Sample records for national atmospheric release

  1. Local Integration of the National Atmospheric Release Advisory Center with Cities (LINC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ermak, D L; Tull, J E; Mosley-Rovi, R

    The objective of the ''Local Integration of the National Atmospheric Release Advisory Center with Cities'' (LINC) program is to demonstrate the capability for providing local government agencies with an advanced operational atmospheric plume prediction capability, which can be seamlessly integrated with appropriate federal agency support for homeland security applications. LINC is a Domestic Demonstration and Application Program (DDAP) funded by the Chemical and Biological National Security Program (CBNP), which is part of the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). LINC will make use of capabilities that have been developed the CBNP, and integrated into the National Atmosphericmore » Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). NARAC tools services will be provided to pilot study cities and counties to map plumes from terrorism threats. Support to these local agencies will include training and customized support for exercises, special events, and general emergencies. NARAC provides tools and services that map the probable spread of hazardous material which have been accidentally or intentionally released into the atmosphere. Primarily supported by the DOE, NARAC is a national support and resource center for planning, real-time assessment and detailed studies of incidents involving a wide variety of hazards, including radiological, chemical, or biological releases. NARAC is a distributed system, providing modeling and geographical information tools for use on an end user's computer system, as well as real-time access to global meteorological and geographical databases and advanced three-dimensional model predictions.« less

  2. Overview of the National Atmospheric Release Advisory Center's Urban Research and Development Activities

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Sugiyama, G.; Nasstrom, J.

    2007-12-01

    This presentation describes the tools and services provided by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL) for modeling the impacts of airborne hazardous materials. NARAC provides atmospheric plume modeling tools and services for chemical, biological, radiological, and nuclear airborne hazards. NARAC can simulate downwind effects from a variety of scenarios, including fires, industrial and transportation accidents, radiation dispersal device explosions, hazardous material spills, sprayers, nuclear power plant accidents, and nuclear detonations. NARAC collaborates on radiological dispersion source terms and effects models with Sandia National Laboratories and the U.S. Nuclear Regulatory Commission. NARAC was designated the interim provider of capabilities for the Department of Homeland Security's Interagency Modeling and Atmospheric Assessment Center by the Homeland Security Council in April 2004. The NARAC suite of software tools include simple stand-alone, local-scale plume modeling tools for end-user's computers, and Web- and Internet-based software to access advanced modeling tools and expert analyses from the national center at LLNL. Initial automated, 3-D predictions of plume exposure limits and protective action guidelines for emergency responders and managers are available from the center in 5-10 minutes. These can be followed immediately by quality-assured, refined analyses by 24 x 7 on-duty or on-call NARAC staff. NARAC continues to refine calculations using updated on-scene information, including measurements, until all airborne releases have stopped and the hazardous threats are mapped and impacts assessed. Model predictions include the 3-D spatial and time-varying effects of weather, land use, and terrain, on scales from the local to regional to global. Real-time meteorological data and forecasts are provided by redundant communications links to the U.S. National Oceanic and Atmospheric

  3. Predicting Atmospheric Releases from the September 3, 2017 North Korean Event

    NASA Astrophysics Data System (ADS)

    Lucas, D. D.; Simpson, M. D.; Glascoe, L. G.

    2017-12-01

    Underground nuclear explosions produce radionuclides that can be vented to the atmosphere and transported to International Monitoring System (IMS) measurement stations. Although a positive atmospheric detection from North Korea's declared test on September 3, 2017 has not been reported at any IMS station through early October, atmospheric transport models can predict when and where detections may arise and provide valuable information to optimize air collection strategies. We present predictive atmospheric transport simulations initiated in the early days after the event. Wind fields were simulated with the Weather Research and Forecast model and used to transport air tracers from an ensemble of releases in the FLEXPART dispersion model. If early venting had occurred, the simulations suggested that detections were possible at the IMS station in Takasaki, Japan. On-going and future research efforts associated with nuclear testing are focused on quantifying meteorological uncertainty, simulating releases in complex terrain, and developing new statistical methods for source attribution. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and is released as LLNL-ABS-740341.

  4. Atmospheric Dispersion Modeling of the February 2014 Waste Isolation Pilot Plant Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasstrom, John; Piggott, Tom; Simpson, Matthew

    2015-07-22

    This report presents the results of a simulation of the atmospheric dispersion and deposition of radioactivity released from the Waste Isolation Pilot Plant (WIPP) site in New Mexico in February 2014. These simulations were made by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL), and supersede NARAC simulation results published in a previous WIPP report (WIPP, 2014). The results presented in this report use additional, more detailed data from WIPP on the specific radionuclides released, radioactivity release amounts and release times. Compared to the previous NARAC simulations, the new simulation results in this report aremore » based on more detailed modeling of the winds, turbulence, and particle dry deposition. In addition, the initial plume rise from the exhaust vent was considered in the new simulations, but not in the previous NARAC simulations. The new model results show some small differences compared to previous results, but do not change the conclusions in the WIPP (2014) report. Presented are the data and assumptions used in these model simulations, as well as the model-predicted dose and deposition on and near the WIPP site. A comparison of predicted and measured radionuclide-specific air concentrations is also presented.« less

  5. National Atmospheric Release Advisory Center dispersion modeling of the Full-scale Radiological Dispersal device (FSRDD) field trials

    DOE PAGES

    Neuscamman, Stephanie J.; Yu, Kristen L.

    2016-05-01

    The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorologicalmore » observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3–D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Lastly, changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.« less

  6. Representative Atmospheric Plume Development for Elevated Releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Lowrey, Justin D.; McIntyre, Justin I.

    2014-02-01

    An atmospheric explosion of a low-yield nuclear device will produce a large number of radioactive isotopes, some of which can be measured with airborne detection systems. However, properly equipped aircraft may not arrive in the region where an explosion occurred for a number of hours after the event. Atmospheric conditions will have caused the radioactive plume to move and diffuse before the aircraft arrives. The science behind predicting atmospheric plume movement has advanced enough that the location of the maximum concentrations in the plume can be determined reasonably accurately in real time, or near real time. Given the assumption thatmore » an aircraft can follow a plume, this study addresses the amount of atmospheric dilution expected to occur in a representative plume as a function of time past the release event. The approach models atmospheric transport of hypothetical releases from a single location for every day in a year using the publically available HYSPLIT code. The effective dilution factors for the point of maximum concentration in an elevated plume based on a release of a non-decaying, non-depositing tracer can vary by orders of magnitude depending on the day of the release, even for the same number of hours after the release event. However, the median of the dilution factors based on releases for 365 consecutive days at one site follows a power law relationship in time, as shown in Figure S-1. The relationship is good enough to provide a general rule of thumb for estimating typical future dilution factors in a plume starting at the same point. However, the coefficients of the power law function may vary for different release point locations. Radioactive decay causes the effective dilution factors to decrease more quickly with the time past the release event than the dilution factors based on a non-decaying tracer. An analytical expression for the dilution factors of isotopes with different half-lives can be developed given the power law

  7. Contact us | National Oceanic and Atmospheric Administration

    Science.gov Websites

    MENU CLOSE NOAA Home National Oceanic and Atmospheric AdministrationU.S. Department of Commerce Find mailing address National Oceanic and Atmospheric Administration 1401 Constitution Avenue NW, Room 5128 Great Barrier Reef, March 2016. NOAA Home National Oceanic and Atmospheric AdministrationU.S. Department

  8. Atmospheric Mercury Deposition Monitoring – National Atmospheric Deposition Program (NADP)

    EPA Science Inventory

    The National Atmospheric Deposition Program (NADP) developed and operates a collaborative network of atmospheric mercury monitoring sites based in North America – the Atmospheric Mercury Network (AMNet). The justification for the network was growing interest and demand from many ...

  9. 76 FR 65183 - National Oceanic and Atmospheric Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment... Oceanic and Atmospheric Administration (NOAA), Department of Commerce (DOC). ACTION: Notice of open..., National Oceanic and Atmospheric Administration. [FR Doc. 2011-27113 Filed 10-19-11; 8:45 am] BILLING CODE...

  10. Release of ethanol to the atmosphere during use of consumer cleaning products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooley, J.; Nazaroff, W.W.; Hodgson, A.T.

    1990-08-01

    Liquid laundry and hand dish washing detergents contain volatile organic compounds, including ethanol, that may be liberated during use and contribute to photochemical air pollution. In this study, the release of ethanol to the atmosphere during simulated household use of liquid detergents was measured. Three replicate experiments, plus a blank, were conducted in a 20-m{sup 3} environmental chamber for each of four conditions: typical dish washing (DT), high-release dish washing (DH), typical laundry (LT), and high-release laundry (LH). Average amounts of ethanol transferred to the atmosphere per use (and the fraction of ethanol used so liberated) were 32 mg (0.038)more » for DT, 100 mg (0.049) for DH, 18 mg (0.002) for LT, and 110 mg (0.011) for LH. Thus, a large fraction of the ethanol added to wash solutions with liquid detergents is discharged to the sewer rather than transferred to the atmosphere during use.« less

  11. Recharge of the early atmosphere of Mars by impact-induced release of CO2

    USGS Publications Warehouse

    Carr, Michael H.

    1989-01-01

    Channels on the Martian surface suggest that Mars had an early, relatively thick atmosphere. If the atmosphere was thick enough for water to be stable at the surface, CO2 in the atmosphere would have been fixed as carbonates on a relatively short time scale, previously estimated to be 1 bar every 107 years. This loss must have been offset by some replenishment mechanism to account for the numerous valley networks in the oldest surviving terrains. Impacts could have released CO2 into the atmosphere by burial, by shock-induced release during impact events, and by addition of carbon to Mars from the impacting bolides. Depending on the relationship between the transient cavity diameter and the diameter of the resulting crater, burial rates as a result of impact gardening at the end of heavy bombardment are estimated to range from 20 to 45 m/106 years, on the assumption that cratering rates in Mars were similar to those of the Nectarian Period on the Moon. At these rates 0.1-0.2 bar of CO2 could have been released every 107 years as a result of burial to depths where dissociation temperatures of carbonates were reached. Modeling of large impacts suggests that an additional 0.01 to 0.02 bar of CO2 could have been released every 107 years during the actual impacts. In the unlikely event that all the impacting material was composed of carbonaceous chondrites, a further 0.3 bar of CO2 could have been added to the atmosphere every 107 years by oxidation of meteoritic carbon. Even when supplemented by the volcanically induced release of CO2, these release rates are barely sufficient to sustain an early atmosphere if water were continuously present at the surface. The results suggest that water may have been only intermittently present on the surface early in the planet's history.

  12. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, S

    2007-08-15

    Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based onmore » expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.« less

  13. Mars Global Reference Atmospheric Model (Mars-GRAM): Release No. 2 - Overview and applications

    NASA Technical Reports Server (NTRS)

    James, B.; Johnson, D.; Tyree, L.

    1993-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM), a science and engineering model for empirically parameterizing the temperature, pressure, density, and wind structure of the Martian atmosphere, is described with particular attention to the model's newest version, Mars-GRAM, Release No. 2 and to the improvements incorporated into the Release No. 2 model as compared with the Release No. 1 version. These improvements include (1) an addition of a new capability to simulate local-scale Martian dust storms and the growth and decay of these storms; (2) an addition of the Zurek and Haberle (1988) wave perturbation model, for simulating tidal perturbation effects; and (3) a new modular version of Mars-GRAM, for incorporation as a subroutine into other codes.

  14. Maxine: A spreadsheet for estimating dose from chronic atmospheric radioactive releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannik, Tim; Bell, Evaleigh; Dixon, Kenneth

    MAXINE is an EXCEL© spreadsheet, which is used to estimate dose to individuals for routine and accidental atmospheric releases of radioactive materials. MAXINE does not contain an atmospheric dispersion model, but rather doses are estimated using air and ground concentrations as input. Minimal input is required to run the program and site specific parameters are used when possible. Complete code description, verification of models, and user’s manual have been included.

  15. Atmospheric plume progression as a function of time and distance from the release point for radioactive isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Bowyer, Ted W.; Cameron, Ian M.

    2015-10-01

    The International Monitoring System contains up to 80 stations around the world that have aerosol and xenon monitoring systems designed to detect releases of radioactive materials to the atmosphere from nuclear tests. A rule of thumb description of plume concentration and duration versus time and distance from the release point is useful when designing and deploying new sample collection systems. This paper uses plume development from atmospheric transport modeling to provide a power-law rule describing atmospheric dilution factors as a function of distance from the release point.

  16. Impact of methane flow through deformable lake sediments on atmospheric release

    NASA Astrophysics Data System (ADS)

    Scandella, B.; Juanes, R.

    2010-12-01

    Methane is a potent greenhouse gas that is generated geothermally and biologically in lake and ocean sediments. Free gas bubbles may escape oxidative traps and contribute more to the atmospheric source than dissolved methane, but the details of the methane release depend on the interactions between the multiple fluid phases and the deformable porous medium. We present a model and supporting laboratory experiments of methane release through “breathing” dynamic flow conduits that open in response to drops in the hydrostatic load on lake sediments, which has been validated against a high-resolution record of free gas flux and hydrostatic pressure in Upper Mystic Lake, MA. In contrast to previous linear elastic fracture mechanics analysis of gassy sediments, the evolution of gas transport in a deformable compliant sediment is presented within the framework of multiphase poroplasticity. Experiments address how strongly the mode and rate of gas flow, captured by our model, impacts the size of bubbles released into the water column. A bubble's size in turn determines how efficiently it transports methane to the atmosphere, and integrating this effect will be critical to improving estimates of the atmospheric methane source from lakes. Cross-sectional schematic of lake sediments showing two venting sites: one open at left and one closed at right. The vertical release of gas bubbles (red) at the open venting site creates a local pressure drop, which drives both bubble formation from the methane-rich pore water (higher concentrations shaded darker red) and lateral advection of dissolved methane (purple arrows). Even as bubbles in the open site escape, those at the closed site remain trapped.

  17. 2015 TRI National Analysis: Toxics Release Inventory Releases at Various Summary Levels

    EPA Pesticide Factsheets

    The TRI National Analysis is EPA's annual interpretation of TRI data at various summary levels. It highlights how toxic chemical wastes were managed, where toxic chemicals were released and how the 2015 TRI data compare to data from previous years. This dataset reports US state, county, large aquatic ecosystem, metro/micropolitan statistical area, and facility level statistics from 2015 TRI releases, including information on: number of 2015 TRI facilities in the geographic area and their releases (total, water, air, land); population information, including populations living within 1 mile of TRI facilities (total, minority, in poverty); and Risk Screening Environmental Indicators (RSEI) model related pounds, toxicity-weighted pounds, and RSEI score. The source of administrative boundary data is the 2013 cartographic boundary shapefiles. Location of facilities is provided by EPA's Facility Registry Service (FRS). Large Aquatic Ecosystems boundaries were dissolved from the hydrologic unit boundaries and codes for the United States, Puerto Rico, and the U.S. Virgin Islands. It was revised for inclusion in the National Atlas of the United States of America (November 2002), and updated to match the streams file created by the USGS National Mapping Division (NMD) for the National Atlas of the United States of America.

  18. Arctic Council Nations Could Encourage Development of Climate Indicator: Flux to the Atmosphere from Arctic Permafrost Carbon

    NASA Astrophysics Data System (ADS)

    Ekwurzel, B.; Yona, L.; Natali, S.; Holmes, R. M.; Schuur, E.

    2015-12-01

    Permafrost regions store almost twice the carbon in the atmosphere (Tarnocai et al 2009). As climate warms a proportion of this carbon will be released as carbon dioxide and methane. The Arctic Council may be best suited to harness international scientific collaboration for policy relevant knowledge about the global impacts of permafrost thaw. Scientists in Arctic Council and observer states have historically collaborated on permafrost research (e.g. Permafrost Carbon Network, part of Study of Environmental Arctic Change (SEARCH) project). This work increased knowledge of permafrost carbon pool size and vulnerability. However, data gaps persist across the Arctic. Despite gaps, numerous studies directly inform international policy negotiations aiming to stay below 2° C. Some suggest "permafrost carbon feedback" may comprise 3 to 11% of total allowed emissions through 2100 under a RCP4.5 (Schaefer et al2014). Understanding and accounting for future permafrost atmospheric carbon release requires science and policy coordination that the Arctic Council could incentivize. For example, Council nations could convene scientists and stakeholders to develop a Permafrost-Climate Indicator providing more direct decision support than current permafrost indicators, and identify research needed for a periodic estimate of Arctic permafrost CO2 and CH4 emissions. This presentation covers current challenges scientists and policymakers may face to develop a practical and robust Permafrost Climate Indicator. For example, which timescales are most appropriate for international emissions commitments? Do policy-relevant timescales align with current scientific knowledge? What are the uncertainties and how can they be decreased? We present likely strengths and challenges of a Permafrost Climate Indicator co-developed by scientists and stakeholders. Potential greenhouse gas atmospheric flux from Arctic permafrost carbon may be greater than some nations' United Nations emissions reductions

  19. NOAA - National Oceanic and Atmospheric Administration - Significant Ozone

    Science.gov Websites

    RESEARCH COASTS CAREERS National Oceanic and Atmospheric Administration, United States Department of smallest since 1986. The record low of 89 DU was recorded on Oct. 6, 1993. The atmospheric ozone layer nearly completed a year-long assignment at South Pole Station where they collect atmospheric data and

  20. ATMOSPHERIC RELEASES FROM STANDARDIZED NUCLEAR POWER PLANTS: A WIND TUNNEL STUDY

    EPA Science Inventory

    Laboratory experiments were conducted to simulate radiopollutant effluents released to the atmosphere from two standard design nuclear power plants. The main objective of the study was to compare the dispersion in the wake of the standardized nuclear power plants with that in a s...

  1. Recharge of the early atmosphere of Mars by impact-induced release of CO2

    NASA Technical Reports Server (NTRS)

    Carr, Michael H.

    1989-01-01

    The question as to whether high impact rates early in the history of Mars could have aided in maintaining a relatively thick CO2 atmosphere is discussed. Such impacts could have released CO2 into the atmosphere by burial, by shock-induced release during impact events, and by the addition of carbon to Mars from the impacting bolides. On the assumption that cratering rates on Mars were comparable to those of the moon's Nectarial period, burial rates are a result of 'impact gardening' at the end of heavy bombardment are estimated to have ranged from 20 to 45 m/million years; at these rates, 0.1-0.2 bar of CO2 would have been released every 10 million years as a result of burial to depths at which carbonate dissociation temperatures are encountered.

  2. 77 FR 74174 - National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration (NOAA) National Climate... NOAA National Climate Assessment and Development Advisory Committee (NCADAC). Time and Date: The..., DC 20006. The public will not be able to dial into the call. Please check the National Climate...

  3. 50 CFR 635.26 - Catch and release.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Catch and release. 635.26 Section 635.26 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE ATLANTIC HIGHLY MIGRATORY SPECIES Management Measures § 635.26 Catch and release. (a...

  4. Decreased atmospheric sulfur deposition across the southeastern U.S.: When will watersheds release stored sulfate?

    USGS Publications Warehouse

    Rice, Karen C.; Scanlon, Todd M.; Lynch, Jason A.; Cosby, Bernard J.

    2014-01-01

    Emissions of sulfur dioxide (SO2) to the atmosphere lead to atmospheric deposition of sulfate (SO42-), which is the dominant strong acid anion causing acidification of surface waters and soils in the eastern United States (U.S.). Since passage of the Clean Air Act and its Amendments, atmospheric deposition of SO2 in this region has declined by over 80%, but few corresponding decreases in stream-water SO42- concentrations have been observed in unglaciated watersheds. We calculated SO42- mass balances for 27 forested, unglaciated watersheds from Pennsylvania to Georgia, by using total atmospheric deposition (wet plus dry) as input. Many of these watersheds still retain SO42-, unlike their counterparts in the northeastern U.S. and southern Canada. Our analysis showed that many of these watersheds should convert from retaining to releasing SO42- over the next two decades. The specific years when the watersheds crossover from retaining to releasing SO42- correspond to a general geographical pattern of later net watershed release from north to south. The single most important variable that explained the crossover year was the runoff ratio, defined as the ratio of annual mean stream discharge to precipitation. Percent clay content and mean soil depth were secondary factors in predicting crossover year. The conversion of watersheds from net SO42- retention to release anticipates more widespread reductions in stream-water SO42- concentrations in this region.

  5. Decreased atmospheric sulfur deposition across the Southeastern U.S.: when will watersheds release stored sulfate?

    PubMed

    Rice, Karen C; Scanlon, Todd M; Lynch, Jason A; Cosby, Bernard J

    2014-09-02

    Emissions of sulfur dioxide (SO2) to the atmosphere lead to atmospheric deposition of sulfate (SO4(2-)), which is the dominant strong acid anion causing acidification of surface waters and soils in the eastern United States. Since passage of the Clean Air Act and its Amendments, atmospheric deposition of SO2 in this region has declined by over 80%, but few corresponding decreases in streamwater SO4(2-) concentrations have been observed in unglaciated watersheds. We calculated SO4(2-) mass balances for 27 forested, unglaciated watersheds from Pennsylvania to Georgia, by using total atmospheric deposition (wet plus dry) as input. Many of these watersheds still retain SO4(2-), unlike their counterparts in the northeastern U.S. and southern Canada. Our analysis showed that many of these watersheds should convert from retaining to releasing SO4(2-) over the next two decades. The specific years when the watersheds crossover from retaining to releasing SO4(2-) correspond to a general geographical pattern of later net watershed release from north to south. The single most important variable that explained the crossover year was the runoff ratio, defined as the ratio of annual mean stream discharge to precipitation. Percent clay content and mean soil depth were secondary factors in predicting crossover year. The conversion of watersheds from net SO4(2-) retention to release anticipates more widespread reductions in streamwater SO4(2-) concentrations in this region.

  6. Isotopic signature of atmospheric xenon released from light water reactors.

    PubMed

    Kalinowski, Martin B; Pistner, Christoph

    2006-01-01

    A global monitoring system for atmospheric xenon radioactivity is being established as part of the International Monitoring System to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The isotopic activity ratios of (135)Xe, (133m)Xe, (133)Xe and (131m)Xe are of interest for distinguishing nuclear explosion sources from civilian releases. Simulations of light water reactor (LWR) fuel burn-up through three operational reactor power cycles are conducted to explore the possible xenon isotopic signature of nuclear reactor releases under different operational conditions. It is studied how ratio changes are related to various parameters including the neutron flux, uranium enrichment and fuel burn-up. Further, the impact of diffusion and mixing on the isotopic activity ratio variability are explored. The simulations are validated with reported reactor emissions. In addition, activity ratios are calculated for xenon isotopes released from nuclear explosions and these are compared to the reactor ratios in order to determine whether the discrimination of explosion releases from reactor effluents is possible based on isotopic activity ratios.

  7. 14 CFR 155.9 - Release from war or national emergency restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Release from war or national emergency....9 Release from war or national emergency restrictions. (a) The primary purpose of each transfer of... property transferred, and of the entire airport, for use by the United States during a war or national...

  8. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.

    2014-09-01

    Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medicalmore » isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8×1014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.2×1016 to 2.5×1016 Bq and estimates for the facility in Indonesia vary from 6.1×1013 to 3.6×1014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.« less

  9. Blast from pressurized carbon dioxide released into a vented atmospheric chamber

    NASA Astrophysics Data System (ADS)

    Hansen, P. M.; Gaathaug, A. V.; Bjerketvedt, D.; Vaagsaether, K.

    2018-03-01

    This study describes the blast from pressurized carbon dioxide (CO2) released from a high-pressure reservoir into an openly vented atmospheric chamber. Small-scale experiments with pure vapor and liquid/vapor mixtures were conducted and compared with simulations. A motivation was to investigate the effects of vent size and liquid content on the peak overpressure and impulse response in the atmospheric chamber. The comparison of vapor-phase CO2 test results with simulations showed good agreement. This numerical code described single-phase gas dynamics inside a closed chamber, but did not model any phase transitions. Hence, the simulations described a vapor-only test into an unvented chamber. Nevertheless, the simulations reproduced the incident shock wave, the shock reflections, and the jet release inside the atmospheric chamber. The rapid phase transition did not contribute to the initial shock strength in the current test geometry. The evaporation rate was too low to contribute to the measured peak overpressure that was in the range of 15-20 kPa. The simulation results produced a calculated peak overpressure of 12 kPa. The liquid tests showed a significantly higher impulse compared to tests with pure vapor. Reducing the vent opening from 0.1 to 0.01 m2 resulted in a slightly higher impulse calculated at 100 ms. The influence of the vent area on the calculated impulse was significant in the vapor-phase tests, but not so clear in the liquid/vapor mixture tests.

  10. Atmospheric mercury footprints of nations.

    PubMed

    Liang, Sai; Wang, Yafei; Cinnirella, Sergio; Pirrone, Nicola

    2015-03-17

    The Minamata Convention was established to protect humans and the natural environment from the adverse effects of mercury emissions. A cogent assessment of mercury emissions is required to help implement the Minamata Convention. Here, we use an environmentally extended multi-regional input-output model to calculate atmospheric mercury footprints of nations based on upstream production (meaning direct emissions from the production activities of a nation), downstream production (meaning both direct and indirect emissions caused by the production activities of a nation), and consumption (meaning both direct and indirect emissions caused by final consumption of goods and services in a nation). Results show that nations function differently within global supply chains. Developed nations usually have larger consumption-based emissions than up- and downstream production-based emissions. India, South Korea, and Taiwan have larger downstream production-based emissions than their upstream production- and consumption-based emissions. Developed nations (e.g., United States, Japan, and Germany) are in part responsible for mercury emissions of developing nations (e.g., China, India, and Indonesia). Our findings indicate that global mercury abatement should focus on multiple stages of global supply chains. We propose three initiatives for global mercury abatement, comprising the establishment of mercury control technologies of upstream producers, productivity improvement of downstream producers, and behavior optimization of final consumers.

  11. Using Atmospheric Dispersion Theory to Inform the Design of a Short-lived Radioactive Particle Release Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rishel, Jeremy P.; Keillor, Martin E.; Arrigo, Leah M.

    2016-01-01

    Atmospheric dispersion theory can be used to predict ground deposition of particulates downwind of a radionuclide release. This paper utilizes standard formulations found in Gaussian plume models to inform the design of an experimental release of short-lived radioactive particles into the atmosphere. Specifically, a source depletion algorithm is used to determine the optimum particle size and release height that maximizes the near-field deposition while minimizing the both the required source activity and the fraction of activity lost to long-distance transport. The purpose of the release is to provide a realistic deposition pattern that might be observed downwind of a small-scalemore » vent from an underground nuclear explosion. The deposition field will be used, in part, to investigate several techniques of gamma radiation survey and spectrometry that could be utilized by an On-Site Inspection team under the verification regime of the Comprehensive Nuclear-Test-Ban Treaty.« less

  12. USDA National Nutrient Database for Standard Reference, release 28

    USDA-ARS?s Scientific Manuscript database

    The USDA National Nutrient Database for Standard Reference, Release 28 contains data for nearly 8,800 food items for up to 150 food components. SR28 replaces the previous release, SR27, originally issued in August 2014. Data in SR28 supersede values in the printed handbooks and previous electronic...

  13. USDA National Nutrient Database for Standard Reference, Release 25

    USDA-ARS?s Scientific Manuscript database

    The USDA National Nutrient Database for Standard Reference, Release 25(SR25)contains data for over 8,100 food items for up to 146 food components. It replaces the previous release, SR24, issued in September 2011. Data in SR25 supersede values in the printed handbooks and previous electronic releas...

  14. A physics-based model for the ionization of samarium by the MOSC chemical releases in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul A.; Siefring, Carl L.; Briczinski, Stanley J.; Viggiano, Albert; Caton, Ronald G.; Pedersen, Todd R.; Holmes, Jeffrey M.; Ard, Shaun; Shuman, Nicholas; Groves, Keith M.

    2017-05-01

    Atomic samarium has been injected into the neutral atmosphere for production of electron clouds that modify the ionosphere. These electron clouds may be used as high-frequency radio wave reflectors or for control of the electrodynamics of the F region. A self-consistent model for the photochemical reactions of Samarium vapor cloud released into the upper atmosphere has been developed and compared with the Metal Oxide Space Cloud (MOSC) experimental observations. The release initially produces a dense plasma cloud that that is rapidly reduced by dissociative recombination and diffusive expansion. The spectral emissions from the release cover the ultraviolet to the near infrared band with contributions from solar fluorescence of the atomic, molecular, and ionized components of the artificial density cloud. Barium releases in sunlight are more efficient than Samarium releases in sunlight for production of dense ionization clouds. Samarium may be of interest for nighttime releases but the artificial electron cloud is limited by recombination with the samarium oxide ion.

  15. An application of the NCRP screening techniques to atmospheric radon releases from the former feed materials production center near Fernald, Ohio. National Council on Radiation Protection and Measurements.

    PubMed

    Miller, C W

    1999-11-01

    The National Council on Radiation Protection and Measurements has published a series of screening models for releases of radionuclides to the environment. These models have been used to prioritize radionuclides being considered in environmental dose reconstructions. The NCRP atmospheric models are also accepted by the U.S. Nuclear Regulatory Commission for demonstrating compliance with the constraint on releases of airborne radioactive materials to the environment from licensees other than power reactors. This study tested the NCRP atmospheric techniques by comparing annual average predicted air concentrations of radon with measured radon concentrations at 14 locations 43 m to 598 m downwind of the former U.S. Department of Energy Feed Materials Production Center (FMPC) near Fernald, Ohio, for the period 2 July 1985 to 2 July 1986. Predictions were made using five different sets of meteorological data as input: (1) NCRP default values; (2) composite FMPC site data; (3) data from the Greater Cincinnati Airport; (4) data from the Dayton, Ohio, airport; and (5) data collected at Miami University, located near Oxford, Ohio. Following are the respective medians and ranges of the ratio of the predicted to observed annual radon air concentrations for each of these sources of meteorological data: (1) 5.2, 0.9-54; (2) 1.4, 0.1-8.2; (3) 0.7, 0.1-7.2; (4) 0.7, 0.1-8.4; and (5) 0.6, 0.1-10. The stated goal of the NCRP models is to predict doses that do not underpredict actual doses by greater than a factor of 10. In this comparison, all of the meteorological data produced air concentration predictions that meet this criteria. However, to ensure that final doses meet this criterion, one would need to carefully evaluate all assumptions used to calculate dose from each of these air concentrations.

  16. Atmospheric plume progression as a function of time and distance from the release point for radioactive isotopes.

    PubMed

    Eslinger, Paul W; Bowyer, Ted W; Cameron, Ian M; Hayes, James C; Miley, Harry S

    2015-10-01

    The radionuclide network of the International Monitoring System comprises up to 80 stations around the world that have aerosol and xenon monitoring systems designed to detect releases of radioactive materials to the atmosphere from nuclear explosions. A rule of thumb description of plume concentration and duration versus time and distance from the release point is useful when designing and deploying new sample collection systems. This paper uses plume development from atmospheric transport modeling to provide a power-law rule describing atmospheric dilution factors as a function of distance from the release point. Consider the plume center-line concentration seen by a ground-level sampler as a function of time based on a short-duration ground-level release of a nondepositing radioactive tracer. The concentration C (Bq m(-3)) near the ground varies with distance from the source with the relationship C=R×A(D,C) ×e (-λ(-1.552+0.0405×D)) × 5.37×10(-8) × D(-2.35) where R is the release magnitude (Bq), D is the separation distance (km) from the ground level release to the measurement location, λ is the decay constant (h(-1)) for the radionuclide of interest and AD,C is an attenuation factor that depends on the length of the sample collection period. This relationship is based on the median concentration for 10 release locations with different geographic characteristics and 365 days of releases at each location, and it has an R(2) of 0.99 for 32 distances from 100 to 3000 km. In addition, 90 percent of the modeled plumes fall within approximately one order of magnitude of this curve for all distances. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Sugarcane vinasse CO2 gasification and release of ash-forming matters in CO2 and N2 atmospheres.

    PubMed

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Lindberg, Daniel; Hupa, Mikko

    2016-10-01

    Gasification of sugarcane vinasse in CO2 and the release of ash-forming matters in CO2 and N2 atmospheres were investigated using a differential scanning calorimetry and thermogravimetric analyzer (DSC-TGA) at temperatures between 600 and 800°C. The results showed that pyrolysis is the main mechanism for the release of the organics from vinasse. Release of ash-forming matters in the vinasse is the main cause for vinasse char weight losses in the TGA above 700°C. The losses are higher in N2 than in CO2, and increase considerably with temperature. CO2 gasification also consumes the carbon in the vinasse chars while suppressing alkali release. Alkali release was also significant due to volatilization of KCl and reduction of alkali sulfate and carbonate by carbon. The DSC measured thermal events during heating up in N2 atmosphere that correspond to predicted melting temperatures of alkali salts in the char. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Source Term Estimation of Radioxenon Released from the Fukushima Dai-ichi Nuclear Reactors Using Measured Air Concentrations and Atmospheric Transport Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Biegalski, S.; Bowyer, Ted W.

    2014-01-01

    Systems designed to monitor airborne radionuclides released from underground nuclear explosions detected radioactive fallout from the Fukushima Daiichi nuclear accident in March 2011. Atmospheric transport modeling (ATM) of plumes of noble gases and particulates were performed soon after the accident to determine plausible detection locations of any radioactive releases to the atmosphere. We combine sampling data from multiple International Modeling System (IMS) locations in a new way to estimate the magnitude and time sequence of the releases. Dilution factors from the modeled plume at five different detection locations were combined with 57 atmospheric concentration measurements of 133-Xe taken from Marchmore » 18 to March 23 to estimate the source term. This approach estimates that 59% of the 1.24×1019 Bq of 133-Xe present in the reactors at the time of the earthquake was released to the atmosphere over a three day period. Source term estimates from combinations of detection sites have lower spread than estimates based on measurements at single detection sites. Sensitivity cases based on data from four or more detection locations bound the source term between 35% and 255% of available xenon inventory.« less

  19. Source term estimation of radioxenon released from the Fukushima Dai-ichi nuclear reactors using measured air concentrations and atmospheric transport modeling.

    PubMed

    Eslinger, P W; Biegalski, S R; Bowyer, T W; Cooper, M W; Haas, D A; Hayes, J C; Hoffman, I; Korpach, E; Yi, J; Miley, H S; Rishel, J P; Ungar, K; White, B; Woods, V T

    2014-01-01

    Systems designed to monitor airborne radionuclides released from underground nuclear explosions detected radioactive fallout across the northern hemisphere resulting from the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Sampling data from multiple International Modeling System locations are combined with atmospheric transport modeling to estimate the magnitude and time sequence of releases of (133)Xe. Modeled dilution factors at five different detection locations were combined with 57 atmospheric concentration measurements of (133)Xe taken from March 18 to March 23 to estimate the source term. This analysis suggests that 92% of the 1.24 × 10(19) Bq of (133)Xe present in the three operating reactors at the time of the earthquake was released to the atmosphere over a 3 d period. An uncertainty analysis bounds the release estimates to 54-129% of available (133)Xe inventory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Massive impact-induced release of carbon and sulfur gases in the early Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Black, B. A.; Elkins-Tanton, L. T.; Bottke, W. F.

    2016-09-01

    Recent revisions to our understanding of the collisional history of the Hadean and early-Archean Earth indicate that large collisions may have been an important geophysical process. In this work we show that the early bombardment flux of large impactors (>100 km) facilitated the atmospheric release of greenhouse gases (particularly CO2) from Earth's mantle. Depending on the timescale for the drawdown of atmospheric CO2, the Earth's surface could have been subject to prolonged clement surface conditions or multiple freeze-thaw cycles. The bombardment also delivered and redistributed to the surface large quantities of sulfur, one of the most important elements for life. The stochastic occurrence of large collisions could provide insights on why the Earth and Venus, considered Earth's twin planet, exhibit radically different atmospheres.

  1. A simple analytical method for determining the atmospheric dispersion of upward-directed high velocity releases

    NASA Astrophysics Data System (ADS)

    Palazzi, E.

    The evaluation of atmospheric dispersion of a cloud, arising from a sudden release of flammable or toxic materials, is an essential tool for properly designing flares, vents and other safety devices and to quantify the potential risk related to the existing ones or arising from the various kinds of accidents which can occur in chemical plants. Among the methods developed to treat the important case of upward-directed jets, Hoehne's procedure for determining the behaviour and extent of flammability zone is extensively utilized, particularly concerning petrochemical plants. In a previous study, a substantial simplification of the aforesaid procedure was achieved, by correlating the experimental data with an empirical formula, allowing to obtain a mathematical description of the boundaries of the flammable cloud. Following a theoretical approach, a most general model is developed in the present work, applicable to the various kinds of design problems and/or risk evaluation regarding upward-directed releases from high velocity sources. It is also demonstrated that the model gives conservative results, if applied outside the range of the Hoehne's experimental conditions. Moreover, with simple modifications, the same approach could be easily applied to deal with the atmospheric dispersion of anyhow directed releases.

  2. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Seibert, P.; Wotawa, G.; Arnold, D.; Burkhart, J. F.; Eckhardt, S.; Tapia, C.; Vargas, A.; Yasunari, T. J.

    2012-03-01

    On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions into the atmosphere of two isotopes, the noble gas xenon-133 (133Xe) and the aerosol-bound caesium-137 (137Cs), which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined it with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for 137Cs, measurements of bulk deposition. Regarding 133Xe, we find a total release of 15.3 (uncertainty range 12.2-18.3) EBq, which is more than twice as high as the total release from Chernobyl and likely the largest radioactive noble gas release in history. The entire noble gas inventory of reactor units 1-3 was set free into the atmosphere between 11 and 15 March 2011. In fact, our release estimate is higher than the entire estimated 133Xe inventory of the Fukushima Dai-ichi nuclear power plant, which we explain with the decay of iodine-133 (half-life of 20.8 h) into 133Xe. There is strong evidence that the 133Xe release started before the first active venting was made, possibly indicating structural damage to reactor components and/or leaks due to overpressure which would have allowed early release of noble gases. For 137Cs, the inversion results give a total emission of 36.6 (20.1-53.1) PBq, or about 43% of the estimated

  3. Reconstruction of Atmospheric Tracer Releases with Optimal Resolution Features: Concentration Data Assimilation

    NASA Astrophysics Data System (ADS)

    Singh, Sarvesh Kumar; Turbelin, Gregory; Issartel, Jean-Pierre; Kumar, Pramod; Feiz, Amir Ali

    2015-04-01

    The fast growing urbanization, industrialization and military developments increase the risk towards the human environment and ecology. This is realized in several past mortality incidents, for instance, Chernobyl nuclear explosion (Ukraine), Bhopal gas leak (India), Fukushima-Daichi radionuclide release (Japan), etc. To reduce the threat and exposure to the hazardous contaminants, a fast and preliminary identification of unknown releases is required by the responsible authorities for the emergency preparedness and air quality analysis. Often, an early detection of such contaminants is pursued by a distributed sensor network. However, identifying the origin and strength of unknown releases following the sensor reported concentrations is a challenging task. This requires an optimal strategy to integrate the measured concentrations with the predictions given by the atmospheric dispersion models. This is an inverse problem. The measured concentrations are insufficient and atmospheric dispersion models suffer from inaccuracy due to the lack of process understanding, turbulence uncertainties, etc. These lead to a loss of information in the reconstruction process and thus, affect the resolution, stability and uniqueness of the retrieved source. An additional well known issue is the numerical artifact arisen at the measurement locations due to the strong concentration gradient and dissipative nature of the concentration. Thus, assimilation techniques are desired which can lead to an optimal retrieval of the unknown releases. In general, this is facilitated within the Bayesian inference and optimization framework with a suitable choice of a priori information, regularization constraints, measurement and background error statistics. An inversion technique is introduced here for an optimal reconstruction of unknown releases using limited concentration measurements. This is based on adjoint representation of the source-receptor relationship and utilization of a weight

  4. 75 FR 38079 - National Oceanic and Atmospheric Administration (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... Board (SAB) AGENCY: Office of Oceanic and Atmospheric Research (OAR), National Oceanic and Atmospheric... Atmosphere on strategies for research, education, and application of science to operations and information... Deep Water Horizon Oil Spill in the Gulf of Mexico; (2) Grand Scientific Challenges: Results From the...

  5. Corrective Action Investigation Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Matthews

    2011-08-01

    CAU 104 comprises the 15 CASs listed below: (1) 07-23-03, Atmospheric Test Site T-7C; (2) 07-23-04, Atmospheric Test Site T7-1; (3) 07-23-05, Atmospheric Test Site; (4) 07-23-06, Atmospheric Test Site T7-5a; (5) 07-23-07, Atmospheric Test Site - Dog (T-S); (6) 07-23-08, Atmospheric Test Site - Baker (T-S); (7) 07-23-09, Atmospheric Test Site - Charlie (T-S); (8) 07-23-10, Atmospheric Test Site - Dixie; (9) 07-23-11, Atmospheric Test Site - Dixie; (10) 07-23-12, Atmospheric Test Site - Charlie (Bus); (11) 07-23-13, Atmospheric Test Site - Baker (Buster); (12) 07-23-14, Atmospheric Test Site - Ruth; (13) 07-23-15, Atmospheric Test Site T7-4; (14) 07-23-16,more » Atmospheric Test Site B7-b; (15) 07-23-17, Atmospheric Test Site - Climax These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 104. The releases at CAU 104 consist of surface-deposited radionuclides from 30 atmospheric nuclear tests. The presence and nature of contamination at CAU 104 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a

  6. SURVIVAL OF CAPTIVE-REARED PUERTO RICAN PARROTS RELEASED IN THE CARIBBEAN NATIONAL FOREST

    Treesearch

    THOMAS H. WHITE; JAIME A. COLLAZO; FRANCISCO J. VILELLA

    2005-01-01

    We report first-year survival for 34 captive-reared Puerto Rican Parrots (Amazona vittata) released in the Caribbean National Forest, Puerto Rico between 2000 and 2002. The purpose of the releases were to increase population size and the potential number of breeding individuals of the sole extant wild population, and to refine release protocols for eventual...

  7. Methodology for prediction and estimation of consequences of possible atmospheric releases of hazardous matter: "Kursk" submarine study

    NASA Astrophysics Data System (ADS)

    Baklanov, A.; Mahura, A.; Sørensen, J. H.

    2003-06-01

    There are objects with some periods of higher than normal levels of risk of accidental atmospheric releases (nuclear, chemical, biological, etc.). Such accidents or events may occur due to natural hazards, human errors, terror acts, and during transportation of waste or various operations at high risk. A methodology for risk assessment is suggested and it includes two approaches: 1) probabilistic analysis of possible atmospheric transport patterns using long-term trajectory and dispersion modelling, and 2) forecast and evaluation of possible contamination and consequences for the environment and population using operational dispersion modelling. The first approach could be applied during the preparation stage, and the second - during the operation stage. The suggested methodology is applied on an example of the most important phases (lifting, transportation, and decommissioning) of the ``Kursk" nuclear submarine operation. It is found that the temporal variability of several probabilistic indicators (fast transport probability fields, maximum reaching distance, maximum possible impact zone, and average integral concentration of 137Cs) showed that the fall of 2001 was the most appropriate time for the beginning of the operation. These indicators allowed to identify the hypothetically impacted geographical regions and territories. In cases of atmospheric transport toward the most populated areas, the forecasts of possible consequences during phases of the high and medium potential risk levels based on a unit hypothetical release (e.g. 1 Bq) are performed. The analysis showed that the possible deposition fractions of 10-11 (Bq/m2) over the Kola Peninsula, and 10-12 - 10-13 (Bq/m2) for the remote areas of the Scandinavia and Northwest Russia could be observed. The suggested methodology may be used successfully for any potentially dangerous object involving risk of atmospheric release of hazardous materials of nuclear, chemical or biological nature.

  8. Methodology for prediction and estimation of consequences of possible atmospheric releases of hazardous matter: "Kursk"? submarine study

    NASA Astrophysics Data System (ADS)

    Baklanov, A.; Mahura, A.; Sørensen, J. H.

    2003-03-01

    There are objects with some periods of higher than normal levels of risk of accidental atmospheric releases (nuclear, chemical, biological, etc.). Such accidents or events may occur due to natural hazards, human errors, terror acts, and during transportation of waste or various operations at high risk. A methodology for risk assessment is suggested and it includes two approaches: 1) probabilistic analysis of possible atmospheric transport patterns using long-term trajectory and dispersion modelling, and 2) forecast and evaluation of possible contamination and consequences for the environment and population using operational dispersion modelling. The first approach could be applied during the preparation stage, and the second - during the operation stage. The suggested methodology is applied on an example of the most important phases (lifting, transportation, and decommissioning) of the "Kursk" nuclear submarine operation. It is found that the temporal variability of several probabilistic indicators (fast transport probability fields, maximum reaching distance, maximum possible impact zone, and average integral concentration of 137Cs) showed that the fall of 2001 was the most appropriate time for the beginning of the operation. These indicators allowed to identify the hypothetically impacted geographical regions and territories. In cases of atmospheric transport toward the most populated areas, the forecasts of possible consequences during phases of the high and medium potential risk levels based on a unit hypothetical release are performed. The analysis showed that the possible deposition fractions of 1011 over the Kola Peninsula, and 10-12 - 10-13 for the remote areas of the Scandinavia and Northwest Russia could be observed. The suggested methodology may be used successfully for any potentially dangerous object involving risk of atmospheric release of hazardous materials of nuclear, chemical or biological nature.

  9. The precision of wet atmospheric deposition data from national atmospheric deposition program/national trends network sites determined with collocated samplers

    USGS Publications Warehouse

    Nilles, M.A.; Gordon, J.D.; Schroder, L.J.

    1994-01-01

    A collocated, wet-deposition sampler program has been operated since October 1988 by the U.S. Geological Survey to estimate the overall sampling precision of wet atmospheric deposition data collected at selected sites in the National Atmospheric Deposition Program and National Trends Network (NADP/NTN). A duplicate set of wet-deposition sampling instruments was installed adjacent to existing sampling instruments at four different NADP/NTN sites for each year of the study. Wet-deposition samples from collocated sites were collected and analysed using standard NADP/NTN procedures. Laboratory analyses included determinations of pH, specific conductance, and concentrations of major cations and anions. The estimates of precision included all variability in the data-collection system, from the point of sample collection through storage in the NADP/NTN database. Sampling precision was determined from the absolute value of differences in the analytical results for the paired samples in terms of median relative and absolute difference. The median relative difference for Mg2+, Na+, K+ and NH4+ concentration and deposition was quite variable between sites and exceeded 10% at most sites. Relative error for analytes whose concentrations typically approached laboratory method detection limits were greater than for analytes that did not typically approach detection limits. The median relative difference for SO42- and NO3- concentration, specific conductance, and sample volume at all sites was less than 7%. Precision for H+ concentration and deposition ranged from less than 10% at sites with typically high levels of H+ concentration to greater than 30% at sites with low H+ concentration. Median difference for analyte concentration and deposition was typically 1.5-2-times greater for samples collected during the winter than during other seasons at two northern sites. Likewise, the median relative difference in sample volume for winter samples was more than double the annual median

  10. Atmospheric Rawinsonde and Pigeon Release Data Implicate Infrasound as the Long- Range Map Cue in Avian Navigation

    NASA Astrophysics Data System (ADS)

    Hagstrum, J. T.

    2007-12-01

    Pigeons ( Columba livia) and other birds released from distant familiar and unfamiliar sites generally head in the homeward (loft) direction, but often vanish from view or radio contact consistently off the exact homeward bearing. At some sites the deviation can be a significant and stable amount, while at other sites birds can appear to become completely lost and depart in random directions. These deviations or biases can change from hour to hour, day to day, and year to year, but have not, over the last ~50 years of intensive research, been related to any atmospheric factor. They are, however, still considered to reflect significant irregularities in the pigeons' "map" function. Celestial and geomagnetic "compasses" have been shown to orient avian flight, but how pigeons determine their location in order to select the correct homeward bearing remains controversial. At present the debate is primarily between workers advocating an olfactory "map" and those advocating variations in the direction and intensity of the geomagnetic field as map functions. Alternatively, infrasonic cues can travel 1000s of km in the atmosphere with little attenuation, and can be detected in the laboratory by pigeons at frequencies down to 0.05 Hz. Although infrasound has been considered as a navigational tool for homing and migratory birds, little supporting evidence of its use has been found. Infrasonic ray paths in the atmosphere are controlled primarily by temperature and secondarily by wind. Assuming birds use infrasonic cues, atmospheric conditions could cause the perplexing changes (both geographic and temporal) observed in the mean vanishing bearings (MVBs) of pigeons released from experimental sites. To test for correlations between MVBs and tropospheric conditions, release data collected by the late W.T. Keeton between 1968 and 1980 from around the Cornell University lofts in upstate NY are compared to rawinsonde data from stations near Buffalo and Albany. For example, birds

  11. Atmospheric transport and deposition of radionuclides released after the Fukushima Dai-chi accident and resulting effective dose

    NASA Astrophysics Data System (ADS)

    Marzo, Giuseppe A.

    2014-09-01

    On 11 March 2011 an earthquake off the Pacific coast of the Fukushima prefecture generated a tsunami that hit Fukushima Dai-ichi and Fukushima Da-ini Nuclear Power Plants. From 12 March a significant amount of radioactive material was released into the atmosphere and dispersed worldwide. Among the most abundant radioactive species released were iodine and cesium isotopes. By means of an atmospheric dispersion Lagrangian code and publicly available meteorological data, the atmospheric dispersion of 131I, 134Cs, and 137Cs have been simulated for three months after the event with a spatial resolution of 0.5° × 0.5° globally. The simulation has been validated by comparison to publicly available measurements collected in 206 locations worldwide. Sensitivity analysis shows that release height of the radionuclides, wet deposition velocity, and source term are the parameters with the most impact on the simulation results. The simulation shows that the radioactive plume, consisting of about 200 PBq by adding contributions from 131I, 134Cs, and 137Cs, has been transported over the entire northern hemisphere depositing up to 1.2 MBq m-2 nearby the NPPs to less than 20 Bq m-2 in Europe. The consequent effective dose to the population over a 50-year period, calculated by considering both external and internal pathways of exposure, is found to be about 40 mSv in the surroundings of Fukushima Dai-ichi, while other countries in the northern hemisphere experienced doses several orders of magnitude lower suggesting a small impact on the population health elsewhere.

  12. Detailed source term estimation of atmospheric release during the Fukushima Dai-ichi nuclear power plant accident by coupling atmospheric and oceanic dispersion models

    NASA Astrophysics Data System (ADS)

    Katata, Genki; Chino, Masamichi; Terada, Hiroaki; Kobayashi, Takuya; Ota, Masakazu; Nagai, Haruyasu; Kajino, Mizuo

    2014-05-01

    Temporal variations of release amounts of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident and their dispersion process are essential to evaluate the environmental impacts and resultant radiological doses to the public. Here, we estimated a detailed time trend of atmospheric releases during the accident by combining environmental monitoring data and coupling atmospheric and oceanic dispersion simulations by WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN developed by the authors. New schemes for wet, dry, and fog depositions of radioactive iodine gas (I2 and CH3I) and other particles (I-131, Te-132, Cs-137, and Cs-134) were incorporated into WSPEEDI-II. The deposition calculated by WSPEEDI-II was used as input data of ocean dispersion calculations by SEA-GEARN. The reverse estimation method based on the simulation by both models assuming unit release rate (1 Bq h-1) was adopted to estimate the source term at the FNPP1 using air dose rate, and air sea surface concentrations. The results suggested that the major release of radionuclides from the FNPP1 occurred in the following periods during March 2011: afternoon on the 12th when the venting and hydrogen explosion occurred at Unit 1, morning on the 13th after the venting event at Unit 3, midnight on the 14th when several openings of SRV (steam relief valve) were conducted at Unit 2, morning and night on the 15th, and morning on the 16th. The modified WSPEEDI-II using the newly estimated source term well reproduced local and regional patterns of air dose rate and surface deposition of I-131 and Cs-137 obtained by airborne observations. Our dispersion simulations also revealed that the highest radioactive contamination areas around FNPP1 were created from 15th to 16th March by complicated interactions among rainfall (wet deposition), plume movements, and phase properties (gas or particle) of I-131 and release rates

  13. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model

    NASA Astrophysics Data System (ADS)

    Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.

    2015-01-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Daiichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate the detailed atmospheric releases during the accident using a reverse estimation method which calculates the release rates of radionuclides by comparing measurements of air concentration of a radionuclide or its dose rate in the environment with the ones calculated by atmospheric and oceanic transport, dispersion and deposition models. The atmospheric and oceanic models used are WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN-FDM (Finite difference oceanic dispersion model), both developed by the authors. A sophisticated deposition scheme, which deals with dry and fog-water depositions, cloud condensation nuclei (CCN) activation, and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The results revealed that the major releases of radionuclides due to the FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, midnight of 14 March when the SRV (safety relief valve) was opened three times at Unit 2, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of release rates. The simulation by WSPEEDI-II using the new source term reproduced the local and regional patterns of cumulative

  14. Triggers and Manifestations of Flare Energy Release in the Low Atmosphere

    NASA Astrophysics Data System (ADS)

    Kosovichev, A. G.; Sharykin, I. N.; Sadykov, V. M.; Vargas, S.; Zimovets, I. V.

    2016-12-01

    The main goal is to understand triggers and manifestations of the flare energy release in the lower layers of the solar atmosphere (the photosphere and chromosphere) using high-resolution optical observations and magnetic field measurements. As a case study we present results for an M-class flare. We analyze optical images, HMI Dopplergrams and vector magnetograms, and use Non-Linear Force-Free Field (NLFFF) extrapolation for reconstruction of the magnetic topology. The NLFFF modelling reveals interaction of oppositely directed magnetic flux-tubes in the Polarity Inversion Line (PIL). These two interacting magnetic flux tubes are observed as a compact sheared arcade along the PIL in the high-resolution broad-band continuum images from New Solar Telescope (NST). In the vicinity of the PIL, the NST H-alpha observations reveal formation of a thin three-ribbon structure corresponding to the small-scale photospheric magnetic arcade. Magnetic reconnection is triggered by two interacting magnetic flux tubes with forming current sheet extended along the PIL. Presented observational results evidence in favor of location of the primary energy release site in the dense chromosphere where plasma is partially ionized in the region of strong electric currents concentrated near the polarity inversion line.

  15. Atmospheric release model for the E-area low-level waste facility: Updates and modifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The atmospheric release model (ARM) utilizes GoldSim® Monte Carlo simulation software (GTG, 2017) to evaluate the flux of gaseous radionuclides as they volatilize from E-Area disposal facility waste zones, diffuse into the air-filled soil pores surrounding the waste, and emanate at the land surface. This report documents the updates and modifications to the ARM for the next planned E-Area PA considering recommendations from the 2015 PA strategic planning team outlined by Butcher and Phifer.

  16. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Seibert, P.; Wotawa, G.; Arnold, D.; Burkhart, J. F.; Eckhardt, S.; Tapia, C.; Vargas, A.; Yasunari, T. J.

    2012-04-01

    This presentation will show the results of a paper currently under review in ACPD and some additional new results, including more data and with an independent box modeling approach to support some of the findings of the ACPD paper. On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant (FD-NPP) developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions of two isotopes, the noble gas xenon-133 (133Xe) and the aerosol-bound caesium-137 (137Cs), which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined the first guess with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for 137Cs, measurements of bulk deposition. Regarding 133Xe, we find a total release of 16.7 (uncertainty range 13.4-20.0) EBq, which is the largest radioactive noble gas release in history not associated with nuclear bomb testing. There is strong evidence that the first strong 133Xe release started early, before active venting was performed. The entire noble gas inventory of reactor units 1-3 was set free into the atmosphere between 11 and 15 March 2011. For 137Cs, the inversion results give a total emission of 35.8 (23.3-50.1) PBq, or about 42% of the estimated Chernobyl emission. Our results indicate that 137Cs emissions peaked on 14-15 March but were generally high from 12 until 19 March, when they

  17. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Seibert, P.; Wotawa, G.; Arnold, D.; Burkhart, J. F.; Eckhardt, S.; Tapia, C.; Vargas, A.; Yasunari, T. J.

    2011-10-01

    On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant (FD-NPP) developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions of two isotopes, the noble gas xenon-133 (133Xe) and the aerosol-bound caesium-137 (137Cs), which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined the first guess with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for 137Cs, measurements of bulk deposition. Regarding 133Xe, we find a total release of 16.7 (uncertainty range 13.4-20.0) EBq, which is the largest radioactive noble gas release in history not associated with nuclear bomb testing. There is strong evidence that the first strong 133Xe release started very early, possibly immediately after the earthquake and the emergency shutdown on 11 March at 06:00 UTC. The entire noble gas inventory of reactor units 1-3 was set free into the atmosphere between 11 and 15 March 2011. For 137Cs, the inversion results give a total emission of 35.8 (23.3-50.1) PBq, or about 42% of the estimated Chernobyl emission. Our results indicate that 137Cs emissions peaked on 14-15 March but were generally high from 12 until 19 March, when they suddenly dropped by orders of magnitude exactly when spraying of water on the spent-fuel pool of unit 4 started. This indicates that emissions were not only coming from

  18. Fate and potential environmental effects of methylenediphenyl diisocyanate and toluene diisocyanate released into the atmosphere.

    PubMed

    Tury, Bernard; Pemberton, Denis; Bailey, Robert E

    2003-01-01

    Information from a variety of sources has been collected and summarized to facilitate an overview of the atmospheric fate and potential environmental effects of emissions of methylenediphenyl diisocyanate (MDI) or toluene diisocyanate (TDI) to the atmosphere. Atmospheric emissions of both MDI and TDI are low, both in terms of concentration and mass, because of their low volatility and the need for careful control over all aspects of their lifecycle from manufacture through disposal. Typical emission losses for TDI are 25 g/t of TDI used in slabstock foam production. MDI emission losses are lower, often less than 1 g/t of MDI used. Dispersion modeling predicts that concentrations at the fenceline or beyond are very low for typical releases. Laboratory studies show that TDI (and by analogy MDI) does not react with water in the gas phase at a significant rate. The primary degradation reaction of these aromatic diisocyanates in the atmosphere is expected to be oxidation by OH radicals with an estimated half-life of one day. Laboratory studies also show that this reaction is not expected to result in increased ground-level ozone accumulation.

  19. Disclaimer for external Web links | National Oceanic and Atmospheric

    Science.gov Websites

    Web links The appearance of external links on this Web site does not constitute endorsement by the Department of Commerce/National Oceanic and Atmospheric Administration of external Web sites or the . These links are provided consistent with the stated purpose of this Department of Commerce/NOAA Web site

  20. National SAFE KIDS Campaign releases 10-year report.

    PubMed

    Pike-Paris, A

    1999-01-01

    Unintentional injury is the leading cause of death and disability in children 14 years and under. The National SAFE KIDS Campaign, a nationwide organization aimed at education and prevention of unintentional injury, recently released its 10-year report that describes areas of success, areas in need of improvement, and goals for the future. The full 61-page report is worthy of reading and referencing for all those involved with children and their health care. Highlights of the report are summarized below.

  1. Last light: Sunset at the South Pole | National Oceanic and Atmospheric

    Science.gov Websites

    Observatory, Sunday March 20 marks the start of the austral autumn, the last time they see the sun for six months. The National Science Foundation's Atmospheric Research Observatory illuminated by the sun

  2. Statistical atmospheric inversion of local gas emissions by coupling the tracer release technique and local-scale transport modelling: a test case with controlled methane emissions

    NASA Astrophysics Data System (ADS)

    Ars, Sébastien; Broquet, Grégoire; Yver Kwok, Camille; Roustan, Yelva; Wu, Lin; Arzoumanian, Emmanuel; Bousquet, Philippe

    2017-12-01

    This study presents a new concept for estimating the pollutant emission rates of a site and its main facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The conversion between the controlled emission and the measured atmospheric concentrations of the released tracer across the plume places valuable constraints on the atmospheric transport. This is used to optimise the configuration of the transport model parameters and the model uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to optimise the match between the concentrations simulated with the transport model and the pollutants' measured atmospheric concentrations, accounting for the transport model uncertainty. In principle, by using atmospheric transport modelling, this concept does not strongly rely on the good colocation between the tracer and pollutant sources and can be used to monitor multiple sources within a single site, unlike the classical tracer release technique. The statistical inversion framework and the use of the tracer data for the configuration of the transport and inversion modelling systems should ensure that the transport modelling errors are correctly handled in the source estimation. The potential of this new concept is evaluated with a relatively simple practical implementation based on a Gaussian plume model and a series of inversions of controlled methane point sources using acetylene as a tracer gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume model to simulate the atmospheric transport. In these experiments, different configurations of methane and acetylene point source locations are tested to assess the efficiency of the method in comparison to the classic tracer release technique in coping with the distances

  3. 20 CFR 1002.62 - Does USERRA cover a member of the Commissioned Corps of the National Oceanic and Atmospheric...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Commissioned Corps of the National Oceanic and Atmospheric Administration, the Civil Air Patrol, or the Coast... and Atmospheric Administration, the Civil Air Patrol, or the Coast Guard Auxiliary? No. Although the Commissioned Corps of the National Oceanic and Atmospheric Administration (NOAA) is a “uniformed service” for...

  4. 20 CFR 1002.62 - Does USERRA cover a member of the Commissioned Corps of the National Oceanic and Atmospheric...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Commissioned Corps of the National Oceanic and Atmospheric Administration, the Civil Air Patrol, or the Coast... and Atmospheric Administration, the Civil Air Patrol, or the Coast Guard Auxiliary? No. Although the Commissioned Corps of the National Oceanic and Atmospheric Administration (NOAA) is a “uniformed service” for...

