriculture, Forest Service, Siuslaw National Forest, Waldport, OR. The...

  6. 75 FR 52014 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Cherokee National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Cherokee National Forest, Cleveland, TN AGENCY: National Park Service... funerary objects in the control of the U.S. Department of Agriculture, Forest Service, Cherokee National...

  7. 75 FR 68000 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Hiawatha National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... of Agriculture, Forest Service, Hiawatha National Forest, Escanaba, MI and University of Michigan... of Agriculture, Forest Service, Hiawatha National Forest, Escanaba, MI, and in the physical custody... Agriculture, Forest Service, professional staff in consultation with representatives of the Bay Mills Indian...

  8. Agricultural biotechnology and the UK public.

    PubMed

    Moses, Vivian

    2002-09-01

    It might be an exaggeration to claim that UK agriculture is in a state of crisis, but it is certainly a time for decisions. Uncertainties abound: the implications of growing free trade; a steady reduction in subsidies; the ongoing drift of people to towns and what some regard as the stranglehold of retailers both on food prices and on what the farmer gets. To all of this has to be added the backwash of bovine spongiform encephalopathy (BSE) and foot-and-mouth disease (FMD), and the advent of new technologies, especially those based on modern genetics.

  9. Against Free Markets, against Science? Regulating the Socio-Economic Effects of Biotechnology

    ERIC Educational Resources Information Center

    Kinchy, Abby J.; Kleinman, Daniel Lee; Autry, Robyn

    2008-01-01

    This study challenges the assumption that abstract "globalization" forces are driving transformations in the relationships between states and markets. Employing three cases of policy debate regarding the regulation of agricultural biotechnology (ag-biotech), we examine the role of discourse in the formation of neoliberal regulatory schemes. We…

  10. Biotechnology.

    ERIC Educational Resources Information Center

    Van Vranken, Nancy S., Ed.

    1987-01-01

    The field of biotechnology, and specifically recombinant DNA technology, is transforming the way that many feel about the nature and purposes of biology. This newsletter annual supplement contains several articles addressing the topic of biotechnology and the importance that the topic should be given in science classes. James D. Watson's article,…

  11. Advanced genetic tools for plant biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, WS; Yuan, JS; Stewart, CN

    2013-10-09

    Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis ofmore » large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.« less

  12. Health-related biotechnology transfer to Africa: principal-agency relationship issues.

    PubMed

    Kirigia, J M; Muthuri, L K; Kirigia, D G

    2007-01-01

    The aim of this paper is to stimulate debate on the agency (principal-agent) in health-related biotechnology research. It attempts to answer the following questions: What is health-related biotechnology and biotechnology research? What is an agency? What factors are likely to undermine the principal's capacity to exercise informed consent? When might the principal-agency problem arise? How could the agency in biotechnology transfer be strengthened in Sub-Saharan Africa (SSA)? The transfer of health-related biotechnology to SSA ought to be preceded by research to ascertain the effectiveness of such technologies on population health. In that process, the national ethical review committee (REC), as an agent of every human research subject (principal), ought to ensure that international principles (e.g. beneficence, non-malfeasance, autonomy, justice, dignity, truthfulness and honesty) for human experimentation are observed by biotechnology researchers in order to satisfy moral, ethical and legal requirements. The key factors that undermine principals' sovereignty in exercising their right to informed consent to participate in biotechnology trials are discussed. The paper ends with a list of activities that can strengthen the agency, e.g. legislative requirement that all health-related biotechnology transfer should be preceded by rigorous evaluation; continuous update of the agents knowledge of the contents of the international ethical guidelines; and education of potential and actual principals on their human rights; among others.

  13. Plastid biotechnology for crop production: present status and future perspectives

    PubMed Central

    Daniell, Henry

    2012-01-01

    The world population is expected to reach an estimated 9.2 billion by 2050. Therefore, food production globally has to increase by 70% in order to feed the world, while total arable land, which has reached its maximal utilization, may even decrease. Moreover, climate change adds yet another challenge to global food security. In order to feed the world in 2050, biotechnological advances in modern agriculture are essential. Plant genetic engineering, which has created a new wave of global crop production after the first green revolution, will continue to play an important role in modern agriculture to meet these challenges. Plastid genetic engineering, with several unique advantages including transgene containment, has made significant progress in the last two decades in various biotechnology applications including development of crops with high levels of resistance to insects, bacterial, fungal and viral diseases, different types of herbicides, drought, salt and cold tolerance, cytoplasmic male sterility, metabolic engineering, phytoremediation of toxic metals and production of many vaccine antigens, biopharmaceuticals and biofuels. However, useful traits should be engineered via chloroplast genomes of several major crops. This review provides insight into the current state of the art of plastid engineering in relation to agricultural production, especially for engineering agronomic traits. Understanding the bottleneck of this technology and challenges for improvement of major crops in a changing climate are discussed. PMID:21437683

  14. Potential applications of insect symbionts in biotechnology.

    PubMed

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.

  15. Raising the social yield of research: challenge facing biotechnology.

    PubMed

    Grimaud, J A

    2001-12-01

    The biological revolution is the latest in a series of scientific revolutions that have ushered in a new era in physics, chemistry, industry, and composite materials. The latest instruments of life - bioengineering for and by the living - challenge mankind with a number of fundamental questions, while offering an unprecedented series of opportunities. Alternative biotechnologies, biological agriculture for the environment, genomics applied to preventive medicine, genetic engineering are just a few of the benefits mankind may reap from bioengineering. Modern society demands more knowledge, and it is up to public authorities to invest in outreach programs to make public the latest scientific activities and findings. In the case of biotechnologies, it is particularly true that the product of research is not complete until its benefits are returned to society.

  16. 77 FR 32989 - Notice of Inventory Completion: U.S. Department of Agriculture, San Juan National Forest, Durango...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... Inventory Completion: U.S. Department of Agriculture, San Juan National Forest, Durango, CO, and University... the control of the U.S. Department of Agriculture, San Juan National Forest, Durango, CO, and in the... by the U.S. Department of Agriculture, San Juan National Forest in the Federal Register (73 FR 49485...

  17. Chinese public understanding of the use of agricultural biotechnology—A case study from Zhejiang Province of China*

    PubMed Central

    Lü, Lan

    2006-01-01

    This study explores the Chinese public’s perceptions of, and attitudes to, agriculture and food applications of biotechnology; and investigates the effect of socio-demographic factors on attitudes. A questionnaire survey and interviews were used in an attempt to combine quantitative analysis with qualitative review. The main finding of this study is that the Chinese population has a superficial, optimistic attitude to agricultural biotechnology; and that, in accordance with public attitudes, a cautious policy, with obligatory labelling, should be adopted. The study reveals that education is the factor among socio-demographic variables with the strongest impact on public attitudes. Higher education leads to a more positive evaluation of GM (genetically modified) foods and applications of biotechnology with respect to usefulness, moral acceptability, and suitability for encouragement. In addition, public attitudinal differences depend significantly on area of residence. Compared with their more urban compatriots, members of the public in less developed areas of China have more optimistic attitudes, perceive more benefits, and are more risk tolerant in relation to GM foods and agricultural biotechnology. Finally we obtained a very high rate of “don’t know” answers to our survey questions. This suggests that many people do not have settled attitudes, and correspondingly, that the overall public attitude to agricultural biotechnology and GM foods in China is at present somewhat unstable. PMID:16532526

  18. How Are We Educating Agricultural Students? A National Profile of Leadership Capacities and Involvement in College Compared to Non-Agricultural Peers

    ERIC Educational Resources Information Center

    Rosch, David M.; Coers, Natalie

    2013-01-01

    Given the importance of leadership development within the various agricultural professions, a national sample (n = 461) of students with agriculture-related majors from 55 colleges was compared to a similarly-sized random peer group from the same institutions. The data were analyzed to compare the agricultural student sample to their peers with…

  19. The potential impact of plant biotechnology on the Millennium Development Goals.

    PubMed

    Yuan, Dawei; Bassie, Ludovic; Sabalza, Maite; Miralpeix, Bruna; Dashevskaya, Svetlana; Farre, Gemma; Rivera, Sol M; Banakar, Raviraj; Bai, Chao; Sanahuja, Georgina; Arjó, Gemma; Avilla, Eva; Zorrilla-López, Uxue; Ugidos-Damboriena, Nerea; López, Alberto; Almacellas, David; Zhu, Changfu; Capell, Teresa; Hahne, Gunther; Twyman, Richard M; Christou, Paul

    2011-03-01

    The eight Millennium Development Goals (MDGs) are international development targets for the year 2015 that aim to achieve relative improvements in the standards of health, socioeconomic status and education in the world's poorest countries. Many of the challenges addressed by the MDGs reflect the direct or indirect consequences of subsistence agriculture in the developing world, and hence, plant biotechnology has an important role to play in helping to achieve MDG targets. In this opinion article, we discuss each of the MDGs in turn, provide examples to show how plant biotechnology may be able to accelerate progress towards the stated MDG objectives, and offer our opinion on the likelihood of such technology being implemented. In combination with other strategies, plant biotechnology can make a contribution towards sustainable development in the future although the extent to which progress can be made in today's political climate depends on how we deal with current barriers to adoption.

  20. 75 FR 31795 - Office of Biotechnology Activities; Recombinant DNA Research: Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA Research: Amended Notice of Meeting ACTION: Notice of cancellation of... information. Dated: May 26, 2010. Jacqueline Corrigan-Curay, Acting Director, Office of Biotechnology...

  1. Database resources of the National Center for Biotechnology Information: 2002 update

    PubMed Central

    Wheeler, David L.; Church, Deanna M.; Lash, Alex E.; Leipe, Detlef D.; Madden, Thomas L.; Pontius, Joan U.; Schuler, Gregory D.; Schriml, Lynn M.; Tatusova, Tatiana A.; Wagner, Lukas; Rapp, Barbara A.

    2002-01-01

    In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources that operate on the data in GenBank and a variety of other biological data made available through NCBI’s web site. NCBI data retrieval resources include Entrez, PubMed, LocusLink and the Taxonomy Browser. Data analysis resources include BLAST, Electronic PCR, OrfFinder, RefSeq, UniGene, HomoloGene, Database of Single Nucleotide Polymorphisms (dbSNP), Human Genome Sequencing, Human MapViewer, Human¡VMouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB) and the Conserved Domain Database (CDD). Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov. PMID:11752242

  2. Technical Update for Vocational Agriculture Teachers in Secondary Schools. Final Report.

    ERIC Educational Resources Information Center

    Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.

    A project provided ongoing opportunities for teachers in Iowa to upgrade their expertise in agribusiness management using new technology; production, processing, and marketing agricultural products; biotechnology in agriculture; and conservation of natural resources. The project also modeled effective teaching methods and strategies. Project…

  3. 7 CFR 2.68 - Administrator, National Agricultural Statistics Service.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Under Secretary for Research, Education, and Economics § 2.68 Administrator, National Agricultural...(b)(2), the following delegations of authority are made by the Under Secretary for Research... enumerative and objective measurement surveys, construction and maintenance of sampling frames, and related...

  4. 7 CFR 2.68 - Administrator, National Agricultural Statistics Service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Under Secretary for Research, Education, and Economics § 2.68 Administrator, National Agricultural...(b)(2), the following delegations of authority are made by the Under Secretary for Research... enumerative and objective measurement surveys, construction and maintenance of sampling frames, and related...

  5. 78 FR 25691 - Request for Nominations of Members for the National Agricultural Research, Extension, Education...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... National Agricultural Research, Extension, Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, USDA. ACTION: Solicitation for membership. SUMMARY: In accordance with the Federal... solicitation for nominations to fill 8 vacancies on the National Agricultural Research, Extension, Education...

  6. 76 FR 13124 - Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board Meeting AGENCY: Research, Education, and Economics, USDA. ACTION: Notice of meeting. SUMMARY: In accordance with...) announces a meeting of the National Agricultural Research, Extension, Education, and Economics Advisory...

  7. 75 FR 61692 - Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board Meeting AGENCY: Research, Education, and Economics, USDA. ACTION: Notice of meeting. SUMMARY: In accordance with...) announces a meeting of the National Agricultural Research, Extension, Education, and Economics Advisory...

  8. 75 FR 12171 - Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board Meeting AGENCY: Research, Education, and Economics, USDA. ACTION: Notice of meeting. SUMMARY: In accordance with... announces a meeting of the National Agricultural Research, Extension, Education, and Economics Advisory...

  9. 76 FR 14068 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Sequoia National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... DEPARTMENT OF THE INTERIOR National Park Service [2253-665] Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Sequoia National Forest, Porterville, CA AGENCY: National Park... and associated funerary objects in the possession and control of the U.S. Department of Agriculture...

  10. 77 FR 39506 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Tongass National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-WASO-NAGPRA-10467; 2200-1100-665] Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Tongass National Forest, Craig Ranger... of Agriculture (USDA), Forest Service, Tongass National Forest, has completed an inventory of human...

  11. 75 FR 2549 - Office of Biotechnology Activities; Office of Science Policy; Office of the Director; Notice of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Office of Science Policy; Office of the Director; Notice of a Meeting of the NIH Blue Ribbon... Coordinator, Office of Biotechnology Activities, Office of Science Policy, Office of the Director, National...

  12. Estimation of Agricultural Pesticide Use in Drainage Basins Using Land Cover Maps and County Pesticide Data. National Water-Quality Assessment Program

    DTIC Science & Technology

    2005-01-01

    National Water-Quality Assessment Program NCFAP National Center for Food and Agricultural Policy NLCD 92 National Land Cover Data 1992 NLCDe 92 enhanced...cropland acreage and state agricultural pesticide use in the early to mid-1990s reported by the National Center for Food and Agricultural Policy (NCFAP...Department of Agriculture’s National Agricultural Statistics Service (NASS). [17]. The National Center for Food and Agricultural Policy (NCFAP) is a

  13. 77 FR 13258 - Biotechnology Regulatory Services; Changes Regarding the Solicitation of Public Comment for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2011-0129] Biotechnology Regulatory Services; Changes Regarding the Solicitation of Public Comment for Petitions for... Inspection Service, USDA. ACTION: Notice. SUMMARY: We are advising the public that the Animal and Plant...

  14. 78 FR 59953 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Coconino National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-WASO-NAGPRA-13882; PPWOCRADN0-PCU00RP14.R50000] Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Coconino National.... ACTION: Notice. SUMMARY: The U.S. Department of Agriculture (USDA), Forest Service, Coconino National...

  15. Strategies to enable the adoption of animal biotechnology to sustainably improve global food safety and security.

    PubMed

    Tizard, Mark; Hallerman, Eric; Fahrenkrug, Scott; Newell-McGloughlin, Martina; Gibson, John; de Loos, Frans; Wagner, Stefan; Laible, Götz; Han, Jae Yong; D'Occhio, Michael; Kelly, Lisa; Lowenthal, John; Gobius, Kari; Silva, Primal; Cooper, Caitlin; Doran, Tim

    2016-10-01

    The ability to generate transgenic animals has existed for over 30 years, and from those early days many predicted that the technology would have beneficial applications in agriculture. Numerous transgenic agricultural animals now exist, however to date only one product from a transgenic animal has been approved for the food chain, due in part to cumbersome regulations. Recently, new techniques such as precision breeding have emerged, which enables the introduction of desired traits without the use of transgenes. The rapidly growing human population, environmental degradation, and concerns related to zoonotic and pandemic diseases have increased pressure on the animal agriculture sector to provide a safe, secure and sustainable food supply. There is a clear need to adopt transgenic technologies as well as new methods such as gene editing and precision breeding to meet these challenges and the rising demand for animal products. To achieve this goal, cooperation, education, and communication between multiple stakeholders-including scientists, industry, farmers, governments, trade organizations, NGOs and the public-is necessary. This report is the culmination of concepts first discussed at an OECD sponsored conference and aims to identify the main barriers to the adoption of animal biotechnology, tactics for navigating those barriers, strategies to improve public perception and trust, as well as industry engagement, and actions for governments and trade organizations including the OECD to harmonize regulations and trade agreements. Specifically, the report focuses on animal biotechnologies that are intended to improve breeding and genetics and currently are not routinely used in commercial animal agriculture. We put forward recommendations on how scientists, regulators, and trade organizations can work together to ensure that the potential benefits of animal biotechnology can be realized to meet the future needs of agriculture to feed the world.

  16. Agricultural soil greenhouse gas emissions: a review of national inventory methods.

    PubMed

    Lokupitiya, Erandathie; Paustian, Keith

    2006-01-01

    Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit national greenhouse gas (GHG) inventories, together with information on methods used in estimating their emissions. Currently agricultural activities contribute a significant portion (approximately 20%) of global anthropogenic GHG emissions, and agricultural soils have been identified as one of the main GHG source categories within the agricultural sector. However, compared to many other GHG sources, inventory methods for soils are relatively more complex and have been implemented only to varying degrees among member countries. This review summarizes and evaluates the methods used by Annex 1 countries in estimating CO2 and N2O emissions in agricultural soils. While most countries utilize the Intergovernmental Panel on Climate Change (IPCC) default methodology, several Annex 1 countries are developing more advanced methods that are tailored for specific country circumstances. Based on the latest national inventory reporting, about 56% of the Annex 1 countries use IPCC Tier 1 methods, about 26% use Tier 2 methods, and about 18% do not estimate or report N2O emissions from agricultural soils. More than 65% of the countries do not report CO2 emissions from the cultivation of mineral soils, organic soils, or liming, and only a handful of countries have used country-specific, Tier 3 methods. Tier 3 methods usually involve process-based models and detailed, geographically specific activity data. Such methods can provide more robust, accurate estimates of emissions and removals but require greater diligence in documentation, transparency, and uncertainty assessment to ensure comparability between countries. Availability of detailed, spatially explicit activity data is a major constraint to implementing higher tiered methods in many countries.

  17. Biotechnology at the Cutting Edge - Keasling

    ScienceCinema

    Keasling, Jay

    2018-05-11

    Jay Keasling, Berkeley Lab ALD for Biosciences and CEO of the Joint BioEnergy Institute, appears in a video on biotechnology at the Smithsonian's National Museum of American History. The video is part of en exhibit titled "Science in American Life," which examines the relationship between science, technology, progress and culture through artifacts, historical photographs and multimedia technology.

  18. Advanced health biotechnologies in Thailand: redefining policy directions.

    PubMed

    Velasco, Román Pérez; Chaikledkaew, Usa; Myint, Chaw Yin; Khampang, Roongnapa; Tantivess, Sripen; Teerawattananon, Yot

    2013-01-02

    Thailand faces a significant burden in terms of treating and managing degenerative and chronic diseases. Moreover, incidences of rare diseases are rising. Many of these-such as diabetes, cancer, and inherited inborn metabolic diseases-have no definite treatments or cure. Meanwhile, advanced health biotechnology has been found, in principle, to be an effective solution for these health problems. Qualitative approaches were employed to analyse the current situation and examine existing public policies related to advanced health biotechnologies in Thailand. The results of this analysis were then used to formulate policy recommendations. Our research revealed that the system in Thailand in relation to advanced health biotechnologies is fragmented, with multiple unaddressed gaps, underfunding of research and development (R&D), and a lack of incentives for the private sector. In addition, there are no clear definitions of advanced health biotechnologies, and coverage pathways are absent. Meanwhile, false advertising and misinformation are prevalent, with no responsible bodies to actively and effectively provide appropriate information and education (I&E). The establishment of a specialised institution to fill the gaps in this area is warranted. The development and implementation of a comprehensive national strategic plan related to advanced health biotechnologies, greater investment in R&D and I&E for all stakeholders, collaboration among agencies, harmonisation of reimbursement across public health schemes, and provision of targeted I&E are specifically recommended.

  19. Advanced health biotechnologies in Thailand: redefining policy directions

    PubMed Central

    2013-01-01

    Background Thailand faces a significant burden in terms of treating and managing degenerative and chronic diseases. Moreover, incidences of rare diseases are rising. Many of these—such as diabetes, cancer, and inherited inborn metabolic diseases—have no definite treatments or cure. Meanwhile, advanced health biotechnology has been found, in principle, to be an effective solution for these health problems. Methods Qualitative approaches were employed to analyse the current situation and examine existing public policies related to advanced health biotechnologies in Thailand. The results of this analysis were then used to formulate policy recommendations. Results Our research revealed that the system in Thailand in relation to advanced health biotechnologies is fragmented, with multiple unaddressed gaps, underfunding of research and development (R&D), and a lack of incentives for the private sector. In addition, there are no clear definitions of advanced health biotechnologies, and coverage pathways are absent. Meanwhile, false advertising and misinformation are prevalent, with no responsible bodies to actively and effectively provide appropriate information and education (I&E). The establishment of a specialised institution to fill the gaps in this area is warranted. Conclusion The development and implementation of a comprehensive national strategic plan related to advanced health biotechnologies, greater investment in R&D and I&E for all stakeholders, collaboration among agencies, harmonisation of reimbursement across public health schemes, and provision of targeted I&E are specifically recommended. PMID:23281771

  20. Establishing a Taxonometric Structure for the Study of Biotechnology in Secondary School Technology Education.

    ERIC Educational Resources Information Center

    Wells, John G.

