Sample records for national aviation system

  1. National General Aviation Roadmap for a Small Aircraft Transportation System (SATS)

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2000-01-01

    The National Aeronautics and Space Administration (NASA), Federal Aviation Administration, as well as state, industry, and academia partners have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This long-term strategic undertaking has a goal to bring next-generation technologies and improve air access to small communities. The envisioned outcome is to improve travel between remote communities and transportation centers in urban areas by utilizing a new generation of single-pilot light planes for personal and business transportation between the nation's 5,400 public use general aviation airports. Current NASA investments in aircraft technologies are enabling industry to bring affordable, safe, and easy-to-use features to the marketplace, including "Highway in the Sky" glass cockpit operating capabilities, affordable crash worthy composite airframes, more efficient IFR flight training, and revolutionary engines. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. State partnerships are proposed to coordinate research support in key public infrastructure areas. Ultimately, SATS may permit more than tripling aviation system throughput capacity by tapping the under-utilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  2. Federal Aviation Regulations - National Aviation Regulations of Russia

    NASA Astrophysics Data System (ADS)

    Chernykh, O.; Bakiiev, M.

    2018-03-01

    Chinese Aerospace Engineering is currently developing cooperation with Russia on a wide-body airplane project that has directed the work towards better understanding of Russian airworthiness management system. The paper introduces national Aviation regulations of Russia, presents a comparison of them with worldwide recognized regulations, and highlights typical differences. They have been found to be: two general types of regulations used in Russia (Aviation Regulations and Federal Aviation Regulations), non-unified structure of regulations on Aircraft Operation management, various separate agencies responsible for regulation issuance instead of one national aviation authority, typical confusions in references. The paper also gives a list of effective Russian Regulations of both types.

  3. Management advisory memorandum on National Airspace System infrastructure management system prototype, Federal Aviation Administration

    DOT National Transportation Integrated Search

    1997-03-01

    This is our Management Advisory Memorandum on the National Airspace : System (NAS) Infrastructure Management System (NIMS) prototype : project in the Federal Aviation Administration (FAA). Our review was : initiated in response to a hotline complaint...

  4. Aviation system indicators : 1996 annual report

    DOT National Transportation Integrated Search

    1997-03-14

    This report presents graphs and data tables for 36 aviation system and environmental indicators that the Federal Aviation Administration (FAA) has developed to give a broad view of the national aviation system operation and environment. The 24 system...

  5. National Strategy for Aviation Security

    DTIC Science & Technology

    2007-03-26

    for Aviation Security (hereafter referred to as the Strategy) to protect the Nation and its interests from threats in the Air Domain. The Secretary of... Aviation security is best achieved by integrating public and private aviation security global activities into a coordinated effort to detect, deter...might occur. The Strategy aligns Federal government aviation security programs and initiatives into a comprehensive and cohesive national effort

  6. NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    During the second quarter of the Aviation Safety Reporting System (ASRS) operation, 1,497 reports were received from pilots, controllers, and others in the national aviation system. Details of the administration and results of the program to date are presented. Examples of alert bulletins disseminated to the aviation community are presented together with responses to those bulletins. Several reports received by ASRS are also presented to illustrate the diversity of topics covered by reports to the system.

  7. NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    During the third quarter of operation of the Aviation Safety Reporting System (ASRS), 1429 reports concerning aviation safety were received from pilots, air traffic controllers, and others in the national aviation system. Details of the administration and results of the program are discussed. The design and construction of the ASRS data base are briefly presented. Altitude deviations and potential aircraft conflicts associated with misunderstood clearances were studied and the results are discussed. Summary data regarding alert bulletins, examples of alert bulletins and responses to them, and a sample of deidentified ASRS reports are provided.

  8. The NASA Aviation Safety Reporting System

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This is the fourteenth in a series of reports based on safety-related incidents submitted to the NASA Aviation Safety Reporting System by pilots, controllers, and, occasionally, other participants in the National Aviation System (refs. 1-13). ASRS operates under a memorandum of agreement between the National Aviation and Space Administration and the Federal Aviation Administration. The report contains, first, a special study prepared by the ASRS Office Staff, of pilot- and controller-submitted reports related to the perceived operation of the ATC system since the 1981 walkout of the controllers' labor organization. Next is a research paper analyzing incidents occurring while single-pilot crews were conducting IFR flights. A third section presents a selection of Alert Bulletins issued by ASRS, with the responses they have elicited from FAA and others concerned. Finally, the report contains a list of publications produced by ASRS with instructions for obtaining them.

  9. National General Aviation Design Competition Project Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This report summarizes the management of the National General Aviation Design Competition on behalf of NASA, the FAA and the Air Force by the Virginia Space Grant Consortium (VSGC) for the time period October 1, 1999 through September 30, 2000. This was the VSGC's sixth year of managing the Competition, which the Consortium originally designed, developed and implemented for NASA and the FAA. The seventh year of the Competition was announced in July 2000. Awards to winning university teams were presented at a ceremony held at AirVenture 2000, the Experimental Aircraft Association's Annual Convention and Fly-In at Oshkosh, WIS. NASA, FAA and AOPA administrators presented the awards. The competition calls for individuals or teams of undergraduate and graduate students from U.S. engineering schools to participate in a major national effort to rebuild the U.S. general aviation sector. For the purpose of the contest, General aviation aircraft are defined as fixed wing, single or dual engine (turbine or piston), single-pilot aircraft for 2-6 passengers. In addressing design challenges for a small aircraft transportation system, the competition seeks to raise student awareness of the importance of general aviation and to stimulate breakthroughs in technology and their application in the general aviation market. The Competition has two categories: Innovative Design, and Design It, Build It, Fly It. Awards were given in both categories for this reporting year.

  10. General-aviation's view of progress in the aviation weather system

    NASA Technical Reports Server (NTRS)

    Lundgren, Douglas J.

    1988-01-01

    For all its activity statistics, general-aviation is the most vulnerable to hazardous weather. Of concern to the general aviation industry are: (1) the slow pace of getting units of the Automated Weather Observation System (AWOS) to the field; (2) the efforts of the National Weather Service to withdraw from both the observation and dissemination roles of the aviation weather system; (3) the need for more observation points to improve the accuracy of terminal and area forecasts; (4) the need for improvements in all area forecasts, terminal forecasts, and winds aloft forecasts; (5) slow progress in cockpit weather displays; (6) the erosion of transcribed weather broadcasts (TWEB) and other deficiencies in weather information dissemination; (7) the need to push to make the Direct User Access Terminal (DUAT) a reality; and (7) the need to improve severe weather (thunderstorm) warning systems.

  11. NASA Aviation Safety Reporting System (ASRS)

    NASA Technical Reports Server (NTRS)

    Connell, Linda

    2011-01-01

    The NASA Aviation Safety Reporting System (ASRS) collects, analyzes, and distributes de-identified safety information provided through confidentially submitted reports from frontline aviation personnel. Since its inception in 1976, the ASRS has collected over 900,000 reports and has never breached the identity of the people sharing their information about events or safety issues. From this volume of data, the ASRS has released over 5,500 aviation safety alerts concerning potential hazards and safety concerns. The ASRS processes these reports, evaluates the information, and provides de-identified report information through the online ASRS Database at http://asrs.arc.nasa.gov. The NASA ASRS is also a founding member of the International Confidential Aviation Safety Systems (ICASS) group which is a collection of other national aviation reporting systems throughout the world. The ASRS model has also been replicated for application to improving safety in railroad, medical, fire fighting, and other domains. This presentation \\vill discuss confidential, voluntary, and non-punitive reporting systems and their advantages in providing information for safety improvements.

  12. NASA Aviation Safety Reporting System (ASRS)

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.

    2017-01-01

    The NASA Aviation Safety Reporting System (ASRS) collects, analyzes, and distributes de-identified safety information provided through confidentially submitted reports from frontline aviation personnel. Since its inception in 1976, the ASRS has collected over 1.4 million reports and has never breached the identity of the people sharing their information about events or safety issues. From this volume of data, the ASRS has released over 6,000 aviation safety alerts concerning potential hazards and safety concerns. The ASRS processes these reports, evaluates the information, and provides selected de-identified report information through the online ASRS Database at http:asrs.arc.nasa.gov. The NASA ASRS is also a founding member of the International Confidential Aviation Safety Systems (ICASS) group which is a collection of other national aviation reporting systems throughout the world. The ASRS model has also been replicated for application to improving safety in railroad, medical, fire fighting, and other domains. This presentation will discuss confidential, voluntary, and non-punitive reporting systems and their advantages in providing information for safety improvements.

  13. System for assessing Aviation's Global Emissions (SAGE). Version 1.5 : global aviation emissions inventories for 2000 through 2004

    DOT National Transportation Integrated Search

    2006-01-01

    The United States (US) Federal Aviation Administration (FAA) Office of Environment and Energy (AEE) has : developed the System for assessing Aviations Global Emissions (SAGE) with support from the Volpe National : Transportation Systems Center (Vo...

  14. NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Lauber, J. K.; Funkhouser, H.; Lyman, E. G.; Huff, E. M.

    1976-01-01

    The origins and development of the NASA Aviation Safety Reporting System (ASRS) are briefly reviewed. The results of the first quarter's activity are summarized and discussed. Examples are given of bulletins describing potential air safety hazards, and the disposition of these bulletins. During the first quarter of operation, the ASRS received 1464 reports; 1407 provided data relevant to air safety. All reports are being processed for entry into the ASRS data base. During the reporting period, 130 alert bulletins describing possible problems in the aviation system were generated and disseminated. Responses were received from FAA and others regarding 108 of the alert bulletins. Action was being taken with respect to 70 of the 108 responses received. Further studies are planned of a number of areas, including human factors problems related to automation of the ground and airborne portions of the national aviation system.

  15. National volcanic ash operations plan for aviation

    USGS Publications Warehouse

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  16. Aviation Safety Reporting System: Process and Procedures

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.

    1997-01-01

    The Aviation Safety Reporting System (ASRS) was established in 1976 under an agreement between the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). This cooperative safety program invites pilots, air traffic controllers, flight attendants, maintenance personnel, and others to voluntarily report to NASA any aviation incident or safety hazard. The FAA provides most of the program funding. NASA administers the program, sets its policies in consultation with the FAA and aviation community, and receives the reports submitted to the program. The FAA offers those who use the ASRS program two important reporting guarantees: confidentiality and limited immunity. Reports sent to ASRS are held in strict confidence. More than 350,000 reports have been submitted since the program's beginning without a single reporter's identity being revealed. ASRS removes all personal names and other potentially identifying information before entering reports into its database. This system is a very successful, proof-of-concept for gathering safety data in order to provide timely information about safety issues. The ASRS information is crucial to aviation safety efforts both nationally and internationally. It can be utilized as the first step in safety by providing the direction and content to informed policies, procedures, and research, especially human factors. The ASRS process and procedures will be presented as one model of safety reporting feedback systems.

  17. Toward a Concept of Operations for Aviation Weather Information Implementation in the Evolving National Airspace System

    NASA Technical Reports Server (NTRS)

    McAdaragh, Raymon M.

    2002-01-01

    The capacity of the National Airspace System is being stressed due to the limits of current technologies. Because of this, the FAA and NASA are working to develop new technologies to increase the system's capacity which enhancing safety. Adverse weather has been determined to be a major factor in aircraft accidents and fatalities and the FAA and NASA have developed programs to improve aviation weather information technologies and communications for system users The Aviation Weather Information Element of the Weather Accident Prevention Project of NASA's Aviation Safety Program is currently working to develop these technologies in coordination with the FAA and industry. This paper sets forth a theoretical approach to implement these new technologies while addressing the National Airspace System (NAS) as an evolving system with Weather Information as one of its subSystems. With this approach in place, system users will be able to acquire the type of weather information that is needed based upon the type of decision-making situation and condition that is encountered. The theoretical approach addressed in this paper takes the form of a model for weather information implementation. This model addresses the use of weather information in three decision-making situations, based upon the system user's operational perspective. The model also addresses two decision-making conditions, which are based upon the need for collaboration due to the level of support offered by the weather information provided by each new product or technology. The model is proposed for use in weather information implementation in order to provide a systems approach to the NAS. Enhancements to the NAS collaborative decision-making capabilities are also suggested.

  18. National General Aviation Design Competition Guidelines 1999-2000 Academic Year

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA) and the Air Force Research Laboratory are sponsoring a National General Aviation Design Competition for students at U.S. aeronautical and engineering universities for the 1999-2000 academic year. The competition challenges individuals and teams of undergraduates and/ or graduate students, working with faculty advisors, to address design challenges for general aviation aircraft. Now in its sixth year, the competition seeks to increase the involvement of the academic community in the revitalization of the U.S. general aviation industry while providing real-world design and development experiences for students. It allows university students to participate in a major national effort to rebuild the U.S. general aviation sector while raising student awareness of the value of general aviation for business and personal use , and its economic relevance. Faculty and student participants have indicated that the open-ended design challenges offered by the competition have provided the basis for quality educational experiences.

  19. Systems Analysis of NASA Aviation Safety Program: Final Report

    NASA Technical Reports Server (NTRS)

    Jones, Sharon M.; Reveley, Mary S.; Withrow, Colleen A.; Evans, Joni K.; Barr, Lawrence; Leone, Karen

    2013-01-01

    A three-month study (February to April 2010) of the NASA Aviation Safety (AvSafe) program was conducted. This study comprised three components: (1) a statistical analysis of currently available civilian subsonic aircraft data from the National Transportation Safety Board (NTSB), the Federal Aviation Administration (FAA), and the Aviation Safety Information Analysis and Sharing (ASIAS) system to identify any significant or overlooked aviation safety issues; (2) a high-level qualitative identification of future safety risks, with an assessment of the potential impact of the NASA AvSafe research on the National Airspace System (NAS) based on these risks; and (3) a detailed, top-down analysis of the NASA AvSafe program using an established and peer-reviewed systems analysis methodology. The statistical analysis identified the top aviation "tall poles" based on NTSB accident and FAA incident data from 1997 to 2006. A separate examination of medical helicopter accidents in the United States was also conducted. Multiple external sources were used to develop a compilation of ten "tall poles" in future safety issues/risks. The top-down analysis of the AvSafe was conducted by using a modification of the Gibson methodology. Of the 17 challenging safety issues that were identified, 11 were directly addressed by the AvSafe program research portfolio.

  20. A flight investigation of system accuracies and operational capabilities of a general aviation area navigation systems

    DOT National Transportation Integrated Search

    1977-06-01

    Flight tests were conducted at the National Aviation Facilities Experimental : Center (NAFEC) using a general aviation area navigation (RNAV) system to : investigate system accuracies and resultant airspace requirements in the : terminal area. Issues...

  1. System for assessing Aviation's Global Emissions (SAGE), version 1.5 : technical manual

    DOT National Transportation Integrated Search

    2005-09-01

    The United States (US) Federal Aviation Administration (FAA) Office of Environment and Energy (AEE) has : developed the System for assessing Aviations Global Emissions (SAGE) with support from the Volpe National : Transportation Systems Center (Vo...

  2. Analysis of general aviation single-pilot IFR incident data obtained from the NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    Bergeron, H. P.

    1980-01-01

    Data obtained from the NASA Aviation Safety Reporting System (ASRS) data base were used to determine problems in general aviation single pilot IFR operations. The data examined consisted of incident reports involving flight safety in the National Aviation System. Only those incidents involving general aviation fixed wing aircraft flying under IFR in instrument meteorological conditions were analyzed. The data were cataloged into one of five major problem areas: (1) controller judgement and response problems; (2) pilot judgement and response problems; (3) air traffic control intrafacility and interfacility conflicts; (4) ATC and pilot communications problems; and (5) IFR-VFR conflicts. The significance of the related problems, and the various underlying elements associated with each are discussed. Previous ASRS reports covering several areas of analysis are reviewed.

  3. OS Aviation Information

    Science.gov Websites

    Aviation Weather Program is to couple the art and science of meteorology to enhance the safe and efficient significant weather forecasts crossing international boundaries. Keeping Our National Airspace System Safe The System Newsletter Aviation Weather Center (AWC) Alaska Aviation Weather Unit (AAWU) Space Environment

  4. The United States national volcanic ash operations plan for aviation

    USGS Publications Warehouse

    Albersheim, Steven; Guffanti, Marianne

    2009-01-01

    Volcanic-ash clouds are a known hazard to aviation, requiring that aircraft be warned away from ash-contaminated airspace. The exposure of aviation to potential hazards from volcanoes in the United States is significant. In support of existing interagency operations to detect and track volcanic-ash clouds, the United States has prepared a National Volcanic Ash Operations Plan for Aviation to strengthen the warning process in its airspace. The US National Plan documents the responsibilities, communication protocols, and prescribed hazard messages of the Federal Aviation Administration, National Oceanic and Atmospheric Administration, US Geological Survey, and Air Force Weather Agency. The plan introduces a new message format, a Volcano Observatory Notice for Aviation, to provide clear, concise information about volcanic activity, including precursory unrest, to air-traffic controllers (for use in Notices to Airmen) and other aviation users. The plan is online at http://www.ofcm.gov/p35-nvaopa/pdf/FCM-P35-2007-NVAOPA.pdf. While the plan provides general operational practices, it remains the responsibility of the federal agencies involved to implement the described procedures through orders, directives, etc. Since the plan mirrors global guidelines of the International Civil Aviation Organization, it also provides an example that could be adapted by other countries.

  5. Meteorological and Environmental Inputs to Aviation Systems

    NASA Technical Reports Server (NTRS)

    Camp, Dennis W. (Editor); Frost, Walter (Editor)

    1988-01-01

    Reports on aviation meteorology, most of them informal, are presented by representatives of the National Weather Service, the Bracknell (England) Meteorological Office, the NOAA Wave Propagation Lab., the Fleet Numerical Oceanography Center, and the Aircraft Owners and Pilots Association. Additional presentations are included on aircraft/lidar turbulence comparison, lightning detection and locating systems, objective detection and forecasting of clear air turbulence, comparative verification between the Generalized Exponential Markov (GEM) Model and official aviation terminal forecasts, the evaluation of the Prototype Regional Observation and Forecast System (PROFS) mesoscale weather products, and the FAA/MIT Lincoln Lab. Doppler Weather Radar Program.

  6. AVIATION SECURITY: Terrorist Acts Demonstrate Urgent Need to Improve Security at the Nation’s Airports

    DTIC Science & Technology

    2001-09-20

    what actually occurred or what all the weaknesses in the nation’s aviation security apparatus are that contributed to the horrendous events of last week...it is clear that serious weaknesses exist in our aviation security system and that their impact can be far more devastating than previously imagined...offer some observations about improving aviation security in these various areas.

  7. The NASA Aviation Safety Program: Overview

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon

    2000-01-01

    In 1997, the United States set a national goal to reduce the fatal accident rate for aviation by 80% within ten years based on the recommendations by the Presidential Commission on Aviation Safety and Security. Achieving this goal will require the combined efforts of government, industry, and academia in the areas of technology research and development, implementation, and operations. To respond to the national goal, the National Aeronautics and Space Administration (NASA) has developed a program that will focus resources over a five year period on performing research and developing technologies that will enable improvements in many areas of aviation safety. The NASA Aviation Safety Program (AvSP) is organized into six research areas: Aviation System Modeling and Monitoring, System Wide Accident Prevention, Single Aircraft Accident Prevention, Weather Accident Prevention, Accident Mitigation, and Synthetic Vision. Specific project areas include Turbulence Detection and Mitigation, Aviation Weather Information, Weather Information Communications, Propulsion Systems Health Management, Control Upset Management, Human Error Modeling, Maintenance Human Factors, Fire Prevention, and Synthetic Vision Systems for Commercial, Business, and General Aviation aircraft. Research will be performed at all four NASA aeronautics centers and will be closely coordinated with Federal Aviation Administration (FAA) and other government agencies, industry, academia, as well as the aviation user community. This paper provides an overview of the NASA Aviation Safety Program goals, structure, and integration with the rest of the aviation community.

  8. Virginia Space Grant Consortium Management of National General Aviation Design Competition

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report summarizes the management of the National General Aviation Design Competition on behalf of NASA, the FAA and the Air Force by the Virginia Space Grant Consortium (VSGC) for the time period October 1, 2000 through September 30, 2001. This was the VSGC's seventh and final year of managing the Competition, which the Consortium originally designed, developed and implemented for NASA and the FAA. The competition is now being managed in-house by NASA. Awards to winning university teams were presented at a ceremony held at AirVenture 2001, the Experimental Aircraft Association's Annual Convention and Fly-In at Oshkosh, Wis. by NASA and FAA officials. The competition called for individuals or teams of undergraduate and graduate students from U.S. engineering schools to participate in a major national effort to rebuild the U.S. general aviation sector. Participants were challenged to meet the engineering goals of the Advanced General Aviation Transport Experiment (AGATE) project. For the purpose of the contest, general aviation aircraft are typically defined as single or twin engine (turbine or piston), single-pilot, fixed-wing aircraft for 2 - 6 passengers. The competition seeks to raise student awareness of the importance of general aviation by having students address design challenges for a small aircraft transportation system. NASA, AFRL and the FAA hope to stimulate breakthroughs in technology and their application in the general aviation marketplace. National goals for revitalizing the industry offer excellent, open-ended design challenges with real world applications for the Innovative Design Category. Both individual and team submissions were encouraged. University faculty advisors and students consistently cite the value of this kind of educational experience for their engineering students. Eight proposals were submitted for the 2001 Competition for the Innovative Design Category. Eleven faculty members and 124 students participated. Since inception

  9. Runway Incursion Prevention System for General Aviation Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel III, Lawrence J.

    2006-01-01

    A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results.

  10. 77 FR 3030 - Membership in the National Parks Overflights Advisory Group Aviation Rulemaking Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Membership in the National Parks Overflights Advisory Group Aviation Rulemaking Committee ACTION: Notice. SUMMARY: By Federal Register notice (See 76 FR 65319; October 20, 2011) the National Park Service (NPS) and the Federal Aviation...

  11. Aviation Data Integration System

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Wang, Yao; Windrem, May; Patel, Hemil; Keller, Richard

    2003-01-01

    During the analysis of flight data and safety reports done in ASAP and FOQA programs, airline personnel are not able to access relevant aviation data for a variety of reasons. We have developed the Aviation Data Integration System (ADIS), a software system that provides integrated heterogeneous data to support safety analysis. Types of data available in ADIS include weather, D-ATIS, RVR, radar data, and Jeppesen charts, and flight data. We developed three versions of ADIS to support airlines. The first version has been developed to support ASAP teams. A second version supports FOQA teams, and it integrates aviation data with flight data while keeping identification information inaccessible. Finally, we developed a prototype that demonstrates the integration of aviation data into flight data analysis programs. The initial feedback from airlines is that ADIS is very useful in FOQA and ASAP analysis.

  12. Aviation security : terrorist acts demonstrate urgent need to improve security at the nation's airports

    DOT National Transportation Integrated Search

    2001-09-20

    A safe and secure civil aviation system is a critical component of the nation's overall security, physical infrastructure, and economic foundation. Billions of dollars and a myriad of programs and policies have been devoted to achieving such a system...