  5. 20 CFR 1002.62 - Does USERRA cover a member of the Commissioned Corps of the National Oceanic and Atmospheric...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Commissioned Corps of the National Oceanic and Atmospheric Administration, the Civil Air Patrol, or the Coast... and Atmospheric Administration, the Civil Air Patrol, or the Coast Guard Auxiliary? No. Although the Commissioned Corps of the National Oceanic and Atmospheric Administration (NOAA) is a “uniformed service” for...

  6. 20 CFR 1002.62 - Does USERRA cover a member of the Commissioned Corps of the National Oceanic and Atmospheric...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Commissioned Corps of the National Oceanic and Atmospheric Administration, the Civil Air Patrol, or the Coast... and Atmospheric Administration, the Civil Air Patrol, or the Coast Guard Auxiliary? No. Although the Commissioned Corps of the National Oceanic and Atmospheric Administration (NOAA) is a “uniformed service” for...

  7. 20 CFR 1002.62 - Does USERRA cover a member of the Commissioned Corps of the National Oceanic and Atmospheric...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Commissioned Corps of the National Oceanic and Atmospheric Administration, the Civil Air Patrol, or the Coast... and Atmospheric Administration, the Civil Air Patrol, or the Coast Guard Auxiliary? No. Although the Commissioned Corps of the National Oceanic and Atmospheric Administration (NOAA) is a “uniformed service” for...

  8. Atmospheric mercury speciation in Yellowstone National Park

    USGS Publications Warehouse

    Hall, B.D.; Olson, M.L.; Rutter, A.P.; Frontiera, R.R.; Krabbenhoft, D.P.; Gross, D.S.; Yuen, M.; Rudolph, T.M.; Schauer, J.J.

    2006-01-01

    Atmospheric concentrations of elemental mercury (Hg0), reactive gaseous Hg (RGM), and particulate Hg (pHg) concentrations were measured in Yellowstone National Park (YNP), U.S.A. using high resolution, real time atmospheric mercury analyzers (Tekran 2537A, 1130, and 1135). A survey of Hg0 concentrations at various locations within YNP showed that concentrations generally reflect global background concentrations of 1.5-2.0 ng m- 3, but a few specific locations associated with concentrated geothermal activity showed distinctly elevated Hg0 concentrations (about 9.0 ng m- 3). At the site of intensive study located centrally in YNP (Canyon Village), Hg0 concentrations did not exceed 2.5 ng m- 3; concentrations of RGM were generally below detection limits of 0.88 pg m- 3 and never exceeded 5 pg m- 3. Concentrations of pHg ranged from below detection limits to close to 30 pg m-3. RGM and pHg concentrations were not correlated with any criteria gases (SO2, NOx, O3); however pHg was weakly correlated with the concentration of atmospheric particles. We investigated three likely sources of Hg at the intensive monitoring site: numerous geothermal features scattered throughout YNP, re-suspended soils, and wildfires near or in YNP. We examined relationships between the chemical properties of aerosols (as measured using real time, single particle mass spectrometry; aerosol time-of-flight mass spectrometer; ATOFMS) and concentrations of atmospheric pHg. Based on the presence of particles with distinct chemical signatures of the wildfires, and the absence of signatures associated with the other sources, we concluded that wildfires in the park were the main source of aerosols and associated pHg to our sampling site. ?? 2005 Elsevier B.V. All rights reserved.

  9. Reservoir water level drawdown as a novel, substantial, and manageable control on methane release to the atmosphere

    NASA Astrophysics Data System (ADS)

    Harrison, J.; Deemer, B. R.; Birchfield, M. K.

    2014-12-01

    Reservoirs constitute a globally important source of atmospheric methane (CH4). Although it is reasonably well-established that hydrostatic and barometric pressure can influence rates of CH4 release from lake and tidal sediments, the relationship between water-level manipulation and CH4 release from man-made impoundments has not been quantified or characterized. Furthermore, cross-system controls on CH4 production and release to the atmosphere have not been established. We collected CH4 emission (diffusion and ebullition) data for 8 reservoirs in the U.S. Pacific Northwest that are subject to a range of trophic conditions and water level management regimes. Our aim was to: (1) characterize CH4 emissions from these systems, and (2) quantify effects of water level management and eutrophication on CH4 fluxes. Results indicate very high fluxes, in some cases the highest reported reservoir emission rates, and a strong correspondence between lake level reduction and CH4 emissions, including quantitatively important bursts of CH4 bubbling. In one reservoir, drawdown-associated CH4 fluxes accounted for over 25% of annual CH4 emissions in a period of just 16 days (4% of the year). Average CH4 ebullition rates in a reservoir managed for hydropower peaking were nearly three-fold higher than in a paired upstream reservoir managed to maintain a constant water level (528 mg CH4 m-2 d-1 and 187 mg CH4 m-2 d-1 respectively). Highest gas fluxes were observed during the water level drawdown component of the hydropower peaking cycle (14.3 g CH4 m-2 d-1). In addition we observe a strong, positive relationship between eutrophication (as indicated by surface Chl a concentrations) and CH4 production (r2 = 0.88; P<0.001) and between eutrophication and the sensitivity of CH4 emissions to drawdown (r2 = 0.84; P<0.001). This work suggests that manipulation of water levels can significantly affect CH4 emissions from reservoirs to the atmosphere, and that sampling programs that miss drawdown

  10. Vertical profile of tritium concentration in air during a chronic atmospheric HT release.

    PubMed

    Noguchi, Hiroshi; Yokoyama, Sumi

    2003-03-01

    The vertical profiles of tritium gas and tritiated water concentrations in air, which would have an influence on the assessment of tritium doses as well as on the environmental monitoring of tritium, were measured in a chronic tritium gas release experiment performed in Canada in 1994. While both of the profiles were rather uniform during the day because of atmospheric mixing, large gradients of the profiles were observed at night. The gradient coefficients of the profiles were derived from the measurements. Correlations were analyzed between the gradient coefficients and meteorological conditions: solar radiation, wind speed, and turbulent diffusivity. It was found that the solar radiation was highly correlated with the gradient coefficients of tritium gas and tritiated water profiles and that the wind speed and turbulent diffusivity showed weaker correlations with those of tritiated water profiles. A one-dimensional tritium transport model was developed to analyze the vertical diffusion of tritiated water re-emitted from the ground into the atmosphere. The model consists of processes of tritium gas deposition to soil including oxidation into tritiated water, reemission of tritiated water, dilution of tritiated water in soil by rain, and vertical diffusion of tritiated water in the atmosphere. The model accurately represents the accumulation of tritiated water in soil water and the time variations and vertical profiles of tritiated water concentrations in air.

  11. Altitude release mechanism

    DOEpatents

    Kulhanek, Frank C.

    1977-01-01

    An altitude release mechanism for releasing a radiosonde or other measuring instrument from a balloon carrying it up into the atmosphere includes a bottle partially filled with water, a tube sealed into the bottle having one end submerged in the water in the bottle and the free end extending above the top of the bottle and a strip of water-disintegrable paper held within the free end of the tube linking the balloon to the remainder of the package. As the balloon ascends, the lowered atmospheric air pressure causes the air in the bottle to expand, forcing the water in the bottle up the tubing to wet and disintegrate the paper, releasing the package from the balloon.

  12. 36 CFR 1202.90 - What NARA systems of records are exempt from release under the National Security Exemption of the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... are exempt from release under the National Security Exemption of the Privacy Act? 1202.90 Section 1202... from release under the National Security Exemption of the Privacy Act? (a) The Investigative Case Files... interfere with ongoing investigations and law enforcement or national security activities and impose an...

  13. 36 CFR 1202.90 - What NARA systems of records are exempt from release under the National Security Exemption of the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... are exempt from release under the National Security Exemption of the Privacy Act? 1202.90 Section 1202... from release under the National Security Exemption of the Privacy Act? (a) The Investigative Case Files... interfere with ongoing investigations and law enforcement or national security activities and impose an...

  14. 36 CFR 1202.90 - What NARA systems of records are exempt from release under the National Security Exemption of the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... are exempt from release under the National Security Exemption of the Privacy Act? 1202.90 Section 1202... from release under the National Security Exemption of the Privacy Act? (a) The Investigative Case Files... interfere with ongoing investigations and law enforcement or national security activities and impose an...

  15. An application of the NCRP screening techniques to atmospheric radon releases from the former Feed Materials Production Center near Fernald, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, C.W.

    1999-11-01

    The National Council on Radiation Protection and Measurements has published a series of screening models for releases of radionuclides to the environment. These models have been used to prioritize radionuclides being considered in environmental dose reconstructions. The NCRP atmospheric models are also accepted by the U.S. Nuclear Regulatory Commission for demonstrating compliance with the constraint on releases of airborne radioactive materials to the environment from licenses other than power reactors. This study tested the NCRP atmospheric techniques by comparing annual average predicted air concentrations of radon with measured radon concentrations at 14 locations 43 m to 598 m downwind ofmore » the former US Department of Energy Feed Materials Production Center (FMPC) near Fernald, Ohio, for the period 2 July 1985 to 2 July 1986. Predictions were made using five different sets of meteorological data as input: (1) NCRP default values; (2) composite FMPC site data; (3) data from the Greater Cincinnati Airport; (4) data from the Dayton, Ohio, airport; and (5) data collected at Miami University, located near Oxford, Ohio. Following are the respective medians and ranges of the ratio of the predicted to observed annual radon air concentrations for each of these sources of meterological data: (1) 5.2, 0.9--54; (2) 1.4, 0.1--8.2; (3) 0.7, 0.1--7.2; (4) 0.7, 0.1--8.4; and (5) 0.6, 0.1--10. The stated goal of the NCRP models is to predict doses that do not underpredict actual doses by greater than a factor of 10. In this comparison, all of the meteorological data produced air concentration predictions that meet this criteria. However, to ensure that final doses meet this criterion, one would need to carefully evaluate all assumptions used to calculate dose from each of these air concentrations.« less

  16. Impacts of atmospheric nitrogen deposition on vegetation and soils in Joshua Tree National Park

    Treesearch

    E.B. Allen; L. Rao; R.J. Steers; A. Bytnerowicz; M.E. Fenn

    2009-01-01

    The western Mojave Desert is downwind of nitrogen emissions from coastal and inland urban sources, especially automobiles. The objectives of this research were to measure reactive nitrogen (N) in the atmosphere and soils along a N-deposition gradient at Joshua Tree National Park and to examine its effects on invasive and native plant species. Atmospheric nitric acid (...

  17. Precision and bias of selected analytes reported by the National Atmospheric Deposition Program and National Trends Network, 1983; and January 1980 through September 1984

    USGS Publications Warehouse

    Schroder, L.J.; Bricker, A.W.; Willoughby, T.C.

    1985-01-01

    Blind-audit samples with known analyte concentrations have been prepared by the U.S. Geological Survey and distributed to the National Atmospheric Deposition Program 's Central Analytical Laboratory. The difference between the National Atmospheric Deposition Program and National Trends Network reported analyte concentrations and known analyte concentrations have been calculated, and the bias has been determined. Calcium, magnesium , sodium, and chloride were biased at the 99-percent confidence limit; potassium and sulfate were unbiased at the 99-percent confidence limit, for 1983 results. Relative-percent differences between the measured and known analyte concentration for calcium , magnesium, sodium, potassium, chloride, and sulfate have been calculated for 1983. The median relative percent difference for calcium was 17.0; magnesium was 6.4; sodium was 10.8; potassium was 6.4; chloride was 17.2; and sulfate was -5.3. These relative percent differences should be used to correct the 1983 data before user-analysis of the data. Variances have been calculated for calcium, magnesium, sodium, potassium, chloride, and sulfate determinations. These variances should be applicable to natural-sample analyte concentrations reported by the National Atmospheric Deposition Program and National Trends Network for calendar year 1983. (USGS)

  18. Climate-change signals in national atmospheric deposition program precipitation data

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Mast, M. Alisa

    2016-01-01

    National Atmospheric Deposition Program (NADP)/National Trends Network precipitation type, snow-season duration, and annual timing of selected chemical wet-deposition maxima vary with latitude and longitude within a 35-year (1979–2013) data record for the contiguous United States and Alaska. From the NADP data collected within the region bounded by 35.6645°–48.782° north latitude and 124°–68° west longitude, similarities in latitudinal and longitudinal patterns of changing snow-season duration, fraction of annual precipitation recorded as snow, and the timing of chemical wet-deposition maxima, suggest that the chemical climate of the atmosphere is linked to physical changes in climate. Total annual precipitation depth has increased 4–6 % while snow season duration has decreased from approximately 7 to 21 days across most of the USA, except in higher elevation regions where it has increased by as much as 21 days. Snow-season precipitation is increasingly comprised of snow, but annually total precipitation is increasingly comprised of liquid precipitation. Meanwhile, maximum ammonium deposition occurs as much as 27 days earlier, and the maximum nitrate: sulfate concentration ratio in wet-deposition occurs approximately 10–21 days earlier in the year. The maximum crustal (calcium + magnesium + potassium) cation deposition occurs 2–35 days earlier in the year. The data suggest that these shifts in the timing of atmospheric wet deposition are linked to a warming climate, but the ecological consequences are uncertain.

  19. HTO and OBT activity concentrations in soil at the historical atmospheric HT release site (Chalk River Laboratories).

    PubMed

    Kim, S B; Bredlaw, M; Korolevych, V Y

    2012-01-01

    Tritium is routinely released by the Chalk River Laboratories (CRL) nuclear facilities. Three International HT release experiments have been conducted at the CRL site in the past. The site has not been disturbed since the last historical atmospheric testing in 1994 and presents an opportunity to assess the retention of tritium in soil. This study is devoted to the measurement of HTO and OBT activity concentration profiles in the subsurface 25 cm of soil. In terms of soil HTO, there is no evidence from the past HT release experiments that HTO was retained. The HTO activity concentration in the soil pore water appears similar to concentrations found in background areas in Ontario. In contrast, OBT activity concentrations in soil at the same site were significantly higher than HTO activity concentrations in soil. Elevated OBT appears to reside in the top layer of the soil (0-5 cm). In addition, OBT activity concentrations in the top soil layer did not fluctuate much with season, again, quite in contrast with soil HTO. This result suggests that OBT activity concentrations retained the signature of the historical tritium releases. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  20. Fluxes of Ethanol Between the Atmosphere and Oceanic Surface Waters; Implications for the Fate of Biofuel Ethanol Released into the Environment

    NASA Astrophysics Data System (ADS)

    Avery, G. B., Jr.; Shimizu, M. S.; Willey, J. D.; Mead, R. N.; Skrabal, S. A.; Kieber, R. J.; Lathrop, T. E.; Felix, J. D. D.

    2017-12-01

    The use of ethanol as a transportation fuel has increased significantly during the past decade in the US. Some ethanol escapes the combustion process in internal combustion engines resulting in its release to the atmosphere. Ethanol can be oxidized photochemically to acetaldehyde and then converted to peroxyacetyl nitrate contributing to air pollution. Therefore it is important to determine the fate ethanol released to the atmosphere. Because of its high water solubility the oceans may act as a sink for ethanol depending on its state of saturation with respect to the gas phase. The purpose of the current study was to determine the relative saturation of oceanic surface waters by making simultaneous measurements of gas phase and surface water concentrations. Data were obtained from four separate cruises ranging from estuarine to open ocean locations in the coast of North Carolina, USA. The majority of estuarine sites were under saturated in ethanol with respect to the gas phase (11-50% saturated) representing a potential sink. Coastal surface waters tended to be supersaturated (135 - 317%) representing a net flux of ethanol to the atmosphere. Open ocean samples were generally at saturation or slightly below saturation (76-99%) indicating equilibrium between the gas and aqueous phases. The results of this study underscore to variable role the oceans play in mitigating the increases in atmospheric ethanol from increased biofuel usage and their impact on air quality.

  1. 32 CFR 1630.12 - Class 1-C: Member of the Armed Forces of the United States, the National Oceanic and Atmospheric...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... United States, the National Oceanic and Atmospheric Administration or the Public Health Service. 1630.12... and Atmospheric Administration or the Public Health Service. In Class 1-C shall be placed: (a) Every... Marine Corps, the Coast Guard, the National Oceanic and Atmospheric Administration or the Public Health...

  2. 32 CFR 1630.12 - Class 1-C: Member of the Armed Forces of the United States, the National Oceanic and Atmospheric...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... United States, the National Oceanic and Atmospheric Administration or the Public Health Service. 1630.12... and Atmospheric Administration or the Public Health Service. In Class 1-C shall be placed: (a) Every... Marine Corps, the Coast Guard, the National Oceanic and Atmospheric Administration or the Public Health...

  3. 32 CFR 1630.12 - Class 1-C: Member of the Armed Forces of the United States, the National Oceanic and Atmospheric...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... United States, the National Oceanic and Atmospheric Administration or the Public Health Service. 1630.12... and Atmospheric Administration or the Public Health Service. In Class 1-C shall be placed: (a) Every... Marine Corps, the Coast Guard, the National Oceanic and Atmospheric Administration or the Public Health...

  4. 32 CFR 1630.12 - Class 1-C: Member of the Armed Forces of the United States, the National Oceanic and Atmospheric...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... United States, the National Oceanic and Atmospheric Administration or the Public Health Service. 1630.12... and Atmospheric Administration or the Public Health Service. In Class 1-C shall be placed: (a) Every... Marine Corps, the Coast Guard, the National Oceanic and Atmospheric Administration or the Public Health...

  5. 32 CFR 1630.12 - Class 1-C: Member of the Armed Forces of the United States, the National Oceanic and Atmospheric...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... United States, the National Oceanic and Atmospheric Administration or the Public Health Service. 1630.12... and Atmospheric Administration or the Public Health Service. In Class 1-C shall be placed: (a) Every... Marine Corps, the Coast Guard, the National Oceanic and Atmospheric Administration or the Public Health...

  6. 36 CFR § 1202.90 - What NARA systems of records are exempt from release under the National Security Exemption of the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... are exempt from release under the National Security Exemption of the Privacy Act? § 1202.90 Section Â... from release under the National Security Exemption of the Privacy Act? (a) The Investigative Case Files... interfere with ongoing investigations and law enforcement or national security activities and impose an...

  7. Examining the fate and transport of alpha- and beta-endosulfan in the atmosphere of South Florida

    USDA-ARS?s Scientific Manuscript database

    Agricultural activity in the South Florida region occurs in close proximity to both important natural areas like Biscayne and Everglades National Parks. One possible transport mechanism for pesticides into these sensitive ecosystems is release to the atmosphere after application. The process is en...

  8. GEWEX SRB Shortwave Release 4

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Stackhouse, P. W., Jr.; Mikovitz, J. C.; Zhang, T.

    2017-12-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The new Release 4 uses the newly processed ISCCP HXS product as its primary input for cloud and radiance data. The ninefold increase in pixel number compared to the previous ISCCP DX allows finer gradations in cloud fraction in each grid box. It will also allow higher spatial resolutions (0.5 degree) in future releases. In addition to the input data improvements, several important algorithm improvements have been made since Release 3. These include recalculated atmospheric transmissivities and reflectivities yielding a less transmissive atmosphere. The calculations also include variable aerosol composition, allowing for the use of a detailed aerosol history from the Max Planck Institut Aerosol Climatology (MAC). Ocean albedo and snow/ice albedo are also improved from Release 3. Total solar irradiance is now variable, averaging 1361 Wm-2. Water vapor is taken from ISCCP's nnHIRS product. Results from GSW Release 4 are presented and analyzed. Early comparison to surface measurements show improved agreement.

  9. Understanding the connection between the energy released during solar flares and their emission in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    da Costa, F. Rubio

    2017-10-01

    While progress has been made on understanding how energy is released and deposited along the solar atmosphere during explosive events such as solar flares, the chromospheric and coronal heating through the sudden release of magnetic energy remain an open problem in solar physics. Recent hydrodynamic models allow to investigate the energy deposition along a flare loop and to study the response of the chromosphere. These results have been improved with the consideration of transport and acceleration of particles along the loop. RHESSI and Fermi/GBM X-ray and gamma-ray observations help to constrain the spectral properties of the injected electrons. The excellent spatial, spectral and temporal resolution of IRIS will also help us to constrain properties of explosive events, such as the continuum emission during flares or their emission in the chromosphere.

  10. Ignition and flame characteristics of cryogenic hydrogen releases

    DOE PAGES

    Panda, Pratikash P.; Hecht, Ethan S.

    2017-01-01

    In this work, under-expanded cryogenic hydrogen jets were investigated experimentally for their ignition and flame characteristics. The test facility described herein, was designed and constructed to release hydrogen at a constant temperature and pressure, to study the dispersion and thermo-physical properties of cryogenic hydrogen releases and flames. In this study, a non-intrusive laser spark focused on the jet axis was used to measure the maximum ignition distance. The radiative power emitted by the corresponding jet flames was also measured for a range of release scenarios from 37 K to 295 K, 2–6 bar abs through nozzles with diameters from 0.75more » to 1.25 mm. The maximum ignition distance scales linearly with the effective jet diameter (which scales as the square root of the stagnant fluid density). A 1-dimensional (stream-wise) cryogenic hydrogen release model developed previously at Sandia National Laboratories (although this model is not yet validated for cryogenic hydrogen) was exercised to predict that the mean mole fraction at the maximum ignition distance is approximately 0.14, and is not dependent on the release conditions. The flame length and width were extracted from visible and infra-red flame images for several test cases. The flame length and width both scale as the square root of jet exit Reynolds number, as reported in the literature for flames from atmospheric temperature hydrogen. As shown in previous studies for ignited atmospheric temperature hydrogen, the radiative power from the jet flames of cold hydrogen scales as a logarithmic function of the global flame residence time. The radiative heat flux from jet flames of cold hydrogen is higher than the jet flames of atmospheric temperature hydrogen, for a given mass flow rate, due to the lower choked flow velocity of low-temperature hydrogen. Lastly, this study provides critical information with regard to the development of models to inform the safety codes and standards of hydrogen

  11. Survival of captive-reared Puerto Rican Parrots released in the Caribbean National Forest

    USGS Publications Warehouse

    White, T.H.; Collazo, J.A.; Vilella, F.J.

    2005-01-01

    We report first-year survival for 34 captive-reared Puerto Rican Parrots (Amazona vittata) released in the Caribbean National Forest, Puerto Rico between 2000 and 2002. The purpose of the releases were to increase population size and the potential number of breeding individuals of the sole extant wild population, and to refine release protocols for eventual reintroduction of a second wild population elsewhere on the island. After extensive prerelease training, we released 10 parrots in 2000, 16 parrots in 2001, and eight parrots in 2002 ranging in age from 1-4 years old. All birds were equipped with radio-transmitters to monitor survival. The overall first-year survival estimate for the 34 parrots was 41% (CI = 22%-61%). Only one parrot died within the first week postrelease, with most (94%) surviving for at least eight weeks after release. Most (54%) documented mortalities were due to raptor predation, which claimed 21% of all released parrots. A captive-reared bird (male, age one), released in 2001, paired with a wild female and fledged two young in 2004. We also calculated survival based on 0% and 50% of observed predation losses and found hypothetical survival rates of 72% and 54%, respectively. Rigorous prerelease training and acclimation was believed to have improved initial postrelease parrot survival, and releasing mixed age-class groups suggests the potential for shortening the time to recruitment. ?? The Cooper Ornithological Society 2005.

  12. Workplace exposure and release of ultrafine particles during atmospheric plasma spraying in the ceramic industry.

    PubMed

    Viana, M; Fonseca, A S; Querol, X; López-Lilao, A; Carpio, P; Salmatonidis, A; Monfort, E

    2017-12-01

    Atmospheric plasma spraying (APS) is a frequently used technique to produce enhanced-property coatings for different materials in the ceramic industry. This work aimed to characterise and quantify the impact of APS on workplace exposure to airborne particles, with a focus on ultrafine particles (UFPs, <100nm) and nanoparticles (<50nm). Particle number, mass concentrations, alveolar lung deposited surface area concentration, and size distributions, in the range 10nm-20μm were simultaneously monitored at the emission source, in the potential worker breathing zone, and in outdoor air. Different input materials (known as feedstock) were tested: (a) micron-sized powders, and (b) suspensions containing submicron- or nano-sized particles. Results evidenced significantly high UFP concentrations (up to 3.3×10 6 /cm 3 ) inside the spraying chamber, which impacted exposure concentrations in the worker area outside the spraying chamber (up to 8.3×10 5 /cm 3 ). Environmental release of UFPs was also detected (3.9×10 5 /cm 3 , outside the exhaust tube). Engineered nanoparticle (ENP) release to workplace air was also evidenced by TEM microscopy. UFP emissions were detected during the application of both micron-sized powder and suspensions containing submicron- or nano-sized particles, thus suggesting that emissions were process- (and not material-) dependent. An effective risk prevention protocol was implemented, which resulted in a reduction of UFP exposure in the worker area. These findings demonstrate the potential risk of occupational exposure to UFPs during atmospheric plasma spraying, and raise the need for further research on UFP formation mechanisms in high-energy industrial processes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Demonstration of Technologies for Remote and in Situ Sensing of Atmospheric Methane Abundances - a Controlled Release Experiment

    NASA Astrophysics Data System (ADS)

    Aubrey, A. D.; Thorpe, A. K.; Christensen, L. E.; Dinardo, S.; Frankenberg, C.; Rahn, T. A.; Dubey, M.

    2013-12-01

    It is critical to constrain both natural and anthropogenic sources of methane to better predict the impact on global climate change. Critical technologies for this assessment include those that can detect methane point and concentrated diffuse sources over large spatial scales. Airborne spectrometers can potentially fill this gap for large scale remote sensing of methane while in situ sensors, both ground-based and mounted on aerial platforms, can monitor and quantify at small to medium spatial scales. The Jet Propulsion Laboratory (JPL) and collaborators recently conducted a field test located near Casper, WY, at the Rocky Mountain Oilfield Test Center (RMOTC). These tests were focused on demonstrating the performance of remote and in situ sensors for quantification of point-sourced methane. A series of three controlled release points were setup at RMOTC and over the course of six experiment days, the point source flux rates were varied from 50 LPM to 2400 LPM (liters per minute). During these releases, in situ sensors measured real-time methane concentration from field towers (downwind from the release point) and using a small Unmanned Aerial System (sUAS) to characterize spatiotemporal variability of the plume structure. Concurrent with these methane point source controlled releases, airborne sensor overflights were conducted using three aircraft. The NASA Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) participated with a payload consisting of a Fourier Transform Spectrometer (FTS) and an in situ methane sensor. Two imaging spectrometers provided assessment of optical and thermal infrared detection of methane plumes. The AVIRIS-next generation (AVIRIS-ng) sensor has been demonstrated for detection of atmospheric methane in the short wave infrared region, specifically using the absorption features at ~2.3 μm. Detection of methane in the thermal infrared region was evaluated by flying the Hyperspectral Thermal Emission Spectrometer (Hy

  14. First estimates of the contribution of CaCO3 precipitation to the release of CO2 to the atmosphere during young sea ice growth

    NASA Astrophysics Data System (ADS)

    Geilfus, N.-X.; Carnat, G.; Dieckmann, G. S.; Halden, N.; Nehrke, G.; Papakyriakou, T.; Tison, J.-L.; Delille, B.

    2013-01-01

    report measurements of pH, total alkalinity, air-ice CO2 fluxes (chamber method), and CaCO3 content of frost flowers (FF) and thin landfast sea ice. As the temperature decreases, concentration of solutes in the brine skim increases. Along this gradual concentration process, some salts reach their solubility threshold and start precipitating. The precipitation of ikaite (CaCO3.6H2O) was confirmed in the FF and throughout the ice by Raman spectroscopy and X-ray analysis. The amount of ikaite precipitated was estimated to be 25 µmol kg-1 melted FF, in the FF and is shown to decrease from 19 to 15 µmol kg-1 melted ice in the upper part and at the bottom of the ice, respectively. CO2 release due to precipitation of CaCO3 is estimated to be 50 µmol kg-1 melted samples. The dissolved inorganic carbon (DIC) normalized to a salinity of 10 exhibits significant depletion in the upper layer of the ice and in the FF. This DIC loss is estimated to be 2069 µmol kg-1 melted sample and corresponds to a CO2 release from the ice to the atmosphere ranging from 20 to 40 mmol m-2 d-1. This estimate is consistent with flux measurements of air-ice CO2 exchange. Our measurements confirm previous laboratory findings that growing young sea ice acts as a source of CO2 to the atmosphere. CaCO3 precipitation during early ice growth appears to promote the release of CO2 to the atmosphere; however, its contribution to the overall release by newly formed ice is most likely minor.

  15. DSCOVR EPIC L2 Atmospheric Correction (MAIAC) Data Release Announcement

    Atmospheric Science Data Center

    2018-06-22

    ... several atmospheric quantities including cloud mask and aerosol optical depth (AOD) required for atmospheric correction. The parameters ... is a useful complementary dataset to MODIS and VIIRS global aerosol products.   Information about the DSCOVR EPIC Atmospheric ...

  16. Impact of Released Fual Moisture on Atmospheric Dynamics

    Treesearch

    Brian E. Potter

    2003-01-01

    A common component of fire incident reports and prescribed burn preparations is an estimate of the energy that was or will be released by the fire. Typically, this is based on the energy released by combustion of the fuel load, reduced to account for the energy that is required to evaporate moisture in the fuel materials. (e.g., Byram 1959, Anderson 1968, Simard et al...

  17. Atmospheric PM and volatile organic compounds released from Mediterranean shrubland wildfires

    NASA Astrophysics Data System (ADS)

    Garcia-Hurtado, Elisa; Pey, Jorge; Borrás, Esther; Sánchez, Pilar; Vera, Teresa; Carratalá, Adoración; Alastuey, Andrés; Querol, Xavier; Vallejo, V. Ramon

    2014-06-01

    Wildfires produce a significant release of gases and particles affecting climate and air quality. In the Mediterranean region, shrublands significantly contribute to burned areas and may show specific emission profiles. Our objective was to depict and quantify the primary-derived aerosols and precursors of secondary particulate species released during shrubland experimental fires, in which fire-line intensity values were equivalent to those of moderate shrubland wildfires, by using a number of different methodologies for the characterization of organic and inorganic compounds in both gas-phase and particulate-phase. Emissions of PM mass, particle number concentrations and organic and inorganic PMx components during flaming and smouldering phases were characterized in a field shrubland fire experiment. Our results revealed a clear prevalence of K+ and SO42- as inorganic ions released during the flaming-smouldering processes, accounting for 68-80% of the inorganic soluble fraction. During the residual-smouldering phases, in addition to K+ and SO42-, Ca2+ was found in significant amounts probably due the predominance of re-suspension processes (ashes and soil dust) over other emission sources during this stage. Concerning organic markers, the chromatograms were dominated by phenols, n-alkanals and n-alkanones, as well as by alcohol biomarkers in all the PMx fractions investigated. Levoglucosan was the most abundant degradation compound with maximum emission factors between 182 and 261 mg kg-1 in PM2.5 and PM10 respectively. However, levoglucosan was also observed in significant amounts in the gas-phase. The most representative organic volatile constituents in the smoke samples were alcohols, carbonyls, acids, monocyclic and bicyclic arenes, isoprenoids and alkanes compounds. The emission factors obtained in this study may contribute to the validation and improvement of national and international emission inventories of this intricate and diffuse emission source.

  18. Capturing the externalities: National and watershed scale damages from release of reactive nitrogen beyond the farm, factory, tailpipe and table

    NASA Astrophysics Data System (ADS)

    Compton, J.; Sobota, D. J.; McCrackin, M. L.; Harrison, J.

    2014-12-01

    Human demand for food, fuel, and industrial products results in the release of 61% of the newly fixed anthropogenic N to the environment in the US each year. This 15.8 Tg N yr-1 input to air, land and water has important social, economic and environmental consequences, yet little research clearly links this N release to the full suite of effects. Here we connect the biogeochemical fluxes of N with existing data on N-associated damages in order to quantify the externalities of N release related to human health, ecosystems and climate regulation for the US at national and watershed scales. Release of N to the environment was estimated circa 2000 with models describing N inputs by source, nutrient uptake efficiency, leaching losses, and gaseous emissions at the scale of 8-digit US Geologic Survey Hydrologic Unit Codes (HUC8s). Potential damages or benefits of anthropogenic N leaked to the environment were calculated by scaling specific N fluxes with the costs associated with human health, agriculture, ecosystems, and the climate system. For the US, annual damage costs of anthropogenic N leaked to the environment in 2000 totaled 289 billion USD. Approximately 57% of the total damages were associated with fossil fuel combustion, driven by the human respiratory health impacts of NOx as a precursor of ozone and a component of particulates. Another 37% of the damage costs were associated with agricultural N. Damages associated with agriculture were 85.5 billion, largely through eutrophication and harmful effects on aquatic habitat. Through aggressive but tangible improvements in atmospheric emissions, agricultural N use and wastewater treatment, we could reduce N export to the coast by nearly 25% within 30 years. These improvements would reduce the externalities associated with the leakage of N beyond its intended uses in agriculture, transportation and energy with minimal impact to these sectors dependent on anthropogenic N fixation.

  19. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model

    NASA Astrophysics Data System (ADS)

    Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.

    2014-06-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Dai-ichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate a detailed time trend of atmospheric releases during the accident by combining environmental monitoring data with atmospheric model simulations from WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information), and simulations from the oceanic dispersion model SEA-GEARN-FDM, both developed by the authors. A sophisticated deposition scheme, which deals with dry and fogwater depositions, cloud condensation nuclei (CCN) activation and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The fallout to the ocean surface calculated by WSPEEDI-II was used as input data for the SEA-GEARN-FDM calculations. Reverse and inverse source-term estimation methods based on coupling the simulations from both models was adopted using air dose rates and concentrations, and sea surface concentrations. The results revealed that the major releases of radionuclides due to FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, the morning of 13 March after the venting event at Unit 3, midnight of 14 March when the SRV (Safely Relief Valve) at Unit 2 was opened three times, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of

  20. An adaptive Bayesian inference algorithm to estimate the parameters of a hazardous atmospheric release

    NASA Astrophysics Data System (ADS)

    Rajaona, Harizo; Septier, François; Armand, Patrick; Delignon, Yves; Olry, Christophe; Albergel, Armand; Moussafir, Jacques

    2015-12-01

    In the eventuality of an accidental or intentional atmospheric release, the reconstruction of the source term using measurements from a set of sensors is an important and challenging inverse problem. A rapid and accurate estimation of the source allows faster and more efficient action for first-response teams, in addition to providing better damage assessment. This paper presents a Bayesian probabilistic approach to estimate the location and the temporal emission profile of a pointwise source. The release rate is evaluated analytically by using a Gaussian assumption on its prior distribution, and is enhanced with a positivity constraint to improve the estimation. The source location is obtained by the means of an advanced iterative Monte-Carlo technique called Adaptive Multiple Importance Sampling (AMIS), which uses a recycling process at each iteration to accelerate its convergence. The proposed methodology is tested using synthetic and real concentration data in the framework of the Fusion Field Trials 2007 (FFT-07) experiment. The quality of the obtained results is comparable to those coming from the Markov Chain Monte Carlo (MCMC) algorithm, a popular Bayesian method used for source estimation. Moreover, the adaptive processing of the AMIS provides a better sampling efficiency by reusing all the generated samples.

  1. Atmospheric chemistry of hydrogen fluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Meng -Dawn

    In this study, the atmospheric chemistry, emissions, and surface boundary layer transport of hydrogen fluoride (HF) is summarized. Although HF is known to be chemically reactive and highly soluble, both factors affect transport and removal in the atmosphere, we suggest that the chemistry can be ignored when the HF concentration is at a sufficiently low level (e.g., 10 ppmv). At a low concentration, the capability for HF to react in the atmosphere is diminished and therefore the species can be mathematically treated as inert during the transport. At a sufficiently high concentration of HF (e.g., kg/s release rate and thousandsmore » of ppm), however, HF can go through a series of rigorous chemical reactions including polymerization, depolymerization, and reaction with water to form molecular complex. As such, the HF species cannot be considered as inert because the reactions could intimately influence the plume s thermodynamic properties affecting the changes in plume temperature and density. The atmospheric residence time of HF was found to be less than four (4) days, and deposition (i.e., atmosphere to surface transport) is the dominant mechanism that controls the removal of HF and its oligomers from the atmosphere. The literature data on HF dry deposition velocity was relatively high compared to many commonly found atmospheric species such as ozone, sulfur dioxide, nitrogen oxides, etc. The global average of wet deposition velocity of HF was found to be zero based on one literature source. Uptake of HF by rain drops is limited by the acidity of the rain drops, and atmospheric particulate matter contributes negligibly to HF uptake. Finally, given that the reactivity of HF at a high release rate and elevated mole concentration cannot be ignored, it is important to incorporate the reaction chemistry in the near-field dispersion close to the proximity of the release source, and to incorporate the deposition mechanism in the far-field dispersion away from the

  2. Atmospheric chemistry of hydrogen fluoride

    DOE PAGES

    Cheng, Meng -Dawn

    2017-04-11

    In this study, the atmospheric chemistry, emissions, and surface boundary layer transport of hydrogen fluoride (HF) is summarized. Although HF is known to be chemically reactive and highly soluble, both factors affect transport and removal in the atmosphere, we suggest that the chemistry can be ignored when the HF concentration is at a sufficiently low level (e.g., 10 ppmv). At a low concentration, the capability for HF to react in the atmosphere is diminished and therefore the species can be mathematically treated as inert during the transport. At a sufficiently high concentration of HF (e.g., kg/s release rate and thousandsmore » of ppm), however, HF can go through a series of rigorous chemical reactions including polymerization, depolymerization, and reaction with water to form molecular complex. As such, the HF species cannot be considered as inert because the reactions could intimately influence the plume s thermodynamic properties affecting the changes in plume temperature and density. The atmospheric residence time of HF was found to be less than four (4) days, and deposition (i.e., atmosphere to surface transport) is the dominant mechanism that controls the removal of HF and its oligomers from the atmosphere. The literature data on HF dry deposition velocity was relatively high compared to many commonly found atmospheric species such as ozone, sulfur dioxide, nitrogen oxides, etc. The global average of wet deposition velocity of HF was found to be zero based on one literature source. Uptake of HF by rain drops is limited by the acidity of the rain drops, and atmospheric particulate matter contributes negligibly to HF uptake. Finally, given that the reactivity of HF at a high release rate and elevated mole concentration cannot be ignored, it is important to incorporate the reaction chemistry in the near-field dispersion close to the proximity of the release source, and to incorporate the deposition mechanism in the far-field dispersion away from the

  3. The Cultural Politics of National Testing and Test Result Release Policy in South Korea: A Critical Discourse Analysis

    ERIC Educational Resources Information Center

    Sung, Youl-Kwan; Kang, Mi Ok

    2012-01-01

    This paper examines the ideological construction of educational discourses embedded within the South Korean print media. Significantly, these discourses have recently promoted the resurrection of a sweeping national testing and test results release policy. Through careful examination of the "test plus release" policy, the authors show…

  4. [Inventories of atmospheric arsenic emissions from coal combustion in China, 2005].

    PubMed

    Tian, He-Zhong; Qu, Yi-Ping

    2009-04-15

    Anthropogenic arsenic (As) emitted from coal combustion is one of key trace elements leading to negative air pollution and national economy loss. It is of great significance to estimate the atmospheric arsenic emission for proposing relevant laws or regulations and selecting proper pollution control technologies. The inventories of atmospheric arsenic emissions from coal combustion in China were evaluated by adopting the emission factor method based on fuel consumption. Arsenic emission sources were firstly classified into several categories by economic sectors, combustion types and pollution control technologies. Then, according to provincial coal consumption and averaged arsenic concentration in the feed fuel, the inventories of atmospheric arsenic emission from coal combustion in China in 2005 were established. Coal outputand consumption in China in 2005 were 2,119.8 and 2,099.8 Mt, respectively. The total emissions of arsenic released into the atmosphere in 2005 in China were estimated at about 1,564.4 t, and Shandong ranked the largest province with 144.4 t arsenic release, followed by Hunan (141.1 t), Hebei (108.5 t), Henan (77.7 t), and Jiangsu (77.0 t), which were mainly concentrated in the eastern and central provinces of China. The arsenic emissions were largely emitted by industry sector (818.8 t) and thermal power generation sector (303.4 t), contributing 52.3% and 19.4% of the totals, respectively. About 375.5 t arsenic was estimated to be released into the atmosphere in the form of gas phase in China in 2005, with a share of 24% of the totals. In general, arsenic pollution control from coal combustion should be highlighted for the power and industry sectors in the whole country. However, arsenic poisoning caused by residential coal burning should also be paid great attention in some areas such as Xinjiang, Gansu, Qinghai and Guishou.

  5. Atmospheric Impact of Large Methane Emissions and the Gulf Oil Spill

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Cameron-Smith, P. J.; Bergmann, D. J.

    2010-12-01

    A vast quantity of a highly potent greenhouse gas, methane, is locked in the solid phase as methane clathrates in ocean sediments and underneath permafrost regions. Clathrates are ice-like deposits containing a mixture of water and gas (mostly methane) which are stable under high pressure and low temperatures. Current estimates are about 1600 - 2000 GtC present in oceans and about 400GtC in Arctic permafrost (Archer et al. 2009). This is about 4000 times that of current annual emissions. In a warming climate, increase in ocean temperatures could rapidly destabilize the geothermal gradient which in turn could lead to dissociation of the clathrates and release of methane into the ocean and subsequently into the atmosphere as well. This could result in a number of effects including strong greenhouse heating, increased surface ozone, reduced stratospheric ozone, and intensification of the Arctic ozone hole. Many of the effects in the chemistry of the atmosphere are non-linear. In this paper, we present a parametric study of the effect of large scale methane release to the atmosphere. To that end we use the CESM (Community Earth System Model) version 1 with fully active coupled atmosphere-ocean-land model together with super-fast atmospheric chemistry module to simulate the response to increasing CH4 by 2, 3, 10 and 100 times that of the present day. We have also conducted a parametric study of the possible impact of gaseous emissions from the oil spill in the Gulf of Mexico, which is a proxy for future clathrate releases. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Organically bound tritium (OBT) for various plants in the vicinity of a continuous atmospheric tritium release.

    PubMed

    Vichot, L; Boyer, C; Boissieux, T; Losset, Y; Pierrat, D

    2008-10-01

    In order to quantify tritium impact on the environmental, we studied vegetation continuously exposed to a tritiated atmosphere. We chose lichens as bio-indicators, trees for determination of past tritium releases of the Valduc Centre, and lettuce as edible vegetables for dose calculation regarding neighbourhood. The Pasquill and Doury models from the literature were tested to estimate tritium concentration in the air around vegetable for distance from the release point less than 500 m. The results in tree rings show that organically bound tritium (OBT) concentration was strongly correlated with tritium releases. Using the GASCON model, the modelled variation of OBT concentration with distance was correlated with the measurements. Although lichens are recognized as bio-indicators, our experiments show that they were not convenient for environmental surveys because their age is not definitive. Thus, tritium integration time cannot be precisely determined. Furthermore, their biological metabolism is not well known and tritium concentration appears to be largely dependent on species. An average conversion rate of HTO to OBT was determined for lettuce of about 0.20-0.24% h(-1). Nevertheless, even if it is equivalent to values already published in the literature for other vegetation, we have shown that this conversion rate, established by weekly samples, varies by a factor of 10 during the different stages of lettuce development, and that its variation is linked to the biomass derivative.

  7. Radiation release at the nation's only operating deep geological repository--an independent monitoring perspective.

    PubMed

    Thakur, P; Ballard, S; Hardy, R

    2014-11-04

    Recent incidents at the nation's only operating deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP), resulted in the release of americium and plutonium from one or more defense-related transuranic (TRU) waste containers into the environment. WIPP is a U.S. Department of Energy mined geologic repository that has been in operation since March, 1999. Over 85,000 m3 of waste in various vented payload containers have been emplaced in the repository. The primary radionuclides within the disposed waste are 239+240Pu and 241Am, which account for more than 99% of the total TRU radioactivity disposed and scheduled for disposal in the repository. For the first time in its 15 years of operation, there was an airborne radiation release from the WIPP at approximately 11:30 PM Mountain Standard Time (MST) on Friday, February 14, 2014. The radiation release was likely caused by a chemical reaction inside a TRU waste drum that contained nitrate salts and organic sorbent materials. In a recent news release, DOE announced that photos taken of the waste underground showed evidence of heat and gas pressure resulting in a deformed lid, in material expelled through that deformation, and in melted plastic and rubber and polyethylene in the vicinity of that drum. Recent entries into underground Panel 7 have confirmed that at least one waste drum containing a nitrate salt bearing waste stream from Los Alamos National Laboratory was breached underground and was the most likely source of the release. Further investigation is underway to determine if other containers contributed to the release. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to ascertain whether or not there were releases to the ground surface. Independent analytical results of air filters from sampling stations on and near the WIPP facility have been released by us at the Carlsbad Environmental Monitoring & Research Center and confirmed

  8. Reliability of Current U.S. Modeling of Atmospheric Plumes Questioned

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The deficiencies of atmospheric modeling used to determine the dispersion of chemical, radiological, or biological plumes came under fire during a 2 June hearing in the U.S. House of Representative. Several members of Congress said at that time that current modeling efforts provide inadequate information to assess plumes that could result from a terrorist incident, warfare, or some other cause. Part of the hearing, held by the House Subcommittee on National Security, Emerging Threats, and International Relations, focused on two reports released just that day: one by the U.S. National Academy of Sciences (NAS), and the other by the U.S. General Accounting Office (GAO).

  9. National Space Weather Program Releases Strategy for the New Decade

    NASA Astrophysics Data System (ADS)

    Williamson, Samuel P.; Babcock, Michael R.; Bonadonna, Michael F.

    2010-12-01

    The National Space Weather Program (NSWP; http://www.nswp.gov) is a U.S. federal government interagency program established by the Office of the Federal Coordinator for Meteorology (OFCM) in 1995 to coordinate, collaborate, and leverage capabilities across stakeholder agencies, including space weather researchers, service providers, users, policy makers, and funding agencies, to improve the performance of the space weather enterprise for the United States and its international partners. Two important documents released in recent months have established a framework and the vision, goals, and strategy to move the enterprise forward in the next decade. The U.S. federal agency members of the NSWP include the departments of Commerce, Defense, Energy, Interior, State, and Transportation, plus NASA, the National Science Foundation, and observers from the White House Office of Science and Technology Policy (OSTP) and the Office of Management and Budget (OMB). The OFCM is also working with the Department of Homeland Security's Federal Emergency Management Agency to formally join the program.

  10. Utilization of 134Cs/137Cs in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident

    NASA Astrophysics Data System (ADS)

    Chino, Masamichi; Terada, Hiroaki; Nagai, Haruyasu; Katata, Genki; Mikami, Satoshi; Torii, Tatsuo; Saito, Kimiaki; Nishizawa, Yukiyasu

    2016-08-01

    The Fukushima Daiichi nuclear power reactor units that generated large amounts of airborne discharges during the period of March 12-21, 2011 were identified individually by analyzing the combination of measured 134Cs/137Cs depositions on ground surfaces and atmospheric transport and deposition simulations. Because the values of 134Cs/137Cs are different in reactor units owing to fuel burnup differences, the 134Cs/137Cs ratio measured in the environment was used to determine which reactor unit ultimately contaminated a specific area. Atmospheric dispersion model simulations were used for predicting specific areas contaminated by each dominant release. Finally, by comparing the results from both sources, the specific reactor units that yielded the most dominant atmospheric release quantities could be determined. The major source reactor units were Unit 1 in the afternoon of March 12, 2011, Unit 2 during the period from the late night of March 14 to the morning of March 15, 2011. These results corresponded to those assumed in our previous source term estimation studies. Furthermore, new findings suggested that the major source reactors from the evening of March 15, 2011 were Units 2 and 3 and that the dominant source reactor on March 20, 2011 temporally changed from Unit 3 to Unit 2.

  11. Utilization of (134)Cs/(137)Cs in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident.

    PubMed

    Chino, Masamichi; Terada, Hiroaki; Nagai, Haruyasu; Katata, Genki; Mikami, Satoshi; Torii, Tatsuo; Saito, Kimiaki; Nishizawa, Yukiyasu

    2016-08-22

    The Fukushima Daiichi nuclear power reactor units that generated large amounts of airborne discharges during the period of March 12-21, 2011 were identified individually by analyzing the combination of measured (134)Cs/(137)Cs depositions on ground surfaces and atmospheric transport and deposition simulations. Because the values of (134)Cs/(137)Cs are different in reactor units owing to fuel burnup differences, the (134)Cs/(137)Cs ratio measured in the environment was used to determine which reactor unit ultimately contaminated a specific area. Atmospheric dispersion model simulations were used for predicting specific areas contaminated by each dominant release. Finally, by comparing the results from both sources, the specific reactor units that yielded the most dominant atmospheric release quantities could be determined. The major source reactor units were Unit 1 in the afternoon of March 12, 2011, Unit 2 during the period from the late night of March 14 to the morning of March 15, 2011. These results corresponded to those assumed in our previous source term estimation studies. Furthermore, new findings suggested that the major source reactors from the evening of March 15, 2011 were Units 2 and 3 and that the dominant source reactor on March 20, 2011 temporally changed from Unit 3 to Unit 2.

  12. Utilization of 134Cs/137Cs in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident

    PubMed Central

    Chino, Masamichi; Terada, Hiroaki; Nagai, Haruyasu; Katata, Genki; Mikami, Satoshi; Torii, Tatsuo; Saito, Kimiaki; Nishizawa, Yukiyasu

    2016-01-01

    The Fukushima Daiichi nuclear power reactor units that generated large amounts of airborne discharges during the period of March 12–21, 2011 were identified individually by analyzing the combination of measured 134Cs/137Cs depositions on ground surfaces and atmospheric transport and deposition simulations. Because the values of 134Cs/137Cs are different in reactor units owing to fuel burnup differences, the 134Cs/137Cs ratio measured in the environment was used to determine which reactor unit ultimately contaminated a specific area. Atmospheric dispersion model simulations were used for predicting specific areas contaminated by each dominant release. Finally, by comparing the results from both sources, the specific reactor units that yielded the most dominant atmospheric release quantities could be determined. The major source reactor units were Unit 1 in the afternoon of March 12, 2011, Unit 2 during the period from the late night of March 14 to the morning of March 15, 2011. These results corresponded to those assumed in our previous source term estimation studies. Furthermore, new findings suggested that the major source reactors from the evening of March 15, 2011 were Units 2 and 3 and that the dominant source reactor on March 20, 2011 temporally changed from Unit 3 to Unit 2. PMID:27546490

  13. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Matthews

    2012-10-01

    CAU 104 comprises the following corrective action sites (CASs): • 07-23-03, Atmospheric Test Site T-7C • 07-23-04, Atmospheric Test Site T7-1 • 07-23-05, Atmospheric Test Site • 07-23-06, Atmospheric Test Site T7-5a • 07-23-07, Atmospheric Test Site - Dog (T-S) • 07-23-08, Atmospheric Test Site - Baker (T-S) • 07-23-09, Atmospheric Test Site - Charlie (T-S) • 07-23-10, Atmospheric Test Site - Dixie • 07-23-11, Atmospheric Test Site - Dixie • 07-23-12, Atmospheric Test Site - Charlie (Bus) • 07-23-13, Atmospheric Test Site - Baker (Buster) • 07-23-14, Atmospheric Test Site - Ruth • 07-23-15, Atmospheric Test Site T7-4 •more » 07-23-16, Atmospheric Test Site B7-b • 07-23-17, Atmospheric Test Site - Climax These 15 CASs include releases from 30 atmospheric tests conducted in the approximately 1 square mile of CAU 104. Because releases associated with the CASs included in this CAU overlap and are not separate and distinguishable, these CASs are addressed jointly at the CAU level. The purpose of this CADD/CAP is to evaluate potential corrective action alternatives (CAAs), provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 104. Corrective action investigation (CAI) activities were performed from October 4, 2011, through May 3, 2012, as set forth in the CAU 104 Corrective Action Investigation Plan.« less

  14. Volatile contents of magmas from the Deccan and Columbia River provinces: implications for atmospheric gas release from flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Self, S.; Blake, S.; Sharma, K.; Widdowson, M.

    2008-12-01

    Sulphur (S) and chlorine (Cl) contents of magmas from the Mesozoic Deccan basalt province have been measured directly on rare, preserved glass inclusions within crystals and on glassy selvages in these ancient lava flows (Self et al., 2008). Lava flows of the Deccan Traps, India, were emplaced around 66-65 Ma ago. S and Cl concentrations range from high values of ~ 1400 ppm S and 500 ppm Cl in inclusions down to a few hundred ppm in lava selvages. The data indicate that the basaltic magmas of certain (and by implication, many) Deccan eruptions would have emitted up to 0.15 wt % SO2 and up to 0.03 wt % HCl, using an approach that accounts for the variable degree of melt evolution. Such values imply atmospheric releases of ~ 4 Tg of SO2 (and 0.8 Tg HCl) per cubic kilometer (km) of basaltic lava erupted, with most of this being released above the vents. Although eruptive volumes of individual Deccan flood basalt lava fields are not known, the SO2 masses released are indicated to be around 4000 Tg for a 1000 cubic km eruption. Similar, to slightly higher, values for S and Cl have been recently obtained by the same method on two other lava flow fields besides the already-studied Roza lava (Thordarson and Self, 1996) from the 15 Ma Columbia River flood basalt province (CRB) in the Pacific NW of the USA. Volumes of individual eruptive units are known for the CRB (those studied are from 1300-2600 cubic km) and it can be shown that the studied eruptions released SO2 masses in the range 8,000 to 12000 Tg, depending upon flow-field volume. In some cases, the vent areas for these eruptions can be explored. Understanding the eruptive style indicated by proximal deposits will help in future modeling of the atmospheric behavior of the eruption columns, and in heights attained. These results provide a solid basis for interpretation and modeling of the environmental impact of gas releases from past flood basalt activity, which has long been assumed to have been severe. The

  15. The ISLSCP initiative I global datasets: Surface boundary conditions and atmospheric forcings for land-atmosphere studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellers, P.J.; Collatz, J.; Koster, R.

    1996-09-01

    A comprehensive series of global datasets for land-atmosphere models has been collected, formatted to a common grid, and released on a set of CD-ROMs. This paper describes the motivation for and the contents of the dataset. In June of 1992, an interdisciplinary earth science workshop was convened in Columbia, Maryland, to assess progress in land-atmosphere research, specifically in the areas of models, satellite data algorithms, and field experiments. At the workshop, representatives of the land-atmosphere modeling community defined a need for global datasets to prescribe boundary conditions, initialize state variables, and provide near-surface meteorological and radiative forcings for their models.more » The International Satellite Land Surface Climatology Project (ISLSCP), a part of the Global Energy and Water Cycle Experiment, worked with the Distributed Active Archive Center of the National Aeronautics and Space Administration Goddard Space Flight Center to bring the required datasets together in a usable format. The data have since been released on a collection of CD-ROMs. The datasets on the CD-ROMs are grouped under the following headings: vegetation; hydrology and soils; snow, ice, and oceans; radiation and clouds; and near-surface meteorology. All datasets cover the period 1987-88, and all but a few are spatially continuous over the earth`s land surface. All have been mapped to a common 1{degree} x 1{degree} equal-angle grid. The temporal frequency for most of the datasets is monthly. A few of the near-surface meteorological parameters are available both as six-hourly values and as monthly means. 26 refs., 8 figs., 2 tabs.« less

  16. Towards the operational estimation of a radiological plume using data assimilation after a radiological accidental atmospheric release

    NASA Astrophysics Data System (ADS)

    Winiarek, Victor; Vira, Julius; Bocquet, Marc; Sofiev, Mikhail; Saunier, Olivier

    2011-06-01

    In the event of an accidental atmospheric release of radionuclides from a nuclear power plant, accurate real-time forecasting of the activity concentrations of radionuclides is required by the decision makers for the preparation of adequate countermeasures. The accuracy of the forecast plume is highly dependent on the source term estimation. On several academic test cases, including real data, inverse modelling and data assimilation techniques were proven to help in the assessment of the source term. In this paper, a semi-automatic method is proposed for the sequential reconstruction of the plume, by implementing a sequential data assimilation algorithm based on inverse modelling, with a care to develop realistic methods for operational risk agencies. The performance of the assimilation scheme has been assessed through the intercomparison between French and Finnish frameworks. Two dispersion models have been used: Polair3D and Silam developed in two different research centres. Different release locations, as well as different meteorological situations are tested. The existing and newly planned surveillance networks are used and realistically large multiplicative observational errors are assumed. The inverse modelling scheme accounts for strong error bias encountered with such errors. The efficiency of the data assimilation system is tested via statistical indicators. For France and Finland, the average performance of the data assimilation system is strong. However there are outlying situations where the inversion fails because of a too poor observability. In addition, in the case where the power plant responsible for the accidental release is not known, robust statistical tools are developed and tested to discriminate candidate release sites.

  17. Ice core measurements of 14CH4 show no evidence of methane release to atmosphere from methane hydrates during a large warming event 11,600 years ago

    NASA Astrophysics Data System (ADS)

    Petrenko, V. V.; Severinghaus, J. P.; Smith, A.; Riedel, K.; Brook, E.; Schaefer, H.; Baggenstos, D.; Harth, C. M.; Hua, Q.; Buizert, C.; Schilt, A.; Fain, X.; Mitchell, L.; Bauska, T. K.; Orsi, A. J.; Weiss, R. F.

    2016-12-01

    Marine methane hydrate destabilization has been proposed as a potentially large source of methane to the atmosphere in response to both past and future warming. We present new measurements of 14C of paleoatmospheric methane (CH4) over the Younger Dryas - Preboreal (YD - PB) abrupt warming event (≈11,600 years ago) from ancient ice outcropping at Taylor Glacier, Antarctica. The YD - PB abrupt warming was centered in the North Atlantic, occurred partway through the global warming of last deglaciation and was associated with a ≈ 50% increase in atmospheric CH4 concentrations. 14C can unambiguously identify CH4 emissions from "old carbon" sources, such as CH4 hydrates. All samples from before, during and after the abrupt warming and associated CH4 increase yielded 14CH4 values that are consistent with 14C of atmospheric CO2 at that time, indicating a purely contemporaneous methane source. Our results show that neither the abrupt regional warming nor the gradual global warming that preceded it resulted in detectable CH4 release to the atmosphere from CH4 hydrates during the YD - PB transition. Our results are thus consistent with the hypothesis that the vast majority of CH4 that is released from dissociating hydrates or other old-carbon seafloor CH4 sources is oxidized prior to reaching the atmosphere.

  18. Biosphere-Atmosphere Transfer Scheme (BATS) version le as coupled to the NCAR community climate model. Technical note. [NCAR (National Center for Atmospheric Research)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J.

    A comprehensive model of land-surface processes has been under development suitable for use with various National Center for Atmospheric Research (NCAR) General Circulation Models (GCMs). Special emphasis has been given to describing properly the role of vegetation in modifying the surface moisture and energy budgets. The result of these efforts has been incorporated into a boundary package, referred to as the Biosphere-Atmosphere Transfer Scheme (BATS). The current frozen version, BATS1e is a piece of software about four thousand lines of code that runs as an offline version or coupled to the Community Climate Model (CCM).

  19. Chemistry of Earth's Putative Steam Atmosphere

    NASA Astrophysics Data System (ADS)

    Fegley, B.; Schaefer, L.

    2007-12-01

    The concept of a steam atmosphere generated by impact devolatilization of planetesimals accreted during Earth's formation is over 20 years old (Matsui and Abe, 1986; Lange and Ahrens, 1982). Surprisingly, with the possible exception of a few qualitative remarks, no one has critically assessed this scenario. We use thermochemical equilibrium and, where relevant, thermochemical kinetic calculations to model the chemistry of the "steam" atmosphere produced by impact volatilization of different types of accreting material. We present results for our nominal conditions (1500 K, total P = 100 bar). We also studied the effects of variable temperature and total pressure. The composition of the accreting material is modeled using average compositions of the Orgueil CI chondrite, the Murchison CM2 chondrite, the Allende CV3 chondrite, average ordinary (H, L, LL) chondrites, and average enstatite (EH, EL) chondrites. The major gases released from CI and CM chondritic material are H2O, CO2, H2, H2S, CO, CH4, and SO2 in decreasing order of abundance. About 10% of the atmosphere is CO2. The major gases released from CV chondritic material are CO2, H2O, CO, H2, and SO2 in decreasing order of abundance. About 20% of the total atmosphere is steam. The major gases released from average ordinary chondritic material are H2, CO, H2O, CO2, CH4, H2S, and N2 in decreasing order of abundance. The "steam" atmosphere is predominantly H2 + CO with steam being about 10% of the total atmosphere. The major gases released from EH chondritic material are H2, CO, H2O, CO2, N2, and CH4 in decreasing order of abundance. The "steam" atmosphere is predominantly H2 + CO with about 10% of the total atmosphere as steam. This work was supported by the NASA Astrobiology and Origins Programs.

  20. A Decade of Field Changing Atmospheric Aerosol Research ...

    EPA Pesticide Factsheets

    Conference: Gordon Research Conference in Atmospheric Chemistry, July 28 – August 2, 2013, VermontPresentation Type: PosterTitle: An Analysis of EPA’s STAR Program and a Decade of Field Changing Research in Atmospheric AerosolsAuthors: Kristina M. Wagstrom1,2, Sherri W. Hunt31Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT2AAAS Science and Technology Policy Fellow hosted by U.S. Environmental Protection Agency, National Center for Environmental Research3U.S. Environmental Protection Agency, National Center for Environmental ResearchA number of studies in the past decade have transformed the way we think about atmospheric aerosols. The advances include, but are not limited to, source apportionment of organics using aerosol mass spectrometer data, the volatility basis set approach, quantifying isoprene oxidation, and understanding the role of aqueous oxidation of organics on SOA formation. A series of grants funded by EPA just under ten years ago supported many of these advances. These projects make up the body of work awarded under two solicitations released by the EPA’s Science to Achieve Results (STAR) program: “Measurement, Modeling, and Analysis Methods for Airborne Carbonaceous Fine Particulate Matter” (2003) and “Source Apportionment of Particulate Matter” (2004). Our goal is to present the impact of the STAR solicitations and to show how they have pushed the field forward and led to new questions.In particular

  1. Mass storage system experiences and future needs at the National Center for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    Olear, Bernard T.