    1994-01-01

    A Delphi panel of 19 experts identified 8 main knowledge areas of biotechnology: bioprocessing, foundations, genetic engineering, agriculture, biochemistry, medicine, environment, and bioethics. Round 2 elicited 84 subdivisions and round 3 adjusted the ratings. The resulting classification suggests a different context and focus for technology…

  1. Update on Genomic Databases and Resources at the National Center for Biotechnology Information.

    PubMed

    Tatusova, Tatiana

    2016-01-01

    The National Center for Biotechnology Information (NCBI), as a primary public repository of genomic sequence data, collects and maintains enormous amounts of heterogeneous data. Data for genomes, genes, gene expressions, gene variation, gene families, proteins, and protein domains are integrated with the analytical, search, and retrieval resources through the NCBI website, text-based search and retrieval system, provides a fast and easy way to navigate across diverse biological databases.Comparative genome analysis tools lead to further understanding of evolution processes quickening the pace of discovery. Recent technological innovations have ignited an explosion in genome sequencing that has fundamentally changed our understanding of the biology of living organisms. This huge increase in DNA sequence data presents new challenges for the information management system and the visualization tools. New strategies have been designed to bring an order to this genome sequence shockwave and improve the usability of associated data.

  2. Database resources of the National Center for Biotechnology Information.

    PubMed

    2016-01-04

    The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank(®) nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (PubMed Central (PMC), Bookshelf and PubReader), health (ClinVar, dbGaP, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen), genomes (BioProject, Assembly, Genome, BioSample, dbSNP, dbVar, Epigenomics, the Map Viewer, Nucleotide, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser and the Trace Archive), genes (Gene, Gene Expression Omnibus (GEO), HomoloGene, PopSet and UniGene), proteins (Protein, the Conserved Domain Database (CDD), COBALT, Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB) and Protein Clusters) and chemicals (Biosystems and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for most of these databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Database resources of the National Center for Biotechnology Information.

    PubMed

    2015-01-01

    The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank(®) nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (Bookshelf, PubMed Central (PMC) and PubReader); medical genetics (ClinVar, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen); genes and genomics (BioProject, BioSample, dbSNP, dbVar, Epigenomics, Gene, Gene Expression Omnibus (GEO), Genome, HomoloGene, the Map Viewer, Nucleotide, PopSet, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser, Trace Archive and UniGene); and proteins and chemicals (Biosystems, COBALT, the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB), Protein Clusters, Protein and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for many of these databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. Regulation of animal biotechnology: research needs.

    PubMed

    Rexroad, C E; Green, R D; Wall, R J

    2007-09-01

    Livestock that result from biotechnology have been a part of agricultural science for over 30 years but have not entered the market place as food or fiber. Two biotechnologies are at the forefront as challenges to the world's systems for regulating the market place: animal clones and transgenic animals. Both technologies have come before the Food and Drug Administration in the United States and it appears that action is imminent for clones. The FDA has asserted principles for evaluation of clones and asserts that "... remaining hazard(s) from cloning are likely to be subtle in nature." The science-based principles recognize that in some areas related to developmental biology and gene expression in clones, additional scientific information would be useful. The role of science then is to use the genomic tools that we have available to answer questions about epigenetic regulation of development and reprogramming of genes to the state found in germ cells. Transgenics pose additional challenges to regulators. If the transgenics are produced using cloning from modified cells then the additional scientific information needed will be related to the effects of insertion and expression of the transgenes. Other approaches such as retrovirally vectored transgenesis will elicit additional questions. These questions will be challenging because the science will have to be related to the expression and function of each gene or class of genes. For the promises of animal biotechnology to be fulfilled, scientists will have to resolve many questions for regulators and the public but tools to answer those questions are rapidly becoming available.

  5. Biotechnology for Non-biology Majors: An Activity Using a Commercial Biotechnology Laboratory.

    ERIC Educational Resources Information Center

    Wray, Francis P.; Fox, Mary C.; Huether, Carl A.; Schurdak, Eric R.

    2001-01-01

    Presents an inexpensive activity to stimulate student interest in biotechnology that was developed in partnership with a biotechnology company. Focuses on the use of DNA by a commercial laboratory; describing the analysis procedure; important uses of DNA technology in modern society; and ethical, social, and legal issues related to biotechnology.…

  6. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    PubMed

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

  7. 78 FR 52496 - Meeting Notice of the National Agricultural Research, Extension, Education, and Economics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ..., Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, Office of the Secretary... Agricultural Research, Extension, Education, and Economics Advisory Board. DATES: The National Agricultural Research, Extension, Education, and [[Page 52497

  8. The need for agriculture phenotyping: "moving from genotype to phenotype".

    PubMed

    Boggess, Mark V; Lippolis, John D; Hurkman, William J; Fagerquist, Clifton K; Briggs, Steve P; Gomes, Aldrin V; Righetti, Pier Giorgio; Bala, Kumar

    2013-11-20

    Increase in the world population has called for the increased demand for agricultural productivity. Traditional methods to augment crop and animal production are facing exacerbating pressures in keeping up with population growth. This challenge has in turn led to the transformational change in the use of biotechnology tools to meet increased productivity for both plant and animal systems. Although many challenges exist, the use of proteomic techniques to understand agricultural problems is steadily increasing. This review discusses the impact of genomics, proteomics, metabolomics and phenotypes on plant, animal and bacterial systems to achieve global food security and safety and we highlight examples of intra and extra mural research work that is currently being done to increase agricultural productivity. This review focuses on the global demand for increased agricultural productivity arising from population growth and how we can address this challenge using biotechnology. With a population well above seven billion humans, in a very unbalanced nutritional state (20% overweight, 20% risking starvation) drastic measures have to be taken at the political, infrastructure and scientific levels. While we cannot influence politics, it is our duty as scientists to see what can be done to feed humanity. Hence we highlight the transformational change in the use of biotechnology tools over traditional methods to increase agricultural productivity (plant and animal). Specifically, this review deals at length on how a three-pronged attack, namely combined genomics, proteomics and metabolomics, can help to ensure global food security and safety. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. To establish pilot projects for agriculture renewable energy systems.

    THOMAS, 111th Congress

    Rep. Holden, Tim [D-PA-17

    2010-09-29

    House - 11/16/2010 Referred to the Subcommittee on Rural Development, Biotechnology, Specialty Crops, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  10. Science and Policy Issues: A Report of Citizen Concerns and Recommendations for American Agricultural Research.

    ERIC Educational Resources Information Center

    National Agricultural Research and Extension Users Advisory Board (USDA), Washington, DC.

    Two areas which will have far reaching consequences for the future of United States agriculture are discussed: (1) biotechnology; and (2) critical economic research in world trade and commodity supply management. Topics in the first area include: controversies related to biotechnology; the relative importance of health, safety, and environmental…

  11. 78 FR 34125 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, San Juan National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-WASO-NAGPRA-13011; PPWOCRADN0-PCU00RP14.R50000] Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, San Juan National... of Agriculture (USDA), Forest Service, San Juan National Forest has completed an inventory of human...

  12. Prospects for Rural America as the Nation Matures: An Agricultural Economist's Prognosis.

    ERIC Educational Resources Information Center

    Breimyer, Harold F.

    1990-01-01

    Examines socioeconomic forces affecting U.S. rural population. Describes signs of nation's maturity, changing national issues, and elements of rural diversity and social stratification. Discusses role of transportation, demise of animal agriculture, industrial and economic changes. Emphasizes conjectural nature of conclusions about society's…

  13. 77 FR 68824 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Tongass National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-WASO-NAGPRA-11514; 2200-1100-665] Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Tongass National Forest, Juneau, AK..., Interior. ACTION: Notice. SUMMARY: The U.S. Department of Agriculture (USDA), Forest Service, Tongass...

  14. Trade and commerce in improved crops and food: an essay on food security.

    PubMed

    Kershen, Drew L

    2010-11-30

    Agricultural trade between nations is a significant proportion of total international trade. Agricultural trade in transgenic crops faces extra complications due to the existence of domestic and international regimes that focus specifically on agricultural biotechnology. These specialized regimes create legal and commercial challenges for trade in transgenic crops that have significant implications for the food security of the nations of the world. By food security, one should understand not just the available supply of food, but also the quality of the food and the environmental impact of agricultural production systems. These specialized regimes for transgenic crops can either encourage or hinder the adoption of agricultural biotechnology as a sustainable intensive agriculture. Sustainable intensive agriculture offers hope for agronomic improvements for agricultural production, socio-economic betterment for farmers and environmental benefits for societies. Sustainable intensive agriculture offers particular hope for the poorest farmers of the world because agricultural biotechnology is a technology in the seed. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Plant Genome Resources at the National Center for Biotechnology Information

    PubMed Central

    Wheeler, David L.; Smith-White, Brian; Chetvernin, Vyacheslav; Resenchuk, Sergei; Dombrowski, Susan M.; Pechous, Steven W.; Tatusova, Tatiana; Ostell, James

    2005-01-01

    The National Center for Biotechnology Information (NCBI) integrates data from more than 20 biological databases through a flexible search and retrieval system called Entrez. A core Entrez database, Entrez Nucleotide, includes GenBank and is tightly linked to the NCBI Taxonomy database, the Entrez Protein database, and the scientific literature in PubMed. A suite of more specialized databases for genomes, genes, gene families, gene expression, gene variation, and protein domains dovetails with the core databases to make Entrez a powerful system for genomic research. Linked to the full range of Entrez databases is the NCBI Map Viewer, which displays aligned genetic, physical, and sequence maps for eukaryotic genomes including those of many plants. A specialized plant query page allow maps from all plant genomes covered by the Map Viewer to be searched in tandem to produce a display of aligned maps from several species. PlantBLAST searches against the sequences shown in the Map Viewer allow BLAST alignments to be viewed within a genomic context. In addition, precomputed sequence similarities, such as those for proteins offered by BLAST Link, enable fluid navigation from unannotated to annotated sequences, quickening the pace of discovery. NCBI Web pages for plants, such as Plant Genome Central, complete the system by providing centralized access to NCBI's genomic resources as well as links to organism-specific Web pages beyond NCBI. PMID:16010002

  16. Ergot: from witchcraft to biotechnology.

    PubMed

    Haarmann, Thomas; Rolke, Yvonne; Giesbert, Sabine; Tudzynski, Paul

    2009-07-01

    The ergot diseases of grasses, caused by members of the genus Claviceps, have had a severe impact on human history and agriculture, causing devastating epidemics. However, ergot alkaloids, the toxic components of Claviceps sclerotia, have been used intensively (and misused) as pharmaceutical drugs, and efficient biotechnological processes have been developed for their in vitro production. Molecular genetics has provided detailed insight into the genetic basis of ergot alkaloid biosynthesis and opened up perspectives for the design of new alkaloids and the improvement of production strains; it has also revealed the refined infection strategy of this biotrophic pathogen, opening up the way for better control. Nevertheless, Claviceps remains an important pathogen worldwide, and a source for potential new drugs for central nervous system diseases.

  17. Selected College Students' Knowledge and Perceptions of Biotechnology Issues Reported in the Mass Media.

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Rutherford, Tracy A.; Dunsford, Deborah W.

    2002-01-01

    Agricultural communications students (n=330) were surveyed to determine their knowledge of and attitudes toward biotechnology issues reported in the mass media. Although students achieved only 30% correct responses, 84% perceived their knowledge level to be average to high. Most were somewhat accepting of genetic modification for plants but less…

  18. Agriculture and Community Development Interface. Joint Meeting of the Southern Region State Leaders for Agriculture and Natural Resources and Community Resource Development Proceedings (October 8-11, 1989, Williamsburg, Virginia).

    ERIC Educational Resources Information Center

    Warner, Paul D., Ed.; Campbell, Raymond, Ed.

    This document is a summary of remarks presented at a joint meeting of Agriculture and Natural Resources and Community Resource Development state leaders in 1989. The focus of the meeting was economic viability, rural extension and education, water quality, waste management, biotechnology, low-input sustainable agriculture (LISA), and rural…

  19. Immunoassay as an analytical tool in agricultural biotechnology.

    PubMed

    Grothaus, G David; Bandla, Murali; Currier, Thomas; Giroux, Randal; Jenkins, G Ronald; Lipp, Markus; Shan, Guomin; Stave, James W; Pantella, Virginia

    2006-01-01

    Immunoassays for biotechnology engineered proteins are used by AgBiotech companies at numerous points in product development and by feed and food suppliers for compliance and contractual purposes. Although AgBiotech companies use the technology during product development and seed production, other stakeholders from the food and feed supply chains, such as commodity, food, and feed companies, as well as third-party diagnostic testing companies, also rely on immunoassays for a number of purposes. The primary use of immunoassays is to verify the presence or absence of genetically modified (GM) material in a product or to quantify the amount of GM material present in a product. This article describes the fundamental elements of GM analysis using immunoassays and especially its application to the testing of grains. The 2 most commonly used formats are lateral flow devices (LFD) and plate-based enzyme-linked immunosorbent assays (ELISA). The main applications of both formats are discussed in general, and the benefits and drawbacks are discussed in detail. The document highlights the many areas to which attention must be paid in order to produce reliable test results. These include sample preparation, method validation, choice of appropriate reference materials, and biological and instrumental sources of error. The article also discusses issues related to the analysis of different matrixes and the effects they may have on the accuracy of the immunoassays.

  20. Traditional Chinese Biotechnology

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  1. A National Study of Work-Family Balance and Job Satisfaction among Agriculture Teachers

    ERIC Educational Resources Information Center

    Sorensen, Tyson J.; McKim, Aaron J.; Velez, Jonathan J.

    2016-01-01

    This national study sought to extend previous research on the work-family balance (WFB) ability of secondary school agriculture teachers. We utilized data from a simple random sample of agriculture teachers to explore the relationships between work and family characteristics, WFB ability, and job satisfaction. Work role characteristics of interest…

  2. Three criteria for establishing the usefulness of biotechnology for reducing micronutrient malnutrition.

    PubMed

    Bouis, Howarth E

    2002-12-01

    The fundamental reason that plant breeding using either conventional breeding or biotechnology is so cost-effective is that the benefits of a one-time investment at a central research location can be multiplied over time across nations all over the world. Supplementation and fortification incur the same recurrent costs year after year in country after country. However, each intervention has its own comparative advantages, such that a combination of several interventions is required to substantially reduce micronutrient malnutrition. Improving the density of trace minerals in plants also reduces input requirements and raises crop yields. A simulation model for India and Bangladesh demonstrated that $42 million invested in conventional breeding in developing and planting iron- and zinc-dense varieties of rice and wheat on only 10% of the acreage used for these crops would return $4.9 billion in improved nutrition (including a total of 44 million prevented cases of anemia over 10 years) and higher agricultural productivity.

  3. Infusing Authentic Inquiry into Biotechnology

    NASA Astrophysics Data System (ADS)

    Hanegan, Nikki L.; Bigler, Amber

    2009-10-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  4. Biotechnology in Turkey: an overview.

    PubMed

    Ozdamar, Tunçer H

    2009-07-01

    The term biotechnology first appeared in the programs of the Scientific and Technological Research Council of Turkey (TUBITAK) in 1982. The State Planning Organization (SPO) in 1988 defined biotechnology and the scientific fields. Moreover, it put forward an institutional framework and suggested priority areas for research and development. Turkey has been researching and investing in biotechnology for almost four decades. This review covers the development of science and technology policy with its history, consensus and consequences, bio-industries in Turkey, and research activities in biotechnology at Turkish Universities. Details are provided by the research groups in response to a common request for information on their activities and major publications in the field. The information provided has been grouped under thematic topics within the broad theme of biotechnology, and summarized within these topics. Although many aspects of biotechnological research are being pursued in Turkey, it appears that the most common research activities of the field are in fermentation processes, environmental biotechnology, and biomedical engineering.

  5. Next generation industrial biotechnology based on extremophilic bacteria.

    PubMed

    Chen, Guo-Qiang; Jiang, Xiao-Ran

    2018-04-01

    Industrial biotechnology aims to produce bulk chemicals including polymeric materials and biofuels based on bioprocessing sustainable agriculture products such as starch, fatty acids and/or cellulose. However, traditional bioprocesses require bioreactors made of stainless steel, complicated sterilization, difficult and expensive separation procedures as well as well-trained engineers that are able to conduct bioprocessing under sterile conditions, reducing the competitiveness of the bio-products. Amid the continuous low petroleum price, next generation industrial biotechnology (NGIB) allows bioprocessing to be conducted under unsterile (open) conditions using ceramic, cement or plastic bioreactors in a continuous way, it should be an energy, water and substrate saving technology with convenient operation procedure. NGIB also requires less capital investment and reduces demand on highly trained engineers. The foundation for the simplified NGIB is microorganisms that resist contaminations by other microbes, one of the examples is rapid growing halophilic bacteria inoculated under high salt concentration and alkali pH. They have been engineered to produce multiple products in various scales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Alternan Research at the National Center for Agricultural Utilization Research

    USDA-ARS?s Scientific Manuscript database

    The Northern Regional Research Laboratory (later the National Center for Agricultural Utilization Research, or NCAUR) began operations on December 16, 1940. By the late 1940’s, Dr. Allene Jeanes was leading a team in an extensive research program on dextrans. Dextrans are glucan polysaccharides th...

  7. Alternan research at the National Center for Agricultural Utilization Research

    USDA-ARS?s Scientific Manuscript database

    The Northern Regional Research Laboratory (later the National Center for Agricultural Utilization Research, or NCAUR) began operations on December 16, 1940. By the late 1940’s, Dr. Allene Jeanes was leading a team in an extensive research program on dextrans. Dextrans are glucan polysaccharides th...

  8. Biotechnology Laboratory Methods.

    ERIC Educational Resources Information Center

    Davis, Robert H.; Kompala, Dhinakar S.

    1989-01-01

    Describes a course entitled "Biotechnology Laboratory" which introduces a variety of laboratory methods associated with biotechnology. Describes the history, content, and seven experiments of the course. The seven experiments are selected from microbiology and molecular biology, kinetics and fermentation, and downstream…

  9. Biotechnology and Education.

    ERIC Educational Resources Information Center

    Journal of Biological Education, 1982

    1982-01-01

    Summarizes a Royal Society report on the educational implications of the growth of biotechnology (application of biological organisms, systems, or processes to manufacturing and service industries). Eighteen recommendations are made including the inclusion of biotechnological content into science curricula. (Author/JN)

  10. Turkish University Students' Knowledge of Biotechnology and Attitudes toward Biotechnological Applications

    ERIC Educational Resources Information Center

    Öztürk-Akar, Ebru

    2017-01-01

    This study questions the presumed relation between formal schooling and scientific literacy about biotechnologies. Comparing science and nonscience majors' knowledge of and attitudes toward biotechnological applications, conclusions are drawn if their formal learnings improve pupils' understandings of and attitudes toward biotechnology…

  11. Properties and biotechnological applications of ice-binding proteins in bacteria.

    PubMed

    Cid, Fernanda P; Rilling, Joaquín I; Graether, Steffen P; Bravo, Leon A; Mora, María de La Luz; Jorquera, Milko A

    2016-06-01

    Ice-binding proteins (IBPs), such as antifreeze proteins (AFPs) and ice-nucleating proteins (INPs), have been described in diverse cold-adapted organisms, and their potential applications in biotechnology have been recognized in various fields. Currently, both IBPs are being applied to biotechnological processes, primarily in medicine and the food industry. However, our knowledge regarding the diversity of bacterial IBPs is limited; few studies have purified and characterized AFPs and INPs from bacteria. Phenotypically verified IBPs have been described in members belonging to Gammaproteobacteria, Actinobacteria and Flavobacteriia classes, whereas putative IBPs have been found in Gammaproteobacteria, Alphaproteobacteria and Bacilli classes. Thus, the main goal of this minireview is to summarize the current information on bacterial IBPs and their application in biotechnology, emphasizing the potential application in less explored fields such as agriculture. Investigations have suggested the use of INP-producing bacteria antagonists and AFPs-producing bacteria (or their AFPs) as a very attractive strategy to prevent frost damages in crops. UniProt database analyses of reported IBPs (phenotypically verified) and putative IBPs also show the limited information available on bacterial IBPs and indicate that major studies are required. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. The regulation of agricultural biotechnology: science shows a better way.

    PubMed

    Miller, Henry I

    2010-11-30

    National and international regulation of recombinant DNA-modified, or 'genetically engineered' (also referred to as 'genetically modified' or GM), organisms is unscientific and illogical, a lamentable illustration of the maxim that bad science makes bad law. Instead of regulatory scrutiny that is proportional to risk, the degree of oversight is actually inversely proportional to risk. The current approach to regulation, which captures for case-by-case review organisms to be field tested or commercialized according to the techniques used to construct them rather than their properties, flies in the face of scientific consensus. This approach has been costly in terms of economic losses and human suffering. The poorest of the poor have suffered the most because of hugely inflated development costs of genetically engineered plants and food. A model for regulation of field trials known as the 'Stanford Model' is designed to assess risks of new agricultural introductions - whether or not the organisms are genetically engineered, and independent of the genetic modification techniques employed. It offers a scientific, rational, risk-based basis for field trial regulations. Using this sort of model for regulatory review would not only better protect human health and the environment, but would also permit more expeditious development and more widespread use of new plants and seeds. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. The rise (and decline?) of biotechnology.