  13. System for assessing Aviation's Global Emissions (SAGE). Version 1.5 : validation assessment, model assumptions and uncertainties

    DOT National Transportation Integrated Search

    2005-09-01

    The United States (US) Federal Aviation Administration (FAA) Office of Environment and Energy (AEE) has : developed the System for assessing Aviations Global Emissions (SAGE) with support from the Volpe National : Transportation Systems Center (Vo...

  14. 78 FR 55336 - Membership in the National Parks Overflights Advisory Group Aviation Rulemaking Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Membership in the National Parks Overflights Advisory Group Aviation Rulemaking Committee AGENCY: Federal Aviation Administration... Park Service (NPS) and the Federal Aviation Administration (FAA) invited interested persons to apply to...

  15. 78 FR 25338 - Membership in the National Parks Overflights Advisory Group Aviation Rulemaking Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Membership in the National Parks Overflights Advisory Group Aviation Rulemaking Committee AGENCY: Federal Aviation Administration... the Federal Aviation Administration (FAA) invited interested persons to apply to fill one opening on...

  16. A Hypermedia Information System for Aviation.

    ERIC Educational Resources Information Center

    Hartzell, Karin M.

    The Hypermedia Information System (HIS) is being developed under the auspices of the Federal Aviation Administration (FAA) Office of Aviation Medicine's (AAM) Human Factors in Aviation Maintenance (HFAM) research program. The goal of the hypermedia project is to create new tools and methods for aviation-related information storage and retrieval.…

  17. 76 FR 10085 - Membership in the National Parks Overflights Advisory Group Aviation Rulemaking Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Membership in the National Parks... (See 75 FR 68023; November 4, 2010) the National Park Service (NPS) and the Federal Aviation Administration (FAA) invited interested persons to apply to fill two vacant positions on the National Parks...

  18. 75 FR 18014 - Membership in the National Parks Overflights Advisory Group Aviation Rulemaking Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Membership in the National Parks... (See 75 FR 1834-1835; January 13, 2010) the National Park Service (NPS) and the Federal Aviation Administration (FAA) invited interested persons to apply to fill a vacant position on the National Parks...

  19. Aviation weather : FAA and the National Weather Service are considering plans to consolidate weather service offices, but face significant challenges.

    DOT National Transportation Integrated Search

    2009-07-01

    The National Weather Services (NWS) weather products are a vital component of the Federal Aviation Administrations (FAA) air traffic control system. In addition to providing aviation weather products developed at its own facilities, NWS also pr...

  20. FAA statistical handbook of aviation

    DOT National Transportation Integrated Search

    1994-01-01

    This report presents statistical information pertaining to the Federal Aviation Administration, the National Airspace System, Airports, Airport Activity, U.S. Civil Air Carrier Fleet, U.S. Civil Air Carrier Operating Data, Airmen, General Aviation Ai...

  1. FAA National Aviation Safety Inspection Program. Annual Report FY90

    DOT National Transportation Integrated Search

    1991-06-01

    This report was undertaken to document, analyze, and place : into national perspective the findings from the 1990 National : Aviation Safety Inspection Program (NASIP). This report is the : fifth in a series of annual reports covering the results of ...

  2. Satellite Delivery of Aviation Weather Data

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Haendel, Richard

    2001-01-01

    With aviation traffic continuing to increase worldwide, reducing the aviation accident rate and aviation schedule delays is of critical importance. In the United States, the National Aeronautics and Space Administration (NASA) has established the Aviation Safety Program and the Aviation System Capacity Program to develop and test new technologies to increase aviation safety and system capacity. Weather is a significant contributor to aviation accidents and schedule delays. The timely dissemination of weather information to decision makers in the aviation system, particularly to pilots, is essential in reducing system delays and weather related aviation accidents. The NASA Glenn Research Center is investigating improved methods of weather information dissemination through satellite broadcasting directly to aircraft. This paper describes an on-going cooperative research program with NASA, Rockwell Collins, WorldSpace, Jeppesen and American Airlines to evaluate the use of satellite digital audio radio service (SDARS) for low cost broadcast of aviation weather information, called Satellite Weather Information Service (SWIS). The description and results of the completed SWIS Phase 1 are presented, and the description of the on-going SWIS Phase 2 is given.

  3. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., prohibition, procedure or other action taken by the Director of the Office of Air Traffic Systems Management... is necessary for the safety and efficiency of the National Airspace System. Upon activation of the... Control system will be announced in Notices to Airmen issued pursuant to § 91.139 of the Federal Aviation...

  4. Aviation system modeling study and alternatives

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Aviation System Modeling Study was directed toward two primary goals: an improved understanding of the U.S. aviation system, and technology. There are three major categories into which the individual study efforts may be subdivided. These three categories are: special issue studies, task studies, and data base development.

  5. Design study of general aviation collision avoidance system

    NASA Technical Reports Server (NTRS)

    Bates, M. R.; Moore, L. D.; Scott, W. V.

    1972-01-01

    The selection and design of a time/frequency collision avoidance system for use in general aviation aircraft is discussed. The modifications to airline transport collision avoidance equipment which were made to produce the simpler general aviation system are described. The threat determination capabilities and operating principles of the general aviation system are illustrated.

  6. NASA's Aviation Safety and Modeling Project

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.; Statler, Irving C.

    2006-01-01

    The Aviation Safety Monitoring and Modeling (ASMM) Project of NASA's Aviation Safety program is cultivating sources of data and developing automated computer hardware and software to facilitate efficient, comprehensive, and accurate analyses of the data collected from large, heterogeneous databases throughout the national aviation system. The ASMM addresses the need to provide means for increasing safety by enabling the identification and correcting of predisposing conditions that could lead to accidents or to incidents that pose aviation risks. A major component of the ASMM Project is the Aviation Performance Measuring System (APMS), which is developing the next generation of software tools for analyzing and interpreting flight data.

  7. National Research and Development Plan for Aviation Safety, Security, Efficiency and Environmental Compatibility.

    DOT National Transportation Integrated Search

    1999-11-01

    This plan describes coordinated long-term research initiatives to bring about advances in aviation that will be required in the opening decades of the next century. The White House Commission on Aviation Safety and Security and the National Civil Avi...

  8. National Research and Development Plan For Aviation Safety, Security, Efficiency, and Environmental Compatibility

    DOT National Transportation Integrated Search

    1999-11-01

    This plan describes coordinated long-term research initiatives to bring about advances in aviation that will be required in the opening decades of the next century. The White House Commission on Aviation Safety and Security and the National Civil Avi...

  9. Demonstration Aids for Aviation Education [National Aviation Education Workshop].

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This manual, compiled by a Committee of the Curriculum Laboratory of the Civil Air Patrol, contains 105 demonstrations and activities which can be used to introduce the elementary student to the properties of air as related to aviation, what makes airplanes fly, and the role of weather in aviation. (CP)

  10. Aviation human factors research in US universities: Potential contributions to national needs

    NASA Technical Reports Server (NTRS)

    Dismukes, R. Key

    1994-01-01

    Universities can and should make vital contributions to national needs in aviation human factors. However, to guide and utilize university research effectively we must understand what types of expertise and facilities universities can bring to bear on aviation problems. We should be aware of where relevant research is already underway and where untapped potential exists. How does the character of research in universities differ from and complement research in government and industry laboratories? What conditions would encourage universities to focus on national priorities and would promote high quality, relevant research? This paper attempts to address these issues. It is based on a survey conducted by the author, which included site visits to several universities, telephone interviews with faculty members at other universities, and a search of the aviation human factors research literature.

  11. The National Aviation Operational Monitoring Service (NAOMS): A Documentation of the Development of a Survey Methodology

    NASA Technical Reports Server (NTRS)

    Connors, Mary M.; Mauro, Robert; Statler, Irving C.

    2012-01-01

    The National Aviation Operational Monitoring Service (NAOMS) was a research project under NASA s Aviation Safety Program during the years from 2000 to 2005. The purpose of this project was to develop a methodology for gaining reliable information on changes over time in the rates-of-occurrence of safety-related events as a means of assessing the safety of the national airspace. The approach was a scientifically designed survey of the operators of the aviation system concerning their safety-related experiences. This report presents the results of the methodology developed and a demonstration of the NAOMS concept through a survey of nearly 20,000 randomly selected air-carrier pilots. Results give evidence that the NAOMS methodology can provide a statistically sound basis for evaluating trends of incidents that could compromise safety. The approach and results are summarized in the report and supporting documentation and complete analyses of results are presented in 14 appendices.

  12. Aviation System Analysis Capability Executive Assistant Analyses

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Kostiuk, Peter

    1999-01-01

    This document describes the analyses that may be incorporated into the Aviation System Analysis Capability Executive Assistant. The document will be used as a discussion tool to enable NASA and other integrated aviation system entities to evaluate, discuss, and prioritize analyses.

  13. Federal Aviation Administration weather program to improve aviation safety

    NASA Technical Reports Server (NTRS)

    Wedan, R. W.

    1983-01-01

    The implementation of the National Airspace System (NAS) will improve safety services to aviation. These services include collision avoidance, improved landing systems and better weather data acquisition and dissemination. The program to improve the quality of weather information includes the following: Radar Remote Weather Display System; Flight Service Automation System; Automatic Weather Observation System; Center Weather Processor, and Next Generation Weather Radar Development.

  14. Aviation security : vulnerabilities still exist in the aviation security system

    DOT National Transportation Integrated Search

    2000-04-06

    The testimony today discusses the Federal Aviation Administration's (FAA) efforts to implement and improve security in two key areas: air traffic control computer systems and airport passenger screening checkpoints. Computer systems-and the informati...

  15. Aviation Safety Issues Database

    NASA Technical Reports Server (NTRS)

    Morello, Samuel A.; Ricks, Wendell R.

    2009-01-01

    The aviation safety issues database was instrumental in the refinement and substantiation of the National Aviation Safety Strategic Plan (NASSP). The issues database is a comprehensive set of issues from an extremely broad base of aviation functions, personnel, and vehicle categories, both nationally and internationally. Several aviation safety stakeholders such as the Commercial Aviation Safety Team (CAST) have already used the database. This broader interest was the genesis to making the database publically accessible and writing this report.

  16. 75 FR 68023 - Membership Availability in the National Parks Overflights Advisory Group Aviation Rulemaking...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... National Parks Overflights Advisory Group Aviation Rulemaking Committee To Represent Environmental Concerns... NPOAG Aviation Rulemaking Committee (ARC) for a member representing environmental concerns and invites... operations, environmental concerns, and Native American Tribes. The Administrator of the FAA and the Director...

  17. 75 FR 69154 - Notice of Meeting of the National Parks Overflights Advisory Group Aviation Rulemaking Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... Parks Air Tour Management Act of 2000 (NPATMA), enacted on April 5, 2000, as Public Law 106-181... Parks Overflights Advisory Group Aviation Rulemaking Committee ACTION: Notice of meeting. SUMMARY: The Federal Aviation Administration (FAA) and the National Park Service (NPS), in accordance with the National...

  18. 76 FR 65319 - Membership Availability in the National Parks Overflights Advisory Group Aviation Rulemaking...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... Tribes ACTION: Notice. SUMMARY: The National Park Service (NPS) and the Federal Aviation Administration... aviation, commercial air tour operations, environmental concerns, and Native American tribes. The... Native American tribes, to contact Mr. Barry Brayer (contact information is written above in FOR FURTHER...

  19. Systems Engineering of Coast Guard Aviator Training.

    ERIC Educational Resources Information Center

    Hall, Eugene R.; Caro, Paul W.

    This paper describes a total-program application of the systems engineering concept of the U.S. Coast Guard aviation training programs. The systems approach used treats all aspects of the training to produce the most cost-effective integration of academic, synthetic, and flight training for the production of graduate Coast Guard aviators. The…

  20. Summary of Federal Aviation Administration Responses to National Transportation Safety Board Safety Recommendations

    DTIC Science & Technology

    1980-05-01

    Langhorne M. Bond Administrator Federal Aviation Administration ) SAFETY RECOMMENDATICN(S) Washington, D. C. 20591, A-79-73 and -74... Langhorne M. Bond -2- Therefore, the National Transportation Safety Board recommends that the Federal Aviation Administration: Prescribe an appropriate method...TRANSPORTATION SAFETY BOARD WASHINGTON, D.C. ISSUED: October 17,.1979 i ----------- ----------------------- Forwarded to: Honorable Langhorne M. Bond

  1. 78 FR 42997 - Membership Availability in the National Parks Overflights Advisory Group Aviation Rulemaking...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... commercial air tour operations over and near national parks. This notice informs the public of two vacancies on the NPOAG [now the NPOAG Aviation Rulemaking Committee (ARC)] for members representing commercial... 2001, and is comprised of a balanced group of representatives of general aviation, commercial air tour...

  2. 47 CFR 22.859 - Incumbent commercial aviation air-ground systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Incumbent commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.859 Incumbent commercial aviation air-ground systems. This section contains rules concerning...

  3. 47 CFR 22.859 - Incumbent commercial aviation air-ground systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Incumbent commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.859 Incumbent commercial aviation air-ground systems. This section contains rules concerning...

  4. 47 CFR 22.859 - Incumbent commercial aviation air-ground systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Incumbent commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.859 Incumbent commercial aviation air-ground systems. This section contains rules concerning...

  5. 47 CFR 22.859 - Incumbent commercial aviation air-ground systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Incumbent commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.859 Incumbent commercial aviation air-ground systems. This section contains rules concerning...

  6. A volcanic activity alert-level system for aviation: Review of its development and application in Alaska

    USGS Publications Warehouse

    Guffanti, Marianne C.; Miller, Thomas

    2013-01-01

    An alert-level system for communicating volcano hazard information to the aviation industry was devised by the Alaska Volcano Observatory (AVO) during the 1989–1990 eruption of Redoubt Volcano. The system uses a simple, color-coded ranking that focuses on volcanic ash emissions: Green—normal background; Yellow—signs of unrest; Orange—precursory unrest or minor ash eruption; Red—major ash eruption imminent or underway. The color code has been successfully applied on a regional scale in Alaska for a sustained period. During 2002–2011, elevated color codes were assigned by AVO to 13 volcanoes, eight of which erupted; for that decade, one or more Alaskan volcanoes were at Yellow on 67 % of days and at Orange or Red on 12 % of days. As evidence of its utility, the color code system is integrated into procedures of agencies responsible for air-traffic management and aviation meteorology in Alaska. Furthermore, it is endorsed as a key part of globally coordinated protocols established by the International Civil Aviation Organization to provide warnings of ash hazards to aviation worldwide. The color code and accompanying structured message (called a Volcano Observatory Notice for Aviation) comprise an effective early-warning message system according to the United Nations International Strategy for Disaster Reduction. The aviation color code system currently is used in the United States, Russia, New Zealand, Iceland, and partially in the Philippines, Papua New Guinea, and Indonesia. Although there are some barriers to implementation, with continued education and outreach to Volcano Observatories worldwide, greater use of the aviation color code system is achievable.

  7. A volcanic activity alert-level system for aviation: review of its development and application in Alaska

    USGS Publications Warehouse

    Guffanti, Marianne; Miller, Thomas P.

    2013-01-01

    An alert-level system for communicating volcano hazard information to the aviation industry was devised by the Alaska Volcano Observatory (AVO) during the 1989–1990 eruption of Redoubt Volcano. The system uses a simple, color-coded ranking that focuses on volcanic ash emissions: Green—normal background; Yellow—signs of unrest; Orange—precursory unrest or minor ash eruption; Red—major ash eruption imminent or underway. The color code has been successfully applied on a regional scale in Alaska for a sustained period. During 2002–2011, elevated color codes were assigned by AVO to 13 volcanoes, eight of which erupted; for that decade, one or more Alaskan volcanoes were at Yellow on 67 % of days and at Orange or Red on 12 % of days. As evidence of its utility, the color code system is integrated into procedures of agencies responsible for air-traffic management and aviation meteorology in Alaska. Furthermore, it is endorsed as a key part of globally coordinated protocols established by the International Civil Aviation Organization to provide warnings of ash hazards to aviation worldwide. The color code and accompanying structured message (called a Volcano Observatory Notice for Aviation) comprise an effective early-warning message system according to the United Nations International Strategy for Disaster Reduction. The aviation color code system currently is used in the United States, Russia, New Zealand, Iceland, and partially in the Philippines, Papua New Guinea, and Indonesia. Although there are some barriers to implementation, with continued education and outreach to Volcano Observatories worldwide, greater use of the aviation color code system is achievable.

  8. 47 CFR 22.873 - Construction requirements for commercial aviation air-ground systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... aviation air-ground systems. 22.873 Section 22.873 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Aviation Air-Ground Systems § 22.873 Construction requirements for commercial aviation air-ground systems. Licensees authorized to use more than one megahertz (1 MHz) of the 800 MHz commercial aviation air-ground...

  9. 47 CFR 22.873 - Construction requirements for commercial aviation air-ground systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... aviation air-ground systems. 22.873 Section 22.873 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Aviation Air-Ground Systems § 22.873 Construction requirements for commercial aviation air-ground systems. Licensees authorized to use more than one megahertz (1 MHz) of the 800 MHz commercial aviation air-ground...

  10. 47 CFR 22.873 - Construction requirements for commercial aviation air-ground systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... aviation air-ground systems. 22.873 Section 22.873 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Aviation Air-Ground Systems § 22.873 Construction requirements for commercial aviation air-ground systems. Licensees authorized to use more than one megahertz (1 MHz) of the 800 MHz commercial aviation air-ground...

  11. 47 CFR 22.873 - Construction requirements for commercial aviation air-ground systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... aviation air-ground systems. 22.873 Section 22.873 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Aviation Air-Ground Systems § 22.873 Construction requirements for commercial aviation air-ground systems. Licensees authorized to use more than one megahertz (1 MHz) of the 800 MHz commercial aviation air-ground...

  12. Aviation system capacity : annual report

    DOT National Transportation Integrated Search

    1993-10-01

    The Aviation System Capacity Plan is published annually and, in addition to providing airport delay statistics, serves to identify programs that have potential for increasing capacity and reducing delay.

  13. European Natural Disaster Coordination and Information System for Aviation (EUNADICS-AV)

    NASA Astrophysics Data System (ADS)

    Wotawa, Gerhard; Hirtl, Marcus; Arnold, Delia; Katzler-Fuchs, Susanne; Pappalardo, Gelsomina; Mona, Lucia; Sofiev, Mikhail; de Leeuw, Gerrit; Theys, Nicolas; Brenot, Hugues; Plu, Matthieu; Rockitansky, Carl-Herbert; Eschbacher, Kurt; Apituley, Arnoud; Som de Cerff, Wim

    2017-04-01

    Commercial aviation is one of the key infrastructures of our modern world. Even short interruptions can cause economic damages summing up to the Billion-Euro range. As evident from the past, aviation shows vulnerability with regard to natural hazards. Safe flight operations, air traffic management and air traffic control is a shared responsibility of EUROCONTROL, national authorities, airlines and pilots. All stakeholders have one common goal, namely to warrant and maintain the safety of flight crews and passengers. Currently, however, there is a significant gap in the Europe-wide availability of real time hazard measurement and monitoring information for airborne hazards describing "what, where, how much" in 3 dimensions, combined with a near-real-time European data analysis and assimilation system. This gap creates circumstances where various stakeholders in the system may base their decisions on different data and information. The H-2020 project EUNADICS-AV ("European Natural Disaster Coordination and Information System for Aviation"), started in October 2016, intends to close this gap in data and information availability, enabling all stakeholders in the aviation system to obtain fast, coherent and consistent information. The project intends to combine and harmonize data from satellite earth observation, ground based and airborne platforms, and to integrate them into state-of-the art data assimilation and analysis systems. Besides operational data sources, data from the research community are integrated as well. Hazards considered in the project include volcano eruptions, nuclear accidents and events, and forest fires. The availability of consistent and coherent data analysis fields based on all available measurements will greatly enhances our capability to respond to disasters effectively and efficiently, minimizing system downtimes and thus economic damage while maintaining the safety of millions of passengers.

  14. The aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    Reynard, W. D.

    1984-01-01

    The aviation safety reporting system, an accident reporting system, is presented. The system identifies deficiencies and discrepancies and the data it provides are used for long term identification of problems. Data for planning and policy making are provided. The system offers training in safety education to pilots. Data and information are drawn from the available data bases.

  15. An Overview of Human Figure Modeling for Army Aviation Systems

    DTIC Science & Technology

    2010-04-01

    An Overview of Human Figure Modeling for Army Aviation Systems by Jamison S. Hicks, David B. Durbin, and Richard W. Kozycki ARL-TR-5154...April 2010 An Overview of Human Figure Modeling for Army Aviation Systems Jamison S. Hicks, David B. Durbin, and Richard W. Kozycki...TYPE Final 3. DATES COVERED (From - To) May 2009–August 2009 4. TITLE AND SUBTITLE An Overview of Human Figure Modeling for Army Aviation Systems

  16. The US aviation system to the year 2000

    NASA Technical Reports Server (NTRS)

    Austrotas, R. A.

    1982-01-01

    The aviation system of the U.S. is described. Growth of the system over the past twenty years is analyzed. Long term and short term causes of air travel are discussed. The interaction of economic growth, airline yields, and quality of service in producing domestic traffic is shown. Forecasts are made for airline and general aviation growth. Potential airline scenarios are presented.

  17. Aviation Environmental Design Tool (AEDT) technical manual version 2a

    DOT National Transportation Integrated Search

    2014-01-01

    The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation : Environmental Design Tool (AEDT) version 2a software system with the support of the following development team: : FAA, National Aeronautics a...

  18. Aviation Environmental Design Tool (AEDT) user guide version 2a

    DOT National Transportation Integrated Search

    2014-01-23

    The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation : Environmental Design Tool (AEDT) version 2a software system with the support of the following development team: : FAA, National Aeronautics a...

  19. 75 FR 1834 - Membership Availability in the National Parks Overflights Advisory Group Aviation; Rulemaking...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... Parks Air Tour Management Act of 2000 (the Act) was enacted on April 5, 2000, as Public Law 106-181. The... National Parks Overflights Advisory Group Aviation; Rulemaking Committee To Represent Commercial Air Tour... (FAA), as required by the National Parks Air Tour Management Act of 2000, established the National...

  20. Aviation Environmental Design Tool (AEDT): Version 2c: User Guide

    DOT National Transportation Integrated Search

    2016-09-12

    The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation Environmental Design Tool (AEDT) version 2c software system with the support of the following development team: FAA, National Aeronautics and S...

  1. Aviation Environmental Design Tool (AEDT) version 2b, user guide

    DOT National Transportation Integrated Search

    2016-06-09

    The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation Environmental Design Tool (AEDT) version 2b software system with the support of the following development team: FAA, National Aeronautics and S...

  2. Aviation Environmental Design Tool (AEDT) technical manual : version 2c

    DOT National Transportation Integrated Search

    2016-09-12

    The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation Environmental Design Tool (AEDT) version 2c software system with the support of the following development team: FAA, National Aeronautics and S...

  3. Aviation Capacity Enhancement (ACE) Plan

    DOT National Transportation Integrated Search

    1996-12-31

    A comprehensive review of Federal Aviation Administration programs intended to improve the capacity of the National Air Transportation System. The Plan describes the extent of capacity and delay problems currently associated with air travel in the U....

  4. Prospective Safety Analysis and the Complex Aviation System

    NASA Technical Reports Server (NTRS)

    Smith, Brian E.