    1991-01-01

    A summary and viewgraphs of a discussion presented at the National Space Science Data Center (NSSDC) Mass Storage Workshop is included. Some of the experiences of the Scientific Computing Division at the National Center for Atmospheric Research (NCAR) dealing the the 'data problem' are discussed. A brief history and a development of some basic mass storage system (MSS) principles are given. An attempt is made to show how these principles apply to the integration of various components into NCAR's MSS. Future MSS needs for future computing environments is discussed.

  2. Total mercury released to the environment by human activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streets, David G.; Horowitz, Hannah M.; Jacob, Daniel J.

    Here, we estimate that a cumulative total of 1.5 (1.0–2.8) Tg (teragrams, or million tonnes) of mercury (Hg) have been released by human activities up to 2010, 73% of which was released after 1850. Of this liberated Hg, 470 Gg (gigagrams, or thousand tonnes) was emitted directly into the air, and 74% of the air emissions were elemental Hg. Cumulatively, about 1.1 Tg were released to land and water bodies. Though annual releases of Hg have been relatively stable since 1880 at 8 ± 2 Gg, except for wartime, the distributions of those releases among source types, world regions, andmore » environmental media have changed dramatically. Production of Hg accounts for 27% of cumulative Hg releases to the environment, followed by silver mining (24%) and chemicals manufacturing (12%). North America (30%), Europe (27%), and Asia (16%) have experienced the largest releases. Biogeochemical modeling shows a 3.2-fold increase in the atmospheric burden relative to 1850 and a contemporary atmospheric reservoir of 4570 Mg, both of which agree well with observational constraints. We find that approximately 40% (390 Gg) of the Hg discarded to land and water must be sequestered at contaminated sites to maintain consistency with recent declines in atmospheric Hg concentrations.« less

  3. Total mercury released to the environment by human activities

    DOE PAGES

    Streets, David G.; Horowitz, Hannah M.; Jacob, Daniel J.; ...

    2017-04-27

    Here, we estimate that a cumulative total of 1.5 (1.0–2.8) Tg (teragrams, or million tonnes) of mercury (Hg) have been released by human activities up to 2010, 73% of which was released after 1850. Of this liberated Hg, 470 Gg (gigagrams, or thousand tonnes) was emitted directly into the air, and 74% of the air emissions were elemental Hg. Cumulatively, about 1.1 Tg were released to land and water bodies. Though annual releases of Hg have been relatively stable since 1880 at 8 ± 2 Gg, except for wartime, the distributions of those releases among source types, world regions, andmore » environmental media have changed dramatically. Production of Hg accounts for 27% of cumulative Hg releases to the environment, followed by silver mining (24%) and chemicals manufacturing (12%). North America (30%), Europe (27%), and Asia (16%) have experienced the largest releases. Biogeochemical modeling shows a 3.2-fold increase in the atmospheric burden relative to 1850 and a contemporary atmospheric reservoir of 4570 Mg, both of which agree well with observational constraints. We find that approximately 40% (390 Gg) of the Hg discarded to land and water must be sequestered at contaminated sites to maintain consistency with recent declines in atmospheric Hg concentrations.« less

  4. Endosulfan in the atmosphere of South Florida: Transport to Everglades and Biscayne National Parks

    NASA Astrophysics Data System (ADS)

    Hapeman, Cathleen J.; McConnell, Laura L.; Potter, Thomas L.; Harman-Fetcho, Jennifer; Schmidt, Walter F.; Rice, Clifford P.; Schaffer, Bruce A.; Curry, Richard

    2013-02-01

    Nutrient inputs from urban encroachment and agricultural activities have been implicated in contributing to the environmental health decline and loss of organism diversity of South Florida ecosystems. Intensive agricultural pesticide use may also challenge these ecosystems. One possible mechanism is pesticide release to the atmosphere after application. The process is enhanced in this region due to the calcareous soils, frequent rainfall, and high humidity and temperatures. This study examined the atmospheric fate of the widely-used insecticide endosulfan. Air samples were collected over a five-year period (2001-2006) at a site within the agricultural community of Homestead, Florida and at sites located in nearby Biscayne and Everglades National Parks (NPs). Mean gas phase air concentrations of α-endosulfan were 17 ± 19 ng m-3 at Homestead, 2.3 ± 3.6 ng m-3 at Everglades NP, and 0.52 ± 0.69 ng m-3 at Biscayne NP. Endosulfan emissions from agricultural areas around Homestead appeared to influence air concentration observations at the NP sites. During an intensive sampling campaign, the highest total endosulfan concentrations at the NP sites were observed on days when air parcels were predicted to move from Homestead towards the sampling locations. The α-endosulfan fraction (α/(α + β)) was used to examine the contribution of pesticide drift versus volatilization to the overall residue level. The formulated product has an α fraction of approximately 0.7, whereas volatilization is predicted to have an α fraction of ≥0.9. The median α- fraction observed during periods of high agricultural activity at Homestead and Everglades NP was 0.84 and 0.88, respectively, and during periods of low agricultural activity the median at Homestead was 0.86, indicating contributions from drift. The median α fraction at Everglades NP was 1.0 during periods of low agricultural activity, while Biscayne NP was 1.0 year round indicating air concentrations are primarily

  5. Radiocarbon of Respired CO2 Following Fire in Alaskan Boreal Forest: Can Disturbance Release Old Soil Carbon to the Atmosphere?

    NASA Astrophysics Data System (ADS)

    Schuur, E. A.; Randerson, J. A.; Fessenden, J.; Trumbore, S. E.

    2002-12-01

    Fire in the boreal forest releases carbon stored in vegetation and soil to the atmosphere. Following fire, microbial decomposition is stimulated by inputs of plant detritus and changes in soil microclimate, which can result in large losses of carbon. Furthermore, warmer summer soil temperatures and deeper thaw depths in burned ecosystems may make carbon that was previously climatically protected by low soil temperatures susceptible to decomposition. We used radiocarbon measurements to estimate the age of carbon released by soil respiration following fire in two black spruce (Picea mariana) forests in interior Alaska that burned during the summer of 1999. To isolate soil respiration, we established manipulated plots where vegetation was prevented from recolonizing, and paired control plots in nearby unburned forest. Soil respiration radiocarbon signatures in the burned manipulation ranged from +112\\permil to +192\\permil and differed significantly from the unburned controls that ranged from +100\\permil to +130\\permil. Burned plots appear to respire older carbon than unburned forest, which could either be due to the stimulation of decomposition of intermediate age soil organic matter pools, to the lack of plant respiration that reflects the atmospheric radiocarbon signature of +92\\permil, or both. At least during the initial phase following fire, these data suggest that carbon fluxes from soil are dominated by soil organic matter pools with decadal scale turnover times.

  6. ATMOSPHERIC RELEASES OF HEXAVALENT CHROMIUM FROM HARD CHROMIUM PLATING OPERATIONS

    EPA Science Inventory

    The University of Central Florida Department of Civil and Environmental Engineering is investigating methods for improved estimation of chemical releases which require reporting under provisions of SARA Title III (Toxic Release Inventory, Form R). This paper describes results fr...

  7. Maxdose-SR and popdose-SR routine release atmospheric dose models used at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannik, G. T.; Trimor, P. P.

    MAXDOSE-SR and POPDOSE-SR are used to calculate dose to the offsite Reference Person and to the surrounding Savannah River Site (SRS) population respectively following routine releases of atmospheric radioactivity. These models are currently accessed through the Dose Model Version 2014 graphical user interface (GUI). MAXDOSE-SR and POPDOSE-SR are personal computer (PC) versions of MAXIGASP and POPGASP, which both resided on the SRS IBM Mainframe. These two codes follow U.S. Nuclear Regulatory Commission (USNRC) Regulatory Guides 1.109 and 1.111 (1977a, 1977b). The basis for MAXDOSE-SR and POPDOSE-SR are USNRC developed codes XOQDOQ (Sagendorf et. al 1982) and GASPAR (Eckerman et. almore » 1980). Both of these codes have previously been verified for use at SRS (Simpkins 1999 and 2000). The revisions incorporated into MAXDOSE-SR and POPDOSE-SR Version 2014 (hereafter referred to as MAXDOSE-SR and POPDOSE-SR unless otherwise noted) were made per Computer Program Modification Tracker (CPMT) number Q-CMT-A-00016 (Appendix D). Version 2014 was verified for use at SRS in Dixon (2014).« less

  8. SENSITIVITY OF THE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION MULTILAYER MODEL TO INSTRUMENT ERROR AND PARAMETERIZATION UNCERTAINTY

    EPA Science Inventory

    The response of the National Oceanic and Atmospheric Administration multilayer inferential dry deposition velocity model (NOAA-MLM) to error in meteorological inputs and model parameterization is reported. Monte Carlo simulations were performed to assess the uncertainty in NOA...

  9. 32 CFR 635.10 - Release of information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Release of information. 635.10 Section 635.10 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS LAW ENFORCEMENT REPORTING Release of Information § 635.10 Release of information. (a) Release of information from Army...

  10. Chris Cantrell and Becky Anderson of the National Center for Atmospheric Research assess the CIMS instrument's operation during ARCTAS mission preparations

    NASA Image and Video Library

    2008-03-07

    Climate researchers from the National Center for Atmospheric Research (NCAR) and several universities install and perform functional checkouts of a variety of sensitive atmospheric instruments on NASA's DC-8 airborne laboratory prior to beginning the ARCTAS mission.

  11. COOP 3D ARPA Experiment 109 National Center for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Coupled atmospheric and hydrodynamic forecast models were executed on the supercomputing resources of the National Center for Atmospheric Research (NCAR) in Boulder, Colorado and the Ohio Supercomputing Center (OSC)in Columbus, Ohio. respectively. The interoperation of the forecast models on these geographically diverse, high performance Cray platforms required the transfer of large three dimensional data sets at very high information rates. High capacity, terrestrial fiber optic transmission system technologies were integrated with those of an experimental high speed communications satellite in Geosynchronous Earth Orbit (GEO) to test the integration of the two systems. Operation over a spacecraft in GEO orbit required modification of the standard configuration of legacy data communications protocols to facilitate their ability to perform efficiently in the changing environment characteristic of a hybrid network. The success of this performance tuning enabled the use of such an architecture to facilitate high data rate, fiber optic quality data communications between high performance systems not accessible to standard terrestrial fiber transmission systems. Thus obviating the performance degradation often found in contemporary earth/satellite hybrids.

  12. Transforming National Oceanic and Atmospheric Administration (NOAA) Water Prediction

    NASA Astrophysics Data System (ADS)

    Graziano, T. M.; Clark, E. P.

    2016-12-01

    As a significant step forward to transform NOAA's water prediction services, NOAA plans to implement a new National Water Model (NWM) Version 1.0 in August 2016. A continental scale water resources model, the NWM is an evolution of the WRF-Hydro architecture developed by the National Center for Atmospheric Research (NCAR). It represents NOAA's first foray into high performance computing for water prediction and will expand NOAA's current water quantity forecasts, at approximately 4000 U.S. Geological Survey (USGS) stream gage sites across the country, to forecasts of flow, soil moisture, evapotranspiration, runoff, snow water equivalent and other parameters for 2.7 million stream reaches nationwide. This new guidance will be provided to NOAA's River Forecast Centers around the country and other field offices, along with guidance for evaluation and validation, and tools to visualize these data and enhance decision support. Initially, a subset if these data will be available via NOAA's Office of Water Prediction web site and the full output of the NWM simulations will be available via the NOAA Operational Model Archive and Distribution System (NOMADS). These enhancements in turn will improve NWS' ability to deliver impact-based decision support services nationwide through the provision of short through extended range, high fidelity "street level" water forecasts and warnings. Subsequent planned out-year enhancements to the NWM include the expanded assimilation of anthropogenic data, an operational nest to provide higher resolution forecasts needed for inundation mapping, and tackling the deeper challenges associated with drought and other water resources issues. The NWM is a NOAA-led interagency effort that relies on the National Hydrographic Dataset of the USGS and EPA, as well as the National Streamflow Information Program of the USGS. Its development continues to be advanced in partnership with NCAR, and a partnership with the Consortium for the Advancement of

  13. Calculations of individual doses for Techa River Cohort members exposed to atmospheric radioiodine from Mayak releases.

    PubMed

    Napier, Bruce A; Eslinger, Paul W; Tolstykh, Evgenia I; Vorobiova, Marina I; Tokareva, Elena E; Akhramenko, Boris N; Krivoschapov, Victor A; Degteva, Marina O

    2017-11-01

    Time-dependent thyroid doses were reconstructed for over 29,000 Techa River Cohort members living near the Mayak production facilities from 131 I released to the atmosphere for all relevant exposure pathways. The calculational approach uses four general steps: 1) construct estimates of releases of 131 I to the air from production facilities; 2) model the transport of 131 I in the air and subsequent deposition on the ground and vegetation; 3) model the accumulation of 131 I in environmental media; and 4) calculate individualized doses. The dose calculations are implemented in a Monte Carlo framework that produces best estimates and confidence intervals of dose time-histories. Other radionuclide contributors to thyroid dose were evaluated. The 131 I contribution was 75-99% of the thyroid dose. The mean total thyroid dose for cohort members was 193 mGy and the median was 53 mGy. Thyroid doses for about 3% of cohort members were larger than 1 Gy. About 7% of children born in 1940-1950 had doses larger than 1 Gy. The uncertainty in the 131 I dose estimates is low enough for this approach to be used in regional epidemiological studies. Copyright © 2017. Published by Elsevier Ltd.

  14. Calculations of individual doses for Techa River Cohort members exposed to atmospheric radioiodine from Mayak releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, Bruce A.; Eslinger, Paul W.; Tolstykh, Evgenia I.

    Time-dependent thyroid doses were reconstructed for Techa River Cohort members living near the Mayak production facilities from 131I released to the atmosphere for all relevant exposure pathways. The calculational approach uses four general steps: 1) construct estimates of releases of 131I to the air from production facilities; 2) model the transport of 131I in the air and subsequent deposition on the ground and vegetation; 3) model the accumulation of 131I in soil, water, and food products (environmental media); and 4) calculate individual doses by matching appropriate lifestyle and consumption data for the individual to concentrations of 131I in environmental media.more » The dose calculations are implemented in a Monte Carlo framework that produces best estimates and confidence intervals of dose time-histories. The 131I contribution was 75-99% of the thyroid dose. The mean total thyroid dose for cohort members was 193 mGy and the median was 53 mGy. Thyroid doses for about 3% of cohort members were larger than 1 Gy. About 7% of children born in 1940-1950 had doses larger than 1 Gy. The uncertainty in the 131I dose estimates is low enough for this approach to be used in regional epidemiological studies.« less

  15. Ionospheric chemical releases

    NASA Technical Reports Server (NTRS)

    Bernhardt, Paul A.; Scales, W. A.

    1990-01-01

    Ionospheric plasma density irregularities can be produced by chemical releases into the upper atmosphere. F-region plasma modification occurs by: (1) chemically enhancing the electron number density; (2) chemically reducing the electron population; or (3) physically convecting the plasma from one region to another. The three processes (production, loss, and transport) determine the effectiveness of ionospheric chemical releases in subtle and surprising ways. Initially, a chemical release produces a localized change in plasma density. Subsequent processes, however, can lead to enhanced transport in chemically modified regions. Ionospheric modifications by chemical releases excites artificial enhancements in airglow intensities by exothermic chemical reactions between the newly created plasma species. Numerical models were developed to describe the creation and evolution of large scale density irregularities and airglow clouds generated by artificial means. Experimental data compares favorably with theses models. It was found that chemical releases produce transient, large amplitude perturbations in electron density which can evolve into fine scale irregularities via nonlinear transport properties.

  16. Improving the Climate for Female Scientists at the National Center for Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Killeen, T. L.

    2003-12-01

    In the summer of 2000, at the invitation of the former Director of the National Center for Atmospheric Research (NCAR), a committee of senior female scientists affiliated with the American Physical Society's Committee on the Status of Women in Physics visited NCAR and NCAR's parent organization, the University Corporation for Atmospheric Research (UCAR). The purpose of the site visit was to develop recommendations designed to improve the climate for women scientists at NCAR. This site visit and the subsequent written report and response from NCAR/UCAR management were instrumental in the establishment of a series of new programs and recruitment/mentoring activities that have had a significant impact at NCAR. The APS Committee's report included recommendations in the areas of: staff recruitment and demographic balance; communication and consistent implementation of policies; mentoring and career development programs; and "family friendliness". The constructive and helpful report of the visiting APS committee was openly shared with staff and led to a series of discussions, debates, actions, and programs at NCAR that continue to this day. This poster will describe the APS Committee's recommendations, the institutional process that occurred in response to this study, and the resulting actions and their impact at the national center. Specific progress since the site visit has included a doubling of the percentage participation by females in the ladder (tenure-equivalent) scientist track at NCAR to a level that now significantly exceeds the national average for tenured or tenure-track female faculty at Ph.D.-granting institutions in the geosciences.

  17. Barium release system

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.; Stokes, C. S.; Smith, E. W.; Murphy, W. J. (Inventor)

    1973-01-01

    A chemical system is described for releasing a good yield of free barium neutral atoms and barium ions in the upper atmosphere and interplanetary space for the study of the geophysical properties of the medium. The barium is released in the vapor phase so that it can be ionized by solar radiation and also be excited to emit resonance radiation in the visible range. The ionized luminous cloud of barium becomes a visible indication of magnetic and electrical characteristics in space and allows determination of these properties over relatively large areas at a given time.

  18. Modeling the Entry of Micrometeoroids into the Atmospheres of Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Pevyhouse, A. R.; Kress, M. E.

    2011-01-01

    The temperature profiles of micrometeors entering the atmospheres of Earth-like planets are calculated to determine the altitude at which exogenous organic compounds may be released. Previous experiments have shown that flash-heated micrometeorite analogs release organic compounds at temperatures from roughly 500 to 1000 K [1]. The altitude of release is of great importance because it determines the fate of the compound. Organic compounds that are released deeper in the atmosphere are more likely to rapidly mix to lower altitudes where they can accumulate to higher abundances or form more complex molecules and/or aerosols. Variables that are explored here are particle size, entry angle, atmospheric density profiles, spectral type of the parent star, and planet mass. The problem reduces to these questions: (1) How much atmosphere does the particle pass through by the time it is heated to 500 K? (2) Is the atmosphere above sufficient to attenuate stellar UV such that the mixing timescale is shorter than the photochemical timescale for a particular compound? We present preliminary results that the effect of the planetary and particle parameters have on the altitude of organic release.

  19. A screening tool to prioritize public health risk associated with accidental or deliberate release of chemicals into the atmosphere

    PubMed Central

    2013-01-01

    The Chemical Events Working Group of the Global Health Security Initiative has developed a flexible screening tool for chemicals that present a risk when accidentally or deliberately released into the atmosphere. The tool is generic, semi-quantitative, independent of site, situation and scenario, encompasses all chemical hazards (toxicity, flammability and reactivity), and can be easily and quickly implemented by non-subject matter experts using freely available, authoritative information. Public health practitioners and planners can use the screening tool to assist them in directing their activities in each of the five stages of the disaster management cycle. PMID:23517410

  20. STREAMWATER ACID-BASED CHEMISTRY AND CRITICAL LOADS OF ATMOSPHERIC SULFUR DEPOSITION IN SHENANDOAH NATIONAL PARK, VIRGINIA

    EPA Science Inventory

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the Park have acid neutraliz...

  1. BIOGENIC HYDROCARBONS IN THE ATMOSPHERIC BOUNDARY LAYER: A REVIEW

    EPA Science Inventory

    Nonmethane hydrocarbons are ubiquitous trace atmospheric constituents yet they control the oxidation capacity of the atmosphere. Both anthropogenic and biogenic processes contribute to the release of hydrocarbons to the atmosphere. In this manuscript, the state of the science ...

  2. Proceedings from the U.S. Army Corps of Engineers (USACE) and the National Oceanic and Atmospheric Administration (NOAA) Natural and Nature-Based Features Workshop

    DTIC Science & Technology

    2016-03-01

    ERDC-EL Research Biologist/Certified Facilitator Mintz Jennifer NOAA-OAR-OAP Regional Coordinator- Ocean Acidification Program/Facilitator Payne Dr...National Oceanic United States Army United States and Atmospheric Engineer Research Army Corps Administration and Development of Engineers (NOAA...and the National Oceanic and Atmospheric Administration (NOAA) Natural and Nature-Based Features Workshop March 1-3, 2016 Charleston, South

  3. Closure Report for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-06-27

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 104, Area 7 Yucca Flat Atmospheric Test Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 104 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management. CAU 104 consists of the following 15 Corrective Action Sites (CASs), located in Area 7 of the Nevada National Securitymore » Site: · CAS 07-23-03, Atmospheric Test Site T-7C · CAS 07-23-04, Atmospheric Test Site T7-1 · CAS 07-23-05, Atmospheric Test Site · CAS 07-23-06, Atmospheric Test Site T7-5a · CAS 07-23-07, Atmospheric Test Site - Dog (T-S) · CAS 07-23-08, Atmospheric Test Site - Baker (T-S) · CAS 07-23-09, Atmospheric Test Site - Charlie (T-S) · CAS 07-23-10, Atmospheric Test Site - Dixie · CAS 07-23-11, Atmospheric Test Site - Dixie · CAS 07-23-12, Atmospheric Test Site - Charlie (Bus) · CAS 07-23-13, Atmospheric Test Site - Baker (Buster) · CAS 07-23-14, Atmospheric Test Site - Ruth · CAS 07-23-15, Atmospheric Test Site T7-4 · CAS 07-23-16, Atmospheric Test Site B7-b · CAS 07-23-17, Atmospheric Test Site - Climax Closure activities began in October 2012 and were completed in April 2013. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan for CAU 104. The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste, mixed waste, and recyclable material. Some wastes exceeded land disposal limits and required treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite landfills. The U.S. Department of Energy, National Nuclear Security Administration Nevada Field

  4. Investigation of the daytime lunar atmosphere for lunar synthesis program

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1976-01-01

    Synthesis studies of the daytime lunar atmoshere were directed toward improved understanding of fundamental lunar atmospheric dynamics and the relationship of the detectable atmosphere to physical processes of the lunar surface and interior. The primary source of data is the Apollo 17 lunar surface mass spectrometer. The Ar40 is radiogenic and its escape rate from the lunar atmosphere requires release of a significant fraction (about 8%) of the argon produced from the decay of K40 within the moon. Furthermore the process of argon release from the solid moon is time varying and related to seismic activity. Most of the helium on the moon is due to release of implanted solar wind alpha particles from the regolith.

  5. Joint release rate estimation and measurement-by-measurement model correction for atmospheric radionuclide emission in nuclear accidents: An application to wind tunnel experiments.

    PubMed

    Li, Xinpeng; Li, Hong; Liu, Yun; Xiong, Wei; Fang, Sheng

    2018-03-05

    The release rate of atmospheric radionuclide emissions is a critical factor in the emergency response to nuclear accidents. However, there are unavoidable biases in radionuclide transport models, leading to inaccurate estimates. In this study, a method that simultaneously corrects these biases and estimates the release rate is developed. Our approach provides a more complete measurement-by-measurement correction of the biases with a coefficient matrix that considers both deterministic and stochastic deviations. This matrix and the release rate are jointly solved by the alternating minimization algorithm. The proposed method is generic because it does not rely on specific features of transport models or scenarios. It is validated against wind tunnel experiments that simulate accidental releases in a heterogonous and densely built nuclear power plant site. The sensitivities to the position, number, and quality of measurements and extendibility of the method are also investigated. The results demonstrate that this method effectively corrects the model biases, and therefore outperforms Tikhonov's method in both release rate estimation and model prediction. The proposed approach is robust to uncertainties and extendible with various center estimators, thus providing a flexible framework for robust source inversion in real accidents, even if large uncertainties exist in multiple factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. USDA National Nutrient Database for Standard Reference, Release 24

    USDA-ARS?s Scientific Manuscript database

    The USDA Nutrient Database for Standard Reference, Release 24 contains data for over 7,900 food items for up to 146 food components. It replaces the previous release, SR23, issued in September 2010. Data in SR24 supersede values in the printed Handbooks and previous electronic releases of the databa...

  7. Sensitivity of Alpine and Subalpine Lakes to Atmospheric Deposition in Grand Teton National Park and Yellowstone National Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Campbell, D. H.; Williams, M. W.

    2004-12-01

    Acidification of high-elevation lakes in the Western United States is of concern because of the storage and release of pollutants in snowmelt runoff combined with steep topography, granitic bedrock, and limited soils and biota. Land use managers have limited resources for sampling and thus need direction on how best to design monitoring programs. We evaluated the sensitivity of 400 lakes in Grand Teton (GRTE) and Yellowstone (YELL) National Parks to acidification from atmospheric deposition of nitrogen and sulfur based on statistical relations between acid-neutralizing capacity (ANC) concentrations and basin characteristics to aid in the design of a long-term monitoring plan for Outstanding Natural Resource Waters. ANC concentrations that were measured at 52 lakes in GRTE and 23 lakes in YELL during synoptic surveys were used to calibrate the statistical models. Basin-characteristic information was derived from Geographic Information System data sets. The explanatory variables that were considered included bedrock type, basin slope, basin aspect, basin elevation, lake area, basin area, inorganic nitrogen (N) deposition, sulfate deposition, hydrogen ion deposition, basin precipitation, soil type, and vegetation type. A logistic regression model was developed and applied to lake basins greater than 1 hectare (ha) in GRTE (n=106) and YELL (n=294). For GRTE, 36 percent of lakes had a greater than 60-percent probability of having ANC concentrations less than 100 microequivalents per liter, and 14 percent of lakes had a greater than 80-percent probability of having ANC concentrations less than 100 microequivalents per liter. The elevation of the lake outlet and the area of the basin with northeast aspects were determined to be statistically significant and were used as the explanatory variables in the multivariate logistic regression model. For YELL, results indicated that 13 percent of lakes had a greater than 60-percent probability of having ANC concentrations less

  8. Extending the shelf life of edible flowers with controlled release of 1-methylcyclopropene and modified atmosphere packaging.

    PubMed

    Kou, Liping; Turner, Ellen R; Luo, Yaguang

    2012-05-01

    Edible flowers have great sensory appeal, but their extremely short shelf life limits their commercial usage. Postharvest 1-methylcyclopropene (1-MCP) treatment is used to counter ethylene activity and delay senescence in fresh produce; however, its potential application in edible flowers has not been tested. The objective of this study was to investigate the effect of 1-MCP treatment with modified atmosphere packaging (MAP) on the shelf life of edible flowers. Freshly harvested carnations and snapdragons were packaged in trays with or without 0.5 μL/L of 1-MCP, sealed with a gas permeable film, and stored at 5 °C. Package atmospheres, tissue electrolyte leakage, and flower quality were evaluated on days 0, 7, and 14. Treatment with 1-MCP resulted in significantly slower changes in package headspace O(2), CO(2), and C(2)H(4) partial pressures, maintained higher overall quality of both flower species and reduced electrolyte leakage and abscission in snapdragon. All samples prepared with MAP had significantly reduced dehydration and higher overall quality compared to flowers packaged commercially in plastic clamshell containers. Treatments with controlled release of 1-MCP and MAP significantly extended storage life of edible carnation and snapdragon flowers. © 2012 Institute of Food Technologists®

  9. Release of enzymes from lysosomes by irradiation and the relation of lipid peroxide formation to enzyme release

    PubMed Central

    Wills, E. D.; Wilkinson, A. E.

    1966-01-01

    1. Acid phosphatase, cathepsin and β-glucuronidase are released from rat-liver lysosomes by irradiation in vitro. Enzyme release is detectable after a dose of 1krad and increases with dose up to 100krads. 2. Maximum radiation effects were observed when the lysosomes were kept for 20hr. at 4° or 20° after irradiation. 3. An atmosphere of nitrogen considerably decreases enzyme release from lysosomes. 4. Enzyme release is enhanced by ascorbic acid and decreased by vitamin E. 5. Irradiation causes formation of lipid peroxides in lysosomes, and enzyme release increases with lipid peroxide formation. 6. It is suggested that lipid peroxide formation leads to rupture of the lysosome membrane and allows release of the contained hydrolytic enzymes. PMID:5964962

  10. Quality-assurance results for field pH and specific-conductance measurements, and for laboratory analysis, National Atmospheric Deposition Program and National Trends Network; January 1980-September 1984

    USGS Publications Warehouse

    Schroder, L.J.; Brooks, M.H.; Malo, B.A.; Willoughby, T.C.

    1986-01-01

    Five intersite comparison studies for the field determination of pH and specific conductance, using simulated-precipitation samples, were conducted by the U.S.G.S. for the National Atmospheric Deposition Program and National Trends Network. These comparisons were performed to estimate the precision of pH and specific conductance determinations made by sampling-site operators. Simulated-precipitation samples were prepared from nitric acid and deionized water. The estimated standard deviation for site-operator determination of pH was 0.25 for pH values ranging from 3.79 to 4.64; the estimated standard deviation for specific conductance was 4.6 microsiemens/cm at 25 C for specific-conductance values ranging from 10.4 to 59.0 microsiemens/cm at 25 C. Performance-audit samples with known analyte concentrations were prepared by the U.S.G.S.and distributed to the National Atmospheric Deposition Program 's Central Analytical Laboratory. The differences between the National Atmospheric Deposition Program and national Trends Network-reported analyte concentrations and known analyte concentrations were calculated, and the bias and precision were determined. For 1983, concentrations of calcium, magnesium, sodium, and chloride were biased at the 99% confidence limit; concentrations of potassium and sulfate were unbiased at the 99% confidence limit. Four analytical laboratories routinely analyzing precipitation were evaluated in their analysis of identical natural- and simulated precipitation samples. Analyte bias for each laboratory was examined using analysis of variance coupled with Duncan 's multiple-range test on data produced by these laboratories, from the analysis of identical simulated-precipitation samples. Analyte precision for each laboratory has been estimated by calculating a pooled variance for each analyte. Interlaboratory comparability results may be used to normalize natural-precipitation chemistry data obtained from two or more of these laboratories. (Author

  11. Atmospheric Modeling of Mars Methane Plumes

    NASA Astrophysics Data System (ADS)

    Mischna, Michael A.; Allen, M.; Lee, S.

    2010-10-01

    We present two complementary methods for isolating and modeling surface source releases of methane in the martian atmosphere. From recent observations, there is strong evidence that periodic releases of methane occur from discrete surface locations, although the exact location and mechanism of release is still unknown. Numerical model simulations with the Mars Weather Research and Forecasting (MarsWRF) general circulation model (GCM) have been applied to the ground-based observations of atmospheric methane by Mumma et al., (2009). MarsWRF simulations reproduce the natural behavior of trace gas plumes in the martian atmosphere, and reveal the development of the plume over time. These results provide constraints on the timing and location of release of the methane plume. Additional detections of methane have been accumulated by the Planetary Fourier Spectrometer (PFS) on board Mars Express. For orbital observations, which generally have higher frequency and resolution, an alternate approach to source isolation has been developed. Drawing from the concept of natural selection within biology, we apply an evolutionary computational model to this problem of isolating source locations. Using genetic algorithms that `reward’ best-fit matches between observations and GCM plume simulations (also from MarsWRF) over many generations, we find that we can potentially isolate source locations to within tens of km, which is within the roving capabilities of future Mars rovers. Together, these methods present viable numerical approaches to restricting the timing, duration and size of methane release events, and can be used for other trace gas plumes on Mars as well as elsewhere in the solar system.

  12. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions

    USGS Publications Warehouse

    Isaksen, Ivar S.A.; Gauss, Michael; Myhre, Gunnar; Walter Anthony, Katey M.; Ruppel, Carolyn

    2011-01-01

    The magnitude and feedbacks of future methane release from the Arctic region are unknown. Despite limited documentation of potential future releases associated with thawing permafrost and degassing methane hydrates, the large potential for future methane releases calls for improved understanding of the interaction of a changing climate with processes in the Arctic and chemical feedbacks in the atmosphere. Here we apply a “state of the art” atmospheric chemistry transport model to show that large emissions of CH4 would likely have an unexpectedly large impact on the chemical composition of the atmosphere and on radiative forcing (RF). The indirect contribution to RF of additional methane emission is particularly important. It is shown that if global methane emissions were to increase by factors of 2.5 and 5.2 above current emissions, the indirect contributions to RF would be about 250% and 400%, respectively, of the RF that can be attributed to directly emitted methane alone. Assuming several hypothetical scenarios of CH4 release associated with permafrost thaw, shallow marine hydrate degassing, and submarine landslides, we find a strong positive feedback on RF through atmospheric chemistry. In particular, the impact of CH4 is enhanced through increase of its lifetime, and of atmospheric abundances of ozone, stratospheric water vapor, and CO2 as a result of atmospheric chemical processes. Despite uncertainties in emission scenarios, our results provide a better understanding of the feedbacks in the atmospheric chemistry that would amplify climate warming.

  13. Economic Assessment of FMDv Releases from the National Bio and Agro Defense Facility

    PubMed Central

    Pendell, Dustin L.; Marsh, Thomas L.; Coble, Keith H.; Lusk, Jayson L.; Szmania, Sara C.

    2015-01-01

    This study evaluates the economic consequences of hypothetical foot-and-mouth disease releases from the future National Bio and Agro Defense Facility in Manhattan, Kansas. Using an economic framework that estimates the impacts to agricultural firms and consumers, quantifies costs to non-agricultural activities in the epidemiologically impacted region, and assesses costs of response to the government, we find the distribution of economic impacts to be very significant. Furthermore, agricultural firms and consumers bear most of the impacts followed by the government and the regional non-agricultural firms. PMID:26114546

  14. Lunar volcanism produced a transient atmosphere around the ancient Moon

    NASA Astrophysics Data System (ADS)

    Needham, Debra H.; Kring, David A.

    2017-11-01

    Studies of the lunar atmosphere have shown it to be a stable, low-density surface boundary exosphere for the last 3 billion years. However, substantial volcanic activity on the Moon prior to 3 Ga may have released sufficient volatiles to form a transient, more prominent atmosphere. Here, we calculate the volume of mare basalt emplaced as a function of time, then estimate the corresponding production of volatiles released during the mare basalt-forming eruptions. Results indicate that during peak mare emplacement and volatile release ∼3.5 Ga, the maximum atmospheric pressure at the lunar surface could have reached ∼1 kPa, or ∼1.5 times higher than Mars' current atmospheric surface pressure. This lunar atmosphere may have taken ∼70 million years to fully dissipate. Most of the volatiles released by mare basalts would have been lost to space, but some may have been sequestered in permanently shadowed regions on the lunar surface. If only 0.1% of the mare water vented during these eruptions remains in the polar regions of the Moon, volcanically-derived volatiles could account for all hydrogen deposits - suspected to be water - currently observed in the Moon's permanently shadowed regions. Future missions to such locations may encounter evidence of not only asteroidal, cometary, and solar wind-derived volatiles, but also volatiles vented from the interior of the Moon.

  15. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model To Evaluate Juniperus spp. Pollen Phenology and Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Levetin, Estelle; Huete, Alfredo; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Myers, O. B.; Budge, A. M.; hide

    2011-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Nickovic et al. 2001) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen release will be estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observational records of pollen release timing and quantities will be used as verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  16. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model to Evaluate Juniperus spp. Pollen Phenology and Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A.; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P. K.; Myers, O. B.; Budge, A. M.; hide

    2011-01-01

    Pollen can be transported great distances. Van de Water et. al. reported Juniperus spp. pollen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We are modifying the DREAM model to incorporate pollen transport. Pollen release will be estimated based on MODIS derived phenology of Juniperus spp. communities. Ground based observational records of pollen release timing and quantities will be used as verification. This information will be used to support the Centers for Disease Control and Prevention's National Environmental Public Health Tracking Program and the State of New Mexico environmental public health decision support for asthma and allergies alerts.

  17. Soil organic carbon dust emission: an omitted global source of atmospheric CO2.

    PubMed

    Chappell, Adrian; Webb, Nicholas P; Butler, Harry J; Strong, Craig L; McTainsh, Grant H; Leys, John F; Viscarra Rossel, Raphael A

    2013-10-01

    Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO(2)) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO(2) and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO(2) emission. We developed a first approximation to SOC enrichment for a well-established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO(2)-e yr(-1)) and Australian agricultural soils (0.4 Tg CO(2)-e yr(-1)). These amount to underestimates for CO(2) emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations' C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind-eroded SOC in the dust cycle is therefore essential to quantify the release of CO(2) from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks. © 2013 John Wiley & Sons Ltd.

  18. Lawrence Livermore National Laboratory Environmental Report 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Henry E.; Armstrong, Dave; Blake, Rick G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  19. Lawrence Livermore National Laboratory Environmental Report 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  20. Advanced Atmospheric Ensemble Modeling Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, R.; Chiswell, S.; Kurzeja, R.

    Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two releasemore » times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.« less

  1. Underground Nuclear Explosions and Release of Radioactive Noble Gases

    NASA Astrophysics Data System (ADS)

    Dubasov, Yuri V.

    2010-05-01

    Over a period in 1961-1990 496 underground nuclear tests and explosions of different purpose and in different rocks were conducted in the Soviet Union at Semipalatinsk and anovaya Zemlya Test Sites. A total of 340 underground nuclear tests were conducted at the Semipalatinsk Test Site. One hundred seventy-nine explosions (52.6%) among them were classified as these of complete containment, 145 explosions (42.6%) as explosions with weak release of radioactive noble gases (RNG), 12 explosions (3.5%) as explosions with nonstandard radiation situation, and four excavation explosions with ground ejection (1.1%). Thirty-nine nuclear tests had been conducted at the Novaya Zemlya Test Site; six of them - in shafts. In 14 tests (36%) there were no RNG release. Twenty-three tests have been accompanied by RNG release into the atmosphere without sedimental contamination. Nonstandard radiation situation occurred in two tests. In incomplete containment explosions both early-time RNG release (up to ~1 h) and late-time release from 1 to 28 h after the explosion were observed. Sometimes gas release took place for several days, and it occurred either through tunnel portal or epicentral zone, depending on atmospheric air temperature.

  2. Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region.

    PubMed

    Sugimoto, Shusaku; Aono, Kenji; Fukui, Shin

    2017-09-19

    In the extratropical regions, surface winds enhance upward heat release from the ocean to atmosphere, resulting in cold surface ocean: surface ocean temperature is negatively correlated with upward heat flux. However, in the western boundary currents and eddy-rich regions, the warmer surface waters compared to surrounding waters enhance upward heat release-a positive correlation between upward heat release and surface ocean temperature, implying that the ocean drives the atmosphere. The atmospheric response to warm mesoscale ocean eddies with a horizontal extent of a few hundred kilometers remains unclear because of a lack of observations. By conducting regional atmospheric model experiments, we show that, in the Kuroshio-Oyashio Confluence region, wintertime warm eddies heat the marine atmospheric boundary layer (MABL), and accelerate westerly winds in the near-surface atmosphere via the vertical mixing effect, leading to wind convergence around the eastern edge of eddies. The warm-eddy-induced convergence forms local ascending motion where convective precipitation is enhanced, providing diabatic heating to the atmosphere above MABL. Our results indicate that warm eddies affect not only near-surface atmosphere but also free atmosphere, and possibly synoptic atmospheric variability. A detailed understanding of warm eddy-atmosphere interaction is necessary to improve in weather and climate projections.

  3. Corrective Action Investigation Plan for Corrective Action Unit 106: Areas 5, 11 Frenchman Flat Atmospheric Sites, Nevada National Security Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Matthews

    2011-07-01

    Corrective Action Unit 106 comprises the four corrective action sites (CASs) listed below: • 05-20-02, Evaporation Pond • 05-23-05, Atmospheric Test Site - Able • 05-45-04, 306 GZ Rad Contaminated Area • 05-45-05, 307 GZ Rad Contaminated Area These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viablemore » CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 19, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 106. The presence and nature of contamination at CAU 106 will be evaluated based on information collected from a field investigation. The CAU includes land areas impacted by the release of radionuclides from groundwater pumping during the Radionuclide Migration study program (CAS 05-20-02), a weapons-related airdrop test (CAS 05-23-05), and unknown support activities at two sites (CAS 05-45-04 and CAS 05-45-05). The presence and nature of contamination from surface-deposited radiological contamination from CAS 05-23-05, Atmospheric Test Site - Able, and other types of releases (such as migration and excavation as well as any potential releases discovered during the investigation) from the remaining three CASs will be evaluated using soil samples collected from the

  4. Diffusive retention of atmospheric gases in chert

    NASA Astrophysics Data System (ADS)

    Pettitt, E.; Cherniak, D. J.; Watson, E. B.; Schaller, M. F.

    2016-12-01

    Throughout Earth's history, the volatile contents (N2, CO2, Ar) of both deep and shallow terrestrial reservoirs has been dynamic. Volatiles are important chemical constituents because they play a significant role in regulating Earth's climate, mediating the evolution of complex life, and controlling the properties of minerals and rocks. Estimating levels of atmospheric volatiles in the deep geological past requires interrogation of materials that have acquired and retained a chemical memory from that time. Cherts have the potential to trap atmospheric components during formation and later release those gases for analysis in the laboratory. However, cherts have been underexploited in this regard, partly because their ability to retain a record of volatile components has not been adequately evaluated. Before cherts can be reliably used as indicators of past levels of major atmospheric gases, it is crucial that we understand the diffusive retentiveness of these cryptocrystalline silica phases. As the first step toward quantifying the diffusivity and solubility of carbon dioxide and nitrogen in chert, we have performed 1-atmosphere diffusive-uptake experiments at temperatures up to 450°C. Depth profiles of in-diffusing gases are measured by nuclear reaction analysis (NRA) to help us understand the molecular-scale transport of volatiles and thus the validity of using chert-bound volatiles to record information about Earth history. Data collected to date suggest that at least some cherts are ideal storage containers and can retain volatiles for a geologically long time. In addition to these diffusion experiments, preliminary online-crush fast-scan measurements using a quadrupole mass spectrometer indicate that atmospheric volatiles are released upon crushing various chert samples. By coupling such volatile-release measurements made by mass spectrometry with diffusion experiments, we are uniquely able to address the storage and fidelity of volatiles bound in crustal

  5. Coupled Human-Atmosphere-System Thinking

    NASA Astrophysics Data System (ADS)

    Schmale, Julia; Chabay, Ilan

    2014-05-01

    With the discovery of fire, humankind started changing the composition of the atmosphere. Beginning with the industrial revolution, this has led to significant environmental problems, mainly air pollution and climate change. While climate change has been recognized as one key challenge of the Anthropocene, air pollution contributes to the top causes of global premature mortality. Air pollution also plays a key role in contamination of ecosystems and bio-magnification of toxins along food chains. Even though emissions leading to air pollution and climate change often originate from the same sources, they are generally perceived and regulated separately. Climate change impacts are global and hence are tackled at an international level. Conversely, air pollution has local to regional impacts and is thus a matter of national or regional legislation. This legislative and policy divide is generally useful, since full integration could lead, for example, to detrimental delays in action against air pollution through protracted international climate negotiations. However, the separation obscures the fact that almost any kind of human activity leads to the simultaneous emission of air pollutants, toxins and long-lived greenhouse gases. The atmosphere functions as a "dump" for human generated gaseous waste, which is then dispersed and transformed, partly chemically and partly micro-physically, perturbing natural processes in the atmosphere and leading to manifold impacts. In addition, air pollutants affect the Earth's radiative balance directly and indirectly, hence affecting climate change, while a changing climate in turn affects air pollution. Current policies often neglect these linkages and favor mitigation in one arena, which sometimes has detrimental effects on the other. One example is domestic wood burning, which though nearly carbon neutral, deteriorates air quality. Moreover, the design of appliances, machinery, or infrastructure generally does not attempt to

  6. Analysis of Radionuclide Releases from the Fukushima Dai-ichi Nuclear Power Plant Accident Part II

    NASA Astrophysics Data System (ADS)

    Achim, Pascal; Monfort, Marguerite; Le Petit, Gilbert; Gross, Philippe; Douysset, Guilhem; Taffary, Thomas; Blanchard, Xavier; Moulin, Christophe

    2014-03-01

    The present part of the publication (Part II) deals with long range dispersion of radionuclides emitted into the atmosphere during the Fukushima Dai-ichi accident that occurred after the March 11, 2011 tsunami. The first part (Part I) is dedicated to the accident features relying on radionuclide detections performed by monitoring stations of the Comprehensive Nuclear Test Ban Treaty Organization network. In this study, the emissions of the three fission products Cs-137, I-131 and Xe-133 are investigated. Regarding Xe-133, the total release is estimated to be of the order of 6 × 1018 Bq emitted during the explosions of units 1, 2 and 3. The total source term estimated gives a fraction of core inventory of about 8 × 1018 Bq at the time of reactors shutdown. This result suggests that at least 80 % of the core inventory has been released into the atmosphere and indicates a broad meltdown of reactor cores. Total atmospheric releases of Cs-137 and I-131 aerosols are estimated to be 1016 and 1017 Bq, respectively. By neglecting gas/particulate conversion phenomena, the total release of I-131 (gas + aerosol) could be estimated to be 4 × 1017 Bq. Atmospheric transport simulations suggest that the main air emissions have occurred during the events of March 14, 2011 (UTC) and that no major release occurred after March 23. The radioactivity emitted into the atmosphere could represent 10 % of the Chernobyl accident releases for I-131 and Cs-137.

  7. Upper atmosphere has cooled steadily for three decades

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-11-01

    Increasing amounts of greenhouse gases released by human activities do not just affect only the lower atmosphere: Scientists project that anthropogenic carbon emissions have caused a cooling trend in the upper atmosphere, between 200 and 400 kilometers, over the past few decades. Cooling in this atmospheric region can affect the operations of satellites and the orbits of space junk. However, data about cooling trends in the upper atmosphere are still incomplete, and better data are needed to confirm this projection.

  8. Probabilistic safety analysis for urgent situations following the accidental release of a pollutant in the atmosphere

    NASA Astrophysics Data System (ADS)

    Armand, P.; Brocheton, F.; Poulet, D.; Vendel, F.; Dubourg, V.; Yalamas, T.

    2014-10-01

    This paper is an original contribution to uncertainty quantification in atmospheric transport & dispersion (AT&D) at the local scale (1-10 km). It is proposed to account for the imprecise knowledge of the meteorological and release conditions in the case of an accidental hazardous atmospheric emission. The aim is to produce probabilistic risk maps instead of a deterministic toxic load map in order to help the stakeholders making their decisions. Due to the urge attached to such situations, the proposed methodology is able to produce such maps in a limited amount of time. It resorts to a Lagrangian particle dispersion model (LPDM) using wind fields interpolated from a pre-established database that collects the results from a computational fluid dynamics (CFD) model. This enables a decoupling of the CFD simulations from the dispersion analysis, thus a considerable saving of computational time. In order to make the Monte-Carlo-sampling-based estimation of the probability field even faster, it is also proposed to recourse to the use of a vector Gaussian process surrogate model together with high performance computing (HPC) resources. The Gaussian process (GP) surrogate modelling technique is coupled with a probabilistic principal component analysis (PCA) for reducing the number of GP predictors to fit, store and predict. The design of experiments (DOE) from which the surrogate model is built, is run over a cluster of PCs for making the total production time as short as possible. The use of GP predictors is validated by comparing the results produced by this technique with those obtained by crude Monte Carlo sampling.

  9. Impact-Mobilized Dust in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Nemtchinov, I. V.; Shuvalov, V. V.; Greeley, R.

    2002-01-01

    We consider dust production and entrainment into the atmosphere of Mars by impacts. Numerical simulations based on the multidimensional multimaterial hydrocode were conducted for impactors 1 to 100 m in size and velocities 11 and 20 kilometers per second. The size distribution of particles was based on experimentrr wing TNT explosions. Dust can be mobilized even when the impactor does not reach the ground through the release of energy in the atmosphere, We found that the blast produced winds entrained dust by a mechanism similar to boundary layer winds as determined from the wind-tunnel tests. For a l-m radius stony asteroid releasing its energy in the atmosphere the lifted mass of dust is larger than that in a typical dust devil and could trigger local dust storms, For a 100-m-radius meteoroid the amount of injected dust is comparable with the tota! mass of a global dust storm.

  10. Short- and long-term releases of fluorocarbons from disposal of polyurethane foam waste.

    PubMed

    Kjeldsen, Peter; Scheutz, Charlotte

    2003-11-01

    Several halocarbons having very high global warming or ozone depletion potentials have been used as a blowing agent (BA) for insulation foam in home appliances, such as refrigerators and freezers. Many appliances are shredded after the end of their useful life. Release experiments carried out in the laboratory on insulation foam blown with the blowing agents CFC-11, HCFC-141b, HCF-134fa, and HFC-245fa revealed that not all blowing agents are released during a 6-week period following the shredding process. The experiments confirmed the hypothesis that the release could be divided into three segments: By shredding foam panels, a proportion of the closed cells is either split or damaged to a degree allowing for a sudden release of the contained atmosphere in the cell (the instantaneous release). Cells adjacent to the cut surface may be only slightly damaged by tiny cracks or holes allowing a relative slow release of the BA to the surroundings (the short-term release). A significant portion of the cells in the foam particle will be unaffected and only allows release governed by slow diffusion through the PUR cell wall (the long-term release). The magnitude of the releases is for all three types highly dependent on how fine the foam is shredded. The residual blowing agent remaining after the 6-week period may be very slowly released if the integrity of the foam particles with respect to diffusion properties is kept after disposal of the foam waste on landfills. It is shown by setting up a national model simulating the BA releases following decommissioning of used domestic refrigerators/freezers in the United States that the release patterns are highly dependent on how the appliances are shredded.

  11. Regional climatic effects of atmospheric SO2 on Mars

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Fanale, F. P.

    1992-01-01

    The conditions under which the valley networks on Mars may have formed remains controversial. The magnitude of an atmospheric greenhouse effect by an early massive CO2 atmosphere has recently been questioned by Kasting. Recent calculations indicate that if solar luminosity were less than about 86 percent of its current value, formation of CO2 clouds in the Martian atmosphere would depress the atmospheric lapse rate and reduce the magnitude of surface warming. In light of recent revisions of magma generation on Mars during each Martian epoch, and the suggestions by Wanke et al. that the role of liquid SO2 should be more carefully explored, we have recalculated the potential greenhouse warming by atmospheric SO2 on Mars, with an emphasis on more localized effects. In the vicinity of an active eruption, the concentration of atmospheric SO2 will be higher than if it is assumed that the erupted SO2 is instantaneously globally distributed. The local steady-state concentration of SO2 is a function of the rate at which it is released, its atmospheric lifetime, and the rate at which local winds act to disperse the SO2. We have made estimates of eruption rates, length of eruption, and dispersion rates of volcanically released SO2, for a variety of atmospheric conditions and atmospheric lifetimes of SO2 to explore the maximum regional climatic effect of SO2.

  12. NESHAP Area-Specific Dose-Release Factors for Potential Onsite Member-of-the-Public Locations at SRS using CAP88-PC Version 4.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trimor, P.

    The Environmental Protection Agency (EPA) requires the use of the computer model CAP88-PC to estimate the total effective doses (TED) for demonstrating compliance with 40 CFR 61, Subpart H (EPA 2006), the National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations. As such, CAP88 Version 4.0 was used to calculate the receptor dose due to routine atmospheric releases at the Savannah River Site (SRS). For estimation, NESHAP dose-release factors (DRFs) have been supplied to Environmental Compliance and Area Closure Projects (EC&ACP) for many years. DRFs represent the dose to a maximum receptor exposed to 1 Ci of a specified radionuclidemore » being released into the atmosphere. They are periodically updated to include changes in the CAP88 version, input parameter values, site meteorology, and location of the maximally exposed individual (MEI). In this report, the DRFs were calculated for potential radionuclide atmospheric releases from 13 SRS release points. The three potential onsite MEI locations to be evaluated are B-Area, Three Rivers Landfill (TRL), and Savannah River Ecology Lab Conference Center (SRELCC) with TRL’s onsite workers considered as members-of-the-public, and the potential future constructions of dormitories at SRELCC and Barracks at B-Area. Each MEI location was evaluated at a specified compass sector with different area to receptor distances and was conducted for both ground-level and elevated release points. The analysis makes use of area-specific meteorological data (Viner 2014). The resulting DRFs are compared to the 2014 NESHAP offsite MEI DRFs for three operational areas; A-Area, H-Area, and COS for a release rate of 1 Ci of tritium oxide at 0 ft. elevation. CAP88 was executed again using the 2016 NESHAP MEI release rates for 0 and 61 m stack heights to determine the radionuclide dose at TRL from the center-of-site (COS).« less

  13. Natural chlorine and fluorine in the atmosphere, water and precipitation

    NASA Technical Reports Server (NTRS)

    Friend, James P.

    1990-01-01

    The geochemical cycles of chlorine and fluorine are surveyed and summarized as framework for the understanding of the global natural abundances of these species in the atmosphere, water, and precipitation. In the cycles the fluxes into and out of the atmosphere can be balanced within the limits of our knowledge of the natural sources and sinks. Sea salt from the ocean surfaces represent the predominant portion of the source of chlorine. It is also an important source of atmospheric fluorine, but volcanoes are likely to be more important fluorine sources. Dry deposition of sea salt returns about 85 percent of the salt released there. Precipitation removes the remainder. Most of the sea salt materials are considered to be cyclic, moving through sea spray over the oceans and either directly back to the oceans or deposited dry and in precipitation on land, whence it runs off into rivers and streams and returns to the oceans. Most of the natural chlorine in the atmosphere is in the form of particulate chloride ion with lesser amounts as gaseous inorganic chloride and methyl chloride vapor. Fluorine is emitted from volcanoes primarily as HF. It is possible that HF may be released directly form the ocean surface but this has not been confirmed by observation. HCl and most likely HF gases are released into the atmosphere by sea salt aerosols. The mechanism for the release is likely to be the provision of protons from the so-called excess sulfate and HNO3. Sea salt aerosol contains fluorine as F(-), MgF(+), CaF(+), and NaF. The concentrations of the various species of chlorine and fluorine that characterize primarily natural, unpolluted atmospheres are summarized in tables and are discussed in relation to their fluxes through the geochemical cycle.

  14. Source term estimates of radioxenon released from the BaTek medical isotope production facility using external measured air concentrations.

    PubMed

    Eslinger, Paul W; Cameron, Ian M; Dumais, Johannes Robert; Imardjoko, Yudi; Marsoem, Pujadi; McIntyre, Justin I; Miley, Harry S; Stoehlker, Ulrich; Widodo, Susilo; Woods, Vincent T

    2015-10-01

    BATAN Teknologi (BaTek) operates an isotope production facility in Serpong, Indonesia that supplies (99m)Tc for use in medical procedures. Atmospheric releases of (133)Xe in the production process at BaTek are known to influence the measurements taken at the closest stations of the radionuclide network of the International Monitoring System (IMS). The purpose of the IMS is to detect evidence of nuclear explosions, including atmospheric releases of radionuclides. The major xenon isotopes released from BaTek are also produced in a nuclear explosion, but the isotopic ratios are different. Knowledge of the magnitude of releases from the isotope production facility helps inform analysts trying to decide if a specific measurement result could have originated from a nuclear explosion. A stack monitor deployed at BaTek in 2013 measured releases to the atmosphere for several isotopes. The facility operates on a weekly cycle, and the stack data for June 15-21, 2013 show a release of 1.84 × 10(13) Bq of (133)Xe. Concentrations of (133)Xe in the air are available at the same time from a xenon sampler located 14 km from BaTek. An optimization process using atmospheric transport modeling and the sampler air concentrations produced a release estimate of 1.88 × 10(13) Bq. The same optimization process yielded a release estimate of 1.70 × 10(13) Bq for a different week in 2012. The stack release value and the two optimized estimates are all within 10% of each other. Unpublished production data and the release estimate from June 2013 yield a rough annual release estimate of 8 × 10(14) Bq of (133)Xe in 2014. These multiple lines of evidence cross-validate the stack release estimates and the release estimates based on atmospheric samplers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Sanctuaries | National Oceanic and Atmospheric Administration

    Science.gov Websites

    coastal and marine places that NOAA's National Ocean Service works to protect. Focus_Area_sanctuaries.jpg NOAA Discover the coastal and marine places that NOAA's National Ocean Service works to protect. LATEST national marine sanctuaries, about $8 billion annually is generated in local coastal and ocean dependent

  16. Fission products in National Atmospheric Deposition Program—Wet deposition samples prior to and following the Fukushima Dai-Ichi Nuclear Power Plant incident, March 8?April 5, 2011

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Debey, Timothy M.; Nilles, Mark A.; Lehmann, Christopher M.B.; Gay, David A.

    2012-01-01

    Radioactive isotopes I-131, Cs-134, or Cs-137, products of uranium fission, were measured at approximately 20 percent of 167 sampled National Atmospheric Deposition Program monitoring sites in North America (primarily in the contiguous United States and Alaska) after the Fukushima Dai-Ichi Nuclear Power Plant incident on March 12, 2011. Samples from the National Atmospheric Deposition Program were analyzed for the period of March 8-April 5, 2011. Calculated 1- or 2-week radionuclide deposition fluxes at 35 sites from Alaska to Vermont ranged from 0.47 to 5,100 Becquerels per square meter during the sampling period of March 15-April 5, 2011. No fission-product isotopes were measured in National Atmospheric Deposition Program samples obtained during March 8-15, 2011, prior to the arrival of contaminated air in North America.

  17. A COMPREHENSIVE ANALYSIS OF CHLORINE TRANSPORT AND FATE FOLLOWING A LARGE ENVIRONMENTAL RELEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, R.; Hunter, C.; Werth, D.

    2011-05-10

    A train derailment occurred in Graniteville, South Carolina during the early morning of January 6, 2005, and resulted in the release of a large amount of cryogenic pressurized liquid chlorine to the environment in a short time period. A comprehensive evaluation of the transport and fate of the released chlorine was performed, accounting for dilution, diffusion, transport and deposition into the local environment. This involved the characterization of a three-phased chlorine release, a detailed determination of local atmospheric mechanisms acting on the released chlorine, the establishment of atmospheric-hydrological physical exchange mechanisms, and aquatic dilution and mixing. This presentation will providemore » an overview of the models used in determining the total air-to-water mass transfer estimated to have occurred as a result of the roughly 60 tons of chlorine released into the atmosphere from the train derailment. The assumptions used in the modeling effort will be addressed, along with a comparison with available observational data to validate the model results. Overall, model-estimated chlorine concentrations in the airborne plume compare well with human and animal exposure data collected in the days after the derailment.« less

  18. ATMOSPHERIC DEPOSITION OF CURRENT-USE AND HISTORIC-USE PESTICIDES IN SNOW AT NATIONAL PARKS IN THE WESTERN UNITED STATES

    EPA Science Inventory

    The United States (U.S.) National Park Service has initiated research on the atmospheric deposition and fate of semi-volatile organic compounds in its alpine, sub-Arctic, and Arctic ecosystems in the Western U.S. Results for the analysis of pesticides in seasonal snowpack samples...

  19. Lee Mauldin inspects the National Center for Atmospheric Research CIMS instrument probe on the exterior of NASA's DC-8 flying lab prior to the ARCTAS mission

    NASA Image and Video Library

    2008-03-07

    Climate researchers from the National Center for Atmospheric Research (NCAR) and several universities install and perform functional checkouts of a variety of sensitive atmospheric instruments on NASA's DC-8 airborne laboratory prior to beginning the ARCTAS mission.

  20. Deedee Montzka of the National Center for Atmospheric Research checks out the NOxyO3 instrument on NASA's DC-8 flying laboratory before the ARCTAS mission

    NASA Image and Video Library

    2008-03-07

    Climate researchers from the National Center for Atmospheric Research (NCAR) and several universities install and perform functional checkouts of a variety of sensitive atmospheric instruments on NASA's DC-8 airborne laboratory prior to beginning the ARCTAS mission.

  1. The Numerical Simulation of a Tracer-Release Field Project to Study Motion within the Nocturnal Boundary Layer

    NASA Astrophysics Data System (ADS)

    Werth, D. W.; Leclerc, M. Y.; Buckley, R.; Parker, M.; Kurzeja, R.; Duarte, H. F.; Zhang, G.; Durden, D.

    2009-12-01

    The Savannah River National Laboratory (SRNL), Brookhaven National Laboratory (BNL), the University of Georgia (UGA), and the National Oceanic and Atmospheric Administration (NOAA) conducted a regional tracer experiment to study the nocturnal behavior of CO2 in the vicinity of an instrumented tall tower during two nights on May 11th and 12th, 2009. The experiment consisted of a release of five perfluorocarbon tracer (PFTs) compounds in twelve unique locations in Aiken County, South Carolina. Intensive meteorological measurements including in-situ turbulence were made in conjunction with the release and sampling of the PFTs. A 300m tower was also used to collect data from higher levels, allowing us to determine the extent to which the tracer was mixed vertically. Lagrangian plume simulations performed during the experiment demonstrated transport over distances of >8 km, and correlated well with in situ sampling. The area was characterized by heavy vegetation cover, and carbon dioxide concentrations were also monitored in an effort to determine how respiration and advection affect CO2 levels in the stable layer. Tracer release locations were carefully selected via a fine-scale mesoscale modeling study of similar nights. The purpose of these experiments was to provide data that will be used to increase the understanding of the terrestrial carbon budget, especially with respect to nocturnal boundary layer (NBL) phenomena such as low level jets and breaking gravity waves. Using these data, a simulation of the motion of the tracer within the boundary layer was developed using the Regional Atmospheric Modeling System (RAMS) mesoscale model coupled to a tracer model. The RAMS model was also coupled to the Simple Biosphere (SiB) vegetation model, which allowed for the simulation of the release of carbon dioxide into the NBL. The simulation results are used to validate the NBL hypothesis of CO2 monitoring, by which the release of CO2 can be correlated with the accumulation

  2. Atmospheric Deposition and Surface-Water Chemistry in Mount Rainier and North Cascades National Parks, U.S.A., Water Years 2000 and 2005-2006

    USGS Publications Warehouse

    Clow, David W.; Campbell, Donald H.