    PubMed

    Kinch, Michael S

    2014-11-01

    Since the 1970s, biotechnology has been a key innovator in drug development. An analysis of FDA-approved therapeutics demonstrates pharmaceutical companies outpace biotechs in terms of new approvals but biotechnology companies are now responsible for earlier-stage activities (patents, INDs or clinical development). The number of biotechnology organizations that contributed to an FDA approval began declining in the 2000s and is at a level not seen since the 1980s. Whereas early biotechnology companies had a decade from first approval until acquisition, the average acquisition of a biotechnology company now occurs months before their first FDA approval. The number of hybrid organizations that arise when pharmaceutical companies acquire biotechnology is likewise declining, raising questions about the sustainability of biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. 77 FR 27013 - Request for Nominations of Members for the National Agricultural Research, Extension, Education...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... Request for Nominations of Members for the National Agricultural Research, Extension, Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, USDA. ACTION: Solicitation for... Agricultural Research, Extension, Education, and Economics Advisory Board. DATES: All nomination materials...

  15. Effectiveness of a cloning and sequencing exercise on student learning with subsequent publication in the National Center for Biotechnology Information GenBank.

    PubMed

    Lau, Joann M; Robinson, David L

    2009-01-01

    With rapid advances in biotechnology and molecular biology, instructors are challenged to not only provide undergraduate students with hands-on experiences in these disciplines but also to engage them in the "real-world" scientific process. Two common topics covered in biotechnology or molecular biology courses are gene-cloning and bioinformatics, but to provide students with a continuous laboratory-based research experience in these techniques is difficult. To meet these challenges, we have partnered with Bio-Rad Laboratories in the development of the "Cloning and Sequencing Explorer Series," which combines wet-lab experiences (e.g., DNA extraction, polymerase chain reaction, ligation, transformation, and restriction digestion) with bioinformatics analysis (e.g., evaluation of DNA sequence quality, sequence editing, Basic Local Alignment Search Tool searches, contig construction, intron identification, and six-frame translation) to produce a sequence publishable in the National Center for Biotechnology Information GenBank. This 6- to 8-wk project-based exercise focuses on a pivotal gene of glycolysis (glyceraldehyde-3-phosphate dehydrogenase), in which students isolate, sequence, and characterize the gene from a plant species or cultivar not yet published in GenBank. Student achievement was evaluated using pre-, mid-, and final-test assessments, as well as with a survey to assess student perceptions. Student confidence with basic laboratory techniques and knowledge of bioinformatics tools were significantly increased upon completion of this hands-on exercise.

  16. 75 FR 15713 - Office of Biotechnology Activities; Office of Science Policy; Office of the Director; Notice of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Office of Science Policy; Office of the Director; Notice of a Meeting of the NIH Blue Ribbon... Lewallen, Advisory Committee Coordinator, Office of Biotechnology Activities, Office of Science Policy...

  17. The biotechnology innovation machine: a source of intelligent biopharmaceuticals for the pharma industry--mapping biotechnology's success.

    PubMed

    Evens, R P; Kaitin, K I

    2014-05-01

    The marriage of biotechnology and the pharmaceutical industry (pharma) is predicated on an evolution in technology and product innovation. It has come as a result of advances in both the science and the business practices of the biotechnology sector in the past 30 years. Biotechnology products can be thought of as "intelligent pharmaceuticals," in that they often provide novel mechanisms of action, new approaches to disease control, higher clinical success rates, improved patient care, extended patent protection, and a significant likelihood of reimbursement. Although the first biotechnology product, insulin, was approved just 32 years ago in 1982, today there are more than 200 biotechnology products commercially available. Research has expanded to include more than 900 biotechnology products in clinical trials. Pharma is substantially engaged in both the clinical development of these products and their commercialization.

  18. Space and biotechnology: An industry profile

    NASA Technical Reports Server (NTRS)

    Johnston, Richard S.; Norton, David J.; Tom, Baldwin H.

    1988-01-01

    The results of a study conducted by the Center for Space and Advanced Technology (CSAT) for NASA-JSC are presented. The objectives were to determine the interests and attitudes of the U.S. biotechnology industry toward space biotechnology and to prepare a concise review of the current activities of the biotechnology industry. In order to accomplish these objectives, two primary actions were taken. First, a questionnaire was designed, reviewed, and distributed to U.S. biotechnology companies. Second, reviews of the various biotechnology fields were prepared in several aspects of the industry. For each review, leading figures in the field were asked to prepare a brief review pointing out key trends and current industry technical problems. The result is a readable narrative of the biotechnology industry which will provide space scientists and engineers valuable clues as to where the space environment can be explored to advance the U.S. biotechnology industry.

  19. Perceptions of agriculture and natural resource careers among minority students in a national organization

    Treesearch

    Corliss Wilson Outley

    2008-01-01

    The purpose of the study was to identify factors that influence the career choice behaviors among students who were members of Minorities in Agriculture, Natural Resources and Related Sciences (MANRRS) National Society. A secondary purpose was to identify perceptions and attitudes among students that chose careers in agriculture and natural resources. The MANRRS...

  20. European attitudes on the regulation of modern biotechnology and their consequences.

    PubMed

    Cantley, Mark

    2012-01-01

    Modern biotechnology has gradually attracted ever greater interest over the past four decades, from ever-widening communities across the world--from academic scientists, of course, and then from industrialists, journalists, medical specialists, agricultural practitioners, environmental "experts," economists, trading companies--and, so far as it concerns regulation, above all from political interests whose product is indeed legislation. As the interests widened, conflicts developed: between departments, between sectors, between countries and between international agencies. The European Community made choices, bitterly contested; the battles on conducting and regulating the field release of GMOs (genetically modified organisms) were usually won--at least in Europe--by the environment ministries, often in conflict with agriculture and/or the research and science ministries. The result has been the construction over the past 30 y of an ever heavier regulatory burden on those who seek to develop and launch products based on the use of modern biotechnology. The pretense is labeled "the precautionary principle." No lives have been saved, but many jobs have been created in bureaucracies large and small around the world. So far as academia was concerned, their experiments and field trials were repeatedly wrecked by NGOs (non-governmental organizations) claiming thus to have saved mankind and the environment. This is a story of grave political failure in Europe with globally adverse consequences.

  1. The Ohio Science Workbook: Biotechnology.

    ERIC Educational Resources Information Center

    Reames, Spencer E., Comp.

    Because of the daily impact of biotechnology, it is important that students have some knowledge and experience with biotechnology in order to enable them to deal with the issues that arise as a result of its implementation. The purpose of this workbook is to assist in the efforts to expose students to the concepts of biotechnology through hands-on…

  2. Long-Term Farm Policy to Succeed the Agriculture and Food Act of 1981 (Research, Extension, and Teaching). Part 5. Hearings before the Subcommittee on Departmental Operations, Research, and Foreign Agriculture of the Committee on Agriculture, House of Representatives, Ninety-Eighth Congress, Second Session (June 6, 7, 12, and 13, 1984).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Agriculture.

    This congressional hearing is the fifth of five volumes examining various aspects of agricultural research, extension, and teaching as a prelude to determining what changes are to be made in Title XIV of the farm bill. Focuses are the U.S. Department of Agriculture (USDA) biotechnology program plans and regulatory concerns and the public benefits…

  3. ISS Biotechnology Facility - Overview of Analytical Tools for Cellular Biotechnology Investigations

    NASA Technical Reports Server (NTRS)

    Jeevarajan, A. S.; Towe, B. C.; Anderson, M. M.; Gonda, S. R.; Pellis, N. R.

    2001-01-01

    The ISS Biotechnology Facility (BTF) platform provides scientists with a unique opportunity to carry out diverse experiments in a microgravity environment for an extended period of time. Although considerable progress has been made in preserving cells on the ISS for long periods of time for later return to Earth, future biotechnology experiments would desirably monitor, process, and analyze cells in a timely way on-orbit. One aspect of our work has been directed towards developing biochemical sensors for pH, glucose, oxygen, and carbon dioxide for perfused bioreactor system developed at Johnson Space Center. Another aspect is the examination and identification of new and advanced commercial biotechnologies that may have applications to on-orbit experiments.

  4. [Biotechnology in perspective].

    PubMed

    Brand, A

    1990-06-15

    Biotechnology is a collective term for a large number of manipulations of biological material. Fields of importance in stock-keeping include: (1) manipulation of reproductive processes; (2) genetic manipulation of macro-(farm) animals and micro-organisms and (3) manipulation of metabolism. Fitting in biotechnological findings in breeding-stock farming has repercussions in several fields such as the relationship between producers and the ancillary and processing industries, service industries, consumers and society as a whole. The use of biotechnical findings will also require further automation and adaptation of farm management. Biotechnology opens up a new area and new prospects for farm animal husbandry. These can only be regarded as positive when they take a permanent development of the entire section into account.

  5. Biotechnology education as social and cultural production/reproduction of the biotechnology community

    NASA Astrophysics Data System (ADS)

    Andrée, Maria

    2014-03-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study demonstrates how students begin to acquire `the right way' of approaching the controversial issue of producing and consuming genetically modified organisms. In my response I discuss the ethnographic account of this particular educational practice in terms of social and cultural production/reproduction of a biotechnology community and how the participants (students and teaching professors) deal with the dialectic of individual and collective transformation. In the perspective of the biotechnology community, the work done by the teaching professor becomes a way of ensuring the future of the biotechnology community in terms of what values and objectives are held highly in the community of practice.

  6. National, holistic, watershed-scale approach to understand the sources, transport, and fate of agricultural chemicals

    USGS Publications Warehouse

    Capel, P.D.; McCarthy, K.A.; Barbash, J.E.

    2008-01-01

    This paper is an introduction to the following series of papers that report on in-depth investigations that have been conducted at five agricultural study areas across the United States in order to gain insights into how environmental processes and agricultural practices interact to determine the transport and fate of agricultural chemicals in the environment. These are the first study areas in an ongoing national study. The study areas were selected, based on the combination of cropping patterns and hydrologic setting, as representative of nationally important agricultural settings to form a basis for extrapolation to unstudied areas. The holistic, watershed-scale study design that involves multiple environmental compartments and that employs both field observations and simulation modeling is presented. This paper introduces the overall study design and presents an overview of the hydrology of the five study areas. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  7. The first GCC Marine Biotechnology Symposium: Emerging Opportunities and Future Perspectives.

    PubMed

    Goddard, Stephen; Delghandi, Madjid; Dobretsov, Sergey; Al-Oufi, Hamed; Al-Habsi, Saoud; Burgess, J Grant

    2015-06-01

    With its diverse, living marine resources and rapidly growing educational and research infrastructure, the Sultanate of Oman is well-positioned to take advantage of the commercial opportunities presented by marine biotechnology. In recognition of potential development, an international symposium, Marine Biotechnology-Emerging Opportunities and Future Perspectives, was held in Muscat, November 12-13, 2013. Three keynote addresses were given, 23 oral presentations made, and a poster exhibition held. The final session reviewed national and regional issues, and the delegates agreed informally on a number of future actions. The potential for future development of marine biotechnology was recognized by all delegates, and following the symposium, they were surveyed for their views on how best to sustain and develop new activities. One hundred percent of respondents found the meeting useful and would support future symposia in the region. Fifty-one percent of Omani respondents recognized major organizational challenges and obstacles to the development of marine biotechnology compared with 23 % of overseas respondents. The need for greater collaboration between research institutions within the GCC region was recognized by 98 % of all respondents. The presentations and survey outcomes are reviewed in this paper.

  8. Cuts and the cutting edge: British science funding and the making of animal biotechnology in 1980s Edinburgh.

    PubMed

    Myelnikov, Dmitriy

    2017-12-01

    The Animal Breeding Research Organisation in Edinburgh (ABRO, founded in 1945) was a direct ancestor of the Roslin Institute, celebrated for the cloning of Dolly the sheep. After a period of sustained growth as an institute of the Agricultural Research Council (ARC), ABRO was to lose most of its funding in 1981. This decision has been absorbed into the narrative of the Thatcherite attack on science, but in this article I show that the choice to restructure ABRO pre-dated major government cuts to agricultural research, and stemmed from the ARC's wish to prioritize biotechnology in its portfolio. ABRO's management embraced this wish and campaigned against the cuts based on a promise of biotechnological innovation, shifting its focus from farm animal genetics to the production of recombinant pharmaceuticals in sheep milk. By tracing interaction between government policies, research council agendas and local strategies, I show how novel research programmes such as genetic modification could act as a lifeline for struggling institutions.

  9. The effect of biotechnology education on Australian high school students' understandings and attitudes about biotechnology processes

    NASA Astrophysics Data System (ADS)

    Dawson, Vaille; Soames, Christina

    2006-11-01

    Our education system aims to equip young people with the knowledge, problem-solving skills and values to cope with an increasingly technological society. The aim of this study was to determine the effect of biotechnology education on adolescents’ understanding and attitudes about processes associated with biotechnology. Data were drawn from teacher and student interviews and surveys in the context of innovative Year 10 biotechnology courses conducted in three Western Australian high schools. The results indicate that after completing a biotechnology course students’ understanding increased but their attitudes remained constant with the exception of their views about human uses of gene technology. The findings of this study have ramifications for the design and implementation of biotechnology education courses in high schools.

  10. Food biotechnology: benefits and concerns.

    PubMed

    Falk, Michael C; Chassy, Bruce M; Harlander, Susan K; Hoban, Thomas J; McGloughlin, Martina N; Akhlaghi, Amin R

    2002-06-01

    Recent advances in agricultural biotechnology have highlighted the need for experimental evidence and sound scientific judgment to assess the benefits and risks to society. Nutrition scientists and other animal biologists need a balanced understanding of the issues to participate in this assessment. To date most modifications to crop plants have benefited producers. Crops have been engineered to decrease pesticide and herbicide usage, protect against stressors, enhance yields and extend shelf life. Beyond the environmental benefits of decreased pesticide and herbicide application, consumers stand to benefit by development of food crops with increased nutritional value, medicinal properties, enhanced taste and esthetic appeal. There remains concern that these benefits come with a cost to the environment or increased risk to the consumer. Most U.S. consumers are not aware of the extent that genetically modified foods have entered the marketplace. Consumer awareness of biotechnology seems to have increased over the last decade, yet most consumers remain confused over the science. Concern over the impact on the safety of the food supply remains low in the United States, but is substantially elevated in Europe. Before a genetically engineered crop is introduced into commerce it must pass regulatory scrutiny by as many as four different federal regulatory bodies to ensure a safe food supply and minimize the risk to the environment. Key areas for more research are evaluation of the nutritional benefits of new crops, further investigation of the environmental impact, and development of better techniques to identify and track genetically engineered products.

  11. Ohio Biotechnology Competency Profile.

    ERIC Educational Resources Information Center

    Miller, Lavonna; Bowermeister, Bob; Boudreau, Joyce

    This document, which lists the biotechnology competencies identified by representatives from biotechnology businesses and industries as well as secondary and post-secondary educators throughout Ohio, is intended to assist individuals and organizations in developing college tech prep programs that will prepare students from secondary through…

  12. Biotechnology and the Third World: Panacea or Recipe for Social Disaster? Academy for Educational Development 25th Anniversary Series.

    ERIC Educational Resources Information Center

    Morehouse, Ward

    Asserting that developmental growth is easier to attain in developing countries than social change, this paper assesses the prospective impact of biotechnology on the developing nations. Biotechnology is defined as the integrated use of biochemistry, microbiology, and chemical engineering to achieve the industrial processes of fermentation, enzyme…

  13. Tobacco mosaic virus and the virescence of biotechnology.

    PubMed Central

    Turpen, T H

    1999-01-01

    There is a growing realization that a modern combination of molecular biology and agriculture will provide a photosynthetic basis for the biosynthesis of an increasing variety of complex and valuable molecules. This 'greening' of biotechnology may impact on the global environment in many beneficial ways, but will perhaps have its most significant impact on human health. In the past decade, the capacity to use plants as an expanded source of therapeutics has grown through the accelerated development of effective viral transfection vectors for gene transfer to cultivated crops. Recombinant vectors based on tobacco mosaic virus (TMV) and other members of the Tobamovirus genus are now used to transfect commercially meaningful quantities of plant biomass cultivated in enclosed greenhouses and multiacre fields. Viral RNA promoters are effectively manipulated for the synthesis of recombinant messenger RNAs in whole plants. Chimeric plant virus and virus-like particles are designed for peptide production and display from recombinant structural protein-gene fusions. Gene functions are assessed and modified by either virus-mediated expression or cytosolic inhibition of expression at the RNA level. Recombinant virus populations, propagated by inoculating plants with infectious RNA transcripts or recombinant virions, have proved to be genetically stable over product-manufacturing cycles. Large volumes of highly purified protein products isolated from transfected foliage conform reproducibly to the specifications required for well-characterized biologics. In some cases, they exceed the specific activities of molecules purified from alternative recombinant and native sources. The resulting products are then formulated according to the developing national regulatory guidelines appropriate for agriculture-based manufacturing. Each of these innovations was first realized by researchers using clones of tobamovirus genes and recombinant genomes. This progress is founded on the

  14. Research in Agricultural Education. Proceedings of the Annual AAAE Eastern Regional Research Conference (55th, Baltimore, MD, July 6, 2001). Volume 55.

    ERIC Educational Resources Information Center

    Boone, Harry N., Jr., Ed.

    These proceedings contain eight papers presented at the meeting, each followed by a critique. Major areas studied are home schooling, incorporating agriscience and biotechnology in agricultural education, part-time employment by agricultural education teachers, 4-H, attitudes of Agricultural Science Institute participants, client satisfaction, and…

  15. Impact of Biotechnology on Pharmacy Practice.

    ERIC Educational Resources Information Center

    Black, Curtis D.; And Others

    1990-01-01

    Discussed is the role of schools of pharmacy in (1) preparing future practitioners to assimilate and shape the impact of biotechnology; (2) establish graduate and research programs to enhance and apply products of biotechnology; and (3) identify manpower needs to fully realize potential advances caused by biotechnology. (DB)

  16. How to be Cautious but Open to Learning: Time to Update Biotechnology and GMO Legislation.

    PubMed

    Hansson, Sven Ove

    2016-08-01

    Precautionary measures to protect human health and the environment should be science based. This implies that they should be directed at a potential danger for which there is credible scientific evidence (although that evidence need not be conclusive). Furthermore, protective measures should be updated as relevant science advances. This means that decisionmakers should be prepared to strengthen the precautionary measures if the danger turns out to be greater than initially suspected, and to reduce or lift them, should the danger prove to be smaller. Most current legislation on agricultural biotechnology has not been scientifically updated. Therefore, it reflects outdated criteria for identifying products that can cause problems. Modern knowledge in genetics, plant biology, and ecology has provided us with much better criteria that risk analysts can use to identify the potentially problematic breeding projects at which precautionary measures should be directed. Legislation on agricultural biotechnology should be scientifically updated. Furthermore, legislators should learn from this example that regulations based on the current state of science need to have inbuilt mechanisms for revisions and adjustments in response to future developments in science. © 2016 Society for Risk Analysis.

  17. World Biotechnology Leaders to Gather for Conference

    Science.gov Websites

    Biotechnology Leaders to Gather for Conference For more information contact: e:mail: Public Affairs biotechnology leaders gather in Fort Collins, CO May 2-6 for the 21st Symposium on Biotechnology for Fuels and special session on funding opportunities for U.S. biotechnology projects. More than 175 presentations are

  18. Books on biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The books selected for this review could serve to establish or strengthen the background of the chemical engineer who seeks to enter the field of biotechnology, which is described as a field linking three different branches of science - microbiology, biochemistry and engineering. Nineteen books on biotechnology under the headings Science, Genetic Engineering, Biochemical Engineering, Biomass Energy, Directories and sourcebook are reviewed and titles of five other books received too late for comment given.

  19. "Recombinant Protein of the Day": Using Daily Student Presentations to Add Real-World Aspects to a Biotechnology Course

    ERIC Educational Resources Information Center

    Shaffer, Justin F.

    2013-01-01

    To provide a realistic view of the biotechnology industry for students, a novel course focusing on recombinant proteins and their importance in medicine, pharmaceuticals, industry, scientific research, and agriculture was developed. ''Designer Proteins and Society,'' an upper-division elective, was taught in the Fall 2012 semester to 16 junior,…

  20. Winners and losers of national and global efforts to reconcile agricultural intensification and biodiversity conservation.