    2013-01-01

    Fatal accident rates in commercial passenger aviation are at historic lows yet have plateaued and are not showing evidence of further safety advances. Modern aircraft accidents reflect both historic causal factors and new unexpected "Black Swan" events. The ever-increasing complexity of the aviation system, along with its associated technology and organizational relationships, provides fertile ground for fresh problems. It is important to take a proactive approach to aviation safety by working to identify novel causation mechanisms for future aviation accidents before they happen. Progress has been made in using of historic data to identify the telltale signals preceding aviation accidents and incidents, using the large repositories of discrete and continuous data on aircraft and air traffic control performance and information reported by front-line personnel. Nevertheless, the aviation community is increasingly embracing predictive approaches to aviation safety. The "prospective workshop" early assessment tool described in this paper represents an approach toward this prospective mindset-one that attempts to identify the future vectors of aviation and asks the question: "What haven't we considered in our current safety assessments?" New causation mechanisms threatening aviation safety will arise in the future because new (or revised) systems and procedures will have to be used under future contextual conditions that have not been properly anticipated. Many simulation models exist for demonstrating the safety cases of new operational concepts and technologies. However the results from such models can only be as valid as the accuracy and completeness of assumptions made about the future context in which the new operational concepts and/or technologies will be immersed. Of course that future has not happened yet. What is needed is a reasonably high-confidence description of the future operational context, capturing critical contextual characteristics that modulate

  5. Toward a Naval Aviation Training Quality Feedback System

    ERIC Educational Resources Information Center

    Phillips, Henry L., IV; Foster, T. Chris

    2008-01-01

    Naval aviation needs a unified standard for job-task analyses and data collection. Such a standard would facilitate consolidation of data across aviation platforms and permit evaluation of training content across phases of the training continuum. It would also make possible the construction of a training transfer evaluation system. The Navy cannot…

  6. 77 FR 26068 - Notice of Meeting of the National Parks Overflights Advisory Group Aviation Rulemaking Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Federal Aviation Administration (FAA) and the National Park Service (NPS), in accordance with the National Parks Air Tour Management Act of 2000, announce the next meeting of the National Parks Overflights....gov . SUPPLEMENTARY INFORMATION: Background The National Parks Air Tour Management Act of 2000 (NPATMA...

  7. On the use of the systems approach to certify advanced aviation technologies

    NASA Technical Reports Server (NTRS)

    Wise, Mark A.; Wise, John A.

    1994-01-01

    The field of human factors is as varied and diverse as the human subject itself. But one of its most important applications is the facilitation of safety and efficiency in a particular working environment through the implementation of paradigms known about humans and their working relationship with machines and systems. During the period since World War II (which is often viewed as the birth of Human Factors) no area has been the subject of more human factors research than aviation. And in no time during that epoch is the influence of human factors more important, nor more imperative than it is today. As technology driven designs have been finding their way into the national airspace system (NAS), there has been growing concern within the aviation industry itself, the Federal Aviation Administration (FAA), and the general public for a means by which to certify complex systems and the advanced aviation technologies that will be responsible for transporting, directing, and maintaining our airborne travel. While it is widely agreed human factors certification is desirable, the philosophy that will underlie the approach is debatable. There are, in general, two different approaches to certification: (1) the top-down or systems approach; and, (2) the bottom-up or monadical approach. The top-down approach is characterized by the underlying assumption that certification can be best achieved by looking at the system as a whole, understanding its objectives and operating environment, then examining the constituent parts. In an aircraft cockpit, this would be accomplished by first examining what the aircraft is supposed to be (e.g., fighter, general aviation, passenger), identifying its operating environment (IFR, VMC, combat, etc.) and looking at the entire working system which includes the hardware, software, liveware and their interactions; then, evaluative measures can be applied to the subsystems (e.g., individual instruments, CRT displays, controls). The bottom

  8. Aviation Human Factors Research in U.S. Universities: Potential Contributions to National Needs

    DOT National Transportation Integrated Search

    1994-03-01

    Universities can and should make vital contributions to national needs in : aviation human factors. However, to guide and utilize university research : effectively we must understand what types of expertise and facilities : universities can bring to ...

  9. General Aviation Avionics Statistics : 1974

    DOT National Transportation Integrated Search

    1977-08-01

    The primary objectives of this study were to (1) provide a framework for viewing the general aviation (GA) aircraft fleet, which would relate airborne avionics equipment to the capability for an aircraft to perform in the National Airspace System, an...

  10. National Airspace System : status of wide area augmentation system project

    DOT National Transportation Integrated Search

    1998-04-30

    As a key element of its overall program for modernizing the National Airspace : System, the Federal Aviation Administration (FAA) is planning a transition from : ground- to satellite-based navigation by using satellite signals generated by : the Depa...

  11. Louisiana Airport System Plan aviation activity forecasts 1990-2010.

    DOT National Transportation Integrated Search

    1991-07-01

    This report documents the methodology used to develop the aviation activity forecasts prepared as a part of the update to the Louisiana Airport System Plan and provides Louisiana aviation forecasts for the years 1990 to 2010. In general, the forecast...

  12. Human error and commercial aviation accidents: an analysis using the human factors analysis and classification system.

    PubMed

    Shappell, Scott; Detwiler, Cristy; Holcomb, Kali; Hackworth, Carla; Boquet, Albert; Wiegmann, Douglas A

    2007-04-01

    The aim of this study was to extend previous examinations of aviation accidents to include specific aircrew, environmental, supervisory, and organizational factors associated with two types of commercial aviation (air carrier and commuter/ on-demand) accidents using the Human Factors Analysis and Classification System (HFACS). HFACS is a theoretically based tool for investigating and analyzing human error associated with accidents and incidents. Previous research has shown that HFACS can be reliably used to identify human factors trends associated with military and general aviation accidents. Using data obtained from both the National Transportation Safety Board and the Federal Aviation Administration, 6 pilot-raters classified aircrew, supervisory, organizational, and environmental causal factors associated with 1020 commercial aviation accidents that occurred over a 13-year period. The majority of accident causal factors were attributed to aircrew and the environment, with decidedly fewer associated with supervisory and organizational causes. Comparisons were made between HFACS causal categories and traditional situational variables such as visual conditions, injury severity, and regional differences. These data will provide support for the continuation, modification, and/or development of interventions aimed at commercial aviation safety. HFACS provides a tool for assessing human factors associated with accidents and incidents.

  13. The systems approach to airport security: The FAA (Federal Aviation Administration)/BWI (Baltimore-Washington International) Airport demonstration project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caskey, D.L.; Olascoaga, M.T.

    1990-01-01

    Sandia National Laboratories has been involved in designing, installing and evaluating security systems for various applications during the past 15 years. A systems approach to security that evolved from this experience was applied to aviation security for the Federal Aviation Administration. A general systems study of aviation security in the United States was concluded in 1987. One result of the study was a recommendation that an enhanced security system concept designed to meet specified objectives be demonstrated at an operational airport. Baltimore-Washington International Airport was selected as the site for the demonstration project which began in 1988 and will bemore » completed in 1992. This article introduced the systems approach to airport security and discussed its application at Baltimore-Washington International Airport. Examples of design features that could be included in an enhanced security concept also were presented, including details of the proposed Ramps Area Intrusion Detection System (RAIDS).« less

  14. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  15. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  16. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  17. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  18. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel Tank System Fault Tolerance Evaluation Requirements Federal Special Federal Aviation Regulation No. 88 Aeronautics and Space FEDERAL AVIATION..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation...

  19. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896 MHz...

  20. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896 MHz...

  1. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896 MHz...

  2. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896 MHz...

  3. Cyber threats within civil aviation

    NASA Astrophysics Data System (ADS)

    Heitner, Kerri A.

    Existing security policies in civil aviation do not adequately protect against evolving cyber threats. Cybersecurity has been recognized as a top priority among some aviation industry leaders. Heightened concerns regarding cyber threats and vulnerabilities surround components utilized in compliance with the Federal Aviation Administration's (FAA) Next Generation Air Transportation (NextGen) implementation. Automated Dependent Surveillance-B (ADS-B) and Electronic Flight Bags (EFB) have both been exploited through the research of experienced computer security professionals. Civil aviation is essential to international infrastructure and if its critical assets were compromised, it could pose a great risk to public safety and financial infrastructure. The purpose of this research was to raise awareness of aircraft system vulnerabilities in order to provoke change among current national and international cybersecurity policies, procedures and standards. Although the education of cyber threats is increasing in the aviation industry, there is not enough urgency when creating cybersecurity policies. This project intended to answer the following questions: What are the cyber threats to ADS-B of an aircraft in-flight? What are the cyber threats to EFB? What is the aviation industry's response to the issue of cybersecurity and in-flight safety? ADS-B remains unencrypted while the FAA's mandate to implement this system is rapidly approaching. The cyber threat of both portable and non-portable EFB's have received increased publicity, however, airlines are not responding quick enough (if at all) to create policies for the use of these devices. Collectively, the aviation industry is not being proactive enough to protect its aircraft or airport network systems. That is not to say there are not leaders in cybersecurity advancement. These proactive organizations must set the standard for the future to better protect society and it's most reliable form of transportation.

  4. 1995 Aviation Capacity Enhancement (ACE) Plan

    DOT National Transportation Integrated Search

    1995-12-31

    A comprehensive review of Federal Aviation Administration programs intended to improve : the capacity of the National Air Transportation System. The Plan describes the extent of capacity : and delay problems currently associated with air travel in th...

  5. A guide to aviation education resources

    DOT National Transportation Integrated Search

    1993-01-01

    The National Coalition for Aviation Education represents industry and labor, united to promote : aviation education activities and resources; increase public understanding of the importance of aviation; and support educational initiatives at the loca...

  6. A Guide To Aviation Education Resources.

    ERIC Educational Resources Information Center

    National Coalition for Aviation Education, Washington, DC.

    This guide to aviation education resources was compiled by the National Coalition for Aviation Education (NCAE) which represents government, industry, and labor. NCAE's mission is to: (1) promote aviation education activities and resources; (2) increase public understanding of the importance of aviation; and (3) support educational initiatives at…

  7. Changing the Landscape of Civil Aviation

    NASA Technical Reports Server (NTRS)

    Russo, Carol J.

    1997-01-01

    NASA is undertaking several bold new initiatives to develop revolutionary technologies for civil aviation. These technologies span the civil aviation fleet from general aviation to large subsonic and supersonic aircraft and promise to bring a new era of new aircraft, lower operation costs, faster more direct flight capabilities, more environmentally friendly aircraft, and safer airline operations. These initiatives have specific quantified goals that require technologies well beyond those currently being developed creating a bold new vision for aeronautics. Revolutionary propulsion systems are enabling for these advancements. This paper gives an overview of the new national aeronautics goals and explores for a selected subset of goals some of the revolutionary technologies will be required to meet some of these goals. The focus of the paper is on the pivotal role propulsion and icing technologies will play in changing the landscape of civil aviation.

  8. Preliminary Design Study of a National Program for Training Skilled Aviation Personnel.

    ERIC Educational Resources Information Center

    Arizona State Univ., Tempe.

    This study supplementing a 1967 study of Arizona State University, recommends preliminary plans for the design of a national training center capable of accommodating 2,200 fliers and aviation technicians and the steps that should be taken to complete the facility by September 1972. Specific recommendations are: (1) negotiations between the…

  9. NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The human factors frequency considered a cause of or contributor to hazardous events onboard air carriers are examined with emphasis on distractions. Safety reports that have been analyzed, processed, and entered into the aviation safety reporting system data base are discussed. A sampling of alert bulletins and responses to them is also presented.

  10. Analysis of general aviation single-pilot IFR incident data obtained from the NASA Aviation Safety Reporting System

    NASA Technical Reports Server (NTRS)

    Bergeron, H. P.

    1983-01-01

    An analysis of incident data obtained from the NASA Aviation Safety Reporting System (ASRS) has been made to determine the problem areas in general aviation single-pilot IFR (SPIFR) operations. The Aviation Safety Reporting System data base is a compilation of voluntary reports of incidents from any person who has observed or been involved in an occurrence which was believed to have posed a threat to flight safety. This paper examines only those reported incidents specifically related to general aviation single-pilot IFR operations. The frequency of occurrence of factors related to the incidents was the criterion used to define significant problem areas and, hence, to suggest where research is needed. The data was cataloged into one of five major problem areas: (1) controller judgment and response problems, (2) pilot judgment and response problems, (3) air traffic control (ATC) intrafacility and interfacility conflicts, (4) ATC and pilot communication problems, and (5) IFR-VFR conflicts. In addition, several points common to all or most of the problems were observed and reported. These included human error, communications, procedures and rules, and work load.

  11. General Aviation Pilot Education Program.

    ERIC Educational Resources Information Center

    Cole, Warren L.

    General Aviation Pilot Education (GAPE) was a safety program designed to improve the aeronautical education of the general aviation pilot in anticipation that the national aircraft accident rate might be improved. GAPE PROGRAM attempted to reach the average general aviation pilot with specific and factual information regarding the pitfalls of his…

  12. Aviation Safety: FAA Has Begun Efforts to Make Data More Publicly Available

    DOT National Transportation Integrated Search

    1997-04-25

    Public concern about the safety of the nation's aviation system escalated : following the crashes of ValuJet flight 592 and TWA flight 800. The Congress : and the public expressed interest in having the Federal Aviation Administration : (FAA) publish...

  13. NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Aviation safety reports that relate to loss of control in flight, problems that occur as a result of similar sounding alphanumerics, and pilot incapacitation are presented. Problems related to the go around maneuver in air carrier operations, and bulletins (and FAA responses to them) that pertain to air traffic control systems and procedures are included.

  14. Agent Architecture for Aviation Data Integration System

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Wang, Yao; Windrem, May; Patel, Hemil; Wei, Mei

    2004-01-01

    This paper describes the proposed agent-based architecture of the Aviation Data Integration System (ADIS). ADIS is a software system that provides integrated heterogeneous data to support aviation problem-solving activities. Examples of aviation problem-solving activities include engineering troubleshooting, incident and accident investigation, routine flight operations monitoring, safety assessment, maintenance procedure debugging, and training assessment. A wide variety of information is typically referenced when engaging in these activities. Some of this information includes flight recorder data, Automatic Terminal Information Service (ATIS) reports, Jeppesen charts, weather data, air traffic control information, safety reports, and runway visual range data. Such wide-ranging information cannot be found in any single unified information source. Therefore, this information must be actively collected, assembled, and presented in a manner that supports the users problem-solving activities. This information integration task is non-trivial and presents a variety of technical challenges. ADIS has been developed to do this task and it permits integration of weather, RVR, radar data, and Jeppesen charts with flight data. ADIS has been implemented and used by several airlines FOQA teams. The initial feedback from airlines is that such a system is very useful in FOQA analysis. Based on the feedback from the initial deployment, we are developing a new version of the system that would make further progress in achieving following goals of our project.

  15. The design of automatic software testing module for civil aviation information system

    NASA Astrophysics Data System (ADS)

    Qi, Qi; Sun, Yang

    2018-05-01

    In this paper, the practical innovation design is carried out according to the urgent needs of the automatic testing module of civil aviation information system. Firstly, the background and significance of the automatic testing module of civil aviation information system is expounded, and the current research status of automatic testing module and the advantages and disadvantages of related software are analyzed. Then, from the three aspects of macro demand, module functional requirement and module nonfunctional demand, we further study the needs of automatic testing module of civil aviation information system. Finally, from the four aspects of module structure, module core function, database and security, we have made an innovative plan for the automatic testing module of civil aviation information system.

  16. 47 CFR 22.859 - Incumbent commercial aviation air-ground systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Incumbent commercial aviation air-ground systems. 22.859 Section 22.859 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground...

  17. Aviation Security: Slow Progress in Addressing Long-Standing Screener Performance Problems

    DTIC Science & Technology

    2000-03-16

    aviation security , in particular airport screeners. Securing an air transportation system the size of this nation’s-with hundreds of airports, thousands of aircraft, and tens of thousands of flights daily carrying millions of passengers and pieces of baggage-is a difficult task. Events over the past decade have shown that the threat of terrorism against the United States is an ever-present danger. Aviation is an attractive target for terrorists, and because the air transportation system is critical to the nation’s well-being, protecting it is an important

  18. Progress on coal-derived fuels for aviation systems

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1978-01-01

    The results of engineering studies of coal-derived aviation fuels and their potential application to the air transportation system are presented. Synthetic aviation kerosene (SYN. JET-A), liquid methane (LCH4) and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Aircraft configurations fueled with LH2, their fuel systems, and their ground requirements at the airport are identified. Energy efficiency, transportation hazards, and costs are among the factors considered. It is indicated that LCH4 is the most energy efficient to produce, and provides the most efficient utilization of coal resources and the least expensive ticket as well.

  19. Risk management in mental health: applying lessons from commercial aviation.

    PubMed

    Hatcher, Simon

    2010-02-01

    Risk management in mental health focuses on risks in patients and fails to predict rare but catastrophic events such as suicide. Commercial aviation has a similar task in preventing rare but catastrophic accidents. This article describes the systems in place in commercial aviation that allows that industry to prevent disasters and contrasts this with the situation in mental health. In mental health we should learn from commercial aviation by having: national policies to promote patient safety; a national body responsible for implementing this policy which maintains a database of safety occurrences, sets targets and investigates adverse outcomes; legislation in place which encourages clinicians to report safety occurrences; and a common method and language for investigating safety occurrences.

  20. Synthetic vision in the cockpit: 3D systems for general aviation

    NASA Astrophysics Data System (ADS)

    Hansen, Andrew J.; Rybacki, Richard M.; Smith, W. Garth

    2001-08-01

    Synthetic vision has the potential to improve safety in aviation through better pilot situational awareness and enhanced navigational guidance. The technological advances enabling synthetic vision are GPS based navigation (position and attitude) systems and efficient graphical systems for rendering 3D displays in the cockpit. A benefit for military, commercial, and general aviation platforms alike is the relentless drive to miniaturize computer subsystems. Processors, data storage, graphical and digital signal processing chips, RF circuitry, and bus architectures are at or out-pacing Moore's Law with the transition to mobile computing and embedded systems. The tandem of fundamental GPS navigation services such as the US FAA's Wide Area and Local Area Augmentation Systems (WAAS) and commercially viable mobile rendering systems puts synthetic vision well with the the technological reach of general aviation. Given the appropriate navigational inputs, low cost and power efficient graphics solutions are capable of rendering a pilot's out-the-window view into visual databases with photo-specific imagery and geo-specific elevation and feature content. Looking beyond the single airframe, proposed aviation technologies such as ADS-B would provide a communication channel for bringing traffic information on-board and into the cockpit visually via the 3D display for additional pilot awareness. This paper gives a view of current 3D graphics system capability suitable for general aviation and presents a potential road map following the current trends.

  1. Independent Review of Aviation Technology and Research Information Analysis System (ATRIAS) Database

    DTIC Science & Technology

    1994-02-01

    capability to support the Federal Aviation Administration (FAA)/ Aviation Security Research and Development Service’s (ACA) Explosive Detection...Systems (EDS) programs and Aviation Security Human Factors Program (ASHFP). This review was conducted by an independent consultant selected by the FAA...sections 2 and 3 of the report. Overall, ATRIAS was found to address many technology application areas relevant to the FAA’s aviation security programs

  2. Aviation Environmental Design Tool (AEDT): Technical Manual Version 2b, Service Pack 2

    DOT National Transportation Integrated Search

    2016-05-01

    The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation Environmental Design Tool (AEDT) version 2b software system with the support of the following development team: FAA, National Aeronautics and S...

  3. Aviation Environmental Design Tool (AEDT): technical manual, version 2b, service pack 3

    DOT National Transportation Integrated Search

    2016-05-03

    The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation Environmental Design Tool (AEDT) version 2b software system with the support of the following development team: FAA, National Aeronautics and S...

  4. A Framework for Assessment of Aviation Safety Technology Portfolios

    NASA Technical Reports Server (NTRS)

    Jones, Sharon M.; Reveley, Mary S.

    2014-01-01

    The programs within NASA's Aeronautics Research Mission Directorate (ARMD) conduct research and development to improve the national air transportation system so that Americans can travel as safely as possible. NASA aviation safety systems analysis personnel support various levels of ARMD management in their fulfillment of system analysis and technology prioritization as defined in the agency's program and project requirements. This paper provides a framework for the assessment of aviation safety research and technology portfolios that includes metrics such as projected impact on current and future safety, technical development risk and implementation risk. The paper also contains methods for presenting portfolio analysis and aviation safety Bayesian Belief Network (BBN) output results to management using bubble charts and quantitative decision analysis techniques.

  5. 77 FR 75254 - List of Units of the National Park System Exempt From the Provisions of the National Parks Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... Park Service List of Units of the National Park System Exempt From the Provisions of the National Parks Air Tour Management Act AGENCIES: Federal Aviation Administration, Transportation; National Park Service, Interior. ACTION: List of Exempt Parks. SUMMARY: The National Parks Air Tour Management Act...

  6. Aviation Security: Weaknesses in Airport Security and Options for Assigning Screening Responsibilities

    DTIC Science & Technology

    2001-09-21

    actually occurred or which of the weaknesses in the nations aviation security apparatus contributed to the horrendous events of last week, it is...clear that serious weaknesses exist in our aviation security system and that their impact can be far more devastating than previously imagined.

  7. Human factors in aviation

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L. (Editor); Nagel, David C. (Editor)

    1988-01-01

    The fundamental principles of human-factors (HF) analysis for aviation applications are examined in a collection of reviews by leading experts, with an emphasis on recent developments. The aim is to provide information and guidance to the aviation community outside the HF field itself. Topics addressed include the systems approach to HF, system safety considerations, the human senses in flight, information processing, aviation workloads, group interaction and crew performance, flight training and simulation, human error in aviation operations, and aircrew fatigue and circadian rhythms. Also discussed are pilot control; aviation displays; cockpit automation; HF aspects of software interfaces; the design and integration of cockpit-crew systems; and HF issues for airline pilots, general aviation, helicopters, and ATC.

  8. Proceedings of the Second NASA Aviation Safety Program Weather Accident Prevention Review

    NASA Technical Reports Server (NTRS)

    Martzaklis, K. Gus (Compiler)

    2003-01-01

    The Second NASA Aviation Safety Program (AvSP) Weather Accident Prevention (WxAP) Annual Project Review held June 5-7, 2001, in Cleveland, Ohio, presented the NASA technical plans and accomplishments to the aviation community. NASA-developed technologies presented included an Aviation Weather Information System with associated digital communications links, electronic atmospheric reporting technologies, forward-looking turbulence warning systems, and turbulence mitigation procedures. The meeting provided feedback and insight from the aviation community of diverse backgrounds and assisted NASA in steering its plans in the direction needed to meet the national safety goal of 80-percent reduction of aircraft accidents by 2007. The proceedings of the review are enclosed.

  9. Aviation Safety/Automation Program Conference

    NASA Technical Reports Server (NTRS)

    Morello, Samuel A. (Compiler)

    1990-01-01

    The Aviation Safety/Automation Program Conference - 1989 was sponsored by the NASA Langley Research Center on 11 to 12 October 1989. The conference, held at the Sheraton Beach Inn and Conference Center, Virginia Beach, Virginia, was chaired by Samuel A. Morello. The primary objective of the conference was to ensure effective communication and technology transfer by providing a forum for technical interchange of current operational problems and program results to date. The Aviation Safety/Automation Program has as its primary goal to improve the safety of the national airspace system through the development and integration of human-centered automation technologies for aircraft crews and air traffic controllers.