    2008-01-01

    High-elevation aquatic ecosystems in Mount Rainier and North Cascades National Parks are highly sensitive to atmospheric deposition of nitrogen and sulfur. Thin, rocky soils promote fast hydrologic flushing rates during snowmelt and rain events, limiting the ability of basins to neutralize acidity and assimilate nitrogen deposited from the atmosphere. Potential effects of nitrogen and sulfur deposition include episodic or chronic acidification of terrestrial and aquatic ecosystems. In addition, nitrogen deposition can cause eutrophication of water bodies and changes in species composition in lakes and streams. This report documents results of a study performed by the U.S. Geological Survey, in cooperation with the National Park Service, of the effects of atmospheric deposition of nitrogen and sulfur on surface-water chemistry in Mount Rainier and North Cascades National Parks. Inorganic nitrogen in wet deposition was highest in the vicinity of North Cascades National Park, perhaps due to emissions from human sources and activities in the Puget Sound area. Sulfur in wet deposition was highest near the Pacific coast, reflecting the influence of marine aerosols. Dry deposition generally accounted for less than 30 percent of wet plus dry inorganic nitrogen and sulfur deposition, but occult deposition (primarily fog) represents a potentially substantial unmeasured component of total deposition. Trend analyses indicate inorganic nitrogen in wet deposition was relatively stable during 1986-2005, but sulfur in wet deposition declined substantially during that time, particularly after 2001, when emissions controls were added to a large powerplant in western Washington. Surface-water sulfate concentrations at the study site nearest the powerplant showed a statistically significant decrease between 2000 and 2005-06, but there was no statistically significant change in alkalinity, indicating a delayed response in surface-water alkalinity. Seasonal patterns in surface

  3. Evaluation of National Atmospheric Deposition Program measurements for colocated sites CO89 and CO98 at Rocky Mountain National Park, water years 2010–14

    USGS Publications Warehouse

    Wetherbee, Gregory A.

    2016-07-22

    Atmospheric wet-deposition monitoring in Rocky Mountain National Park included precipitation depth and aqueous chemical measurements at colocated National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites CO89 and CO98 (Loch Vale) during water years 2010–14 (study period). The colocated sites were separated by approximately 6.5 meters horizontally and 0.5 meter in elevation, in accordance with NADP siting criteria. Assessment of the 5-year record of colocated data is intended to inform man-agement decisions pertaining to the achievement of nitrogen deposition reduction goals of the Rocky Mountain National Park Nitrogen Deposition Reduction Plan.The data at site CO98 met NADP completeness criteria for the first time in 29 years of operation in 2011 and then again in 2012. During the study period, data at site CO89 met completeness criteria in 2012. Median weekly relative precipitation-depth differences between sites CO89 and CO98 ranged from 0 to 0.25 millimeter during the study period. Median weekly absolute percent differences in sample volume ranged from 5 to 10 percent. Median relative concentration differences for weekly ammonium (NH4+) and nitrate (NO3-) concentrations were near the NADP Central Analytical Laboratory’s method detection limits and thus were considered small. Absolute percent differences for water-year 2010–14 precipitation-weighted mean concentrations of NH4+, NO3-, and inorganic nitrogen (Ninorg) ranged from 0.0 to 25.7 percent. Absolute percent differences for water-year 2010–14 NH4+, NO3-, and Ninorg deposition ranged from 2.1 to 18.9 percent, 3.3 to 24.5 percent, and 0.3 to 17.4 percent, respectively.

  4. Impacts of an Ammonia Leak on the Cabin Atmosphere of the International Space Station

    NASA Technical Reports Server (NTRS)

    Duchesne, Stephanie M.; Sweterlitsch, Jeff J.; Son, Chang H.; Perry, Jay L.

    2011-01-01

    Toxic chemical release into the cabin atmosphere is one of the three major emergency scenarios identified on the International Space Station (ISS). The release of anhydrous ammonia, the coolant used in the U.S. On-orbit Segment (USOS) External Active Thermal Control Subsystem (EATCS), into the ISS cabin atmosphere is one of the most serious toxic chemical release cases identified on board ISS. The USOS Thermal Control System (TCS) includes an Internal Thermal Control Subsystem (ITCS) water loop and an EATCS ammonia loop that transfer heat at the interface heat exchanger (IFHX). Failure modes exist that could cause a breach within the IFHX. This breach would result in high pressure ammonia from the EATCS flowing into the lower pressure ITCS water loop. As the pressure builds in the ITCS loop, it is likely that the gas trap, which has the lowest maximum design pressure within the ITCS, would burst and cause ammonia to enter the ISS atmosphere. It is crucial to first characterize the release of ammonia into the ISS atmosphere in order to develop methods to properly mitigate the environmental risk. This paper will document the methods used to characterize an ammonia leak into the ISS cabin atmosphere. A mathematical model of the leak was first developed in order to define the flow of ammonia into the ISS cabin atmosphere based on a series of IFHX rupture cases. Computational Fluid Dynamics (CFD) methods were then used to model the dispersion of the ammonia throughout the ISS cabin and determine localized effects and ventilation effects on the dispersion of ammonia. Lastly, the capabilities of the current on-orbit systems to remove ammonia were reviewed and scrubbing rates of the ISS systems were defined based on the ammonia release models. With this full characterization of the release of ammonia from the USOS TCS, an appropriate mitigation strategy that includes crew and system emergency response procedures, personal protection equipment use, and atmosphere monitoring

  5. Impacts of an Ammonia Leak on the Cabin Atmosphere of the International Space Station

    NASA Technical Reports Server (NTRS)

    Duchesne, Stephanie M.; Sweterlitsch, Jeffrey J.; Son, Chang H.; Perry Jay L.

    2012-01-01

    Toxic chemical release into the cabin atmosphere is one of the three major emergency scenarios identified on the International Space Station (ISS). The release of anhydrous ammonia, the coolant used in the U.S. On-orbit Segment (USOS) External Active Thermal Control Subsystem (EATCS), into the ISS cabin atmosphere is one of the most serious toxic chemical release cases identified on board ISS. The USOS Thermal Control System (TCS) includes an Internal Thermal Control Subsystem (ITCS) water loop and an EATCS ammonia loop that transfer heat at the interface heat exchanger (IFHX). Failure modes exist that could cause a breach within the IFHX. This breach would result in high pressure ammonia from the EATCS flowing into the lower pressure ITCS water loop. As the pressure builds in the ITCS loop, it is likely that the gas trap, which has the lowest maximum design pressure within the ITCS, would burst and cause ammonia to enter the ISS atmosphere. It is crucial to first characterize the release of ammonia into the ISS atmosphere in order to develop methods to properly mitigate the environmental risk. This paper will document the methods used to characterize an ammonia leak into the ISS cabin atmosphere. A mathematical model of the leak was first developed in order to define the flow of ammonia into the ISS cabin atmosphere based on a series of IFHX rupture cases. Computational Fluid Dynamics (CFD) methods were then used to model the dispersion of the ammonia throughout the ISS cabin and determine localized effects and ventilation effects on the dispersion of ammonia. Lastly, the capabilities of the current on-orbit systems to remove ammonia were reviewed and scrubbing rates of the ISS systems were defined based on the ammonia release models. With this full characterization of the release of ammonia from the USOS TCS, an appropriate mitigation strategy that includes crew and system emergency response procedures, personal protection equipment use, and atmosphere monitoring

  6. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker.

    PubMed

    Peters, Wouter; Jacobson, Andrew R; Sweeney, Colm; Andrews, Arlyn E; Conway, Thomas J; Masarie, Kenneth; Miller, John B; Bruhwiler, Lori M P; Pétron, Gabrielle; Hirsch, Adam I; Worthy, Douglas E J; van der Werf, Guido R; Randerson, James T; Wennberg, Paul O; Krol, Maarten C; Tans, Pieter P

    2007-11-27

    We present an estimate of net CO(2) exchange between the terrestrial biosphere and the atmosphere across North America for every week in the period 2000 through 2005. This estimate is derived from a set of 28,000 CO(2) mole fraction observations in the global atmosphere that are fed into a state-of-the-art data assimilation system for CO(2) called CarbonTracker. By design, the surface fluxes produced in CarbonTracker are consistent with the recent history of CO(2) in the atmosphere and provide constraints on the net carbon flux independent from national inventories derived from accounting efforts. We find the North American terrestrial biosphere to have absorbed -0.65 PgC/yr (1 petagram = 10(15) g; negative signs are used for carbon sinks) averaged over the period studied, partly offsetting the estimated 1.85 PgC/yr release by fossil fuel burning and cement manufacturing. Uncertainty on this estimate is derived from a set of sensitivity experiments and places the sink within a range of -0.4 to -1.0 PgC/yr. The estimated sink is located mainly in the deciduous forests along the East Coast (32%) and the boreal coniferous forests (22%). Terrestrial uptake fell to -0.32 PgC/yr during the large-scale drought of 2002, suggesting sensitivity of the contemporary carbon sinks to climate extremes. CarbonTracker results are in excellent agreement with a wide collection of carbon inventories that form the basis of the first North American State of the Carbon Cycle Report (SOCCR), to be released in 2007. All CarbonTracker results are freely available at http://carbontracker.noaa.gov.

  7. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker

    PubMed Central

    Peters, Wouter; Jacobson, Andrew R.; Sweeney, Colm; Andrews, Arlyn E.; Conway, Thomas J.; Masarie, Kenneth; Miller, John B.; Bruhwiler, Lori M. P.; Pétron, Gabrielle; Hirsch, Adam I.; Worthy, Douglas E. J.; van der Werf, Guido R.; Randerson, James T.; Wennberg, Paul O.; Krol, Maarten C.; Tans, Pieter P.

    2007-01-01

    We present an estimate of net CO2 exchange between the terrestrial biosphere and the atmosphere across North America for every week in the period 2000 through 2005. This estimate is derived from a set of 28,000 CO2 mole fraction observations in the global atmosphere that are fed into a state-of-the-art data assimilation system for CO2 called CarbonTracker. By design, the surface fluxes produced in CarbonTracker are consistent with the recent history of CO2 in the atmosphere and provide constraints on the net carbon flux independent from national inventories derived from accounting efforts. We find the North American terrestrial biosphere to have absorbed −0.65 PgC/yr (1 petagram = 1015 g; negative signs are used for carbon sinks) averaged over the period studied, partly offsetting the estimated 1.85 PgC/yr release by fossil fuel burning and cement manufacturing. Uncertainty on this estimate is derived from a set of sensitivity experiments and places the sink within a range of −0.4 to −1.0 PgC/yr. The estimated sink is located mainly in the deciduous forests along the East Coast (32%) and the boreal coniferous forests (22%). Terrestrial uptake fell to −0.32 PgC/yr during the large-scale drought of 2002, suggesting sensitivity of the contemporary carbon sinks to climate extremes. CarbonTracker results are in excellent agreement with a wide collection of carbon inventories that form the basis of the first North American State of the Carbon Cycle Report (SOCCR), to be released in 2007. All CarbonTracker results are freely available at http://carbontracker.noaa.gov. PMID:18045791

  8. NESHAP Dose-Release Factor Isopleths for Five Source-to-Receptor Distances from the Center of Site and H-Area for all Compass Sectors at SRS using CAP88-PC Version 4.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trimor, P.

    The Environmental Protection Agency (EPA) requires the use of the computer model CAP88-PC to estimate the total effective doses (TED) for demonstrating compliance with 40 CFR 61, Subpart H (EPA 2006), the National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations. As such, CAP88 Version 4.0 was used to calculate the receptor dose due to routine atmospheric releases at the Savannah River Site (SRS). For estimation, NESHAP dose-release factors (DRFs) have been supplied to Environmental Compliance and Area Closure Projects (EC&ACP) for many years. DRFs represent the dose to a maximum receptor exposed to 1 Ci of a specified radionuclidemore » being released into the atmosphere. They are periodically updated to include changes in the CAP88 version, input parameter values, site meteorology, and location of the maximally exposed individual (MEI). This report presents the DRFs of tritium oxide released at two onsite locations, center-of-site (COS) and H-Area, at 0 ft. elevation to maximally exposed individuals (MEIs) located 1000, 3000, 6000, 9000, and 12000 meters from the release areas for 16 compass sectors. The analysis makes use of area-specific meteorological data (Viner 2014).« less

  9. Source Term Estimates of Radioxenon Released from the BaTek Medical Isotope Production Facility Using External Measured Air Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Cameron, Ian M.; Dumais, Johannes R.

    2015-10-01

    Abstract Batan Teknologi (BaTek) operates an isotope production facility in Serpong, Indonesia that supplies 99mTc for use in medical procedures. Atmospheric releases of Xe-133 in the production process at BaTek are known to influence the measurements taken at the closest stations of the International Monitoring System (IMS). The purpose of the IMS is to detect evidence of nuclear explosions, including atmospheric releases of radionuclides. The xenon isotopes released from BaTek are the same as those produced in a nuclear explosion, but the isotopic ratios are different. Knowledge of the magnitude of releases from the isotope production facility helps inform analystsmore » trying to decide whether a specific measurement result came from a nuclear explosion. A stack monitor deployed at BaTek in 2013 measured releases to the atmosphere for several isotopes. The facility operates on a weekly cycle, and the stack data for June 15-21, 2013 show a release of 1.84E13 Bq of Xe-133. Concentrations of Xe-133 in the air are available at the same time from a xenon sampler located 14 km from BaTek. An optimization process using atmospheric transport modeling and the sampler air concentrations produced a release estimate of 1.88E13 Bq. The same optimization process yielded a release estimate of 1.70E13 Bq for a different week in 2012. The stack release value and the two optimized estimates are all within 10 percent of each other. Weekly release estimates of 1.8E13 Bq and a 40 percent facility operation rate yields a rough annual release estimate of 3.7E13 Bq of Xe-133. This value is consistent with previously published estimates of annual releases for this facility, which are based on measurements at three IMS stations. These multiple lines of evidence cross-validate the stack release estimates and the release estimates from atmospheric samplers.« less

  10. Model-Data Fusion and Adaptive Sensing for Large Scale Systems: Applications to Atmospheric Release Incidents

    NASA Astrophysics Data System (ADS)

    Madankan, Reza

    All across the world, toxic material clouds are emitted from sources, such as industrial plants, vehicular traffic, and volcanic eruptions can contain chemical, biological or radiological material. With the growing fear of natural, accidental or deliberate release of toxic agents, there is tremendous interest in precise source characterization and generating accurate hazard maps of toxic material dispersion for appropriate disaster management. In this dissertation, an end-to-end framework has been developed for probabilistic source characterization and forecasting of atmospheric release incidents. The proposed methodology consists of three major components which are combined together to perform the task of source characterization and forecasting. These components include Uncertainty Quantification, Optimal Information Collection, and Data Assimilation. Precise approximation of prior statistics is crucial to ensure performance of the source characterization process. In this work, an efficient quadrature based method has been utilized for quantification of uncertainty in plume dispersion models that are subject to uncertain source parameters. In addition, a fast and accurate approach is utilized for the approximation of probabilistic hazard maps, based on combination of polynomial chaos theory and the method of quadrature points. Besides precise quantification of uncertainty, having useful measurement data is also highly important to warranty accurate source parameter estimation. The performance of source characterization is highly affected by applied sensor orientation for data observation. Hence, a general framework has been developed for the optimal allocation of data observation sensors, to improve performance of the source characterization process. The key goal of this framework is to optimally locate a set of mobile sensors such that measurement of textit{better} data is guaranteed. This is achieved by maximizing the mutual information between model predictions

  11. CERES FM6 Edition1-CV Product Release

    Atmospheric Science Data Center

    2018-06-13

    ... Wednesday, June 13, 2018 The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center in collaboration with the CERES Science Team announces the release of the first Joint Polar Satellite System 1 ...

  12. Eric Apel and Alan Hills of the National Center for Atmospheric Research install the Trace Organic Gas Analyzer's sensor probe on the exterior of NASA's DC-8

    NASA Image and Video Library

    2008-03-07

    Climate researchers from the National Center for Atmospheric Research (NCAR) and several universities install and perform functional checkouts of a variety of sensitive atmospheric instruments on NASA's DC-8 airborne laboratory prior to beginning the ARCTAS mission.

  13. Novel atmospheric pressure plasma device releasing atomic hydrogen: reduction of microbial-contaminants and OH radicals in the air

    NASA Astrophysics Data System (ADS)

    Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, Kyoung Hui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken

    2007-01-01

    A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H+(H2O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed.

  14. Assessing the impact of atmospheric chemistry on the fate, transport, and transformation of adulticides in an urban atmosphere

    NASA Astrophysics Data System (ADS)

    Guberman, S.; Yoon, S.; Guagenti, M. C.; Sheesley, R. J.; Usenko, S.

    2017-12-01

    Urban areas are literal hot spots of mosquito-borne disease transmission and air pollution during the summer months. Public health authorities release aerosolized adulticides to target adult mosquitoes directly in to the atmosphere to control mosquito populations and reduce the threat of diseases (e.g. Zika). Permethrin and malathion are the primary adulticides for controlling adult mosquito populations in Houston, TX and are typically sprayed at night. After being released into the atmosphere adulticides are subject to atmospheric oxidation initiated by atmospheric oxidants (e.g. O3 and NO3) which are driven by anthropogenic air pollutants (e.g. NOx; NO and NO2). Particulate matter (PM) samples were measured at both application and downwind locations. Sampling sites were determined using the combination of atmospheric plume transport models and adulticide application data provided by Harris County Public Health Mosquito Division. Atmospheric PM samples were taken using a Mobile Laboratory, equipped with total suspended PM and PM2.5 (PM with diameter <2.5 um) samplers, as well as real-time instruments that made congruent measurements of O3, NOx, and wind speed and direction. Nighttime atmospheric half-lives of malathion were calculated to be 40-90% lower than malathion half-lives measured in previous studies; these half-lives were determined using diurnal atmospheric concentrations of malathion and its oxidation product, malaoxon. Interestingly, during malathion-use periods, atmospheric malaoxon concentrations measured in the PM2.5 samples were similar to corresponding TSP samples. This suggests that the majority of the malathion (and malaoxon) was associated with fine PM. During permethrin-use periods, atmospheric permethrin concentrations measured in the PM2.5 samples were an order and half lower in magnitude. This suggests that permethrin may be undergoing less volatilization into the gas phase after application as compared to malathion (and or malaoxon). Unlike

  15. Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Taylor, Nathan F.; Collins, Don R.; Lowenthal, Douglas H.; McCubbin, Ian B.; Gannet Hallar, A.; Samburova, Vera; Zielinska, Barbara; Kumar, Naresh; Mazzoleni, Lynn R.

    2017-02-01

    Due to the atmospheric abundance and chemical complexity of water soluble organic carbon (WSOC), its contribution to the hydration behavior of atmospheric aerosol is both significant and difficult to assess. For the present study, the hygroscopicity and CCN activity of isolated atmospheric WSOC particulate matter was measured without the compounding effects of common, soluble inorganic aerosol constituents. WSOC was extracted with high purity water from daily high-volume PM2.5 filter samples and separated from water soluble inorganic constituents using solid-phase extraction. The WSOC filter extracts were concentrated and combined to provide sufficient mass for continuous generation of the WSOC-only aerosol over the combined measurement time of the tandem differential mobility analyzer and coupled scanning mobility particle sizer-CCN counter used for the analysis. Aerosol samples were taken at Great Smoky Mountains National Park during the summer of 2006 and fall-winter of 2007-2008; Mount Rainier National Park during the summer of 2009; Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado, during the summer of 2010; and Acadia National Park during the summer of 2011. Across all sampling locations and seasons, the hygroscopic growth of WSOC samples at 90 % RH, expressed in terms of the hygroscopicity parameter, κ, ranged from 0.05 to 0.15. Comparisons between the hygroscopicity of WSOC and that of samples containing all soluble materials extracted from the filters implied a significant modification of the hydration behavior of inorganic components, including decreased hysteresis separating efflorescence and deliquescence and enhanced water uptake between 30 and 70 % RH.

  16. Infrasound induced instability by modulation of condensation process in the atmosphere.

    PubMed

    Naugolnykh, Konstantin; Rybak, Samuil

    2008-12-01

    A sound wave in supersaturated water vapor can modulate both the process of heat release caused by condensation, and subsequently, as a result, the resonance interaction of sound with the modulated heat release provides sound amplification. High-intensity atmospheric perturbations such as cyclones and thunderstorms generate infrasound, which is detectable at large distances from the source. The wave-condensation instability can lead to variation in the level of infrasound radiation by a developing cyclone, and this can be as a precursor of these intense atmospheric events.

  17. National Oceanic and Atmospheric Administration hydrographic survey data used in a U.S. Geological Survey regional geologic framework study along the Delmarva Peninsula

    USGS Publications Warehouse

    Pendleton, Elizabeth A.; Brothers, Laura L.; Thieler, E. Robert; Danforth, William W.; Parker, Castle E.

    2014-01-01

    The U.S. Geological Survey obtained raw Reson multibeam data files from Science Applications International Corporation and the National Oceanic and Atmospheric Administration for 20 hydrographic surveys and extracted backscatter data using the Fledermaus Geocoder Toolbox from Quality Positioning Service. The backscatter mosaics produced by the U.S. Geological Survey for the inner continental shelf of the Delmarva Peninsula using National Oceanic and Atmospheric Administration data increased regional geophysical surveying efficiency, collaboration among government agencies, and the area over which geologic data can be interpreted by the U.S. Geological Survey. This report describes the methods by which the backscatter data were extracted and processed and includes backscatter mosaics and interpolated bathymetric surfaces.

  18. Configuring the HYSPLIT Model for National Weather Service Forecast Office and Spaceflight Meteorology Group Applications

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian; Van Speybroeck, Kurt

    2009-01-01

    The National Weather Service Forecast Office in Melbourne, FL (NWS MLB) is responsible for providing meteorological support to state and county emergency management agencies across East Central Florida in the event of incidents involving the significant release of harmful chemicals, radiation, and smoke from fires and/or toxic plumes into the atmosphere. NWS MLB uses the National Oceanic and Atmospheric Administration Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to provide trajectory, concentration, and deposition guidance during such events. Accurate and timely guidance is critical for decision makers charged with protecting the health and well-being of populations at risk. Information that can describe the geographic extent of areas possibly affected by a hazardous release, as well as to indicate locations of primary concern, offer better opportunity for prompt and decisive action. In addition, forecasters at the NWS Spaceflight Meteorology Group (SMG) have expressed interest in using the HYSPLIT model to assist with Weather Flight Rules during Space Shuttle landing operations. In particular, SMG would provide low and mid-level HYSPLIT trajectory forecasts for cumulus clouds associated with smoke plumes, and high-level trajectory forecasts for thunderstorm anvils. Another potential benefit for both NWS MLB and SMG is using the HYSPLIT model concentration and deposition guidance in fog situations.

  19. 50 CFR 216.27 - Release, non-releasability, and disposition under special exception permits for rehabilitated...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... rehabilitated marine mammal for any activity authorized under subpart D in lieu of animals taken from the wild... disposition under special exception permits for rehabilitated marine mammals. 216.27 Section 216.27 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION...

  20. 50 CFR 216.27 - Release, non-releasability, and disposition under special exception permits for rehabilitated...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... rehabilitated marine mammal for any activity authorized under subpart D in lieu of animals taken from the wild... disposition under special exception permits for rehabilitated marine mammals. 216.27 Section 216.27 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION...

  1. 50 CFR 216.27 - Release, non-releasability, and disposition under special exception permits for rehabilitated...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... rehabilitated marine mammal for any activity authorized under subpart D in lieu of animals taken from the wild... disposition under special exception permits for rehabilitated marine mammals. 216.27 Section 216.27 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION...

  2. 50 CFR 216.27 - Release, non-releasability, and disposition under special exception permits for rehabilitated...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... rehabilitated marine mammal for any activity authorized under subpart D in lieu of animals taken from the wild... disposition under special exception permits for rehabilitated marine mammals. 216.27 Section 216.27 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION...

  3. Dynamic compression and volatile release of carbonates

    NASA Technical Reports Server (NTRS)

    Tyburczy, J. A.; Ahrens, T. J.

    1984-01-01

    Particle velocity profiles upon shock compression and isentropic releases were measured for polycrystalline calcite. The Solenhofen limestone release paths lie, close to the Hugoniot. Calcite 3 to 2 transition, upon release, was observed, but rarefaction shocks were not detected. The equation of state is used to predict the fraction of material devolatilized upon isentropic release as a function of shock pressure. The effect of ambient partial pressure of CO2 on the calculations is demonstrated and considered in models of atmospheric evolution by impact induced mineral devolatilization. The radiative characteristics of shocked calcite indicate that localization of thermal energy occurs under shock compression. Shock entropy calculations result in a minimum estimate of 90% devolatilization upon complete release from 10 GPa. Isentropic release paths from calculated continuum Hugoniot temperatures cross into the CaO (solid) + CO2 (vapor) field at improbably low pressures. It is found that release paths from measured shock temperatures cross into the melt plus vapor field at pressures greater than .5 GPa, which suggests that devolatilization is initiated at the shear banding sites.

  4. Updated operational protocols for the U.S. Geological Survey Precipitation Chemistry Quality Assurance Project in support of the National Atmospheric Deposition Program

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Martin, RoseAnn

    2017-02-06

    The U.S. Geological Survey Branch of Quality Systems operates the Precipitation Chemistry Quality Assurance Project (PCQA) for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and National Atmospheric Deposition Program/Mercury Deposition Network (NADP/MDN). Since 1978, various programs have been implemented by the PCQA to estimate data variability and bias contributed by changing protocols, equipment, and sample submission schemes within NADP networks. These programs independently measure the field and laboratory components which contribute to the overall variability of NADP wet-deposition chemistry and precipitation depth measurements. The PCQA evaluates the quality of analyte-specific chemical analyses from the two, currently (2016) contracted NADP laboratories, Central Analytical Laboratory and Mercury Analytical Laboratory, by comparing laboratory performance among participating national and international laboratories. Sample contamination and stability are evaluated for NTN and MDN by using externally field-processed blank samples provided by the Branch of Quality Systems. A colocated sampler program evaluates the overall variability of NTN measurements and bias between dissimilar precipitation gages and sample collectors.This report documents historical PCQA operations and general procedures for each of the external quality-assurance programs from 2007 to 2016.

  5. Environmental analysis of the chemical release module. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    Heppner, J. P.; Dubin, M.

    1980-01-01

    The environmental analysis of the Chemical Release Module (a free flying spacecraft deployed from the space shuttle to perform chemical release experiments) is reviewed. Considerations of possible effects of the injectants on human health, ionosphere, weather, ground based optical astronomical observations, and satellite operations are included. It is concluded that no deleterious environmental effects of widespread or long lasting nature are anticipated from chemical releases in the upper atmosphere of the type indicated for the program.

  6. Space fireworks for upper atmospheric wind measurements by sounding rocket experiments

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.

    2016-01-01

    Artificial meteor trains generated by chemical releases by using sounding rockets flown in upper atmosphere were successfully observed by multiple sites on ground and from an aircraft. We have started the rocket experiment campaign since 2007 and call it "Space fireworks" as it illuminates resonance scattering light from the released gas under sunlit/moonlit condition. By using this method, we have acquired a new technique to derive upper atmospheric wind profiles in twilight condition as well as in moonlit night and even in daytime. Magnificent artificial meteor train images with the surrounding physics and dynamics in the upper atmosphere where the meteors usually appear will be introduced by using fruitful results by the "Space firework" sounding rocket experiments in this decade.

  7. Strategies to Mitigate Ammonia Release on the International Space Station

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel V.; Prokhorov, Kimberlee S.; Sweterlitsch, Jeffrey J.

    2007-01-01

    International Space Station (ISS) is crucial to its continuous operation. Off-nominal situations can arise from virtually any aspect of ISS operations. One situation of particular concern is the inadvertent release of a chemical into the ISS atmosphere. In sufficient quantities, a chemical release can render the ISS uninhabitable regardless of the chemical s toxicity as a result of its effect on the hardware used to maintain the environment. This is certainly true with system chemicals which are integral components to the function and purpose of the system. Safeguards, such as design for minimum risk, multiple containment, hazard assessments, rigorous safety reviews, and others, are in place to minimize the probability of a chemical release to the ISS environment thereby allowing the benefits of system chemicals to outweigh the risks associated with them. The thermal control system is an example of such a system. Heat generated within the ISS is transferred from the internal thermal control system (ITCS) to the external thermal control system (ETCS) via two, single-barrier interface heat exchangers (IFHX). The ITCS and ETCS are closed-loop systems which utilize water and anhydrous ammonia, respectively, as heat-transfer fluids. There is approximately 1200 lbs. (208 gallons) of anhydrous ammonia in the ETCS circulating through the two heat exchangers, transferring heat from the ITCS water lines. At the amounts present in the ETCS, anhydrous ammonia is one system chemical that can easily overwhelm the station atmosphere scrubbing capabilities and render the ISS uninhabitable in the event of a catastrophic rupture. Although safeguards have certainly minimized the risk of an ammonia release into the Station atmosphere, credible release scenarios and controls to manage these scenarios are examined.

  8. Venus Global Reference Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.

    2017-01-01

    Venus Global Reference Atmospheric Model (Venus-GRAM) is an engineering-level atmospheric model developed by MSFC that is widely used for diverse mission applications including: Systems design; Performance analysis; Operations planning for aerobraking, Entry, Descent and Landing, and aerocapture; Is not a forecast model; Outputs include density, temperature, pressure, wind components, and chemical composition; Provides dispersions of thermodynamic parameters, winds, and density; Optional trajectory and auxiliary profile input files Has been used in multiple studies and proposals including NASA Engineering and Safety Center (NESC) Autonomous Aerobraking and various Discovery proposals; Released in 2005; Available at: https://software.nasa.gov/software/MFS-32314-1.

  9. 36 CFR 1202.90 - What NARA systems of records are exempt from release under the National Security Exemption of the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the Inspector General (NARA-23) and the Personnel Security Case Files (NARA-24) systems of records... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false What NARA systems of records are exempt from release under the National Security Exemption of the Privacy Act? 1202.90 Section 1202...

  10. Decreased atmospheric sulfur deposition across the southeastern U.S.: When will watersheds release stored sulfate?

    Treesearch

    Karen C. Rice; Todd M. Scanlon; Jason A. Lynch; Bernard J. Cosby

    2014-01-01

    Emissions of sulfur dioxide (SO2) to the atmosphere lead to atmospheric deposition of sulfate (SO42-), which is the dominant strong acid anion causing acidification of surface waters and soils in the eastern United States. Since passage of the Clean Air Act and its Amendments, atmospheric deposition...

  11. Press Releases | Argonne National Laboratory

    Science.gov Websites

    Electrochemical Energy Science --Center for Transportation Research --Chain Reaction Innovations --Computation renewable energy such as wind and solar power. April 25, 2018 John Carlisle, director of Chain Reaction across nation to grow startups Argonne announces second cohort of Chain Reaction Innovations. April 18

  12. Chemical releases in the ionosphere

    NASA Technical Reports Server (NTRS)

    Davis, T. N.

    1979-01-01

    The study of the interaction between the atmosphere, ionosphere and magnetosphere is identified as a major task worthy of pursuit. The present review demonstrates the major contributions to this complex problem already made by active experiments involving the injection of chemicals and energetic electron beams into the atmosphere, ionosphere and magnetosphere. Through the use of chemical releases, it has been possible to investigate a number of quantities including high-altitude winds and electric fields, the detailed configurations of the geomagnetic field within the ionosphere and the magnetosphere, as well as the propagation of energetic particle beams and their interaction with natural neutral and ionized constituents of the high atmosphere. So far, virtually all of this effort has been accomplished using rockets. In the future, it is obvious that satellite platforms will play a greater role, both in making injections and in observing their effects.

  13. Extensive middle atmosphere (20-120 KM) modification in the Global Reference Atmospheric Model (GRAM-90)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, Dale

    1990-01-01

    The Global Reference Atmospheric Model (GRAM) is currently available in the 'GRAM-88' version (Justus, et al., 1986; 1988), which includes relatively minor upgrades and changes from the 'MOD-3' version (Justus, et al., 1980). Currently a project is underway to use large amounts of data, mostly collected under the Middle Atmosphere Program (MAP) to produce a major upgrade of the program planned for release as the GRAM-90 version. The new data and program revisions will particularly affect the 25-90 km height range. Sources of data and preliminary results are described here in the form of cross-sectional plots.

  14. International challenge to predict the impact of radioxenon releases from medical isotope production on a comprehensive nuclear test ban treaty sampling station.

    PubMed

    Eslinger, Paul W; Bowyer, Ted W; Achim, Pascal; Chai, Tianfeng; Deconninck, Benoit; Freeman, Katie; Generoso, Sylvia; Hayes, Philip; Heidmann, Verena; Hoffman, Ian; Kijima, Yuichi; Krysta, Monika; Malo, Alain; Maurer, Christian; Ngan, Fantine; Robins, Peter; Ross, J Ole; Saunier, Olivier; Schlosser, Clemens; Schöppner, Michael; Schrom, Brian T; Seibert, Petra; Stein, Ariel F; Ungar, Kurt; Yi, Jing

    2016-06-01

    The International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward. An understanding of natural and man-made radionuclide backgrounds can be used in accordance with the provisions of the treaty (such as event screening criteria in Annex 2 to the Protocol of the Treaty) for the effective implementation of the verification regime. Fission-based production of (99)Mo for medical purposes also generates nuisance radioxenon isotopes that are usually vented to the atmosphere. One of the ways to account for the effect emissions from medical isotope production has on radionuclide samples from the IMS is to use stack monitoring data, if they are available, and atmospheric transport modeling. Recently, individuals from seven nations participated in a challenge exercise that used atmospheric transport modeling to predict the time-history of (133)Xe concentration measurements at the IMS radionuclide station in Germany using stack monitoring data from a medical isotope production facility in Belgium. Participants received only stack monitoring data and used the atmospheric transport model and meteorological data of their choice. Some of the models predicted the highest measured concentrations quite well. A model comparison rank and ensemble analysis suggests that combining multiple models may provide more accurate predicted concentrations than any single model. None of the submissions based only on the stack monitoring data predicted the small measured concentrations very well. Modeling of sources by other nuclear facilities with smaller releases than medical isotope production facilities may be important in understanding how to discriminate those releases from

  15. Application of the Approximate Bayesian Computation methods in the stochastic estimation of atmospheric contamination parameters for mobile sources

    NASA Astrophysics Data System (ADS)

    Kopka, Piotr; Wawrzynczak, Anna; Borysiewicz, Mieczyslaw

    2016-11-01

    In this paper the Bayesian methodology, known as Approximate Bayesian Computation (ABC), is applied to the problem of the atmospheric contamination source identification. The algorithm input data are on-line arriving concentrations of the released substance registered by the distributed sensors network. This paper presents the Sequential ABC algorithm in detail and tests its efficiency in estimation of probabilistic distributions of atmospheric release parameters of a mobile contamination source. The developed algorithms are tested using the data from Over-Land Atmospheric Diffusion (OLAD) field tracer experiment. The paper demonstrates estimation of seven parameters characterizing the contamination source, i.e.: contamination source starting position (x,y), the direction of the motion of the source (d), its velocity (v), release rate (q), start time of release (ts) and its duration (td). The online-arriving new concentrations dynamically update the probability distributions of search parameters. The atmospheric dispersion Second-order Closure Integrated PUFF (SCIPUFF) Model is used as the forward model to predict the concentrations at the sensors locations.

  16. June 2017 Atmospheric Science Forum Newsletter

    Atmospheric Science Data Center

    2017-07-05

    June 2017 Atmospheric Science Forum Newsletter Friday, June 30, 2017 ... DISCOVER-AQ campaign available on Toolsets for Airborne Data (TAD), release of the CERES EBAF TOA and SURFACE Edition 4.0 data products, and the MOPITT V7 product upgrade. Access the full article at: ...

  17. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Burns, Lee; Merry, Carl; Harrington, Brian

    2008-01-01

    Atmospheric parameters are essential in assessing the flight performance of aerospace vehicles. The effects of the Earth's atmosphere on aerospace vehicles influence various aspects of the vehicle during ascent ranging from its flight trajectory to the structural dynamics and aerodynamic heatmg on the vehicle. Atmospheric databases charactenzing the wind and thermodynamic environments, known as Range Reference Atmospheres (RRA), have been developed at space launch ranges by a governmental interagency working group for use by aerospace vehicle programs. The National Aeronantics and Space Administration's (NASA) Space Shuttle Program (SSP), which launches from Kennedy Space Center, utilizes atmosphenc statistics derived from the Cape Canaveral Air Force Station Range Reference Atmosphere (CCAFS RRA) database to evaluate environmental constraints on various aspects of the vehlcle during ascent.

  18. Atmospheric Propagation Modeling Indicates Homing Pigeons use Loft-Specific Infrasonic 'Map' Cues

    NASA Astrophysics Data System (ADS)

    Hagstrum, J. T.; Baker, L. M.; Spritzer, J. M.; McKenna, M. H.

    2011-12-01

    Pigeons (Columba livia) released at distant sites commonly depart in directions significantly off the actual homeward bearing. Such site-dependent deviations, or biases, for birds from a given loft are generally stable over time, but can also change from hour to hour, day to day, and year to year. At some release sites, birds consistently vanish in random directions and have longer flight times and lower return rates. Release sites characterized by frequent disorientation are not uncommon for pigeon lofts in both Europe and the USA. One such site is the Jersey Hill fire tower in upstate New York located ~120 km W of the Cornell loft in Ithaca. Cornell birds released at Jersey Hill between 1968 and 1987 almost always vanished randomly, although birds from other lofts had little difficulty orienting there. The results for one day, however, stand out: on August 13, 1969, Cornell birds released at Jersey Hill vanished consistently to the NE (r = 0.921; n=7) and returned home after normal flight times. Cornell pigeons released the next day again showed 'normal' behavior for the site and departed randomly. If, in fact, the birds are using acoustic cues to navigate, the long-term acoustic 'dead' zone we propose for Jersey Hill, due to prevailing atmospheric conditions, indicates that the cues are coming from a single, relatively restricted area, most likely surrounding the home loft. We have modeled the transmission of infrasonic waves, presumably coupled to the atmosphere from ocean-generated microseisms (0.14 Hz), between the Cornell loft and a number of release sites using HARPA (Hamiltonian Acoustic Ray-tracing Program for the Atmosphere) and rawinsonde data collected near Albany and Buffalo, NY. The HARPA modeling shows that acoustic signals from the Cornell loft reached Jersey Hill only on a few release days with unusual atmospheric conditions, including August 13, and were launched at angles less than ~2° above horizontal, most likely from steep-sided terrain in

  19. Growing the Next Generation of Data Professionals at the National Center for Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Hou, C. Y.; Worley, S. J.; Mayernik, M. S.

    2017-12-01

    As a federally funded research and development center by the National Science Foundation, being able to provide education in order to advance scientific research is a top priority at the National Center for Atmospheric Research (NCAR). Among the various education programs available at the NCAR, the Data Stewardship Engineering Team (DSET) is working with students and early career professionals from the Library and Information Science (LIS) discipline. This LIS group is passionate about learning more about how to optimize the value of research information and often have innovative ideas regarding how to meet current as well as emerging information needs. As a new data initiative that focuses on developing the next generation data services, the NCAR DSET and its Digital Asset Services Hub is a rich, practical environment that provides opportunities for attaining experience and growing dedicated data stewards for the atmospheric and geosciences. In this presentation, the authors will describe the NCAR DSET's new outreach program. We will highlight the process that we are using to engage students and early career information scientists/librarians. This process allows them to acquire practical, hands-on data management and curation skills specific to the Earth sciences by enabling them to participate in an interdisciplinary environment as well as contribute to collaborative activities. We will also discuss the factors that influenced the structuring of the program, and share the current results and lessons learned. Ultimately, we aim to strengthen the NCAR's educational contribution to and collaboration with the LIS discipline by: 1) documenting the experience and soliciting feedback regarding the ways in which we could further expand the mutual interests of Earth sciences and LIS education curricula, and 2) sharing the findings and impacts of the outreach program at NCAR with the education community.

  20. Carbon dioxide in the atmosphere. [and other research projects

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.

    1974-01-01

    Research projects for the period ending September 15, 1973 are reported as follows: (1) the abundances of carbon dioxide in the atmosphere, and the processes by which it is released from carbonate deposits in the earth and then transferred to organic material by photosynthesis; the pathways for movement of carbon and oxygen through the atmosphere; (2) space science computation assistance by PDP computer; the performance characteristics and user instances; (3) OGO-6 data analysis studies of the variations of nighttime ion temperature in the upper atmosphere.

  1. Corrective Action Decision Document/Closure Report for Corrective Action Unit 106: Area 5, 11 Frenchman Flat Atmospheric Sites, Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Matthews and Dawn Peterson

    2011-09-01

    Corrective Action Unit 106 comprises four corrective action sites (CASs): (1) 05-20-02, Evaporation Pond; (2) 05-23-05, Atmospheric Test Site - Able; (3) 05-45-04, 306 GZ Rad Contaminated Area; (4) 05-45-05, 307 GZ Rad Contaminated Area. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 106 based on the implementation of corrective actions. The corrective action of clean closure was implemented at CASs 05-45-04 and 05-45-05, while no corrective action was necessary at CASs 05-20-02 and 05-23-05. Corrective action investigation (CAI) activities were performed from October 20,more » 2010, through June 1, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 106: Areas 5, 11 Frenchman Flat Atmospheric Sites. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of other releases (mechanical displacement and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 106 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Industrial Area exposure scenario (2,250 hours of annual exposure). The only radiological dose exceeding the FAL was at CAS 05-45-05 and was associated with potential source material (PSM). It is also assumed that additional PSM in the form of depleted uranium (DU) and DU-contaminated debris at CASs 05-45-04 and 05-45-05 exceed the FAL. Therefore, corrective actions were undertaken at these CASs that consisted of removing PSM and collecting

  2. The Aliso Canyon Natural Gas Leak : Large Eddy Simulations for Modeling Atmospheric Dynamics and Interpretation of Observations.

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Thorpe, A. K.; Duren, R. M.; Thompson, D. R.; Whetstone, J. R.

    2016-12-01

    The National Institute of Standards and Technology (NIST) has supported the development and demonstration of a measurement capability to accurately locate greenhouse gas sources and measure their flux to the atmosphere over urban domains. However, uncertainties in transport models which form the basis of all top-down approaches can significantly affect our capability to attribute sources and predict their flux to the atmosphere. Reducing uncertainties between bottom-up and top-down models will require high resolution transport models as well as validation and verification of dispersion models over an urban domain. Tracer experiments involving the release of Perfluorocarbon Tracers (PFTs) at known flow rates offer the best approach for validating dispersion / transport models. However, tracer experiments are limited by cost, ability to make continuous measurements, and environmental concerns. Natural tracer experiments, such as the leak from the Aliso Canyon underground storage facility offers a unique opportunity to improve and validate high resolution transport models, test leak hypothesis, and to estimate the amount of methane released.High spatial resolution (10 m) Large Eddy Simulations (LES) coupled with WRF atmospheric transport models were performed to simulate the dynamics of the Aliso Canyon methane plume and to quantify the source. High resolution forward simulation results were combined with aircraft and tower based in-situ measurements as well as data from NASA airborne imaging spectrometers. Comparison of simulation results with measurement data demonstrate the capability of the LES models to accurately model transport and dispersion of methane plumes over urban domains.

  3. Algal refossilization of atmospheric carbon dioxide. [Contains bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neushul, M.

    1991-07-01

    The atmospheric concentration of carbon dioxide (CO{sub 2}) is steadily increasing. With our increasing awareness of the economic and environmental impacts of the greenhouse effects'' of CO{sub 2}, methane and other gases, there is interest in finding new methods to reduce the amounts of these gases in the atmosphere. This study evaluates the possibility that large-scale oceanic cultures of macroalgae (macroscopic seaweeds'') could be used to capture atmospheric CO{sub 2}. It is a design for a marine farm system in which a crop'' of calcareous macroalgae grows attached to, and supported by, floating macroalgae that comprise the farm structure.'' Themore » least complicated, yet feasible, macroalgal farm system appears to be one in which laboratory-propagated calcareous algal epiphytes'' and floating algal basiphytes'' are dispersed together in natural ocean upwelling regions. From there, the plants drift with surface currents to the open ocean and then sink to the sea floor, where the buried carbon is refossilized.'' An important caveat regarding the use of calcareous algae is that the process of calcification may release CO{sub 2} to the atmosphere. There is some evidence that CO{sub 2} is not released by calcification in red calcareous algae, but in contrast many geochemists feel that all biologically -- as well as chemically --mediated calcification processes release CO{sub 2}. A substantial amount of research will be necessary to answer basic questions about algal carbon fixation and biomineralization on one hand, while on the other hand to devise strategies for farming the open ocean. 76 refs., 14 figs., 7 tabs.« less

  4. Upper atmospheric planetary-wave and gravity-wave observations

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Woodrum, A.

    1973-01-01

    Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily-difference method, and results on the magnitude of atmospheric perturbations interpreted as gravity waves and planetary waves are presented. Traveling planetary-wave contributions in the 25-85 km range were found to have significant height and latitudinal variation. It was found that observed gravity-wave density perturbations and wind are related to one another in the manner predicted by gravity-wave theory. It was determined that, on the average, gravity-wave energy deposition or reflection occurs at all altitudes except the 55-75 km region of the mesosphere.

  5. Pulsating aurora induced by upper atmospheric barium releases

    NASA Technical Reports Server (NTRS)

    Deehr, C.; Romick, G.

    1977-01-01

    The paper reports the apparent generation of pulsating aurora by explosive releases of barium vapor near 250 km altitude. This effect occurred only when the explosions were in the path of precipitating electrons associated with the visible aurora. Each explosive charge was a standard 1.5 kg thermite mixture of Ba and CuO with an excess of Ba metal which was vaporized and dispersed by the thermite explosion. Traces of Sr, Na, and Li were added to some of the charges, and monitoring was achieved by ground-based spectrophotometric observations. On March 28, 1976, an increase in emission at 5577 A and at 4278 A was observed in association with the first two bursts, these emissions pulsating with roughly a 10 sec period for approximately 60 to 100 sec after the burst.

  6. Being prepared to verify the CTBT-Atmospheric Transport modeling and radionuclide analysis at the Austrian National Data Centre during the NDC Preparedness Exercise 2009

    NASA Astrophysics Data System (ADS)

    Wotawa, Gerhard; Schraick, Irene

    2010-05-01

    An explosion in the Kara-Zhyra mine in Eastern Kazakhstan on 28 November 2009 around 07:20 UTC was recorded by both the CTBTO seismic and infrasound networks. This event triggered a world-wide preparedness exercise among the CTBTO National Data Centres. Within an hour after the event was selected by the German NDC, a computer program developed by NDC Austria based on weather forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) and from the U.S. National Centers for Environmental Prediction (NCEP) was started to analyse what Radionuclide Stations of the CTBTO International Monitoring System (IMS) would be potentially affected by the release from a nuclear explosion at this place in the course of the following 3-10 days. These calculations were daily updated to consider the observed state of the atmosphere instead of the predicted one. Based on these calculations, automated and reviewed radionuclide reports from the potentially affected stations as produced by the CTBTO International Data Centre (IDC) were looked at. An additional analysis of interesting spectra was provided by the Seibersdorf Laboratories. Based on all the results coming in, no evidence whatsoever was found that the explosion in Kazakhstan was nuclear. This is in accordance with ground truth information saying that the event was caused by the detonation of more than 53 Tons of explosives as part of mining operations. A number of conclusions can be drawn from this exercise. First, the international, bilateral as well as national mechanisms and procedures in place for such an event worked smoothly. Second, the products and services from the CTBTO IDC proved to be very useful to assist the member states in their verification efforts. Last but not least, issues with the availability of data from IMS radionuclide stations do remain.

  7. 32 CFR 644.466 - Release and record of physical restoration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Release and record of physical restoration. 644.466 Section 644.466 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... § 644.466 Release and record of physical restoration. The responsible DE, upon completion of restoration...

  8. 32 CFR 644.466 - Release and record of physical restoration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Release and record of physical restoration. 644.466 Section 644.466 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... § 644.466 Release and record of physical restoration. The responsible DE, upon completion of restoration...

  9. The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange

    USGS Publications Warehouse

    Hayes, Daniel J.; Kicklighter, David W.; McGuire, A. David; Chen, Min; Zhuang, Qianlai; Yuan, Fengming; Melillo, Jerry M.; Wullschleger, Stan D.

    2014-01-01

    Permafrost thaw and the subsequent mobilization of carbon (C) stored in previously frozen soil organic matter (SOM) have the potential to be a strong positive feedback to climate. As the northern permafrost region experiences as much as a doubling of the rate of warming as the rest of the Earth, the vast amount of C in permafrost soils is vulnerable to thaw, decomposition and release as atmospheric greenhouse gases. Diagnostic and predictive estimates of high-latitude terrestrial C fluxes vary widely among different models depending on how dynamics in permafrost, and the seasonally thawed 'active layer' above it, are represented. Here, we employ a process-based model simulation experiment to assess the net effect of active layer dynamics on this 'permafrost carbon feedback' in recent decades, from 1970 to 2006, over the circumpolar domain of continuous and discontinuous permafrost. Over this time period, the model estimates a mean increase of 6.8 cm in active layer thickness across the domain, which exposes a total of 11.6 Pg C of thawed SOM to decomposition. According to our simulation experiment, mobilization of this previously frozen C results in an estimated cumulative net source of 3.7 Pg C to the atmosphere since 1970 directly tied to active layer dynamics. Enhanced decomposition from the newly exposed SOM accounts for the release of both CO2 (4.0 Pg C) and CH4 (0.03 Pg C), but is partially compensated by CO2 uptake (0.3 Pg C) associated with enhanced net primary production of vegetation. This estimated net C transfer to the atmosphere from permafrost thaw represents a significant factor in the overall ecosystem carbon budget of the Pan-Arctic, and a non-trivial additional contribution on top of the combined fossil fuel emissions from the eight Arctic nations over this time period.

  10. The National Science Foundation's Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) Student Community

    NASA Astrophysics Data System (ADS)

    Sox, L.; Duly, T.; Emery, B.

    2014-12-01

    The National Science Foundation sponsors Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR) Workshops, which have been held every summer, for the past 29 years. CEDAR Workshops are on the order of a week long and at various locations with the goal of being close to university campuses where CEDAR type scientific research is done. Although there is no formal student group within the CEDAR community, the workshops are very student-focused. Roughly half the Workshop participants are students. There are two Student Representatives on the CEDAR Science Steering Committee (CSSC), the group of scientists who organize the CEDAR Workshops. Each Student Representative is nominated by his or her peers, chosen by the CSSC and then serves a two year term. Each year, one of the Student Representatives is responsible for organizing and moderating a day-long session targeted for students, made up of tutorial talks, which aim to prepare both undergraduate and graduate students for the topics that will be discussed in the main CEDAR Workshop. The theme of this session changes every year. Past themes have included: upper atmospheric instrumentation, numerical modeling, atmospheric waves and tides, magnetosphere-ionosphere coupling, equatorial aeronomy and many others. Frequently, the Student Workshop has ended with a panel of post-docs, researchers and professors who discuss pressing questions from the students about the next steps they will take in their careers. As the present and past CSSC Student Representatives, we will recount a brief history of the CEDAR Workshops, our experiences serving on the CSSC and organizing the Student Workshop, a summary of the feedback we collected about the Student Workshops and what it's like to be student in the CEDAR community.

  11. The evolution of an impact-generated atmosphere

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1982-01-01

    The minimum impact velocities and pressures required to form a primary H2O atmosphere during planetary accretion from chondritelike planetessimals are determined by means of shock wave and thermodynamic data for rock-forming and volatile-bearing minerals. Attenuation of impact-induced shock pressure is modelled to the extent that the amount of released water can be estimated as a function of projectile radius, impact velocity, weight fraction of target water, target porosity, and dehydration efficiency. The two primary processes considered are the impact release of water bound in such hydrous minerals as serpentine, and the subsequent reincorporation of free water by hydration of forsterite and enstatite. These processes are described in terms of model calculations for the accretion of the earth. It is concluded that the concept of dehydration efficiency is of dominant importance in determining the degree to which an accreting planet acquires an atmosphere during its formation.

  12. 75 FR 6637 - National Sea Grant Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Sea Grant Advisory... Sea Grant Advisory Board (Board). Board members will discuss and provide advice on the National Sea... CONTACT: Ms. Ann Andrus, National Sea Grant College Program, National Oceanic and Atmospheric...

  13. 75 FR 44768 - National Sea Grant Review Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Sea Grant Review... Sea Grant Advisory Board. Board members will discuss and provide advice on the National Sea Grant...: Mr. Jim Murray, National Sea Grant College Program, National Oceanic and Atmospheric Administration...

  14. 14 CFR 1213.109 - News releases concerning international activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false News releases concerning international activities. 1213.109 Section 1213.109 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RELEASE OF INFORMATION TO NEWS AND INFORMATION MEDIA § 1213.109 News releases concerning international...

  15. Atmospheric anomalies in summer 1908: Water in the atmosphere

    NASA Astrophysics Data System (ADS)

    Gladysheva, O. G.

    2011-10-01

    A gigantic noctilucent cloud field was formed and different solar halos were observed after the Tunguska catastrophe. To explain these anomalous phenomena, it is necessary to assume that a large quantity of water was carried into the atmosphere, which indicates that the Tunguska cosmic body was of a comet origin. According to rough estimates, the quantity of water that is released into the atmosphere as a result of a cosmic body's destruction is more than 1010 kg. The observation of a flying object in an area with a radius of ≥700 km makes it possible to state that the Tunguska cosmic body looked like a luminous coma with a diameter not smaller than ≥10 km and became visible at heights of >500 km. The assumption that the Tunguska cosmic body started disintegrating at a height of ˜1000 km explains the formation of an area where its mater diffused and formed a luminous area above Europe.

  16. Carbon Tetrachloride Emissions from the US during 2008 - 2012 Derived from Atmospheric Data Using Bayesian and Geostatistical Inversions

    NASA Astrophysics Data System (ADS)

    Hu, L.; Montzka, S. A.; Miller, B.; Andrews, A. E.; Miller, J. B.; Lehman, S.; Sweeney, C.; Miller, S. M.; Thoning, K. W.; Siso, C.; Atlas, E. L.; Blake, D. R.; De Gouw, J. A.; Gilman, J.; Dutton, G. S.; Elkins, J. W.; Hall, B. D.; Chen, H.; Fischer, M. L.; Mountain, M. E.; Nehrkorn, T.; Biraud, S.; Tans, P. P.

    2015-12-01

    Global atmospheric observations suggest substantial ongoing emissions of carbon tetrachloride (CCl4) despite a 100% phase-out of production for dispersive uses since 1996 in developed countries and 2010 in other countries. Little progress has been made in understanding the causes of these ongoing emissions or identifying their contributing sources. In this study, we employed multiple inverse modeling techniques (i.e. Bayesian and geostatistical inversions) to assimilate CCl4 mole fractions observed from the National Oceanic and Atmospheric Administration (NOAA) flask-air sampling network over the US, and quantify its national and regional emissions during 2008 - 2012. Average national total emissions of CCl4 between 2008 and 2012 determined from these observations and an ensemble of inversions range between 2.1 and 6.1 Gg yr-1. This emission is substantially larger than the mean of 0.06 Gg/yr reported to the US EPA Toxics Release Inventory over these years, suggesting that under-reported emissions or non-reporting sources make up the bulk of CCl4 emissions from the US. But while the inventory does not account for the magnitude of observationally-derived CCl4 emissions, the regional distribution of derived and inventory emissions is similar. Furthermore, when considered relative to the distribution of uncapped landfills or population, the variability in measured mole fractions was most consistent with the distribution of industrial sources (i.e., those from the Toxics Release Inventory). Our results suggest that emissions from the US only account for a small fraction of the global on-going emissions of CCl4 (30 - 80 Gg yr-1 over this period). Finally, to ascertain the importance of the US emissions relative to the unaccounted global emission rate we considered multiple approaches to extrapolate our results to other countries and the globe.

  17. Development and application of a Controlled Release Facility (CRF) to validate flux quantifying methodologies.

    NASA Astrophysics Data System (ADS)

    Helmore, Jonathan

    2017-04-01

    The National Physical Laboratory, the UK's National Measurement Institute, has developed a novel facility capable of replicating the gaseous emission flux characteristics of a variety of real-word scenarios as may be found in small to medium scale industry and agriculture. The Controlled Release Facility (CRF) can be used to challenge conventional remote sensing techniques, as well as validate new Unmanned Aerial Vehicle (UAV) and distributed sensor network based methods, for source identification and flux calculation. The CRF method will be described and the results from three case studies will be discussed: The replication of an operational on-shore shale gas well using emissions of natural gas to atmosphere and measurements using Differential Absorption LIDAR (DIAL); the replication of fugitive volatile organic compounds emissions from a petrochemical unit and measurements using DIAL; and the replication of methane and carbon dioxide emissions from landfill and measurements using both fixed wing and multi-rotor UAVs.

  18. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.

    PubMed

    Basit, Abdul; Espinosa, Francisco; Avila, Ruben; Raza, S; Irfan, N

    2008-12-01

    In this paper we present an atmospheric dispersion scenario for a proposed nuclear power plant in Pakistan involving the hypothetical accidental release of radionuclides. For this, a concept involving a Lagrangian stochastic particle model (LSPM) coupled with an Eulerian regional atmospheric modelling system (RAMS) is used. The atmospheric turbulent dispersion of radionuclides (represented by non-buoyant particles/neutral traces) in the LSPM is modelled by applying non-homogeneous turbulence conditions. The mean wind velocities governed by the topography of the region and the surface fluxes of momentum and heat are calculated by the RAMS code. A moving least squares (MLS) technique is introduced to calculate the concentration of radionuclides at ground level. The numerically calculated vertical profiles of wind velocity and temperature are compared with observed data. The results obtained demonstrate that in regions of complex terrain it is not sufficient to model the atmospheric dispersion of particles using a straight-line Gaussian plume model, and that by utilising a Lagrangian stochastic particle model and regional atmospheric modelling system a much more realistic estimation of the dispersion in such a hypothetical scenario was ascertained. The particle dispersion results for a 12 h ground release show that a triangular area of about 400 km(2) situated in the north-west quadrant of release is under radiological threat. The particle distribution shows that the use of a Gaussian plume model (GPM) in such situations will yield quite misleading results.

  19. Modelling exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Rauer, Heike

    While the number of known extrasolar planets is steadily increasing recent years have shown the beginning of a new phase of our understanding of exoplanets due to the spectroscopic determi-nation of their atmospheric composition. Atmospheres of hot extrasolar giant gas planets have already been investigated by UV, optical and IR spectroscopy today. In future, spectroscopy of large, terrestrial planets ("super-Earth"), in particular planets in the habitable zone of their parent star, will be a major goal of investigation. Planning future space satellite observations of super-Earths requires modelling of atmospheres of terrestrial planets in different environments, such as e.g. central star type, orbital distance, as well as different atmospheric compositions. Whether planets able to support life "as we know it" exist outside our solar system is one of the most profound questions today. It can be addressed by characterizing the atmospheres of ter-restrial extrasolar planets searching for spectroscopic absorption bands of biomarker molecules. An overview of expected planetary conditions in terms of their habitability will be presented for several model scenarios of terrestrial extrasolar planets.

  20. International challenge to predict the impact of radioxenon releases from medical isotope production on a comprehensive nuclear test ban treaty sampling station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Bowyer, Ted W.; Achim, Pascal

    Abstract The International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward (Bowyer et al., 2013). Fission-based production of 99Mo for medical purposes also releases radioxenon isotopes to the atmosphere (Saey, 2009). One of the ways to mitigate the effect of emissions from medical isotope production is the use of stack monitoring data, if it were available, so thatmore » the effect of radioactive xenon emissions could be subtracted from the effect from a presumed nuclear explosion, when detected at an IMS station location. To date, no studies have addressed the impacts the time resolution or data accuracy of stack monitoring data have on predicted concentrations at an IMS station location. Recently, participants from seven nations used atmospheric transport modeling to predict the time-history of 133Xe concentration measurements at an IMS station in Germany using stack monitoring data from a medical isotope production facility in Belgium. Participants received only stack monitoring data and used the atmospheric transport model and meteorological data of their choice. Some of the models predicted the highest measured concentrations quite well (a high composite statistical model comparison rank or a small mean square error with the measured values). The results suggest release data on a 15 min time spacing is best. The model comparison rank and ensemble analysis suggests that combining multiple models may provide more accurate predicted concentrations than any single model. Further research is needed to identify optimal methods for selecting ensemble members and those methods may depend on the specific transport problem. None of the submissions

  1. CALIOP V4 Level 1 Product Release

    Atmospheric Science Data Center

    2014-11-13

    CALIOP V4 Level 1 Product Release Thursday, November 13, 2014 The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center in collaboration with the CALIPSO ... and peer-reviewed approach.   The version 3.x (3.01, 3.02 and 3.30) CALIOP Level 1 data product will continue to be generated ...

  2. External quality-assurance results for the National Atmospheric Deposition Program and the National Trends Network during 1986

    USGS Publications Warehouse

    See, Randolph B.; Schroder, LeRoy J.; Willoughby, Timothy C.