    PubMed

    Egli, Lukas; Meyer, Carsten; Scherber, Christoph; Kreft, Holger; Tscharntke, Teja

    2018-05-01

    Closing yield gaps within existing croplands, and thereby avoiding further habitat conversions, is a prominently and controversially discussed strategy to meet the rising demand for agricultural products, while minimizing biodiversity impacts. The agricultural intensification associated with such a strategy poses additional threats to biodiversity within agricultural landscapes. The uneven spatial distribution of both yield gaps and biodiversity provides opportunities for reconciling agricultural intensification and biodiversity conservation through spatially optimized intensification. Here, we integrate distribution and habitat information for almost 20,000 vertebrate species with land-cover and land-use datasets. We estimate that projected agricultural intensification between 2000 and 2040 would reduce the global biodiversity value of agricultural lands by 11%, relative to 2000. Contrasting these projections with spatial land-use optimization scenarios reveals that 88% of projected biodiversity loss could be avoided through globally coordinated land-use planning, implying huge efficiency gains through international cooperation. However, global-scale optimization also implies a highly uneven distribution of costs and benefits, resulting in distinct "winners and losers" in terms of national economic development, food security, food sovereignty or conservation. Given conflicting national interests and lacking effective governance mechanisms to guarantee equitable compensation of losers, multinational land-use optimization seems politically unlikely. In turn, 61% of projected biodiversity loss could be avoided through nationally focused optimization, and 33% through optimization within just 10 countries. Targeted efforts to improve the capacity for integrated land-use planning for sustainable intensification especially in these countries, including the strengthening of institutions that can arbitrate subnational land-use conflicts, may offer an effective, yet

  1. 78 FR 17220 - Request for Information (RFI) Regarding the Planned Biotechnology Development Module (BDM) As...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2013-0018] Request for Information (RFI) Regarding the Planned Biotechnology Development Module (BDM) As Part of the National Bio and Agro-Defense... Development Module (BDM) a planned component of the National Bio and Agro-Defense Facility (NBAF) and...

  2. North American networking activities on non-wood forest products by the Food and Agriculture Organization of the United Nations

    Treesearch

    Paul Vantomme

    2001-01-01

    FAO, the Food and Agriculture Organization of the United Nations, is the largest autonomous agency within the United Nations system dealing with agriculture, fisheries, forestry, and related disciplines. FAO provides a neutral forum for policy dialogue, a source of information and knowledge, technical assistance, and advice to 180 member countries. Technical...

  3. Biotechnology awareness study, Part 1: Where scientists get their information.

    PubMed Central

    Grefsheim, S; Franklin, J; Cunningham, D

    1991-01-01

    A model study, funded by the National Library of Medicine (NLM) and conducted by the Southeastern/Atlantic Regional Medical Library (RML) and the University of Maryland Health Sciences Library, attempted to assess the information needs of researchers in the developing field of biotechnology and to determine the resources available to meet those needs in major academic health sciences centers. Nine medical schools in RML Region 2 were selected to participate in a biotechnology awareness study. A survey was conducted of the nine medical school libraries to assess their support of biotechnology research. To identify the information needs of scientists engaged in biotechnology-related research at the schools, a written survey was sent to the deans of the nine institutions and selected scientists they had identified. This was followed by individual, in-depth interviews with both the deans and scientists surveyed. In general, scientists obtained information from three major sources: their own experiments, personal communication with other scientists, and textual material (print or electronic). For textual information, most study participants relied on personal journal subscriptions. Tangential journals were scanned in the department's library. Only a few of these scientists came to the health sciences library on a regular basis. Further, the study found that personal computers have had a major impact on how biotechnologists get and use information. Implications of these findings for libraries and librarians are discussed. PMID:1998818

  4. Proceedings of the Annual National Agricultural Education Research Meeting (12th, Atlanta, Georgia, December 6, 1985).

    ERIC Educational Resources Information Center

    American Vocational Association, Arlington, VA. Agricultural Education Div.

    These proceedings include the following papers: "An Assessment of the National FFA Public Service Announcement Program" (Sutphin, Dillon, and Rush); "Educational Objectives and Administrative Criteria for the National FFA Contest Program" (Smith and Kahler); "A National Profile of Agricultural Teacher Educators and State Supervisors of Vocational…

  5. Irish public perceptions and attitudes to modern biotechnology: an overview with a focus on GM foods.

    PubMed

    Morris, S H; Adley, C C

    2001-02-01

    This article summarizes the current situation pertaining to modern biotechnology in Ireland, with a particular focus on genetically modified (GM) crops. It briefly examines some important results of the major national surveys carried out in Ireland since 1989, highlights the recent upsurge in media (newspaper) coverage of GM related stories in three Irish opinion leader publications and it allows for an insight into the Irish public's relationship with modern biotechnology.

  6. Undergraduate Biotechnology Students' Views of Science Communication

    NASA Astrophysics Data System (ADS)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-12-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology sector by providing a pipeline of university graduates entering into the profession, it has been proposed that formal science communication training be introduced at this early stage of career development. The aim of the present study was to examine the views of biotechnology students towards science communication and science communication training. Using an Australian biotechnology degree programme as a case study, 69 undergraduates from all three years of the programme were administered a questionnaire that asked them to rank the importance of 12 components of a biotechnology curriculum, including two science communication items. The results were compared to the responses of 274 students enrolled in other science programmes. Additional questions were provided to the second year biotechnology undergraduates and semi-structured interviews were undertaken with 13 of these students to further examine their views of this area. The results of this study suggest that the biotechnology students surveyed do not value communication with non-scientists nor science communication training. The implications of these findings for the reform of undergraduate biotechnology courses yet to integrate science communication training into their science curriculum are discussed.

  7. Nanotechnology and patents in agriculture, food technology, nutrition and medicine - advantages and risks: worldwide patented nano- and absorber particles in food nutrition and agriculture.

    PubMed

    Benckiser, Gero

    2012-12-01

    The keywords nanotechnology, super absorber, agriculture, nutrition, and food technology exhibited 28,149 positive matches under more than 68 million patents worldwide. A closer look at the first 500 nanotechnology, agriculture, nutrition and biotechnology related patents, published during 2011-2012, unveiled that 64% are parts of machines and control devices while about 36% comprise metal oxides, fertilizers, pesticides and drugs, which are compounds and often applied in combination with inorganic or organic super absorbing polymeric structures. The latter compounds are in the focus of this special issue.

  8. Projector Center. What Is Biotechnology?

    ERIC Educational Resources Information Center

    Belzer, Bill; Case, Christine L.

    1990-01-01

    Presented is a menu designed to illustrate some classical examples of fermentation. This may be used to discuss biotechnology from a technological perspective. Other examples of biotechnology used in the foods industry are described. (CW)

  9. Biotechnology and human rights.

    PubMed

    Feuillet-Le Mintier, B

    2001-12-01

    Biotechnology permits our world to progress. It's a tool to better apprehend the human being, but as well to let him go ahead. Applied to the living, biotechnologies present the same finality. But since their matter concerns effectively the living, they are the sources of specific dangers and particularly of that one to use the improvements obtained on the human to modify the human species. The right of the persons has to find its place to avoid that the fundamental rights of the human personality shall undergo harm. This mission assigned to the right of the persons is as so much invaluable that the economical stakes are particularly important in the domain of the biotechnologies.

  10. Biotechnology Education. Engaging the Learner: Embedding Information Literacy Skills into a Biotechnology Degree

    ERIC Educational Resources Information Center

    Ward, Helena; Hockey, Julie

    2007-01-01

    One of the challenges of the Biotechnology industry is keeping up to date with the rapid pace of change and that much of the information, which students learn in their undergraduate studies, will be out of date in a few years. It is therefore crucial that Biotechnology students have the skills to access the relevant information for their studies…

  11. [National plan for prevention in agriculture state of art and prosecution].

    PubMed

    Ariano, Eugenio

    2013-01-01

    Agricultural work submits to high risks for safety and health. In 2009, in execution of "workplace health protection pact" (DPCM 17.12.2007), has been defined the National Plan for prevention in agriculture and forestry, whose first three-year program ended in 2012. Goals were: to Systematize and to standardize direction and control activity, defining the number of factories to control, in most italian regions, for high and ubiquitous risks applying homogeneous standards, spending special attention to risks of fatal and serious injury; to develop agricultural machinery trade control, for new and second-hand machinery, for normalizing the whole fleet; to contribute to monitoring of risk factors and injury dynamics, for a better definition of prevention policies; to increase the knowledge of public health agency officers; to identify and to promote technical solutions, helping to define, in proper way, good practices for complex problems; to promote coordination between economic develop policies and prevention policies for agriculture, breeding and forestry, paying attention also to financial helps. The plan, divided in regional plans, obtained most of defined goals and allowed to build a permanent interregional net of referents and expert officers. Next years perspective is to enhance in developing the faced themes and objectives.

  12. Engineering Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review.

    PubMed

    Bilal, Muhammad; Guo, Shuqi; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-10-03

    Pseudomonas strains are increasingly attracting considerable attention as a valuable bacterial host both for basic and applied research. It has been considered as a promising candidate to produce a variety of bioactive secondary metabolites, particularly phenazines. Apart from the biotechnological perspective, these aromatic compounds have the notable potential to inhibit plant-pathogenic fungi and thus are useful in controlling plant diseases. Nevertheless, phenazines production is quite low by the wild-type strains that necessitated its yield improvement for large-scale agricultural applications. Metabolic engineering approaches with the advent of plentiful information provided by systems-level genomic and transcriptomic analyses enabled the development of new biological agents functioning as potential cell factories for producing the desired level of value-added bioproducts. This study presents an up-to-date overview of recombinant Pseudomonas strains as the preferred choice of host organisms for the biosynthesis of natural phenazines. The biosynthetic pathway and regulatory mechanism involved in the phenazine biosynthesis are comprehensively discussed. Finally, a summary of biological functionalities and biotechnological applications of the phenazines is also provided.

  13. Biotechnology Outlines for Classroom Use.

    ERIC Educational Resources Information Center

    Paolella, Mary Jane

    1991-01-01

    Presents a course outline for the study of biotechnology at the high school or college level. The outline includes definitions, a history, and the vocabulary of biotechnology. Presents a science experiment to analyze the effects of restriction enzymes on DNA. (MDH)

  14. Supervised Agricultural Experience Instruction in Agricultural Teacher Education Programs: A National Descriptive Study

    ERIC Educational Resources Information Center

    Rank, Bryan D.; Retallick, Michael S.

    2017-01-01

    Faculty in agricultural teacher education programs are responsible for preparing future teachers to lead effective school-based agricultural education programs. However, agriculture teachers are having difficulty implementing supervised agricultural experience (SAE), even though they value it conceptually as a program component. In an effort to…

  15. Research Campus Types | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    Services Department of Homeland Security Department of Agriculture Department of Defense National , biotechnology, pharmaceuticals, chemicals, food and agriculture, and cosmetics, among many others. Companies

  16. From the tumor-inducing principle to plant biotechnology and its importance for society.

    PubMed

    Angenon, Geert; Van Lijsebettens, Mieke; Van Montagu, Marc

    2013-01-01

    This dialogue was held between the Guest Editors of the Special Issue on "Plant Transgenesis" of the Int. J. Dev. Biol. and Marc Van Montagu. Research in the group of Marc Van Montagu and Jeff Schell in the 1970s was essential to reveal how the phytopathogenic bacterium Agrobacterium tumefaciens transfers DNA to host plants to cause crown gall disease. Knowledge of the molecular mechanism underlying gene transfer, subsequently led to the development of plant transgene technology, an indispensable tool in fundamental plant research and plant improvement. In the early 1980s, Marc Van Montagu founded a start-up company, Plant Genetic Systems, which successfully developed insect-resistant plants, herbicide-tolerant plants and a hybrid seed production system based on nuclear male sterility. Even before the first transgenic plant had been produced, Marc Van Montagu realized that the less developed countries might benefit most from plant biotechnology and throughout his subsequent career, this remained a focus of his efforts. After becoming emeritus professor, he founded the Institute of Plant Biotechnology Outreach (IPBO), which aims to raise awareness of the major role that plant biotechnology can play in sustainable agricultural systems, especially in less developed countries. Marc Van Montagu has been honored with many prizes and awards, the most recent being the prestigious World Food Prize 2013. In this paper, we look to the past and present of plant biotechnology and to the promises this technology holds for the future, on the basis of the personal perspective of Marc Van Montagu.

  17. Expressing the sense of the House of Representatives that specialty crops are a vital part of agriculture in the United States, that the Committee on Agriculture should propose funding for programs that support specialty crops priorities, and that legislation should be passed that includes funding reflecting specialty crops as a growing and important part of United States agriculture.

    THOMAS, 113th Congress

    Rep. DelBene, Suzan K. [D-WA-1

    2013-04-25

    House - 05/03/2013 Referred to the Subcommittee on Horticulture, Research, Biotechnology, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. Emerging Educational and Agricultural Trends and their Impact on the Secondary Agricultural Education Program

    ERIC Educational Resources Information Center

    Stewart, Ralsa Marshall, Jr.; Moore, Gary E.; Flowers, Jim

    2004-01-01

    The primary purpose of this study was to identify the emerging trends in education and agriculture and to determine their implications on the secondary agricultural education program. For this study, the researchers did a national solicitation for nominations with 1,160 national agricultural education leaders, state agricultural education leaders,…

  19. ERIC First Analysis: Agricultural Policy. 1986-87 National High School Debate Resolutions.

    ERIC Educational Resources Information Center

    Wagner, David L.; Fraleigh, Douglas

    Designed to serve as a framework in which high school debate students, coaches, and judges can evaluate the issues, arguments, and evidence concerning which agricultural policies best serve the United States, this booklet provides guidelines for research on the 1986-87 debate resolutions selected by the National Federation of State High School…

  20. 7 CFR 3415.3 - Eligibility requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Eligibility requirements. 3415.3 Section 3415.3 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE BIOTECHNOLOGY RISK ASSESSMENT RESEARCH GRANTS PROGRAM General § 3415.3 Eligibility requirements...

  1. State responses to biotechnology.

    PubMed

    Harris, Rebecca C

    2015-01-01

    This article reviews biotechnology legislation in the 50 states for 11 policy areas spanning 1990-2010, an era of immense growth in biotechnology, genetic knowledge, and significant policy development. Policies regarding health insurance, life insurance, long-term care insurance, DNA data bank collection, biotech research protection, biotech promotion and support, employment discrimination, genetic counselor licensing, human cloning, and genetic privacy each represent major policy responses arising from biotechnology and coinciding with key areas of state regulation (insurance, criminal justice, economic development, labor law, health and safety, privacy, and property rights). This analysis seeks to answer three questions regarding biotechnology legislation at the state level: who is acting (policy adoption), when is policy adopted (policy timing), and what is policy doing (policy content). Theoretical concerns examine state ideology (conservative or liberal), policy type (economic or moral), and the role of external events (federal law, news events, etc.) on state policy adoption. Findings suggest ideological patterns in adoption, timing, and content of biotech policy. Findings also suggest economic policies tend to be more uniform in content than moral policies, and findings also document a clear link between federal policy development, external events, and state policy response.

  2. Science Instructors' Perceptions of the Risks of Biotechnology: Implications for Science Education

    ERIC Educational Resources Information Center

    Gardner, Grant Ean; Jones, M. Gail

    2011-01-01

    Developing scientifically literate students who understand the socially contextualized nature of science and technology is a national focus of science education reform. Science educators' perceptions of risks and benefits of new technologies (such as biotechnology) may shape their instructional approaches. This study examined the perceived risk of…

  3. The role of community engagement in the adoption of new agricultural biotechnologies by farmers: the case of the Africa harvest tissue-culture banana in Kenya.

    PubMed

    Bandewar, Sunita V S; Wambugu, Florence; Richardson, Emma; Lavery, James V

    2017-03-13

    The tissue culture banana (TCB) is a biotechnological agricultural innovation that has been adopted widely in commercial banana production. In 2003, Africa Harvest Biotech Foundation International (AH) initiated a TCB program that was explicitly developed for smallholder farmers in Kenya to help them adopt the TCB as a scalable agricultural business opportunity. At the heart of the challenge of encouraging more widespread adoption of the TCB is the question: what is the best way to introduce the TCB technology, and all its attendant practices and opportunities, to smallholder farmers. In essence, a challenge of community or stakeholder engagement (CE). In this paper, we report the results of a case study of the CE strategies employed by AH to introduce TCB agricultural practices to small-hold farmers in Kenya, and their impact on the uptake of the TCB, and on the nature of the relationship between AH and the relevant community of farmers and other stakeholders. We identified six specific features of CE in the AH TCB project that were critical to its effectiveness: (1) adopting an empirical, "evidence-based" approach; (2) building on existing social networks; (3) facilitating farmer-to-farmer engagement; (4) focusing engagement on farmer groups; (5) strengthening relationships of trust through collaborative experiential learning; and (6) helping farmers to "learn the marketing game". We discuss the implications of AH's "values-based" approach to engagement, and how these guiding values functioned as "design constraints" for the key features of their CE strategy. And we highlight the importance of attention to the human dimensions of complex partnerships as a key determinant of successful CE. Our findings suggest new ways of conceptualizing the relationship between CE and the design and delivery of new technologies for global health and global development.

  4. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture.

    PubMed

    Gouda, Sushanto; Kerry, Rout George; Das, Gitishree; Paramithiotis, Spiros; Shin, Han-Seung; Patra, Jayanta Kumar

    2018-01-01

    The progression of life in all forms is not only dependent on agricultural and food security but also on the soil characteristics. The dynamic nature of soil is a direct manifestation of soil microbes, bio-mineralization, and synergistic co-evolution with plants. With the increase in world's population the demand for agriculture yield has increased tremendously and thereby leading to large scale production of chemical fertilizers. Since the use of fertilizers and pesticides in the agricultural fields have caused degradation of soil quality and fertility, thus the expansion of agricultural land with fertile soil is near impossible, hence researchers and scientists have sifted their attention for a safer and productive means of agricultural practices. Plant growth promoting rhizobacteria (PGPR) has been functioning as a co-evolution between plants and microbes showing antagonistic and synergistic interactions with microorganisms and the soil. Microbial revitalization using plant growth promoters had been achieved through direct and indirect approaches like bio-fertilization, invigorating root growth, rhizoremediation, disease resistance etc. Although, there are a wide variety of PGPR and its allies, their role and usages for sustainable agriculture remains controversial and restricted. There is also variability in the performance of PGPR that may be due to various environmental factors that might affect their growth and proliferation in the plants. These gaps and limitations can be addressed through use of modern approaches and techniques such as nano-encapsulation and micro-encapsulation along with exploring multidisciplinary research that combines applications in biotechnology, nanotechnology, agro biotechnology, chemical engineering and material science and bringing together different ecological and functional biological approaches to provide new formulations and opportunities with immense potential. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. The National Agricultural Text Digitizing Project: Toward the Electronic Library. Report of the Pilot Project, Phases 1-2, 1986-1992.

    ERIC Educational Resources Information Center

    Eaton, Nancy L.; Andre, Pamela Q. J.

    The National Agricultural Text Digitizing Project (NATDP) began in 1986 with cooperation between the National Agricultural Library and the University of Vermont, and then expanded to include 45 land-grant university libraries and 1 special library. The first activity was to evaluate the new technology of optical scanning. The project was designed…

  6. Proceedings of the Annual National Agricultural Education Research Meeting (9th, St, Louis, Missouri, December 3, 1982).

    ERIC Educational Resources Information Center

    American Vocational Association, Arlington, VA. Agricultural Education Div.

    These proceedings contain the texts of 29 papers presented at the ninth Annual Agricultural Education Research Meeting. During the five sessions of the conference, various areas of agricultural education were addressed, such as inservice education, job satisfaction and morale, teacher concerns, national issues, program improvement, preservice…

  7. Food allergies, cross-reactions and agroalimentary biotechnologies.

    PubMed

    Ronchetti, R; Kaczmarski, M G; Hałuszka, J; Jesenak, M; Villa, M P

    2007-01-01

    The discrepancy between what the general public and specialist in allergic diseases regard as a true food allergy can in part depend on the frequent evidence of subjects in whom clinical symptoms elicited by a given food allergen are frequently not reproducible: this suggests the existence of allergens variably present in certain foods. In adults and older children common is a form of food allergy associated with inhaled allergens, especially pollens. In this allergic form pollens and various vegetal food often cross react but the underlying scientific rationale is largely unclear. From the study of the "latex-fruits allergic syndrome" and the "oral allergic syndrome" emerged that the cross reactivity depends on epitopes of pollens and vegetables belonging to one of the 14 classes of the "pathogenesis related proteins" (PRPs). Vegetables produce PRPs in response to infection or after plant injury or application of chemicals: long-term conservation and methods used for rapid artificial ripening of vegetables can cause plant to produce PRPs or other allergens. A genetic selection of vegetables "protecting themselves against infection and infestation" by mean of PRPs production is practiced in agroalimentary biotechnology. We deem it urgent that the two realms, Medical Science (Allergology) and Agricultural Biotechnology begin to communicate openly in order to produce food as efficiently as possible but without harming the large part of the population which is predisposed to allergy and react to PRPs.