  10. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    NASA Astrophysics Data System (ADS)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  11. The Aviation System Analysis Capability Air Carrier Cost-Benefit Model

    NASA Technical Reports Server (NTRS)

    Gaier, Eric M.; Edlich, Alexander; Santmire, Tara S.; Wingrove, Earl R.., III

    1999-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. Therefore, NASA is developing the ability to evaluate the potential impact of various advanced technologies. By thoroughly understanding the economic impact of advanced aviation technologies and by evaluating how the new technologies will be used in the integrated aviation system, NASA aims to balance its aeronautical research program and help speed the introduction of high-leverage technologies. To meet these objectives, NASA is building the Aviation System Analysis Capability (ASAC). NASA envisions ASAC primarily as a process for understanding and evaluating the impact of advanced aviation technologies on the U.S. economy. ASAC consists of a diverse collection of models and databases used by analysts and other individuals from the public and private sectors brought together to work on issues of common interest to organizations in the aviation community. ASAC also will be a resource available to the aviation community to analyze; inform; and assist scientists, engineers, analysts, and program managers in their daily work. The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. Commercial air carriers, in particular, are an important stakeholder in this community. Therefore, to fully evaluate the implications of advanced aviation technologies, ASAC requires a flexible financial analysis tool that credibly links the technology of flight with the financial performance of commercial air carriers. By linking technical and financial information, NASA ensures that its technology programs will continue to benefit the user community. In addition, the analysis tool must be capable of being incorporated into the

  12. 77 FR 27835 - Membership Availability in the National Parks Overflights Advisory Group Aviation Rulemaking...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... commercial air tour operations over and near national parks. This notice informs the public of six vacancies... Committee (ARC)] for members representing general aviation (one vacancy), commercial air tour operators (two..., commercial air tour operations, environmental concerns, and Native American tribes. The Administrator of the...

  13. Runway Incursion Prevention for General Aviation Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III

    2006-01-01

    A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results.

  14. US general aviation: The ingredients for a renaissance. A vision and technology strategy for US industry, NASA, FAA, universities

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce

    1993-01-01

    General aviation today is a vital component in the nation's air transportation system. It is threatened for survival but has enormous potential for expansion in utility and use. This potential for expansion is fueled by new satellite navigation and communication systems, small computers, flat panel displays, and advanced aerodynamics, materials and manufacturing methods, and propulsion technologies which create opportunities for new levels of environmental and economic acceptability. Expanded general aviation utility and use could have a large impact on the nation's jobs, commerce, industry, airspace capacity, trade balance, and quality of life. This paper presents, in viewgraph form, a general overview of U.S. general aviation. Topics covered include general aviation shipment and billings; airport and general aviation infrastructure; cockpit, airplane, and airspace technologies; market demand; air traffic operations and aviation accidents; fuel efficiency comparisons; and general aviation goals and strategy.

  15. NDE research efforts at the FAA Center for Aviation Systems Reliability

    NASA Technical Reports Server (NTRS)

    Thompson, Donald O.; Brasche, Lisa J. H.

    1992-01-01

    The Federal Aviation Administration-Center for Aviation Systems Reliability (FAA-CASR), a part of the Institute for Physical Research and Technology at Iowa State University, began operation in the Fall of 1990 with funding from the FAA. The mission of the FAA-CASR is to develop quantitative nondestructive evaluation (NDE) methods for aircraft structures and materials including prototype instrumentation, software, techniques, and procedures and to develop and maintain comprehensive education and training programs in aviation specific inspection procedures and practices. To accomplish this mission, FAA-CASR brings together resources from universities, government, and industry to develop a comprehensive approach to problems specific to the aviation industry. The problem areas are targeted by the FAA, aviation manufacturers, the airline industry and other members of the aviation business community. This consortium approach ensures that the focus of the efforts is on relevant problems and also facilitates effective transfer of the results to industry.

  16. General Aviation Pilot Advisory and Training System (GAPATS)

    NASA Technical Reports Server (NTRS)

    Painter, John; Ward, Donald T.; Kelly, Wallace; Crump, John W.; Phillips, Ron; Trang, Jeff; Lee, Kris; Branham, Paul A.; Krishnamurthy, Karthik; Alcorn, William P., Jr.; hide

    1997-01-01

    The goal of this project is to achieve a validated General Aviation Pilot Advisor and Training System (GAPATS) engineering prototype, implemented according to commercial software standards and Federal Aviation Administration (FAA) issues of certification. Phase 2 builds on progress during Phase 1, which exceeded proposed objectives. The basic technology has been transferred from previous NASA research (1989 to 1994). We anticipate a commercially licensable prototype, validated by pilots in a flight simulator and in a light twin-engine research aircraft for FAA certification, by January 1998.

  17. Internet over the VDL-2 Subnetwork: the VDL-2/IP Aviation Datalink System

    NASA Technical Reports Server (NTRS)

    Grappel, R. D.

    2000-01-01

    This report describes the design to operate the standard Internet communications protocols (IP) over the VHF aviation Data Link Mode 2 (VDL-2) subnetwork. The VDL-2/IP system specified in this report can operate transparently with the current aviation users of VDL-2 (Airline Communications and Reporting System, ACARS and Aeronautical Telecommunications Network, ATN) and proposed users (Flight Information Service via Broadcast, FIS-B). The VDL-2/IP system provides a straightforward mechanisms to utilize inexpensive, commercial off-the-shelf (COTS) communications packages developed for the Internet as part of the aviation datalink system.

  18. System for Secure Integration of Aviation Data

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Wang, Yao; Keller, Rich; Chidester, Tom; Statler, Irving; Lynch, Bob; Patel, Hemil; Windrem, May; Lawrence, Bob

    2007-01-01

    The Aviation Data Integration System (ADIS) of Ames Research Center has been established to promote analysis of aviation data by airlines and other interested users for purposes of enhancing the quality (especially safety) of flight operations. The ADIS is a system of computer hardware and software for collecting, integrating, and disseminating aviation data pertaining to flights and specified flight events that involve one or more airline(s). The ADIS is secure in the sense that care is taken to ensure the integrity of sources of collected data and to verify the authorizations of requesters to receive data. Most importantly, the ADIS removes a disincentive to collection and exchange of useful data by providing for automatic removal of information that could be used to identify specific flights and crewmembers. Such information, denoted sensitive information, includes flight data (here signifying data collected by sensors aboard an aircraft during flight), weather data for a specified route on a specified date, date and time, and any other information traceable to a specific flight. The removal of information that could be used to perform such tracing is called "deidentification." Airlines are often reluctant to keep flight data in identifiable form because of concerns about loss of anonymity. Hence, one of the things needed to promote retention and analysis of aviation data is an automated means of de-identification of archived flight data to enable integration of flight data with non-flight aviation data while preserving anonymity. Preferably, such an automated means would enable end users of the data to continue to use pre-existing data-analysis software to identify anomalies in flight data without identifying a specific anomalous flight. It would then also be possible to perform statistical analyses of integrated data. These needs are satisfied by the ADIS, which enables an end user to request aviation data associated with de-identified flight data. The ADIS

  19. Aviation Environmental Design Tool (AEDT) AEDT Standard Input File (ASIF) reference guide version 2a

    DOT National Transportation Integrated Search

    2014-01-01

    The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation : Environmental Design Tool (AEDT) version 2a software system with the support of the following development team: : FAA, National Aeronautics a...

  20. Flight evaluation results from the general-aviation advanced avionics system program

    NASA Technical Reports Server (NTRS)

    Callas, G. P.; Denery, D. G.; Hardy, G. H.; Nedell, B. F.

    1983-01-01

    A demonstration advanced avionics system (DAAS) for general-aviation aircraft was tested at NASA Ames Research Center to provide information required for the design of reliable, low-cost, advanced avionics systems which would make general-aviation operations safer and more practicable. Guest pilots flew a DAAS-equipped NASA Cessna 402-B aircraft to evaluate the usefulness of data busing, distributed microprocessors, and shared electronic displays, and to provide data on the DAAS pilot/system interface for the design of future integrated avionics systems. Evaluation results indicate that the DAAS hardware and functional capability meet the program objective. Most pilots felt that the DAAS representative of the way avionics systems would evolve and felt the added capability would improve the safety and practicability of general-aviation operations. Flight-evaluation results compiled from questionnaires are presented, the results of the debriefings are summarized. General conclusions of the flight evaluation are included.

  1. Aviation Communications Emulation Testbed

    NASA Technical Reports Server (NTRS)

    Sheehe, Charles; Mulkerin, Tom

    2004-01-01

    Aviation related applications that rely upon datalink for information exchange are increasingly being developed and deployed. The increase in the quantity of applications and associated data communications will expose problems and issues to resolve. NASA Glenn Research Center has prepared to study the communications issues that will arise as datalink applications are employed within the National Airspace System (NAS) by developing a aviation communications emulation testbed. The Testbed is evolving and currently provides the hardware and software needed to study the communications impact of Air Traffic Control (ATC) and surveillance applications in a densely populated environment. The communications load associated with up to 160 aircraft transmitting and receiving ATC and surveillance data can be generated in real time in a sequence similar to what would occur in the NAS.

  2. Aviation Particle Emissions Workshop

    NASA Technical Reports Server (NTRS)

    Wey, Chowen C. (Editor)

    2004-01-01

    The Aviation Particle Emissions Workshop was held on November 18 19, 2003, in Cleveland, Ohio. It was sponsored by the National Aeronautic and Space Administration (NASA) under the Vehicle Systems Program (VSP) and the Ultra- Efficient Engine Technology (UEET) Project. The objectives were to build a sound foundation for a comprehensive particulate research roadmap and to provide a forum for discussion among U.S. stakeholders and researchers. Presentations included perspectives from the Federal Aviation Administration, the U.S. Environmental Protection Agency, NASA, and United States airports. There were five interactive technical sessions: sampling methodology, measurement methodology, particle modeling, database, inventory and test venue, and air quality. Each group presented technical issues which generated excellent discussion. The five session leads collaborated with their members to present summaries and conclusions to each content area.

  3. Implementation of a pavement management system for Virginia's general aviation airports : final report.

    DOT National Transportation Integrated Search

    1990-01-01

    This report summarizes the activities undertaken to implement a pavement management system at 56 general aviation airports coming under the jurisdiction of the Virginia Department of Aviation (VDOAV). The system, which is called Micro-PAVER, is a pro...

  4. Review of the FAA 1982 National Airspace System plan

    DOT National Transportation Integrated Search

    1982-08-01

    The National Airspace (NAS) Plan outlines the Federal Aviation Administration's most recent proposals for modernizing the facilities and equipment that make up the air traffic control (ATC) system. This review of the NAS Plan examines the Plan at two...

  5. Applications of Geostationary Satellite Data to Aviation

    NASA Astrophysics Data System (ADS)

    Ellrod, Gary P.; Pryor, Kenneth

    2018-03-01

    Weather is by far the most important factor in air traffic delays in the United States' National Airspace System (NAS) according to the Federal Aviation Administration (FAA). Geostationary satellites have been an effective tool for the monitoring of meteorological conditions that affect aviation operations since the launch of the first Synchronous Meteorological Satellite (SMS) in the United States in 1974. This paper will review the global use of geostationary satellites in support of aviation weather since their inception, with an emphasis on the latest generation of satellites, such as Geostationary Operational Environmental Satellite (GOES)-R (16) with its Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM). Specific applications discussed in this paper include monitoring of convective storms and their associated hazards, fog and low stratus, turbulence, volcanic hazards, and aircraft icing.

  6. The Idea to Promote the Development of E-Government in the Civil Aviation System

    NASA Astrophysics Data System (ADS)

    Renliang, Jiang

    E-government has a significant impact on the organizational structure, working mechanism, operating methods and behavior patterns of the civil aviation administration department.The purpose of this research is to find some countermeasures propelling the electronization, network and office automation of the civil aviation system.The method used in the study was field and literature research.The studies showed that government departments in the civil aviation system could promote the development of e-government further by promoting open administration and implementing democratic and scientific decision-making, strengthening the popularization of information technology and information technology training on civil servants, paying attention to the integration and sharing of information resources, formulating a standard e-government system for the civil aviation system, developing the legal security system for the e-government and strengthening the network security.

  7. Office of Aviation Medicine Strategic Plan

    DOT National Transportation Integrated Search

    1992-02-01

    This was the first strategic plan for the Office of Aviation Medicine (AAM). : The AAM is a geographically and functionally diverse organization that provides : a wide range of aviation medical services to the FAA and the national and : international...

  8. National Unmanned Aircraft Systems Project Office

    USGS Publications Warehouse

    Goplen, Susan E.; Sloan, Jeff L.

    2015-01-01

    The U.S. Geological Survey (USGS) National Unmanned Aircraft Systems (UAS) Project Office leads the implementation of UAS technology in the Department of the Interior (DOI). Our mission is to support the transition of UAS into DOI as a new cost-effective tool for collecting remote-sensing data to monitor environmental conditions, respond to natural hazards, recognize the consequences and benefits of land and climate change and conduct wildlife inventories. The USGS is teaming with all DOI agencies and academia as well as local, State, and Tribal governments with guidance from the Federal Aviation Administration and the DOI Office of Aviation Services (OAS) to lead the safe, efficient, costeffective and leading-edge adoption of UAS technology into the scientific research and operational activities of the DOI.

  9. Aviation System Analysis Capability Quick Response System Report for Fiscal Year 1998

    NASA Technical Reports Server (NTRS)

    Ege, Russell; Villani, James; Ritter, Paul

    1999-01-01

    This document presents the additions and modifications made to the Quick Response System (QRS) in FY 1998 in support of the ASAC QRS development effort. this Document builds upon the Aviation System Analysis Capability Quick Responses System Report for Fiscal Year 1997.

  10. 77 FR 39745 - General Aviation Search and Rescue

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... NATIONAL TRANSPORTATION SAFETY BOARD General Aviation Search and Rescue The National Transportation Safety Board (NTSB) will convene a 2- day forum focused on general aviation search and rescue..., inland searches for the aircraft are conducted by the Air Force Rescue Coordination Center, who are...

  11. Aviation System Analysis Capability Quick Response System Report

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Villani, James A.; Ritter, Paul

    1998-01-01

    The purpose of this document is to present the additions and modifications made to the Aviation System Analysis Capability (ASAC) Quick Response System (QRS) in FY 1997 in support of the ASAC ORS development effort. This document contains an overview of the project background and scope and defines the QRS. The document also presents an overview of the Logistics Management Institute (LMI) facility that supports the QRS, and it includes a summary of the planned additions to the QRS in FY 1998. The document has five appendices.

  12. Analysis of Alerting System Failures in Commercial Aviation Accidents

    NASA Technical Reports Server (NTRS)

    Mumaw, Randall J.

    2017-01-01

    The role of an alerting system is to make the system operator (e.g., pilot) aware of an impending hazard or unsafe state so the hazard can be avoided or managed successfully. A review of 46 commercial aviation accidents (between 1998 and 2014) revealed that, in the vast majority of events, either the hazard was not alerted or relevant hazard alerting occurred but failed to aid the flight crew sufficiently. For this set of events, alerting system failures were placed in one of five phases: Detection, Understanding, Action Selection, Prioritization, and Execution. This study also reviewed the evolution of alerting system schemes in commercial aviation, which revealed naive assumptions about pilot reliability in monitoring flight path parameters; specifically, pilot monitoring was assumed to be more effective than it actually is. Examples are provided of the types of alerting system failures that have occurred, and recommendations are provided for alerting system improvements.

  13. Human error in aviation operations

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Lanber, J. K.; Cooper, G. E.

    1974-01-01

    This report is a brief description of research being undertaken by the National Aeronautics and Space Administration. The project is designed to seek out factors in the aviation system which contribute to human error, and to search for ways of minimizing the potential threat posed by these factors. The philosophy and assumptions underlying the study are discussed, together with an outline of the research plan.

  14. First NASA Aviation Safety Program Weather Accident Prevention Project Annual Review

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron

    2000-01-01

    The goal of this Annual Review was to present NASA plans and accomplishments that will impact the national aviation safety goal. NASA's WxAP Project focuses on developing the following products: (1) Aviation Weather Information (AWIN) technologies (displays, sensors, pilot decision tools, communication links, etc.); (2) Electronic Pilot Reporting (E-PIREPS) technologies; (3) Enhanced weather products with associated hazard metrics; (4) Forward looking turbulence sensor technologies (radar, lidar, etc.); (5) Turbulence mitigation control system designs; Attendees included personnel from various NASA Centers, FAA, National Weather Service, DoD, airlines, aircraft and pilot associations, industry, aircraft manufacturers and academia. Attendees participated in discussion sessions aimed at collecting aviation user community feedback on NASA plans and R&D activities. This CD is a compilation of most of the presentations presented at this Review.

  15. Aviation security : terrorist acts illustrate severe weaknesses in aviation security

    DOT National Transportation Integrated Search

    2001-09-20

    This is the statement of Gerald L. Dillingham, Director, Physical Infrastructure Issues before the Subcommittee on Transportation, Senate and House Committees on Appropriations regarding vulnerabilities to terrorist attacks of the nation's aviation s...

  16. Structured methods for identifying and correcting potential human errors in aviation operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, W.R.

    1997-10-01

    Human errors have been identified as the source of approximately 60% of the incidents and accidents that occur in commercial aviation. It can be assumed that a very large number of human errors occur in aviation operations, even though in most cases the redundancies and diversities built into the design of aircraft systems prevent the errors from leading to serious consequences. In addition, when it is acknowledged that many system failures have their roots in human errors that occur in the design phase, it becomes apparent that the identification and elimination of potential human errors could significantly decrease the risksmore » of aviation operations. This will become even more critical during the design of advanced automation-based aircraft systems as well as next-generation systems for air traffic management. Structured methods to identify and correct potential human errors in aviation operations have been developed and are currently undergoing testing at the Idaho National Engineering and Environmental Laboratory (INEEL).« less

  17. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Channel plan for commercial aviation air-ground systems. 22.857 Section 22.857 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground...

  18. Foreign civil aviation competition: 1976 summary and implications

    NASA Technical Reports Server (NTRS)

    Alford, W. J., Jr.; Maddalon, D. V.

    1976-01-01

    A summary assessment is made of foreign civil aviation as it relates to the posture of the United States civil aviation industry. Major findings include: (1) Main competitors - European Economic Community (EEC) and Union of Soviet Socialist Republics (USSR). (2) Largest commercial market - Transport aircraft. (3) Current market status and projections - U.S. currently dominates the civil aviation market but foreign markets show greater growth trends. (4) Competitive comparisons - Status comparisons are made in technology (aerodynamics, structures and materials, propulsion, avionics, systems, design coordination, and manufacturing); production runs; marketing; and postsales support. The U.S. generally leads except in aerodynamics and propulsion. (5) Multinational ventures - Joint U.S. industry/foreign government development of advanced technology engines is well developed; airframe industry discussions are now underway. (6) Implications - Although the U.S., is currently preeminent in most areas, this may be only a temporary condition. Past U.S. success in aviation has provided many benefits to the nation. These benefits may be lost.

  19. National Survey Results: Retention of Women in Collegiate Aviation

    NASA Technical Reports Server (NTRS)

    Turney, Mary Ann; Bishop, James C.; Karp, Merrill R.; Niemczyk, Mary; Sitler, Ruth L.; Green, Mavis F.

    2002-01-01

    Since the numbers of women pursuing technical careers in aviation continues to remain very low, a study on retention of women was undertaken by a team of university faculty from Embry Riddle Aeronautical University, Arizona State University, and Kent State University. The study was initiated to discover the factors that influence women once they have already selected an aviation career and to ascertain what could be done to support those women who have demonstrated a serious interest in an aviation career by enrolling in a collegiate aviation program. This paper reports preliminary results of data collected in the first and second years of the study. The data was collected from surveys of 390 college students (195 women and 195 men) majoring in aviation programs in nine colleges and universities, representing widely varied geographic areas and including both two- and four-year institutions. Results revealed significant areas of concern among women in pilot training. When queried about these concerns, differences were evident in the responses of the male and female groups. These differences were expected. However, a surprising finding was that women in early stages of pilot training responded differently from women in more experienced stages, These response differences did not occur among the men surveyed. The results, therefore, suggest that women in experienced stages of training may have gone through an adaptation process and reflect more male-like attitudes about a number of objects, including social issues, confidence, family, and career.

  20. Agricultural aviation user requirement priorities

    NASA Technical Reports Server (NTRS)

    Kaplan, R. L.; Meeland, T.; Peterson, J. E.

    1977-01-01

    The results are given of a research project pertaining to the development of agricultural aviation user requirement priorities. The raw data utilized in the project was obtained from the National Agricultural Aviation Association. A specially configured poll, developed by the Actuarial Research Corporation was used to solicit responses from NAAA members and others. The primary product of the poll is the specification of seriousness as determined by the respondents for some selected agricultural aviation problem areas identified and defined during the course of an intensive analysis by the Actuarial Research Corporation.

  1. Aviation Environmental Design Tool (AEDT) : Uncertainty Quantification Supplemental Report : Version 2a Service Pack 2 (SP2)

    DOT National Transportation Integrated Search

    2014-05-01

    The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation Environmental Design Tool (AEDT) version 2a software system with the support of the following development team: FAA, National Aeronautics and S...

  2. Aviation System Analysis Capability Executive Assistant Design

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Villani, James A.; Osman, Mohammed; Godso, David; King, Brent; Ricciardi, Michael

    1998-01-01

    In this technical document, we describe the design developed for the Aviation System Analysis Capability (ASAC) Executive Assistant (EA) Proof of Concept (POC). We describe the genesis and role of the ASAC system, discuss the objectives of the ASAC system and provide an overview of components and models within the ASAC system, and describe the design process and the results of the ASAC EA POC system design. We also describe the evaluation process and results for applicable COTS software. The document has six chapters, a bibliography, three appendices and one attachment.

  3. Aviation System Analysis Capability Executive Assistant Development

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Villani, James A.; Anderson, Kevin; Book, Paul

    1999-01-01

    In this technical document, we describe the development of the Aviation System Analysis Capability (ASAC) Executive Assistant (EA) Proof of Concept (POC) and Beta version. We describe the genesis and role of the ASAC system, discuss the objectives of the ASAC system and provide an overview of components and models in the ASAC system, and describe the design process and the results of the ASAC EA POC and Beta system development. We also describe the evaluation process and results for applicable COTS software. The document has seven chapters, a bibliography, and two appendices.

  4. General aviation data link survey analysis : National Business Aircraft Association

    DOT National Transportation Integrated Search

    1996-05-01

    The Federal Aviation Administration (FAA) is interested in integrating Data Link communications technology into the General Aviation (GA) community. But, how much does the GA community know about the Data Link concept, the services that are possible,...

  5. Aviation.

    PubMed

    Karl, Richard C

    2009-01-01

    An increased awareness of the need for safety in medicine in general and in surgery in particular has prompted comparisons between the cockpit and the operating room. These comparisons seem to make sense but tend to be oversimplified. Attempts in healthcare to mimic programs that have been credited for the safety of commercial aviation have met with varying results. The risk here is that oversimplified application of an aviation model may result in the abandonment of good ideas in medicine. This paper describes in more depth the differences between medicine and commercial aviation: from the hiring process, through initial operating experience, recurrent training, and the management of emergencies. These programs add up to a cultural difference. Aviation assumes that personnel are subject to mistake making and that systems and culture need to be constructed to catch and mitigate error; medicine is still focused on the perfection of each individual's performance. The implications of these differences are explored.