    1988-01-01

    During 1986, the U.S. Geological Survey operated three programs to provide external quality-assurance monitoring of the National Atmospheric Deposition Program and National Trends Network. An intersite-comparison program was used to assess the accuracy of onsite pH and specific-conductance determinations at quarterly intervals. The blind-audit program was used to assess the effect of routine sample handling on the precision and bias of program and network wet-deposition data. Analytical results from four laboratories, which routinely analyze wet-deposition samples, were examined to determine if differences existed between laboratory analytical results and to provide estimates of the analytical precision of each laboratory. An average of 78 and 89 percent of the site operators participating in the intersite-comparison met the network goals for pH and specific conductance. A comparison of analytical values versus actual values for samples submitted as part of the blind-audit program indicated that analytical values were slightly but significantly (a = 0.01) larger than actual values for pH, magnesium, sodium, and sulfate; analytical values for specific conductance were slightly less than actual values. The decreased precision in the analyses of blind-audit samples when compared to interlaboratory studies indicates that a large amount of uncertainty in network deposition data may be a result of routine field operations. The results of the interlaboratory comparison study indicated that the magnitude of the difference between laboratory analyses was small for all analytes. Analyses of deionized, distilled water blanks by participating laboratories indicated that the laboratories had difficulty measuring analyte concentrations near their reported detection limits. (USGS)

  3. Discovery of calcium in Mercury's atmosphere.

    PubMed

    Bida, T A; Killen, R M; Morgan, T H

    2000-03-09

    The composition and evolutionary history of Mercury's crust are not well determined. The planet as a whole has been predicted to have a refractory, anhydrous composition: rich in Ca, Al, Mg and Fe, but poor in Na, K, OH, and S. Its atmosphere is believed to be derived in large part from the surface materials. A combination of effects that include impact vaporization (from infalling material), volatile evaporation, photon-stimulated desorption and sputtering releases material from the surface to form the atmosphere. Sodium and potassium have already been observed in Mercury's atmosphere, with abundances that require a volatile-rich crust. The sodium probably results from photon-stimulated desorption, and has a temperature of 1,500 K (ref. 10). Here we report the discovery of calcium in the atmosphere near Mercury's poles. The column density is very low and the temperature is apparently very high (12,000 K). The localized distribution and high temperature, if confirmed, suggest that the atmospheric calcium may arise from surface sputtering by ions, which enter Mercury's auroral zone. The low abundance of atmospheric Ca may indicate that the regolith is rarefied in calcium.

  4. Atmospheric and ocean sensing with GNSS

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P.; Hajj, George A.

    2003-01-01

    The 1980s and 1990s saw the Global Positioning System (GPS) transform space geodesy from an elite national enterprise to one open to the individual researcher. By adapting the tools from that endeavor we are learning to probe the atmosphere and the ocean surface in novel ways, including ground-based sensing of atmospheric moisture; space-based profiling of atmospheric refractivity by active limb sounding; and global ocean altimetry with reflected signals.

  5. Critical Loads of Atmospheric Nitrogen Deposition for Aquatic Ecosystems in Yosemite and Sequoia and Kings Canyon National Parks

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Clow, D. W.; Sickman, J. O.

    2016-12-01

    High-elevation aquatic ecosystems in Yosemite (YOSE) and Sequoia and Kings Canyon (SEKI) National Parks are impacted by atmospheric nitrogen (N) deposition associated with local and regional air pollution. Documented effects include elevated surface water nitrate concentrations, increased algal productivity, and changes in diatom species assemblages. Annual wet inorganic N deposition maps, developed at 1-km resolution for YOSE and SEKI to quantify N deposition to sensitive high-elevation ecosystems, range from 1.0 to over 5.0 kg N ha-1 yr-1. Critical loads of N deposition for nutrient enrichment of aquatic ecosystems were quantified and mapped using a geostatistical approach, with N deposition, topography, vegetation, geology, and climate as potential explanatory variables. Multiple predictive models were created using various combinations of explanatory variables; this approach allowed us to better quantify uncertainty and more accurately identify the areas most sensitive to atmospherically deposited N. The lowest critical loads estimates and highest exceedances identified within YOSE and SEKI occurred in high-elevation basins with steep slopes, sparse vegetation, and areas of neoglacial till and talus. These results are consistent with previous analyses in the Rocky Mountains, and highlight the sensitivity of alpine ecosystems to atmospheric N deposition.

  6. Quantitative evaluation of an air-monitoring network using atmospheric transport modeling and frequency of detection methods

    DOE PAGES

    Rood, Arthur S.; Sondrup, A. Jeffrey; Ritter, Paul D.

    2016-04-01

    A methodology to quantify the performance of an air monitoring network in terms of frequency of detection has been developed. The methodology utilizes an atmospheric transport model to predict air concentrations of radionuclides at the samplers for a given release time and duration. Frequency of detection is defined as the fraction of “events” that result in a detection at either a single sampler or network of samplers. An “event” is defined as a release of finite duration that begins on a given day and hour of the year from a facility with the potential to emit airborne radionuclides. Another metricmore » of interest is the network intensity, which is defined as the fraction of samplers in the network that have a positive detection for a given event. The frequency of detection methodology allows for evaluation of short-term releases that include effects of short-term variability in meteorological conditions. The methodology was tested using the U.S. Department of Energy Idaho National Laboratory (INL) Site ambient air monitoring network consisting of 37 low-volume air samplers in 31 different locations covering a 17,630 km 2 region. Releases from six major INL facilities distributed over an area of 1,435 km 2 were modeled and included three stack sources and eight ground-level sources. A Lagrangian Puff air dispersion model (CALPUFF) was used to model atmospheric transport. The model was validated using historical 125Sb releases and measurements. Relevant one-week release quantities from each emission source were calculated based on a dose of 1.9 × 10 –4 mSv at a public receptor (0.01 mSv assuming release persists over a year). Important radionuclides considered include 241Am, 137Cs, 238Pu, 239Pu, 90Sr, and tritium. Results show the detection frequency is over 97.5% for the entire network considering all sources and radionuclides. Network intensities ranged from 3.75% to 62.7%. Evaluation of individual samplers indicated some samplers were poorly

  7. Quantitative evaluation of an air-monitoring network using atmospheric transport modeling and frequency of detection methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rood, Arthur S.; Sondrup, A. Jeffrey; Ritter, Paul D.

    A methodology to quantify the performance of an air monitoring network in terms of frequency of detection has been developed. The methodology utilizes an atmospheric transport model to predict air concentrations of radionuclides at the samplers for a given release time and duration. Frequency of detection is defined as the fraction of “events” that result in a detection at either a single sampler or network of samplers. An “event” is defined as a release of finite duration that begins on a given day and hour of the year from a facility with the potential to emit airborne radionuclides. Another metricmore » of interest is the network intensity, which is defined as the fraction of samplers in the network that have a positive detection for a given event. The frequency of detection methodology allows for evaluation of short-term releases that include effects of short-term variability in meteorological conditions. The methodology was tested using the U.S. Department of Energy Idaho National Laboratory (INL) Site ambient air monitoring network consisting of 37 low-volume air samplers in 31 different locations covering a 17,630 km 2 region. Releases from six major INL facilities distributed over an area of 1,435 km 2 were modeled and included three stack sources and eight ground-level sources. A Lagrangian Puff air dispersion model (CALPUFF) was used to model atmospheric transport. The model was validated using historical 125Sb releases and measurements. Relevant one-week release quantities from each emission source were calculated based on a dose of 1.9 × 10 –4 mSv at a public receptor (0.01 mSv assuming release persists over a year). Important radionuclides considered include 241Am, 137Cs, 238Pu, 239Pu, 90Sr, and tritium. Results show the detection frequency is over 97.5% for the entire network considering all sources and radionuclides. Network intensities ranged from 3.75% to 62.7%. Evaluation of individual samplers indicated some samplers were poorly

  8. Noble Gas Release Signal as a Precursor to Fracture

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.; Lee, H.; Gardner, W. P.

    2017-12-01

    We present empirical results of rock strain, microfracturing, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite, basalt, shale and bedded rock salt. Noble gases are released and measured real-time during deformation using mass spectrometry. The gas release represents a precursive signal to macrofracture. Gas release is associated with increased acoustic emissions indicating that microfracturing is required to release gas and create pathways for the gas to be sensed. The gas released depends on initial gas content, pore structure and its evolution during deformation, the deformation amount, matrix permeability, deformation style and the stress/strain history. Gases are released from inter and intracrystalline sites; release rate increases as strain and microfracturing increases. The gas composition depends on lithology, geologic history and age, fluids present, and radioisotope concentrations that affect radiogenic noble gas isotope (e.g. 4He,40Ar) production. Noble gas emission and its relationship to crustal processes such as seismicity and volcanism, tectonic velocities, qualitative estimates of deep permeability, age dating of groundwater, and a signature of nuclear weapon detonation. Our result show that mechanical deformation of crustal materials is an important process controlling gas release from rocks and minerals, and should be considered in techniques which utilize gas release and/or accumulation. We propose using noble gas release to signal rock deformation in boreholes, mines and waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress, strain, and/or permanent deformation dependent. Calibration of such relationships, for example relating gas release per rock unit volume to strain may be used to quantify rock deformation and develop predictive models.Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

  9. Bias and precision of selected analytes reported by the National Atmospheric Deposition Program and National Trends Network, 1984

    USGS Publications Warehouse

    Brooks, M.H.; Schroder, L.J.; Willoughby, T.C.

    1987-01-01

    The U.S. Geological Survey operated a blind audit sample program during 1974 to test the effects of the sample handling and shipping procedures used by the National Atmospheric Deposition Program and National Trends Network on the quality of wet deposition data produced by the combined networks. Blind audit samples, which were dilutions of standard reference water samples, were submitted by network site operators to the central analytical laboratory disguised as actual wet deposition samples. Results from the analyses of blind audit samples were used to calculate estimates of analyte bias associated with all network wet deposition samples analyzed in 1984 and to estimate analyte precision. Concentration differences between double blind samples that were submitted to the central analytical laboratory and separate analyses of aliquots of those blind audit samples that had not undergone network sample handling and shipping were used to calculate analyte masses that apparently were added to each blind audit sample by routine network handling and shipping procedures. These calculated masses indicated statistically significant biases for magnesium, sodium , potassium, chloride, and sulfate. Median calculated masses were 41.4 micrograms (ug) for calcium, 14.9 ug for magnesium, 23.3 ug for sodium, 0.7 ug for potassium, 16.5 ug for chloride and 55.3 ug for sulfate. Analyte precision was estimated using two different sets of replicate measures performed by the central analytical laboratory. Estimated standard deviations were similar to those previously reported. (Author 's abstract)

  10. Thermal stability of inorganic and organic compounds in atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Perrino, Cinzia; Marconi, Elisabetta; Tofful, Luca; Farao, Carmela; Materazzi, Stefano; Canepari, Silvia

    2012-07-01

    The thermal behaviour of atmospheric particulate matter (PM) has been investigated by using different analytical approaches to explore the added value offered by these technique in environmental studies. The thermogravimetric analysis (TGA), carried out on both certified material and real PM samples, has shown that several mass losses can be detected starting from 80 °C up to above 500 °C, when pyrolysis occur. Thermo-optical analysis of PM and ion chromatographic analysis of the residual have shown that the mass losses in the temperature range 80-180 °C are not justified by the release of either organic or inorganic compounds; it can be thus attributed to the release of weakly and strongly bound water. Release of water has also been evidenced in the temperature range 225-275 °C. The release of ammonium chloride and nitrate has been detected only above 80 °C. This indicates that the release of nitric acid, hydrochloric acid and ammonia, which is observed downstream of the filters during the sampling of atmospheric PM at ambient temperature, cannot be reproduced off-line, after the end of the sampling. We successfully explored one of the possible explanations, that is the desorption of HNO3, HCl and NH3 adsorbed on collected particles. NH4NO3 and NH4Cl, which can be thermally released by the filter, exhibit a different thermal behaviour from NaNO3 and NaCl, which are thermally stable up to 370 °C. This different behaviour can be used to discriminate between natural and secondary sources of atmospheric inorganic salts, as the interconversion that is observed when heating mixtures of pure salts resulted to be not relevant when heating real PM samples.

  11. Electrochemical capture and release of carbon dioxide

    DOE PAGES

    Rheinhardt, Joseph H.; Singh, Poonam; Tarakeshwar, Pilarisetty; ...

    2017-01-18

    Understanding the chemistry of carbon dioxide is key to affecting changes in atmospheric concentrations. One area of intense interest is CO 2 capture in chemically reversible cycles relevant to carbon capture technologies. Most CO 2 capture methods involve thermal cycles in which a nucleophilic agent captures CO 2 from impure gas streams (e.g., flue gas), followed by a thermal process in which pure CO 2 is released. Several reviews have detailed progress in these approaches. A less explored strategy uses electrochemical cycles to capture CO 2 and release it in pure form. These cycles typically rely on electrochemical generation ofmore » nucleophiles that attack CO 2 at the electrophilic carbon atom, forming a CO 2 adduct. Then, CO 2 is released in pure form via a subsequent electrochemical step. In this Perspective, we describe electrochemical cycles for CO 2 capture and release, emphasizing electrogenerated nucleophiles. As a result, we also discuss some advantages and disadvantages inherent in this general approach.« less

  12. Present state of knowledge of the upper atmosphere: An assessment report

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A program of research, technology, and monitoring of the phenomena of the upper atmosphere, to provide for an understanding of and to maintain the chemical and physical integrity of the Earth's upper atmosphere was developed. NASA implemented a long-range upper atmospheric science program aimed at developing an organized, solid body of knowledge of upper atmospheric processes while providing, in the near term, assessments of potential effects of human activities on the atmosphere. The effects of chlorofluorocarbon (CFC) releases on stratospheric ozone were reported. Issues relating the current understanding of ozone predictions and trends and highlights recent and future anticipated developments that will improve our understanding of the system are summarized.

  13. Estimation Of 137Cs Using Atmospheric Dispersion Models After A Nuclear Reactor Accident

    NASA Astrophysics Data System (ADS)

    Simsek, V.; Kindap, T.; Unal, A.; Pozzoli, L.; Karaca, M.

    2012-04-01

    Nuclear energy will continue to have an important role in the production of electricity in the world as the need of energy grows up. But the safety of power plants will always be a question mark for people because of the accidents happened in the past. Chernobyl nuclear reactor accident which happened in 26 April 1986 was the biggest nuclear accident ever. Because of explosion and fire large quantities of radioactive material was released to the atmosphere. The release of the radioactive particles because of accident affected not only its region but the entire Northern hemisphere. But much of the radioactive material was spread over west USSR and Europe. There are many studies about distribution of radioactive particles and the deposition of radionuclides all over Europe. But this was not true for Turkey especially for the deposition of radionuclides released after Chernobyl nuclear reactor accident and the radiation doses received by people. The aim of this study is to determine the radiation doses received by people living in Turkish territory after Chernobyl nuclear reactor accident and use this method in case of an emergency. For this purpose The Weather Research and Forecasting (WRF) Model was used to simulate meteorological conditions after the accident. The results of WRF which were for the 12 days after accident were used as input data for the HYSPLIT model. NOAA-ARL's (National Oceanic and Atmospheric Administration Air Resources Laboratory) dispersion model HYSPLIT was used to simulate the 137Cs distrubition. The deposition values of 137Cs in our domain after Chernobyl Nuclear Reactor Accident were between 1.2E-37 Bq/m2 and 3.5E+08 Bq/m2. The results showed that Turkey was affected because of the accident especially the Black Sea Region. And the doses were calculated by using GENII-LIN which is multipurpose health physics code.

  14. 32 CFR 1656.16 - Early release-grounds and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Early release-grounds and procedures. 1656.16... ALTERNATIVE SERVICE § 1656.16 Early release—grounds and procedures. (a) General Rule of Service Completion. An... service unless granted an early release. (b) Reasons For Early Release. The Director may authorize the...

  15. 32 CFR 1656.16 - Early release-grounds and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Early release-grounds and procedures. 1656.16... ALTERNATIVE SERVICE § 1656.16 Early release—grounds and procedures. (a) General Rule of Service Completion. An... service unless granted an early release. (b) Reasons For Early Release. The Director may authorize the...

  16. Improved mapping of National Atmospheric Deposition Program wet-deposition in complex terrain using PRISM-gridded data sets

    USGS Publications Warehouse

    Latysh, Natalie E.; Wetherbee, Gregory Alan

    2012-01-01

    High-elevation regions in the United States lack detailed atmospheric wet-deposition data. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) measures and reports precipitation amounts and chemical constituent concentration and deposition data for the United States on annual isopleth maps using inverse distance weighted (IDW) interpolation methods. This interpolation for unsampled areas does not account for topographic influences. Therefore, NADP/NTN isopleth maps lack detail and potentially underestimate wet deposition in high-elevation regions. The NADP/NTN wet-deposition maps may be improved using precipitation grids generated by other networks. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) produces digital grids of precipitation estimates from many precipitation-monitoring networks and incorporates influences of topographical and geographical features. Because NADP/NTN ion concentrations do not vary with elevation as much as precipitation depths, PRISM is used with unadjusted NADP/NTN data in this paper to calculate ion wet deposition in complex terrain to yield more accurate and detailed isopleth deposition maps in complex terrain. PRISM precipitation estimates generally exceed NADP/NTN precipitation estimates for coastal and mountainous regions in the western United States. NADP/NTN precipitation estimates generally exceed PRISM precipitation estimates for leeward mountainous regions in Washington, Oregon, and Nevada, where abrupt changes in precipitation depths induced by topography are not depicted by IDW interpolation. PRISM-based deposition estimates for nitrate can exceed NADP/NTN estimates by more than 100% for mountainous regions in the western United States.

  17. Improved mapping of National Atmospheric Deposition Program wet-deposition in complex terrain using PRISM-gridded data sets.

    PubMed

    Latysh, Natalie E; Wetherbee, Gregory Alan

    2012-01-01

    High-elevation regions in the United States lack detailed atmospheric wet-deposition data. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) measures and reports precipitation amounts and chemical constituent concentration and deposition data for the United States on annual isopleth maps using inverse distance weighted (IDW) interpolation methods. This interpolation for unsampled areas does not account for topographic influences. Therefore, NADP/NTN isopleth maps lack detail and potentially underestimate wet deposition in high-elevation regions. The NADP/NTN wet-deposition maps may be improved using precipitation grids generated by other networks. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) produces digital grids of precipitation estimates from many precipitation-monitoring networks and incorporates influences of topographical and geographical features. Because NADP/NTN ion concentrations do not vary with elevation as much as precipitation depths, PRISM is used with unadjusted NADP/NTN data in this paper to calculate ion wet deposition in complex terrain to yield more accurate and detailed isopleth deposition maps in complex terrain. PRISM precipitation estimates generally exceed NADP/NTN precipitation estimates for coastal and mountainous regions in the western United States. NADP/NTN precipitation estimates generally exceed PRISM precipitation estimates for leeward mountainous regions in Washington, Oregon, and Nevada, where abrupt changes in precipitation depths induced by topography are not depicted by IDW interpolation. PRISM-based deposition estimates for nitrate can exceed NADP/NTN estimates by more than 100% for mountainous regions in the western United States.

  18. Radioactive release during nuclear accidents in Chernobyl and Fukushima

    NASA Astrophysics Data System (ADS)

    Nur Ain Sulaiman, Siti; Mohamed, Faizal; Rahim, Ahmad Nabil Ab

    2018-01-01

    Nuclear accidents that occurred in Chernobyl and Fukushima have initiated many research interests to understand the cause and mechanism of radioactive release within reactor compound and to the environment. Common types of radionuclide release are the fission products from the irradiated fuel rod itself. In case of nuclear accident, the focus of monitoring will be mostly on the release of noble gases, I-131 and Cs-137. As these are the only accidents have been rated within International Nuclear Events Scale (INES) Level 7, the radioactive release to the environment was one of the critical insights to be monitored. It was estimated that the release of radioactive material to the atmosphere due to Fukushima accident was approximately 10% of the Chernobyl accident. By referring to the previous reports using computational code systems to model the release rate, the release activity of I-131 and Cs-137 in Chernobyl was significantly higher compare to Fukushima. The simulation code also showed that Chernobyl had higher release rate of both radionuclides on the day of accident. Other factors affecting the radioactive release for Fukushima and Chernobyl accidents such as the current reactor technology and safety measures are also compared for discussion.

  19. NOAA's National Air Quality Predictions and Development of Aerosol and Atmospheric Composition Prediction Components for the Next Generation Global Prediction System

    NASA Astrophysics Data System (ADS)

    Stajner, I.; Hou, Y. T.; McQueen, J.; Lee, P.; Stein, A. F.; Tong, D.; Pan, L.; Huang, J.; Huang, H. C.; Upadhayay, S.

    2016-12-01

    NOAA provides operational air quality predictions using the National Air Quality Forecast Capability (NAQFC): ozone and wildfire smoke for the United States and airborne dust for the contiguous 48 states at http://airquality.weather.gov. NOAA's predictions of fine particulate matter (PM2.5) became publicly available in February 2016. Ozone and PM2.5 predictions are produced using a system that operationally links the Community Multiscale Air Quality (CMAQ) model with meteorological inputs from the North American mesoscale forecast Model (NAM). Smoke and dust predictions are provided using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Current NAQFC focus is on updating CMAQ to version 5.0.2, improving PM2.5 predictions, and updating emissions estimates, especially for NOx using recently observed trends. Wildfire smoke emissions from a newer version of the USFS BlueSky system are being included in a new configuration of the NAQFC NAM-CMAQ system, which is re-run for the previous 24 hours when the wildfires were observed from satellites, to better represent wildfire emissions prior to initiating predictions for the next 48 hours. In addition, NOAA is developing the Next Generation Global Prediction System (NGGPS) to represent the earth system for extended weather prediction. NGGPS will include a representation of atmospheric dynamics, physics, aerosols and atmospheric composition as well as coupling with ocean, wave, ice and land components. NGGPS is being developed with a broad community involvement, including community developed components and academic research to develop and test potential improvements for potentially inclusion in NGGPS. Several investigators at NOAA's research laboratories and in academia are working to improve the aerosol and gaseous chemistry representation for NGGPS, to develop and evaluate the representation of atmospheric composition, and to establish and improve the coupling with radiation and microphysics

  20. Four studies on effects of environmental factors on the quality of National Atmospheric Deposition Program measurements

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Latysh, Natalie E.; Lehmann, Christopher M.B.; Rhodes, Mark F.

    2011-01-01

    Selected aspects of National Atmospheric Deposition Program / National Trends Network (NADP/NTN) protocols are evaluated in four studies. Meteorological conditions have minor impacts on the error in NADP/NTN sampling. Efficiency of frozen precipitation sample collection is lower than for liquid precipitation samples. Variability of NTN measurements is higher for relatively low-intensity deposition of frozen precipitation than for higher-intensity deposition of liquid precipitation. Urbanization of the landscape surrounding NADP/NTN sites is not affecting trends in wet-deposition chemistry data to a measureable degree. Five NADP siting criteria intended to preserve wet-deposition sample integrity have varying degrees of effectiveness. NADP siting criteria for objects within the 90 degrees cones and trees within the 120 degrees cones projected from the collector bucket to sky are important for protecting sample integrity. Tall vegetation, fences, and other objects located within 5 meters of the collectors are related to the frequency of visible sample contamination, indicating the importance of these factors in NADP siting criteria.

  1. New Open-Source Version of FLORIS Released | News | NREL

    Science.gov Websites

    New Open-Source Version of FLORIS Released New Open-Source Version of FLORIS Released January 26 , 2018 National Renewable Energy Laboratory (NREL) researchers recently released an updated open-source simplified and documented. Because of the living, open-source nature of the newly updated utility, NREL

  2. Global Atmospheric Monitoring

    ERIC Educational Resources Information Center

    Wallen, Carl C.

    1975-01-01

    The global atmospheric monitoring plans of the World Meteorological Organization are detailed. Single and multipurpose basic monitoring systems and the monitoring of chemical properties are discussed. The relationship of the World Meteorological Organization with the United Nations environment program is discussed. A map of the World…

  3. Representative Doses to Members of the Public from Atmospheric Releases of 131I at the Mayak Production Association Facilities from 1948 through 1972

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Napier, Bruce A.; Anspaugh, Lynn R.

    Scoping epidemiologic studies performed by researchers from the Southern Urals Biophysics Institute revealed an excess prevalence of thyroid nodules and an increased incidence of thyroid cancer among residents of Ozersk, Russia, who were born in the early 1950s. Ozersk is located about 5 km from the facilities where the Mayak Production Association produced nuclear materials for the Russian weapons program. Reactor operations began in June 1948 and chemical separation of plutonium from irradiated fuel began in February 1949. The U.S.–Russia Joint Coordinating Committee on Radiation Effects Research conducted a series of projects over a 10-year period to assess the radiationmore » risks in the Southern Urals. This paper uses data collected under Committee projects to reconstruct individual time-dependent thyroid doses to reference individuals living in Ozersk from 131I released to the atmosphere. Between 3.22×1016 and 4.31×1016 Bq of 131I released may have been released during the 1948–1972 time period, and a best estimate is 3.76×1016 Bq. A child born in 1947 is estimated to have received a cumulative thyroid dose of 2.3 Gy for 1948–1972, with a 95% confidence interval of 0.51–7.3 Gy. Annual doses were the highest in 1949 and a child who was 5 years old in 1949 is estimated to have a received an annual thyroid dose of 0.93 Gy with a 95% confidence interval of 0.19–3.5 Gy.« less

  4. External quality assurance project report for the National Atmospheric Deposition Program’s National Trends Network and Mercury Deposition Network, 2015–16

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Martin, RoseAnn

    2018-06-29

    The U.S. Geological Survey Precipitation Chemistry Quality Assurance project operated five distinct programs to provide external quality assurance monitoring for the National Atmospheric Deposition Program’s (NADP) National Trends Network and Mercury Deposition Network during 2015–16. The National Trends Network programs include (1) a field audit program to evaluate sample contamination and stability, (2) an interlaboratory comparison program to evaluate analytical laboratory performance, and (3) a colocated sampler program to evaluate bias and variability attributed to automated precipitation samplers. The Mercury Deposition Network programs include the (4) system blank program and (5) an interlaboratory comparison program. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends for chemical constituents in wet deposition.The field audit program results indicate increased sample contamination for calcium, magnesium, and potassium relative to 2010 levels, and slight fluctuation in sodium contamination. Nitrate contamination levels dropped slightly during 2014–16, and chloride contamination leveled off between 2007 and 2016. Sulfate contamination is similar to the 2000 level. Hydrogen ion contamination has steadily decreased since 2012. Losses of ammonium and nitrate resulting from potential sample instability were negligible.The NADP Central Analytical Laboratory produced interlaboratory comparison results with low bias and variability compared to other domestic and international laboratories that support atmospheric deposition monitoring. Significant absolute bias above the magnitudes of the detection limits was observed for nitrate and sulfate concentrations, but no analyte determinations exceeded the detection limits for blanks.Colocated sampler program results from dissimilar colocated collectors indicate that the retrofit of the National Trends Network with N-CON Systems Company

  5. User's Guide to OASIS, Oceanic and Atmospheric Scientific Information System. Key to Oceanic and Atmospheric Information Sources No. 1.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Washington, DC. Environmental Data Service.

    OASIS (Oceanic and Atmospheric Scientific Information System) is an information retrieval service that furnishes ready reference to the technical literature and research efforts concerning the environmental sciences and marine and coastal resources. It provides computerized searches of both NOAA (National Oceanic and Atmospheric Administration)…

  6. Report Nation March 2015 Press Release

    Cancer.gov

    For the first time, researchers have used national data to determine the incidence of the four major molecular subtypes of breast cancer by age, race/ethnicity, poverty level, and several other factors. The report showed continuing declines in cancer dea

  7. Effects of anthropogenic heat release upon the urban climate in a Japanese megacity.

    PubMed

    Narumi, Daisuke; Kondo, Akira; Shimoda, Yoshiyuki

    2009-05-01

    This report presents results of investigations of the influence of anthropogenic heat release in Japanese megacity (Keihanshin district) upon the urban climate, using the energy database [Shimoda et al., 1999. Estimation and evaluation of artificial waste heat in urban area. Selected Papers from the Conference ICB-ICUC'99 WCASP-50 WMO/TD no. 1026] as a part of the land-surface boundary conditions of a mesoscale meteorological simulation model. The calculated results related to atmospheric temperature distribution were similar to observed values not only for daily averages but also for amplitudes and phases of diurnal change. To reproduce accurately, it is essential to reproduce urban characteristics such as an urban canopy and anthropogenic heat release in a fine resolution mesh. We attempted an analysis using current data for anthropogenic heat and under uniform heat release conditions, to investigate temporal and spatial characteristics in relation to the influence of anthropogenic heat release on the urban climate. The results of investigation into the influence of anthropogenic heat release on atmospheric temperature using current data indicate that the amount of heat released is lower at night than during the day, but the temperature rise is nearly 3 times greater. Results of investigation into the influence of anthropogenic heat release on wind systems using current data indicate that the onset of land breezes is delayed, particularly in a coastal area. Investigation into the temporal characteristics related to the influence of anthropogenic heat release under uniform heat release conditions showed a maximum influence on temperature during the predawn period.

  8. What's new in the Atmospheric Model Evaluation Tool (AMET) version 1.3

    EPA Science Inventory

    A new version of the Atmospheric Model Evaluation Tool (AMET) has been released. The new version of AMET, version 1.3 (AMETv1.3), contains a number of updates and changes from the previous of version of AMET (v1.2) released in 2012. First, the Perl scripts used in the previous ve...

  9. National Athletic Trainers' Association Releases New Guidelines for Exertional Heat Illnesses: What School Nurses Need to Know.

    PubMed

    VanScoy, Rachel M; DeMartini, Julie K; Casa, Douglas J

    2016-05-01

    Exertional heat illnesses (EHI) occur in various populations and settings. Within a school setting, there are student athletes who take part in physical activity where the risk of EHI is increased. The National Athletic Trainers' Association (NATA) released an updated position statement on EHI in September of 2015. This article is a summary of the position statement. The sports medicine team, including school nurses and athletic trainers, provides quality health care to these physically active individuals. Thus, it is important for school nurses to understand the prevention, recognition, and treatment of EHI. © 2016 The Author(s).

  10. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  11. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    NASA Technical Reports Server (NTRS)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  12. View of ANDE release from orbiter Discovery payload bay

    NASA Image and Video Library

    2006-12-21

    S116-E-07828 (21 Dec. 2006) --- As seen through windows on the aft flight deck of Space Shuttle Discovery, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers. ANDE consists of two micro-satellites which will measure the density and composition of the low Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.

  13. Oceans & Coasts | National Oceanic and Atmospheric Administration

    Science.gov Websites

    NOAA's National Ocean Service is positioning America's coastal communities for the future Focus_Area_oceanscoasts1.jpg NOAA NOAA's National Ocean Service is positioning America's coastal communities for the future them. Almost 40 percent of the country's population lives in coastal shoreline counties. These counties

  14. Understanding drug-related mortality in released prisoners: a review of national coronial records.

    PubMed

    Andrews, Jessica Y; Kinner, Stuart A

    2012-04-04

    The prisoner population is characterised by a high burden of disease and social disadvantage, and ex-prisoners are at increased risk of death following release. Much of the excess mortality can be attributed to an increased risk of unnatural death, particularly from drug overdose; however, relatively few studies have investigated the circumstances surrounding drug-related deaths among released prisoners. This study aimed to explore and compare the circumstances of death for those who died from accidental drug-related causes to those who died from all other reportable causes. A nationwide search of the Australian National Coroners Information System (NCIS) was conducted to identify reportable deaths among ex-prisoners from 2000 to 2007. Using a structured coding form, NCIS records for these cases were interrogated to explore causes and circumstances of death. Coronial records for 388 deceased ex-prisoners were identified. Almost half of these deaths were a result of accidental drug-related causes (45%). The majority of accidental drug-related deaths occurred in a home environment, and poly-substance use at or around the time of death was common, recorded in 72% of drug-related deaths. Ex-prisoners who died of accidental drug-related causes were on average younger and less likely to be Indigenous, born in Australia, married, or living alone at or around the time of death, compared with those who died from all other reportable causes. Evidence of mental illness or self-harm was less common among accidental drug-related deaths, whereas evidence of previous drug overdose, injecting drug use, history of heroin use and history of drug withdrawal in the previous six months were more common. Drug-related deaths are common among ex-prisoners and often occur in a home (vs. public) setting. They are often associated with use of multiple substances at or around the time of death, risky drug-use patterns, and even among this markedly disadvantaged group, extreme social

  15. Transport and Dispersion Model Predictions of Elevated Source Tracer Experiments in the Copenhagen Area: Comparisons of Hazard Prediction and Assessment Capability (HPAC) and National Atmospheric Release Advisory Center (NARAC) Emergency Response Model Predictions

    DTIC Science & Technology

    2006-07-01

    Blue --) and NARAC (Red -) for two elevated releases ( MvM 3 and MvM 15) considered in the model-to-model study [2]. MvM 3 was a gas release (SF6...carried out under stable conditions with a boundary layer height of 100 m and release height of 80 m, while MvM 15 was a particle release carried out...release scenarios: MvM 3 at 30 and 60 Minutes and MvM 15 at 120 and 180 minutes. Each release shows significant NARAC underpredictions with

  16. Welcome to NOAA Communications | National Oceanic and Atmospheric

    Science.gov Websites

    oceans. Monica Allen, 301-734-1123 Earth System Research Laboratory Atmospheric science, climate change ; Coasts Infographic: How does climate change affect coral reefs? Coral bleaching at Lizard Island on the Administration Jump to Content Enter Search Terms Weather Climate Oceans & Coasts Fisheries

  17. A review of numerical models to predict the atmospheric dispersion of radionuclides.

    PubMed

    Leelőssy, Ádám; Lagzi, István; Kovács, Attila; Mészáros, Róbert

    2018-02-01

    The field of atmospheric dispersion modeling has evolved together with nuclear risk assessment and emergency response systems. Atmospheric concentration and deposition of radionuclides originating from an unintended release provide the basis of dose estimations and countermeasure strategies. To predict the atmospheric dispersion and deposition of radionuclides several numerical models are available coupled with numerical weather prediction (NWP) systems. This work provides a review of the main concepts and different approaches of atmospheric dispersion modeling. Key processes of the atmospheric transport of radionuclides are emission, advection, turbulent diffusion, dry and wet deposition, radioactive decay and other physical and chemical transformations. A wide range of modeling software are available to simulate these processes with different physical assumptions, numerical approaches and implementation. The most appropriate modeling tool for a specific purpose can be selected based on the spatial scale, the complexity of meteorology, land surface and physical and chemical transformations, also considering the available data and computational resource. For most regulatory and operational applications, offline coupled NWP-dispersion systems are used, either with a local scale Gaussian, or a regional to global scale Eulerian or Lagrangian approach. The dispersion model results show large sensitivity on the accuracy of the coupled NWP model, especially through the description of planetary boundary layer turbulence, deep convection and wet deposition. Improvement of dispersion predictions can be achieved by online coupling of mesoscale meteorology and atmospheric transport models. The 2011 Fukushima event was the first large-scale nuclear accident where real-time prognostic dispersion modeling provided decision support. Dozens of dispersion models with different approaches were used for prognostic and retrospective simulations of the Fukushima release. An unknown

  18. SRNL Atmospheric Technologies Group

    ScienceCinema

    Viner, Brian; Parker, Matthew J.

    2018-01-16

    The Savannah River National Laboratory, Atmospheric Technologies Group, conducts a best-in class Applied Meteorology Program to ensure the Department of Energy’s Savannah River Site is operated safely and complies with stringent environmental regulations.

  19. Atmospheric deposition maps for the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Campbell, D.H.; Ingersoll, G.P.; Clow, D.W.; Mast, M.A.

    2003-01-01

    Variability in atmospheric deposition across the Rocky Mountains is influenced by elevation, slope, aspect, and precipitation amount and by regional and local sources of air pollution. To improve estimates of deposition in mountainous regions, maps of average annual atmospheric deposition loadings of nitrate, sulfate, and acidity were developed for the Rocky Mountains by using spatial statistics. A parameter-elevation regressions on independent slopes model (PRISM) was incorporated to account for variations in precipitation amount over mountainous regions. Chemical data were obtained from the National Atmospheric Deposition Program/National Trends Network and from annual snowpack surveys conducted by the US Geological Survey and National Park Service, in cooperation with other Federal, State and local agencies. Surface concentration maps were created by ordinary kriging in a geographic information system, using a local trend and mathematical model to estimate the spatial variance. Atmospheric-deposition maps were constructed at 1-km resolution by multiplying surface concentrations from the kriged grid and estimates of precipitation amount from the PRISM model. Maps indicate an increasing spatial trend in concentration and deposition of the modeled constituents, particularly nitrate and sulfate, from north to south throughout the Rocky Mountains and identify hot-spots of atmospheric deposition that result from combined local and regional sources of air pollution. Highest nitrate (2.5-3.0kg/ha N) and sulfate (10.0-12.0kg/ha SO4) deposition is found in northern Colorado.

  20. Atmospheric-pressure guided streamers for liposomal membrane disruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svarnas, P.; Aleiferis, Sp.; Matrali, S. H.

    2012-12-24

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterizationmore » including gas temperature calculation.« less

  1. Distribution of radionuclides between atmosphere and ash during combustion of contaminated vegetation.

    PubMed

    Zhou, Liufang Jenny; Rao, Raghu; Corcoran, Emily; Kelly, David

    2016-12-01

    A series of laboratory-scale combustion tests were conducted under well-controlled conditions to measure the release of 90 Sr and 137 Cs nuclides to the atmosphere (air) from combustion of vegetation and organic soil samples contaminated with radioactivity. These vegetation and soil samples were collected from a controlled contaminated forest area within the Canadian Nuclear Laboratories - Chalk River site. The combustion products including ash and smoke particulates, along with gaseous emissions, were collected and then analyzed for 137 Cs and 90 Sr concentrations by radiometric techniques. The experimental results reveal that the releases of 90 Sr to the atmosphere (air) from combustion of vegetation are very low with most of the 90 Sr activity remaining in ash residues, even at a temperature of 800 °C. The detailed combustion experiments with surface litter and twigs, alder twigs, alder leaves, and organic soil indicate that 0.5 ± 0.1%, 0.3 ± 0.1%, 0.9 ± 0.1%, and 0.3 ± 0.1% of 90 Sr is released to the atmosphere (air), respectively. On the other hand, the releases of 137 Cs are found to be highly dependent on the combustion temperature as well as the nature of vegetation. The releases of 137 Cs obtained at 800 °C are 45 ± 7%, 77 ± 9%, 92 ± 5%, and 2.4 ± 0.5% for surface litter and twigs, alder twigs, alder leaves, and organic soil, respectively. The mechanism associated with the high release of 137 Cs at a high temperature of 800 °C was explored. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. A quality-assurance assessment for constituents reported by the national atmospheric deposition program and the national trends network

    NASA Astrophysics Data System (ADS)

    See, Randolph B.; Schroder, LeRoy J.; Willoughby, Timothy C.

    A continuing quality-assurance program has been operated by the U.S. Geological Survey to evaluate any bias introduced by routine handling, shipping, and laboratory analyses of wet-deposition samples collected in the National Atmospheric Deposition Program (NADP) and National Trends Network (NTN). Blind-audit samples having a variety of constituent concentrations and values were selected. Only blind-audit samples with constituent concentrations and values less than the 95th-percentile concentration for natural wet-deposition samples were included in the analysis. Of the major ions, there was a significant increase of Ca 2+, Mg 2+, Na 2+, K +, SO 42- and Cl -1 in samples handled according to standard protocols and shipped in NADP/NTN sample-collection buckets. For 1979-1987, graphs of smoothed data showing the estimated contamination in blind-audit samples indicate a decrease in the median concentration and ranges of Ca 2+, Mg 2+ and SO 42- contamination of blind-audit samples shipped in sample-collection buckets. Part of the contamination detected in blind-audit samples can be attributed to contact with the sample-collection bucket and lid; however, additional sources also seem to contaminate the blind-audit sample. Apparent decreases in the magnitude and range of sample contamination may be caused by differences in sample-collection bucket- and lid-washing procedures by the NADP/NTN Central Analytical Laboratory. Although the degree of bias is minimal for most constituents, summaries of the NADP/NTN data base may contain overestimates of Ca 2+, Mg 2+, Na -, K + and SO 42- and Cl - concentrations, and underestimates of H + concentrations.

  3. A quality-assurance assessment for constituents reported by the National Atmospheric Deposition Program and the National Trends Network

    USGS Publications Warehouse

    See, R.B.; Schroder, L.J.; Willoughby, T.C.

    1989-01-01

    A continuing quality-assurance program has been operated by the U.S. Geographical Survey to evaluate any bias introduced by routine handling, shipping, and laboratory analyses of wet-deposition samples collected in the National Atmospheric Deposition Program (NADP) and National Trends Network (NTN). Blind-audit samples having a variety of constituent concentrations and values were selected. Only blind-audit samples with constituent concentrations and values less than the 95th-percentile concentration for natural wet-deposition samples were included in the analysis. Of the major ions, there was a significant increase of Ca2+, Mg2+, K+ SO42+ and Cl- in samples handled according to standard protocols and shipped in NADP/NTN sample-collection buckets. For 1979-1987, graphs of smoothed data showing the estimated contaminations in blind-audit samples indicate a decrease in the median concentration and ranges of Ca2+, Mg2+ and SO42- contamination of blind-audit samples shipped in sample-collection buckets. Part of the contamination detected in blind-audit samples can be attributed to contact with the sample-collection bucket and lid; however, additional sources also seem to contaminate the blind-audit sample. Apparent decreases in the magnitude and range of sample contamination may be caused by differences in sample-collection bucket- and lid-washing procedures by the NADP/NTN Central Analytical Laboratory. Although the degree of bias is minimal for most constituents, summaries of the NADP/NTN data base may contain overestimates of Ca2+, Mg2+, Na-, K+, SO42- and Cl- concentrations, and underestimates of H+ concentrations.

  4. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Patrick

    2013-09-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 105 comprises the following five corrective action sites (CASs): -02-23-04 Atmospheric Test Site - Whitney Closure In Place -02-23-05 Atmospheric Test Site T-2A Closure In Place -02-23-06 Atmospheric Test Site T-2B Clean Closure -02-23-08 Atmospheric Test Site T-2 Closure In Place -02-23-09 Atmospheric Test Site - Turk Closure In Place The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that nomore » further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.« less

  5. Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document. volume 4; Determination of surface and atmosphere fluxes and temporally and spatially averaged products (subsystems 5-12); Determination of surface and atmosphere fluxes and temporally and spatially averaged products

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator); Baum, Bryan A.; Charlock, Thomas P.; Green, Richard N.; Lee, Robert B., III; Minnis, Patrick; Smith, G. Louis; Coakley, J. A.; Randall, David R.

    1995-01-01

    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and the Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 4 details the advanced CERES techniques for computing surface and atmospheric radiative fluxes (using the coincident CERES cloud property and top-of-the-atmosphere (TOA) flux products) and for averaging the cloud properties and TOA, atmospheric, and surface radiative fluxes over various temporal and spatial scales. CERES attempts to match the observed TOA fluxes with radiative transfer calculations that use as input the CERES cloud products and NOAA National Meteorological Center analyses of temperature and humidity. Slight adjustments in the cloud products are made to obtain agreement of the calculated and observed TOA fluxes. The computed products include shortwave and longwave fluxes from the surface to the TOA. The CERES instantaneous products are averaged on a 1.25-deg latitude-longitude grid, then interpolated to produce global, synoptic maps to TOA fluxes and cloud properties by using 3-hourly, normalized radiances from geostationary meteorological satellites. Surface and atmospheric fluxes are computed by using these interpolated quantities. Clear-sky and total fluxes and cloud properties are then averaged over various scales.

  6. Determining atmospheric deposition in Wyoming with IMPROVE and other national programs

    Treesearch

    Karl Zeller; Debra Youngblood Harrington; Richard Fisher; Evgeny Donev

    2000-01-01

    Atmospheric deposition is the result of air pollution gases and aerosols leaving the atmosphere as "dry" or "wet" deposition. Little is known about just how much pollution is deposited onto soils, lakes and streams. To determine the extent and trends of forest exposure to air pollution, various types of monitoring have been conducted. In this study...

  7. Volatile Halogenated Organic Compounds Released to Seawater from Temperate Marine Macroalgae

    NASA Astrophysics Data System (ADS)

    Gschwend, Philip M.; Macfarlane, John K.; Newman, Kathleen A.

    1985-03-01

    Volatile halogenated organic compounds synthesized by various industrial processes are troublesome pollutants because they are persistent in terrestrial ecosystems and because they may be present in sufficient quantities to alter the natural atmospheric cycles of the halogens. Certain of these compounds, including polybromomethanes and several previously unobserved alkyl monohalides and dihalides, appear to be natural products of the marine environment. A variety of temperate marine macroalgae (the brown algae Ascophyllum nodosum and Fucus vesiculosis, the green algae Enteromorpha linza and Ulva lacta, and the red alga Gigartina stellata) not only contain volatile halogenated organic compounds but also release them to seawater at rates of nanograms to micrograms of each compound per gram of dry algae per day. The macroalgae may be an important source of bromine-containing material released to the atmosphere.

  8. ENVIRONMENTAL CHAMBER STUDIES OF MERCURY REACTIONS IN THE ATMOSPHERE

    EPA Science Inventory

    Mercury is released into the environment through both natural and anthropogenic pathways. The cycling and fate of mercury in atmospheric, soil, and water ecosystems is impacted by various factors, including chemical transformation and transport. An understanding of these proces...

  9. Atmospheric science and power production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randerson, D.

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Specialmore » emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.« less

  10. Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: prediction improved and source estimated.

    PubMed

    Zhang, X L; Su, G F; Yuan, H Y; Chen, J G; Huang, Q Y

    2014-09-15

    Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50 km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Present state of knowledge of the upper atmosphere 1988: An assessment report

    NASA Astrophysics Data System (ADS)

    Watson, R. T.; Prather, M. J.; Kurylo, M. J.

    1988-06-01

    This document was issued in response to the Clean Air Act Amendments of 1977, Public Law 95-95, mandating that NASA and other key agencies submit biennial reports to Congress and EPA. NASA is to report on the state of our knowledge of the upper atmosphere, particularly the stratosphere. This is the sixth ozone assessment report submitted to Congress and the concerned regulatory agencies. Part 1 contains an outline of the NASA Upper Atmosphere Research Program and summaries of the research efforts supported during the last two years. An assessment is presented of the state of knowledge as of March 15, 1988 when the Ozone Trends Panel, organized by NASA and co-sponsored by the World Meteorological Organization, NOAA, FAA and the United Nations Environment Program released an executive summary of its findings from a critical in-depth study involving over 100 scientists from 12 countries. Chapter summaries of the International Ozone Trends Panel Report form the major part of this report. Two other sections are Model Predictions of Future Ozone Change and Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Each of these sections and the report in its entirety were peer reviewed.

  12. Present state of knowledge of the upper atmosphere 1988: An assessment report

    NASA Technical Reports Server (NTRS)

    Watson, R. T.; Prather, M. J.; Kurylo, M. J.

    1988-01-01

    This document was issued in response to the Clean Air Act Amendments of 1977, Public Law 95-95, mandating that NASA and other key agencies submit biennial reports to Congress and EPA. NASA is to report on the state of our knowledge of the upper atmosphere, particularly the stratosphere. This is the sixth ozone assessment report submitted to Congress and the concerned regulatory agencies. Part 1 contains an outline of the NASA Upper Atmosphere Research Program and summaries of the research efforts supported during the last two years. An assessment is presented of the state of knowledge as of March 15, 1988 when the Ozone Trends Panel, organized by NASA and co-sponsored by the World Meteorological Organization, NOAA, FAA and the United Nations Environment Program released an executive summary of its findings from a critical in-depth study involving over 100 scientists from 12 countries. Chapter summaries of the International Ozone Trends Panel Report form the major part of this report. Two other sections are Model Predictions of Future Ozone Change and Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Each of these sections and the report in its entirety were peer reviewed.

  13. Theory, Image Simulation, and Data Analysis of Chemical Release Experiments

    NASA Technical Reports Server (NTRS)

    Wescott, Eugene M.

    1994-01-01

    The final phase of Grant NAG6-1 involved analysis of physics of chemical releases in the upper atmosphere and analysis of data obtained on previous NASA sponsored chemical release rocket experiments. Several lines of investigation of past chemical release experiments and computer simulations have been proceeding in parallel. This report summarizes the work performed and the resulting publications. The following topics are addressed: analysis of the 1987 Greenland rocket experiments; calculation of emission rates for barium, strontium, and calcium; the CRIT 1 and 2 experiments (Collisional Ionization Cross Section experiments); image calibration using background stars; rapid ray motions in ionospheric plasma clouds; and the NOONCUSP rocket experiments.

  14. Precipitation collector bias and its effects on temporal trends and spatial variability in National Atmospheric Deposition Program/National Trends Network data

    USGS Publications Warehouse

    Wetherbee, Gregory A.

    2017-01-01

    Precipitation samples have been collected by the National Atmospheric Deposition Program's (NADP) National Trends Network (NTN) using the Aerochem Metrics Model 301 (ACM) collector since 1978. Approximately one-third of the NTN ACM collectors have been replaced with N-CON Systems, Inc. Model ADS 00-120 (NCON) collectors. Concurrent data were collected over 6 years at 12 NTN sites using colocated ACM and NCON collectors in various precipitation regimes. Linear regression models of the colocated data were used to adjust for relative bias between the collectors. Replacement of ACM collectors with NCON collectors resulted in shifts in 10-year seasonal precipitation-weighted mean concentration (PWMC) trend slopes for: cations (−0.001 to −0.007 mgL−1yr−1), anions (−0.009 to −0.028 mgL−1yr−1), and hydrogen ion (+0.689 meqL-1yr−1). Larger shifts in NO3− and SO4−2 seasonal PWMC trend slopes were observed in the Midwest and Northeast US, where concentrations are generally higher than in other regions. Geospatial analysis of interpolated concentration rasters indicated regions of accentuated variability introduced by incorporation of NCON collectors into the NTN.

  15. Index to NASA news releases and speeches, 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Index to NASA News Releases and Speeches (1984) contains selected speeches and news releases issued by NASA Headquarters during the year 1984. The index was prepared by the NASA Scientific and Technical Information Facility operated for the National Aeronautical and Space Administration by PRC Government Information Systems.

  16. A Water Mass Tracer Detected in Aerosols Demonstrates Ocean-Atmosphere Mass Transfer and Links Sea Spray Aerosol to Source Waters

    NASA Astrophysics Data System (ADS)

    Pendergraft, M.; Grimes, D. J.; Giddings, S. N.; Feddersen, F.; Prather, K. A.; Santander, M.; Lee, C.; Beall, C.

    2016-12-01

    During September and October of 2015 the Cross Surfzone/Inner-shelf Dye Exchange (CSIDE) project released rhodamine WT dye to study nearshore water movement and exchange offshore along a Southern California sandy beach. We utilized this opportunity to investigate ocean-atmosphere mass transfer via sea spray aerosol and linkage to source waters. Aerosol-concentrating sampling equipment was deployed at beachside and inland locations during three dye releases. Concentrated aerosol samples were analyzed for dye content using fluorescence spectroscopy. Here we present the ocean and atmosphere conditions associated with the presence and absence of dye in aerosol samples. Dye was identified in aerosol samples collected 0.1-0.3 km from the shoreline for 6 hs during the first and third dye releases of the CSIDE project. During these releases the dye persisted in the waters upwind of the sampling equipment. Dye was not detected in aerosol samples collected during the second release during which dye was moved away from waters upwind of the sampling equipment. Recovery of a chemical tracer in sea spray aerosol allows direct linkage to a known source area in the ocean that is independent of, but supported by, wind data. Our observations demonstrate: a tight ocean-atmosphere spatial coupling; a short residence time of coastal marine constituents before transfer to the atmosphere; that the ocean is both a sink for and a source of atmospheric and terrestrial material; and that human inputs to the ocean can return to us in sea spray aerosol.

  17. Atmospheric modeling of Mars CH4 subsurface clathrates releases mimicking SAM and 2003 Earth-based detections

    NASA Astrophysics Data System (ADS)

    Pla-García, J.; Rafkin, S. C.

    2017-12-01

    The aim of this work is to establish the amount of mixing during all martian seasons to test whether CH4 releases inside or outside of Gale crater are consistent with MSL-SAM observations. Several modeling scenarios were configured, including instantaneous and steady releases, both inside and outside the crater. A simulation to mimic the 2003 Earth-based detections (Mumma et al. 2009 or M09) was also performed. In the instantaneous release inside Gale experiments, Ls270 was shown to be the faster mixing season when air within and outside the crater was well mixed: all tracer mass inside the crater is diluted after just 8 hours. The mixing of near surface crater air with the external environment in the rest of the year is potentially rapid but slower than Ls270.In the instantaneous release outside Gale (NW) experiment, in just 12 hours the CH4 that makes it to the MSL landing location is diluted by six orders of magnitude. The timescale of mixing in MRAMS experiments is on the order of 1 sol regardless of season. The duration of the CH4 peak observed by SAM is 100 sols. Therefore there is a steady release inside the crater, or there is a very large magnitude steady release outside the crater. In the steady release Gale experiments, CH4 flux rate from ground is 1.8 kg m-2 s-1 (derived from Gloesener et al. 2017 clathrates fluxes) and it is not predictive. In these experiments, 200 times lower CH4 values detected by SAM are modeled around MSL location. There are CH4 concentration variations of orders of magnitude depending on the hour, so timing of SAM measurements is important. With a larger (but further away) outside crater release area compared to inside, similar CH4 values around MSL are modeled, so distance to source is important. In the steady experiments mimicking M09 detection release area, only 12 times lower CH4 values detected by SAM are modeled around MSL. The highest value in the M09 modeled scenario (0.6 ppbv) is reached in Ls270. This value is the

  18. Atmospheric stability effects on potential radiological releases at a nuclear research facility in Romania: Characterising the atmospheric mixing state.

    PubMed

    Chambers, Scott D; Galeriu, Dan; Williams, Alastair G; Melintescu, Anca; Griffiths, Alan D; Crawford, Jagoda; Dyer, Leisa; Duma, Marin; Zorila, Bogdan

    2016-04-01

    A radon-based nocturnal stability classification scheme is developed for a flat inland site near Bucharest, Romania, characterised by significant local surface roughness heterogeneity, and compared with traditional meteorologically-based techniques. Eight months of hourly meteorological and atmospheric radon observations from a 60 m tower at the IFIN-HH nuclear research facility are analysed. Heterogeneous surface roughness conditions in the 1 km radius exclusion zone around the site hinder accurate characterisation of nocturnal atmospheric mixing conditions using conventional meteorological techniques, so a radon-based scheme is trialled. When the nocturnal boundary layer is very stable, the Pasquill-Gifford "radiation" scheme overestimates the atmosphere's capacity to dilute pollutants with near-surface sources (such as tritiated water vapour) by 20% compared to the radon-based scheme. Under these conditions, near-surface wind speeds drop well below 1 m s(-1) and nocturnal mixing depths vary from ∼ 25 m to less than 10 m above ground level (a.g.l.). Combining nocturnal radon with daytime ceilometer data, we were able to reconstruct the full diurnal cycle of mixing depths. Average daytime mixing depths at this flat inland site range from 1200 to 1800 m a.g.l. in summer, and 500-900 m a.g.l. in winter. Using tower observations to constrain the nocturnal radon-derived effective mixing depth, we were able to estimate the seasonal range in the Bucharest regional radon flux as: 12 mBq m(-2) s(-1) in winter to 14 mBq m(-2) s(-1) in summer. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. Environmental and health impacts of February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository.

    PubMed

    Thakur, P; Lemons, B G; Ballard, S; Hardy, R

    2015-08-01

    The environmental impact of the February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) was assessed using monitoring data from an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC). After almost 15 years of safe and efficient operations, the WIPP had one of its waste drums rupture underground resulting in the release of moderate levels of radioactivity into the underground air. A small amount of radioactivity also escaped to the surface through the ventilation system and was detected above ground. It was the first unambiguous release from the WIPP repository. The dominant radionuclides released were americium and plutonium, in a ratio that matches the content of the breached drum. The accelerated air monitoring campaign, which began following the accident, indicates that releases were low and localized, and no radiation-related health effects among local workers or the public would be expected. The highest activity detected was 115.2 μBq/m(3) for (241)Am and 10.2 μBq/m(3) for (239+240)Pu at a sampling station located 91 m away from the underground air exhaust point and 81.4 μBq/m(3) of (241)Am and 5.8 μBq/m(3) of (239+240)Pu at a monitoring station located approximately one kilometer northwest of the WIPP facility. CEMRC's recent monitoring data show that the concentration levels of these radionuclides have returned to normal background levels and in many instances, are not even detectable, demonstrating no long-term environmental impacts of the recent radiation release event at the WIPP. This article presents an evaluation of almost one year of environmental monitoring data that informed the public that the levels of radiation that got out to the environment were very low and did not, and will not harm anyone or have any long-term environmental consequence. In terms of radiological risk at or in the vicinity of the

  20. Goddard Atmospheric Composition Data Center: Aura Data and Services in One Place

    NASA Technical Reports Server (NTRS)

    Leptoukh, G.; Kempler, S.; Gerasimov, I.; Ahmad, S.; Johnson, J.

    2005-01-01

    The Goddard Atmospheric Composition Data and Information Services Center (AC-DISC) is a portal to the Atmospheric Composition specific, user driven, multi-sensor, on-line, easy access archive and distribution system employing data analysis and visualization, data mining, and other user requested techniques for the better science data usage. It provides convenient access to Atmospheric Composition data and information from various remote-sensing missions, from TOMS, UARS, MODIS, and AIRS, to the most recent data from Aura OMI, MLS, HIRDLS (once these datasets are released to the public), as well as Atmospheric Composition datasets residing at other remote archive site.

  1. Noble Gas Surface Flux Simulations And Atmospheric Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrigan, Charles R.; Sun, Yunwei; Simpson, Matthew D.

    Signatures from underground nuclear explosions or UNEs are strongly influenced by the containment regime surrounding them. The degree of gas leakage from the detonation cavity to the surface obviously affects the magnitude of surface fluxes of radioxenon that might be detected during the course of a Comprehensive Test Ban Treaty On-Site Inspection. In turn, the magnitude of surface fluxes will influence the downwind detectability of the radioxenon atmospheric signature from the event. Less obvious is the influence that leakage rates have on the evolution of radioxenon isotopes in the cavity or the downwind radioisotopic measurements that might be made. Themore » objective of this letter report is to summarize our attempt to better understand how containment conditions affect both the detection and interpretation of radioxenon signatures obtained from sampling at the ground surface near an event as well as at greater distances in the atmosphere. In the discussion that follows, we make no attempt to consider other sources of radioactive noble gases such as natural backgrounds or atmospheric contamination and, for simplicity, only focus on detonation-produced radioxenon gases. Summarizing our simulations, they show that the decay of radioxenon isotopes (e.g., Xe-133, Xe-131m, Xe-133m and Xe-135) and their migration to the surface following a UNE means that the possibility of detecting these gases exists within a window of opportunity. In some cases, seeps or venting of detonation gases may allow significant quantities to reach the surface and be released into the atmosphere immediately following a UNE. In other release scenarios – the ones we consider here – hours to days may be required for gases to reach the surface at detectable levels. These release models are most likely more characteristic of “fully contained” events that lack prompt venting, but which still leak gas slowly across the surface for periods of months.« less

  2. Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties

    DOE R&D Accomplishments Database

    Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.

    1987-12-01

    The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.

  3. Atmospheric statistics for aerospace vehicle operations

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Batts, G. W.

    1993-01-01

    Statistical analysis of atmospheric variables was performed for the Shuttle Transportation System (STS) design trade studies and the establishment of launch commit criteria. Atmospheric constraint statistics have been developed for the NASP test flight, the Advanced Launch System, and the National Launch System. The concepts and analysis techniques discussed in the paper are applicable to the design and operations of any future aerospace vehicle.

  4. Gas Release as a Deformation Signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.

    Radiogenic noble gases are contained in crustal rock at inter and intra granular sites. The gas composition depends on lithology, geologic history, fluid phases, and the aging effect by decay of U, Th, and K. The isotopic signature of noble gases found in rocks is vastly different than that of the atmosphere which is contributed by a variety of sources. When rock is subjected to stress conditions exceeding about half its yield strength, micro-cracks begin to form. As rock deformation progresses a fracture network evolves, releasing trapped noble gases and changing the transport properties to gas migration. Thus, changes inmore » gas emanation and noble gas composition from rocks could be used to infer changes in stress-state and deformation. The purpose of this study has been to evaluate the effect of deformation/strain rate upon noble gas release. Four triaxial experiments were attempted for a strain rate range of %7E10-8 /s (180,000s) to %7E 10-4/s (500s); the three fully successful experiments (at the faster strain rates) imply the following: (1) helium is measurably released for all strain rates during deformation, this release is in amounts 1-2 orders of magnitude greater than that present in the air, and (2) helium gas release increases with decreasing strain rate.« less

  5. Middle Atmosphere Program. Handbook for MAP, Volume 17

    NASA Technical Reports Server (NTRS)

    Sechrist, C. F., Jr. (Editor)

    1985-01-01

    The Middle Atmosphere Program (MAP) handbook is divided into three parts. Part 1 consists of minutes of MAP steering committee meeting and MAP assembly. Part 2 consists of project and study group reports, such as: (1) Atmospheric Tides Middle Atmosphere Program (ATMAP), report of the Nov./Dec. 1981, and May 1982 observational campaigns; MAP/WINE experimenters meeting at Berlin, 1985; (3) MAP/WINE experimenters meeting at Loen, Norway, 1985; and (4) the penetration of ultraviolet solar radiation into the middle atmosphere. Part 3 consists of national reports.