  8. Editorial: from plant biotechnology to bio-based products.

    PubMed

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Economic impacts of policies affecting crop biotechnology and trade.

    PubMed

    Anderson, Kym

    2010-11-30

    Agricultural biotechnologies, and especially transgenic crops, have the potential to boost food security in developing countries by offering higher incomes for farmers and lower priced and better quality food for consumers. That potential is being heavily compromised, however, because the European Union and some other countries have implemented strict regulatory systems to govern their production and consumption of genetically modified (GM) food and feed crops, and to prevent imports of foods and feedstuffs that do not meet these strict standards. This paper analyses empirically the potential economic effects of adopting transgenic crops in Asia and Sub-Saharan Africa. It does so using a multi-country, multi-product model of the global economy. The results suggest the economic welfare gains from crop biotechnology adoption are potentially very large, and that those benefits are diminished only very slightly by the presence of the European Union's restriction on imports of GM foods. That is, if developing countries retain bans on GM crop production in an attempt to maintain access to EU markets for non-GM products, the loss to their food consumers as well as to farmers in those developing countries is huge relative to the slight loss that could be incurred from not retaining EU market access. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Health-related biotechnologies for infectious disease control in Africa: Ethical, Legal and Social Implications (ELSI) of transfer and development.

    PubMed

    Sommerfeld, J; Oduola, A M J

    2007-01-01

    The African continent is disproportionately affected by infectious diseases. Malaria, HIV/AIDS, tuberculosis, and more "neglected" diseases including African trypanosomiasis, Buruli ulcer, leishmaniasis, onchocerciasis and trachoma continue to dramatically impact social and economic development on the continent. Health biotechnologies provide potential to develop effective strategies for the fight against the vicious circle of poverty and infections by helping in the development and improvement of novel affordable drugs, diagnostics and vaccines against these diseases. As the prospects of this emerging biotechnology research and deployment of its products become a reality in Africa, there is a need to consider the ethical, legal and social implications of both the scientific and technological advances and their use in the communities. The article provides a short overview of the potential values of biotechnology, issues involved in its transfer and presents the rationale, design and recommendations of the international workshop/symposium held in April 2005 at the International Institute for Tropical Agriculture (IITA) in Ibadan, Nigeria.

  11. 7 CFR 3415.1 - Applicability of regulations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Applicability of regulations. 3415.1 Section 3415.1 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE BIOTECHNOLOGY RISK ASSESSMENT RESEARCH GRANTS PROGRAM General § 3415.1 Applicability of...

  12. 7 CFR 3415.1 - Applicability of regulations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Applicability of regulations. 3415.1 Section 3415.1 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE BIOTECHNOLOGY RISK ASSESSMENT RESEARCH GRANTS PROGRAM General § 3415.1 Applicability of...

  13. 7 CFR 3415.1 - Applicability of regulations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Applicability of regulations. 3415.1 Section 3415.1 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE BIOTECHNOLOGY RISK ASSESSMENT RESEARCH GRANTS PROGRAM General § 3415.1 Applicability of...

  14. 7 CFR 3415.1 - Applicability of regulations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Applicability of regulations. 3415.1 Section 3415.1 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE BIOTECHNOLOGY RISK ASSESSMENT RESEARCH GRANTS PROGRAM General § 3415.1 Applicability of...

  15. 7 CFR 3415.13 - Availability of information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Availability of information. 3415.13 Section 3415.13 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE BIOTECHNOLOGY RISK ASSESSMENT RESEARCH GRANTS PROGRAM Scientific Peer Review of Research Grant...

  16. 7 CFR 3415.14 - Proposal review.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Proposal review. 3415.14 Section 3415.14 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE BIOTECHNOLOGY RISK ASSESSMENT RESEARCH GRANTS PROGRAM Scientific Peer Review of Research Grant Applications...

  17. 7 CFR 3415.10 - Establishment and operation of peer review groups.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Establishment and operation of peer review groups. 3415.10 Section 3415.10 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE BIOTECHNOLOGY RISK ASSESSMENT RESEARCH GRANTS PROGRAM Scientific Peer...

  18. 7 CFR 3415.5 - Evaluation and disposition of applications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Evaluation and disposition of applications. 3415.5 Section 3415.5 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE BIOTECHNOLOGY RISK ASSESSMENT RESEARCH GRANTS PROGRAM General § 3415.5 Evaluation...

  19. 7 CFR 3415.12 - Conflicts of interest.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Conflicts of interest. 3415.12 Section 3415.12 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE BIOTECHNOLOGY RISK ASSESSMENT RESEARCH GRANTS PROGRAM Scientific Peer Review of Research Grant...

  20. The rise of health biotechnology research in Latin America: A scientometric analysis of health biotechnology production and impact in Argentina, Brazil, Chile, Colombia, Cuba and Mexico

    PubMed Central

    2018-01-01

    This paper analyzes the patterns of health biotechnology publications in six Latin American countries from 2001 to 2015. The countries studied were Argentina, Brazil, Chile, Colombia, Cuba and Mexico. Before our study, there were no data available on HBT development in half of the Latin-American countries we studied, i.e., Argentina, Colombia and Chile. To include these countries in a scientometric analysis of HBT provides fuller coverage of HBT development in Latin America. The scientometric study used the Web of Science database to identify health biotechnology publications. The total amount of health biotechnology production in the world during the period studied was about 400,000 papers. A total of 1.2% of these papers, were authored by the six Latin American countries in this study. The results show a significant growth in health biotechnology publications in Latin America despite some of the countries having social and political instability, fluctuations in their gross domestic expenditure in research and development or a trade embargo that limits opportunities for scientific development. The growth in the field of some of the Latin American countries studied was larger than the growth of most industrialized nations. Still, the visibility of the Latin American research (measured in the number of citations) did not reach the world average, with the exception of Colombia. The main producers of health biotechnology papers in Latin America were universities, except in Cuba were governmental institutions were the most frequent producers. The countries studied were active in international research collaboration with Colombia being the most active (64% of papers co-authored internationally), whereas Brazil was the least active (35% of papers). Still, the domestic collaboration was even more prevalent, with Chile being the most active in such collaboration (85% of papers co-authored domestically) and Argentina the least active (49% of papers). We conclude that the

  1. The rise of health biotechnology research in Latin America: A scientometric analysis of health biotechnology production and impact in Argentina, Brazil, Chile, Colombia, Cuba and Mexico.

    PubMed

    León-de la O, Dante Israel; Thorsteinsdóttir, Halla; Calderón-Salinas, José Víctor

    2018-01-01

    This paper analyzes the patterns of health biotechnology publications in six Latin American countries from 2001 to 2015. The countries studied were Argentina, Brazil, Chile, Colombia, Cuba and Mexico. Before our study, there were no data available on HBT development in half of the Latin-American countries we studied, i.e., Argentina, Colombia and Chile. To include these countries in a scientometric analysis of HBT provides fuller coverage of HBT development in Latin America. The scientometric study used the Web of Science database to identify health biotechnology publications. The total amount of health biotechnology production in the world during the period studied was about 400,000 papers. A total of 1.2% of these papers, were authored by the six Latin American countries in this study. The results show a significant growth in health biotechnology publications in Latin America despite some of the countries having social and political instability, fluctuations in their gross domestic expenditure in research and development or a trade embargo that limits opportunities for scientific development. The growth in the field of some of the Latin American countries studied was larger than the growth of most industrialized nations. Still, the visibility of the Latin American research (measured in the number of citations) did not reach the world average, with the exception of Colombia. The main producers of health biotechnology papers in Latin America were universities, except in Cuba were governmental institutions were the most frequent producers. The countries studied were active in international research collaboration with Colombia being the most active (64% of papers co-authored internationally), whereas Brazil was the least active (35% of papers). Still, the domestic collaboration was even more prevalent, with Chile being the most active in such collaboration (85% of papers co-authored domestically) and Argentina the least active (49% of papers). We conclude that the

  2. Ask a Question | National Agricultural Library

    Science.gov Websites

    Nutrition Invasive Species Marketing and Trade Natural Resources and Environment Plants and Crops Research Animal Welfare Food and Nutrition General Collections Quarterly Review Pasture, Forage and Rangeland Farmers Sustainable Agriculture Veterans in Agriculture Food and Human Nutrition Dietary Guidelines and

  3. A critical assessment of regulatory triggers for products of biotechnology: Product vs. process

    PubMed Central

    McHughen, Alan

    2016-01-01

    ABSTRACT Regulatory policies governing the safety of genetic engineering (rDNA) and the resulting products (GMOs) have been contentious and divisive, especially in agricultural applications of the technologies. These tensions led to vastly different approaches to safety regulation in different jurisdictions, even though the intent of regulations—to assure public and environmental safety—are common worldwide, and even though the international scientific communities agree on the basic principles of risk assessment and risk management. So great are the political divisions that jurisdictions cannot even agree on the appropriate triggers for regulatory capture, whether product or process. This paper reviews the historical policy and scientific implications of agricultural biotechnology regulatory approaches taken by the European Union, USA and Canada, using their respective statutes and regulations, and then critically assesses the scientific underpinnings of each. PMID:27813691

  4. A critical assessment of regulatory triggers for products of biotechnology: Product vs. process.

    PubMed

    McHughen, Alan

    2016-10-01

    Regulatory policies governing the safety of genetic engineering (rDNA) and the resulting products (GMOs) have been contentious and divisive, especially in agricultural applications of the technologies. These tensions led to vastly different approaches to safety regulation in different jurisdictions, even though the intent of regulations-to assure public and environmental safety-are common worldwide, and even though the international scientific communities agree on the basic principles of risk assessment and risk management. So great are the political divisions that jurisdictions cannot even agree on the appropriate triggers for regulatory capture, whether product or process. This paper reviews the historical policy and scientific implications of agricultural biotechnology regulatory approaches taken by the European Union, USA and Canada, using their respective statutes and regulations, and then critically assesses the scientific underpinnings of each.

  5. Adjustments Needed in Vocational Agriculture Programs To Meet the Employment Needs of the Food and Fiber System in the Next Decade. A Position Paper.

    ERIC Educational Resources Information Center

    National Association of Supervisors of Agricultural Education.

    The image of the instructional program in vocational agriculture must be changed to reflect a scientific and futuristic nature. The future of vocational agriculture depends upon a willingness of the agricultural education profession to analyze current programs and adjust them to meet the changes of today's rapidly advancing biotechnology and…

  6. Gender and Agricultural Science: Evidence from Two Surveys of Land-Grant Scientists.

    ERIC Educational Resources Information Center

    Buttel, Frederick H.; Goldberger, Jessica R.

    2002-01-01

    Analysis of surveys of land-grant agricultural scientists in 1979 and 1996 found significant gender differences in postdoctoral work experience, academic rank, employment of graduate students, book publication, and links with private industry. Gender differences were found in attitudes toward biotechnology and university-industry links, but not in…

  7. Ex-ante evaluation of biotechnology innovations: the case of folate biofortified rice in China.

    PubMed

    De Steur, Hans; Blancquaert, Dieter; Gellynck, Xavier; Lambert, Willy; Van Der Straeten, Dominique

    2012-12-01

    In order to valorize novel biotechnology innovations, there is a need to evaluate ex-ante their market potential. A case in point is biofortification, i.e. the enhancement of the micronutrient content of staple crops through conventional or genetic breeding techniques. In a recent article in Nature Biotechnology, for example, De Steur et al. (2010) demonstrated the large potential consumer health benefits of folate biofortified rice as a means to reduce folate deficiency and Neural-Tube Defects. By focusing on a Chinese high-risk region of Neural-Tube Defects, the current study defines the potential cost-effectiveness of this genetically modified crop where the need to improve folate intake levels is highest. Building on the Disability-Adjusted Life Years (DALY) approach, both the potential health impacts and costs of its implementation are measured and benchmarked against similar innovations. The results show that this transgenic crop could be a highly cost-effective product innovation (US$ 120.34 - US$ 40.1 per DALY saved) to alleviate the large health burden of folate deficiency and reduce the prevalence of neural-tube birth defects. When compared with other biofortified crops and target regions, folate biofortified rice in China has a relatively high health impact and moderate cost-effectiveness. This research further supports the need for, and importance of ex-ante evaluation studies in order to adequately market and, thus, valorize biotechnology innovations. Although the cost-effectiveness analysis enables to illustrate the market potential of innovative agricultural biotechnology research, further research is required to address policy issues on transgenic biofortification, such as biosafety regulatory requirements.

  8. Cancer Biotechnology | Center for Cancer Research

    Cancer.gov

    Biotechnology advances continue to underscore the need to educate NCI fellows in new methodologies. The Cancer Biotechnology course will be held on the NCI-Frederick campus on January 29, 2016 (Bldg. 549, Main Auditorium) and the course will be repeated on the Bethesda campus on February 9, 2016 (Natcher Balcony C). The latest advances in DNA, protein and image analysis will be presented. Clinical and postdoctoral fellows who want to learn about new biotechnology advances are encouraged to attend this course.

  9. 7 CFR 3415.8 - Other Federal statutes and regulations that apply.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Other Federal statutes and regulations that apply. 3415.8 Section 3415.8 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE BIOTECHNOLOGY RISK ASSESSMENT RESEARCH GRANTS PROGRAM General § 3415.8...

  10. The socio-economic landscape of biotechnology in Spain. A comparative study using the innovation system concept.

    PubMed

    Díaz, V; Muñoz, E; de los Monteros, J Espinosa; Senker, Jacqueline

    2002-09-11

    Biotechnology is becoming a crucial factor for the innovation strategies of the industrialised countries. Thus, the analysis of the sector is gaining relevance for the identification of the technological strength and potential of a country (or region) in a context of globalisation. A specific national case study may serve for more general comparative analyses. We have selected the case of Spain as illustrative of the complexity and differences existing in Europe. By using the analytical framework of the "national systems of innovation" concept, we have performed a multistep analysis of the biotechnology sector in Spain, focussing first on regions of Madrid and Cataluña which together account for more than 50% of the sector in Spain. The firms in both regions have followed a common strategy based on diversification and investment in R&D and innovation, so as to be able to compete in an international and competitive environment. There are, however, some interesting differences between the two subsectors; the one from Cataluña being more based on industrial traditions, and the one from Madrid characterised by the emergence of more specialised firms. The study has been extended to the remainder of Spanish firms for comparative purposes. The case of Spain is illustrative of the divergences existing in the biotechnology sector in Europe. A comparison is made with the structural and organisational characteristics of the biotechnology sector in several European countries. It shows that there is diversity in the pattern of commercialisation between countries and within regions of countries. Understanding these differences may assist the design of appropriate policies to promote the development of biotechnology in Europe.

  11. Western Australian school students' understanding of biotechnology

    NASA Astrophysics Data System (ADS)

    Dawson, Vaille; Schibeci, Renato

    2003-01-01

    Are science educators providing secondary school students with the background to understand the science behind recent controversies such as the recently introduced compulsory labelling of genetically modified foods? Research from the UK suggests that many secondary school students do not understand the processes or implications of modern biotechnology. The situation in Australia is unclear. In this study, 1116 15-year-old students from eleven Western Australian schools were surveyed to determine their understanding of, and attitude towards, recent advances in modern biotechnology. The results indicate that approximately one third of students have little or no understanding of biotechnology. Many students over-estimate the use of biotechnology in our society by confusing current uses with possible future applications. The results provide a rationale for the inclusion of biotechnology, a cutting edge science, in the school science curriculum

  12. [The past 30 years of Chinese Journal of Biotechnology].

    PubMed

    Jiang, Ning

    2015-06-01

    This review addresses the association of "Chinese Journal of Biotechnology" and the development of biotechnology in China in the past 30 years. Topics include relevant awards and industrialization, development of the biotechnology discipline, and well know scientists in biotechnology, as well as perspectives on the journal.

  13. Benefits of new tools in biotechnology to developing countries in south Asia: a perspective from UNESCO.

    PubMed

    Fahmi, Ahmed

    2011-12-20

    South Asia, once considered as a laggard, has grown at about 6% on average over the past two decades and the current growth outlook is much brighter. However, this growth is not always well distributed and the challenges of institutionalising policies and mechanisms to ensure inclusive growth are now being seriously considered by these countries governments. The targets set by south Asian countries are primarily based on the investments in infrastructural sector with an objective to generate educated and skilled human resources. The other most important inclusive growth area is the core public services; Agriculture, Health, and Energy, which are increasingly becoming technology driven. Biotechnology has been increasingly seen now to be an area of technology that holds the greatest new potential to address problems arising from low productivity, overburdened health systems, high-cost unsustainable energy supplies and the need for developing new materials for industrial and environmental applications. This article attempts to highlight perspectives on some of the emerging areas of biotechnology that have good potential for economic development in the context of south Asia, as well as discuss briefly some of UNESCO's initiatives in biotechnology for that region. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Case studies on the use of biotechnologies and on biosafety provisions in four African countries.

    PubMed

    Black, Robert; Fava, Fabio; Mattei, Niccolo; Robert, Vincent; Seal, Susan; Verdier, Valerie

    2011-12-20

    This review is based on a study commissioned by the European Commission on the evaluation of scientific, technical and institutional challenges, priorities and bottlenecks for biotechnologies and regional harmonisation of biosafety in Africa. Biotechnology was considered within four domains: agricultural biotechnologies ('Green'), industrial biotechnologies and biotechnologies for environmental remediation ('White'), biotechnologies in aquaculture ('Blue') and biotechnologies for healthcare ('Red'). An important consideration was the decline in partnerships between the EU and developing countries because of the original public antipathy to some green biotechnologies, particularly genetically modified organisms (GMOs) and food from GM crops in Europe. The study focus reported here was West Africa (Ghana, Senegal, Mali and Burkina Faso). The overall conclusion was that whereas high-quality research was proceeding in the countries visited, funding is not sustained and there is little evidence of practical application of biotechnology and benefit to farmers and the wider community. Research and development that was being carried out on genetically modified crop varieties was concentrating on improving food security and therefore unlikely to have significant impact on EU markets and consumers. However, there is much non-controversial green biotechnology such as molecular diagnostics for plant and animal disease and marker-assisted selection for breeding that has great potential application. Regarding white biotechnology, it is currently occupying only a very small industrial niche in West Africa, basically in the sole sector of the production of liquid biofuels (i.e., bio-ethanol) from indigenous and locally planted biomass (very often non-food crops). The presence of diffused small-scale fish production is the basis to develop and apply new (Blue) aquaculture technologies and, where the research conditions and the production sector can permit, to increase this type of

  15. A Sourcebook of Biotechnology Activities.

    ERIC Educational Resources Information Center

    Rasmussen, Alison M., Ed.; Matheson, Robert H., III, Ed.

    This book contains 22 lessons using hands-on activities designed to present some aspect of biotechnology in a usable form that teachers can adapt for their classrooms. The introductory section serves as a resource that introduces the teacher and student to the history of biotechnology. The activities are divided into five units that group lessons…

  16. Teachers' Concerns about Biotechnology Education

    ERIC Educational Resources Information Center

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-01-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns…

  17. The National Program for Occupational Safety and Health in Agriculture. 1992 Project Facts.

    ERIC Educational Resources Information Center

    National Inst. for Occupational Safety and Health (DHHS/PHS), Cincinnati, OH.

    This book contains information about a project instituted in 1990 by the National Institute for Occupational Safety and Health (NIOSH) to prevent work-related diseases and injuries among agricultural workers. Included are facts about 25 projects within NIOSH and 42 cooperative agreements between NIOSH and institutions in 25 states. These…

  18. Biotechnology, nanotechnology, and pharmacogenomics and pharmaceutical compounding, Part 1.

    PubMed

    Allen, Loyd V

    2015-01-01

    The world of pharmaceuticals is changing rapidly as biotechnology continues to grow and nanotechnology appears on the horizon. Biotechnology is gaining in importance in extemporaneous pharmaceutical compounding, and nanotechnology and pharmacogenomics could drastically change the practice of pharmacy. This article discusses biotechnology and the factors to consider when compounding biotechnology drugs.

  19. A Case for Teaching Biotechnology

    ERIC Educational Resources Information Center

    Lazaros, Edward; Embree, Caleb

    2016-01-01

    Biotechnology is an innovative field that is consistently growing in popularity. It is important that students are taught about this technology at an early age, so they are motivated to join the field, or at least motivated to become informed citizens and consumers (Gonzalez, et al, 2013). An increase in biotechnology knowledge can result in an…

  20. Commercial biotechnology processing on International Space Station

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Hardin, Juanita R.; Lewis, Marian L.

    1998-01-01

    Commercial biotechnology processing in space has the potential to eventually exceed the $35 billion annual worldwide market generated by the current satellite communications industry (Parone 1997). The International Space Station provides the opportunity to conduct long-term, crew-tended biotechnology research in microgravity to establish the foundation for this new commercial biotechnology market. Industry, government, and academia are collaborating to establish the infrastructure needed to catalyze this biotechnology revolution that could eventually lead to production of medical and pharmaceutical products in space. The biotechnology program discussed herein is evidence of this collaborative effort, with industry involvement from Space Hardware Optimization Technology, Inc., government participation through the NASA Commercial Space program, and academic guidance from the Consortium for Materials Development in Space at the University of Alabama in Huntsville. Blending the strengths and resources of each collaborator creates a strong partnership, that offers enormous research and commercial opportunities.