  6. Proceedings: Sixth Annual Workshop on Meteorological and Environmental Inputs to Aviation Systems

    NASA Technical Reports Server (NTRS)

    Frost, W. (Editor); Camp, D. W. (Editor); Hershman, L. W. (Editor)

    1983-01-01

    The topics of interaction of the atmosphere with aviation systems, the better definition and implementation of services to operators, and the collection and interpretation of data for establishing operational criteria relating the total meteorological inputs from the atmospheric sciences to the needs of aviation communities were addressed.

  7. Systems Analysis Approach for the NASA Environmentally Responsible Aviation Project

    NASA Technical Reports Server (NTRS)

    Kimmel, William M.

    2011-01-01

    This conference paper describes the current systems analysis approach being implemented for the Environmentally Responsible Aviation Project within the Integrated Systems Research Program under the NASA Aeronautics Research Mission Directorate. The scope and purpose of these systems studies are introduced followed by a methodology overview. The approach involves both top-down and bottoms-up components to provide NASA s stakeholders with a rationale for the prioritization and tracking of a portfolio of technologies which enable the future fleet of aircraft to operate with a simultaneous reduction of aviation noise, emissions and fuel-burn impacts to our environment. Examples of key current results and relevant decision support conclusions are presented along with a forecast of the planned analyses to follow.

  8. Aviation behavioral technology program cockpit human factors research plan

    DOT National Transportation Integrated Search

    1985-01-15

    The safety, reliability, and efficiency of the National Airspace System depend : upon the men and women who operate and use it. Aviation human factors : research is the study of how these people function in the performance of their : jobs as pilots, ...

  9. Systems concept for speech technology application in general aviation

    NASA Technical Reports Server (NTRS)

    North, R. A.; Bergeron, H.

    1984-01-01

    The application potential of voice recognition and synthesis circuits for general aviation, single-pilot IFR (SPIFR) situations is examined. The viewpoint of the pilot was central to workload analyses and assessment of the effectiveness of the voice systems. A twin-engine, high performance general aviation aircraft on a cross-country fixed route was employed as the study model. No actual control movements were considered and other possible functions were scored by three IFR-rated instructors. The SPIFR was concluded helpful in alleviating visual and manual workloads during take-off, approach and landing, particularly for data retrieval and entry tasks. Voice synthesis was an aid in alerting a pilot to in-flight problems. It is expected that usable systems will be available within 5 yr.

  10. Design study of a low cost civil aviation GPS receiver system

    NASA Technical Reports Server (NTRS)

    Cnossen, R.; Gilbert, G. A.

    1979-01-01

    A low cost Navstar receiver system for civil aviation applications was defined. User objectives and constraints were established. Alternative navigation processing design trades were evaluated. Receiver hardware was synthesized by comparing technology projections with various candidate system designs. A control display unit design was recommended as the result of field test experience with Phase I GPS sets and a review of special human factors for general aviation users. Areas requiring technology development to ensure a low cost Navstar Set in the 1985 timeframe were identified.

  11. A study of general aviation accidents involving children in 2011.

    PubMed

    Poland, Kristin M; Marshall, Nora M

    2014-08-01

    General aviation accidents involving children are rare, but when they do happen, little is known about the children involved, including their age, restraint status, and injuries. This lack of information is due to the fact that the National Transportation Safety Board (NTSB) did not always collect detailed data about passengers involved in accidents. Consequently, in 2011, NTSB investigators collected detailed information on children involved in general aviation accidents and this report provides a summary of the outcomes. During 2011, 19 general aviation accidents and incidents included 39 children who were 14 yr old and younger. In total, 26 children sustained fatal injuries, 2 sustained serious injuries, 5 sustained minor injuries, and 6 sustained no injuries. All of the children less than 2 yr old were restrained in a child restraint system and sustained no injuries in the accidents. At least one 4-yr-old child would have benefited from being restrained in a child restraint system. In addition, in two accidents, it was determined that children were likely sharing a single seat belt. This year-long data collection regarding children involved in general aviation accidents provided substantial information concerning age, restraint status, and injuries. In response to issues identified, the NTSB made improvements to its aviation data management system to routinely collect this information for future investigations and enable subsequent evaluation of the data regarding child passengers involved in general aviation accidents over the long term.

  12. Aviation Behavioral Technology Program: Cockpit Human Factors Research Plan

    DOT National Transportation Integrated Search

    1985-01-15

    The safety, reliability, and efficiency of the National Airspace System depend upon the men and women who operate and use it. Aviation human factors research is the study of how these people function in the performance of their jobs as pilots, cont...

  13. 32 CFR 728.58 - Federal Aviation Agency (FAA) beneficiaries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Federal Aviation Agency (FAA) beneficiaries. 728.58 Section 728.58 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL... Federal Agencies § 728.58 Federal Aviation Agency (FAA) beneficiaries. (a) Beneficiaries. Air Traffic...

  14. 32 CFR 728.58 - Federal Aviation Agency (FAA) beneficiaries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Federal Aviation Agency (FAA) beneficiaries. 728.58 Section 728.58 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL... Federal Agencies § 728.58 Federal Aviation Agency (FAA) beneficiaries. (a) Beneficiaries. Air Traffic...

  15. 32 CFR 728.58 - Federal Aviation Agency (FAA) beneficiaries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Federal Aviation Agency (FAA) beneficiaries. 728.58 Section 728.58 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL... Federal Agencies § 728.58 Federal Aviation Agency (FAA) beneficiaries. (a) Beneficiaries. Air Traffic...

  16. 32 CFR 728.58 - Federal Aviation Agency (FAA) beneficiaries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Federal Aviation Agency (FAA) beneficiaries. 728.58 Section 728.58 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL... Federal Agencies § 728.58 Federal Aviation Agency (FAA) beneficiaries. (a) Beneficiaries. Air Traffic...

  17. 32 CFR 728.58 - Federal Aviation Agency (FAA) beneficiaries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Federal Aviation Agency (FAA) beneficiaries. 728.58 Section 728.58 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL... Federal Agencies § 728.58 Federal Aviation Agency (FAA) beneficiaries. (a) Beneficiaries. Air Traffic...

  18. Aviation Weather Information Requirements Study

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.; Stancil, Charles E.; Eckert, Clifford A.; Brown, Susan M.; Gimmestad, Gary G.; Richards, Mark A.; Schaffner, Philip R. (Technical Monitor)

    2000-01-01

    The Aviation Safety Program (AvSP) has as its goal an improvement in aviation safety by a factor of 5 over the next 10 years and a factor of 10 over the next 20 years. Since weather has a big impact on aviation safety and is associated with 30% of all aviation accidents, Weather Accident Prevention (WxAP) is a major element under this program. The Aviation Weather Information (AWIN) Distribution and Presentation project is one of three projects under this element. This report contains the findings of a study conducted by the Georgia Tech Research Institute (GTRI) under the Enhanced Weather Products effort, which is a task under AWIN. The study examines current aviation weather products and there application. The study goes on to identify deficiencies in the current system and to define requirements for aviation weather products that would lead to an increase in safety. The study also provides an overview the current set of sensors applied to the collection of aviation weather information. New, modified, or fused sensor systems are identified which could be applied in improving the current set of weather products and in addressing the deficiencies defined in the report. In addition, the study addresses and recommends possible sensors for inclusion in an electronic pilot reporting (EPIREP) system.

  19. FAA Aviation Forecasts: Fiscal Years 1991-2002

    DTIC Science & Technology

    1991-02-01

    0 DTJCFAA-APO 91-1 US DpartentIC FEBRUARY 1991 of Transportation Federal Aviation MAR 07 ចD Administration FAA AVIATION FORECASTS0 IM MENo II O A...Forecasts, through the National Technical Information Coamuters, Federal Aviation Administra - Service tion, General Aviation, Military Springfield...year 1990, air carrier oper- 5 C-44 0 0 - (N 4 CN 00 -d* 4-: CIF Omm S 0 *0 6 - 0 C 0 0V) u. cm) < C4 00 c ol >ol r..- o uJ .- . C4 4 4-4 0 0 0 0 ~ C

  20. The Typical General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Turnbull, Andrew

    1999-01-01

    The reliability of General Aviation aircraft is unknown. In order to "assist the development of future GA reliability and safety requirements", a reliability study needs to be performed. Before any studies on General Aviation aircraft reliability begins, a definition of a typical aircraft that encompasses most of the general aviation characteristics needs to be defined. In this report, not only is the typical general aviation aircraft defined for the purpose of the follow-on reliability study, but it is also separated, or "sifted" into several different categories where individual analysis can be performed on the reasonably independent systems. In this study, the typical General Aviation aircraft is a four-place, single engine piston, all aluminum fixed-wing certified aircraft with a fixed tricycle landing gear and a cable operated flight control system. The system breakdown of a GA aircraft "sifts" the aircraft systems and components into five categories: Powerplant, Airframe, Aircraft Control Systems, Cockpit Instrumentation Systems, and the Electrical Systems. This breakdown was performed along the lines of a failure of the system. Any component that caused a system to fail was considered a part of that system.

  1. Aviation Environmental Design Tool (AEDT): Version 2c Service pack 1: AEDT Standard Input File (ASIF) Reference Guide

    DOT National Transportation Integrated Search

    2016-12-01

    The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation Environmental Design Tool (AEDT) version 2c software system with the support of the following development team: FAA, National Aeronautics and S...

  2. The Great Aviation Transformation Begins

    NASA Image and Video Library

    2017-08-19

    On National Aviation Day, August 19, NASA goes “X.” While we celebrate the birthday of one of America’s original U.S. aviation pioneers – Orville Wright – we also celebrate the pioneers of right now. The women and men at NASA who are changing the face of aviation by going “X.” We’re starting the design and build of a series of piloted experimental aircraft – X-planes – for the final proof that new advanced tech and revolutionary shapes will give us faster, quieter, cleaner ways to get from here to there.

  3. A psychologist's view of validating aviation systems

    NASA Technical Reports Server (NTRS)

    Stein, Earl S.; Wagner, Dan

    1994-01-01

    All systems, no matter what they are designed to do, have shortcomings that may make them less productive than was hoped during the initial development. Such shortcomings can arise at any stage of development: from conception to the end of the implementation life cycle. While systems failure and errors of a lesser magnitude can occur as a function of mechanical or software breakdown, the majority of such problems, in aviation are usually laid on the shoulders of the human operator and, to a lesser extent, on human factors. The operator bears the responsibility and blame even though, from a human factors perspective, error may have been designed into the system. Human factors is not a new concept in aviation. The name may be new, but the issues related to operators in the loop date back to the industrial revolution of the nineteenth century and certainly to the aviation build-up for World War I. During this first global confrontation, military services from all sides discovered rather quickly that poor selection and training led to drastically increased personnel losses. While hardware design became an issue later, the early efforts were primarily focused on increased care in pilot selection and on their training. This actually involved early labor-intensive simulation, using such devices as sticks and chairs mounted on rope networks which could be manually moved in response to control input. The use of selection criteria and improved training led to more viable person-machine systems. More pilots survived training and their first ten missions in the air, a rule of thumb arrived at by experience which predicted ultimate survival better than any other. This rule was to hold through World War II. At that time, personnel selection and training became very sophisticated based on previous standards. Also, many psychologists were drafted into Army Air Corps programs which were geared towards refining the human factor. However, despite the talent involved in these programs

  4. System Driven Workarounds

    NASA Technical Reports Server (NTRS)

    Connell, Linda; Wichner, David; Jakey, Abegael Marie

    2013-01-01

    The Aviation Safety Reporting System (ASRS) in a partnership between the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), participating carriers, and labor organizations. It is designed to improve the National Airspace System by collecting and studying reports detailing unsafe conditions and events in the aviation industry. Employees are able to report safety issues or concerns with confidentiality and without fear of discipline. Safety reports highlighting system driven workarounds for the aviation community highlight the human workaround for the complex aviation system.

  5. Proceedings: Third Annual Workshop on Meteorological and Environmental Inputs to Aviation Systems

    NASA Technical Reports Server (NTRS)

    Camp, D. W. (Editor); Frost, W. (Editor)

    1979-01-01

    The proceedings of a workshop on meteorological and environmental inputs to aviation systems are reported. The major objectives of the workshop are to satisfy such needs of the sponsoring agencies as the expansion of our understanding and knowledge of the interaction of the atmosphere with aviation systems, the better definition and implementation of services to operators, and the collection and interpretation of data for establishing operational criteria, relating the total meteorological inputs from the atmospheric sciences to the needs of aviation communities. The unique aspect of the workshop was the achievement of communication across the interface of the boundaries between pilots, meteorologists, training personnel, accident investigators, traffic controllers, flight operation personnel from military, civil, general aviation, and commercial interests alike. Representatives were in attendance from government, airlines, private agencies, aircraft manufacturers, Department of Defense, industries, research institutes, and universities. Full-length papers addressed the topics of training, flight operations, accident investigation, air traffic control, and airports. Winds and wind shear; icing and frost; atmospheric electricity and lightning; fog, visibility and ceilings; and turbulence were discussed.

  6. Aviation Environmental Design Tool (AEDT) System Architecture

    DOT National Transportation Integrated Search

    2007-01-29

    The Federal Aviation Administration's Office of Environment and Energy (FAA-AEE) is : developing a comprehensive suite of software tools that will allow for thorough assessment of the environmental effects of aviation. The main goal of the effort is ...

  7. Management advisory memorandum on resource requirement planning for operating and maintaining the National Airspace System

    DOT National Transportation Integrated Search

    1997-01-13

    Management Advisory Memorandum on Resource Requirement Planning for Operating and Maintaining the National Airspace System (NAS) in the Federal Aviation Administration (FAA). Evaluates FAA's resource requirement planning system to ensure it accuratel...

  8. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Aviation fuel and oil purchases. 855.18 Section 855.18 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.18 Aviation fuel and...

  9. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Aviation fuel and oil purchases. 855.18 Section 855.18 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.18 Aviation fuel and...

  10. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Aviation fuel and oil purchases. 855.18 Section 855.18 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.18 Aviation fuel and...

  11. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Aviation fuel and oil purchases. 855.18 Section 855.18 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.18 Aviation fuel and...

  12. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Aviation fuel and oil purchases. 855.18 Section 855.18 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.18 Aviation fuel and...

  13. Aviation-related injury morbidity and mortality: data from U.S. health information systems.

    PubMed

    Baker, Susan P; Brady, Joanne E; Shanahan, Dennis F; Li, Guohua

    2009-12-01

    Information about injuries sustained by survivors of airplane crashes is scant, although some information is available on fatal aviation-related injuries. Objectives of this study were to explore the patterns of aviation-related injuries admitted to U.S. hospitals and relate them to aviation deaths in the same period. The Healthcare Cost and Utilization Project (HCUP) Nationwide Inpatient Sample (NIS) contains information for approximately 20% of all hospital admissions in the United States each year. We identified patients in the HCUP NIS who were hospitalized during 2000-2005 for aviation-related injuries based on the International Classification of Diseases, 9th Revision, codes E840-E844. Injury patterns were also examined in relation to information from multiple-cause-of-death public-use data files 2000-2005. Nationally, an estimated 6080 patients in 6 yr, or 1013 admissions annually (95% confidence interval 894-1133), were hospitalized for aviation-related injuries, based on 1246 patients in the sample. The average hospital stay was 6.3 d and 2% died in hospital. Occupants of non-commercial aircraft accounted for 32% of patients, parachutists for 29%; occupants of commercial aircraft and of unpowered aircraft each constituted 11%. Lower-limb fracture was the most common injury in each category, constituting 27% of the total, followed by head injury (11%), open wound (10%), upper extremity fracture, and internal injury (9%). Among fatalities, head injury (38%) was most prominent. An average of 753 deaths occurred annually; for each death there were 1.3 hospitalizations. Aviation-related injuries result in approximately 1000 hospitalizations each year in the United States, with an in-hospital mortality rate of 2%. The most common injury sustained by aviation crash survivors is lower-limb fracture.

  14. Aviation-Related Injury Morbidity and Mortality: Data from U.S. Health Information Systems

    PubMed Central

    Baker, Susan P.; Brady, Joanne E.; Shanahan, Dennis F.; Li, Guohua

    2010-01-01

    Introduction Information about injuries sustained by survivors of airplane crashes is scant, although some information is available on fatal aviation-related injuries. Objectives of this study were to explore the patterns of aviation-related injuries admitted to U.S. hospitals and relate them to aviation deaths in the same period. Methods The Healthcare Cost and Utilization Project (HCUP) Nationwide Inpatient Sample (NIS) contains information for approximately 20% of all hospital admissions in the United States each year. We identified patients in the HCUP NIS who were hospitalized during 2000–2005 for aviation-related injuries based on the International Classification of Diseases, 9th Revision, codes E840–E844. Injury patterns were also examined in relation to information from multiple-cause-of-death public-use data files 2000–2005. Results Nationally, an estimated 6080 patients in 6 yr, or 1013 admissions annually (95% confidence interval 894–1133), were hospitalized for aviation-related injuries, based on 1246 patients in the sample. The average hospital stay was 6.3 d and 2% died in hospital. Occupants of noncommercial aircraft accounted for 32% of patients, parachutists for 29%; occupants of commercial aircraft and of unpowered aircraft each constituted 11%. Lower-limb fracture was the most common injury in each category, constituting 27% of the total, followed by head injury (11%), open wound (10%), upper extremity fracture, and internal injury (9%). Among fatalities, head injury (38%) was most prominent. An average of 753 deaths occurred annually; for each death there were 1.3 hospitalizations. Conclusions Aviation-related injuries result in approximately 1000 hospitalizations each year in the United States, with an in-hospital mortality rate of 2%. The most common injury sustained by aviation crash survivors is lower-limb fracture. PMID:20027845

  15. Proceedings: Fourth Annual Workshop on Meteorological and Environmental Inputs to Aviation Systems

    NASA Technical Reports Server (NTRS)

    Frost, Walter (Editor); Camp, Dennis W. (Editor)

    1980-01-01

    The proceedings of a workshop on meteorological and environmental inputs to aviation systems held at The University of Tennessee Space Institute, Tullahoma, Tennessee, March 25-27, 1980, are reported. The workshop was jointly sponsored by NASA, NOAA, and FAA and brought together many disciplines of the aviation communities in round table discussions. The major objectives of the workshop are to satisfy such needs of the sponsoring agencies as the expansion of our understanding and knowledge of the interaction of the atmosphere with aviation systems, the better definition and implementation of services to operators, and the collection and interpretation of data for establishing operational criteria relating the total meteorological inputs from the atmospheric sciences to the needs of aviation communities. The unique aspects of the workshop were the diversity of the participants and the achievement of communication across the interface of the boundaries between pilots, meteorologists, training personnel, accident investigators, traffic controllers, flight operation personnel from military, civil, general aviation, and commercial interests alike. Representatives were in attendance from government, airlines, private agencies, aircraft manufacturers, Department of Defense, industries, research institutes, and universities. Full-length papers from invited speakers addressed topics on icing, turbulence, wind and wind shear, ceilings and visibility, lightning, and atmospheric electricity. These papers are contained in the proceedings together with the committee chairmen's reports on the results and conclusions of their efforts on similar subjects.

  16. Aviation Design Software

    NASA Technical Reports Server (NTRS)

    1997-01-01

    DARcorporation developed a General Aviation CAD package through a Small Business Innovation Research contract from Langley Research Center. This affordable, user-friendly preliminary design system for General Aviation aircraft runs on the popular 486 IBM-compatible personal computers. Individuals taking the home-built approach, small manufacturers of General Aviation airplanes, as well as students and others interested in the analysis and design of aircraft are possible users of the package. The software can cut design and development time in half.

  17. The Air Force Aviation Investment Challenge

    DTIC Science & Technology

    2015-12-11

    Report R42136, U.S. Unmanned Aerial Systems. 6 Procurement percentage excludes modification funding. 7 IOC from Department of Defense, Annual Aviation...different picture. Spending for the LRS-B, following its recent contract award and entering its engineering and manufacturing development phase, is...Budget As part of its markup of the Navy’s proposed FY2015 budget, Congress created the National Sea- Based Deterrence Fund (NSBDF), a fund in the DOD

  18. Technical highlights in general aviation

    NASA Technical Reports Server (NTRS)

    Stickle, J. W.

    1977-01-01

    Improvements in performance, safety, efficiency, and emissions control in general aviation craft are reviewed. While change is slow, the U.S. industries still account for the bulk (90%) of the world's general aviation fleet. Advances in general aviation aerodynamics, structures and materials, acoustics, avionics, and propulsion are described. Supercritical airfoils, drag reduction design, stall/spin studies, crashworthiness and passenger safety, fiberglass materials, flight noise abatement, interior noise and vibration reduction, navigation systems, quieter and cleaner (reciprocating, turboprop, turbofan) engines, and possible benefits of the Global Position Satellite System to general aviation navigation are covered in the discussion. Some of the developments are illustrated.

  19. Analysis of Aviation Safety Reporting System Incident Data Associated with the Technical Challenges of the System-Wide Safety and Assurance Technologies Project

    NASA Technical Reports Server (NTRS)

    Withrow, Colleen A.; Reveley, Mary S.

    2015-01-01

    The Aviation Safety Program (AvSP) System-Wide Safety and Assurance Technologies (SSAT) Project asked the AvSP Systems and Portfolio Analysis Team to identify SSAT-related trends. SSAT had four technical challenges: advance safety assurance to enable deployment of NextGen systems; automated discovery of precursors to aviation safety incidents; increasing safety of human-automation interaction by incorporating human performance, and prognostic algorithm design for safety assurance. This report reviews incident data from the NASA Aviation Safety Reporting System (ASRS) for system-component-failure- or-malfunction- (SCFM-) related and human-factor-related incidents for commercial or cargo air carriers (Part 121), commuter airlines (Part 135), and general aviation (Part 91). The data was analyzed by Federal Aviation Regulations (FAR) part, phase of flight, SCFM category, human factor category, and a variety of anomalies and results. There were 38 894 SCFM-related incidents and 83 478 human-factorrelated incidents analyzed between January 1993 and April 2011.

  20. The Aviation System Monitoring and Modeling (ASMM) Project: A Documentation of its History and Accomplishments: 1999-2005

    NASA Technical Reports Server (NTRS)

    Statler, Irving C. (Editor)

    2007-01-01

    The Aviation System Monitoring and Modeling (ASMM) Project was one of the projects within NASA s Aviation Safety Program from 1999 through 2005. The objective of the ASMM Project was to develop the technologies to enable the aviation industry to undertake a proactive approach to the management of its system-wide safety risks. The ASMM Project entailed four interdependent elements: (1) Data Analysis Tools Development - develop tools to convert numerical and textual data into information; (2) Intramural Monitoring - test and evaluate the data analysis tools in operational environments; (3) Extramural Monitoring - gain insight into the aviation system performance by surveying its front-line operators; and (4) Modeling and Simulations - provide reliable predictions of the system-wide hazards, their causal factors, and their operational risks that may result from the introduction of new technologies, new procedures, or new operational concepts. This report is a documentation of the history of this highly successful project and of its many accomplishments and contributions to improved safety of the aviation system.