  6. External quality-assurance results for the National Atmospheric Deposition Program/National Trends Network during 1991

    USGS Publications Warehouse

    Nilles, M.A.; Gordon, J.D.; Schroder, L.J.; Paulin, C.E.

    1995-01-01

    The U.S. Geological Survey used four programs in 1991 to provide external quality assurance for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). An intersite-comparison program was used to evaluate onsite pH and specific-conductance determinations. The effects of routine sample handling, processing, and shipping of wet-deposition samples on analyte determinations and an estimated precision of analyte values and concentrations were evaluated in the blind-audit program. Differences between analytical results and an estimate of the analytical precision of four laboratories routinely measuring wet deposition were determined by an interlaboratory-comparison program. Overall precision estimates for the precipitation-monitoring system were determined for selected sites by a collocated-sampler program. Results of the intersite-comparison program indicated that 93 and 86 percent of the site operators met the NADP/NTN accuracy goal for pH determinations during the two intersite-comparison studies completed during 1991. The results also indicated that 96 and 97 percent of the site operators met the NADP/NTN accuracy goal for specific-conductance determinations during the two 1991 studies. The effects of routine sample handling, processing, and shipping, determined in the blind-audit program indicated significant positive bias (a=.O 1) for calcium, magnesium, sodium, potassium, chloride, nitrate, and sulfate. Significant negative bias (or=.01) was determined for hydrogen ion and specific conductance. Only ammonium determinations were not biased. A Kruskal-Wallis test indicated that there were no significant (*3t=.01) differences in analytical results from the four laboratories participating in the interlaboratory-comparison program. Results from the collocated-sampler program indicated the median relative error for cation concentration and deposition exceeded eight percent at most sites, whereas the median relative error for sample volume

  7. European emissions of the powerful greenhouse gases hydrofluorocarbons inferred from atmospheric measurements and their comparison with annual national reports to UNFCCC

    NASA Astrophysics Data System (ADS)

    Graziosi, F.; Arduini, J.; Furlani, F.; Giostra, U.; Cristofanelli, P.; Fang, X.; Hermanssen, O.; Lunder, C.; Maenhout, G.; O'Doherty, S.; Reimann, S.; Schmidbauer, N.; Vollmer, M. K.; Young, D.; Maione, M.

    2017-06-01

    Hydrofluorocarbons are powerful greenhouse gases developed by industry after the phase-out of the ozone depleting chlorofluorocarbons and hydrochlorofluorocarbons required by the Montreal Protocol. The climate benefit of reducing the emissions of hydrofluorocarbons has been widely recognised, leading to an amendment of the Montreal Protocol (Kigali Amendment) calling for developed countries to start to phase-down hydrofluorocarbons by 2019 and in developing countries to follow with a freeze between 2024 and 2028. In this way, nearly half a degree Celsius of warming would be avoided by the end of the century. Hydrofluorocarbons are also included in the basket of gases controlled under the Kyoto Protocol of the United Nations Framework Convention on Climate Change. Annex I parties to the Convention submit annual national greenhouse gas inventories based on a bottom-up approach, which relies on declared anthropogenic activities. Top-down methodologies, based on atmospheric measurements and modelling, can be used in support to the inventory compilation. In this study we used atmospheric data from four European sites combined with the FLEXPART dispersion model and a Bayesian inversion method, in order to derive emissions of nine individual hydrofluorocarbons from the whole European Geographic Domain and from twelve regions within it, then comparing our results with the annual emissions that the European countries submit every year to the United Nations Framework Convention on Climate Change, as well as with the bottom-up Emissions Database for Global Atmospheric Research. We found several discrepancies when considering the specific compounds and on the country level. However, an overall agreement is found when comparing European aggregated data, which between 2008 and 2014 are on average 84.2 ± 28.0 Tg-CO2-eq·yr-1 against the 95.1 Tg-CO2-eq·yr-1 reported by UNFCCC in the same period. Therefore, in agreement with other studies, the gap on the global level between

  8. The total release of xenon-133 from the Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Stohl, Andreas; Seibert, Petra; Wotawa, Gerhard

    2012-10-01

    The accident at the Fukushima Dai-ichi nuclear power plant (FD-NPP) on 11 March 2011 released large amounts of radioactivity into the atmosphere. We determine the total emission of the noble gas xenon-133 ((133)Xe) using global atmospheric concentration measurements. For estimating the emissions, we used three different methods: (i) using a purely observation-based multi-box model, (ii) comparisons of dispersion model results driven with GFS meteorological data with the observation data, and (iii) such comparisons with the dispersion model driven by ECMWF data. From these three methods, we have obtained total (133)Xe releases from FD-NPP of (i) 16.7 ± 1.9 EBq, (ii) 14.2 ± 0.8 EBq, and (iii) 19.0 ± 3.4 EBq, respectively. These values are substantially larger than the entire (133)Xe inventory of FD-NPP of about 12.2 EBq derived from calculations of nuclear fuel burn-up. Complete release of the entire (133)Xe inventory of FD-NPP and additional release of (133)Xe due to the decay of iodine-133 ((133)I), which can add another 2 EBq to the (133)Xe FD-NPP inventory, is required to explain the atmospheric observations. Two of our three methods indicate even higher emissions, but this may not be a robust finding given the differences between our estimates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Atmospheric deposition, water-quality, and sediment data for selected lakes in Mount Rainer, North Cascades, and Olympic National Parks, Washington, 2008-10

    USGS Publications Warehouse

    Sheibley, Rich W.; Foreman, James R.; Moran, Patrick W.; Swarzenski, Peter W.

    2012-01-01

    To evaluate the potential effect from atmospheric deposition of nitrogen to high-elevation lakes, the U.S. Geological Survey partnered with the National Park Service to develop a "critical load" of nitrogen for sediment diatoms. A critical load is defined as the level of a given pollutant (in this case, nitrogen) at which detrimental effects to a target endpoint (sediment diatoms) result. Because sediment diatoms are considered one of the "first responders" to ecosystem changes from nitrogen, they are a sensitive indicator for nitrogen deposition changes in natural areas. This report presents atmospheric deposition, water quality, sediment geochronology, and sediment diatom data collected from July 2008 through August 2010 in support of this effort.

  10. 32 CFR 705.6 - Releasing public information material to the media.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... media. 705.6 Section 705.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... information material to the media. (a) Methods of releasing information: (1) Release at the seat of government... information is released to media: (1) Navy oriented information material (written, taped, motion picture...

  11. 32 CFR 705.6 - Releasing public information material to the media.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... media. 705.6 Section 705.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... information material to the media. (a) Methods of releasing information: (1) Release at the seat of government... information is released to media: (1) Navy oriented information material (written, taped, motion picture...

  12. 32 CFR 705.6 - Releasing public information material to the media.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... media. 705.6 Section 705.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY... information material to the media. (a) Methods of releasing information: (1) Release at the seat of government... information is released to media: (1) Navy oriented information material (written, taped, motion picture...

  13. Atmospheric Chemistry and Air Pollution

    DOE PAGES

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  14. Assimilation of concentration measurements for retrieving multiple point releases in atmosphere: A least-squares approach to inverse modelling

    NASA Astrophysics Data System (ADS)

    Singh, Sarvesh Kumar; Rani, Raj

    2015-10-01

    The study addresses the identification of multiple point sources, emitting the same tracer, from their limited set of merged concentration measurements. The identification, here, refers to the estimation of locations and strengths of a known number of simultaneous point releases. The source-receptor relationship is described in the framework of adjoint modelling by using an analytical Gaussian dispersion model. A least-squares minimization framework, free from an initialization of the release parameters (locations and strengths), is presented to estimate the release parameters. This utilizes the distributed source information observable from the given monitoring design and number of measurements. The technique leads to an exact retrieval of the true release parameters when measurements are noise free and exactly described by the dispersion model. The inversion algorithm is evaluated using the real data from multiple (two, three and four) releases conducted during Fusion Field Trials in September 2007 at Dugway Proving Ground, Utah. The release locations are retrieved, on average, within 25-45 m of the true sources with the distance from retrieved to true source ranging from 0 to 130 m. The release strengths are also estimated within a factor of three to the true release rates. The average deviations in retrieval of source locations are observed relatively large in two release trials in comparison to three and four release trials.

  15. 2011 Tohoku, Japan tsunami data available from the National Oceanic and Atmospheric Administration/National Geophysical Data Center

    NASA Astrophysics Data System (ADS)

    Dunbar, P. K.; Mccullough, H. L.; Mungov, G.; Harris, E.

    2012-12-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) has primary responsibility for providing tsunami warnings to the Nation, and a leadership role in tsunami observations and research. A key component of this effort is easy access to authoritative data on past tsunamis, a responsibility of the National Geophysical Data Center (NGDC) and collocated World Service for Geophysics. Archive responsibilities include the global historical tsunami database, coastal tide-gauge data from US/NOAA operated stations, the Deep-ocean Assessment and Reporting of Tsunami (DART®) data, damage photos, as well as other related hazards data. Taken together, this integrated archive supports tsunami forecast, warning, research, mitigation and education efforts of NOAA and the Nation. Understanding the severity and timing of tsunami effects is important for tsunami hazard mitigation and warning. The global historical tsunami database includes the date, time, and location of the source event, magnitude of the source, event validity, maximum wave height, the total number of fatalities and dollar damage. The database contains additional information on run-ups (locations where tsunami waves were observed by eyewitnesses, field reconnaissance surveys, tide gauges, or deep ocean sensors). The run-up table includes arrival times, distance from the source, measurement type, maximum wave height, and the number of fatalities and damage for the specific run-up location. Tide gauge data are required for modeling the interaction of tsunami waves with the coast and for verifying propagation and inundation models. NGDC is the long-term archive for all NOAA coastal tide gauge data and is currently archiving 15-second to 1-minute water level data from the NOAA Center for Operational Oceanographic Products and Services (CO-OPS) and the NOAA Tsunami Warning Centers. DART® buoys, which are essential components of tsunami warning systems, are now deployed in all oceans, giving coastal communities

  16. Atmospheric modeling of Mars CH4 subsurface clathrates releases mimicking SAM and 2003 Earth-based detections

    NASA Astrophysics Data System (ADS)

    Pla-Garcia, Jorge

    2017-10-01

    The aim of this work is to establish the amount of mixing during all martian seasons to test whether CH4 releases inside or outside of Gale crater are consistent with MSL-SAM observations. Several modeling scenarios were configured, including instantaneous and steady releases, both inside and outside the crater. A simulation to mimic the 2003 Earth-based detections (Mumma et al. 2009 or M09) was also performed. In the instantaneous release inside Gale experiments, Ls270 was shown to be the faster mixing season when air within and outside the crater was well mixed: all tracer mass inside the crater is diluted after just 8 hours. The mixing of near surface crater air with the external environment in the rest of the year is potentially rapid but slower than Ls270. In the instantaneous release outside Gale (NW) experiment, in just 12 hours the CH4 that makes it to the MSL landing location is diluted by six orders of magnitude. The timescale of mixing in the model is on the order of 1 sol regardless of season. The duration of the CH4 peak observed by SAM is 100 sols. Therefore there is a steady release inside the crater, or there is a large magnitude steady release outside the crater. In the steady release Gale experiments, CH4 flux rate from ground is 1.8 kg m-2 s-1 (Gloesener et al. 2017) and it is not predictive. In these experiments, ~200 times lower CH4 values detected by SAM are modeled around MSL location. There are CH4 concentration variations of orders of magnitude depending on the hour, so timing of SAM measurements is important. With a larger (but further away) outside crater release area compared to inside, similar CH4 values around MSL are modeled, so distance to source is important. In the steady experiments mimicking M09 detection release area, only 12 times lower CH4 values detected by SAM are modeled around MSL. The highest value in the M09 modeled scenario (0.6 ppbv) is reached in Ls270. This value is the highest of all modeled experiments. With our

  17. Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant

    NASA Astrophysics Data System (ADS)

    Winiarek, Victor; Bocquet, Marc; Saunier, Olivier; Mathieu, Anne

    2012-03-01

    A major difficulty when inverting the source term of an atmospheric tracer dispersion problem is the estimation of the prior errors: those of the atmospheric transport model, those ascribed to the representativity of the measurements, those that are instrumental, and those attached to the prior knowledge on the variables one seeks to retrieve. In the case of an accidental release of pollutant, the reconstructed source is sensitive to these assumptions. This sensitivity makes the quality of the retrieval dependent on the methods used to model and estimate the prior errors of the inverse modeling scheme. We propose to use an estimation method for the errors' amplitude based on the maximum likelihood principle. Under semi-Gaussian assumptions, it takes into account, without approximation, the positivity assumption on the source. We apply the method to the estimation of the Fukushima Daiichi source term using activity concentrations in the air. The results are compared to an L-curve estimation technique and to Desroziers's scheme. The total reconstructed activities significantly depend on the chosen method. Because of the poor observability of the Fukushima Daiichi emissions, these methods provide lower bounds for cesium-137 and iodine-131 reconstructed activities. These lower bound estimates, 1.2 × 1016 Bq for cesium-137, with an estimated standard deviation range of 15%-20%, and 1.9 - 3.8 × 1017 Bq for iodine-131, with an estimated standard deviation range of 5%-10%, are of the same order of magnitude as those provided by the Japanese Nuclear and Industrial Safety Agency and about 5 to 10 times less than the Chernobyl atmospheric releases.

  18. Integrating Research and Education at the National Center for Atmospheric Research at the Interface of Formal and Informal Education

    NASA Astrophysics Data System (ADS)

    Johnson, R.; Foster, S.

    2005-12-01

    The National Center for Atmospheric Research (NCAR) in Boulder, Colorado, is a leading institution in scientific research, education and service associated with exploring and understanding our atmosphere and its interactions with the Sun, the oceans, the biosphere, and human society. NCAR draws thousands of public and scientific visitors from around the world to its Mesa Laboratory facility annually for educational as well as research purposes. Public visitors include adult visitors, clubs, and families on an informal visit to NCAR and its exhibits, as well as classroom and summer camp groups. Additionally, NCAR provides extensive computational and visualization services, which can be used not only for scientific, but also public informational purposes. As such, NCAR's audience provides an opportunity to address both formal and informal education through the programs that we offer. The University Corporation for Atmospheric Research (UCAR) Office of Education and Outreach works with NCAR to develop and implement a highly-integrated strategy for reaching both formal and informal audiences through programs that range from events and exhibits to professional development (for scientists and educators) and bilingual distance learning. The hallmarks of our program include close collaboration with scientists, multi-purposing resources where appropriate for maximum efficiency, and a commitment to engage populations historically underrepresented in science in the geosciences.

  19. Anchoring Atmospheric Density Models Using Observed Shuttle Plume Emissions

    NASA Astrophysics Data System (ADS)

    Dimpfl, W. L.; Bernstien, L. S.

    2010-12-01

    Atmospheric number densities at a given low-earth orbit (LEO) altitude can vary by more than an order of magnitude, depending on such parameters as diurnal variations and solar activity. The MSIS atmospheric model, which includes these dependent variables as input, is reported as being accurate to ±15%. Improvement to such models requires accurate direct atmospheric measurement. Here, a means of anchoring atmospheric models is offered through measuring the size and shape of atomic line or molecular band radiance resulting from the atmospheric interaction from rocket engine plumes or gas releases in LEO. Many discrete line or band emissions, ranging from the infrared to the ultraviolet may be suitable. For this purpose we are focusing on NH(A→X), centered at 316 nm. This emission is seen in the plumes of the Shuttle Orbiter PRCS engines, is expected in the plume of any amine fueled engine, and can be observed from remote sensors in space or on the ground. The atmospheric interaction of gas releases or plumes from spacecraft in LEO are understood by comparison of observed radiance with that predicted by Direct Simulation Monte Carlo (DSMC) models. The recent Extended Variable Hard Sphere (EVHS) improvements in treating hyperthermal collisions has produced exceptional agreement between measured and modeled steady-state Space Shuttle OMS and PRCS 190-250 nm Cameron band plume radiance from CO(a→X), which is understood to result from a combination of two- and three-step mechanisms. Radiance from NH(A→X) in far field plumes is understood to result from a simpler single-step process of the reaction of a minor plume species with atomic oxygen, making it more suitable for use in determining atmospheric density. It is recommended that direct retrofire burns of amine fueled engines be imaged in a narrow band from remote sensors to reveal atmospheric number density. In principal the simple measurement of the distance between the engine exit and the peak in the steady

  20. Interpretation and modelling of fission product Ba and Mo releases from fuel

    NASA Astrophysics Data System (ADS)

    Brillant, G.

    2010-02-01

    The release mechanisms of two fission products (namely barium and molybdenum) in severe accident conditions are studied using the VERCORS experimental observations. Barium is observed to be mostly released under reducing conditions while molybdenum release is most observed under oxidizing conditions. As well, the volatility of some precipitates in fuel is evaluated by thermodynamic equilibrium calculations. The polymeric species (MoO 3) n are calculated to largely contribute to molybdenum partial pressure and barium volatility is greatly enhanced if the gas atmosphere is reducing. Analytical models of fission product release from fuel are proposed for barium and molybdenum. Finally, these models have been integrated in the ASTEC/ELSA code and validation calculations have been performed on several experimental tests.

  1. Chemical and Biological National Security Program (CBNP) Annual Report FY2002 Overview Local Integration of NARAC With Cities (LINC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ermak, D L; Nasstrom, J S; Tull, J E

    The objective of the Local Integration of NARAC With Cities (LINC) project is to demonstrate the capability for providing local government agencies with advanced, CBNP-developed operational atmospheric plume prediction capabilities that can be seamlessly integrated with appropriate federal agency support for homeland security. LINC's approach is to integrate Lawrence Livermore National Laboratory's (LLNL) National Atmospheric Release Advisory Center (NARAC) tools and services with local emergency management and response centers. In the event of an airborne chemical or biological agent release in an urban area, large portions of the city and even the surrounding suburbs may be affected by the airbornemore » plume, depending on the type of agent, size of release, dissemination mechanism and ambient meteorological conditions. The goal of LINC is to provide real-time predictions that would be used by emergency managers and responders (fire, police, hazmat, etc.) to map the extent and effects of hazardous airborne material. Prompt predictions are provided to guide first responders in determining protective actions to be taken (use of personal protective equipment, evacuation, sheltering in place, etc.), safe locations for incident command posts, and critical facilities that may be at risk (hospitals, schools, etc.). LINC also provides response teams from multiple jurisdictions (local, state, and federal) with tools to effectively share information regarding the areas and populations at risk. The ultimate goal of LINC is a seamless and coordinated nationwide system that integrates NARAC prediction and situation awareness resources with the appropriate local, state and federal agencies for homeland security applications ranging from planning to emergency response to consequence assessment and attribution.« less

  2. Reported implementation lessons from a national quality improvement initiative; Productive Ward: Releasing Time to Care™. A qualitative, ward-based team perspective.

    PubMed

    White, Mark; Butterworth, Tony; Wells, John S G

    2017-10-01

    To explore the experiences of participants involved in the implementation of the Productive Ward: Releasing Time to Care™ initiative in Ireland, identifying key implementation lessons. A large-scale quality improvement programme Productive Ward: Releasing Time to Care™ was introduced nationwide into Ireland in 2011. We captured accounts from ward-based teams in an implementation phase during 2013-14 to explore their experiences. Semi-structured, in-depth interviews with a purposive sample of 24 members of ward-based teams from nine sites involved in the second national phase of the initiative were conducted. Interviews were analysed and coded under themes, using a seven-stage iterative process. The predominant theme identified was associated with the implementation and management of the initiative and included: project management; training; preparation; information and communication; and participant's negative experiences. The most prominent challenge reported related to other competing clinical priorities. Despite the structured approach of Productive Ward: Releasing Time to Care™, it appears that overstretched and busy clinical environments struggle to provide the right climate and context for ward-based teams to engage and interact actively with quality improvement tools, methods and activities. Findings highlight five key aspects of implementation and management that will help facilitate successful adoption of large-scale, ward-based quality improvement programmes such as Productive Ward: Releasing Time to Care™. Utilising pre-existing implementation or quality frameworks to assess each ward/unit for 'readiness' prior to commencing a quality improvement intervention such as Productive Ward: Releasing Time to Care™ should be considered. © 2017 John Wiley & Sons Ltd.

  3. Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control

    NASA Astrophysics Data System (ADS)

    Prikryl, Paul; Bruntz, Robert; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel

    2018-06-01

    Occurrence of severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system is investigated. It is observed that significant snowfall, wind and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur within a few days after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., 2009, 2016) is corroborated for the southern hemisphere. Cases of severe weather events are examined in the context of the magnetosphere-ionosphere-atmosphere (MIA) coupling. Physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., 1990) reveal that propagating waves originating in the lower thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere and initiate convection to form cloud/precipitation bands. It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.

  4. Modulation of precipitation by conditional symmetric instability release

    NASA Astrophysics Data System (ADS)

    Glinton, Michael R.; Gray, Suzanne L.; Chagnon, Jeffrey M.; Morcrette, Cyril J.

    2017-03-01

    Although many theoretical and observational studies have investigated the mechanism of conditional symmetric instability (CSI) release and associated it with mesoscale atmospheric phenomena such as frontal precipitation bands, cloud heads in rapidly developing extratropical cyclones and sting jets, its climatology and contribution to precipitation have not been extensively documented. The aim of this paper is to quantify the contribution of CSI release, yielding slantwise convection, to climatological precipitation accumulations for the North Atlantic and western Europe. Case studies reveal that CSI release could be common along cold fronts of mature extratropical cyclones and the North Atlantic storm track is found to be a region with large CSI according to two independent CSI metrics. Correlations of CSI with accumulated precipitation are also large in this region and CSI release is inferred to be occurring about 20% of the total time over depths of over 1 km. We conclude that the inability of current global weather forecast and climate prediction models to represent CSI release (due to insufficient resolution yet lack of subgrid parametrization schemes) may lead to errors in precipitation distributions, particularly in the region of the North Atlantic storm track.

  5. Relating GRACE terrestrial water storage variations to global fields of atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Humphrey, Vincent; Gudmundsson, Lukas; Isabelle Seneviratne, Sonia

    2015-04-01

    Synoptic, seasonal and inter-annual fluctuations in atmospheric dynamics all influence terrestrial water storage, with impacts on ecosystems functions, human activities and land-climate interactions. Here we explore to which degree atmospheric variables can explain GRACE estimates of terrestrial water storage on different time scales. Since 2012, the most recent GRACE gravity field solutions (Release 05) can be used to monitor global changes in terrestrial water storage with an unprecedented level of accuracy over more than a decade. In addition, the release of associated gridded and post-processed products facilitates comparisons with other global datasets such as land surface model outputs or satellite observations. We investigate how decadal trends, inter-annual fluctuations as well as monthly anomalies of the seasonal cycle of terrestrial water storage can be related to fields of atmospheric forcing, including e.g. precipitation and temperature as estimated in global reanalysis products using statistical techniques. In the majority of the locations with high signal to noise ratio, both short and long-term fluctuations of total terrestrial water storage can be reconstructed to a large degree based on available atmospheric forcing. However, in some locations atmospheric forcing alone is not sufficient to explain the total change in water storage, suggesting strong influence of other processes. Within that framework, the question of an amplification or attenuation of atmospheric forcing through land-surface feedbacks and changes in long term water storage is discussed, also with respect to uncertainties and potential systematic biases in the results.

  6. Silicon release coating, method of making same, and method of using same

    DOEpatents

    Jonczyk, Ralf [Wilmington, DE

    2011-11-22

    A method of making a release coating includes the following steps: forming a mixture that includes (a) solid components comprising (i) 20-99% silicon by weight and (ii) 1-80% silicon nitride by weight and (b) a solvent; applying the mixture to an inner portion of a crucible or graphite board adapted to form an ingot or wafer comprising silicon; and annealing the mixture in a nitrogen atmosphere at a temperature ranging from 1000 to 2000.degree. C. The invention may also relate to release coatings and methods of making a silicon ingot or wafer including the use of a release coating.

  7. The biota as ancient and modern modulator of the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Lovelock, J. E.

    1978-01-01

    The composition of the terrestrial atmosphere is thought to have been markedly modified by surface microbiota and modulated around quantities of gases optimized for growth of these microbiota. Three diagrams illustrating these suppositions are presented. The first shows a probable order of appearance of major metabolic pathways in microbes that interact with sediment and atmosphere. It is based on evolutionary considerations and is devised independently of the fossil record. The second diagram shows the qualitative emissions and removals of atmospheric gases by anaerobic organisms; it approximates those processes thought to have dominated the terrestrial atmosphere in Archean times. The third diagrams gaseous emissions and removals by the major groups of organisms, including oxygen-releasing and -utilizing forms. Biological gas exchange processes thought to have dominated the atmosphere since the Proterozoic are thus represented.

  8. A CASE STUDY OF CHLORINE TRANSPORT AND FATE FOLLOWING A LARGE ACCIDENTAL RELEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, R.; Hunter, C.; Werth, D.

    2012-08-01

    A train derailment that occurred in Graniteville, South Carolina during the early morning hours of 06 January, 2005 resulted in the prompt release of approximately 60 tons of chlorine to the environment. Comprehensive modeling of the transport and fate of this release was performed including the characterization of the initial three-phased chlorine release, a detailed determination of the local atmospheric conditions acting to generate, disperse, and deplete the chlorine vapor cloud, the establishment of physical exchange mechanisms between the airborne vapor and local surface waters, and local aquatic dilution and mixing.

  9. National Maps - Pacific - NOAA's National Weather Service

    Science.gov Websites

    select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News

  10. 32 CFR Appendix G to Part 275 - Releasing Information Obtained From Financial Institutions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Releasing Information Obtained From Financial Institutions G Appendix G to Part 275 National Defense Department of Defense (Continued) OFFICE OF THE... FINANCIAL PRIVACY ACT OF 1978 Pt. 275, App. G Appendix G to Part 275—Releasing Information Obtained From...

  11. 32 CFR Appendix G to Part 275 - Releasing Information Obtained From Financial Institutions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Releasing Information Obtained From Financial Institutions G Appendix G to Part 275 National Defense Department of Defense (Continued) OFFICE OF THE... FINANCIAL PRIVACY ACT OF 1978 Pt. 275, App. G Appendix G to Part 275—Releasing Information Obtained From...

  12. 32 CFR Appendix G to Part 275 - Releasing Information Obtained From Financial Institutions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Releasing Information Obtained From Financial Institutions G Appendix G to Part 275 National Defense Department of Defense (Continued) OFFICE OF THE... FINANCIAL PRIVACY ACT OF 1978 Pt. 275, App. G Appendix G to Part 275—Releasing Information Obtained From...

  13. 32 CFR Appendix G to Part 275 - Releasing Information Obtained From Financial Institutions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Releasing Information Obtained From Financial Institutions G Appendix G to Part 275 National Defense Department of Defense (Continued) OFFICE OF THE... FINANCIAL PRIVACY ACT OF 1978 Pt. 275, App. G Appendix G to Part 275—Releasing Information Obtained From...

  14. Efficient Radiative Transfer for Dynamically Evolving Stratified Atmospheres

    NASA Astrophysics Data System (ADS)

    Judge, Philip G.

    2017-12-01

    We present a fast multi-level and multi-atom non-local thermodynamic equilibrium radiative transfer method for dynamically evolving stratified atmospheres, such as the solar atmosphere. The preconditioning method of Rybicki & Hummer (RH92) is adopted. But, pressed for the need of speed and stability, a “second-order escape probability” scheme is implemented within the framework of the RH92 method, in which frequency- and angle-integrals are carried out analytically. While minimizing the computational work needed, this comes at the expense of numerical accuracy. The iteration scheme is local, the formal solutions for the intensities are the only non-local component. At present the methods have been coded for vertical transport, applicable to atmospheres that are highly stratified. The probabilistic method seems adequately fast, stable, and sufficiently accurate for exploring dynamical interactions between the evolving MHD atmosphere and radiation using current computer hardware. Current 2D and 3D dynamics codes do not include this interaction as consistently as the current method does. The solutions generated may ultimately serve as initial conditions for dynamical calculations including full 3D radiative transfer. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

  15. Atmospheric radiation measurement program facilities newsletter, March 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdridge, D. J.

    2002-04-18

    sparsely spaced, costly weather balloon releases. IHOP-2002 will give researchers an active platform for testing and evaluating the capabilities and limitations of several water vapor measurement instruments. For example, the National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory will be bringing a mini-DIAL (differential absorption lidar) to the SGP central facility for comparison with the SGP Raman lidar. Lidars send beams of laser light skyward and measure scattered light not absorbed by water molecules. The collection of IHOP-2002 instruments includes 2 fixed radars, 6 mobile radars, 2 airborne radars, 8 lidars (6 of which can sample water vapor), 1 advanced wind profiler, 2 sodars, 3 interferometers, 18 special surface stations, 800 radiosondes, 400 dropsondes, 1 tethersonde system, 52 global positioning system receivers, 3 profiling radiometers, 1 mobile profiling radiometer and wind profiler, and 5 water vapor radiometers. Six research aircraft will be deployed during the course of the field campaign. The aircraft will occasionally fly low-level tracks and will deploy dropsondes. A dropsonde resembles a radiosonde, an instrument package attached to a helium-filled balloon that rises into the atmosphere, but the dropsonde is released from an airplane and collects data on its way down to the ground. Finders of dropsondes are asked to follow the instructions on the package for returning the device to the researcher. Funding for IHOP-2002 is from many sources, including NOAA, the National Science Foundation, the National Center for Atmospheric Research, and the U.S. Department of Energy. Participation is worldwide, including researchers from Australia, Canada, France, Germany, the Netherlands, the United Kingdom, and the United States.« less

  16. 6 CFR 7.23 - Emergency release of classified information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Emergency release of classified information. 7... NATIONAL SECURITY INFORMATION Classified Information § 7.23 Emergency release of classified information. (a... notify the DHS Chief Security Officer and the originating agency of the information disclosed. A copy of...

  17. 32 CFR 811.2 - Release of visual information materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 811.2 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE SALES AND SERVICES RELEASE, DISSEMINATION, AND SALE OF VISUAL INFORMATION MATERIALS § 811.2 Release of visual... Security and Policy Review Program. (b) The Secretary of the Air Force for Legislative Liaison (SAF/LL...

  18. 1996 News Releases | NREL

    Science.gov Websites

    6 News Releases Access news stories about the laboratory and renewable energy and energy efficiency Facility Slashes Energy Use by 66 Percent - (10/3/96) Agreement Moves Nevada Solar Plant Step Closer to Converter Wins National Award - (7/25/96) Solar Energy to Help Heat Major Commercial Facility - (6/21/96

  19. WATER LEVEL DRAWDOWN TRIGGERS SYSTEM-WIDE BUBBLE RELEASE FROM RESERVOIR SEDIMENTS

    EPA Science Inventory

    Reservoirs are an important anthropogenic source of methane and ebullition is a key pathway by which methane stored in reservoir sediments can be released to the atmosphere. Changes in hydrostatic pressure during periods of falling water levels can trigger bubbling events, sugge...

  20. Real-time noble gas release signaling rock deformation

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.; Gardner, W. P.; Lee, H.

    2016-12-01

    We present empirical results/relationships of rock strain, microfracture density, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite and basalt. Noble gases are contained in most crustal rock at inter/intra granular sites, their release during natural and manmade stress and strain changes represents a signal of brittle/semi brittle deformation. The gas composition depends on lithology, geologic history and age, fluids present, and uranium, thorium and potassium-40 concentrations in the rocks that affect radiogenic noble gases (helium, argon) production. Noble gas emission and its relationship to crustal processes have been studied, including correlations to tectonic velocities and qualitative estimates of deep permeability from surface measurements, finger prints of nuclear weapon detonation, and as potential precursory signals to earthquakes attributed to gas release due to pre-seismic stress, dilatancy and/or rock fracturing. Helium emission has been shown as a precursor of volcanic activity. Real-time noble gas release is observed using an experimental system utilizing mass spectrometers to measure gases released during triaxial rock deformation. Noble gas release is shown to represent a sensitive precursor signal of rock deformation by relating real-time noble gas release to stress-strain state changes and acoustic emissions. We propose using noble gas release to also signal rock deformation in boreholes, mines and nuclear waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress/strain state, and or permanent deformation dependent. Such relationships, when calibrated, may be used to sense rock deformation and then develop predictive models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the US Dept. of Energy's National Nuclear Security Administration under

  1. How Mars lost its atmosphere

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    1992-01-01

    atmosphere protected trace atmophiles against escape. (3) Mars was indeed stripped of its early atmosphere but a small remnant was safely stored in the regolith, later released as a byproduct of water mobilization.

  2. Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere

    DTIC Science & Technology

    2015-10-08

    Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...ABSTRACT Build a compatible set of models which 1) calculate the spectrum of atmospheric GWs excited by a tsunami (using ocean model data as input...for public release; distribution is unlimited. Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere Sharon

  3. Doppler Radar National Mosaic - NOAA's National Weather Service

    Science.gov Websites

    Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings

  4. Atmospheric Transport Modelling and Radionuclide Analysis for the NPE 2015 scenario

    NASA Astrophysics Data System (ADS)

    Ross, J. Ole; Bollhöfer, Andreas; Heidmann, Verena; Krais, Roman; Schlosser, Clemens; Gestermann, Nicolai; Ceranna, Lars

    2017-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) prohibits all kinds of nuclear explosions. The International Monitoring System (IMS) is in place and at about 90% complete to verify compliance with the CTBT. The stations of the waveform technologies are capable to detect seismic, hydro-acoustic and infrasonic signals for detection, localization, and characterization of explosions. For practicing Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification procedures and interplay between the International Data Centre (IDC) and National Data Centres (NDC), prepardness exercises (NPE) are regularly performed with selected events of fictitious CTBT-violation. The German NDC's expertise for radionuclide analyses and operation of station RN33 is provided by the Federal Office for Radiation Protection (BfS) while Atmospheric Transport Modelling (ATM) for CTBT purposes is performed at the Federal Institute for Geosciences and Natural Resources (BGR) for the combination of the radionuclide findings with waveform evidence. The radionuclide part of the NPE 2015 scenario is tackled in a joint effort by BfS and BGR. First, the NPE 2015 spectra are analysed, fission products are identified, and respective activity concentrations are derived. Special focus is on isotopic ratios which allow for source characterization and event timing. For atmospheric backtracking the binary coincidence method is applied for both, SRS fields from IDC and WMO-RSMC, and for in-house backward simulations in higher resolution for the first affected samples. Results are compared with the WebGrape PSR and the spatio-temporal domain with high atmospheric release probability is determined. The ATM results together with the radionuclide fingerprint are used for identification of waveform candidate events. Comparative forward simulations of atmospheric dispersion for candidate events are performed. Finally the overall consistency of various source scenarios is assessed and a fictitious government briefing on

  5. Radioactivity impacts of the Fukushima Nuclear Accident on the atmosphere

    NASA Astrophysics Data System (ADS)

    Lin, W.; Chen, L.; Yu, W.; Ma, H.; Zeng, Z.; Lin, J.; Zeng, S.

    2015-02-01

    The Fukushima Nuclear Accident (FNA) resulted in a large amount of radionuclides released into the atmosphere and dispersed globally, which has greatly raised public concerns. The state of the art for source terms of 19 kinds of radionuclides derived from the FNA was comprehensively collected and compared with levels of the global fallout and the Chernobyl Nuclear Accident (CNA). The atmospheric impacts of the FNA were evaluated from three aspects including radioactive baseline of the atmosphere, the concentration limits in standards and radiological protection. The FNA should not impose significant radiological risk on the public members in the countries excluding Japan. A conceptual scheme of Fukushima-derived radionuclides with physical and physicochemical insights on different temporal-spatial timescales was discussed and illustrated to understand their fates in the atmosphere.

  6. Influence of atmospheric deposition on Okefenokee National Wildlife Refuge

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Jackson, B.P.

    1995-01-01

    Designation of Okefenokee National Wildlife Refuge (Georgia) as a Class I Air Quality Area affords mandatory protection of the airshed through permit-review processes for planned developments. Rainfall is the major source of water to the swamp, and potential impacts from developments in the airshed are high. To meet management needs for baseline information, chemical contributions from atmospheric deposition and partitioning of anions and cations in various matrices of the swamp, with emphasis on mercury and lead, were determined during this study. Chemistry of rainfall was measured on an event basis from one site and quarterly on surface water, pore water, floc, and sediment from four locations. A sediment core collected from the Refuge interior was sectioned, aged, and analyzed for mercury. Rainfall was acidic (pH 4.7-4.9), with average total and methyl mercury concentrations of 9 ng/L and 0.1 ng/L, respectively. Surface waters were acidic (pH 3.8-4.1), dilute (specific conductance 35-60 pS), and highly organic (dissolved organic carbon 35-50 mg/L). Total mercury was 1-3.5 ng/L in surface and pore water, and methyl mercury was 0.02-0.20 ng/L. Total mercury in sediments and floc was 100-200 ng/g dry weight, and methyl mercury was 4-16 ng/g. Lead was 0-1.7 pg/L in rainfall, not detectable in surface water, 3.4-5.4 pg/L in pore water, and 3.9-4.9 mg/kg in floc and sediment. Historical patterns of mercury deposition showed an increase in total mercury from pre-1800 concentrations of 250 ng/g to 500 ng/g in 1950, with concentrations declining thereafter to present.

  7. Characteristics of CO2 release from forest soil in the mountains near Beijing.

    PubMed

    Sun, Xiang Yang; Gao, Cheng Da; Zhang, Lin; Li, Su Yan; Qiao, Yong

    2011-04-01

    CO2 release from forest soil is a key driver of carbon cycling between the soil and atmosphere ecosystem. The rate of CO2 released from soil was measured in three forest stands (in the mountainous region near Beijing, China) by the alkaline absorption method from 2004 to 2006. The rate of CO2 released did not differ among the three stands. The CO2 release rate ranged from - 341 to 1,193 mg m(-2) h(-1), and the mean value over all three forests and sampling times was 286 mg m(-2) h(-1). CO2 release was positively correlated with soil water content and the soil temperature. Diurnally, CO2 release was higher in the day than at night. Seasonally, CO2 release was highest in early autumn and lowest in winter; in winter, negative values of CO2 release suggested that CO2 was absorbed by soil.

  8. The Next Generation of Planetary Atmospheric Probes

    NASA Technical Reports Server (NTRS)

    Houben, Howard

    2005-01-01

    Entry probes provide useful insights into the structures of planetary atmospheres, but give only one-dimensional pictures of complex four-dimensional systems that vary on all temporal and spatial scales. This makes the interpretation of the results quite challenging, especially as regards atmospheric dynamics. Here is a planetary meteorologist's vision of what the next generation of atmospheric entry probe missions should be: Dedicated sounding instruments get most of the required data from orbit. Relatively simple and inexpensive entry probes are released from the orbiter, with low entry velocities, to establish ground truth, to clarify the vertical structure, and for adaptive observations to enhance the dataset in preparation for sensitive operations. The data are assimilated onboard in real time. The products, being immediately available, are of immense benefit for scientific and operational purposes (aerobraking, aerocapture, accurate payload delivery via glider, ballooning missions, weather forecasts, etc.).

  9. The Sequoyah corporation fuels release and the Church Rock spill: unpublicized nuclear releases in American Indian communities.

    PubMed

    Brugge, Doug; deLemos, Jamie L; Bui, Cat

    2007-09-01

    The Three Mile Island nuclear release exemplifies why there is public and policy interest in the high-technology, highly visible end of the nuclear cycle. The environmental and health consequences of the early steps in the cycle--mining, milling, and processing of uranium ore--may be less appreciated. We examined 2 large unintended acute releases of uranium--at Kerr McGee's Sequoyah Fuels Corporation in Oklahoma and United Nuclear Corporation's Church Rock uranium mill in New Mexico, which were incidents with comparable magnitude to the Three Mile Island release. We urge exploration of whether there is limited national interest and concern for the primarily rural, low-income, and American Indian communities affected by these releases. More attention should be given to the early stages of the nuclear cycle and their impacts on health and the environment.

  10. The Sequoyah Corporation Fuels Release and the Church Rock Spill: Unpublicized Nuclear Releases in American Indian Communities

    PubMed Central

    Brugge, Doug; deLemos, Jamie L.; Bui, Cat

    2007-01-01

    The Three Mile Island nuclear release exemplifies why there is public and policy interest in the high-technology, highly visible end of the nuclear cycle. The environmental and health consequences of the early steps in the cycle—mining, milling, and processing of uranium ore—may be less appreciated. We examined 2 large unintended acute releases of uranium—at Kerr McGee’s Sequoyah Fuels Corporation in Oklahoma and United Nuclear Corporation’s Church Rock uranium mill in New Mexico, which were incidents with comparable magnitude to the Three Mile Island release. We urge exploration of whether there is limited national interest and concern for the primarily rural, low-income, and American Indian communities affected by these releases. More attention should be given to the early stages of the nuclear cycle and their impacts on health and the environment. PMID:17666688

  11. Uncertainty Modeling of Pollutant Transport in Atmosphere and Aquatic Route Using Soft Computing

    NASA Astrophysics Data System (ADS)

    Datta, D.

    2010-10-01

    Hazardous radionuclides are released as pollutants in the atmospheric and aquatic environment (ATAQE) during the normal operation of nuclear power plants. Atmospheric and aquatic dispersion models are routinely used to assess the impact of release of radionuclide from any nuclear facility or hazardous chemicals from any chemical plant on the ATAQE. Effect of the exposure from the hazardous nuclides or chemicals is measured in terms of risk. Uncertainty modeling is an integral part of the risk assessment. The paper focuses the uncertainty modeling of the pollutant transport in atmospheric and aquatic environment using soft computing. Soft computing is addressed due to the lack of information on the parameters that represent the corresponding models. Soft-computing in this domain basically addresses the usage of fuzzy set theory to explore the uncertainty of the model parameters and such type of uncertainty is called as epistemic uncertainty. Each uncertain input parameters of the model is described by a triangular membership function.

  12. Does exposure to opioid substitution treatment in prison reduce the risk of death after release? A national prospective observational study in England.

    PubMed

    Marsden, John; Stillwell, Garry; Jones, Hayley; Cooper, Alisha; Eastwood, Brian; Farrell, Michael; Lowden, Tim; Maddalena, Nino; Metcalfe, Chris; Shaw, Jenny; Hickman, Matthew

    2017-08-01

    People with opioid use disorder (OUD) in prison face an acute risk of death after release. We estimated whether prison-based opioid substitution treatment (OST) reduces this risk. Prospective observational cohort study using prison health care, national community drug misuse treatment and deaths registers. Recruitment at 39 adult prisons in England (32 male; seven female) accounting for 95% of OST treatment in England during study planning. Adult prisoners diagnosed with OUD (recruited: September 2010-August 2013; first release: September 2010; last release: October 2014; follow-up to February 2016; n = 15 141 in the risk set). At release, participants were classified as OST exposed (n = 8645) or OST unexposed (n = 6496). The OST unexposed group did not receive OST, or had been withdrawn, or had a low dose. Primary outcome: all-cause mortality (ACM) in the first 4 weeks. drug-related poisoning (DRP) deaths in the first 4 weeks; ACM and DRP mortality after 4 weeks to 1 year; admission to community drug misuse treatment in the first 4 weeks. Unadjusted and adjusted Cox regression models (covariates: sex, age, drug injecting, problem alcohol use, use of benzodiazepines, cocaine, prison transfer and admission to community treatment), tested difference in mortality rates and community treatment uptake. During the first 4 weeks after prison release there were 24 ACM deaths: six in the OST exposed group and 18 in the OST unexposed group [mortality rate 0.93 per 100 person-years (py) versus 3.67 per 100 py; hazard ratio (HR) = 0.25; 95% confidence interval (CI) = 0.10-0.64]. There were 18 DRP deaths: OST exposed group mortality rate 0.47 per 100 py versus 3.06 per 100 py in the OST unexposed group (HR = 0.15; 95% CI = 0.04-0.53). There was no group difference in mortality risk after the first month. The OST exposed group was more likely to enter drug misuse treatment in the first month post-release (odds ratio 2.47, 95% CI = 2.31-2.65). The OST

  13. 14 CFR 1213.106 - Preventing release of classified information to the media.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to the media. 1213.106 Section 1213.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RELEASE OF INFORMATION TO NEWS AND INFORMATION MEDIA § 1213.106 Preventing release of classified information to the media. (a) Release of classified information in any form (e.g., documents, through...

  14. 75 FR 65256 - Flower Garden Banks National Marine Sanctuary Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... vessel engine cooling water, clean vessel generator cooling water, clean bilge water, or anchor wash... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 15 CFR Part 922 [Docket No... National Marine Sanctuaries (ONMS), National Oceanic and Atmospheric Administration (NOAA), Department of...

  15. NOAA releases final report of Sandy service assessment

    Science.gov Websites

    released a report on the National Weather Service's performance during hurricane/post tropical cyclone Sandy. The report, Hurricane/Post Tropical Cyclone Sandy Service Assessment, reaffirms that the National warnings for dangerous storms like Sandy, even when they are expected to become post-tropical cyclones by

  16. Atmospheric Detectives. Atlas 2 Teacher's Guide with Activities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Affairs Div.

    As part of the National Aeronautics and Space Administration Mission to Planet Earth, ATLAS 2 will help develop a thorough picture of the Sun's output, its interaction with the atmosphere, and the well-being of Earth's middle atmosphere. This middle school level guide probes the connection between the activities of scientists and the observable…

  17. Science Highlights and Lessons Learned from the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Fetzer, Eric J.; Suda, Jarrod; Licata, Steve

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) and companion instrument, the Advanced Microwave Sounding Unit (AMSU) on the NASA Earth Observing System Aqua spacecraft are facility instruments designed to support measurements of atmospheric temperature, water vapor and a wide range of atmospheric constituents in support of weather forecasting and scientific research in climate and atmospheric chemistry. This paper is an update to the science highlights from a paper by the authors released last year and also looks back at the lessons learned and future needs of the scientific community. These lessons not only include requirements on the measurements, but scientific shortfalls as well. Results from the NASA Science Community Workshop in IR and MW Sounders relating to AIRS and AMSU requirements and concerns are covered and reflect much of what has been learned and what is needed for future atmospheric sounding from Low Earth Orbit.

  18. 32 CFR 635.11 - Release of information under the Freedom of Information Act (FOIA).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Release of information under the Freedom of Information Act (FOIA). 635.11 Section 635.11 National Defense Department of Defense (Continued) DEPARTMENT OF... reports to determine if any portion is exempt from release. Any discretionary decision to disclose...

  19. 32 CFR 635.11 - Release of information under the Freedom of Information Act (FOIA).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Release of information under the Freedom of Information Act (FOIA). 635.11 Section 635.11 National Defense Department of Defense (Continued) DEPARTMENT OF... reports to determine if any portion is exempt from release. Any discretionary decision to disclose...

  20. 32 CFR 635.11 - Release of information under the Freedom of Information Act (FOIA).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Release of information under the Freedom of Information Act (FOIA). 635.11 Section 635.11 National Defense Department of Defense (Continued) DEPARTMENT OF... reports to determine if any portion is exempt from release. Any discretionary decision to disclose...

  1. 32 CFR 635.11 - Release of information under the Freedom of Information Act (FOIA).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Release of information under the Freedom of Information Act (FOIA). 635.11 Section 635.11 National Defense Department of Defense (Continued) DEPARTMENT OF... reports to determine if any portion is exempt from release. Any discretionary decision to disclose...

  2. 32 CFR 635.11 - Release of information under the Freedom of Information Act (FOIA).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Release of information under the Freedom of Information Act (FOIA). 635.11 Section 635.11 National Defense Department of Defense (Continued) DEPARTMENT OF... reports to determine if any portion is exempt from release. Any discretionary decision to disclose...

  3. Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Schlagenhauf, Lukas; Kuo, Yu-Ying; Bahk, Yeon Kyoung; Nüesch, Frank; Wang, Jing

    2015-11-01

    Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected.

  4. 2012 National Immunization Survey Data

    MedlinePlus

    ... Coalition AIM Vaccine Education Center 2012 National Immunization Survey Data Released Recommend on Facebook Tweet Share Compartir ... this page kept for historical reasons. National Immunization Survey (NIS) – Children (19-35 months old) MMWR : National ...

  5. Comet Meteor Shower Put Magnesium and Iron into Martian Atmosphere

    NASA Image and Video Library

    2014-11-07

    The places where the red line on this graph extends higher than the blue line show detection of metals added to the Martian atmosphere from dust particles released by a passing comet on Oct. 19, 2014. The graphed data are from NASA MAVEN spacecraft.

  6. Examining Atmospheric and Ecological Drivers of Wildfires, Modeling Wildfire Occurrence in the Southwest United States, and Using Atmospheric Sounding Observations to Verify National Weather Service Spot Forecasts

    NASA Astrophysics Data System (ADS)

    Nauslar, Nicholas J.

    This dissertation is comprised of three different papers that all pertain to wildland fire applications. The first paper performs a verification analysis on mixing height, transport winds, and Haines Index from National Weather Service spot forecasts across the United States. The final two papers, which are closely related, examine atmospheric and ecological drivers of wildfire for the Southwest Area (SWA) (Arizona, New Mexico, west Texas, and Oklahoma panhandle) to better equip operational fire meteorologists and managers to make informed decisions on wildfire potential in this region. The verification analysis here utilizes NWS spot forecasts of mixing height, transport winds and Haines Index from 2009-2013 issued for a location within 50 km of an upper sounding location and valid for the day of the fire event. Mixing height was calculated from the 0000 UTC sounding via the Stull, Holzworth, and Richardson methods. Transport wind speeds were determined by averaging the wind speed through the boundary layer as determined by the three mixing height methods from the 0000 UTC sounding. Haines Index was calculated at low, mid, and high elevation based on the elevation of the sounding and spot forecast locations. Mixing height forecasts exhibited large mean absolute errors and biased towards over forecasting. Forecasts of transport wind speeds and Haines Index outperformed mixing height forecasts with smaller errors relative to their respective means. The rainfall and lightning associated with the North American Monsoon (NAM) can vary greatly intra- and inter-annually and has a large impact on wildfire activity across the SWA by igniting or suppressing wildfires. NAM onset thresholds and subsequent dates are determined for the SWA and each Predictive Service Area (PSA), which are sub-regions used by operational fire meteorologists to predict wildfire potential within the SWA, April through September from 1995-2013. Various wildfire activity thresholds using the number

  7. 14 CFR 1213.106 - Preventing release of classified information to the media.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... information to the media. 1213.106 Section 1213.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RELEASE OF INFORMATION TO NEWS AND INFORMATION MEDIA § 1213.106 Preventing release of classified information to the media. (a) Release of classified information in any form (e.g., documents, through...

  8. 14 CFR 1213.106 - Preventing release of classified information to the media.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... information to the media. 1213.106 Section 1213.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RELEASE OF INFORMATION TO NEWS AND INFORMATION MEDIA § 1213.106 Preventing release of classified information to the media. (a) Release of classified information in any form (e.g., documents, through...

  9. 14 CFR 1213.106 - Preventing release of classified information to the media.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... information to the media. 1213.106 Section 1213.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RELEASE OF INFORMATION TO NEWS AND INFORMATION MEDIA § 1213.106 Preventing release of classified information to the media. (a) Release of classified information in any form (e.g., documents, through...

  10. External quality-assurance project report for the National Atmospheric Deposition Program/National Trends Network and Mercury Deposition Network, 2009-2010

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Martin, RoseAnn; Rhodes, Mark F.; Chesney, Tanya A.

    2014-01-01

    The U.S. Geological Survey operated six distinct programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program/National Trends Network (NTN) and Mercury Deposition Network (MDN) during 2009–2010. The field-audit program assessed the effects of onsite exposure, sample handling, and shipping on the chemistry of NTN samples; a system-blank program assessed the same effects for MDN. Two interlaboratory-comparison programs assessed the bias and variability of the chemical analysis data from the Central Analytical Laboratory (CAL) and Mercury (Hg) Analytical Laboratory (HAL). The blind-audit program was also implemented for the MDN to evaluate analytical bias in total Hg concentration data produced by the HAL. The co-located-sampler program was used to identify and quantify potential shifts in NADP data resulting from replacement of original network instrumentation with new electronic recording rain gages (E-gages) and precipitation collectors that use optical sensors. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends of chemical constituents in wet deposition across the United States. Results also suggest that retrofit of the NADP networks with the new precipitation collectors could cause –8 to +14 percent shifts in NADP annual precipitation-weighted mean concentrations and total deposition values for ammonium, nitrate, sulfate, and hydrogen ion, and larger shifts (+13 to +74 percent) for calcium, magnesium, sodium, potassium, and chloride. The prototype N-CON Systems bucket collector is more efficient in the catch of precipitation in winter than Aerochem Metrics Model 301 collector, especially for light snowfall.

  11. Volcanism and an Ancient Atmosphere on the Moon

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2017-11-01

    One of the distinguishing features of the Moon is its flimsy atmosphere, which has a pressure 300 trillion times smaller than Earth's pressure at sea level. The density is so low that gas molecules rarely collide and readily escape into space. Micrometeorites hit the surface at their full cosmic velocities and the solar wind implants hydrogen, helium, carbon, and other elements into the dusty lunar surface. This airless body has been like this for billions of years. However, Debra Needham (NASA Marshall Space Flight Center) and David Kring (Center for Lunar Science and Exploration at the Lunar and Planetary Institute, Houston) show that the Moon probably had a significant atmosphere for about 70 million years during the peak production rate of the lunar maria 3.5 billion years ago. The maria (dark regions that decorate the lunar nearside) are composed of overlapping lava flows. Needham and Kring show that the lavas would have transported sufficient volatiles such as carbon monoxide, sulfur gases, and H2O to the surface to create an atmosphere. The volcanism would have released about 20 quadrillion kilograms of gases, creating an atmosphere with a pressure 50% higher than in the current Martian atmosphere. Calculations show that the loss rate to space from this atmosphere would have been 10 kilograms per second, implying that it would take about 70 million years to remove this volcanically produced atmosphere.

  12. Applications of Ground-based Mobile Atmospheric Monitoring: Real-time Characterization of Source Emissions and Ambient Concentrations

    NASA Astrophysics Data System (ADS)

    Goetz, J. Douglas

    Gas and particle phase atmospheric pollution are known to impact human and environmental health as well as contribute to climate forcing. While many atmospheric pollutants are regulated or controlled in the developed world uncertainty still remains regarding the impacts from under characterized emission sources, the interaction of anthropogenic and naturally occurring pollution, and the chemical and physical evolution of emissions in the atmosphere, among many other uncertainties. Because of the complexity of atmospheric pollution many types of monitoring have been implemented in the past, but none are capable of perfectly characterizing the atmosphere and each monitoring type has known benefits and disadvantages. Ground-based mobile monitoring with fast-response in-situ instrumentation has been used in the past for a number of applications that fill data gaps not possible with other types of atmospheric monitoring. In this work, ground-based mobile monitoring was implemented to quantify emissions from under characterized emission sources using both moving and portable applications, and used in a novel way for the characterization of ambient concentrations. In the Marcellus Shale region of Pennsylvania two mobile platforms were used to estimate emission rates from infrastructure associated with the production and transmission of natural gas using two unique methods. One campaign investigated emissions of aerosols, volatile organic compounds (VOCs), methane, carbon monoxide (CO), nitrogen dioxide (NO2), and carbon dioxide (CO 2) from natural gas wells, well development practices, and compressor stations using tracer release ratio methods and a developed fenceline tracer release correction factor. Another campaign investigated emissions of methane from Marcellus Shale gas wells and infrastructure associated with two large national transmission pipelines using the "Point Source Gaussian" method described in the EPA OTM-33a. During both campaigns ambient concentrations

  13. Development of a model of atmospheric oxygen variations to estimate terrestrial carbon storage and release

    NASA Technical Reports Server (NTRS)

    Najjar, Raymond G.; Keeling, Ralph F.; Erickson, David J., III

    1995-01-01

    Two years of work has been completed towards the development of a model of atmospheric oxygen variations on seasonal to decadal timescales. During the first year we (1) constructed a preliminary monthly-mean climatology of surface ocean oxygen anomalies, (2) began modeling studies to assess the importance of short term variability on the monthly-mean oxygen flux, and (3) conducted preliminary simulations of the annual mean cycle of oxygen in the atmosphere. Most of the second year was devoted to improving the monthly mean climatology of oxygen in the surface ocean.

  14. Volcanic Destabilisation of Methane Clathrate Hydrate on Titan: the Mechanism for Resupplying Atmospheric NH3?

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Sotin, C.; Choukroun, M.; Matson, D. L.; Johnson, T. V.

    2013-09-01

    As previously noted [1-3], Titan may have an upper crust rich in methane clathrates which would have formed early in Titan's history [2, 3]. With an estimated mass of ~2 x 1017 kg, methane is a major component of Titan's atmosphere. The abundance of methane, which photo-dissociates under the influence of solar UV, and the presence of 40Ar require replenishment of these atmospheric components over geologic timescales. One possibility is that volcanic processes release these gases from Titan's interior, although so far there is no conclusive evidence of ongoing volcanic activity: no "smoking gun" has been observed. Still, some process has recently supplied a considerable amount of methane to Titan's atmosphere. We have been investigating the emplacement of proposed "cryolavas" of varying composition to, firstly, examine how such a volcanic process behaves thermally in order to determine event detectability via remote sensing, and, secondly, to model the penetration of the thermal wave into a methane-rich substrate. Destabilisation of clathrates would release methane into the atmosphere and liberate trapped argon.

  15. Clathrate hydrates as possible source of episodic methane releases on Mars

    NASA Astrophysics Data System (ADS)

    Karatekin, Özgür; Gloesener, Elodie; Temel, Orkun

    2017-04-01

    Methane has been shown to vary with location and time in the Martian atmosphere, with abundances of up to tens of parts-per-billion by volume (ppbv). Since methane is short-lived on geological time scales, its presence implies the existence of an active, current source of methane that is yet to be understood. In this study we investigate the destabilization of subsurface reservoirs of clathrate hydrates as a possible geological source of methane. Clathrate hydrates are crystalline compounds constituted by cages of hydrogen-bonded water molecules, inside of which guest gas molecules are trapped. We show the present-day maps of methane clathrate stability zones, in particular in the vicinity of Gale Crater where the Sample Analysis at Mars (SAM) suite on the Curiosity rover has made in situ measurements of atmospheric methane, during more than 3 years. Curiosity has observed spikes of elevated methane levels of 7 ppbv on four sequential observations over a 2-month period. The possibility of episodic releases consistent with curiosity observations from a subsurface clathrate source, is investigated using a gas transport through porous Martian regolith considering different depths of reservoirs. Transport of the released methane spike into the atmosphere is simulated using the PlanetWRF model.

  16. Temperature-Controlled Clamping and Releasing Mechanism

    NASA Technical Reports Server (NTRS)

    Rosing, David; Ford, Virginia

    2005-01-01

    A report describes the development of a mechanism that automatically clamps upon warming and releases upon cooling between temperature limits of approx. =180 K and approx. =293 K. The mechanism satisfied a need specific to a program that involved repeated excursions of a spectrometer between a room-temperature atmospheric environment and a cryogenic vacuum testing environment. The mechanism was also to be utilized in the intended application of the spectrometer, in which the spectrometer would be clamped for protection during launch of a spacecraft and released in the cold of outer space to allow it to assume its nominal configuration for scientific observations. The mechanism is passive in the sense that its operation does not depend on a control system and does not require any power other than that incidental to heating and cooling. The clamping and releasing action is effected by bolt-preloaded stacks of shape-memory-alloy (SMA) cylinders. In designing this mechanism, as in designing other, similar SMA mechanisms, it was necessary to account for the complex interplay among thermal expansion, elastic and inelastic deformation under load, and SMA thermomechanical properties.

  17. Development, Validation, and Potential Enhancements to the Second-Generation Operational Aerosol Product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration

    NASA Technical Reports Server (NTRS)

    Stowe, Larry L.; Ignatov, Alexander M.; Singh, Ramdas R.

    1997-01-01

    A revised (phase 2) single-channel algorithm for aerosol optical thickness, tau(sup A)(sub SAT), retrieval over oceans from radiances in channel 1 (0.63 microns) of the Advanced Very High Resolution Radiometer (AVHRR) has been implemented at the National Oceanic and Atmospheric Administration's National Environmental Satellite Data and Information Service for the NOAA 14 satellite launched December 30, 1994. It is based on careful validation of its operational predecessor (phase 1 algorithm), implemented for NOAA 14 in 1989. Both algorithms scale the upward satellite radiances in cloud-free conditions to aerosol optical thickness using an updated radiative transfer model of the ocean and atmosphere. Application of the phase 2 algorithm to three matchup Sun-photometer and satellite data sets, one with NOAA 9 in 1988 and two with NOAA 11 in 1989 and 1991, respectively, show systematic error is less than 10%, with a random error of sigma(sub tau) approx. equal 0.04. First results of tau(sup A)(sub SAT) retrievals from NOAA 14 using the phase 2 algorithm, and from checking its internal consistency, are presented. The potential two-channel (phase 3) algorithm for the retrieval of an aerosol size parameter, such as the Junge size distribution exponent, by adding either channel 2 (0.83 microns) from the current AVHRR instrument, or a 1.6-microns channel to be available on the Tropical Rainfall Measurement Mission and the NOAA-KLM satellites by 1997 is under investigation. The possibility of using this additional information in the retrieval of a more accurate estimate of aerosol optical thickness is being explored.