  1. 76 FR 25298 - Solicitation of Members to the National Agricultural Research, Extension, Education, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... Solicitation of Members to the National Agricultural Research, Extension, Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, USDA. ACTION: Solicitation for membership. SUMMARY..., Education, and Economics Advisory Board. The notice was published in the Federal Register on April 22, 2011...

  2. Comparative genomics of biotechnologically important yeasts

    USDA-ARS?s Scientific Manuscript database

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the...

  3. National Agricultural Statistics Service (NASS): Agricultural Chemical Use

    Science.gov Websites

    Management Agricultural Chemical Use Database Search Tips Usage Search | US Maps | Graphical Reports effort among USDA, the USDA Regional Pest Management Centers and the NSF Center for Integrated Pest Management (CIPM). All data available have been previously published by NASS and have been consolidated at

  4. Termites as targets and models for biotechnology.

    PubMed

    Scharf, Michael E

    2015-01-07

    Termites have many unique evolutionary adaptations associated with their eusocial lifestyles. Recent omics research has created a wealth of new information in numerous areas of termite biology (e.g., caste polyphenism, lignocellulose digestion, and microbial symbiosis) with wide-ranging applications in diverse biotechnological niches. Termite biotechnology falls into two categories: (a) termite-targeted biotechnology for pest management purposes, and (b) termite-modeled biotechnology for use in various industrial applications. The first category includes several candidate termiticidal modes of action such as RNA interference, digestive inhibition, pathogen enhancement, antimicrobials, endocrine disruption, and primer pheromone mimicry. In the second category, termite digestomes are deep resources for host and symbiont lignocellulases and other enzymes with applications in a variety of biomass, industrial, and processing applications. Moving forward, one of the most important approaches for accelerating advances in both termite-targeted and termite-modeled biotechnology will be to consider host and symbiont together as a single functional unit.

  5. Synthetic microbial ecosystems for biotechnology.

    PubMed

    Pandhal, Jagroop; Noirel, Josselin

    2014-06-01

    Most highly controlled and specific applications of microorganisms in biotechnology involve pure cultures. Maintaining single strain cultures is important for industry as contaminants can reduce productivity and lead to longer "down-times" during sterilisation. However, microbes working together provide distinct advantages over pure cultures. They can undertake more metabolically complex tasks, improve efficiency and even expand applications to open systems. By combining rapidly advancing technologies with ecological theory, the use of microbial ecosystems in biotechnology will inevitably increase. This review provides insight into the use of synthetic microbial communities in biotechnology by applying the engineering paradigm of measure, model, manipulate and manufacture, and illustrate the emerging wider potential of the synthetic ecology field. Systems to improve biofuel production using microalgae are also discussed.

  6. The Effect of Biotechnology Education on Australian High School Students' Understandings and Attitudes about Biotechnology Processes

    ERIC Educational Resources Information Center

    Dawson, Vaille; Soames, Christina

    2006-01-01

    Our education system aims to equip young people with the knowledge, problem-solving skills and values to cope with an increasingly technological society. The aim of this study was to determine the effect of biotechnology education on adolescents' understanding and attitudes about processes associated with biotechnology. Data were drawn from…

  7. Medical biotechnology trends and achievements in iran.

    PubMed

    Mahboudi, Fereidoun; Hamedifar, Haleh; Aghajani, Hamideh

    2012-10-01

    A healthcare system has been the most important priority for all governments worldwide. Biotechnology products have affected the promotion of health care over the last thirty years. During the last several decades, Iran has achieved significant success in extending healthcare to the rural areas and in reducing the rates of infant mortality and increasing population growth. Biomedical technology as a converging technology is considered a helpful tool to fulfill the Iranian healthcare missions. The number of biotechnology products has reached 148 in 2012. The total sales have increased to 98 billion USD without considering vaccines and plasma derived proteins in 2012. Iran is one of the leading countries in the Middle East and North Africa in the area of Medical biotechnology. The number of biotechnology medicines launched in Iran is 13 products until 2012. More than 15 products are in pipelines now. Manufacturers are expecting to receive the market release for more than 8 products by the end of 2012. Considering this information, Iran will lead the biotechnology products especially in area of biosimilars in Asia after India in next three years. The present review will discuss leading policy, decision makers' role, human resource developing system and industry development in medical biotechnology.

  8. Medical Biotechnology Trends and Achievements in Iran

    PubMed Central

    Mahboudi, Fereidoun; Hamedifar, Haleh; Aghajani, Hamideh

    2012-01-01

    A healthcare system has been the most important priority for all governments worldwide. Biotechnology products have affected the promotion of health care over the last thirty years. During the last several decades, Iran has achieved significant success in extending healthcare to the rural areas and in reducing the rates of infant mortality and increasing population growth. Biomedical technology as a converging technology is considered a helpful tool to fulfill the Iranian healthcare missions. The number of biotechnology products has reached 148 in 2012. The total sales have increased to 98 billion USD without considering vaccines and plasma derived proteins in 2012. Iran is one of the leading countries in the Middle East and North Africa in the area of Medical biotechnology. The number of biotechnology medicines launched in Iran is 13 products until 2012. More than 15 products are in pipelines now. Manufacturers are expecting to receive the market release for more than 8 products by the end of 2012. Considering this information, Iran will lead the biotechnology products especially in area of biosimilars in Asia after India in next three years. The present review will discuss leading policy, decision makers’ role, human resource developing system and industry development in medical biotechnology. PMID:23407888

  9. Agricultural Research & Education: Serving the Nation. A University Science and Education Exhibit on Capitol Hill, March 2, 1999.

    ERIC Educational Resources Information Center

    National Association of State Universities and Land Grant Colleges, Washington, DC.

    The brochure describes an agricultural science and education exhibition presented by the National Association of State Universities and Land-Grant Colleges in a Cannon House office building in Washington, DC on March 2, 1999. It gives background information on: three areas in which scientific research and education in the agricultural sciences…

  10. 75 FR 10293 - Office of Biotechnology Activities; Office of Science Policy; Office of the Director; Notice of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Office of Science Policy; Office of the Director; Notice of a Meeting of the NIH Blue Ribbon... Activities, Office of Science Policy, Office of the Director, National Institutes of Health, 6705 Rockledge...

  11. Developments in biotechnological research in Austria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubicek, C.P.

    1996-12-01

    Austria is a small European country with a small number of universities and biotechnological industries, but with great efforts in the implementation of environmental consciousness and corresponding legal standards. This review attempts to describe the biotechnological landscape of Austria, thereby focusing on the highlights in research by industry, universities, and research laboratories, as published during 1990 to early 1995. These will include microbial metabolite (organic acids, antibiotics) and biopolymer (polyhydroxibutyrate, S-layers) production; enzyme (cellulases, hemicellulases, ligninases) technology and biocatalysis; environmental biotechnology; plant breeding and plant protection; mammalian cell products; fermenter design; and bioprocess engineering. 234 refs.

  12. Life sciences today and tomorrow: emerging biotechnologies.

    PubMed

    Williamson, E Diane

    2017-08-01

    The purpose of this review is to survey current, emerging and predicted future biotechnologies which are impacting, or are likely to impact in the future on the life sciences, with a projection for the coming 20 years. This review is intended to discuss current and future technical strategies, and to explore areas of potential growth during the foreseeable future. Information technology approaches have been employed to gather and collate data. Twelve broad categories of biotechnology have been identified which are currently impacting the life sciences and will continue to do so. In some cases, technology areas are being pushed forward by the requirement to deal with contemporary questions such as the need to address the emergence of anti-microbial resistance. In other cases, the biotechnology application is made feasible by advances in allied fields in biophysics (e.g. biosensing) and biochemistry (e.g. bio-imaging). In all cases, the biotechnologies are underpinned by the rapidly advancing fields of information systems, electronic communications and the World Wide Web together with developments in computing power and the capacity to handle extensive biological data. A rationale and narrative is given for the identification of each technology as a growth area. These technologies have been categorized by major applications, and are discussed further. This review highlights: Biotechnology has far-reaching applications which impinge on every aspect of human existence. The applications of biotechnology are currently wide ranging and will become even more diverse in the future. Access to supercomputing facilities and the ability to manipulate large, complex biological datasets, will significantly enhance knowledge and biotechnological development.

  13. FATE & EFFECTS OF AGRICULTURAL PESTICIDES WITHIN WEEKS BAY WATERSHED, A NATIONAL ESTUARINE RESEARCH RESERVE

    EPA Science Inventory

    Lytle, J.S., T.F. Lytle and M.A. Lewis. In press. Fate and Effects of Agricultural Pesticides Within Weeks Bay Watershed, a National Estuarine Research Preserve. To be presented at the 24th Annual Meeting in North America of the Society of Environmental Toxicology and Chemistry: ...

  14. Under-five mortality among mothers employed in agriculture: findings from a nationally representative sample.

    PubMed

    Singh, Rajvir; Tripathi, Vrijesh

    2015-01-01

    Background. India accounts for 24% to all under-five mortality in the world. Residence in rural area, poverty and low levels of mother's education are known confounders of under-five mortality. Since two-thirds of India's population lives in rural areas, mothers employed in agriculture present a particularly vulnerable population in the Indian context and it is imperative that concerns of this sizeable population are addressed in order to achieve MDG4 targets of reducing U5MR to fewer than 41 per 1,000 by 2015. This study was conducted to examine factors associated with under-five mortality among mothers employed in agriculture. Methods. Data was retrieved from National Family Household Survey-3 in India (2008). The study population is comprised of a national representative sample of single children aged 0 to 59 months and born to mothers aged 15 to 49 years employed in agriculture from all 29 states of India. Univariate and Multivariate Cox PH regression analysis was used to analyse the Hazard Rates of mortality. The predictive power of child mortality among mothers employed in agriculture was assessed by calculating the area under the receiver operating characteristic (ROC) curve. Results. An increase in mothers' ages corresponds with a decrease in child mortality. Breastfeeding reduces child mortality by 70% (HR 0.30, 0.25-0.35, p = 0.001). Standard of Living reduces child mortality by 32% with high standard of living (HR 0.68, 0.52-0.89, 0.001) in comparison to low standard of living. Prenatal care (HR 0.40, 0.34-0.48, p = 0.001) and breastfeeding health nutrition education (HR 0.45, 0.31-0.66, p = 0.001) are associated significant factors for child mortality. Birth Order five is a risk factor for mortality (HR 1.49, 1.05-2.10, p = 0.04) in comparison to Birth Order one among women engaged in agriculture while the household size (6-10 members and ≥ 11 members) is significant in reducing child mortality in comparison to ≤5 members in the house. Under

  15. Agricultural Chartbook 1988. Agriculture Handbook No. 673.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    These charts present an overview of the current economic health of American agriculture. The charts move from the national and international arenas to farm economic health measures and crop and livestock trends. A small amount of descriptive narrative accompanies most of the charts. Charts depicting the economic picture of U.S. agriculture include…

  16. Agroterrorism, Biological Crimes, and Biological Warfare Targeting Animal Agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Terry M.; Logan-Henfrey, Linda; Weller, Richard E.

    2000-04-12

    There is a rising level of concern that agriculture might be targeted for economic sabotage by terrorists. Knowledge gathered about the Soviet Union biological weapons program and Iraq following the Gulf War, confirmed that animals and agricultural crops were targets of bioweapon development. These revelations are particularly disturbing in light of the fact that both countries are States Parties to the Biological and Toxin Weapons Convention that entered into force in 1975. The potential for misusing biotechnology to create more virulent pathogens and the lack of international means to detect unethical uses of new technologies to create destructive bioweapons ismore » of increasing concern. Disease outbreaks, whether naturally occurring or intentionally, involving agricultural pathogens that destroy livestock and crops would have a profound impact on a country's infrastructure, economy and export markets. This chapter deals with the history of agroterrorism, biological crimes and biological warfare directed toward animal agriculture, specifically, horses, cattle, swine, sheep, goats, and poultry.« less

  17. Agricultural biology in the 3rd millennium: nutritional food security & specialty crops through sustainable agriculture and biotechnology

    USDA-ARS?s Scientific Manuscript database

    Food security and agricultural sustainability are of prime concern in the world today in light of the increasing trends in population growth in most parts of the globe excepting Europe. The need to develop capacity to produce more to feed more people is complicated since the arable land is decreasin...

  18. Realizing the promises of marine biotechnology.

    PubMed

    Luiten, Esther E M; Akkerman, Ida; Koulman, Albert; Kamermans, Pauline; Reith, Hans; Barbosa, Maria J; Sipkema, Detmer; Wijffels, René H

    2003-07-01

    High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals, nutritional supplements, (feed-)products for aquaculture and bioremediation solutions) is not the only factor to realise the commercial applications of marine biotechnology. What else is needed to exploit the promising potential of marine biotechnology and to create new industrial possibilities? In the study project 'Ocean Farming-Sustainable exploitation of marine organisms', we explore the possibilities of marine organisms to fulfill needs, such as safe and healthy food, industrial (raw) materials and renewable energy in a sustainable way. One of the three design groups is envisioning the future of strong land-based 'marine' market chains. Marine biotechnology is one of the foci of attention in this design group. This article provides a model of future-oriented thinking in which a variety of experts actively participate.

  19. Mechatronics design principles for biotechnology product development.

    PubMed

    Mandenius, Carl-Fredrik; Björkman, Mats

    2010-05-01

    Traditionally, biotechnology design has focused on the manufacture of chemicals and biologics. Still, a majority of biotechnology products that appear on the market today is the result of mechanical-electric (mechatronic) construction. For these, the biological components play decisive roles in the design solution; the biological entities are either integral parts of the design, or are transformed by the mechatronic system. This article explains how the development and production engineering design principles used for typical mechanical products can be adapted to the demands of biotechnology products, and how electronics, mechanics and biology can be integrated more successfully. We discuss three emerging areas of biotechnology in which mechatronic design principles can apply: stem cell manufacture, artificial organs, and bioreactors. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Editorial: Latest methods and advances in biotechnology.

    PubMed

    Lee, Sang Yup; Jungbauer, Alois

    2014-01-01

    The latest "Biotech Methods and Advances" special issue of Biotechnology Journal continues the BTJ tradition of featuring the latest breakthroughs in biotechnology. The special issue is edited by our Editors-in-Chief, Prof. Sang Yup Lee and Prof. Alois Jungbauer and covers a wide array of topics in biotechnology, including the perennial favorite workhorses of the biotech industry, Chinese hamster ovary (CHO) cell and Escherichia coli. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Approaches to education of pharmaceutical biotechnology in faculties of pharmacy.

    PubMed

    Calis, S; Oner, F; Kas, S; Hincal, A A

    2001-06-01

    Pharmaceutical biotechnology is developing rapidly both in academic institutions and in the biopharmaceutical industry. For this reason, FIP Special Interest Group of Pharmaceutical Biotechnology decided to develop a questionnaire concerning pharmaceutical biotechnology education. After preliminary studies were completed, questionnaires were sent to the leading scientists in academia and research directors or senior managers of various Pharmaceutical Biotechnology Companies in order to gather their views about how to create a satisfactory program. The objectives of this study were as follows: -To review all of the graduate and undergraduate courses which are presently available worldwide on pharmaceutical biotechnology in Faculties of Pharmacy. -To review all of the text books, references and scientific sources available worldwide in the area of pharmaceutical biotechnology. When replying to the questionnaires, the respondents were asked to consider the present status of pharmaceutical biotechnology education in academia and future learning needs in collaboration with the biotechnology industry. The data from various pharmacy faculties and biotechnology industry representatives from Asia, Europe and America were evaluated and the outcome of the survey showed that educational efforts in training qualified staff in the rapidly growing field of pharmaceutical biotechnology is promising. Part of the results of this questionnaire study have already been presented at the 57th International Congress of FIP Vancouver, Canada in 1997.

  2. Modernizing the Regulatory System for Biotechnology Products

    EPA Pesticide Factsheets

    This Web page describes the continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of EPA, FDA and USDA in evaluating new biotechnology products.

  3. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    PubMed

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A New Era in Agriculture: Reinventing Agricultural Education for the Year 2020.

    ERIC Educational Resources Information Center

    National Council for Agricultural Education, Alexandria, VA.

    The Reinventing Agricultural Education for the Year 2020 initiative brought together a diverse group of people from across the nation to create a new vision for agriculture education. The group envisioned a system of agricultural education beginning in early childhood and continuing throughout life. The group examined agricultural education's…

  5. 78 FR 27977 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... Nucleic Acid Molecules (NIH Guidelines) to streamline review of certain human gene transfer trials that... institutional biosafety committees (IBCs) review and approve certain human gene transfer clinical trials that...

  6. Biotechnology in Food Production and Processing

    NASA Astrophysics Data System (ADS)

    Knorr, Dietrich; Sinskey, Anthony J.

    1985-09-01

    The food processing industry is the oldest and largest industry using biotechnological processes. Further development of food products and processes based on biotechnology depends upon the improvement of existing processes, such as fermentation, immobilized biocatalyst technology, and production of additives and processing aids, as well as the development of new opportunities for food biotechnology. Improvements are needed in the characterization, safety, and quality control of food materials, in processing methods, in waste conversion and utilization processes, and in currently used food microorganism and tissue culture systems. Also needed are fundamental studies of the structure-function relationship of food materials and of the cell physiology and biochemistry of raw materials.

  7. 77 FR 58978 - Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ..., Extension, Education, and Economics Advisory Board Meeting AGENCY: Research, Education, and Economics, USDA... Research, Extension, Education, and Economics Advisory Board. DATES: The National Agricultural Research, Extension, Education, and Economics Advisory Board will meet October 23-25, 2012. The public may file...

  8. 77 FR 31302 - Advisory Committee on Agriculture Statistics

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... DEPARTMENT OF AGRICULTURE National Agricultural Statistics Service Advisory Committee on Agriculture Statistics AGENCY: National Agricultural Statistics Service, USDA. ACTION: Notice of Renewal of the Charter for the Advisory Committee on Agriculture Statistics. SUMMARY: The U.S. Department of...

  9. Biotechnology and Consumer Decision-Making.

    PubMed

    Sax, Joanna K

    Society is facing major challenges in climate change, health care and overall quality of life. Scientific advances to address these areas continue to grow, with overwhelming evidence that the application of highly tested forms of biotechnology is safe and effective. Despite scientific consensus in these areas, consumers appear reluctant to support their use. Research that helps to understand consumer decision-making and the public’s resistance to biotechnologies such as vaccines, fluoridated water programs and genetically engineered food, will provide great social value. This article is forward-thinking in that it suggests that important research in behavioral decision-making, specifically affect and ambiguity, can be used to help consumers make informed choices about major applications of biotechnology. This article highlights some of the most controversial examples: vaccinations, genetically engineered food, rbST treated dairy cows, fluoridated water, and embryonic stem cell research. In many of these areas, consumers perceive the risks as high, but the experts calculate the risks as low. Four major thematic approaches are proposed to create a roadmap for policymakers to consider for policy design and implementation in controversial areas of biotechnology. This article articulates future directions for studies that implement decision-making research to allow consumers to appropriately assign risk to their options and make informed decisions.

  10. Next generation of microbial inoculants for agriculture and bioremediation.

    PubMed

    Baez-Rogelio, Antonino; Morales-García, Yolanda Elizabeth; Quintero-Hernández, Verónica; Muñoz-Rojas, Jesús

    2017-01-01

    In this Crystal Ball we describe the negative effects of the scheme of intensive agriculture of the green revolution technology. To recover the contaminated soils derived from intensive farming is necessary introduce new successful technologies to replace the use of chemical fertilizer and toxic pesticides by organic fertilizers and biological control agents. Our principal speculation is that in a short time authors in the field of PGPB and bioremediation will be expanding the knowledge on the development of different formulations containing super-bacteria or a mixture of super-bacteria able to provide beneficial effect for agriculture and bioremediation. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Sharing Malaysian experience with the development of biotechnology-derived food crops.

    PubMed

    Abu Bakar, Umi K; Pillai, Vilasini; Hashim, Marzukhi; Daud, Hassan Mat

    2005-12-01

    Biotechnology-derived food crops are currently being developed in Malaysia mainly for disease resistance and improved post harvest quality. The modern biotechnology approach is adopted because of its potential to overcome constraints faced by conventional breeding techniques. Research on the development of biotechnology-derived papaya, pineapple, chili, passion fruit, and citrus is currently under way. Biotechnology-derived papaya developed for resistance to papaya ringspot virus (PRSV) and improved postharvest qualities is at the field evaluation stage. Pineapple developed for resistance to fruit black heart disorder is also being evaluated for proof-of-concept. Other biotechnology-derived food crops are at early stages of gene cloning and transformation. Activities and products involving biotechnology-derived crops will be fully regulated in the near future under the Malaysian Biosafety Law. At present they are governed only by guidelines formulated by the Genetic Modification Advisory Committee (GMAC), Malaysia. Commercialization of biotechnology-derived crops involves steps that require GMAC approval for all field evaluations and food-safety assessments before the products are placed on the market. Public acceptance of the biotechnology product is another important factor for successful commercialization. Understanding of biotechnology is generally low among Malaysians, which may lead to low acceptance of biotechnology-derived products. Initiatives are being taken by local organizations to improve public awareness and acceptance of biotechnology. Future research on plant biotechnology will focus on the development of nutritionally enhanced biotechnology-derived food crops that can provide more benefits to consumers.