  1. Safer Systems: A NextGen Aviation Safety Strategic Goal

    NASA Technical Reports Server (NTRS)

    Darr, Stephen T.; Ricks, Wendell R.; Lemos, Katherine A.

    2008-01-01

    The Joint Planning and Development Office (JPDO), is charged by Congress with developing the concepts and plans for the Next Generation Air Transportation System (NextGen). The National Aviation Safety Strategic Plan (NASSP), developed by the Safety Working Group of the JPDO, focuses on establishing the goals, objectives, and strategies needed to realize the safety objectives of the NextGen Integrated Plan. The three goal areas of the NASSP are Safer Practices, Safer Systems, and Safer Worldwide. Safer Practices emphasizes an integrated, systematic approach to safety risk management through implementation of formalized Safety Management Systems (SMS) that incorporate safety data analysis processes, and the enhancement of methods for ensuring safety is an inherent characteristic of NextGen. Safer Systems emphasizes implementation of safety-enhancing technologies, which will improve safety for human-centered interfaces and enhance the safety of airborne and ground-based systems. Safer Worldwide encourages coordinating the adoption of the safer practices and safer systems technologies, policies and procedures worldwide, such that the maximum level of safety is achieved across air transportation system boundaries. This paper introduces the NASSP and its development, and focuses on the Safer Systems elements of the NASSP, which incorporates three objectives for NextGen systems: 1) provide risk reducing system interfaces, 2) provide safety enhancements for airborne systems, and 3) provide safety enhancements for ground-based systems. The goal of this paper is to expose avionics and air traffic management system developers to NASSP objectives and Safer Systems strategies.

  2. Iowa in motion : aviation system plan : implementing Iowa's state transportation plan

    DOT National Transportation Integrated Search

    1999-09-14

    Iowa's system of airports provides a variety of services vital to the state's economy and is an integral part of Iowa's overall transportation system. This 1999 Iowa Aviation System Plan (IASP) addresses issues concerning the state's investment in av...

  3. Prototyping with Application Generators: Lessons Learned from the Naval Aviation Logistics Command Management Information System Case

    DTIC Science & Technology

    1992-10-01

    Prototyping with Application Generators: Lessons Learned from the Naval Aviation Logistics Command Management Information System Case. This study... management information system to automate manual Naval aviation maintenance tasks-NALCOMIS. With the use of a fourth-generation programming language

  4. Mobile aviation services in the 1545-1559/1646.5-1660.5 MHz band

    NASA Astrophysics Data System (ADS)

    Kiesling, J. D.

    1986-09-01

    Plans in the U.S. for a national mobile satellite service (MSS) including satellite services to aviation for air traffic control and airline operational control are outlined. The MSS provides affordable mobile services in nonurban areas where terrestrially based systems are uneconomic. The MSS system also is available on a priority basis for aviation services, specifically AMSS(R) services involving safety and regularity of flight and other aviation services. The U.S. plan is expected to change the U.S. Tables of Allocations and proposes to change the International Table of Allocations so that MSS facilities can and will provide AMSS(R) services on a priority basis. Such arrangements can be implemented worldwide by administrations and organizations having similar interests.

  5. General Aviation Cockpit Weather Information System Simulation Studies

    NASA Technical Reports Server (NTRS)

    McAdaragh, Ray; Novacek, Paul

    2003-01-01

    This viewgraph presentation provides information on two experiments on the effectiveness of a cockpit weather information system on a simulated general aviation flight. The presentation covers the simulation hardware configuration, the display device screen layout, a mission scenario, conclusions, and recommendations. The second experiment, with its own scenario and conclusions, is a follow-on experiment.

  6. National Aviation Security Policy, Strategy, and Mode-Specific Plans: Background and Considerations for Congress

    DTIC Science & Technology

    2008-01-02

    aviation security . The approach to aviation security was largely shaped by past events, such as the bombing of Pan Am flight 103 in December 1988, rather...2001 attacks, U.S. aviation security policy and strategy was closely linked to the changes called for in the Aviation and Transportation Security Act...sensitive thus limiting public discourse on the DHS strategy for aviation security . However, in June 2006 President Bush directed the DHS to establish and

  7. System for assessing Aviation's Global Emissions (SAGE), part 1 : model description and inventory results

    DOT National Transportation Integrated Search

    2007-07-01

    In early 2001, the US Federal Aviation Administration embarked on a multi-year effort to develop a new computer model, the System for assessing Aviation's Global Emissions (SAGE). Currently at Version 1.5, the basic use of the model has centered on t...

  8. Distributed Aviation Concepts and Technologies

    NASA Technical Reports Server (NTRS)

    Moore, Mark D.

    2008-01-01

    Aviation has experienced one hundred years of evolution, resulting in the current air transportation system dominated by commercial airliners in a hub and spoke infrastructure. While the first fifty years involved disruptive technologies that required frequent vehicle adaptation, the second fifty years produced a stable evolutionary optimization of decreasing costs with increasing safety. This optimization has resulted in traits favoring a centralized service model with high vehicle productivity and cost efficiency. However, it may also have resulted in a system that is not sufficiently robust to withstand significant system disturbances. Aviation is currently facing rapid change from issues such as environmental damage, terrorism threat, congestion and capacity limitations, and cost of energy. Currently, these issues are leading to a loss of service for weaker spoke markets. These catalysts and a lack of robustness could result in a loss of service for much larger portions of the aviation market. The impact of other competing transportation services may be equally important as casual factors of change. Highway system forecasts indicate a dramatic slow down as congestion reaches a point of non-linearly increasing delay. In the next twenty-five years, there is the potential for aviation to transform itself into a more robust, scalable, adaptive, secure, safe, affordable, convenient, efficient and environmentally friendly system. To achieve these characteristics, the new system will likely be based on a distributed model that enables more direct services. Short range travel is already demonstrating itself to be inefficient with a centralized model, providing opportunities for emergent distributed services through air-taxi models. Technologies from the on-demand revolution in computers and communications are now available as major drivers for aviation on-demand adaptation. Other technologies such as electric propulsion are currently transforming the automobile

  9. Evidence toward an expanded international civil aviation organization (ICAO) concept of a single unified global communication navigation surveillance air traffic management (CNS/ATM) system: A quantitative analysis of ADS-B technology within a CNS/ATM system

    NASA Astrophysics Data System (ADS)

    Gardner, Gregory S.

    This research dissertation summarizes research done on the topic of global air traffic control, to include technology, controlling world organizations and economic considerations. The International Civil Aviation Organization (ICAO) proposed communication, navigation, surveillance, air traffic management system (CNS/ATM) plan is the basis for the development of a single global CNS/ATM system concept as it is discussed within this study. Research will be evaluated on the efficacy of a single technology, Automatic Dependent Surveillance-Broadcast (ADS-B) within the scope of a single global CNS/ATM system concept. ADS-B has been used within the Federal Aviation Administration's (FAA) Capstone program for evaluation since the year 2000. The efficacy of ADS-B was measured solely by using National Transportation Safety Board (NTSB) data relating to accident and incident rates within the Alaskan airspace (AK) and that of the national airspace system (NAS).

  10. FAA center for aviation systems reliability: an overview

    NASA Astrophysics Data System (ADS)

    Brasche, Lisa J. H.

    1996-11-01

    The FAA Center for Aviation Systems Reliability has as its objectives: to develop quantitative nondestructive evaluation (NDE) methods for aircraft structures and materials, including prototype instrumentation, software, techniques and procedures; and to develop and maintain comprehensive education and training programs specific to the inspection of aviation structures. The program, which includes contributions from Iowa State University, Northwestern University, Wayne State University, Tuskegee University, AlliedSignal Propulsion Engines, General Electric Aircraft Engines and Pratt and Whitney, has been in existence since 1990. Efforts under way include: development of inspection for adhesively bonded structures; detection of corrosion; development of advanced NDE concepts that form the basis for an inspection simulator; improvements of titanium inspection as part of the Engine Titanium Consortium; development of education and training program. An overview of the efforts underway will be provided with focus on those technologies closest to technology transfer.

  11. General aviation in China

    NASA Astrophysics Data System (ADS)

    Hu, Xiaosi

    In the last four decades, China has accomplished economic reform successfully and grown to be a leading country in the world. As the "world factory", the country is able to manufacture a variety of industrial products from clothes and shoes to rockets and satellites. But the aviation industry has always been a weak spot and even the military relies on imported turbofan engines and jet fighters, not to mention the airlines. Recently China has launched programs such as ARJ21 and C919, and started reform to change the undeveloped situation of its aviation industry. As the foundation of the aviation industry, the development of general aviation is essential for the rise of commercial aviation. The primary goal of this study is to examine the general aviation industry and finds the issues that constrain the development of the industry in the system. The research method used in this thesis is the narrative research of qualitative approach since the policy instead of statistical data is analyzed. It appears that the main constraint for the general aviation industry is the government interference.

  12. Sports aviation accidents: fatality and aircraft specificity.

    PubMed

    de Voogt, Alexander J; van Doorn, Robert R A

    2010-11-01

    Sports aviation is a special category of general aviation characterized by diverse aircraft types and a predominantly recreational flight operation. A general comparison of aircraft accidents within sports aviation is missing, but should guide future research. A comparison of accidents in sports aviation was made using 2118 records from the National Transportation Safety Board for the period 1982-2007. In addition, the available denominator data from the Federal Aviation Administration were used to interpret the data. The highest number of accidents was found with gliders (N = 991), but the highest relative number of fatal accidents came from ultra-light (45%) and gyroplane operations (40%), which are homebuilt more often than other aircraft types. The most common cause of accident in sports aviation was in-flight planning and decision-making (N = 200, 9.4%). The most frequent occurrences were hard landings and undershoots, of which the numbers differ significantly from one aircraft type to the other. Homebuilt aircraft are at particular risk in sports aviation. Although denominator data remain problematic for motorized sports aviation, these aircraft show a high proportion of homebuilt aircraft and, more importantly, a higher relative number of fatal accidents.

  13. Research on support effectiveness modeling and simulating of aviation materiel autonomic logistics system

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Zhou, Yang; Yuan, Kai; Jia, Zhiyu; Li, Shuo

    2018-05-01

    Aiming at the demonstration of autonomic logistics system to be used at the new generation of aviation materiel in our country, the modeling and simulating method of aviation materiel support effectiveness considering autonomic logistics are studied. Firstly, this paper introduced the idea of JSF autonomic logistics and analyzed the influence of autonomic logistics on support effectiveness from aspects of reliability, false alarm rate, troubleshooting time, and support delay time and maintenance level. On this basis, the paper studies the modeling and simulating methods of support effectiveness considering autonomic logistics, and puts forward the maintenance support simulation process considering autonomic logistics. Finally, taking the typical aviation materiel as an example, this paper analyzes and verifies the above-mentioned support effectiveness modeling and simulating method of aviation materiel considering autonomic logistics.

  14. Aviation Communications Emulation Testbed

    NASA Technical Reports Server (NTRS)

    Sheehe, Charles; Mulkerin, Tom

    2004-01-01

    Aviation related applications that rely upon datalink for information exchange are increasingly being developed and deployed. The increase in the quantity of applications and associated data communications will expose problems and issues to resolve. NASA s Glenn Research Center has prepared to study the communications issues that will arise as datalink applications are employed within the National Airspace System (NAS) by developing an aviation communications emulation testbed. The Testbed is evolving and currently provides the hardware and software needed to study the communications impact of Air Traffic Control (ATC) and surveillance applications in a densely populated environment. The communications load associated with up to 160 aircraft transmitting and receiving ATC and surveillance data can be generated in realtime in a sequence similar to what would occur in the NAS. The ATC applications that can be studied are the Aeronautical Telecommunications Network s (ATN) Context Management (CM) and Controller Pilot Data Link Communications (CPDLC). The Surveillance applications are Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Information Services - Broadcast (TIS-B).

  15. Aviation Safety: Opportunities Exist for FAA to Refine the Controller Staffing Process

    DOT National Transportation Integrated Search

    1997-04-09

    The Federal Aviation Administration (FAA) is responsible for managing the : nation's air transportation system so more than 18,000 aircraft can annually : carry 500 million passengers safely and on schedule. Because of significant : hiring in the ear...

  16. 77 FR 6000 - Airworthiness Directives; Aviation Communication & Surveillance Systems (ACSS) Traffic Alert and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... Airworthiness Directives; Aviation Communication & Surveillance Systems (ACSS) Traffic Alert and Collision... Communication & Surveillance Systems (ACSS) traffic alert and collision avoidance system (TCAS) units with part...

  17. 75 FR 81512 - Airworthiness Directives; Various Aviation Communication & Surveillance Systems (ACSS) Traffic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Communication & Surveillance Systems (ACSS) Traffic Alert and Collision Avoidance System (TCAS) Units AGENCY... & Surveillance Systems (ACSS) Traffic Alert and Collision Avoidance System (TCAS) units during a flight test over... applies to Aviation Communication & Surveillance Systems (ACSS) Traffic Alert and Collision Avoidance...

  18. Aviation human factors research in U.S. universities: Potential contributions to national needs

    NASA Technical Reports Server (NTRS)

    Key Dismukes, R.

    1994-01-01

    Univesity research can make vital contributions to national needs in aviation human factors (AHF). This article examines the types of expertise and facilities available in universities and explores how university capabilities complement the work of government laboratories. The AHF infrastructure is discussed and compared to other fields of applied research. Policy and funding issues are also examined. This study is based on a survey conducted by the author, which included site visits to several universities, telephone interviews with faculty members at other universities, and a search of the AHF research literature.

  19. The Dynamic Aviation Data System (DADS).

    PubMed

    Soman, S; Strome, T; Francescutti, L H

    1997-08-01

    This paper proposes The Dynamic Aviation Data System (DADS), which integrates a variety of existing information sources regarding flight to serve as a tool to pilots in dealing with the challenges of flight. The system is composed of three main parts: a pilot's history on disk; a system that can read proposed flight plans and make suggestions based upon Geographical Information Systems, weather, aircraft, and case report databases that exist throughout North America; and a small hand-held computer that interfaces with the aircraft's instruments and that can be brought into the cockpit to aid the pilot before and during flight. The system is based upon technology that currently exists and information that is already regularly collected. While many issues regarding implementation and cost efficiency of the system need to be addressed, the system shows promise in its ability to make useful flight safety information available to all pilots in order to save lives.

  20. Transcription of the Workshop on General Aviation Advanced Avionics Systems

    NASA Technical Reports Server (NTRS)

    Tashker, M. (Editor)

    1975-01-01

    Papers are presented dealing with the design of reliable, low cost, advanced avionics systems applicable to general aviation in the 1980's and beyond. Sensors, displays, integrated circuits, microprocessors, and minicomputers are among the topics discussed.

  1. Technology, FID, and Afghanistan: A Model for Aviation Capacity

    DTIC Science & Technology

    2017-04-05

    Force. Through case study, it analyzes how FID definitions and goals eroded under political pressure. Following this, Afghanistan is used to show...national aviation technology capacity, where these nations are weak, and which societal strengths to leverage. Case studies demonstrate how it can be...the other way around. In the case of Afghanistan, the U.S. Air Force (USAF) attempted to cultivate advanced aviation capabilities within a low

  2. Projected Impact of Compositional Verification on Current and Future Aviation Safety Risk

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Withrow, Colleen A.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    The projected impact of compositional verification research conducted by the National Aeronautic and Space Administration System-Wide Safety and Assurance Technologies on aviation safety risk was assessed. Software and compositional verification was described. Traditional verification techniques have two major problems: testing at the prototype stage where error discovery can be quite costly and the inability to test for all potential interactions leaving some errors undetected until used by the end user. Increasingly complex and nondeterministic aviation systems are becoming too large for these tools to check and verify. Compositional verification is a "divide and conquer" solution to addressing increasingly larger and more complex systems. A review of compositional verification research being conducted by academia, industry, and Government agencies is provided. Forty-four aviation safety risks in the Biennial NextGen Safety Issues Survey were identified that could be impacted by compositional verification and grouped into five categories: automation design; system complexity; software, flight control, or equipment failure or malfunction; new technology or operations; and verification and validation. One capability, 1 research action, 5 operational improvements, and 13 enablers within the Federal Aviation Administration Joint Planning and Development Office Integrated Work Plan that could be addressed by compositional verification were identified.

  3. Noise levels and data correction analysis for seven general aviation propeller aircraft

    DOT National Transportation Integrated Search

    1980-09-30

    This document reports noise levels of a general aviation propeller aircraft noise test at the FAA National Aviation Facility Experimental Center located in Atlantic City, New Jersey. The test was performed to acquire noise data on general aviation ty...

  4. National Aviation Security Policy, Strategy, and Mode-Specific Plans: Background and Considerations for Congress

    DTIC Science & Technology

    2009-02-02

    aviation security . The approach to aviation security was largely shaped by past events, such as the bombing of Pan Am flight 103 in December 1988, rather...community. Following the September 11, 2001, attacks, U.S. aviation security policy and strategy was closely linked to the changes called for in the...have been considered security sensitive thus limiting public discourse on the DHS strategy for aviation security . However, in June 2006 President

  5. MODELING AND PERFORMANCE EVALUATION FOR AVIATION SECURITY CARGO INSPECTION QUEUING SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgood, Glenn O; Olama, Mohammed M; Rose, Terri A

    Beginning in 2010, the U.S. will require that all cargo loaded in passenger aircraft be inspected. This will require more efficient processing of cargo and will have a significant impact on the inspection protocols and business practices of government agencies and the airlines. In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, and throughput. These metrics aremore » performance indicators of the system s ability to service current needs and response capacity to additional requests. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures will reduce the overall cost and shipping delays associated with the new inspection requirements.« less

  6. Aviation Frontiers: On-Demand Aircraft

    NASA Technical Reports Server (NTRS)

    Moore, Mark D.

    2010-01-01

    Throughout the 20th Century, NASA has defined the forefront of aeronautical technology, and the aviation industry owes much of its prosperity to this knowledge and technology. In recent decades, centralized aeronautics has become a mature discipline, which raises questions concerning the future aviation innovation frontiers. Three transformational aviation capabilities, bounded together by the development of a Free Flight airspace management system, have the potential to transform 21st Century society as profoundly as civil aviation transformed the 20th Century. These mobility breakthroughs will re-establish environmental sustainable centralized aviation, while opening up latent markets for civil distributed sensing and on-demand rural and regional transportation. Of these three transformations, on-demand aviation has the potential to have the largest market and productivity improvement to society. The information system revolution over the past 20 years shows that vehicles lead, and the interconnecting infrastructure to make them more effective follows; that is, unless on-demand aircraft are pioneered, a distributed Air Traffic Control system will likely never be established. There is no single technology long-pole that will enable on-demand vehicle solutions. However, fully digital aircraft that include electric propulsion has the potential to be a multi-disciplinary initiator of solid state technologies that can provide order of magnitude improvements in the ease of use, safety/reliability, community and environmental friendliness, and affordability.

  7. Simulator Evaluation of Runway Incursion Prevention Technology for General Aviation Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III

    2011-01-01

    A Runway Incursion Prevention System (RIPS) has been designed under previous research to enhance airport surface operations situation awareness and provide cockpit alerts of potential runway conflict, during transport aircraft category operations, in order to prevent runway incidents while also improving operations capability. This study investigated an adaptation of RIPS for low-end general aviation operations using a fixed-based simulator at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). The purpose of the study was to evaluate modified RIPS aircraft-based incursion detection algorithms and associated alerting and airport surface display concepts for low-end general aviation operations. This paper gives an overview of the system, simulation study, and test results.

  8. Development and validation of Aviation Causal Contributors for Error Reporting Systems (ACCERS).

    PubMed

    Baker, David P; Krokos, Kelley J

    2007-04-01

    This investigation sought to develop a reliable and valid classification system for identifying and classifying the underlying causes of pilot errors reported under the Aviation Safety Action Program (ASAP). ASAP is a voluntary safety program that air carriers may establish to study pilot and crew performance on the line. In ASAP programs, similar to the Aviation Safety Reporting System, pilots self-report incidents by filing a short text description of the event. The identification of contributors to errors is critical if organizations are to improve human performance, yet it is difficult for analysts to extract this information from text narratives. A taxonomy was needed that could be used by pilots to classify the causes of errors. After completing a thorough literature review, pilot interviews and a card-sorting task were conducted in Studies 1 and 2 to develop the initial structure of the Aviation Causal Contributors for Event Reporting Systems (ACCERS) taxonomy. The reliability and utility of ACCERS was then tested in studies 3a and 3b by having pilots independently classify the primary and secondary causes of ASAP reports. The results provided initial evidence for the internal and external validity of ACCERS. Pilots were found to demonstrate adequate levels of agreement with respect to their category classifications. ACCERS appears to be a useful system for studying human error captured under pilot ASAP reports. Future work should focus on how ACCERS is organized and whether it can be used or modified to classify human error in ASAP programs for other aviation-related job categories such as dispatchers. Potential applications of this research include systems in which individuals self-report errors and that attempt to extract and classify the causes of those events.

  9. Object-Oriented Bayesian Networks (OOBN) for Aviation Accident Modeling and Technology Portfolio Impact Assessment

    NASA Technical Reports Server (NTRS)

    Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.

    2012-01-01

    The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.

  10. AWE: Aviation Weather Data Visualization Environment

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Weather is one of the major causes of aviation accidents. General aviation (GA) flights account for 92% of all the aviation accidents, In spite of all the official and unofficial sources of weather visualization tools available to pilots, there is an urgent need for visualizing several weather related data tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment AWE), presents graphical displays of meteorological observations, terminal area forecasts, and winds aloft forecasts onto a cartographic grid specific to the pilot's area of interest. Decisions regarding the graphical display and design are made based on careful consideration of user needs. Integral visual display of these elements of weather reports is designed for the use of GA pilots as a weather briefing and route selection tool. AWE provides linking of the weather information to the flight's path and schedule. The pilot can interact with the system to obtain aviation-specific weather for the entire area or for his specific route to explore what-if scenarios and make "go/no-go" decisions. The system, as evaluated by some pilots at NASA Ames Research Center, was found to be useful.

  11. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that...

  12. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that...

  13. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that...

  14. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning that...

  15. 76 FR 2745 - Federal Aviation Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Eighty-Fourth Meeting: RTCA Special Committee 159: Global Positioning System (GPS) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 159 meeting: Global Positioning System (GPS). SUMMARY: The FAA is...

  16. Human response to aviation noise : development of dose-response relationships for backcountry visitors - volume I: study methods

    DOT National Transportation Integrated Search

    2014-03-01

    The Federal Aviation Administration and National Park Service conducted joint research to better understand the effects of noise due to commercial air tour operations over units of the National Park System. To evaluate the relationship between aircra...

  17. Drone Technology and Future Aviation on This Week @NASA – August 5, 2016

    NASA Image and Video Library

    2016-08-05

    On Aug. 2, NASA’s Associate Administrator for Aeronautics Jaiwon Shin, representatives from the Federal Aviation Administration (FAA), aviation industry leaders and the academic research community participated in a workshop hosted by the White House Office of Science and Technology Policy (OSTP) to discuss Drones and the Future of Aviation. The event was designed to explore airspace integration issues; public and commercial uses; and safety, security, and privacy concerns related to this emerging technology. NASA is working with the FAA on a traffic management system that will enable pilots of these aircraft to fly safely in the national airspace. Also, Maryland Storms Imaged from Space, Io’s Collapsing Atmosphere, Orion Crew Module Moved, AstrOlympics, and more!