  18. U.S. Fish and Wildlife Service get ready to release a rescued pelican at the Merritt Island National

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Under a rain-filled sky, Mark Epstein, with the U.S. Fish and Wildlife Service, gets ready to release a rescued white pelican. At right is Kat Royer, also with the U.S. Fish and Wildlife Service, who has fixed on it a leg band issued by the U.S. Department of the Interior's Bird Banding Laboratory. In the background is Christine Wise who is involved with rescue and rehabilitation of Florida wild animals. Wise brought the pelican to the Merritt Island National Wildlife Refuge for its release. The bird was found covered in crude oil from a contaminated ditch in northern Indiana in November, and was rescued by a local Police Department, treated, and flown to the Back to Nature Wildlife Refuge in Orlando, Fla. for care and rest. The pelican, dubbed 'Fisheater' by its rescuers, is being let go to join a flock of about 30 other white pelicans that are wintering on the refuge. White pelicans inhabit marshy lakes and along the Pacific and Texas coasts. They winter from Florida and southern California south to Panama, chiefly in coastal lagoons. They are frequently seen flying in long lines, flapping and sailing in unison, but also ride rising air currents to soar gracefully in circles. The Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  19. National transportation technology plan

    DOT National Transportation Integrated Search

    2000-05-01

    The National Science and Technology Council (NSTC) Committee on Technology, Subcommittee on Transportation Research and Development (R&D), has created a National Transportation Technology Plan that builds on the initial Technology Plan released in 19...

  20. Multiangle lidar observations of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Lalitkumar Prakash, Pawar; Choukiker, Yogesh Kumar; Raghunath, K.

    2018-04-01

    Atmospheric Lidars are used extensively to get aerosol parameters like backscatter coefficient, backscatter ratio etc. National Atmospheric Research Laboratory, Gadanki (13°N, 79°E), India has a powerful lidar which has alt-azimuth capability. Inversion method is applied to data from observations of lidar system at different azimuth and elevation angles. Data Analysis is described and Observations in 2D and 3D format are discussed. Presence of Cloud and the variation of backscatter parameters are seen in an interesting manner.

  1. Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China.

    PubMed

    Ma, Ming; Wang, Dingyong; Du, Hongxia; Sun, Tao; Zhao, Zheng; Wei, Shiqing

    2015-12-01

    Atmospheric mercury deposition by wet and dry processes contributes to the transformation of mercury from atmosphere to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to subtropical forests were identified in this study. Throughfall and open field precipitation samples were collected in 2012 and 2013 using precipitation collectors from forest sites located across Mt. Jinyun in southwest China. Samples were collected approximately every 2 weeks and analyzed for total (THg) and methyl mercury (MeHg). Forest canopy was the primary factor on THg and MeHg deposition. Simultaneously, continuous measurements of atmospheric gaseous elemental mercury (GEM) were carried out from March 2012 to February 2013 at the summit of Mt. Jinyun. Atmospheric GEM concentrations averaged 3.8 ± 1.5 ng m(-3), which was elevated compared with global background values. Sources identification indicated that both regional industrial emissions and long-range transport of Hg from central, northeast, and southwest China were corresponded to the elevated GEM levels. Precipitation deposition fluxes of THg and MeHg in Mt. Jinyun were slightly higher than those reported in Europe and North America, whereas total fluxes of MeHg and THg under forest canopy on Mt. Jiuyun were 3 and 2.9 times of the fluxes of THg in wet deposition in the open. Highly elevated litterfall deposition fluxes suggest that even in remote forest areas of China, deposition of atmospheric Hg(0) via uptake by vegetation leaf may be a major pathway for the deposition of atmospheric Hg. The result illustrates that areas with greater atmospheric pollution can be expected to have greater fluxes of Hg to soils via throughfall and litterfall.

  2. National Ice Center Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    Austin, Meg

    2002-01-01

    The long-term goal of the University Corporation for Atmospheric Research (UCAR) Visiting Scientist Program at the National Ice Center (NIC) is to recruit the highest quality visiting scientists in the ice research community for the broad purpose of strengthening the relationship between the operational and research communities in the atmospheric and oceanic sciences. The University Corporation for Atmospheric Research supports the scientific community by creating, conducting, and coordinating projects that strengthen education and research in the atmospheric, oceanic and earth sciences. UCAR accomplishes this mission by building partnerships that are national or global in scope. The goal of UCAR is to enable researchers and educators to take on issues and activities that require the combined and collaborative capabilities of a broadly engaged scientific community.

  3. Announcement: Release of National Association of State Public Health Veterinarians' 2016 Compendium of Animal Rabies Prevention and Control.

    PubMed

    2017-02-10

    The 2016 Compendium of Animal Rabies Prevention and Control was released in the March 1, 2016 issue of the Journal of the American Veterinary Medical Association (1). The Compendium's national recommendations for the prevention and control of animal rabies are intended to serve as a basis for an effective rabies control program in the United States. These recommendations facilitate standardization of control procedures across jurisdictions and are reviewed annually and updated as necessary. This announcement of the recommendations facilitates their adoption by increasing awareness among public health agencies and practitioners and makes more readily available a link to statutes and regulations in certain jurisdictions that refer directly to the Compendium language published in MMWR.

  4. The SAMI Galaxy Survey: Early Data Release

    NASA Astrophysics Data System (ADS)

    Allen, J. T.; Croom, S. M.; Konstantopoulos, I. S.; Bryant, J. J.; Sharp, R.; Cecil, G. N.; Fogarty, L. M. R.; Foster, C.; Green, A. W.; Ho, I.-T.; Owers, M. S.; Schaefer, A. L.; Scott, N.; Bauer, A. E.; Baldry, I.; Barnes, L. A.; Bland-Hawthorn, J.; Bloom, J. V.; Brough, S.; Colless, M.; Cortese, L.; Couch, W. J.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Gunawardhana, M. L. P.; Hampton, E. J.; Hopkins, A. M.; Kewley, L. J.; Lawrence, J. S.; Leon-Saval, S. G.; Liske, J.; López-Sánchez, Á. R.; Lorente, N. P. F.; McElroy, R.; Medling, A. M.; Mould, J.; Norberg, P.; Parker, Q. A.; Power, C.; Pracy, M. B.; Richards, S. N.; Robotham, A. S. G.; Sweet, S. M.; Taylor, E. N.; Thomas, A. D.; Tonini, C.; Walcher, C. J.

    2015-01-01

    We present the Early Data Release of the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. The SAMI Galaxy Survey is an ongoing integral field spectroscopic survey of ˜3400 low-redshift (z < 0.12) galaxies, covering galaxies in the field and in groups within the Galaxy And Mass Assembly (GAMA) survey regions, and a sample of galaxies in clusters. In the Early Data Release, we publicly release the fully calibrated data cubes for a representative selection of 107 galaxies drawn from the GAMA regions, along with information about these galaxies from the GAMA catalogues. All data cubes for the Early Data Release galaxies can be downloaded individually or as a set from the SAMI Galaxy Survey website. In this paper we also assess the quality of the pipeline used to reduce the SAMI data, giving metrics that quantify its performance at all stages in processing the raw data into calibrated data cubes. The pipeline gives excellent results throughout, with typical sky subtraction residuals in the continuum of 0.9-1.2 per cent, a relative flux calibration uncertainty of 4.1 per cent (systematic) plus 4.3 per cent (statistical), and atmospheric dispersion removed with an accuracy of 0.09 arcsec, less than a fifth of a spaxel.

  5. Atmospheric deposition of current-use and historic-use pesticides in snow at National Parks in the Western United States

    USGS Publications Warehouse

    Hageman, K.J.; Simonich, S.L.; Campbell, D.H.; Wilson, G.R.; Landers, D.H.

    2006-01-01

    The United States (U.S.) National Park Service has initiated research on the atmospheric deposition and fate of semi-volatile organic compounds in its alpine, sub-Arctic, and Arctic ecosystems in the Western U.S. Results for the analysis of pesticides in seasonal snowpack samples collected in spring 2003 from seven national parks are presented herein. From a target analyte list of 47 pesticides and degradation products, the most frequently detected current-use pesticides were dacthal, chlorpyrifos, endosulfan, and ??- hexachlorocyclohexane, whereas the most frequently detected historic-use pesticides were dieldrin, ??-hexachlorocyclohexane, chlordane, and hexachlorobenzene. Correlation analysis with latitude, temperature, elevation, particulate matter, and two indicators of regional pesticide use reveal that regional current and historic agricultural practices are largely responsible for the distribution of pesticides in the national parks in this study. Pesticide deposition in the Alaskan parks is attributed to long-range transport because there are no significant regional pesticide sources. The percentage of total pesticide concentration due to regional transport (%RT) was calculated for the other parks. %RT was highest at parks with higher regional cropland intensity and for pesticides with lower vapor pressures and shorter half-lives in air. ?? 2006 American Chemical Society.

  6. Mercury in soils, lakes, and fish in Voyageurs National Park (Minnesota): Importance of atmospheric deposition and ecosystem factors

    USGS Publications Warehouse

    Wiener, J.G.; Knights, B.C.; Sandheinrich, M.B.; Jeremiason, Jeffrey D.; Brigham, M.E.; Engstrom, D.R.; Woodruff, L.G.; Cannon, W.F.; Balogh, S.J.

    2006-01-01

    Concentrations of methylmercury in game fish from many interior lakes in Voyageurs National Park (MN, U.S.A.) substantially exceed criteria for the protection of human health. We assessed the importance of atmospheric and geologic sources of mercury to interior lakes and watersheds within the Park and identified ecosystem factors associated with variation in methylmercury contamination of lacustrine food webs. Geologic sources of mercury were small, based on analyses of underlying bedrock and C-horizon soils, and nearly all mercury in the O- and A-horizon soils was derived from atmospheric deposition. Analyses of dated sediment cores from five lakes showed that most (63% ?? 13%) of the mercury accumulated in lake sediments during the 1900s was from anthropogenic sources. Contamination of food webs was assessed by analysis of whole, 1-year-old yellow perch (Perca flavescens), a regionally important prey fish. The concentrations of total mercury in yellow perch and of methylmercury in lake water varied substantially among lakes, reflecting the influence of ecosystem processes and variables that affect the microbial production and abundance of methylmercury. Models developed with the information-theoretic approach (Akaike Information Criteria) identified lake water pH, dissolved sulfate, and total organic carbon (an indicator of wetland influence) as factors influencing methylmercury concentrations in lake water and fish. We conclude that nearly all of the mercury in fish in this seemingly pristine landscape was derived from atmospheric deposition, that most of this bioaccumulated mercury was from anthropogenic sources, and that both watershed and lacustrine factors exert important controls on the bioaccumulation of methylmercury. ?? 2006 American Chemical Society.

  7. Impacts of a massive release of methane and hydrogen sulfide on oxygen and ozone during the late Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Kaiho, Kunio; Koga, Seizi

    2013-08-01

    The largest mass extinction of animals and plants in both the ocean and on land occurred in the late Permian (252 Ma), largely coinciding with the largest flood basalt volcanism event in Siberia and an oceanic anoxic/euxinic event. We investigated the impacts of a massive release of methane (CH4) from the Siberian igneous province and the ocean and/or hydrogen sulfide (H2S) from the euxinic ocean on oxygen and ozone using photochemical model calculations. Our calculations indicated that an approximate of 14% decrease in atmospheric O2 levels would have occurred in the case of a large combined CH4 and H2S flux to the atmosphere, whereas an approximate of 8 to 10% decrease would have occurred from the CH4 flux and oxidation of all H2S in the ocean. The slight decrease in atmospheric O2 levels may have contributed to the extinction event. We demonstrate for the first time that a massive release of CH4 from the Siberian igneous province and a coincident massive release of CH4 and H2S did not cause ozone collapse. A collapse of stratospheric ozone leading to an increase in UV is not supported by the maximum model input levels for CH4 and H2S. These conclusions on O2 and O3 are correspondent to every H2S release percentages from the ocean to the atmosphere.

  8. Concentrations and fate of decamethylcyclopentasiloxane (D(5)) in the atmosphere.

    PubMed

    McLachlan, Michael S; Kierkegaard, Amelie; Hansen, Kaj M; van Egmond, Roger; Christensen, Jesper H; Skjøth, Carsten A

    2010-07-15

    Decamethylcyclopentasiloxane (D(5)) is a volatile compound used in personal care products that is released to the atmosphere in large quantities. Although D(5) is currently under consideration for regulation, there have been no field investigations of its atmospheric fate. We employed a recently developed, quality assured method to measure D(5) concentration in ambient air at a rural site in Sweden. The samples were collected with daily resolution between January and June 2009. The D(5) concentration ranged from 0.3 to 9 ng m(-3), which is 1-3 orders of magnitude lower than previous reports. The measured data were compared with D(5) concentrations predicted using an atmospheric circulation model that included both OH radical and D(5) chemistry. The model was parametrized using emissions estimates and physical chemical properties determined in laboratory experiments. There was good agreement between the measured and modeled D(5) concentrations. The results show that D(5) is clearly subject to long-range atmospheric transport, but that it is also effectively removed from the atmosphere via phototransformation. Atmospheric deposition has little influence on the atmospheric fate. The good agreement between the model predictions and the field observations indicates that there is a good understanding of the major factors governing D(5) concentrations in the atmosphere.

  9. Anthropogenic 129I in the atmosphere: overview over major sources, transport processes and deposition pattern.

    PubMed

    Reithmeier, H; Lazarev, V; Rühm, W; Nolte, E

    2010-10-01

    Wet and, to a lesser extent, dry deposition of atmospheric (129)I are known to represent the dominating processes responsible for (129)I in continental environmental samples that are remote from (129)I sources and not directly influenced by any liquid (129)I release of nuclear installations. Up to now, however, little is known about the major emitters and the related global deposition pattern of (129)I. In this work an overview over major sources of (129)I is given, and hitherto unknown time-dependent releases from these were estimated. Total gaseous (129)I releases from the US and former Soviet reprocessing facilities Hanford, Savannah River, Mayak, Seversk and Zheleznogorsk were found to have been 0.53, 0.27, 1.05, 0.23 and 0.14TBq, respectively. These facilities were thus identified as major airborne (129)I emitters. The global deposition pattern due to the (129)I released, depending on geographic latitude and longitude, and on time was studied using a box model describing the global atmospheric transport and deposition of (129)I. The model predictions are compared to (129)I concentrations measured by means of Accelerator Mass Spectrometry (AMS) in water samples that were collected from various lakes in Asia, Africa, America and New Zealand, and to published values. As a result, both pattern and temporal evolution of (129)I deposition values measured in and calculated for different types of environmental samples are, in general, in good agreement. This supports our estimate on atmospheric (129)I releases and the considered substantial transport and deposition mechanisms in our model calculations. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Use Of MODIS Satellite Images And An Atmospheric Dust Transport Model To Evaluate Juniperus Spp. Pollen Phenology And Transport

    NASA Astrophysics Data System (ADS)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A. R.; Nickovic, S.; Crimmins, T. M.; Van De Water, P. K.; Pejanovic, G.; Vukovic, A. J.; Myers, O.; Budge, A.; Zelicoff, A.; Bunderson, L.; Ponce-Campos, G.

    2011-12-01

    Pollen can be transported great distances. Van de Water et al., 2003 reported Juniperus spp. pollen, a significant aeroallergen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. Direct detection of pollen via satellite is not practical. A practical alternative combines modeling and phenological observations using ground based sampling and satellite data. The DREAM (Dust REgional Atmospheric Model) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust (Nickovic et al. 2001). The use of satellite data products for studying phenology is well documented (White and Nemani 2006). In the current project MODIS data will provide critical input to the PREAM model providing pollen source location, timing of pollen release, and vegetation type. We are modifying the DREAM model (PREAM - Pollen REgional Atmospheric Model) to incorporate pollen transport. The linkages already exist with DREAM through PHAiRS (Public Health Applications in Remote Sensing) to the public health community. This linkage has the potential to fill this data gap so that the potential association of health effects of pollen can better be tracked for possible linkage with health outcome data which may be associated with asthma, respiratory effects, myocardial infarction, and lost workdays. Juniperus spp. pollen phenology may respond to a wide range of environmental factors such as day length, growing degree-days, precipitation patterns and soil moisture. Species differences are also important. These environmental factors vary over both time and spatial scales. Ground based networks such as the USA National Phenology Network have been established to provide national wide observations of vegetation phenology. However, the density of observers is not adequate to sufficiently document the phenology variability

  11. Control of accidental releases of hydrogen selenide in vented storage cabinets

    NASA Astrophysics Data System (ADS)

    Fthenakis, V. M.; Moskowitz, P. D.; Sproull, R. D.

    1988-07-01

    Highly toxic hydrogen selenide and hydrogen sulfide gases are used in the production of copper-indium-diselenide photovoltaic cells by reactive sputtering. In the event of an accident, these gases may be released to the atmosphere and pose hazards to public and occupational safety and health. This paper outlines an approach for designing systems for the control of these releases given the uncertainty in release conditions and lack of data on the chemical systems involved. Accidental releases of these gases in storage cabinets can be controlled by either a venturi and packed-bed scrubber and carbon adsorption bed, or containment scrubbing equipment followed by carbon adsorption. These systems can effectively reduce toxic gas emissions to levels needed to protect public health. The costs of these controls (˜0.012/Wp) are samll in comparison with current (˜6/Wp) and projected (˜I/Wp) production costs.

  12. Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources

    NASA Astrophysics Data System (ADS)

    Nelson, Peter F.; Morrison, Anthony L.; Malfroy, Hugh J.; Cope, Martin; Lee, Sunhee; Hibberd, Mark L.; Meyer, C. P. (Mick); McGregor, John

    2012-12-01

    The United Nations Environment Programme (UNEP) has begun a process of developing a legally binding instrument to manage emissions of mercury from anthropogenic sources. The UNEP Governing Council has concluded that there is sufficient evidence of significant global adverse impacts from mercury to warrant further international action; and that national, regional and global actions should be initiated as soon as possible to identify populations at risk and to reduce human generated releases. This paper describes the development of, and presents results from, a comprehensive, spatially and temporally resolved inventory of atmospheric mercury emissions from the Australian landmass. Results indicate that the best estimate of total anthropogenic emissions of mercury to the atmosphere in 2006 was 15 ± 5 tonnes. Three industrial sectors contribute substantially to Australian anthropogenic emissions: gold smelting (˜50%, essentially from a single site/operation), coal combustion in power plants (˜15%) and alumina production from bauxite (˜12%). A diverse range of other sectors contribute smaller proportions of the emitted mercury, but industrial emissions account for around 90% of total anthropogenic mercury emissions. The other sectors include other industrial sources (mining, smelting, and cement production) and the use of products containing mercury. It is difficult to determine historical trends in mercury emissions given the large uncertainties in the data. Estimates for natural and re-emitted emissions from soil, water, vegetation and fires are made using meteorological models, satellite observations of land cover and soil and vegetation type, fuel loading, fire scars and emission factors which account for the effects of temperature, insolation and other environmental variables. These natural and re-emitted sources comfortably exceed the anthropogenic emissions, and comprise 4-12 tonnes per year from vegetation, 70-210 tonnes per year from soils, and 21-63 tonnes

  13. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    NASA Astrophysics Data System (ADS)

    Makarieva, A. M.; Gorshkov, V. G.; Sheil, D.; Nobre, A. D.; Li, B.-L.

    2013-01-01

    Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 °C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the global mean power at which this potential energy is released by condensation is around one per cent of the global solar power - this is similar to the known stationary dissipative power of general atmospheric circulation. We conclude that condensation and evaporation merit attention as major, if previously overlooked, factors in driving atmospheric dynamics.

  14. Atmospheric contribution of gas emissions from Augustine volcano, Alaska during the 2006 eruption

    USGS Publications Warehouse

    McGee, K.A.; Doukas, M.P.; McGimsey, R.G.; Neal, C.A.; Wessels, R.L.

    2008-01-01

    Airborne surveillance of gas emissions from Augustine for SO2, CO2 and H2S showed no evidence of anomalous degassing from 1990 through May 2005. By December 20, 2005, Augustine was degassing 660 td-1 of SO2, and ten times that by January 4, 2006. The highest SO2 emission rate measured during the 2006 eruption was 8650 td-1 (March 1); for CO2, 13000 td-1 (March 9), and H2S, 8 td-1 (January 19). Thirty-four SO2 measurements were made from December 2005 through 2006, with 9 each for CO2 and H2S. Augustine released 1 ?? 106 tonnes of CO2 to the atmosphere during 2006, a level similar to the output of a medium-sized natural gas-fired power plant, and thus was not a significant contributor of greenhouse gas to the atmosphere compared to anthropogenic sources. Augustine released about 5 ?? 105 tonnes of SO2 during 2006, similar to that released in 1976 and 1986.

  15. Short-term sea ice forecasts with the RASM-ESRL coupled model: A testbed for improving simulations of ocean-ice-atmosphere interactions in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Solomon, A.; Cox, C. J.; Hughes, M.; Intrieri, J. M.; Persson, O. P. G.

    2015-12-01

    The dramatic decrease of Arctic sea-ice has led to a new Arctic sea-ice paradigm and to increased commercial activity in the Arctic Ocean. NOAA's mission to provide accurate and timely sea-ice forecasts, as explicitly outlined in the National Ocean Policy and the U.S. National Strategy for the Arctic Region, needs significant improvement across a range of time scales to improve safety for human activity. Unfortunately, the sea-ice evolution in the new Arctic involves the interaction of numerous physical processes in the atmosphere, ice, and ocean, some of which are not yet understood. These include atmospheric forcing of sea-ice movement through stress and stress deformation; atmospheric forcing of sea-ice melt and formation through energy fluxes; and ocean forcing of the atmosphere through new regions of seasonal heat release. Many of these interactions involve emerging complex processes that first need to be understood and then incorporated into forecast models in order to realize the goal of useful sea-ice forecasting. The underlying hypothesis for this study is that errors in simulations of "fast" atmospheric processes significantly impact the forecast of seasonal sea-ice retreat in summer and its advance in autumn in the marginal ice zone (MIZ). We therefore focus on short-term (0-20 day) ice-floe movement, the freeze-up and melt-back processes in the MIZ, and the role of storms in modulating stress and heat fluxes. This study uses a coupled ocean-atmosphere-seaice forecast model as a testbed to investigate; whether ocean-sea ice-atmosphere coupling improves forecasts on subseasonal time scales, where systematic biases develop due to inadequate parameterizations (focusing on mixed-phase clouds and surface fluxes), how increased atmospheric resolution of synoptic features improves the forecasts, and how initialization of sea ice area and thickness and snow depth impacts the skill of the forecasts. Simulations are validated with measurements at pan-Arctic land

  16. Effects of atmospheric CO2 enrichment on soil CO2 efflux in a young longleaf pine system

    Treesearch

    G. Brett Runion; John R. Butnor; S. A. Prior; R. J. Mitchell; H. H. Rogers

    2012-01-01

    The southeastern landscape is composed of agricultural and forest systems that can store carbon (C) in standing biomass and soil. Research is needed to quantify the effects of elevated atmospheric carbon dioxide (CO2) on terrestrial C dynamics including CO2 release back to the atmosphere and soil sequestration. Longleaf...

  17. Results of external quality-assurance program for the National Atmospheric Deposition Program and National Trends Network during 1985

    USGS Publications Warehouse

    Brooks, M.H.; Schroder, L.J.; Willoughby, T.C.

    1988-01-01

    External quality assurance monitoring of the National Atmospheric Deposition Program (NADP) and National Trends Network (NTN) was performed by the U.S. Geological Survey during 1985. The monitoring consisted of three primary programs: (1) an intersite comparison program designed to assess the precision and accuracy of onsite pH and specific conductance measurements made by NADP and NTN site operators; (2) a blind audit sample program designed to assess the effect of routine field handling on the precision and bias of NADP and NTN wet deposition data; and (3) an interlaboratory comparison program designed to compare analytical data from the laboratory processing NADP and NTN samples with data produced by other laboratories routinely analyzing wet deposition samples and to provide estimates of individual laboratory precision. An average of 94% of the site operators participated in the four voluntary intersite comparisons during 1985. A larger percentage of participating site operators met the accuracy goal for specific conductance measurements (average, 87%) than for pH measurements (average, 67%). Overall precision was dependent on the actual specific conductance of the test solution and independent of the pH of the test solution. Data for the blind audit sample program indicated slight positive biases resulting from routine field handling for all analytes except specific conductance. These biases were not large enough to be significant for most data users. Data for the blind audit sample program also indicated that decreases in hydrogen ion concentration were accompanied by decreases in specific conductance. Precision estimates derived from the blind audit sample program indicate that the major source of uncertainty in wet deposition data is the routine field handling that each wet deposition sample receives. Results of the interlaboratory comparison program were similar to results of previous years ' evaluations, indicating that the participating laboratories

  18. Syngas formation in methane flames and carbon monoxide release during quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, Felix; Carleton, Fred; Houdmont, Raphael

    Following a recent investigation into chemi-ionization and chemiluminescence during gradual aeration of small, laminar methane flames, we proposed that partial oxidation products, or syngas constituents, formed in the pre-flame zone well below the luminous region, were responsible for the observed effects. We therefore map temperature, CO, and H{sub 2} for geometries and conditions relevant to burners in domestic boiler systems, to assess the potential hazard of CO release into the ambient atmosphere, should any partial quenching occur. CO concentrations peaks of 5.5 volume % are recorded in the core surrounding the axis. Appreciable CO concentrations are also found in themore » absence of added air. Experiments on various burner port geometries and temperatures suggest that this is not due to air entrainment at the flame base but to diffusion from zones closer to the flame. Next, quenching surfaces such as grids, perforated plates and flame trap matrices of different metals are progressively lowered into the flame. To avoid flow line distortion, suction aspirates the quenched products. The highest emission rate occurs with the quenching plane some 4 mm above the burner; further lowering of the quenching surface causes flame extinction. The maximum CO release is close to converting 10% of the CH{sub 4} feed, with some variation with quenching material. Expressing this potential release in terms of, e.g. boiler power, predicts a potentially serious hazard. Results of numerical simulations adequately parallel the experimental sampling profiles and provide insights into local concentrations, as well as the spatially resolved CO flux, which is calculated for a parabolic inlet flow profile. Integration across the stream implies, on the basis of the simulation, a possible tripling of the experimental CO release, were quenching simply to release the local gas composition into the atmosphere. Comparison with experiment suggests some chemical interaction with the

  19. Estimated variability of National Atmospheric Deposition Program/Mercury Deposition Network measurements using collocated samplers

    USGS Publications Warehouse

    Wetherbee, G.A.; Gay, D.A.; Brunette, R.C.; Sweet, C.W.

    2007-01-01

    The National Atmospheric Deposition Program/Mercury Deposition Network (MDN) provides long-term, quality-assured records of mercury in wet deposition in the USA and Canada. Interpretation of spatial and temporal trends in the MDN data requires quantification of the variability of the MDN measurements. Variability is quantified for MDN data from collocated samplers at MDN sites in two states, one in Illinois and one in Washington. Median absolute differences in the collocated sampler data for total mercury concentration are approximately 11% of the median mercury concentration for all valid 1999-2004 MDN data. Median absolute differences are between 3.0% and 14% of the median MDN value for collector catch (sample volume) and between 6.0% and 15% of the median MDN value for mercury wet deposition. The overall measurement errors are sufficiently low to resolve between NADP/MDN measurements by ??2 ng??l-1 and ??2 ????m-2?? year-1, which are the contour intervals used to display the data on NADP isopleths maps for concentration and deposition, respectively. ?? Springer Science+Business Media B.V. 2007.

  20. Measurement of atmospheric dry deposition at Emerald Lake in Sequoia National Park. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bytnerowicz, A.; Olszyk, D.

    1988-04-11

    The primary objective of the study was to evaluate atmospheric dry deposition of major anions and cations to trees in the Emerald Lake area of Sequoia National Park. The field work was performed between July 15 and September 10, 1987. Teflon-coated and non-coated branches of native lodgepole pine (Pinus concorta) and western white pine (P. monticola), and potted seedlings of Coulter pine (P. coulteri) were rinsed using deionized-distilled water. Nylon and paper filters were exposed along with the vegetation, and were extracted in deionized-distilled water. The rinses and extracts were analyzed for concentrations of nitrate, sulfate, phosphate, chloride, fluoride, ammonium,more » and metallic cations. The deposition of nitrate to paper filters and to Coulter pine branches was significantly higher than deposition to the native conifers. Deposition of nitrate was significantly greater than deposition of sulfate, supporting earlier studies of chapparal in the South Coast Air Basin. Ammonium deposition was also quite high, suggesting that transport from the valley may be a significant source of dry deposition in the Sierra.« less

  1. Linking pulses of atmospheric deposition to DOC release in an upland peat-covered catchment

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Burt, T. P.; Adamson, J. K.

    2008-12-01

    Changes in atmospheric deposition have been proposed as one possible explanation of the widespread increase in DOC concentration observed in many Northern Hemisphere catchments. This study uses detailed, long-term, monthly monitoring records of pH, conductivity SO4, and DOC in precipitation, soil water, and runoff chemistry from an upland peat-covered catchment in northern England. By deriving impulse transfer functions this study explores whether changes in deposition lead to significant changes in the occurrence of each component in the soil and runoff water; especially significant changes in DOC. The study shows that (1) impulses in the deposition of acidity have no significant effect upon pH or DOC in soil water or runoff. (2) DOC in soil water and runoff is responsive to impulses in SO4 and conductivity, but only when those impulses are changes in soil water chemistry and not when they are in atmospheric deposition. (3) The effects of changes in SO4 and/or conductivity can easily be overemphasized if memory effects are not accounted for, and their effect is limited to only 1 or 2 months after a severe drought. This study can support the view that changes in ionic strength can result in changes in DOC concentration in soil water or runoff, but the system studied is unresponsive to changes in atmospheric deposition. Impulses in soil water SO4 do not lead to increases in DOC concentrations, and so this mechanism does not provide an explanation for DOC increases.

  2. A rescued pelican is released at the Merritt Island National Wildlife Refuge near KSC.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A rescued white pelican, dubbed 'Fisheater' by his rescuers, takes a tentative step and stretches its wings after being let go at the Merritt Island National Wildlife Refuge. Looking on is Mark Epstein, with the U.S. Fish and Wildlife Service, who had held the bird while Kat Royer, also with the U.S. Fish and Wildlife Service, placed on it a leg band issued by the U.S. Department of the Interior's Bird Banding Laboratory. The pelican was found covered in crude oil from a contaminated ditch in northern Indiana in November, and was rescued by a local Police Department, treated, and flown to the Back to Nature Wildlife Refuge in Orlando, Fla. for care and rest. It is being released to join a flock of about 30 other white pelicans that are wintering on the refuge. White pelicans inhabit marshy lakes and along the Pacific and Texas coasts. They winter from Florida and southern California south to Panama, chiefly in coastal lagoons. They are frequently seen flying in long lines, flapping and sailing in unison, but also ride rising air currents to soar gracefully in circles. The Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  3. Soil HONO Emissions and Its Potential Impact on the Atmospheric Chemistry and Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Su, H.; Chen, C.; Zhang, Q.; Poeschl, U.; Cheng, Y.

    2014-12-01

    Hydroxyl radicals (OH) are a key species in atmospheric photochemistry. In the lower atmosphere, up to ~30% of the primary OH radical production is attributed to the photolysis of nitrous acid (HONO), and field observations suggest a large missing source of HONO. The dominant sources of N(III) in soil, however, are biological nitrification and denitrification processes, which produce nitrite ions from ammonium (by nitrifying microbes) as well as from nitrate (by denitrifying microbes). We show that soil nitrite can release HONO and explain the reported strength and diurnal variation of the missing source. The HONO emissions rates are estimated to be comparable to that of nitric oxide (NO) and could be an important source of atmospheric reactive nitrogen. Fertilized soils appear to be particularly strong sources of HONO. Thus, agricultural activities and land-use changes may strongly influence the oxidizing capacity of the atmosphere. A new HONO-DNDC model was developed to simulate the evolution of HONO emissions in agriculture ecosystems. Because of the widespread occurrence of nitrite-producing microbes and increasing N and acid deposition, the release of HONO from soil may also be important in natural environments, including forests and boreal regions. Reference: Su, H. et al., Soil Nitrite as a Source of Atmospheric HONO and OH Radicals, Science, 333, 1616-1618, 10.1126/science.1207687, 2011.

  4. External quality-assurance programs managed by the U.S. Geological Survey in support of the National Atmospheric Deposition Program/National Trends Network

    USGS Publications Warehouse

    Latysh, Natalie E.; Wetherbee, Gregory A.

    2005-01-01

    The U.S. Geological Survey, Branch of Quality Systems, operates the external quality-assurance programs for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Beginning in 1978, six different programs have been implemented?the intersite-comparison program, the blind-audit program, the sample-handling evaluation program, the field-audit program, the interlaboratory-comparison program, and the collocated-sampler program. Each program was designed to measure error contributed by specific components in the data-collection process. The intersite-comparison program, which was discontinued in 2004, was designed to assess the accuracy and reliability of field pH and specific-conductance measurements made by site operators. The blind-audit and sample-handling evaluation programs, which also were discontinued in 2002 and 2004, respectively, assessed contamination that may result from sampling equipment and routine handling and processing of the wet-deposition samples. The field-audit program assesses the effects of sample handling, processing, and field exposure. The interlaboratory-comparison program evaluates bias and precision of analytical results produced by the contract laboratory for NADP, the Illinois State Water Survey, Central Analytical Laboratory, and compares its performance with the performance of international laboratories. The collocated-sampler program assesses the overall precision of wet-deposition data collected by NADP/NTN. This report documents historical operations and the operating procedures for each of these external quality-assurance programs. USGS quality-assurance information allows NADP/NTN data users to discern between actual environmental trends and inherent measurement variability.

  5. 29 CFR 14.21 - Release of classified information to foreign governments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 1 2011-07-01 2011-07-01 false Release of classified information to foreign governments. 14.21 Section 14.21 Labor Office of the Secretary of Labor SECURITY REGULATIONS Transmission of Classified Information § 14.21 Release of classified information to foreign governments. National security...

  6. 29 CFR 14.21 - Release of classified information to foreign governments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Release of classified information to foreign governments. 14.21 Section 14.21 Labor Office of the Secretary of Labor SECURITY REGULATIONS Transmission of Classified Information § 14.21 Release of classified information to foreign governments. National security...

  7. 78 FR 50038 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Estuarine Research.... ACTION: Notice of Public Comment Period for the Wells, Maine National Estuarine Research Reserve... National Estuarine Research [[Page 50039

  8. 32 CFR 644.493 - Release of restrictions on chapels sold.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Release of restrictions on chapels sold. 644.493 Section 644.493 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... accomplishment of the purpose for which the property was sold. ...

  9. 32 CFR 644.493 - Release of restrictions on chapels sold.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Release of restrictions on chapels sold. 644.493 Section 644.493 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... accomplishment of the purpose for which the property was sold. ...

  10. 32 CFR 644.493 - Release of restrictions on chapels sold.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Release of restrictions on chapels sold. 644.493 Section 644.493 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... accomplishment of the purpose for which the property was sold. ...

  11. 32 CFR 644.493 - Release of restrictions on chapels sold.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Release of restrictions on chapels sold. 644.493 Section 644.493 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... accomplishment of the purpose for which the property was sold. ...

  12. 32 CFR 644.493 - Release of restrictions on chapels sold.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Release of restrictions on chapels sold. 644.493 Section 644.493 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... accomplishment of the purpose for which the property was sold. ...

  13. An elevational gradient in snowpack chemical loading at Glacier National Park, Montana: implications for ecosystem processes

    USGS Publications Warehouse

    Fagre, Daniel; Tonnessen, Kathy; Morris, Kristi; Ingersoll, George; McKeon, Lisa; Holzer, Karen

    2000-01-01

    The accumulation and melting of mountain snowpacks are major drivers of ecosystem processes in the Rocky Mountains. These include the influence of snow water equivalent (SWE) timing and amount of release on soil moisture for annual tree growth, and alpine stream discharge and temperature that control aquatic biota life histories. Snowfall also brings with it atmospheric deposition. Snowpacks will hold as much as 8 months of atmospheric deposition for release into mountain ecosystems during the spring melt. These pulses of chemicals influence soil microbiota and biogeochemical processes affecting mountain vegetation growth. Increased atmospheric nitrogen inputs recently have been documented in remote parts of Colorado's mountain systems but no baseline data exist for the Northern Rockies. We examined patterns of SWE and snow chemistry in an elevational gradient stretching from west to east over the continental divide in Glacier National Park in March 1999 and 2000. Sites ranged from 1080m to 2192m at Swiftcurrent Pass. At each site, two vertically-integrated columns of snow were sampled from snowpits up to 600cm deep and analyzed for major cations and anions. Minor differences in snow chemistry, on a volumetric basis, existed over the elvational gradient. Snowpack chemical loading estimates were calculated for NH4, SO4 and NO3 and closely followed elevational increases in SWE. NO3 (in microequivalents/square meter) ranged from 1,000 ueq/m2 at low elevation sites to 8,000+ ueq/m2 for high elevation sites. Western slopes received greater amounts of SWE and chemical loads for all tested compounds.

  14. Simple Techniques For Assessing Impacts Of Oil And Gas Operations On Public Lands: A Field Evaluation Of A Photoionization Detector (PID) At A Condensate Release Site, Padre Island National Seashore, Texas

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.

    2001-01-01

    Simple, cost-effective techniques are needed for land managers to assess the environmental impacts of oil and gas production activities on public lands, so that sites may be prioritized for remediation or for further, more formal assessment. Field-portable instruments provide real-time data and allow the field investigator to extend an assessment beyond simply locating and mapping obvious disturbances. Field investigators can examine sites for the presence of hydrocarbons in the subsurface using a soil auger and a photoionization detector (PID). The PID measures volatile organic compounds (VOC) in soil gases. This allows detection of hydrocarbons in the shallow subsurface near areas of obvious oil-stained soils, oil in pits, or dead vegetation. Remnants of a condensate release occur in sandy soils at a production site on the Padre Island National Seashore in south Texas. Dead vegetation had been observed by National Park Service personnel in the release area several years prior to our visit. The site is located several miles south of the Malaquite Beach Campground. In early 2001, we sampled soil gases for VOCs in the area believed to have received the condensate. Our purpose in this investigation was: 1) to establish what sampling techniques might be effective in sandy soils with a shallow water and contrast them with techniques used in an earlier study; and 2) delineate the probable area of condensate release. Our field results show that sealing the auger hole with a clear, rigid plastic tube capped at the top end and sampling the soil gas through a small hole in the cap increases the soil VOC gas signature, compared to sampling soil gases in the bottom of an open hole. This sealed-tube sampling method increases the contrast between the VOC levels within a contaminated area and adjacent background areas. The tube allows the PID air pump to draw soil gas from the volume of soil surrounding the open hole below the tube in a zone less influenced by atmospheric air

  15. Atmospheric oxidation capacity sustained by a tropical forest.

    PubMed

    Lelieveld, J; Butler, T M; Crowley, J N; Dillon, T J; Fischer, H; Ganzeveld, L; Harder, H; Lawrence, M G; Martinez, M; Taraborrelli, D; Williams, J

    2008-04-10

    Terrestrial vegetation, especially tropical rain forest, releases vast quantities of volatile organic compounds (VOCs) to the atmosphere, which are removed by oxidation reactions and deposition of reaction products. The oxidation is mainly initiated by hydroxyl radicals (OH), primarily formed through the photodissociation of ozone. Previously it was thought that, in unpolluted air, biogenic VOCs deplete OH and reduce the atmospheric oxidation capacity. Conversely, in polluted air VOC oxidation leads to noxious oxidant build-up by the catalytic action of nitrogen oxides (NO(x) = NO + NO2). Here we report aircraft measurements of atmospheric trace gases performed over the pristine Amazon forest. Our data reveal unexpectedly high OH concentrations. We propose that natural VOC oxidation, notably of isoprene, recycles OH efficiently in low-NO(x) air through reactions of organic peroxy radicals. Computations with an atmospheric chemistry model and the results of laboratory experiments suggest that an OH recycling efficiency of 40-80 per cent in isoprene oxidation may be able to explain the high OH levels we observed in the field. Although further laboratory studies are necessary to explore the chemical mechanism responsible for OH recycling in more detail, our results demonstrate that the biosphere maintains a remarkable balance with the atmospheric environment.

  16. 32 CFR 635.12 - Release of information under the Privacy Act of 1974.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) The release and denial authorities for all Privacy Act cases concerning military police records are... 32 National Defense 4 2010-07-01 2010-07-01 true Release of information under the Privacy Act of... § 635.12 Release of information under the Privacy Act of 1974. (a) Military police records may be...

  17. 14 CFR § 1213.106 - Preventing release of classified information to the media.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... information to the media. § 1213.106 Section § 1213.106 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION RELEASE OF INFORMATION TO NEWS AND INFORMATION MEDIA § 1213.106 Preventing release of classified information to the media. (a) Release of classified information in any form (e.g., documents, through...

  18. Climate, not atmospheric deposition, drives the biogeochemical mass-balance of a mountain watershed

    USGS Publications Warehouse

    Baron, Jill S.; Heath, Jared

    2014-01-01

    Watershed mass-balance methods are valuable tools for demonstrating impacts to water quality from atmospheric deposition and chemical weathering. Owen Bricker, a pioneer of the mass-balance method, began applying mass-balance modeling to small watersheds in the late 1960s and dedicated his career to expanding the literature and knowledge of complex watershed processes. We evaluated long-term trends in surface-water chemistry in the Loch Vale watershed, a 660-ha. alpine/subalpine catchment located in Rocky Mountain National Park, CO, USA. Many changes in surface-water chemistry correlated with multiple drivers, including summer or monthly temperature, snow water equivalent, and the runoff-to-precipitation ratio. Atmospheric deposition was not a significant causal agent for surface-water chemistry trends. We observed statistically significant increases in both concentrations and fluxes of weathering products including cations, SiO2, SO4 2−, and ANC, and in inorganic N, with inorganic N being primarily of atmospheric origin. These changes are evident in the individual months June, July, and August, and also in the combined June, July, and August summer season. Increasingly warm summer temperatures are melting what was once permanent ice and this may release elements entrained in the ice, stimulate chemical weathering with enhanced moisture availability, and stimulate microbial nitrification. Weathering rates may also be enhanced by sustained water availability in high snowpack years. Rapid change in the flux of weathering products and inorganic N is the direct and indirect result of a changing climate from warming temperatures and thawing cryosphere.

  19. Evaluation of tritium release properties of advanced tritium breeders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, T.; Ochiai, K.; Edao, Y.

    2015-03-15

    Demonstration power plant (DEMO) fusion reactors require advanced tritium breeders with high thermal stability. Lithium titanate (Li{sub 2}TiO{sub 3}) advanced tritium breeders with excess Li (Li{sub 2+x}TiO{sub 3+y}) are stable in a reducing atmosphere at high temperatures. Although the tritium release properties of tritium breeders are documented in databases for DEMO blanket design, no in situ examination under fusion neutron (DT neutron) irradiation has been performed. In this study, a preliminary examination of the tritium release properties of advanced tritium breeders was performed, and DT neutron irradiation experiments were performed at the fusion neutronics source (FNS) facility in JAEA. Consideringmore » the tritium release characteristics, the optimum grain size after sintering is <5 μm. From the results of the optimization of granulation conditions, prototype Li{sub 2+x}TiO{sub 3+y} pebbles with optimum grain size (<5 μm) were successfully fabricated. The Li{sub 2+x}TiO{sub 3+y} pebbles exhibited good tritium release properties similar to the Li{sub 2}TiO{sub 3} pebbles. In particular, the released amount of HT gas for easier tritium handling was higher than that of HTO water. (authors)« less

  20. New directions for the National Ocean Service

    NASA Astrophysics Data System (ADS)

    Wolff, Paul M.

    The National Ocean Service, which I've headed since December 1983, is one of the major line components of the National Oceanic and Atmospheric Administration (NOAA). NOAA, in turn, is part of the Department of Commerce and is the leading federal agency in the oceanic and atmospheric sciences. Other agencies are involved in the earth sciences, such as the Department of the Interior's Geological Survey, or are in the business of environmental regulations, like the U.S. Environmental Protection Agency, but NOAA is the one federal agency charged specifically with analyzing and predicting oceanic and atmospheric components of the earth's environment as a whole. The importance of this global, integrated air-sea approach is reflected in the five NOAA line offices.This past December, NOAA line offices were reorganized to consolidate programs as part of the Reagan Administration's general government-wide belt tightening (see Figure 1). The idea was for NOAA to grow leaner but stronger. The main thrust of the work of the Weather Service and the Marine Fisheries Service remained the same. The Office of Oceanic and Atmospheric Research continued to provide research support to the other NOAA components. A trimmed down Environmental Data and Information Service merged with the National Environmental Satellite Service to become today's National Environmental Satellite, Data, and Information Service. Also, this past December the NOAA Office of Coastal Zone Management joined forces with the National Ocean Survey to become the National Ocean Service.

  1. Plutonium release from the 903 pad at Rocky Flats.

    PubMed

    Mongan, T R; Ripple, S R; Winges, K D

    1996-10-01

    The Colorado Department of Public Health and Environment (CDH) sponsored a study to reconstruct contaminant doses to the public from operations at the Rocky Flats nuclear weapons plant. This analysis of the accidental release of plutonium from the area known as the 903 Pad is part of the CDH study. In the 1950's and 1960's, 55-gallon drums of waste oil contaminated with plutonium, and uranium were stored outdoors at the 903 Pad. The drums corroded, leaking contaminated oil onto soil subsequently carried off-site by the wind. The plutonium release is estimated using environmental data from the 1960's and 1970's and an atmospheric transport model for fugitive dust. The best estimate of total plutonium release to areas beyond plant-owned property is about 0.26 TBq (7 Ci). Off-site airborne concentrations and deposition of plutonium are estimated for dose calculation purposes. The best estimate of the highest predicted off-site effective dose is approximately 72 microSv (7.2 mrem).

  2. The Issue of transporting pollutants with atmospheric precipitation

    NASA Astrophysics Data System (ADS)

    Madibekov, A.; Kogutenko, L.

    2018-01-01

    A research of the pollution of atmospheric precipitation was conducted. The database of the chemical composition of atmospheric precipitation made by National Monitoring Network of the Republic of Kazakhstan for the period from 2000s to 2011 was generalized and analyzed. The research area covers the big territory of Ile-Balkhash river basin in the South-East Kazakhstan. The research shows that pollutants can be transported over long distances with atmospheric precipitation. Based on the results of the air masses tracking we identified that the main sources of emissions is located in the city of Balkhash.

  3. Atmospheric Ionizing Radiation (AIR) Project Review

    NASA Technical Reports Server (NTRS)

    Singleterry, R. C., Jr.; Wilson, J. W.; Whitehead, A. H.; Goldhagen, P. E.

    1999-01-01

    The National Council on Radiation Protection and Measurement (NCRP) and the National Academy of Science (NAS) established that the uncertainty in the data and models associated with the high-altitude radiation environment could and should be reduced. In response, the National Aeronautics and Space Administration (NASA) and the U.S. Department of Energy Environmental Measurements Laboratory (EML) created the Atmospheric Ionizing Radiation (AIR) Project under the auspices of the High Speed Research (HSR) Program Office at the Langley Research Center. NASA's HSR Program was developed to address the potential of a second-generation supersonic transport. A critical element focussed on the environmental issues, including the threat to crew and passengers posed by atmospheric radiation. Various international investigators were solicited to contribute instruments to fly on an ER-2 aircraft at altitudes similar to those proposed for the High Speed Civil Transport (HSCT). A list of participating investigators, their institutions, and instruments with quantities measured is presented. The flight series took place at solar minimum (radiation maximum) with northern, southern, and east/west flights. The investigators analyzed their data and presented preliminary results at the AIR Workshop in March, 1998. A review of these results are included.

  4. Enhanced oxidative weathering in glaciated mountain catchments: A stabilising feedback on atmospheric carbon dioxide?

    NASA Astrophysics Data System (ADS)

    Horan, K.; Hilton, R. G.; Burton, K. W.; Selby, D. S.; Ottley, C. J.

    2015-12-01

    Mountain belts act as sources of carbon dioxide (CO2) to the atmosphere if physical erosion and exhumation expose rock-derived organic carbon ('petrogenic' organic carbon, OCpetro) to chemical weathering. Estimates suggest 15x1021g of carbon is stored in rocks globally as OCpetro, ~25,000 times the amount of carbon in the pre-industrial atmosphere. Alongside volcanic and metamorphic degassing, OCpetro weathering is thought to be the main source of CO2 to the atmosphere over geological timescales. Erosion in mountain river catchments has been shown to enhance oxidative weathering and CO2 release. However, we still lack studies which quantify this process. In addition, it is not clear how glaciation may impact OCpetro oxidation. In analogy with silicate weathering, large amounts of fine sediment in glacial catchments may enhance oxidative weathering. Here we quantify oxidative weathering in nine catchments draining OCpetro bearing rocks in the western Southern Alps, New Zealand. Using rhenium (Re) as a tracer of oxidative weathering, we develop techniques to precisely measure Re concentration at sub-ppt levels in river waters. Using [Re]water/[Re]rock as a weathering tracer, we estimate that the weathering efficiency in glacial catchments is >4 times that of non-glacial catchments. Combining this with the OCpetro content of rocks and dissolved Re flux, we estimate the CO2 release by OCpetro oxidation. The analysis suggests that non-glacial catchments in the western Southern Alps release similar amounts of CO2 as catchments in Taiwan where erosion rates are comparable. In this mountain belt, the CO2 release does not negate CO2 drawdown by silicate weathering and by riverine transfer of organic matter. Based on our results, we propose that mountain glaciation may greatly enhance OCpetro oxidation rates. Depending on the global fluxes involved, this provides a feedback to damp low atmospheric CO2 levels and global cooling. During glacial periods (low CO2, low global

  5. 77 FR 41171 - National Sea Grant Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Sea Grant Advisory... National Sea Grant Advisory Board. Board members will discuss and provide advice on the National Sea Grant...: Ms. Elizabeth Ban, Designated Federal Officer, National Sea Grant College Program, National Oceanic...

  6. Advanced Atmospheric Modeling for Emergency Response.

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; O'Steen, B. Lance; Addis, Robert P.

    1995-03-01

    Atmospheric transport and diffusion models are an important part of emergency response systems for industrial facilities that have the potential to release significant quantities of toxic or radioactive material into the atmosphere. An advanced atmospheric transport and diffusion modeling system for emergency response and environmental applications, based upon a three-dimensional mesoscale model, has been developed for the U.S. Department of Energy's Savannah River Site so that complex, time-dependent flow fields not explicitly measured can be routinely simulated. To overcome some of the current computational demands of mesoscale models, two operational procedures for the advanced atmospheric transport and diffusion modeling system are described including 1) a semiprognostic calculation to produce high-resolution wind fields for local pollutant transport in the vicinity of the Savannah River Site and 2) a fully prognostic calculation to produce a regional wind field encompassing the southeastern United States for larger-scale pollutant problems. Local and regional observations and large-scale model output are used by the mesoscale model for the initial conditions, lateral boundary conditions, and four-dimensional data assimilation procedure. This paper describes the current status of the modeling system and presents two case studies demonstrating the capabilities of both modes of operation. While the results from the case studies shown in this paper are preliminary and certainly not definitive, they do suggest that the mesoscale model has the potential for improving the prognostic capabilities of atmospheric modeling for emergency response at the Savannah River Site. Long-term model evaluation will be required to determine under what conditions significant forecast errors exist.

  7. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  8. Application of Radioxenon Stack Emission Data in High-Resolution Atmospheric Transport Modelling

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Schoeppner, M.; Kalinowski, M.; Bourgouin, P.; Kushida, N.; Barè, J.

    2017-12-01

    The Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) has developed the capability to run high-resolution atmospheric transport modelling by employing WRF and Flexpart-WRF. This new capability is applied to simulate the impact of stack emission data on simulated concentrations and how the availability of such data improves the overall accuracy of atmospheric transport modelling. The presented case study focuses on xenon-133 emissions from IRE, a medical isotope production facility in Belgium, and air concentrations detected at DEX33, a monitoring station close to Freiburg, Germany. The CTBTO is currently monitoring the atmospheric concentration of xenon-133 at 25 stations and will further expand the monitoring efforts to 40 stations worldwide. The incentive is the ability to detect xenon-133 that has been produced and released from a nuclear explosion. A successful detection can be used to prove the nuclear nature of an explosion and even support localization efforts. However, xenon-133 is also released from nuclear power plants and to a larger degree from medical isotope production facilities. The availability of stack emission data in combination with atmospheric transport modelling can greatly facilitate the understanding of xenon-133 concentrations detected at monitoring stations to distinguish between xenon-133 that has been emitted from a nuclear explosion and from civilian sources. Newly available stack emission data is used with a high-resolution version of the Flexpart atmospheric transport model, namely Flexpart-WRF, to assess the impact of the emissions on the detected concentrations and the advantage gained from the availability of such stack emission data. The results are analyzed with regard to spatial and time resolution of the high-resolution model and in comparison to conventional atmospheric transport models with and without stack emission data.

  9. Transport of tritium contamination to the atmosphere in an arid environment

    USGS Publications Warehouse

    Garcia, C. Amanda; Andraski, Brian J.; Johnson, Michael J.; Stonestrom, David A.; Michel, Robert L.; Cooper, C.A.; Wheatcraft, S.W.

    2009-01-01

    Soil–plant–atmosphere interactions strongly influence water movement in desert unsaturated zones, but little is known about how such interactions affect atmospheric release of subsurface water-borne contaminants. This 2-yr study, performed at the U.S. Geological Survey's Amargosa Desert Research Site in southern Nevada, quantified the magnitude and spatiotemporal variability of tritium (3H) transport from the shallow unsaturated zone to the atmosphere adjacent to a low-level radioactive waste (LLRW) facility. Tritium fluxes were calculated as the product of 3H concentrations in water vapor and respective evaporation and transpiration water-vapor fluxes. Quarterly measured 3H concentrations in soil water vapor and in leaf water of the dominant creosote-bush [Larrea tridentata (DC.) Coville] were spatially extrapolated and temporally interpolated to develop daily maps of contamination across the 0.76-km2 study area. Maximum plant and root-zone soil concentrations (4200 and 8700 Bq L−1, respectively) were measured 25 m from the LLRW facility boundary. Continuous evaporation was estimated using a Priestley–Taylor model and transpiration was computed as the difference between measured eddy-covariance evapotranspiration and estimated evaporation. The mean evaporation/transpiration ratio was 3:1. Tritium released from the study area ranged from 0.12 to 12 μg d−1 and totaled 1.5 mg (8.2 × 1010 Bq) over 2 yr. Tritium flux variability was driven spatially by proximity to 3H source areas and temporally by changes in 3H concentrations and in the partitioning between evaporation and transpiration. Evapotranspiration removed and limited penetration of precipitation beneath native vegetation and fostered upward movement and release of 3H from below the root zone.

  10. Volcanic and atmospheric controls on ash iron solubility: A review

    NASA Astrophysics Data System (ADS)

    Ayris, Paul; Delmelle, Pierre

    2012-01-01

    The ash material produced by volcanic eruptions carries important information about the underground magma eruptive conditions and subsequent modifications in the volcanic plume and during atmospheric transport. Volcanic ash is also studied because of its impacts on the environment and human health. In particular, there is a growing interest from a multidisciplinary scientific community to understand the role that ash deposition over open ocean regions may play as a source of bioavailable Fe for phytoplankton production. Similar to aeolian mineral dust, the processes that affect the mineralogy and speciation of Fe in ash may promote solubilisation of Fe in ash, and thus may increase the amount of volcanic Fe supplied to ocean surface waters. Our knowledge of these controls is still very limited, a situation which has hindered quantitative interpretation of experimental Fe release measurements. In this review, we identify the key volcanic and atmospheric controls that are likely to modulate ash Fe solubility. We also briefly discuss existing data on Fe release from ash and make some recommendations for future studies in this area.

  11. Land surface and atmospheric conditions associated with heat waves over the Chickasaw Nation in the South Central United States

    NASA Astrophysics Data System (ADS)

    Lee, Eungul; Bieda, Rahama; Shanmugasundaram, Jothiganesh; Basara Richter, Heather

    2016-06-01

    Exposure to extreme heat was reconstructed based on regional land-atmosphere processes from 1979 to 2010 in the South Central U.S. The study region surrounds the Chickasaw Nation (CN), a predominantly Native American population with a highly prevalent burden of climate-sensitive chronic diseases. Land surface and atmospheric conditions for summer heat waves were analyzed during spring (March-April-May, MAM) and summer (June-July-August, JJA) based on the Climate and Ocean: Variability, Predictability, and Change maximum temperature definition for heat wave frequency (HWF). The spatial-temporal pattern of HWF was determined using empirical orthogonal function (EOF) analysis and the corresponding principle component time series of the first EOF of HWF. Statistically significant analyses of observed conditions indicated that sensible heat increased and latent heat fluxes decreased with high HWF in the South Central U.S. The largest positive correlations of sensible heat flux to HWF and the largest negative correlations of latent heat flux to HWF were specifically observed over the CN. This is a significantly different energy transfer regime due to less available soil moisture during the antecedent MAM and JJA. The higher sensible heat from dry soil could cause significant warming from the near surface (>2.0°C) to the lower troposphere (>1.5°C), and accumulated boundary layer heat could induce the significant patterns of higher geopotential height and enhance anticyclonic circulations (negative vorticity anomaly) at the midtroposphere. Results suggested a positive land-atmosphere feedback associated with heat waves and called attention to the need for region-specific climate adaptation planning.

  12. Atmospheric Signature of the Agulhas Current

    NASA Astrophysics Data System (ADS)

    Nkwinkwa Njouodo, Arielle Stela; Koseki, Shunya; Keenlyside, Noel; Rouault, Mathieu

    2018-05-01

    Western boundary currents play an important role in the climate system by transporting heat poleward and releasing it to the atmosphere. While their influence on extratropical storms and oceanic rainfall is becoming appreciated, their coastal influence is less known. Using satellite and climate reanalysis data sets and a regional atmospheric model, we show that the Agulhas Current is a driver of the observed band of rainfall along the southeastern African coast and above the Agulhas Current. The Agulhas current's warm core is associated with sharp gradients in sea surface temperature and sea level pressure, a convergence of low-level winds, and a co-located band of precipitation. Correlations among wind convergence, sea level pressure, and sea surface temperature indicate that these features show high degree of similarity to those in the Gulf Stream region. Model experiments further indicate that the Agulhas Current mostly impacts convective rainfall.

  13. Atmospheric and oceanic excitation of decadal-scale Earth orientation variations

    NASA Astrophysics Data System (ADS)

    Gross, Richard S.; Fukumori, Ichiro; Menemenlis, Dimitris

    2005-09-01

    The contribution of atmospheric wind and surface pressure and oceanic current and bottom pressure variations during 1949-2002 to exciting changes in the Earth's orientation on decadal timescales is investigated using an atmospheric angular momentum series computed from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis project and an oceanic angular momentum series computed from a near-global ocean model that was forced by surface fluxes from the NCEP/NCAR reanalysis project. Not surprisingly, since decadal-scale variations in the length of day are caused mainly by interactions between the mantle and core, the effect of the atmosphere and oceans is found to be only about 14% of that observed. More surprisingly, it is found that the effect of atmospheric and oceanic processes on decadal-scale changes in polar motion is also only about 20% (x component) and 38% (y component) of that observed. Therefore redistribution of mass within the atmosphere and oceans does not appear to be the main cause of the Markowitz wobble. It is also found that on timescales between 10 days and 4 years the atmospheric and oceanic angular momentum series used here have very little skill in explaining Earth orientation variations before the mid to late 1970s. This is attributed to errors in both the Earth orientation observations prior to 1976 when measurements from the accurate space-geodetic techniques became available and to errors in the modeled atmospheric fields prior to 1979 when the satellite era of global weather observing systems began.

  14. Hyper-spectral Atmospheric Sounding. Appendixes 1

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Zhou, D. K.; Revercomb, H. E.; Huang, H. L.; Antonelli, P.; Mango, S. A.

    2002-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) is the first hyper-spectral remote sounding system to be orbited aboard a geosynchronous satellite. The GETS is designed to obtain revolutionary observations of the four dimensional atmospheric temperature, moisture, and wind structure as well as the distribution of the atmospheric trace gases, CO and O3. Although GIFTS will not be orbited until 2006-2008, a glimpse at the its measurement capabilities has been obtained by analyzing data from the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Test-bed-Interferometer (NAST-I) and Aqua satellite Atmospheric Infrared Sounder (AIRS). In this paper we review the GIFTS experiment and empirically assess measurement expectations based on meteorological profiles retrieved from the NAST aircraft and Aqua satellite AIRS spectral radiances.

  15. 76 FR 2083 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Estuarine Research.... ACTION: Notice of Public Comment Period for the revised Jobos Bay National Estuarine Research Reserve... revised Jobos Bay National Estuarine Research Reserve Management Plan. The Jobos Bay National Estuarine...

  16. 76 FR 17626 - National Climate Assessment Development and Advisory Committee; Announcement of Time Change and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Climate Assessment Development and Advisory Committee; Announcement of Time Change and Meeting Location AGENCY: National Oceanic and Atmospheric Administration, Department of Commerce. ACTION: National Climate Assessment...

  17. NASA atmospheric effects of aviation projects: Status and plans

    NASA Technical Reports Server (NTRS)

    Wesoky, Howard L.; Thompson, Anne M.; Stolarski, Richard S.

    1994-01-01

    NASA's Atmospheric Effects of Aviation Project is developing a scientific basis for assessment of the atmospheric impact of subsonic and supersonic aviation. Issues addressed include predicted ozone changes and climatic impact, and related uncertainties. A primary goal is to assist assessments of United Nations scientific organizations and, hence, consideration of emission standards by the International Civil Aviation Organization. Project focus is on simulation of atmospheric processes by computer models, but studies of aircraft operations, laboratory studies, and remote and in situ observations of chemical, dynamic, and radiative processes are also included.

  18. 22 CFR 72.22 - Release of personal estate to legal representative.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Release of personal estate to legal representative. 72.22 Section 72.22 Foreign Relations DEPARTMENT OF STATE PROTECTION AND WELFARE OF AMERICANS... Nationals § 72.22 Release of personal estate to legal representative. (a) If a person or entity claiming to...