  12. Population array and agricultural data arrays for the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, K.W.; Duffy, S.; Kowalewsky, K.

    1998-07-01

    To quantify or estimate the environmental and radiological impacts from man-made sources of radioactive effluents, certain dose assessment procedures were developed by various government and regulatory agencies. Some of these procedures encourage the use of computer simulations (models) to calculate air dispersion, environmental transport, and subsequent human exposure to radioactivity. Such assessment procedures are frequently used to demonstrate compliance with Department of Energy (DOE) and US Environmental Protection Agency (USEPA) regulations. Knowledge of the density and distribution of the population surrounding a source is an essential component in assessing the impacts from radioactive effluents. Also, as an aid to calculatingmore » the dose to a given population, agricultural data relevant to the dose assessment procedure (or computer model) are often required. This report provides such population and agricultural data for the area surrounding Los Alamos National Laboratory.« less

  13. Beliefs and Attitudes of Secondary Agriculture Teachers about Global Agriculture Issues

    ERIC Educational Resources Information Center

    Hurst, Sara D.; Roberts, T. Grady; Harder, Amy

    2015-01-01

    The purpose of this study was to explore the beliefs and attitudes of secondary agriculture teachers regarding global agricultural issues. A randomized national sample of 417 teachers were surveyed using a modified version of the International Agricultural Awareness and Understanding Survey (Wingenbach, Boyd, Lindner, Dick, Arispe, & Haba,…

  14. Little River Experimental Watershed, Georgia: National Institute of Food and Agriculture - Conservation Effects Assessment Project

    USDA-ARS?s Scientific Manuscript database

    In September 2007, USDA’s Cooperative State Research, Education, and Extension Service (CSREES), now the National Institute of Food and Agriculture (NIFA), and the Natural Resources Conservation Service (NRCS) jointly funded two integrated research and outreach grants to conduct a synthesis of resul...

  15. 77 FR 11064 - National Agricultural Research, Extension, Education, and Economics Advisory Board Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ..., Education, and Economics Advisory Board Notice of Meeting AGENCY: Research, Education, and Economics, USDA... Research, Extension, Education, and Economics Advisory Board. DATES: The National Agricultural Research, Extension, Education, and Economics Advisory Board will meet March 28-29, 2012. The public may file written...

  16. Job control, psychological demand, and farmworker health: evidence from the national agricultural workers survey.

    PubMed

    Grzywacz, Joseph G; Alterman, Toni; Gabbard, Susan; Shen, Rui; Nakamoto, Jorge; Carroll, Daniel J; Muntaner, Carles

    2014-01-01

    Improve understanding of the potential occupational health impact of how agricultural jobs are organized. Exposure to low job control, high psychological demands, and high job strain were hypothesized to have greater risk for poor self-rated physical health and elevated depressive symptoms. Cross-sectional data (N = 3691) obtained using the Work Organization and Psychosocial Factors module of the US National Agricultural Workers Survey fielded in 2009-2010. More than one fifth (22.4%) of farmworkers reported fair/poor health, and 8.7% reported elevated depressive symptoms. High psychological demand was associated with increased risk of fair/poor health (odds ratio, 1.73; 95% confidence interval, 1.4 to 2.2) and elevated depressive symptoms (odds ratio, 2.6; 95% confidence interval, 1.9 to 3.8). The organization of work in field agriculture may pose risks for poor occupational health outcomes among a vulnerable worker population.

  17. Consumer risk perceptions toward agricultural biotechnology, self-protection, and food demand: the case of milk in the United States.

    PubMed

    Zepeda, Lydia; Douthitt, Robin; You, So-Ye

    2003-10-01

    This study is an econometric systems approach to modeling the factors and linkages affecting risk perceptions toward agricultural biotechnology, self-protection actions, and food demand. This model is applied to milk in the United States, but it can be adapted to other products as well as other categories of risk perceptions. The contribution of this formulation is the ability to examine how explanatory factors influence risk perceptions and whether they translate into behavior and ultimately what impact this has on aggregate markets. Hadden's outrage factors on heightening risk perceptions are among the factors examined. In particular, the article examines the role of labeling as a means of permitting informed consent to mitigate outrage factors. The effects of attitudinal, economic, and demographic factors on risk perceptions are also explored, as well as the linkage between risk perceptions, consumer behavior, and food demand. Because risk perceptions and self-protection actions are categorical variables and demand is a continuous variable, the model is estimated as a two-stage mixed system with a covariance correction procedure suggested by Amemiya. The findings indicate that it is the availability of labeling, not the price difference, between that labeled milk and milk produced with recombinant bovine Somatotropin (rbST) that significantly affects consumer's selection of rbST-free milk. The results indicate that greater availability of labeled milk would not only significantly increase the proportion of consumers who purchased labeled milk, its availability would also reduce the perception of risk associated with rbST, whether consumers purchase it or not. In other words, availability of rbST-free milk translates into lower risk perceptions toward milk produced with rbST.

  18. [Trends of microalgal biotechnology: a view from bibliometrics].

    PubMed

    Yang, Xiaoqiu; Wu, Yinsong; Yan, Jinding; Song, Haigang; Fan, Jianhua; Li, Yuanguang

    2015-10-01

    Microalgae is a single-cell organism with the characteristics of high light energy utilization rate, fast growth rate, high-value bioactive components and high energy material content. Therefore, microalgae has broad application prospects in food, feed, bioenergy, carbon sequestration, wastewater treatment and other fields. In this article, the microalgae biotechnology development in recent years were fully consulted, through analysis from the literature and patent. The progress of microalgal biotechnology at home and abroad is compared and discussed. Furthermore, the project layout, important achievements and development bottlenecks of microalgae biotechnology in our country were also summarized. At last, future development directions of microalgae biotechnology were discussed.

  19. Microbial utilization of lignin: available biotechnologies for its degradation and valorization.

    PubMed

    Palazzolo, Martín A; Kurina-Sanz, Marcela

    2016-10-01

    Lignocellulosic biomasses, either from non-edible plants or from agricultural residues, stock biomacromolecules that can be processed to produce both energy and bioproducts. Therefore, they become major candidates to replace petroleum as the main source of energy. However, to shift the fossil-based economy to a bio-based one, it is imperative to develop robust biotechnologies to efficiently convert lignocellulosic streams in power and platform chemicals. Although most of the biomass processing facilities use celluloses and hemicelluloses to produce bioethanol and paper, there is no consolidated bioprocess to produce valuable compounds out of lignin at industrial scale available currently. Usually, lignin is burned to provide heat or it remains as a by-product in different streams, thus arising environmental concerns. In this way, the biorefinery concept is not extended to completion. Due to Nature offers an arsenal of biotechnological tools through microorganisms to accomplish lignin valorization or degradation, an increasing number of projects dealing with these tasks have been described recently. In this review, outstanding reports over the last 6 years are described, comprising the microbial utilization of lignin to produce a variety of valuable compounds as well as to diminish its ecological impact. Furthermore, perspectives on these topics are given.

  20. Perspectives on biotechnological applications of archaea.

    PubMed

    Schiraldi, Chiara; Giuliano, Mariateresa; De Rosa, Mario

    2002-09-01

    Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest.

  1. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  2. Exploitation of biotechnology in a large company.

    PubMed

    Dart, E C

    1989-08-31

    Almost from the outset, most large companies saw the 'new biotechnology' not as a new business but as a set of very powerful techniques that, in time, would radically improve the understanding of biological systems. This new knowledge was generally seen by them as enhancing the process of invention and not as a substitute for tried and tested ways of meeting clearly identified targets. As the knowledge base grows, so the big-company response to biotechnology becomes more positive. Within ICI, biotechnology is now integrated into five bio-businesses (Pharmaceuticals, Agrochemicals, Seeds, Diagnostics and Biological Products). Within the Central Toxicology Laboratory it also contributes to the understanding of the mechanisms of toxic action of chemicals as part of assessing risk. ICI has entered two of these businesses (Seeds and Diagnostics) because it sees biotechnology making a major contribution to the profitability of each.

  3. Biotechnology in the Middle School Curriculum

    ERIC Educational Resources Information Center

    Campbell, De Ann

    2007-01-01

    Biotechnology is a fairly new concept for middle school students as well as teachers. If the latest craze of TV shows focused on crime scene investigation events were not so popular, the term and concept might be even obscure to the public. There is an increased presence of biotechnology in our daily surroundings that makes it practical and…

  4. The Biotechnology Facility for International Space Station.

    PubMed

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-03-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  5. The Biotechnology Facility for International Space Station

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  6. 75 FR 32736 - Notice of Solicitation for Members of the National Agricultural Research, Extension, Education...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ... Science Society Category G. National Crop, Soil, Agronomy, Horticulture, or Weed Science Society Category... research, crop and animal science, land-grant institutions, non-land grant college or university with a historic commitment to research in the food and agricultural sciences, food retailing and marketing, rural...

  7. Beyond conservation agriculture.

    PubMed

    Giller, Ken E; Andersson, Jens A; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.

  8. Beyond conservation agriculture

    PubMed Central

    Giller, Ken E.; Andersson, Jens A.; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture. PMID:26579139

  9. USDA APHIS | National Animal Health Monitoring System (NAHMS)

    Science.gov Websites

    USDA - APHIS United States Department of Agriculture Animal and Plant Health Inspection Service Facebook Email Blog Home Our Focus Animal Health Animal Welfare Biotechnology Business Services Civil Rights Emergency Response Imports & Exports International Services Plant Health Science Tribal

  10. High School Students' Knowledge and Attitudes regarding Biotechnology Applications

    ERIC Educational Resources Information Center

    Ozel, Murat; Erdogan, Mehmet; Usak, Muhammet; Prokop, Pavol

    2009-01-01

    The purpose of this study was to investigate high school students' knowledge and attitudes regarding biotechnology and its various applications. In addition, whether students' knowledge and attitudes differed according to age and gender were also explored. The Biotechnology Knowledge Questionnaire (BKQ) with 16 items and the Biotechnology Attitude…

  11. Commercialization, patents and moral assessment of biotechnology products.

    PubMed

    Hoedemaekers, R

    2001-06-01

    The biotechnology patent debates have revealed deep moral concerns about basic genetics research, R&D and specific biotechnological products, concerns that are seldom taken into consideration in Technology Assessment. In this paper important moral concerns are examined which appear at the various stages of development of a specific genetic product: a predictive genetic test. The purpose is to illustrate the need for a more contextual approach in technology assessment, which integrates the various forms of interaction between bio-technology and society or societal segments. Such an approach will generate greater insight in the moral issues at all stages of a product's life-cycle and this will facilitate decision-making on the 'morality' of a specific biotechnological product.

  12. Biotechnology risks and benefits: Science instructor perspectives and practices

    NASA Astrophysics Data System (ADS)

    Gardner, Grant Ean

    Developing scientifically literate students who understand the socially contextualized nature of science and technology is a national focus of science education reform. Understanding teachers' views on this topic is of equal importance. This document focuses on the topic of risks and benefits posed by science and technology as an important topic for which the socially contextualized nature of science and technology readily emerges. Following introduction of a theoretical model and a review of the literature, two research studies are described that examined teachers' perceptions of the risks posed by biotechnology and the role of risk topics in an undergraduate science course. The first research study examines four groups of science educators; pre-service science teachers, in-service science teachers, science graduate teaching assistants, and science professors (n = 91). The participants completed a survey and card sort task to determine their perceptions of the risks of biotechnology. The results show that teacher perceptions were shaped by the risk severity, regulation processes, public acceptance, fear, reciprocal benefits, and whether the applications would impact humans or the environment. Factors determining risk perception included personal worldviews, trust in communicating institutions, and personal experiences with biotechnology. The different types of science teachers were compared and contrasted in light of these factors and the implications of instructor perceptions on science pedagogy are discussed. The second research manuscript describes a case study in which six biology graduate teaching assistants (GTAs) were observed teaching as lesson on the potential risks and benefits of biotechnology. The data sources included classroom observations and semi-structured interviews. Qualitative analysis reveals that GTAs framed the instruction of risk in one of three ways: analytical, focus on perspectives and biases, and promotion of individual reflection

  13. Cancer Biotechnology | Center for Cancer Research

    Cancer.gov

    Biotechnology advances continue to underscore the need to educate NCI fellows in new methodologies. The Cancer Biotechnology course will be held on the NCI-Frederick campus on January 29, 2016 (Bldg. 549, Main Auditorium) and the course will be repeated on the Bethesda campus on February 9, 2016 (Natcher Balcony C). The latest advances in DNA, protein and image analysis will

  14. Perspectives on biotechnological applications of archaea

    PubMed Central

    Schiraldi, Chiara; Giuliano, Mariateresa; De Rosa, Mario

    2002-01-01

    Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest. PMID:15803645

  15. Food and Agriculture Organization: A Clearinghouse for Agricultural Information.

    ERIC Educational Resources Information Center

    Joling, Carole

    1989-01-01

    Describes the functions of the United Nations Food and Agriculture Organization (FAO), which is an international clearinghouse for agricultural information. The discussion focuses on the information formats provided by the agency and the dissemination channels used for FAO information. Lists of finding aids for FAO materials and libraries…

  16. Molecular features of grass allergens and development of biotechnological approaches for allergy prevention.

    PubMed

    Devis, Deborah L; Davies, Janet M; Zhang, Dabing

    2017-09-01

    Allergic diseases are characterized by elevated allergen-specific IgE and excessive inflammatory cell responses. Among the reported plant allergens, grass pollen and grain allergens, derived from agriculturally important members of the Poaceae family such as rice, wheat and barley, are the most dominant and difficult to prevent. Although many allergen homologs have been predicted from species such as wheat and timothy grass, fundamental aspects such as the evolution and function of plant pollen allergens remain largely unclear. With the development of genetic engineering and genomics, more primary sequences, functions and structures of plant allergens have been uncovered, and molecular component-based allergen-specific immunotherapies are being developed. In this review, we aim to provide an update on (i) the distribution and importance of pollen and grain allergens of the Poaceae family, (ii) the origin and evolution, and functional aspects of plant pollen allergens, (iii) developments of allergen-specific immunotherapy for pollen allergy using biotechnology and (iv) development of less allergenic plants using gene engineering techniques. We also discuss future trends in revealing fundamental aspects of grass pollen allergens and possible biotechnological approaches to reduce the amount of pollen allergens in grasses. Copyright © 2017. Published by Elsevier Inc.

  17. BIOTECHNOLOGY RESEARCH PROGRAM

    EPA Science Inventory

    In accordance with EPA's mission to minimize risks to human health and to safeguard ecological integrity, the EPA Office of Prevention, Pesticides, and Toxic Substances (OPPTS) is committed to assessing and mitigating any risk posed by biotechnology-derived crops. Consequently, ...

  18. New master program in management in biophotonics and biotechnologies

    NASA Astrophysics Data System (ADS)

    Meglinski, I. V.; Tuchin, V. V.

    2006-08-01

    We develop new graduate educational highly interdisciplinary program that will be useful for addressing problems in worldwide biotechnologies and related biomedical industries. This Master program called Management in Biophotonics and Biotechnologies provides students with the necessary training, education and problem-solving skills to produce managers who are better equipped to handle the challenges of modern business in modern biotechnologies. Administered jointly by Cranfield University (UK) and Saratov State University, Russia) graduates possess a blend of engineering, biotechnologies, business and interpersonal skills necessary for success in industry. The Master courses combine a regular year program in biophotonics & biotechnologies disciplines with the core requirements of a Master degree. A major advantage of the program is that it will provide skills not currently available to graduates in any other program, and it will give the graduates an extra competitive edge for getting a job then.

  19. Undergraduate Biotechnology Students' Views of Science Communication

    ERIC Educational Resources Information Center

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology…

  20. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At

  1. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200

  2. Electron shuttles in biotechnology.

    PubMed

    Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi

    2009-12-01

    Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes.

  3. 75 FR 68598 - Notice of Appointment of Members to the National Agricultural Research, Extension, Education, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... follows: Category F. ``National Food Animal Science Society,'' Nancy M. Cox, Director, Kentucky... and processing, forestry research, crop and animal science, land-grant institutions, non-land grant college or university with a historic commitment to research in the food and agricultural sciences, food...

  4. Relevance of microbial coculture fermentations in biotechnology.

    PubMed

    Bader, J; Mast-Gerlach, E; Popović, M K; Bajpai, R; Stahl, U

    2010-08-01

    The purpose of this article is to review coculture fermentations in industrial biotechnology. Examples for the advantageous utilization of cocultures instead of single cultivations include the production of bulk chemicals, enzymes, food additives, antimicrobial substances and microbial fuel cells. Coculture fermentations may result in increased yield, improved control of product qualities and the possibility of utilizing cheaper substrates. Cocultivation of different micro-organisms may also help to identify and develop new biotechnological substances. The relevance of coculture fermentations and the potential of improving existing processes as well as the production of new chemical compounds in industrial biotechnology are pointed out here by means of more than 35 examples.

  5. The command of biotechnology and merciful conquest in military opposition.

    PubMed

    Guo, Ji-Wei

    2009-01-01

    Biotechnology has an increasingly extensive use for military purposes. With the upcoming age of biotechnology, military operations are depending more on biotechnical methods. Judging from the evolving law of the theory of command, the command of biotechnology is feasible and inevitable. The report discusses some basic characteristics of modern theories of command, as well as the mature possibility of the command theory of military biotechnology. The evolution of the command theory is closely associated with the development of military medicine. This theory is expected to achieve successes in wars in an ultramicro, nonlethal, reversible, and merciful way and will play an important role in biotechnological identification and orientation, defense and attack, and the maintenance of fighting powers and biological monitoring. The command of military biotechnology has not become a part of the virtual military power yet, but it is an exigent strategic task to construct and perfect this theory.

  6. Biotechnology Process Engineering Center at MIT - Overview

    Science.gov Websites

    laboratories. Biotechnology-related research in the labs of over 15 faculty members in the Biological 60,000 square feet for biotechnology-related engineering research. This centralization and consolidation wider array of equipment and facilities available in other MIT labs and Centers. Some examples include

  7. Biotechnology Education and the Internet. ERIC Digest.

    ERIC Educational Resources Information Center

    Lee, Thomas

    The world of modern biotechnology is based on recent developments in molecular biology, especially those in genetic engineering. Since this is a relatively new and rapidly advancing field of study, there are few traditional sources of information and activities. This digest highlights biotechnology resources including those that can be found on…

  8. Biotechnology Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This program quide presents the biotechnology curriculum for technical institutes in Georgia. The general information section contains the following: purpose and objectives; program description, including admissions, typical job titles, and accreditation and certification; and curriculum model, including standard curriculum sequence and lists of…

  9. Debated agronomy: public discourse and the future of biotechnology policy in Ghana

    PubMed Central

    Braimah, Joseph A.; Atuoye, Kilian N.; Vercillo, Siera; Warring, Carrie; Luginaah, Isaac

    2017-01-01

    ABSTRACT This paper examines the highly contested and ongoing biotechnology (Bt) policy-making process in Ghana. We analyse media content on how Bt is viewed in the context of Ghana’s parliamentary debate on the Plant Breeders Bill and within the broader public policy-making literature. This paper does not seek to take a position on Bt or the Bill, but to understand how policy actors influence the debate with political and scientific rhetoric in Ghana. The study reveals that in the midst of scientific uncertainties of Bt’s potential for sustainable agriculture production and food security, policy decisions that encourage its future adoption are heavily influenced by health, scientific, economic, environmental and political factors dictated by different ideologies, values and norms. While locally pioneered plant breeding is visible and common in the Ghanaian food chain, plant breeding/GMOs/Bt from international corporations is strongly resisted by anti-GMO coalitions. Understanding the complex and messy nature of Bt policy-making is critical for future development of agricultural technology in Ghana and elsewhere. PMID:29147107

  10. Debated agronomy: public discourse and the future of biotechnology policy in Ghana.

    PubMed

    Braimah, Joseph A; Atuoye, Kilian N; Vercillo, Siera; Warring, Carrie; Luginaah, Isaac

    2017-01-01

    This paper examines the highly contested and ongoing biotechnology (Bt) policy-making process in Ghana. We analyse media content on how Bt is viewed in the context of Ghana's parliamentary debate on the Plant Breeders Bill and within the broader public policy-making literature. This paper does not seek to take a position on Bt or the Bill, but to understand how policy actors influence the debate with political and scientific rhetoric in Ghana. The study reveals that in the midst of scientific uncertainties of Bt's potential for sustainable agriculture production and food security, policy decisions that encourage its future adoption are heavily influenced by health, scientific, economic, environmental and political factors dictated by different ideologies, values and norms. While locally pioneered plant breeding is visible and common in the Ghanaian food chain, plant breeding/GMOs/Bt from international corporations is strongly resisted by anti-GMO coalitions. Understanding the complex and messy nature of Bt policy-making is critical for future development of agricultural technology in Ghana and elsewhere.