  18. General Aviation Pilots' Perceived Usage and Valuation of Aviation Weather Information Sources

    NASA Technical Reports Server (NTRS)

    Latorella, Kara; Lane, Suzanne; Garland, Daniel

    2002-01-01

    Aviation suffers many accidents due to the lack of good weather information in flight. Existing aviation weather information is difficult to obtain when it is most needed and is not well formatted for in-flight use. Because it is generally presented aurally, aviation weather information is difficult to integrate with spatial flight information and retain for reference. Efforts, by NASA's Aviation Weather Information (AWIN) team and others, to improve weather information accessibility, usability and decision aiding will enhance General Aviation (GA) pilots' weather situation awareness and decision-making and therefore should improve the safety of GA flight. Consideration of pilots' economic concerns will ensure that in-flight weather information systems are financially accessible to GA pilots as well. The purpose of this survey was to describe how aviation operator communities gather and use weather information as well as how weather related decisions are made between flight crews and supporting personnel. Pilots of small GA aircraft experience the most weather-related accidents as well as the most fatal weather related accident. For this reason, the survey design and advertisement focused on encouraging participation from GA pilots. Perhaps as a result of this emphasis, most responses, 97 responses or 85% of the entire response set, were from GA pilots, This paper presents only analysis of these GA pilots' responses. The insights provided by this survey regarding GA pilots' perceived value and usage of current aviation weather information. services, and products provide a basis for technological approaches to improve GA safety. Results of this survey are discussed in the context of survey limitations and prior work, and serve as the foundation for a model of weather information value, guidance for the design of in-flight weather information systems, and definition of further research toward their development.

  19. 77 FR 48201 - Membership in the National Parks Overflights Advisory Group Aviation Rulemaking Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... commercial air tour operators (2), general aviation (1), Native American tribal (1), and environmental (2.... Vacancies filled include the two commercial tour operator openings, the general aviation opening, the tribal... comprised of a balanced group of representatives of general aviation, commercial air tour operations...

  20. A Formal Messaging Notation for Alaskan Aviation Data

    NASA Technical Reports Server (NTRS)

    Rios, Joseph L.

    2015-01-01

    Data exchange is an increasingly important aspect of the National Airspace System. While many data communication channels have become more capable of sending and receiving data at higher throughput rates, there is still a need to use communication channels efficiently with limited throughput. The limitation can be based on technological issues, financial considerations, or both. This paper provides a complete description of several important aviation weather data in Abstract Syntax Notation format. By doing so, data providers can take advantage of Abstract Syntax Notation's ability to encode data in a highly compressed format. When data such as pilot weather reports, surface weather observations, and various weather predictions are compressed in such a manner, it allows for the efficient use of throughput-limited communication channels. This paper provides details on the Abstract Syntax Notation One (ASN.1) implementation for Alaskan aviation data, and demonstrates its use on real-world aviation weather data samples as Alaska has sparse terrestrial data infrastructure and data are often sent via relatively costly satellite channels.

  1. Airborne volcanic ash; a global threat to aviation

    USGS Publications Warehouse

    Neal, Christina A.; Guffanti, Marianne C.

    2010-01-01

    The world's busy air traffic corridors pass over or downwind of hundreds of volcanoes capable of hazardous explosive eruptions. The risk to aviation from volcanic activity is significant - in the United States alone, aircraft carry about 300,000 passengers and hundreds of millions of dollars of cargo near active volcanoes each day. Costly disruption of flight operations in Europe and North America in 2010 in the wake of a moderate-size eruption in Iceland clearly demonstrates how eruptions can have global impacts on the aviation industry. Airborne volcanic ash can be a serious hazard to aviation even hundreds of miles from an eruption. Encounters with high-concentration ash clouds can diminish visibility, damage flight control systems, and cause jet engines to fail. Encounters with low-concentration clouds of volcanic ash and aerosols can accelerate wear on engine and aircraft components, resulting in premature replacement. The U.S. Geological Survey (USGS), in cooperation with national and international partners, is playing a leading role in the international effort to reduce the risk posed to aircraft by volcanic eruptions.

  2. PNNL Aviation Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  3. Proceedings of the second workshop on human response to aviation noise in protected natural areas, May 26-29, 2009

    DOT National Transportation Integrated Search

    2009-05-01

    Congress passed the National Parks Air Tour Management Act of 2000 (NPATMA) to regulate commercial air tour operations over units of the National Park System. The Federal Aviation Administration (FAA) and the National Park Service (NPS) are jointly d...

  4. Aviation System Analysis Capability (ASAC) Quick Response System (QRS) Test Report

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Villani, James A.; Ritter, Paul

    1997-01-01

    This document is the Aviation System Analysis Capability (ASAC) Quick Response System (QRS) Test Report. The purpose of this document is to present the results of the QRS unit and system tests in support of the ASAC QRS development effort. This document contains an overview of the project background and scope, defines the QRS system and presents the additions made to the QRS this year, explains the assumptions, constraints, and approach used to conduct QRS Unit and System Testing, and presents the schedule used to perform QRS Testing. The document also presents an overview of the Logistics Management Institute (LMI) Test Facility and testing environment and summarizes the QRS Unit and System Test effort and results.

  5. 76 FR 62321 - Airworthiness Directives; Aviation Communication & Surveillance Systems (ACSS) Traffic Alert and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... Communication & Surveillance Systems (ACSS) Traffic Alert and Collision Avoidance System (TCAS) Units AGENCY... certain Aviation Communication & Surveillance Systems (ACSS) traffic alert and collision avoidance system...) traffic alert and collision avoidance system (TCAS) units with part numbers identified in ACSS Technical...

  6. Driving-while-intoxicated history as a risk marker for general aviation pilots.

    PubMed

    Li, Guohua; Baker, Susan P; Qiang, Yandong; Grabowski, Jurek G; McCarthy, Melissa L

    2005-01-01

    The Federal Aviation Administration conducts background checking for driving-while-intoxicated (DWI) convictions on all pilots. This study examined the association between DWI history and crash risk in a cohort of 335,672 general aviation pilots. These pilots were followed up from 1994 to 2000 through the aviation crash surveillance system of the National Transportation Safety Board. At baseline, 3.4% of the pilots had a DWI history. DWI history was associated with a 43% increased risk of crash involvement (adjusted relative risk: 1.43; 95% confidence interval: 1.15-1.77). The population-attributable risk fraction for DWI history was estimated as 1.4%. In addition to DWI history, male gender, older age, and inexperience were associated with significantly increased risk of crash involvement. The results of this study support DWI history as a valid risk marker for general aviation pilots. The safety benefit of background checking for DWI history needs to be further evaluated.

  7. Results of a field study of the performance enhancement system : a support system for aviation safety inspectors.

    DOT National Transportation Integrated Search

    1995-12-01

    The Performance Enhancement System (PENS) is a prototype electronic performance support system for Aviation Safety Inspectors (ASIs). PENS facilitates field data collection, information management, and on-line references, thus eliminating paperwork, ...

  8. Human response to aviation noise : development of dose-response relationships for backcountry visitors - volume II : results and analysis

    DOT National Transportation Integrated Search

    2014-03-01

    The Federal Aviation Administration and National Park Service conducted joint research to better understand the effects of noise due to commercial air tour operations over units of the National Park System. To evaluate the relationship between aircra...

  9. Capacity utilization study for aviation security cargo inspection queuing system

    NASA Astrophysics Data System (ADS)

    Allgood, Glenn O.; Olama, Mohammed M.; Lake, Joe E.; Brumback, Daryl

    2010-04-01

    In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system's ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

  10. Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E

    In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number ofmore » cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.« less

  11. Flight deck party line issues : an Aviation Safety Reporting System analysis

    DOT National Transportation Integrated Search

    1995-06-01

    This document describes an analysis of the Aviation Safety Reporting System : (ASRS) database with regards to human factors aspects concerning the : implementation of Data Link into the flightdeck. The ASRS database contains : thousands of reports co...

  12. Graphical Weather Information System Evaluation: Usability, Perceived Utility, and Preferences from General Aviation Pilots

    NASA Technical Reports Server (NTRS)

    Latorella, Kara A.; Chamberlain, James P.

    2002-01-01

    Weather is a significant factor in General Aviation (GA) accidents and fatality rates. Graphical Weather Information Systems (GWISs) for the flight deck are appropriate technologies for mitigating the difficulties GA pilots have with current aviation weather information sources. This paper describes usability evaluations of a prototype GWIS by 12 GA pilots after using the system in flights towards convective weather. We provide design guidance for GWISs and discuss further research required to support weather situation awareness and in-flight decision making for GA pilots.

  13. Aviation Insights: Unmanned Aerial Vehicles

    ERIC Educational Resources Information Center

    Deal, Walter F., III

    2005-01-01

    Aviation as people know it today is a mature but very young technology as time goes. Considering that the 100th anniversary of flight was celebrated just a few years ago in 2003, millions of people fly from city to city or from nation to nation and across the oceans and around the world effortlessly and economically. Additionally, they have space…

  14. The Aviation System Analysis Capability Airport Capacity and Delay Models

    NASA Technical Reports Server (NTRS)

    Lee, David A.; Nelson, Caroline; Shapiro, Gerald

    1998-01-01

    The ASAC Airport Capacity Model and the ASAC Airport Delay Model support analyses of technologies addressing airport capacity. NASA's Aviation System Analysis Capability (ASAC) Airport Capacity Model estimates the capacity of an airport as a function of weather, Federal Aviation Administration (FAA) procedures, traffic characteristics, and the level of technology available. Airport capacity is presented as a Pareto frontier of arrivals per hour versus departures per hour. The ASAC Airport Delay Model allows the user to estimate the minutes of arrival delay for an airport, given its (weather dependent) capacity. Historical weather observations and demand patterns are provided by ASAC as inputs to the delay model. The ASAC economic models can translate a reduction in delay minutes into benefit dollars.

  15. An Analysis of National Aviation Policy with Respect to America’s Strategic Airlift Capability.

    DTIC Science & Technology

    1984-01-01

    Aeronautics Act Annotated (Washington, D.C.: National Law Book Company, 1939), p. 18. 3Ibid. 195 34 Air Mail Act of 1925, Statutes at Large, 43, Section...addition, the U.S. 11 7Nawal K. Taneja, U.S. International Aviation Policy (Lexington, MA: Lexington Books , 1980), p. 8. ll8Ibid., p. 9. 1 19Ibid. .... .7...Airline Industry (Lexington, MA: Lexington Books , 1976), p. 8. 123 U.S. Statutes at Large, Vol. 60, pt. 2, p. 1515. 124Taneja, U.S. International

  16. Aircraft Fuel, Hydraulic and Pneumatic Systems (Course Outlines), Aviation Mechanics 3 (Air Frame): 9067.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with the operation, inspection, and repair of aircraft fuel, hydraulic, and pneumatic systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe maintenance technician…

  17. A study of carburetor/induction system icing in general aviation accidents

    NASA Technical Reports Server (NTRS)

    Obermayer, R. W.; Roe, W. T.

    1975-01-01

    An assessment of the frequency and severity of carburetor/induction icing in general-aviation accidents was performed. The available literature and accident data from the National Transportation Safety Board were collected. A computer analysis of the accident data was performed. Between 65 and 90 accidents each year involve carburetor/induction system icing as a probable cause/factor. Under conditions conducive to carburetor/induction icing, between 50 and 70 percent of engine malfunction/failure accidents (exclusive of those due to fuel exhaustion) are due to carburetor/induction system icing. Since the evidence of such icing may not remain long after an accident, it is probable that the frequency of occurrence of such accidents is underestimated; therefore, some extrapolation of the data was conducted. The problem of carburetor/induction system icing is particularly acute for pilots with less than 1000 hours of total flying time. The severity of such accidents is about the same as any accident resulting from a forced landing or precautionary landing. About 144 persons, on the average, are exposed to death and injury each year in accidents involving carburetor/induction icing as a probable cause/factor.

  18. Causal Factors and Adverse Events of Aviation Accidents and Incidents Related to Integrated Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon M.; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.

    2011-01-01

    Causal factors in aviation accidents and incidents related to system/component failure/malfunction (SCFM) were examined for Federal Aviation Regulation Parts 121 and 135 operations to establish future requirements for the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project. Data analyzed includes National Transportation Safety Board (NSTB) accident data (1988 to 2003), Federal Aviation Administration (FAA) incident data (1988 to 2003), and Aviation Safety Reporting System (ASRS) incident data (1993 to 2008). Failure modes and effects analyses were examined to identify possible modes of SCFM. A table of potential adverse conditions was developed to help evaluate IVHM research technologies. Tables present details of specific SCFM for the incidents and accidents. Of the 370 NTSB accidents affected by SCFM, 48 percent involved the engine or fuel system, and 31 percent involved landing gear or hydraulic failure and malfunctions. A total of 35 percent of all SCFM accidents were caused by improper maintenance. Of the 7732 FAA database incidents affected by SCFM, 33 percent involved landing gear or hydraulics, and 33 percent involved the engine and fuel system. The most frequent SCFM found in ASRS were turbine engine, pressurization system, hydraulic main system, flight management system/flight management computer, and engine. Because the IVHM Project does not address maintenance issues, and landing gear and hydraulic systems accidents are usually not fatal, the focus of research should be those SCFMs that occur in the engine/fuel and flight control/structures systems as well as power systems.

  19. Guidelines for Federal Aviation Administration Regional Aviation Education Coordinators and Aviation Education Facilitators.

    ERIC Educational Resources Information Center

    Strickler, Mervin K., Jr.

    This publication is designed to provide both policy guidance and examples of how to work with various constituencies in planning and carrying out appropriate Federal Aviation Administration (FAA) aviation education activities. Information is provided on the history of aerospace/aviation education, FAA educational materials, aerospace/aviation…

  20. 32 CFR 766.13 - Sale of aviation fuel, oil, services and supplies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Sale of aviation fuel, oil, services and... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.13 Sale of aviation fuel, oil, services and supplies. (a) General policy. In accordance with sections 1107 and 1108 of...

  1. 32 CFR 766.13 - Sale of aviation fuel, oil, services and supplies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Sale of aviation fuel, oil, services and... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.13 Sale of aviation fuel, oil, services and supplies. (a) General policy. In accordance with sections 1107 and 1108 of...

  2. 32 CFR 766.13 - Sale of aviation fuel, oil, services and supplies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Sale of aviation fuel, oil, services and... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.13 Sale of aviation fuel, oil, services and supplies. (a) General policy. In accordance with sections 1107 and 1108 of...

  3. 32 CFR 766.13 - Sale of aviation fuel, oil, services and supplies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Sale of aviation fuel, oil, services and... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.13 Sale of aviation fuel, oil, services and supplies. (a) General policy. In accordance with sections 1107 and 1108 of...

  4. African American Pioneers in Aviation: 1920-Present. Teacher Guide.

    ERIC Educational Resources Information Center

    O'Flahavan, Leslie

    This teacher's guide provides activities about the National Air and Space Museum (Washington, DC) for students to complete. The guide includes primary and secondary source materials for teachers to photocopy and use during their study of African Americans in aviation based on the exhibition "Black Wings: The American Black in Aviation."…

  5. An Examination of Commercial Aviation Accidents and Incidents Related to Integrated Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Briggs, Jeffrey L.; Thomas, Megan A.; Evans, Joni K.; Jones, Sharon M.

    2011-01-01

    The Integrated Vehicle Health Management (IVHM) Project is one of the four projects within the National Aeronautics and Space Administration's (NASA) Aviation Safety Program (AvSafe). The IVHM Project conducts research to develop validated tools and technologies for automated detection, diagnosis, and prognosis that enable mitigation of adverse events during flight. Adverse events include those that arise from system, subsystem, or component failure, faults, and malfunctions due to damage, degradation, or environmental hazards that occur during flight. Determining the causal factors and adverse events related to IVHM technologies will help in the formulation of research requirements and establish a list of example adverse conditions against which IVHM technologies can be evaluated. This paper documents the results of an examination of the most recent statistical/prognostic accident and incident data that is available from the Aviation Safety Information Analysis and Sharing (ASIAS) System to determine the causal factors of system/component failures and/or malfunctions in U.S. commercial aviation accidents and incidents.

  6. 49 CFR 826.8 - Awards against the Federal Aviation Administration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Awards against the Federal Aviation Administration. 826.8 Section 826.8 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL... Awards against the Federal Aviation Administration. When an applicant is entitled to an award because it...

  7. 49 CFR 826.8 - Awards against the Federal Aviation Administration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Awards against the Federal Aviation Administration. 826.8 Section 826.8 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL... Awards against the Federal Aviation Administration. When an applicant is entitled to an award because it...

  8. 49 CFR 826.8 - Awards against the Federal Aviation Administration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Awards against the Federal Aviation Administration. 826.8 Section 826.8 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL... Awards against the Federal Aviation Administration. When an applicant is entitled to an award because it...

  9. 49 CFR 826.8 - Awards against the Federal Aviation Administration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Awards against the Federal Aviation Administration. 826.8 Section 826.8 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL... Awards against the Federal Aviation Administration. When an applicant is entitled to an award because it...

  10. 49 CFR 826.8 - Awards against the Federal Aviation Administration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Awards against the Federal Aviation Administration. 826.8 Section 826.8 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL... Awards against the Federal Aviation Administration. When an applicant is entitled to an award because it...

  11. The Future of Green Aviation

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas

    2012-01-01

    Dr. Edwards'presentation provides an overview of aviation's economic impact in the U.S. including aviation's impact on environment and energy. The presentation discusses NASA's contributions to the advancement of commercial aircraft design highlighting the technology drivers and recent technology advancements for addressing community noise, energy efficiency and emissions. The presentation concludes with a preview of some of NASA's integrated systems solutions, such as novel aircraft concepts and advancements in propulsion that will enable the future of more environmentally compatible aviation.

  12. Russian eruption warning systems for aviation

    USGS Publications Warehouse

    Neal, C.; Girina, O.; Senyukov, S.; Rybin, A.; Osiensky, J.; Izbekov, P.; Ferguson, G.

    2009-01-01

    More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded. ?? Springer Science+Business Media B.V. 2009.

  13. Correlates of pilot fatality in general aviation crashes.

    PubMed

    Li, G; Baker, S P

    1999-04-01

    General aviation accounts for the majority of aviation crashes and casualties in the United States, and general aviation safety has not improved in the past decade. This study identifies factors associated with pilot fatality in general aviation crashes. We analyzed the National Transportation Safety Board's Factual Reports for all airplane and helicopter crashes of general aviation flights that occurred in North Carolina and Maryland during 1985 through 1994. Surviving pilots were compared with fatally injured pilots in relation to crash circumstances, and pilot and aircraft characteristics, at bivariate level and multivariate level. A total of 667 crashes resulted in 276 deaths and 368 injuries during the 10-yr period in the two states. Of the pilots-in-command involved in these crashes, 146 (22%) died. The case fatality rate for pilots was significantly higher in crashes that occurred between 6 p.m. and 5 a.m. (34%), away from airports (36%), with aircraft fire (69%), or in instrument meteorological weather conditions (IMC) (71%). Multivariate logistic regression revealed that the significant correlates of pilot fatality were aircraft fire [odds ratio (OR) 13.7, 95% confidence interval (CI) 6.9-27.2], off-airport location (OR 9.9, 95% CI 5.0-19.6), IMC (OR 9.1, 95% CI 4.3-19.6), nighttime (OR 2.2, 95% CI 1.3-3.7), and pilot age > or = 50 yr (OR 1.7, 95% CI 1.0-3.0). Pilot gender, flight experience, principal profession, and type of aircraft (airplane vs. helicopter) were not significantly associated with the likelihood of survival. The most important correlates of pilot fatality are variables likely related to increased impact forces. Better occupant protection equipment, such as air bag and crashworthy fuel system, are needed for general aviation aircraft.

  14. 32 CFR 766.7 - How to request use of naval aviation facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false How to request use of naval aviation facilities... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.7 How to request use of naval aviation facilities. (a) Forms required. Each applicant desiring use of a Navy/Marine...

  15. 32 CFR 766.7 - How to request use of naval aviation facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false How to request use of naval aviation facilities... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.7 How to request use of naval aviation facilities. (a) Forms required. Each applicant desiring use of a Navy/Marine...

  16. 32 CFR 766.7 - How to request use of naval aviation facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false How to request use of naval aviation facilities... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.7 How to request use of naval aviation facilities. (a) Forms required. Each applicant desiring use of a Navy/Marine...

  17. 32 CFR 766.7 - How to request use of naval aviation facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false How to request use of naval aviation facilities... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.7 How to request use of naval aviation facilities. (a) Forms required. Each applicant desiring use of a Navy/Marine...

  18. 32 CFR 766.7 - How to request use of naval aviation facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false How to request use of naval aviation facilities... MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.7 How to request use of naval aviation facilities. (a) Forms required. Each applicant desiring use of a Navy/Marine...

  19. Implications of Automotive and Trucking On-Board Information Systems for General Aviation Cockpit Weather Systems

    NASA Technical Reports Server (NTRS)

    Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin

    2002-01-01

    In this study, current characteristics and future developments of Intelligent Transportation Systems (ITS) in the automobile and trucking industry are investigated to identify the possible implications of such systems for General Aviation (GA) cockpit weather systems. First, ITS are explained based on tracing their historical development in various countries. Then, current systems and the enabling communication technologies are discussed. Finally, a market analysis for GA is included.

  20. Managing the Aviation Insider Threat

    DTIC Science & Technology

    2010-12-01

    World Airport NSAS National Strategy for Aviation Security OIS Office of Intelligence SIDA Security Identification Display Area STA Security...Security of the secured area”, 1542.205, “Security of the security identification display area ( SIDA )”, and 1542.209, “Fingerprint-based criminal

  1. PNNL Aviation Biofuels

    ScienceCinema

    Plaza, John; Holladay, John; Hallen, Rich

    2018-06-06

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  2. Analysis of Aviation Safety Reporting System Incident Data Associated With the Technical Challenges of the Vehicle Systems Safety Technology Project

    NASA Technical Reports Server (NTRS)

    Withrow, Colleen A.; Reveley, Mary S.

    2014-01-01

    This analysis was conducted to support the Vehicle Systems Safety Technology (VSST) Project of the Aviation Safety Program (AVsP) milestone VSST4.2.1.01, "Identification of VSST-Related Trends." In particular, this is a review of incident data from the NASA Aviation Safety Reporting System (ASRS). The following three VSST-related technical challenges (TCs) were the focus of the incidents searched in the ASRS database: (1) Vechicle health assurance, (2) Effective crew-system interactions and decisions in all conditions; and (3) Aircraft loss of control prevention, mitigation, and recovery.

  3. General Aviation Aircraft Reliability Study

    NASA Technical Reports Server (NTRS)

    Pettit, Duane; Turnbull, Andrew; Roelant, Henk A. (Technical Monitor)

    2001-01-01

    This reliability study was performed in order to provide the aviation community with an estimate of Complex General Aviation (GA) Aircraft System reliability. To successfully improve the safety and reliability for the next generation of GA aircraft, a study of current GA aircraft attributes was prudent. This was accomplished by benchmarking the reliability of operational Complex GA Aircraft Systems. Specifically, Complex GA Aircraft System reliability was estimated using data obtained from the logbooks of a random sample of the Complex GA Aircraft population.