  19. 22 CFR 72.22 - Release of personal estate to legal representative.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Release of personal estate to legal representative. 72.22 Section 72.22 Foreign Relations DEPARTMENT OF STATE PROTECTION AND WELFARE OF AMERICANS... Nationals § 72.22 Release of personal estate to legal representative. (a) If a person or entity claiming to...

  20. 22 CFR 72.22 - Release of personal estate to legal representative.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Release of personal estate to legal representative. 72.22 Section 72.22 Foreign Relations DEPARTMENT OF STATE PROTECTION AND WELFARE OF AMERICANS... Nationals § 72.22 Release of personal estate to legal representative. (a) If a person or entity claiming to...

  1. 22 CFR 72.22 - Release of personal estate to legal representative.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Release of personal estate to legal representative. 72.22 Section 72.22 Foreign Relations DEPARTMENT OF STATE PROTECTION AND WELFARE OF AMERICANS... Nationals § 72.22 Release of personal estate to legal representative. (a) If a person or entity claiming to...

  2. 22 CFR 72.22 - Release of personal estate to legal representative.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Release of personal estate to legal representative. 72.22 Section 72.22 Foreign Relations DEPARTMENT OF STATE PROTECTION AND WELFARE OF AMERICANS... Nationals § 72.22 Release of personal estate to legal representative. (a) If a person or entity claiming to...

  3. Atmospheric Circulations of Rocky Planets as Heat Engines

    NASA Astrophysics Data System (ADS)

    Koll, D. D. B.

    2017-12-01

    Rocky planets are extremely common in the galaxy and include Earth, Mars, Venus, and hundreds of exoplanets. To understand and compare the climates of these planets, we need theories that are general enough to accommodate drastically different atmospheric and planetary properties. Unfortunately, few such theories currently exist.For Earth, there is a well-known principle that its atmosphere resembles a heat engine - the atmosphere absorbs heat near the surface, at a hot temperature, and emits heat to space in the upper troposphere, at a cold temperature, which allows it to perform work and balance dissipative processes such as friction. However, previous studies also showed that Earth's hydrological cycle uses up a large fraction of the heat engine's work output, which makes it difficult to view other atmospheres as heat engines.In this work I extend the heat engine principle from Earth towards other rocky planets. I explore both dry and moist atmospheres in an idealized general circulation model (GCM), and quantify their work output using entropy budgets. First, I show that convection and turbulent heat diffusion are important entropy sources in dry atmospheres. I develop a scaling that accounts for its effects, which allows me to predict the strength of frictional dissipation in dry atmospheres. There are strong parallels between my scaling and so-called potential intensity theory, which is a seminal theory for understanding tropical cyclones on Earth. Second, I address how moisture affects atmospheric heat engines. Moisture modifies both the thermodynamic properties of air and releases latent heat when water vapor condenses. I explore the impact of both effects, and use numerical simulations to explore the difference between dry and moist atmospheric circulations across a wide range of climates.

  4. Environmental Releases for Calendar Year 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DYEKMAN, D L

    2002-08-01

    This report fulfills the annual reporting requirements of US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program. The report contains tabular data summaries on air emissions and liquid effluents released to the environment as well as nonroutine releases during calendar year (CY) 2001. These releases, bearing radioactive and hazardous substances, were from Bechtel Hanford, Inc. (BHI), CH2M HILL Hanford Group, Inc. (CHG), and Fluor Hanford (FH) managed facilities and activities. These data were obtained from direct sampling and analysis and from estimates based upon approved release factors. This report further serves as a supplemental resource to the Hanfordmore » Site Environmental Report (HSER PNNL-13910), published by the Pacific Northwest National Laboratory. HSER includes a yearly accounting of the impacts on the surrounding populace and environment from major activities at the Hanford Site. HSER also summarizes the regulatory compliance status of the Hanford Site. Tables ES-1 through ES-5 display comprehensive data summaries of CY2001 air emission and liquid effluent releases. The data displayed in these tables compiles the following: Radionuclide air emissions; Nonradioactive air emissions; Radionuclides in liquid effluents discharged to ground; Total volumes and flow rates of radioactive liquid effluents discharged to ground; and Radionuclides discharged to the Columbia River.« less

  5. Historical releases of mercury to air, land, and water from coal combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streets, David G.; Lu, Zifeng; Levin, Leonard

    Coal combustion is one of the largest contemporary sources of anthropogenic mercury (Hg). It releases geologically sequestered Hg to the atmosphere, and fly ash can contaminate terrestrial and aquatic systems. We estimate that coal combustion has released a cumulative total of 38.0 (14.8–98.9, 80% C.I.) Gg (gigagrams, 10 9 g or thousand tonnes) of Hg to air, land, and water up to the year 2010, most of which (97%) has occurred since 1850. The rate of release has grown by two orders of magnitude from 0.01 Gg yr -1 in 1850 to 1 Gg yr -1 in 2010. Geographically, Asiamore » and Europe each account for 32% of cumulative releases and an additional 18% is from North America. About 26.3 (10.2–68.3) Gg, 71% of the total, were directly emitted to the atmosphere, mostly from the industrial (45%) and power generation (36%) sectors, while the remainder was disposed of to land and water bodies. While Europe and North America were the major contributing regions until 1950, Asia has surpassed both in recent decades. By 2010, Asia was responsible for 69% of the total releases of Hg from coal combustion to the environment. Control technologies installed on major emitting sources capture mainly particulate and divalent Hg, and therefore the fraction of elemental Hg in emissions from coal combustion has increased over time from 0.46 in 1850 to 0.61 in 2010. About 11.8 (4.6–30.6) Gg of Hg, 31% of the total, have been transferred to land and water bodies through the disposal or utilization of Hg-containing combustion waste and collected fly ash/FGD waste; approximately 8.8 Gg of this Hg have simply been discarded to waste piles or ash ponds or rivers.« less

  6. Historical releases of mercury to air, land, and water from coal combustion

    DOE PAGES

    Streets, David G.; Lu, Zifeng; Levin, Leonard; ...

    2018-02-15

    Coal combustion is one of the largest contemporary sources of anthropogenic mercury (Hg). It releases geologically sequestered Hg to the atmosphere, and fly ash can contaminate terrestrial and aquatic systems. We estimate that coal combustion has released a cumulative total of 38.0 (14.8–98.9, 80% C.I.) Gg (gigagrams, 10 9 g or thousand tonnes) of Hg to air, land, and water up to the year 2010, most of which (97%) has occurred since 1850. The rate of release has grown by two orders of magnitude from 0.01 Gg yr -1 in 1850 to 1 Gg yr -1 in 2010. Geographically, Asiamore » and Europe each account for 32% of cumulative releases and an additional 18% is from North America. About 26.3 (10.2–68.3) Gg, 71% of the total, were directly emitted to the atmosphere, mostly from the industrial (45%) and power generation (36%) sectors, while the remainder was disposed of to land and water bodies. While Europe and North America were the major contributing regions until 1950, Asia has surpassed both in recent decades. By 2010, Asia was responsible for 69% of the total releases of Hg from coal combustion to the environment. Control technologies installed on major emitting sources capture mainly particulate and divalent Hg, and therefore the fraction of elemental Hg in emissions from coal combustion has increased over time from 0.46 in 1850 to 0.61 in 2010. About 11.8 (4.6–30.6) Gg of Hg, 31% of the total, have been transferred to land and water bodies through the disposal or utilization of Hg-containing combustion waste and collected fly ash/FGD waste; approximately 8.8 Gg of this Hg have simply been discarded to waste piles or ash ponds or rivers.« less

  7. Historical releases of mercury to air, land, and water from coal combustion.

    PubMed

    Streets, David G; Lu, Zifeng; Levin, Leonard; Ter Schure, Arnout F H; Sunderland, Elsie M

    2018-02-15

    Coal combustion is one of the largest contemporary sources of anthropogenic mercury (Hg). It releases geologically sequestered Hg to the atmosphere, and fly ash can contaminate terrestrial and aquatic systems. We estimate that coal combustion has released a cumulative total of 38.0 (14.8-98.9, 80% C.I.) Gg (gigagrams, 10 9 g or thousand tonnes) of Hg to air, land, and water up to the year 2010, most of which (97%) has occurred since 1850. The rate of release has grown by two orders of magnitude from 0.01Ggyr -1 in 1850 to 1Ggyr -1 in 2010. Geographically, Asia and Europe each account for 32% of cumulative releases and an additional 18% is from North America. About 26.3 (10.2-68.3) Gg, 71% of the total, were directly emitted to the atmosphere, mostly from the industrial (45%) and power generation (36%) sectors, while the remainder was disposed of to land and water bodies. While Europe and North America were the major contributing regions until 1950, Asia has surpassed both in recent decades. By 2010, Asia was responsible for 69% of the total releases of Hg from coal combustion to the environment. Control technologies installed on major emitting sources capture mainly particulate and divalent Hg, and therefore the fraction of elemental Hg in emissions from coal combustion has increased over time from 0.46 in 1850 to 0.61 in 2010. About 11.8 (4.6-30.6) Gg of Hg, 31% of the total, have been transferred to land and water bodies through the disposal or utilization of Hg-containing combustion waste and collected fly ash/FGD waste; approximately 8.8Gg of this Hg have simply been discarded to waste piles or ash ponds or rivers. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Press releases by academic medical centers: not so academic?

    PubMed

    Woloshin, Steven; Schwartz, Lisa M; Casella, Samuel L; Kennedy, Abigail T; Larson, Robin J

    2009-05-05

    The news media are often criticized for exaggerated coverage of weak science. Press releases, a source of information for many journalists, might be a source of those exaggerations. To characterize research press releases from academic medical centers. Content analysis. Press releases from 10 medical centers at each extreme of U.S. News & World Report's rankings for medical research. Press release quality. Academic medical centers issued a mean of 49 press releases annually. Among 200 randomly selected releases analyzed in detail, 87 (44%) promoted animal or laboratory research, of which 64 (74%) explicitly claimed relevance to human health. Among 95 releases about primary human research, 22 (23%) omitted study size and 32 (34%) failed to quantify results. Among all 113 releases about human research, few (17%) promoted studies with the strongest designs (randomized trials or meta-analyses). Forty percent reported on the most limited human studies--those with uncontrolled interventions, small samples (<30 participants), surrogate primary outcomes, or unpublished data--yet 58% lacked the relevant cautions. The effects of press release quality on media coverage were not directly assessed. Press releases from academic medical centers often promote research that has uncertain relevance to human health and do not provide key facts or acknowledge important limitations. National Cancer Institute.

  9. Dispersion of CNG Following a High-Pressure Release

    DOT National Transportation Integrated Search

    1996-05-01

    This report discusses the results of tests to determine the dispersive behavior of compressed natural gas (CNG) when released in enclosed areas such as transit bus facility, and presents the Volpe National Transportation Systems Center's (VNTSC) conc...

  10. Release of Volatiles During North Atlantic Flood Basalt Volcanism and Correlation to the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Pedersen, J. M.; Tegner, C.; Kent, A. J.; Ulrich, T.

    2017-12-01

    The opening of the North Atlantic Ocean between Greenland and Norway during the lower Tertiary led to intense flood basalt volcanism and the emplacement of the North Atlantic Igneous Province (NAIP). The volcanism is temporally overlapping with the Paleocene-Eocene Thermal Maximum (PETM), but ash stratigraphy and geochronology suggests that the main flood basalt sequence in East Greenland postdates the PETM. Significant environmental changes during the PETM have been attributed to the release of CO2 or methane gas due to either extensive melting of hydrates at the ocean floor or as a consequence of the interaction of mantle derived magmas with carbon rich sediments.Estimates suggest that a minimum of 1.8x106 km3 of basaltic lava erupted during North Atlantic flood basalt volcanism. Based on measurements of melt inclusions from the flood basalts our preliminary calculations suggest that approximately 2300 Gt of SO2 and 600 Gt of HCl were released into the atmosphere. Calculated yearly fluxes approach 23 Mt/y SO2 and 6 Mt/y HCl. These estimates are regarded as conservative.The S released into to the atmosphere during flood basalt volcanism can form acid aerosols that absorb and reflect solar radiation, causing an effective cooling effect. The climatic effects of the release of Cl into the atmosphere are not well constrained, but may be an important factor for extinction scenarios due to destruction of the ozone layer.The climatic changes due to the release of S and Cl in these amounts, and for periods extending for hundred thousand of years, although not yet fully constrained are likely to be significant. One consequence of the North Atlantic flood basalt volcanism may have been the initiation of global cooling to end the PETM.

  11. Examination of Data Accession at the National Snow and Ice Data Center

    NASA Astrophysics Data System (ADS)

    Scott, D. J.; Booker, L.

    2017-12-01

    The National Snow and Ice Data Center (NSIDC) stewards nearly 750 publicly available snow and ice data sets that support research into our world's frozen realms. NSIDC data management is primarily supported by the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration (NOAA), and most of the data we archive and distribute is assigned to NSIDC through the funding agency programs. In addition to these mandates, NSIDC has historically offered data stewardship to researchers wanting to properly preserve and increase visibility of their research data under our primary programs (NASA, NSF, NOAA). With publishers now requiring researchers to deliver data to a repository prior to the publication of their data-related papers, we have seen an increase in researcher-initiated data accession requests. This increase is pushing us to reexamine our process to ensure timeliness in the acquisition and release of these data. In this presentation, we will discuss the support and value a researcher receives by submitting data to a trustworthy repository. We will examine NSIDC's data accession practices, and the challenges of a consistent process across NSIDC's multiple funding sponsors. Finally, we will share recent activities related to improving our process and ideas we have for enhancing the overall data accession experience.

  12. Evolution of Titan's atmosphere during the Late Heavy Bombardment

    NASA Astrophysics Data System (ADS)

    Marounina, Nadejda; Tobie, Gabriel; Carpy, Sabrina; Monteux, Julien; Charnay, Benjamin; Grasset, Olivier

    2015-09-01

    The mass and composition of Titan's massive atmosphere, which is dominated by N2 and CH4 at present, have probably varied all along its history owing to a combination of exogenous and endogenous processes. In the present study, we investigate its fate during the Late Heavy Bombardment (LHB) by modeling the competitive loss and supply of volatiles by cometary impacts and their consequences on the atmospheric balance. For surface albedos ranging between 0.1 and 0.7, we examine the emergence of an atmosphere during the LHB as well as the evolution of a primitive atmosphere with various masses and compositions prior to this event, accounting for impact-induced crustal NH3-N2 conversion and subsequent outgassing as well as impact-induced atmospheric erosion. By considering an impactor population characteristic of the LHB, we show that the generation of a N2-rich atmosphere with a mass equivalent to the present-day one requires ammonia mass fraction of 2-5%, depending on surface albedos, in an icy layer of at least 50 km below the surface, implying an undifferentiated interior at the time of LHB. Except for high surface albedos (AS ⩾ 0.7) where most of the released N2 remain frozen at the surface, our calculations indicate that the high-velocity impacts led to a strong atmospheric erosion. For a differentiated Titan with a thin ammonia-enriched crust (⩽5 km) and AS < 0.6 , any atmosphere preexisting before the LHB should be more than 5 times more massive than at present, in order to sustain an atmosphere equivalent to the present-day one. This implies that either a massive atmosphere was formed on Titan during its accretion or that the nitrogen-rich atmosphere was generated after the LHB.

  13. Atmospheric Composition Change: Climate-Chemistry Interactions

    NASA Technical Reports Server (NTRS)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; hide

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  14. Atmospheric Processing of Volcanic Glass: Effects on Iron Solubility and Redox Speciation.

    PubMed

    Maters, Elena C; Delmelle, Pierre; Bonneville, Steeve

    2016-05-17

    Volcanic ash from explosive eruptions can provide iron (Fe) to oceanic regions where this micronutrient limits primary production. Controls on the soluble Fe fraction in ash remain poorly understood but Fe solubility is likely influenced during atmospheric transport by condensation-evaporation cycles which induce large pH fluctuations. Using glass powder as surrogate for ash, we experimentally simulate its atmospheric processing via cycles of pH 2 and 5 exposure. Glass fractional Fe solubility (maximum 0.4%) is governed by the pH 2 exposure duration rather than by the pH fluctuations, however; pH 5 exposure induces precipitation of Fe-bearing nanoparticles which (re)dissolve at pH 2. Glass leaching/dissolution release Fe(II) and Fe(III) which are differentially affected by changes in pH; the average dissolved Fe(II)/Fetot ratio is ∼0.09 at pH 2 versus ∼0.18 at pH 5. Iron release at pH 2 from glass with a relatively high bulk Fe(II)/Fetot ratio (0.5), limited aqueous Fe(II) oxidation at pH 5, and possibly glass-mediated aqueous Fe(III) reduction may render atmospherically processed ash a significant source of Fe(II) for phytoplankton. By providing new insight into the form(s) of Fe associated with ash as wet aerosol versus cloud droplet, we improve knowledge of atmospheric controls on volcanogenic Fe delivery to the ocean.

  15. Global Scale Atmospheric Processes Research Program Review

    NASA Technical Reports Server (NTRS)

    Worley, B. A. (Editor); Peslen, C. A. (Editor)

    1984-01-01

    Global modeling; satellite data assimilation and initialization; simulation of future observing systems; model and observed energetics; dynamics of planetary waves; First Global Atmospheric Research Program Global Experiment (FGGE) diagnosis studies; and National Research Council Research Associateship Program are discussed.

  16. Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere.

    PubMed

    Keppler, Frank; Vigano, Ivan; McLeod, Andy; Ott, Ulrich; Früchtl, Marion; Röckmann, Thomas

    2012-05-30

    Almost a decade after methane was first reported in the atmosphere of Mars there is an intensive discussion about both the reliability of the observations--particularly the suggested seasonal and latitudinal variations--and the sources of methane on Mars. Given that the lifetime of methane in the Martian atmosphere is limited, a process on or below the planet's surface would need to be continuously producing methane. A biological source would provide support for the potential existence of life on Mars, whereas a chemical origin would imply that there are unexpected geological processes. Methane release from carbonaceous meteorites associated with ablation during atmospheric entry is considered negligible. Here we show that methane is produced in much larger quantities from the Murchison meteorite (a type CM2 carbonaceous chondrite) when exposed to ultraviolet radiation under conditions similar to those expected at the Martian surface. Meteorites containing several per cent of intact organic matter reach the Martian surface at high rates, and our experiments suggest that a significant fraction of the organic matter accessible to ultraviolet radiation is converted to methane. Ultraviolet-radiation-induced methane formation from meteorites could explain a substantial fraction of the most recently estimated atmospheric methane mixing ratios. Stable hydrogen isotope analysis unambiguously confirms that the methane released from Murchison is of extraterrestrial origin. The stable carbon isotope composition, in contrast, is similar to that of terrestrial microbial origin; hence, measurements of this signature in future Mars missions may not enable an unambiguous identification of biogenic methane.

  17. The National "Expertise Gap"

    ERIC Educational Resources Information Center

    Hamilton, Kendra

    2005-01-01

    This article discusses the Woodrow Wilson National Fellowship Foundation's report, "Diversity and the Ph.D.," released in May, which documents in troubling detail the exact dimensions of what the foundation's president, Dr. Robert Weisbuch, is calling the national "expertise gap." Weisbuch states that the expertise gap extends beyond the…

  18. 78 FR 75548 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Estuarine Research...: Notice of Approval of the Wells, Maine National Estuarine Research Reserve Management Plan revision... Commerce approves the Wells, Maine National Estuarine Research Reserve Management Plan revision. The...

  19. 78 FR 26617 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Estuarine Research.... ACTION: Notice of Public Comment Period for the Grand Bay, Mississippi National Estuarine Research Reserve Management Plan and the Delaware National Estuarine Research Reserve Management Plan revisions...

  20. Geologic emissions of methane to the atmosphere.

    PubMed

    Etiope, Giuseppe; Klusman, Ronald W

    2002-12-01

    The atmospheric methane budget is commonly defined assuming that major sources derive from the biosphere (wetlands, rice paddies, animals, termites) and that fossil, radiocarbon-free CH4 emission is due to and mediated by anthropogenic activity (natural gas production and distribution, and coal mining). However, the amount of radiocarbon-free CH4 in the atmosphere, estimated at approximately 20% of atmospheric CH4, is higher than the estimates from statistical data of CH4 emission from fossil fuel related anthropogenic sources. This work documents that significant amounts of "old" methane, produced within the Earth crust, can be released naturally into the atmosphere through gas permeable faults and fractured rocks. Major geologic emissions of methane are related to hydrocarbon production in sedimentary basins (biogenic and thermogenic methane) and, subordinately, to inorganic reactions (Fischer-Tropsch type) in geothermal systems. Geologic CH4 emissions include diffuse fluxes over wide areas, or microseepage, on the order of 10(0)-10(2) mg m(-2) day(-1), and localised flows and gas vents, on the order of 10(2) t y(-1), both on land and on the seafloor. Mud volcanoes producing flows of up to 10(3) t y(-1) represent the largest visible expression of geologic methane emission. Several studies have indicated that methanotrophic consumption in soil may be insufficient to consume all leaking geologic CH4 and positive fluxes into the atmosphere can take place in dry or seasonally cold environments. Unsaturated soils have generally been considered a major sink for atmospheric methane, and never a continuous, intermittent, or localised source to the atmosphere. Although geologic CH4 sources need to be quantified more accurately, a preliminary global estimate indicates that there are likely more than enough sources to provide the amount of methane required to account for the suspected missing source of fossil CH4.

  1. Representative doses to members of the public from atmospheric releases of (131)I at the Mayak Production Association facilities from 1948 through 1972.

    PubMed

    Eslinger, Paul W; Napier, Bruce A; Anspaugh, Lynn R

    2014-09-01

    Scoping epidemiology studies performed by researchers from the Southern Urals Biophysics Institute revealed an excess prevalence of thyroid nodules and an increased incidence of thyroid cancer among residents of Ozersk, Russia, who were born in the early 1950s. Ozersk is located about 5 km from the facilities where the Mayak Production Association produced nuclear materials for the Russian weapons program. Reactor operations began in June 1948 and chemical separation of plutonium from irradiated fuel began in February 1949. The U.S.-Russia Joint Coordinating Committee on Radiation Effects Research conducted a series of projects over a 10-year period to assess the radiation risks in the Southern Urals. This paper uses data collected under Committee projects to present examples of reconstructed time-dependent thyroid doses to reference individuals living in Ozersk from (131)I released to the atmosphere for all relevant exposure pathways. Between 3.22 × 10(16) and 4.31 × 10(16) Bq of (131)I may have been released during the 1948-1972 time period, and a best estimate is 3.76 × 10(16) Bq. In general, younger children incur greater thyroid doses from (131)I than adults. A child born in 1947 is estimated to have received a cumulative thyroid dose of 2.3 Gy for 1948-1972, with a 95% confidence interval of 0.51-7.3 Gy. Annual doses were the highest in 1949 and a child who was 5 years old in 1949 is estimated to have a received an annual thyroid dose of 0.93 Gy with a 95% confidence interval of 0.19-3.5 Gy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Empowering Geoscience with Improved Data Assimilation Using the Data Assimilation Research Testbed "Manhattan" Release.

    NASA Astrophysics Data System (ADS)

    Raeder, K.; Hoar, T. J.; Anderson, J. L.; Collins, N.; Hendricks, J.; Kershaw, H.; Ha, S.; Snyder, C.; Skamarock, W. C.; Mizzi, A. P.; Liu, H.; Liu, J.; Pedatella, N. M.; Karspeck, A. R.; Karol, S. I.; Bitz, C. M.; Zhang, Y.

    2017-12-01

    The capabilities of the Data Assimilation Research Testbed (DART) at NCAR have been significantly expanded with the recent "Manhattan" release. DART is an ensemble Kalman filter based suite of tools, which enables researchers to use data assimilation (DA) without first becoming DA experts. Highlights: significant improvement in efficient ensemble DA for very large models on thousands of processors, direct read and write of model state files in parallel, more control of the DA output for finer-grained analysis, new model interfaces which are useful to a variety of geophysical researchers, new observation forward operators and the ability to use precomputed forward operators from the forecast model. The new model interfaces and example applications include the following: MPAS-A; Model for Prediction Across Scales - Atmosphere is a global, nonhydrostatic, variable-resolution mesh atmospheric model, which facilitates multi-scale analysis and forecasting. The absence of distinct subdomains eliminates problems associated with subdomain boundaries. It demonstrates the ability to consistently produce higher-quality analyses than coarse, uniform meshes do. WRF-Chem; Weather Research and Forecasting + (MOZART) Chemistry model assimilates observations from FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment). WACCM-X; Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension assimilates observations of electron density to investigate sudden stratospheric warming. CESM (weakly) coupled assimilation; NCAR's Community Earth System Model is used for assimilation of atmospheric and oceanic observations into their respective components using coupled atmosphere+land+ocean+sea+ice forecasts. CESM2.0; Assimilation in the atmospheric component (CAM, WACCM) of the newly released version is supported. This version contains new and extensively updated components and software environment. CICE; Los Alamos sea ice model (in CESM) is used to assimilate

  3. Monitoring Atmospheric Deposition of Nitrogen in Alpine Environments in Rocky Mountain and Yosemite National Parks, USA

    NASA Astrophysics Data System (ADS)

    Roop, H. A.; Clow, D. W.; Mills, J.; Fenn, M. E.

    2011-12-01

    Recent increases in atmospheric deposition of nitrogen (N) in the western U.S. have adversely impacted surface water quality and changed the composition of aquatic biota in high-elevation lakes. Existing N deposition data are generally not spatially diverse; representation of remote wilderness areas and high-elevation watersheds is often lacking, making it difficult to assess the importance of variations in N deposition on water quality impacts. This study aims to better understand N deposition in remote environments, particularly in alpine environments, where both the quantity and environmental impact of atmospheric N deposition are poorly understood. Understanding the impacts of N deposition on these environments is important for National Park resource and water-quality managers. Using ion-exchange resin (IER) collectors, seasonal through-fall of nitrogen was measured at 29 sites in the Rocky Mountains and 21 sites in the Sierra Nevada from 2006-2011. The IER collectors, deployed in pairs, represent geographically diverse transects aimed to quantify the spatial distribution of nitrogen deposition. Placed on talus slopes or in areas of exposed bedrock, the IER collectors were installed immediately following snowmelt (June/July) and replaced with new collectors prior to the first snowfall (September). Following spring melt, the collectors deployed over the winter were exchanged with new collectors. These seasonal swaps capture winter/spring and summer/fall deposition. A majority of the sites were paired with seasonal surface-water quality samples, allowing for comparison with nitrate levels in surface waters. In the lab, N compounds are eluted from the resins, then diluted and analyzed on an ion- chromatograph. Preliminary data from 2006, representing 16 sites with uncontaminated samples in Rocky Mountain National Park, suggest higher nitrogen deposition on the east side of the park. Average summer N deposition for an 85-day exposure period at the eastern slope

  4. Radiation Budget Profiles measured through the Atmosphere with a Return Glider Radiosonde

    NASA Astrophysics Data System (ADS)

    Philipona, R.; Kraeuchi, A.; Kivi, R.

    2015-12-01

    Very promising radiation budget profile measurements through the atmosphere were made in 2011 with a balloon borne short- and longwave net radiometer. New and improved radiation sensors from Kipp&Zonen are now used in a glider aircraft together with a standard Swiss radiosonde from Meteolabor AG. This new return glider radiosonde (RG-R), is lifted up with double balloon technique to prevent pendulum motion and to keep the radiation instruments as horizontal as possible during the ascent measuring phase. The RG-R is equipped with a release mechanism and an autopilot that flies the glider radiosonde back to the launch site, or to a predefined open space, where it releases a parachute for landing once it is 100 meter above ground. The RG-R was successfully tested and deployed for tropospheric and stratospheric radiation measurements up to 30 hPa (24 km altitude) at the GRUAN sites Payerne (Switzerland) and Sodankylä (Finland). Radiation profiles and the radiation budget through the atmosphere during different daytimes and under cloud-free and cloudy situations will be shown in relation to temperature and humidity at the surface and in the atmosphere. The RG-R flight characteristics and new measurement possibilities will also be discussed.

  5. DOD Pico-Satellite known as ANDE released from the STS-116 shuttle payload bay

    NASA Image and Video Library

    2006-12-21

    S116-E-07837 (21 Dec. 2006) --- As seen through windows on the aft flight deck of Space Shuttle Discovery, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers. ANDE consists of two micro-satellites which will measure the density and composition of the low Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.

  6. DOD Pico-Satellite known as ANDE released from the STS-116 shuttle payload bay

    NASA Image and Video Library

    2006-12-21

    S116-E-07831 (21 Dec. 2006) --- As seen through windows on the aft flight deck of Space Shuttle Discovery, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers. ANDE consists of two micro-satellites which will measure the density and composition of the low Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.

  7. DOD Pico-Satellite known as ANDE released from the STS-116 shuttle payload bay

    NASA Image and Video Library

    2006-12-21

    S116-E-07838 (21 Dec. 2006) --- As seen through windows on the aft flight deck of Space Shuttle Discovery, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers. ANDE consists of two micro-satellites which will measure the density and composition of the low Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.

  8. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2014-05-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. The hazardous consequences reach out on a national and continental scale. Environmental measurements and methods to model the transport and dispersion of the released radionuclides serve as a platform to assess the regional impact of nuclear accidents - both, for research purposes and, more important, to determine the immediate threat to the population. However, the assessments of the regional radionuclide activity concentrations and the individual exposure to radiation dose underlie several uncertainties. For example, the accurate model representation of wet and dry deposition. One of the most significant uncertainty, however, results from the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source terms of severe nuclear accidents may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on rather rough estimates of released key radionuclides given by the operators. Precise measurements are mostly missing due to practical limitations during the accident. Inverse modelling can be used to realise a feasible estimation of the source term (Davoine and Bocquet, 2007). Existing point measurements of radionuclide activity concentrations are therefore combined with atmospheric transport models. The release rates of radionuclides at the accident site are then obtained by improving the agreement between the modelled and observed concentrations (Stohl et al., 2012). The accuracy of the method and hence of the resulting source term depends amongst others on the availability, reliability and the resolution in time and space of the observations. Radionuclide activity concentrations are observed on a

  9. Remote sensing applications for diagnostics of the radioactive pollution of the ground surface and in the atmosphere

    NASA Astrophysics Data System (ADS)

    Pulinets, Sergey; Ouzounov, Dimitar; Boyarchuk, Kirill; Laverov, Nikolay

    2013-04-01

    Radioactive pollution due to its air ionization activity can drastically change the atmospheric boundary layer conductivity (what was experimentally proved during period of nuclear tests in atmosphere) and through the global electric circuit produce anomalous variations in atmosphere. As additional effect the ions created due to air ionization serve as centers of water vapor condensation and nucleation of aerosol-size particles. This process is accompanied by latent heat release. Both anomalies (ionospheric and thermal) can be controlled by remote sensing technique both from satellites (IR sensors and ionospheric probes) and from ground (GPS receivers, ground based ionosondes, VLF propagation sounding, ground measurements of the air temperature and humidity). We monitored the majority of transient events (Three-Mile Island and Chernobyl nuclear power plant emergencies) and stationary sources such as Gabon natural nuclear reactor, sites of underground nuclear tests, etc. and were able to detect thermal anomalies and for majority of cases - the ionospheric anomalies as well. Immediately after the March 11, 2011 earthquake and tsunami in Japan we started to continuously survey the long-wavelength energy flux (10-13 microns) measurable at top of the atmosphere from POES/NOAA/AVHRR polar orbit satellites. Our preliminary results show the presence of hot spots on the top of the atmosphere over the Fukushima Daiichi Nuclear Power Plant (FDNPP) and due to their persistence over the same region they are most likely not of meteorological origin. On March 14 and 21 we detected a significant increase in radiation at the top of the atmosphere which also coincides with a reported radioactivity gas leaks from the FDNPP. After March 21 the intensity of energy flux in atmosphere started to decline, which has been confirmed by ground radiometer network. We were able to detect with ground based ionosonde the ionospheric anomaly associated with the largest radioactive release on March

  10. Is there an Alternative for the Huge Impact-Generated Atmosphere?

    NASA Astrophysics Data System (ADS)

    Gerasimov, M. V.; Dikov, Y. P.; Yakovlev, O. I.; Wlotzka, F.

    1998-01-01

    The Earth's primordial atmosphere is considered to be the result of impact degassing during planetary accretion. Experiments on the decomposition of a serpentine and calcite during a shock wave loading showed that a rather efficient decomposition could be achieved beginning with the impact velocities that corresponded to escape velocities of a relatively small (about Moon-sized) planetary embryo. During further accumulation of planetary mass, the decomposition of serpentine and carbonates with the release of H2O and CO2 (gases considered to be the main product of impact degassing) into the primordial atmosphere was considered to be complete. The sink rate of H2O and CO2 from the primordial atmosphere was evaluated mainly as atmospheric impact erosion, thermal and EW-driven escape from the atmosphere, hydration and carboniza60n of surface minerals, dissolution of gases in magma ocean, loss of water for oxidation of Fe, etc. The growth of the atmosphere was considered to be a result of source and sink processes during each impact event. The rehydration of 100% of degassed material during an impact is considered to be an end effect when no hydrous atmosphere is formed. But even a small efficiency of impact degassing (the ratio of volatiles that remain in the atmosphere after an impact to the amount delivered by a planetesimal) was calculated to produce an abundant H2O-CO2 atmosphere. During a set of impact simulation experiments we have investigated the chemistry of volatiles and their interaction behavior with condensing silicates at conditions similar to impact vaporization. First, the experiments showed that the gas mixture was not limited only by H20 and CO2 during high-temperature vaporization of silicates, a wide variety of gases were formed, including oxides [SO2, CO2, CO (CO/CO2 approximately 1), H20] and reduced gas components (H2, H2S, CS2, COS, and hydrocarbons). Second, experiments on high-temperature vaporization of mafic and ultramafic rocks and minerals

  11. Contracting Out. National Oceanic and Atmospheric Administration's Central Library. Report to the Chairman, Subcommittee on Commerce, Justice, State, and the Judiciary, Committee on Appropriations, U.S. Senate.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    In response to a request by the Senate Committee on Appropriations for an examination of the A-76 program of the Department of Commerce's National Oceanic and Atmospheric Administration (NOAA), in particular NOAA's decision to contract for the operation of its Central Library, this report describes a General Accounting Office (GAO) review which:…

  12. Simulation of Atmospheric Dispersion of Elevated Releases from Point Sources in Mississippi Gulf Coast with Different Meteorological Data

    PubMed Central

    Yerramilli, Anjaneyulu; Srinivas, Challa Venkata; Dasari, Hari Prasad; Tuluri, Francis; White, Loren D.; Baham, Julius M.; Young, John H.; Hughes, Robert; Patrick, Chuck; Hardy, Mark G.; Swanier, Shelton J.

    2009-01-01

    Atmospheric dispersion calculations are made using the HYSPLIT Particle Dispersion Model for studying the transport and dispersion of air-borne releases from point elevated sources in the Mississippi Gulf coastal region. Simulations are performed separately with three meteorological data sets having different spatial and temporal resolution for a typical summer period in 1–3 June 2006 representing a weak synoptic condition. The first two data are the NCEP global and regional analyses (FNL, EDAS) while the third is a meso-scale simulation generated using the Weather Research and Forecasting model with nested domains at a fine resolution of 4 km. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of the combined influences of the land-sea breeze circulation, the large scale flow field and diurnal alteration in the mixing depth across the coast. The model predicted SO2 concentrations showed that the trajectory and the concentration distribution varied in the three cases of input data. While calculations with FNL data show an overall higher correlation, there is a significant positive bias during daytime and negative bias during night time. Calculations with EDAS fields are significantly below the observations during both daytime and night time though plume behavior follows the coastal circulation. The diurnal plume behavior and its distribution are better simulated using the mesoscale WRF meteorological fields in the coastal environment suggesting its suitability for pollution dispersion impact assessment in the local scale. Results of different cases of simulation, comparison with observations, correlation and bias in each case are presented. PMID:19440433

  13. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid

    PubMed Central

    Donaldson, Melissa A.; Bish, David L.; Raff, Jonathan D.

    2014-01-01

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day. PMID:25512517

  14. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid.

    PubMed

    Donaldson, Melissa A; Bish, David L; Raff, Jonathan D

    2014-12-30

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼ 3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day.

  15. Interpretation of Titan's atmospheric composition measured by Cassini-Huygens

    NASA Astrophysics Data System (ADS)

    Tobie, G.; Gautier, D.; Hersant, F.; Lunine, J. I.

    2008-09-01

    ABSTRACT The GCMS instrument aboard the Huygens probe has measured the composition of Titan's atmosphere [1] and detected for the first time 36Ar and 40Ar, but no Xe and Kr. Assuming that planetesimals which formed the satellite originated from the cold solar nebula around 10 AU, we predict, on the basis of our interpretation of the CNS enrichments in Saturn [2], that they must have contained silicates, H2O ice, CO2, CH4, H2S, NH3 and some amount of noble gases. Using the evolution model of Tobie et al. [3], we have determined the fate of the different volatile species present in Titan's interior and in the atmosphere from the accretion to present time. At the end of accretion, most of the region outward of this proto-corewas warmliquid water (T > 300K), in which gas compound has very low solubility, and so potentially very large amounts of volatiles, notably methane, ended up in the primitive atmosphere and on the surface. During that early epoch, the composition of the hot-proto atmosphere should have reflected the composition of the planetesimals. The atmosphere at that time was probablymainly composed of H2O, NH3, CO2, CH4, H2S, which strongly contrasts with the nitrogen dominating atmosphere we have on Titan today. Early escape, photolysis, impact-driven chemistry and progressive condensation to the surface of the different species initially present in the primitive atmosphere gradually change the composition of the atmosphere, so that most of the primordial gas compound disappeared fromthe atmosphere. After that catastrophic early epoch, only the inner undifferentiated portion of Titans interior was able to hold primordial volatiles. These volatile species were released fromthe deep interior when internal differentiation occured, roughly 0.5 Gyr after accretion. Depending on their ability to interact with water molecules, each species follow a different evolutionnary pathway. For pressure conditions occurringwithin Titan, we show thatmost of the volatile

  16. SITE CHARACTERIZATION LIBRARY: VOLUMN 1 (RELEASE 2.5)

    EPA Science Inventory

    This CD-ROM, Volume 1, Release 2.5, of EPA's National Exposure Research Laboratory (NERL - Las Vegas) Site Characterization Library, contains additional electronic documents and computer programs related to the characterization of hazardous waste sites. EPA has produced this libr...

  17. Capturing Characteristics of Atmospheric Refractivity Using Observations and Modeling Approaches

    DTIC Science & Technology

    2015-06-01

    Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Electromagnetic wave...INTENTIONALLY LEFT BLANK v ABSTRACT Electromagnetic wave propagation is sensitive to gradients of refractivity derived from atmospheric temperature...evaporation duct profiles is then run through AREPS to calculate the propagation loss of EM energy along the path of varying geometric and transmitter setups

  18. EMERALD REV.1. PWR Accident Activity Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunot, W.K.; Fray, R.R.; Gillespie, S.G.

    1975-10-01

    The EMERALD program is designed for the calculation of radiation releases and exposures resulting from abnormal operation of a large pressurized water reactor (PWR). The approach used in EMERALD is similar to an analog simulation of a real system. Each component or volume in the plant which contains a radioactive material is represented by a subroutine which keeps track of the production, transfer, decay and absorption of radioactivity in that volume. During the course of the analysis of an accident, activity is transferred from subroutine to subroutine in the program as it would be transferred from place to place inmore » the plant. For example, in the calculation of the doses resulting from a loss-of-coolant accident the program first calculates the activity built up in the fuel before the accident, then releases some of this activity to the containment volume. Some of this activity is then released to the atmosphere. The rates of transfer, leakage, production, cleanup, decay, and release are read in as input to the program. Subroutines are also included which calculate the on-site and off-site radiation exposures at various distances for individual isotopes and sums of isotopes. The program contains a library of physical data for the twenty-five isotopes of most interest in licensing calculations, and other isotopes can be added or substituted. Because of the flexible nature of the simulation approach, the EMERALD program can be used for most calculations involving the production and release of radioactive materials during abnormal operation of a PWR. These include design, operational, and licensing studies.« less

  19. First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations.

    PubMed

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2014-10-22

    No observed data have been found in the Fukushima Prefecture (FP) for the time-series of atmospheric radionuclides concentrations just after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident. Accordingly, current estimates of internal radiation doses from inhalation, and atmospheric radionuclide concentrations by atmospheric transport models are highly uncertain. Here, we present a new method for retrieving the hourly atmospheric (137)Cs concentrations by measuring the radioactivity of suspended particulate matter (SPM) collected on filter tapes in SPM monitors which were operated even after the accident. This new dataset focused on the period of March 12-23, 2011 just after the accident, when massive radioactive materials were released from the FD1NPP to the atmosphere. Overall, 40 sites of the more than 400 sites in the air quality monitoring stations in eastern Japan were studied. For the first time, we show the spatio-temporal variation of atmospheric (137)Cs concentrations in the FP and the Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPP. The comprehensive dataset revealed how the polluted air masses were transported to the FP and TMA, and can be used to re-evaluate internal exposure, time-series radionuclides release rates, and atmospheric transport models.

  20. First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations

    PubMed Central

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2014-01-01

    No observed data have been found in the Fukushima Prefecture (FP) for the time-series of atmospheric radionuclides concentrations just after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident. Accordingly, current estimates of internal radiation doses from inhalation, and atmospheric radionuclide concentrations by atmospheric transport models are highly uncertain. Here, we present a new method for retrieving the hourly atmospheric 137Cs concentrations by measuring the radioactivity of suspended particulate matter (SPM) collected on filter tapes in SPM monitors which were operated even after the accident. This new dataset focused on the period of March 12–23, 2011 just after the accident, when massive radioactive materials were released from the FD1NPP to the atmosphere. Overall, 40 sites of the more than 400 sites in the air quality monitoring stations in eastern Japan were studied. For the first time, we show the spatio-temporal variation of atmospheric 137Cs concentrations in the FP and the Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPP. The comprehensive dataset revealed how the polluted air masses were transported to the FP and TMA, and can be used to re-evaluate internal exposure, time-series radionuclides release rates, and atmospheric transport models. PMID:25335435

  1. 75 FR 65613 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Estuarine Research... Research Reserves: North Inlet-Winyah Bay, SC and San Francisco Bay, CA. SUMMARY: Notice is hereby given... National Estuarine Research Reserve and the San Francisco Bay, CA National Estuarine Research Reserve. The...

  2. 76 FR 16620 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Estuarine Research... Research Reserves: ACE Basin, SC and Old Woman Creek, OH. SUMMARY: Notice is hereby given that the... National Estuarine Research Reserve and Old Woman Creek, OH National Estuarine Research Reserve. The...

  3. Nitrous-acid-mediated synthesis of iron-nitrosyl-porphyrin: pH-dependent release of nitric oxide.

    PubMed

    Bhuyan, Jagannath; Sarkar, Sabyasachi

    2012-11-01

    Two iron-nitrosyl-porphyrins, nitrosyl[meso-tetrakis(3,4,5-trimethoxyphenylporphyrin]iron(II) acetic acid solvate (3) and nitrosyl[meso-tetrakis(4-methoxyphenylporphyrin]iron(II) CH(2)Cl(2) solvate (4), were synthesized in quantitative yield by using a modified procedure with nitrous acid, followed by oxygen-atom abstraction by triphenylphosphine under an argon atmosphere. These nitrosyl porphyrins are in the {FeNO}(7) class. Under an argon atmosphere, these compounds are relatively stable over a broad range of pH values (4-8) but, under aerobic conditions, they release nitric oxide faster at high pH values than that at low pH values. The generated nitric-oxide-free iron(III)-porphyrin can be re-nitrosylated by using nitrous acid and triphenylphosphine. The rapid release of NO from these Fe(II) complexes at high pH values seems to be similar to that in nitrophorin, a nitric-oxide-transport protein, which formally possesses Fe(III). However, because the release of NO occurs from ferrous-nitrosyl-porphyrin under aerobic conditions, these compounds are more closely related to nitrobindin, a recently discovered heme protein. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. National Assessment Technical Quality.

    ERIC Educational Resources Information Center

    Chelimsky, Eleanor

    In 1991 the National Assessment Governing Board (NAGB) released a report interpreting the achievement of U.S. students in mathematics on the 1990 National Assessment of Educational Progress in terms of a set of performance standards. The NAGB had been designing and implementing an approach to defining basic, proficient, and advanced levels of…

  5. AVC Helps Teachers View the Atmosphere and Play in the Sand.

    ERIC Educational Resources Information Center

    Klaus, Christopher; Andrew, Keith; McCollum, Timothy

    2003-01-01

    Describes the Atmospheric Visualization Collection (AVC), part of the National Science Digital Library (NSDL) that contains an archive of weather images as well as a collection of educational material that uses the images to teach atmospheric science concepts. Discusses the potential use of this information for K-12 and undergraduate students.…

  6. Modern inhalation anesthetics: Potent greenhouse gases in the global atmosphere

    NASA Astrophysics Data System (ADS)

    Vollmer, Martin K.; Rhee, Tae Siek; Rigby, Matt; Hofstetter, Doris; Hill, Matthias; Schoenenberger, Fabian; Reimann, Stefan

    2015-03-01

    Modern halogenated inhalation anesthetics undergo little metabolization during clinical application and evaporate almost completely to the atmosphere. Based on their first measurements in a range of environments, from urban areas to the pristine Antarctic environment, we detect a rapid accumulation and ubiquitous presence of isoflurane, desflurane, and sevoflurane in the global atmosphere. Over the past decade, their abundances in the atmosphere have increased to global mean mole fractions in 2014 of 0.097ppt, 0.30ppt, and 0.13ppt (parts per trillion, 10-12, in dry air), respectively. Emissions of these long-lived greenhouse gases inferred from the observations suggest a global combined release to the atmosphere of 3.1 ± 0.6 million t CO2 equivalent in 2014 of which ≈80% stems from desflurane. We also report on halothane, a previously widely used anesthetic. Its global mean mole fraction has declined to 9.2ppq (parts per quadrillion, 10-15) by 2014. However, the inferred present usage is still 280 ±120t yr-1.

  7. Effects of equipment performance on data quality from the National Atmospheric Deposition Program/National Trends Network and the Mercury Deposition Network

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Rhodes, Mark F.

    2013-01-01

    The U.S. Geological Survey Branch of Quality Systems operates the Precipitation Chemistry Quality Assurance project (PCQA) to provide independent, external quality-assurance for the National Atmospheric Deposition Program (NADP). NADP is composed of five monitoring networks that measure the chemical composition of precipitation and ambient air. PCQA and the NADP Program Office completed five short-term studies to investigate the effects of equipment performance with respect to the National Trends Network (NTN) and Mercury Deposition Network (MDN) data quality: sample evaporation from NTN collectors; sample volume and mercury loss from MDN collectors; mercury adsorption to MDN collector glassware, grid-type precipitation sensors for precipitation collectors, and the effects of an NTN collector wind shield on sample catch efficiency. Sample-volume evaporation from an NTN Aerochem Metrics (ACM) collector ranged between 1.1–33 percent with a median of 4.7 percent. The results suggest that weekly NTN sample evaporation is small relative to sample volume. MDN sample evaporation occurs predominantly in western and southern regions of the United States (U.S.) and more frequently with modified ACM collectors than with N-CON Systems Inc. collectors due to differences in airflow through the collectors. Variations in mercury concentrations, measured to be as high as 47.5 percent per week with a median of 5 percent, are associated with MDN sample-volume loss. Small amounts of mercury are also lost from MDN samples by adsorption to collector glassware irrespective of collector type. MDN 11-grid sensors were found to open collectors sooner, keep them open longer, and cause fewer lid cycles than NTN 7-grid sensors. Wind shielding an NTN ACM collector resulted in collection of larger quantities of precipitation while also preserving sample integrity.

  8. The Long-term Middle Atmospheric Influence of Very Large Solar Proton Events

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Randall, Cora E.; Fleming, Eric L.; Frith, Stacey M.

    2008-01-01

    Long-term variations in ozone have been caused by both natural and humankind related processes. The humankind or anthropogenic influence on ozone originates from the chlorofluorocarbons and halons (chlorine and bromine) and has led to international regulations greatly limiting the release of these substances. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the long-term (> few months) influences of solar proton events from 1963 through 2004 on stratospheric ozone and temperature. There were extremely large solar proton events in 1972, 1989,2000,2001, and 2003. These events caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen-containing compounds, which led to the polar ozone destruction. The nitrogen-containing compounds, called odd nitrogen, lasted much longer than the hydrogen-containing compounds and led to long-lived stratospheric impacts. An extremely active period for these events occurred in the five-year period, 2000- 2004, and caused increases in odd nitrogen which lasted for several months after individual events. Associated stratospheric ozone decreases of >lo% were calculated

  9. Atmospheric nitrogen in the Mississippi River Basin - Amissions, deposition and transport

    USGS Publications Warehouse

    Lawrence, G.B.; Goolsby, D.A.; Battaglin, W.A.; Stensland, G.J.

    2000-01-01

    Atmospheric deposition of nitrogen has been cited as a major factor in the nitrogen saturation of forests in the north-eastern United States and as a contributor to the eutrophication of coastal waters, including the Gulf of Mexico near the mouth of the Mississippi River. Sources of nitrogen emissions and the resulting spatial patterns of nitrogen deposition within the Mississippi River Basin, however, have not been fully documented. An assessment of atmospheric nitrogen in the Mississippi River Basin was therefore conducted in 1998-1999 to: (1) evaluate the forms in which nitrogen is deposited from the atmosphere; (2) quantify the spatial distribution of atmospheric nitrogen deposition throughout the basin; and (3) relate locations of emission sources to spatial deposition patterns to evaluate atmospheric transport. Deposition data collected through the NADP/NTN (National Atmospheric Deposition Program/National Trends Network) and CASTNet (Clean Air Status and Trends Network) were used for this analysis. NO(x) Tier 1 emission data by county was obtained for 1992 from the US Environmental Protection Agency (Emissions Trends Viewer CD, 1985-1995, version 1.0, September 1996) and NH3 emissions data was derived from the 1992 Census of Agriculture (US Department of Commerce. Census of Agriculture, US Summary and County Level Data, US Department of Commerce, Bureau of the Census. Geographic Area series, 1995:1b) or the National Agricultural Statistics Service (US Department of Agriculture. National Agricultural Statistics Service Historical Data. Accessed 7/98 at URL, 1998. http://www.usda.gov/nass/pubs/hisdata.htm). The highest rates of wet deposition of NO3- were in the north-eastern part of the basin, downwind of electric utility plants and urban areas, whereas the highest rates of wet deposition of NH4+ were in Iowa, near the center of intensive agricultural activities in the Midwest. The lowest rates of atmospheric nitrogen deposition were on the western (windward

  10. 48 CFR 1509.170-7 - Release of ratings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Performance System will have direct access to all Reports, including those of EPA, in the National Institutes of Health's database. Information on EPA contractors' performance ratings may also be obtained by... ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Contractor Performance Evaluations 1509.170-7 Release of...

  11. The Pan-STARRS1 Survey Data Release

    NASA Astrophysics Data System (ADS)

    Chambers, Kenneth C.; Pan-STARRS Team

    2017-01-01

    The first Pan-STARRS1 Science Mission is complete and an initial Data Release 1, or DR1, including a database of measured attributes, stacked images, and metadata of the 3PI Survey, will be available from the STScI MAST archive. This release will contain all stationary objects with mean and stack photometry registered on the GAIA astrometric frame.The characteristics of the Pan-STARRS1 Surveys will be presented, including image quality, depth, cadence, and coverage. Measured attributes include PSF model magnitudes, aperture magnitudes, Kron Magnitudes, radial moments, Petrosian magnitudes, DeVaucoulers, Exponential, and Sersic magnitudes for extended objects. Images include total intensity, variance, and masks.An overview of both DR1 and the second data release DR2, to follow in the spring of 2017, will be presented. DR2 will add all time domain data and individual warped images. We will also report on the status of the Pan-STARRS2 Observatory and ongoing science with Pan-STARRS. The science from the PS1 surveys has included results in many t fields of astronomy from Near Earth Objects to cosmology.The Pan-STARRS1 Surveys have been made possible through contributions of the Institute for Astronomy of the University of Hawaii; the Pan-STARRS Project Office; the Max-Planck Society and its participating institutes: the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching; The Johns Hopkins University; Durham University; the University of Edinburgh; Queen's University Belfast; the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated; the National Central University of Taiwan; the Space Telescope Science Institute; the National Aeronautics and Space Administration under Grants No. NNX08AR22G, NNX12AR65G, NNX14AM74G issued through the Planetary Science Division of the NASA Science Mission Directorate; the National Science Foundation under Grant No. AST

  12. 77 FR 66073 - Availability of Seats for the Monitor National Marine Sanctuary Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Availability of Seats for... (ONMS), National Ocean Service (NOS), National Oceanic and Atmospheric Administration (NOAA), Department.... It is one of 13 sanctuaries and protects the wreck of the famed Civil War ironclad, USS Monitor, best...

  13. Empirical calibration of uranium releases in the terrestrial environment of nuclear fuel cycle facilities.

    PubMed

    Pourcelot, Laurent; Masson, Olivier; Saey, Lionel; Conil, Sébastien; Boulet, Béatrice; Cariou, Nicolas

    2017-05-01

    In the present paper the activity of uranium isotopes measured in plants and aerosols taken downwind of the releases of three nuclear fuel settlements was compared between them and with the activity measured at remote sites. An enhancement of 238 U activity as well as 235 U/ 238 U anomalies and 236 U are noticeable in wheat, grass, tree leaves and aerosols taken at the edge of nuclear fuel settlements, which show the influence of uranium chronic releases. Further plants taken at the edge of the studied sites and a few published data acquired in the same experimental conditions show that the 238 U activity in plants is influenced by the intensity of the U atmospheric releases. Assuming that 238 U in plant is proportional to the intensity of the releases, we proposed empirical relationships which allow to characterize the chronic releases on the ground. Other sources of U contamination in plants such as accidental releases and "delayed source" of uranium in soil are also discussed in the light of uranium isotopes signatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Use of MODIS Satellite Images and an Atmospheric Dust Transport Model to Evaluate Juniperus spp. Pollen Phenology and Transport

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Levetin, E.; Huete, A.; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; Van de Water, P. K.; Myers, O. B.; Budge, A. M.; hide

    2011-01-01

    Pollen can be transported great distances. Van de Water et al., 2003 reported Juniperus spp. pollen, a significant aeroallergen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. Direct detection of pollen via satellite is not practical. A practical alternative combines modeling and phenological observations using ground based sampling and satellite data. The DREAM (Dust REgional Atmospheric Model) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust (Nickovic et al. 2001). The use of satellite data products for studying phenology is well documented (White and Nemani 2006). In the current project MODIS data will provide critical input to the PREAM model providing pollen source location, timing of pollen release, and vegetation type. We are modifying the DREAM model (PREAM - Pollen REgional Atmospheric Model) to incorporate pollen transport. The linkages already exist with DREAM through PHAiRS (Public Health Applications in Remote Sensing) to the public health community. This linkage has the potential to fill this data gap so that the potential association of health effects of pollen can better be tracked for possible linkage with health outcome data which may be associated with asthma, respiratory effects, myocardial infarction, and lost workdays. Juniperus spp. pollen phenology may respond to a wide range of environmental factors such as day length, growing degree-days, precipitation patterns and soil moisture. Species differences are also important. These environmental factors vary over both time and spatial scales. Ground based networks such as the USA National Phenology Network have been established to provide national wide observations of vegetation phenology. However, the density of observers is not adequate to sufficiently document the phenology variability

  15. Atmospheric Hg emissions from preindustrial gold and silver extraction in the Americas: a reevaluation from lake-sediment archives.

    PubMed

    Engstrom, Daniel R; Fitzgerald, William F; Cooke, Colin A; Lamborg, Carl H; Drevnick, Paul E; Swain, Edward B; Balogh, Steven J; Balcom, Prentiss H

    2014-06-17

    Human activities over the last several centuries have transferred vast quantities of mercury (Hg) from deep geologic stores to actively cycling earth-surface reservoirs, increasing atmospheric Hg deposition worldwide. Understanding the magnitude and fate of these releases is critical to predicting how rates of atmospheric Hg deposition will respond to future emission reductions. The most recently compiled global inventories of integrated (all-time) anthropogenic Hg releases are dominated by atmospheric emissions from preindustrial gold/silver mining in the Americas. However, the geophysical evidence for such large early emissions is equivocal, because most reconstructions of past Hg-deposition have been based on lake-sediment records that cover only the industrial period (1850-present). Here we evaluate historical changes in atmospheric Hg deposition over the last millennium from a suite of lake-sediment cores collected from remote regions of the globe. Along with recent measurements of Hg in the deep ocean, these archives indicate that atmospheric Hg emissions from early mining were modest as compared to more recent industrial-era emissions. Although large quantities of Hg were used to extract New World gold and silver beginning in the 16th century, a reevaluation of historical metallurgical methods indicates that most of the Hg employed was not volatilized, but rather was immobilized in mining waste.

  16. The atmospheric effects of stratospheric aircraft

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S. (Editor); Wesoky, Howard L. (Editor)

    1993-01-01

    This document presents a second report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP). This document presents a second report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High Speed Research Program (HSRP). Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment has shown that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This second report presents the status of the ongoing research as reported by the principal investigators at the second annual AESA Program meeting in May 1992: Laboratory studies are probing the mechanism responsible for many of the heterogeneous reactions that occur on stratospheric particles. Understanding how the atmosphere redistributes aircraft exhaust is critical to our knowing where the perturbed air will go and for how long it will remain in the stratosphere. The assessment of fleet effects is dependent on the ability to develop scenarios which correctly simulate fleet operations.

  17. The Ocean-Atmosphere Hydrothermohaline Conveyor Belt

    NASA Astrophysics Data System (ADS)

    Döös, Kristofer; Kjellsson, Joakim; Zika, Jan; Laliberté, Frédéric; Brodeau, Laurent

    2015-04-01

    The ocean thermohaline circulation is linked to the hydrothermal circulation of the atmosphere. The ocean thermohaline circulation is expressed in potential temperature-salinity space and comprises a tropical upper-ocean circulation, a global conveyor belt cell and an Antarctic Bottom Water cell. The atmospheric hydrothermal circulation in a potential temperature-specific humidity space unifies the tropical Hadley and Walker cells as well as the midlatitude eddies into a single, global circulation. Superimposed, these thermohaline and hydrothermal stream functions reveal the possibility of a close connection between some parts of the water and air mass conversions. The exchange of heat and fresh water through the sea surface (precipiation-evaporation) and incoming solar radiation act to make near-surface air warm and moist while making surface water warmer and saltier as both air and water travel towards the Equator. In the tropics, air masses can undergo moist convection releasing latent heat by forming precipitation, thus acting to make warm surface water fresher. We propose that the Clausius-Clapeyron relationship for moist near-surface air acts like a lower bound for the atmospheric hydrothermal cell and an upper bound for the ocean thermohaline Conveyor-Belt cell. The analysis is made by combining and merging the overturning circulation of the ocean and atmosphere by relating the salinity of the ocean to the humidity of the atmosphere, where we set the heat and freshwater transports equal in the two stream functions By using simulations integrated with our Climate-Earth system model EC-Earth, we intend to produce the "hydrothermohaline" stream function of the coupled ocean-atmosphere overturning circulation in one single picture. We explore how the oceanic thermohaline Conveyor Belt can be linked to the global atmospheric hydrothermal circulation and if the water and air mass conversions in humidity-temperature-salinity space can be related and linked to each

  18. Correlation of recent fission product release data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, T.S.; Lorenz, R.A.; Nakamura, T.

    For the calculation of source terms associated with severe accidents, it is necessary to model the release of fission products from fuel as it heats and melts. Perhaps the most definitive model for fission product release is that of the FASTGRASS computer code developed at Argonne National Laboratory. There is persuasive evidence that these processes, as well as additional chemical and gas phase mass transport processes, are important in the release of fission products from fuel. Nevertheless, it has been found convenient to have simplified fission product release correlations that may not be as definitive as models like FASTGRASS butmore » which attempt in some simple way to capture the essence of the mechanisms. One of the most widely used such correlation is called CORSOR-M which is the present fission product/aerosol release model used in the NRC Source Term Code Package. CORSOR has been criticized as having too much uncertainty in the calculated releases and as not accurately reproducing some experimental data. It is currently believed that these discrepancies between CORSOR and the more recent data have resulted because of the better time resolution of the more recent data compared to the data base that went into the CORSOR correlation. This document discusses a simple correlational model for use in connection with NUREG risk uncertainty exercises. 8 refs., 4 figs., 1 tab.« less

  19. NASA's Upper Atmosphere Research Program UARP and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1994 - 1996. Report to Congress and the Environmental Protection Agency

    NASA Technical Reports Server (NTRS)

    Kendall, Rose (Compiler); Wolfe, Kathy (Compiler)

    1997-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology, and monitoring of the Earth's upper atmosphere, with emphasis on the stratosphere. This program aims at expanding our understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Science Division in the Office of Mission to Planet Earth at NASA. Significant contributions to this effort are also provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aeronautics. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper atmosphere and their effect on the distribution of chemical species in the stratosphere, such as ozone; understand the relationship of the trace constituent composition of the lower stratosphere and the lower troposphere to the radiative balance and temperature distribution of the Earth's atmosphere; and accurately assess possible perturbations of the upper atmosphere caused by human activities as well as by natural phenomena. In compliance with the Clean Air Act Amendments of 1990, Public Law 101-549, NASA has prepared a report on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere, and on the progress of UARP and ACMAP. The report for the year 1996 is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summary 1994-1996. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere

  20. 32 CFR Appendix A to Part 14 - United States of America Authorization for Release of Information

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false United States of America Authorization for... A to Part 14—United States of America Authorization for Release of Information United States of America Authorization for Release of Information (Carefully read this authorization to release information...