  11. Matching Society Values: Students' Views of Biotechnology

    ERIC Educational Resources Information Center

    Saez, Maria J.; Nino, Angela Gomez; Carretero, Antonio

    2008-01-01

    The rapid growth of biotechnology knowledge during the past decades has made it necessary to rethink the contents of the school curriculum and has provoked a consideration of the ethical and social issues related to the use of biotechnological applications. With the financial assistance of the European Union, the European Initiative for…

  12. Fueling industrial biotechnology growth with bioethanol.

    PubMed

    Otero, José Manuel; Panagiotou, Gianni; Olsson, Lisbeth

    2007-01-01

    Industrial biotechnology is the conversion of biomass via biocatalysis, microbial fermentation, or cell culture to produce chemicals, materials, and/or energy. Industrial biotechnology processes aim to be cost-competitive, environmentally favorable, and self-sustaining compared to their petrochemical equivalents. Common to all processes for the production of energy, commodity, added value, or fine chemicals is that raw materials comprise the most significant cost fraction, particularly as operating efficiencies increase through practice and improving technologies. Today, crude petroleum represents the dominant raw material for the energy and chemical sectors worldwide. Within the last 5 years petroleum prices, stability, and supply have increased, decreased, and been threatened, respectively, driving a renewed interest across academic, government, and corporate centers to utilize biomass as an alternative raw material. Specifically, bio-based ethanol as an alternative biofuel has emerged as the single largest biotechnology commodity, with close to 46 billion L produced worldwide in 2005. Bioethanol is a leading example of how systems biology tools have significantly enhanced metabolic engineering, inverse metabolic engineering, and protein and enzyme engineering strategies. This enhancement stems from method development for measurement, analysis, and data integration of functional genomics, including the transcriptome, proteome, metabolome, and fluxome. This review will show that future industrial biotechnology process development will benefit tremendously from the precedent set by bioethanol - that enabling technologies (e.g., systems biology tools) coupled with favorable economic and socio-political driving forces do yield profitable, sustainable, and environmentally responsible processes. Biofuel will continue to be the keystone of any industrial biotechnology-based economy whereby biorefineries leverage common raw materials and unit operations to integrate

  13. 76 FR 78225 - Notice of Appointment of Members to the National Agricultural Research, Extension, Education, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ..., Institute of Food Technologists and Vice President of Research & Dean of the School of Graduate Studies..., filing of petitions and applications and agency #0;statements of organization and functions are examples... Secretary Notice of Appointment of Members to the National Agricultural Research, Extension, Education, and...

  14. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications.

    PubMed

    Wang, Yongzhong; Fan, Zhen; Shao, Lei; Kong, Xiaowei; Hou, Xianjuan; Tian, Dongrui; Sun, Ying; Xiao, Yazhong; Yu, Li

    2016-01-01

    Owing to peculiar properties of nanobody, including nanoscale size, robust structure, stable and soluble behaviors in aqueous solution, reversible refolding, high affinity and specificity for only one cognate target, superior cryptic cleft accessibility, and deep tissue penetration, as well as a sustainable source, it has been an ideal research tool for the development of sophisticated nanobiotechnologies. Currently, the nanobody has been evolved into versatile research and application tool kits for diverse biomedical and biotechnology applications. Various nanobody-derived formats, including the nanobody itself, the radionuclide or fluorescent-labeled nanobodies, nanobody homo- or heteromultimers, nanobody-coated nanoparticles, and nanobody-displayed bacteriophages, have been successfully demonstrated as powerful nanobiotechnological tool kits for basic biomedical research, targeting drug delivery and therapy, disease diagnosis, bioimaging, and agricultural and plant protection. These applications indicate a special advantage of these nanobody-derived technologies, already surpassing the "me-too" products of other equivalent binders, such as the full-length antibodies, single-chain variable fragments, antigen-binding fragments, targeting peptides, and DNA-based aptamers. In this review, we summarize the current state of the art in nanobody research, focusing on the nanobody structural features, nanobody production approach, nanobody-derived nanobiotechnology tool kits, and the potentially diverse applications in biomedicine and biotechnology. The future trends, challenges, and limitations of the nanobody-derived nanobiotechnology tool kits are also discussed.

  15. Biotechnology for the extractive metals industries

    NASA Astrophysics Data System (ADS)

    Brierley, James A.

    1990-01-01

    Biotechnology is an alternative process for the extraction of metals, the beneficiation of ores, and the recovery of metals from aqueous systems. Currently, microbial-based processes are used for leaching copper and uranium, enhancing the recovery of gold from refractory ores, and treating industrial wastewater to recover metal values. Future developments, emanating from fundamental and applied research and advances through genetic engineering, are expected to increase the use and efficiency of these biotechnological processes.

  16. National Children's Center for Rural and Agricultural Health and Safety

    MedlinePlus

    ... Network Grain Safety Model Policy: Youth Employment in Agriculture Agricultural Youth Work Guidelines North American Guidelines for ... Sept. 20 Teaching fall and electrical safety in agriculture: free webinar, Sept. 13 Agricultural Youth Work Guidelines ...

  17. Sex, gender, and health biotechnology: points to consider

    PubMed Central

    2009-01-01

    Background Reproductive technologies have been extensively debated in the literature. As well, feminist economists, environmentalists, and agriculturalists have generated substantial debate and literature on gender. However, the implications for women of health biotechnologies have received relatively less attention. Surprisingly, while gender based frameworks have been proposed in the context of public health policy, practice, health research, and epidemiological research, we could identify no systematic framework for gender analysis of health biotechnology in the developing world. Discussion We propose sex and gender considerations at five critical stages of health biotechnology research and development: priority setting; technology design; clinical trials; commercialization, and health services delivery. Summary Applying a systematic sex and gender framework to five key process stages of health biotechnology research and development could be a first step towards unlocking the opportunities of this promising science for women in the developing world. PMID:19622163

  18. Can plant biotechnology help break the HIV-malaria link?

    PubMed

    Vamvaka, E; Twyman, R M; Christou, P; Capell, T

    2014-01-01

    The population of sub-Saharan Africa is at risk from multiple, poverty-related endemic diseases. HIV and malaria are the most prevalent, but they disproportionately affect different groups of people, i.e. HIV predominantly affects sexually-active adults whereas malaria has a greater impact on children and pregnant women. Nevertheless, there is a significant geographical and epidemiological overlap which results in bidirectional and synergistic interactions with important consequences for public health. The immunosuppressive effects of HIV increase the risk of infection when individuals are exposed to malaria parasites and also the severity of malaria symptoms. Similarly, acute malaria can induce a temporary increase in the HIV viral load. HIV is associated with a wide range of opportunistic infections that can be misdiagnosed as malaria, resulting in the wasteful misuse of antimalarial drugs and a failure to address the genuine cause of the disease. There is also a cumulative risk of toxicity when antiretroviral and antimalarial drugs are given to the same patients. Synergistic approaches involving the control of malaria as a strategy to fight HIV/AIDS and vice versa are therefore needed in co-endemic areas. Plant biotechnology has emerged as a promising approach to tackle poverty-related diseases because plant-derived drugs and vaccines can be produced inexpensively in developing countries and may be distributed using agricultural infrastructure without the need for a cold chain. Here we explore some of the potential contributions of plant biotechnology and its integration into broader multidisciplinary public health programs to combat the two diseases in developing countries. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Introduction to Pharmaceutical Biotechnology, Volume 1; Basic techniques and concepts

    NASA Astrophysics Data System (ADS)

    Bhatia, Saurabh; Goli, Divakar

    2018-05-01

    Animal biotechnology is a broad field including polarities of fundamental and applied research, as well as DNA science, covering key topics of DNA studies and its recent applications. In Introduction to Pharmaceutical Biotechnology, DNA isolation procedures followed by molecular markers and screening methods of the genomic library are explained. Interesting areas like isolation, sequencing and synthesis of genes, with the broader coverage on synthesis of genes, are also described. The book begins with an introduction to biotechnology and its main branches, explaining both the basic science and the applications of biotechnology-derived pharmaceuticals, with special emphasis on their clinical use. It then moves on to historical development and scope of biotechnology with an overall review of early applications that scientists employed long before the field was defined.

  20. Microbial biotechnology and circular economy in wastewater treatment.

    PubMed

    Nielsen, Per Halkjaer

    2017-09-01

    Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process-critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs and perspectives are provided, demonstrating the great importance of microbial biotechnology. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. Yeast biotechnology: teaching the old dog new tricks.

    PubMed

    Mattanovich, Diethard; Sauer, Michael; Gasser, Brigitte

    2014-03-06

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature.

  2. White House Announcement on the Regulation of Biotechnology

    EPA Pesticide Factsheets

    The White House posted a blog unveiling documents as part of the Administration’s continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of the EPA, FDA in evaluating new biotechnologies.

  3. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    PubMed Central

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  4. 7 CFR 3434.5 - Agriculture-related fields.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Agriculture-related fields. 3434.5 Section 3434.5 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE HISPANIC-SERVING AGRICULTURAL COLLEGES AND UNIVERSITIES CERTIFICATION PROCESS § 3434.5 Agriculture...

  5. 7 CFR 3434.5 - Agriculture-related fields.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Agriculture-related fields. 3434.5 Section 3434.5 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE HISPANIC-SERVING AGRICULTURAL COLLEGES AND UNIVERSITIES CERTIFICATION PROCESS § 3434.5 Agriculture...

  6. Global Energy-saving Map of Strong Ocean Currents

    DTIC Science & Technology

    2015-01-01

    Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan) 2(Department of Oceanography, National Sun Yat-sen University, Kaohsiung...World Bank and FAO. (2009). The sunken billions. The economic justification for fisheries reform. Washington, DC, Agriculture and Rural Development

  7. Opportunities in biotechnology.

    PubMed

    Gartland, Kevan M A; Gartland, Jill S

    2018-06-08

    Strategies for biotechnology must take account of opportunities for research, innovation and business growth. At a regional level, public-private collaborations provide potential for such growth and the creation of centres of excellence. By considering recent progress in areas such as genomics, healthcare diagnostics, synthetic biology, gene editing and bio-digital technologies, opportunities for smart, strategic and specialised investment are discussed. These opportunities often involve convergent or disruptive technologies, combining for example elements of pharma-science, molecular biology, bioinformatics and novel device development to enhance biotechnology and the life sciences. Analytical applications use novel devices in mobile health, predictive diagnostics and stratified medicine. Synthetic biology provides opportunities for new product development and increased efficiency for existing processes. Successful centres of excellence should promote public-private business partnerships, clustering and global collaborations based on excellence, smart strategies and innovation if they are to remain sustainable in the longer term. Copyright © 2018. Published by Elsevier B.V.

  8. To amend the Export Apple Act to permit the export of apples to Canada in bulk bins without certification by the Department of Agriculture.

    THOMAS, 113th Congress

    Rep. Owens, William L. [D-NY-21

    2013-03-20

    House - 04/02/2013 Referred to the Subcommittee on Horticulture, Research, Biotechnology, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. The Biotechnology Facility for International Space Station

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas; Lundquist, Charles; Hurlbert, Katy; Tuxhorn, Jennifer

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput. With the BTF, dedicated ground support, and a community of investigators, the goals of the Cellular Biotechnology Program at Johnson Space Center are to: Support approximately 400 typical investigator experiments during the nominal design life of BTF (10 years). Support a steady increase in investigations per year, starting with stationary bioreactor experiments and adding rotating bioreactor experiments at a later date. Support at least 80% of all new cellular biotechnology investigations selected through the NASA Research Announcement (NRA) process. Modular components - to allow sequential and continuous experiment operations without cross-contamination Increased cold storage capability (+4 C, -80 C, -180 C). Storage of frozen cell culture inoculum - to allow sequential investigations. Storage of post-experiment samples - for return of high quality samples. Increased number of cell cultures per investigation, with replicates - to provide sufficient number of samples for data analysis and publication of results in peer-reviewed scientific journals.

  10. Ethical limitations in patenting biotechnological inventions.

    PubMed

    Lugagnani, V

    1999-01-01

    In order to connect ethical considerations with practical limits to patentability, the moral judgement should possibly move from the exploitation of the invention to the nature and/or objectives of Research and Development (R&D) projects which have produced it: in other words, it appears quite reasonable and logical that Society is not rewarding unethical R&D activities by granting intellectual property rights. As far as biotechnology R&D is concerned, ethical guidance can be derived from the 1996 Council of EuropeOs OConvention for the protection of human rights and dignity of the human being with regard to the application of biology and medicineO, whose Chapter V - Scientific research - provides guidelines on: i. protection of persons undergoing research (e.g. informed consent); ii. protection of persons not able to consent to research; iii. research on embryos in vitro. As far as the specific point of patenting biotechnology inventions is concerned, the four exclusions prescribed by Directive 98/44/EC (i.e. human cloning, human germ-line gene therapy, use of human embryos for commercial purposes, unjustified animal suffering for medical purposes) are all we have in Europe in terms of ethical guidance to patentability. In Italy, in particular, we certainly need far more comprehensive legislation, expressing SocietyOs demand to provide ethical control of modern biotechnology. However it is quite difficult to claim that ethical concerns are being raised by currently awarded biotechnology patents related to living organisms and material thereof; they largely deal with the results of genomic R&D, purposely and usefully oriented toward improving health-care and agri-food processes, products and services. ONo patents on lifeOO can be an appealing slogan of militants against modern biotechnology, but it is far too much of an over-simplified abstraction to become the Eleventh Commandment our Society.

  11. Evaluation of an In-service Course on Biotechnology.

    ERIC Educational Resources Information Center

    Lock, Roger; Dunkerton, John

    1989-01-01

    Described is the evaluation of an inservice course on biotechnology. Evaluated were the influence that the course had on teacher knowledge, use of practical work, problem solving investigations and theoretical aspects of biotechnology. A practical model of inservice evaluation is provided. (Author/CW)

  12. Development of health biotechnology in developing countries: can private-sector players be the prime movers?

    PubMed

    Abuduxike, Gulifeiya; Aljunid, Syed Mohamed

    2012-01-01

    Health biotechnology has rapidly become vital in helping healthcare systems meet the needs of the poor in developing countries. This key industry also generates revenue and creates employment opportunities in these countries. To successfully develop biotechnology industries in developing nations, it is critical to understand and improve the system of health innovation, as well as the role of each innovative sector and the linkages between the sectors. Countries' science and technology capacities can be strengthened only if there are non-linear linkages and strong interrelations among players throughout the innovation process; these relationships generate and transfer knowledge related to commercialization of the innovative health products. The private sector is one of the main actors in healthcare innovation, contributing significantly to the development of health biotechnology via knowledge, expertise, resources and relationships to translate basic research and development into new commercial products and innovative processes. The role of the private sector has been increasingly recognized and emphasized by governments, agencies and international organizations. Many partnerships between the public and private sector have been established to leverage the potential of the private sector to produce more affordable healthcare products. Several developing countries that have been actively involved in health biotechnology are becoming the main players in this industry. The aim of this paper is to discuss the role of the private sector in health biotechnology development and to study its impact on health and economic growth through case studies in South Korea, India and Brazil. The paper also discussed the approaches by which the private sector can improve the health and economic status of the poor. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Seeking Solutions for Tomorrow's Challenges. Proceedings of the Annual National Agricultural Education Research Meeting (13th, Dallas, Texas, December 5, 1986).

    ERIC Educational Resources Information Center

    Kahler, Alan A., Ed.

    This proceedings volume contains a total of 39 papers. The following 28 selected titles are cited as those most clearly relevant to education: "A National Study of Teacher Educators and State Supervisors in Agricultural Education" (Foster, Horner); "A Profile of the Effective Vocational Agriculture Teacher" (Rheault, Miller); "Analysis of Needs:…

  14. HEALTH AND EXPOSURE RESEARCH FOR THE AGRICULTURAL COMMUNITY: THE AGRICULTURAL HEALTH STUDY

    EPA Science Inventory

    The Agricultural Health Study (AHS) is a collaborative effort between the National Cancer Institute, the National Institute of Environmental Health Sciences, the U.S. Environmental Protection Agency, and the National Institute for Occupational Safety and Health. The AHS is the...

  15. Yeast biotechnology: teaching the old dog new tricks

    PubMed Central

    2014-01-01

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature. PMID:24602262

  16. The impact of plant biotechnology on food allergy.

    PubMed

    Herman, Eliot M; Burks, A Wesley

    2011-04-01

    Concerns about food allergy and its societal growth are intertwined with the growing advances in plant biotechnology. The knowledge of plant genes and protein structures provides the key foundation to understanding biochemical processes that produce food allergy. Biotechnology offers the prospect of producing low-allergen or allergen null plants that could mitigate the allergic response. Modified low-IgE binding variants of allergens could be used as a vaccine to build immunotolerance in sensitive individuals. The potential to introduce new allergens into the food supply by biotechnology products is a regulatory concern. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Production of bioproducts by endophytic fungi: chemical ecology, biotechnological applications, bottlenecks, and solutions.

    PubMed

    Yan, Lu; Zhao, Haobin; Zhao, Xixi; Xu, Xiaoguang; Di, Yichao; Jiang, Chunmei; Shi, Junling; Shao, Dongyan; Huang, Qingsheng; Yang, Hui; Jin, Mingliang

    2018-05-29

    Endophytes are microorganisms that colonize the interior of host plants without causing apparent disease. They have been widely studied for their ability to modulate relationships between plants and biotic/abiotic stresses, often producing valuable secondary metabolites that can affect host physiology. Owing to the advantages of microbial fermentation over plant/cell cultivation and chemical synthesis, endophytic fungi have received significant attention as a mean for secondary metabolite production. This article summarizes currently reported results on plant-endophyte interaction hypotheses and highlights the biotechnological applications of endophytic fungi and their metabolites in agriculture, environment, biomedicine, energy, and biocatalysts. Current bottlenecks in industrial development and commercial applications as well as possible solutions are also discussed.

  18. Protein-based underwater adhesives and the prospects for their biotechnological production.

    PubMed

    Stewart, Russell J

    2011-01-01

    Biotechnological approaches to practical production of biological protein-based adhesives have had limited success over the last several decades. Broader efforts to produce recombinant adhesive proteins may have been limited by early disappointments. More recent synthetic polymer approaches have successfully replicated some aspects of natural underwater adhesives. For example, synthetic polymers, inspired by mussels, containing the catecholic functional group of 3,4-L-dihydroxyphenylalanine adhere strongly to wet metal oxide surfaces. Synthetic complex coacervates inspired by the Sandcastle worm are water-borne adhesives that can be delivered underwater without dispersing. Synthetic approaches offer several advantages, including versatile chemistries and scalable production. In the future, more sophisticated mimetic adhesives may combine synthetic copolymers with recombinant or agriculture-derived proteins to better replicate the structural and functional organization of natural adhesives.

  19. Protein-based underwater adhesives and the prospects for their biotechnological production

    PubMed Central

    Stewart, Russell J.

    2011-01-01

    Biotechnological approaches to practical production of biological protein-based adhesives have had limited success over the last several decades. Broader efforts to produce recombinant adhesive proteins may have been limited by early disappointments. More recent synthetic polymer approaches have successfully replicated some aspects of natural underwater adhesives. For example, synthetic polymers, inspired by mussels, containing the catecholic functional group of 3,4-L-dihydroxyphenylalanine adhere strongly to wet metal oxide surfaces. Synthetic complex coacervates inspired by the Sandcastle worm are water-borne adhesives that can be delivered underwater without dispersing. Synthetic approaches offer several advantages, including versatile chemistries and scalable production. In the future, more sophisticated mimetic adhesives may combine synthetic copolymers with recombinant or agriculture-derived proteins to better replicate the structural and functional organization of natural adhesives. PMID:20890598

  20. Patho-biotechnology: using bad bugs to do good things.

    PubMed

    Sleator, Roy D; Hill, Colin

    2006-04-01

    Pathogenic bacteria have evolved sophisticated strategies to overcome host defences, to interact with the immune system and to interfere with essential host systems. We coin the term 'patho-biotechnology' to describe the exploitation of these valuable traits in biotechnology, medicine and food. This approach shows promise for the development of novel vaccine and drug delivery systems, as well as for the design of more technologically robust and effective probiotic cultures with improved biotechnological and clinical applications. The genetic tractability of Listeria monocytogenes, the availability of the complete genome sequence of this intracellular pathogen, its ability to cope with stress, and its ability to traverse the gastrointestinal tract and induce a strong cellular immune response make L. monocytogenes an ideal model organism for demonstrating the patho-biotechnology concept.