  4. APMS 3.0 Flight Analyst Guide: Aviation Performance Measuring System

    NASA Technical Reports Server (NTRS)

    Jay, Griff; Prothero, Gary; Romanowski, Timothy; Lynch, Robert; Lawrence, Robert; Rosenthal, Loren

    2004-01-01

    The Aviation Performance Measuring System (APMS) is a method-embodied in software-that uses mathematical algorithms and related procedures to analyze digital flight data extracted from aircraft flight data recorders. APMS consists of an integrated set of tools used to perform two primary functions: a) Flight Data Importation b) Flight Data Analysis.

  5. Workshop on Assurance for Autonomous Systems for Aviation

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume; Davies, Misty; Giannakopoulou, Dimitra; Neogi, Natasha

    2016-01-01

    This report describes the workshop on Assurance for Autonomous Systems for Aviation that was held in January 2016 in conjunction with the SciTech 2016 conference held in San Diego, CA. The workshop explored issues related to assurance for autonomous systems and also the idea of trust in these systems. Specifically, we focused on discussing current practices for assurance of autonomy, identifying barriers specific to autonomy as related to assurance as well as operational scenarios demonstrating the need to address the barriers. Furthermore, attention was given to identifying verification techniques that may be applicable to autonomy, as well as discussing new research directions needed to address barriers, thereby involving potential shifts in current practices.

  6. The Aviation System Analysis Capability Noise Impact Model

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Ege, Russell; Burn, Melissa; Carey, Jeffrey; Bradley, Kevin

    1998-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Noise Impact Model (NIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operations might have on community noise impact and air carrier operating efficiency at any of 16 large- and medium-sized U.S. airports. The analyst chooses an airport and case year for study, selects a runway use configuration and set of flight tracks for the scenario, and has the option of reducing the noise of the aircraft that operate at the airport by 3, 6, or 10 decibels. NIM computes the resultant noise impact and estimates any airline operations improvements. Community noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the.contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to a less circuitous alternate routing. For a more efficient runway use configuration, the increase in capacity and reduction in delay are shown.

  7. The Aviation System Analysis Capability Noise Impact Model

    NASA Technical Reports Server (NTRS)

    Ege, Russell A.; Brown, Jerome; Bradley, Kevin; Grandi, Fabio

    1999-01-01

    To meet its objective of assisting the US aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Noise Impact Model (NIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operation might have on community noise impact and air carrier operating efficiency at any of 16 large and medium size US airports. The analyst chooses an airport and case year for study, selects a runway use configuration and set of flight tracks for the scenario, and has the option of reducing the noise of the aircraft that operate at the airport by 3, 6, and 10 decibels, NIM computes the resultant noise impact and estimates any airline operational improvements. Community noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to a less circuitous alternated routing. For a more efficient runway use configuration, the increase in capacity and reduction in delay are shown.

  8. NASA atmospheric effects of aviation projects: Status and plans

    NASA Technical Reports Server (NTRS)

    Wesoky, Howard L.; Thompson, Anne M.; Stolarski, Richard S.

    1994-01-01

    NASA's Atmospheric Effects of Aviation Project is developing a scientific basis for assessment of the atmospheric impact of subsonic and supersonic aviation. Issues addressed include predicted ozone changes and climatic impact, and related uncertainties. A primary goal is to assist assessments of United Nations scientific organizations and, hence, consideration of emission standards by the International Civil Aviation Organization. Project focus is on simulation of atmospheric processes by computer models, but studies of aircraft operations, laboratory studies, and remote and in situ observations of chemical, dynamic, and radiative processes are also included.

  9. Memorandum of Agreement Among Department of Defense, Federal Aviation Administration and National Aeronautics and Space Administration on Federal Interaction With Launch Site Operators

    DOT National Transportation Integrated Search

    1997-01-01

    This Memorandum of Agreement (Agreement) explains the respective roles and : responsibilities of the Department of Defense, the Federal Aviation : Administration, and the National Aeronautics and Space Administration, : in their interactions with lau...

  10. AWE: Aviation Weather Data Visualization Environment

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2000-01-01

    The two official sources for aviation weather reports both provide weather information to a pilot in a textual format. A number of systems have recently become available to help pilots with the visualization task by providing much of the data graphically. However, two types of aviation weather data are still not being presented graphically. These are airport-specific current weather reports (known as meteorological observations, or METARs) and forecast weather reports (known as terminal area forecasts, or TAFs). Our system, Aviation Weather Environment (AWE), presents intuitive graphical displays for both METARs and TAFs, as well as winds aloft forecasts. We start with a computer-generated textual aviation weather briefing. We map this briefing onto a cartographic grid specific to the pilot's area of interest. The pilot is able to obtain aviation-specific weather for the entire area or for his specific route. The route, altitude, true airspeed, and proposed departure time can each be modified in AWE. Integral visual display of these three elements of weather reports makes AWE a useful planning tool, as well as a weather briefing tool.

  11. Civil Aviation and Facilities. Aerospace Education II.

    ERIC Educational Resources Information Center

    Orser, N. A.; Glascoff, W. G., III

    This book, which is to be used only in the Air Force ROTC training program, deals with the kinds of civil aviation facilities and the intricacies and procedures of the use of flying. The first chapter traces the development of civil aviation and the formation of organizations to control aviation systems. The second chapter describes varieties of…

  12. Civil Aviation and Facilities. Aerospace Education II.

    ERIC Educational Resources Information Center

    Callaway, R. O.; Elmer, James D.

    This is a revised textbook for use in the Air Force ROTC training program. The main theme of the book is concerned with the kinds of civil aviation facilities and many intricacies involved in their use. The first chapter traces the development of civil aviation and the formation of organizations to control aviation systems. The second chapter…

  13. 32 CFR 766.5 - Conditions governing use of aviation facilities by civil aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Conditions governing use of aviation facilities... OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.5 Conditions governing use of aviation facilities by civil aircraft. (a) Risk. The use of Navy or...

  14. 32 CFR 766.5 - Conditions governing use of aviation facilities by civil aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Conditions governing use of aviation facilities... OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.5 Conditions governing use of aviation facilities by civil aircraft. (a) Risk. The use of Navy or...

  15. 32 CFR 766.5 - Conditions governing use of aviation facilities by civil aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Conditions governing use of aviation facilities... OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.5 Conditions governing use of aviation facilities by civil aircraft. (a) Risk. The use of Navy or...

  16. Considering Object Oriented Technology in Aviation Applications

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Holloway, C. Michael

    2003-01-01

    Few developers of commercial aviation software products are using object-oriented technology (OOT), despite its popularity in some other industries. Safety concerns about using OOT in critical applications, uncertainty about how to comply with regulatory requirements, and basic conservatism within the aviation community have been factors behind this caution. The Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) have sponsored research to investigate and workshops to discuss safety and certification concerns about OOT and to develop recommendations for safe use. Two Object Oriented Technology in Aviation (OOTiA) workshops have been held and numerous issues and comments about the effect of OOT features and languages have been collected. This paper gives a high level overview of the OOTiA project, and discusses selected specific results from the March 2003 workshop. In particular, results in the form of questions to consider before making the decision to use OOT are presented.

  17. Sensor performance considerations for aviation weather observations for the NOAA Consolidated Observations Requirements List (CORL CT-AWX)

    NASA Astrophysics Data System (ADS)

    Murray, John; Helms, David; Miner, Cecilia

    2008-08-01

    Airspace system demand is expected to increase as much as 300 percent by the year 2025 and the Next Generation Air Transportation System (NextGen) is being developed to accommodate the super-density operations that this will entail. Concomitantly, significant improvements in observations and forecasting are being undertaken to support NextGen which will require greatly improved and more uniformly applied data for aviation weather hazards and constraints which typically comprise storm-scale and microscale observables. Various phenomena are associated with these hazards and constraints such as convective weather, in-flight icing, turbulence, and volcanic ash as well as more mundane aviation parameters such as cloud tops and bases and fuel-freeze temperatures at various flight levels. Emerging problems for aviation in space weather and the environmental impacts of aviation are also occurring at these scales. Until recently, the threshold and objective observational requirements for these observables had not been comprehensively documented in a single, authoritative source. Scientists at NASA and NOAA have recently completed this task and have established baseline observational requirements for the Next Generation Air Transportation System (NextGen) and expanded and updated the NOAA Consolidated Observations Requirements List (CORL) for Aviation (CT-AWX) to better inform National Weather Service investments for current and future observing systems. This paper describes the process and results of this effort. These comprehensive aviation observation requirements will now be used to conduct gap analyses for the aviation component of the Integrated Earth Observing System and to inform the investment strategies of the FAA, NASA, and NOAA that are needed to develop the observational architecture to support NextGen and other users of storm and microscale observations.

  18. NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The study deals with 165 inadvertent operations on or into inappropriate portions of the aircraft areas at controlled airports. Pilot-initiated and controller-initiated incursions are described and discussed. It was found that a majority of the pilot-initiated occurrences involved operation without a clearance; controller-initiated occurrences usually involved failure to maintain assured separation. The factors associated with these occurrences are analyzed. It appears that a major problem in these occurrences is inadequate coordination among the various system participants. Reasons for this, and some possible solutions to various aspects of the problem, are discussed. A sample of reports from pilots and controllers is presented. These relate to undesired occurrences in air transport, general aviation, and air traffic control operations; to ATC coordination problems; and to a recurrent problem in ASRS reports, parachuting operations. A sample of alert bulletins and responses to them is presented.

  19. Mindful Application of Aviation Practices in Healthcare.

    PubMed

    Powell-Dunford, Nicole; Brennan, Peter A; Peerally, Mohammad Farhad; Kapur, Narinder; Hynes, Jonny M; Hodkinson, Peter D

    2017-12-01

    Evidence supports the efficacy of incorporating select recognized aviation practices and procedures into healthcare. Incident analysis, debrief, safety brief, and crew resource management (CRM) have all been assessed for implementation within the UK healthcare system, a world leader in aviation-based patient safety initiatives. Mindful application, in which aviation practices are specifically tailored to the unique healthcare setting, show promise in terms of acceptance and long-term sustainment. In order to establish British healthcare applications of aviation practices, a PubMed search of UK authored manuscripts published between 2005-2016 was undertaken using search terms 'aviation,' 'healthcare,' 'checklist,' and 'CRM.' A convenience sample of UK-authored aviation medical conference presentations and UK-authored patient safety manuscripts were also reviewed. A total of 11 of 94 papers with UK academic affiliations published between 2005-2016 and relevant to aviation modeled healthcare delivery were found. The debrief process, incident analysis, and CRM are the primary practices incorporated into UK healthcare, with success dependent on cultural acceptance and mindful application. CRM training has gained significant acceptance in UK healthcare environments. Aviation modeled incident analysis, debrief, safety brief, and CRM training are increasingly undertaken within the UK healthcare system. Nuanced application, in which the unique aspects of the healthcare setting are addressed as part of a comprehensive safety approach, shows promise for long-term success. The patient safety brief and aviation modeled incident analysis are in earlier phases of implementation, and warrant further analysis.Powell-Dunford N, Brennan PA, Peerally MF, Kapur N, Hynes JM, Hodkinson PD. Mindful application of aviation practices in healthcare. Aerosp Med Hum Perform. 2017; 88(12):1107-1116.

  20. NASA Aviation Safety Program Systems Analysis/Program Assessment Metrics Review

    NASA Technical Reports Server (NTRS)

    Louis, Garrick E.; Anderson, Katherine; Ahmad, Tisan; Bouabid, Ali; Siriwardana, Maya; Guilbaud, Patrick

    2003-01-01

    The goal of this project is to evaluate the metrics and processes used by NASA's Aviation Safety Program in assessing technologies that contribute to NASA's aviation safety goals. There were three objectives for reaching this goal. First, NASA's main objectives for aviation safety were documented and their consistency was checked against the main objectives of the Aviation Safety Program. Next, the metrics used for technology investment by the Program Assessment function of AvSP were evaluated. Finally, other metrics that could be used by the Program Assessment Team (PAT) were identified and evaluated. This investigation revealed that the objectives are in fact consistent across organizational levels at NASA and with the FAA. Some of the major issues discussed in this study which should be further investigated, are the removal of the Cost and Return-on-Investment metrics, the lack of the metrics to measure the balance of investment and technology, the interdependencies between some of the metric risk driver categories, and the conflict between 'fatal accident rate' and 'accident rate' in the language of the Aviation Safety goal as stated in different sources.

  1. National Airspace System : issues in allocating costs for air traffic services to the DOD and other users

    DOT National Transportation Integrated Search

    1997-04-25

    The Federal Aviation Administration (FAA) has the primary responsibility under : federal law for the development and operation of the system for both military : and civil aircraft in the nation's airspace. The Department of Defense (DOD), : in coordi...

  2. The Federal Aviation Administration Plan for Research, Engineering and Development. Volume 1. Program Plan

    DTIC Science & Technology

    1989-01-01

    Mid * Advanced Propulsion System Far * Rotor Burst Protection Reports Mid 11.4 Flight Safety / * Aircraft Icing Handbook Near Atmospheric Hazards...with operating the national aviation system include air traffic controllers, flight service specialists, maintenance technicians, safety inspectors...address the design and certification of flight deck systems and revised crew training requirements. In FY 1988, studies of safety data were initiated to

  3. 32 CFR 766.6 - Approving authority for landings at Navy/Marine Corps aviation facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Corps aviation facilities. 766.6 Section 766.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.6 Approving authority for landings at Navy/Marine Corps aviation facilities. (a) Except as...

  4. 32 CFR 766.6 - Approving authority for landings at Navy/Marine Corps aviation facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Corps aviation facilities. 766.6 Section 766.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.6 Approving authority for landings at Navy/Marine Corps aviation facilities. (a) Except as...

  5. 32 CFR 766.6 - Approving authority for landings at Navy/Marine Corps aviation facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Corps aviation facilities. 766.6 Section 766.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.6 Approving authority for landings at Navy/Marine Corps aviation facilities. (a) Except as...

  6. 32 CFR 766.6 - Approving authority for landings at Navy/Marine Corps aviation facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Corps aviation facilities. 766.6 Section 766.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.6 Approving authority for landings at Navy/Marine Corps aviation facilities. (a) Except as...

  7. 32 CFR 766.6 - Approving authority for landings at Navy/Marine Corps aviation facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Corps aviation facilities. 766.6 Section 766.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.6 Approving authority for landings at Navy/Marine Corps aviation facilities. (a) Except as...

  8. Agricultural aviation application in the USA

    USDA-ARS?s Scientific Manuscript database

    The United States has the most advanced equipment and applications in agricultural aviation. It also has a complete service system in agricultural aviation. This article introduces the current status of aerial application including service, equipment, and aerial application techniques. It has a c...

  9. Collaborative Aviation Weather Statement - An Impact-based Decision Support Tool

    NASA Astrophysics Data System (ADS)

    Blondin, Debra

    2016-04-01

    Historically, convection causes the highest number of air traffic constraints on the United States National Air Space (NAS). Increased NAS predictability allows traffic flow managers to more effectively initiate, amend or terminate planned or active traffic management initiatives, resulting in more efficient use of available airspace. A Collaborative Aviation Weather Statement (CAWS) is an impact-based decision support tool used for the timely delivery of high-confidence, high-relevance aviation convective weather forecasts to air traffic managers. The CAWS is a graphical and textual forecast produced by a collaborative team of meteorologists from the Aviation Weather Center (AWC), Center Weather Service Units, and airlines to bring attention to high impact areas of thunderstorms. The CAWS addresses thunderstorm initiation or movement into the airports having the highest volume of traffic or into traffic sensitive jet routes. These statements are assessed by planners at the Federal Aviation Administration's (FAA) Air Route Traffic Control Centers and are used for planning traffic management initiatives to balance air traffic flow across the United States. The FAA and the airline industry use the CAWS to plan, manage, and execute operations in the NAS, thereby improving the system efficiency and safety and also saving dollars for industry and the traveling public.

  10. Cockpit Technology for Prevention of General Aviation Runway Incursions

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Jones, Denise R.

    2007-01-01

    General aviation accounted for 74 percent of runway incursions but only 57 percent of the operations during the four-year period from fiscal year (FY) 2001 through FY2004. Elements of the NASA Runway Incursion Prevention System were adapted and tested for general aviation aircraft. Sixteen General Aviation pilots, of varying levels of certification and amount of experience, participated in a piloted simulation study to evaluate the system for prevention of general aviation runway incursions compared to existing moving map displays. Pilots flew numerous complex, high workload approaches under varying weather and visibility conditions. A rare-event runway incursion scenario was presented, unbeknownst to the pilots, which represented a typical runway incursion situation. The results validated the efficacy and safety need for a runway incursion prevention system for general aviation aircraft.

  11. An Examination of Safety Management Systems and Aviation Technologies in the Helicopter Emergency Medical Services Industry

    NASA Astrophysics Data System (ADS)

    Buckner, Steven A.

    The Helicopter Emergency Medical Service (HEMS) industry has a significant role in the transportation of injured patients, but has experienced more accidents than all other segments of the aviation industry combined. With the objective of addressing this discrepancy, this study assesses the effect of safety management systems implementation and aviation technologies utilization on the reduction of HEMS accident rates. Participating were 147 pilots from Federal Aviation Regulations Part 135 HEMS operators, who completed a survey questionnaire based on the Safety Culture and Safety Management System Survey (SCSMSS). The study assessed the predictor value of SMS implementation and aviation technologies to the frequency of HEMS accident rates with correlation and multiple linear regression. The correlation analysis identified three significant positive relationships. HEMS years of experience had a high significant positive relationship with accident rate (r=.90; p<.05); SMS had a moderate significant positive relationship to Night Vision Goggles (NVG) (r=.38; p<.05); and SMS had a slight significant positive relationship with Terrain Avoidance Warning System (TAWS) (r=.234; p<.05). Multiple regression analysis suggested that when combined with NVG, TAWS, and SMS, HEMS years of experience explained 81.4% of the variance in accident rate scores (p<.05), and HEMS years of experience was found to be a significant predictor of accident rates (p<.05). Additional quantitative regression analysis was recommended to replicate the results of this study and to consider the influence of these variables for continued reduction of HEMS accidents, and to induce execution of SMS and aviation technologies from a systems engineering application. Recommendations for practice included the adoption of existing regulatory guidance for a SMS program. A qualitative analysis was also recommended for future study SMS implementation and HEMS accident rate from the pilot's perspective. A

  12. Reducing health care hazards: lessons from the commercial aviation safety team.

    PubMed

    Pronovost, Peter J; Goeschel, Christine A; Olsen, Kyle L; Pham, Julius C; Miller, Marlene R; Berenholtz, Sean M; Sexton, J Bryan; Marsteller, Jill A; Morlock, Laura L; Wu, Albert W; Loeb, Jerod M; Clancy, Carolyn M

    2009-01-01

    The movement to improve quality of care and patient safety has grown, but examples of measurable and sustained progress are rare. The slow progress made in health care contrasts with the success of aviation safety. After a tragic 1995 plane crash, the aviation industry and government created the Commercial Aviation Safety Team to reduce fatal accidents. This public-private partnership of safety officials and technical experts is responsible for the decreased average rate of fatal aviation accidents. We propose a similar partnership in the health care community to coordinate national efforts and move patient safety and quality forward.

  13. Aviation Safety Risk Modeling: Lessons Learned From Multiple Knowledge Elicitation Sessions

    NASA Technical Reports Server (NTRS)

    Luxhoj, J. T.; Ancel, E.; Green, L. L.; Shih, A. T.; Jones, S. M.; Reveley, M. S.

    2014-01-01

    Aviation safety risk modeling has elements of both art and science. In a complex domain, such as the National Airspace System (NAS), it is essential that knowledge elicitation (KE) sessions with domain experts be performed to facilitate the making of plausible inferences about the possible impacts of future technologies and procedures. This study discusses lessons learned throughout the multiple KE sessions held with domain experts to construct probabilistic safety risk models for a Loss of Control Accident Framework (LOCAF), FLightdeck Automation Problems (FLAP), and Runway Incursion (RI) mishap scenarios. The intent of these safety risk models is to support a portfolio analysis of NASA's Aviation Safety Program (AvSP). These models use the flexible, probabilistic approach of Bayesian Belief Networks (BBNs) and influence diagrams to model the complex interactions of aviation system risk factors. Each KE session had a different set of experts with diverse expertise, such as pilot, air traffic controller, certification, and/or human factors knowledge that was elicited to construct a composite, systems-level risk model. There were numerous "lessons learned" from these KE sessions that deal with behavioral aggregation, conditional probability modeling, object-oriented construction, interpretation of the safety risk results, and model verification/validation that are presented in this paper.

  14. Discovering the Regulatory Considerations of the Federal Aviation Administration: Interviewing the Aviation Rulemaking Advisory Committee

    NASA Technical Reports Server (NTRS)

    Lu, Chien-tsung

    2005-01-01

    Maintenance Resource Management (MRM) training for aviation mechanics has become mandatory in many industrialized countries since 1998. Yet, to date, MRM training remains optional in the U.S. Interestingly, a similar safety discipline, namely Crew/Cockpit Resource Management (CRM), is mandatory for pilots, flight engineers, flight attendants, and dispatchers and is regulated in the Federal Aviation Administration s (FAA) Federal Aviation Regulations (FARs). If MRM training is important to enhance aviation technicians working behavior, the rationale to not regulate it opens a window for study. This research aims to inductively investigate the FAA s regulatory rationale concerning MRM training based on direct inputs from the FAA s Aviation Rulemaking Advisory Committee (ARAC) members. Delphi methodology associated with purposive sampling technique was adopted. The result revealed that the FAA cannot regulate MRM because the aviation industry is strongly opposed to it due to the lack of training budgets, the need of a quantifiable cost-effect analysis, concern over the FAA s inspection workforce, an ongoing voluntary alternative called the Air Transportation Surveillance System (ATOS), the government s lower priority on maintenance after 9/11, and the airlines tight embracement of operational flexibility without regulation.

  15. Development of a 21st Century Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Holmes, Bruce J.; Hansen, Frederick

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring the next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  16. 47 CFR 22.873 - Construction requirements for commercial aviation air-ground systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Construction requirements for commercial aviation air-ground systems. 22.873 Section 22.873 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial...

  17. A review and discussion of flight management system incidents reported to the Aviation Safety Reporting System

    DOT National Transportation Integrated Search

    1992-02-01

    This report covers the activities related to the description, classification and : analysis of the types and kinds of flight crew errors, incidents and actions, as : reported to the Aviation Safety Reporting System (ASRS) database, that can occur as ...

  18. Managing human error in aviation.

    PubMed

    Helmreich, R L

    1997-05-01

    Crew resource management (CRM) programs were developed to address team and leadership aspects of piloting modern airplanes. The goal is to reduce errors through team work. Human factors research and social, cognitive, and organizational psychology are used to develop programs tailored for individual airlines. Flight crews study accident case histories, group dynamics, and human error. Simulators provide pilots with the opportunity to solve complex flight problems. CRM in the simulator is called line-oriented flight training (LOFT). In automated cockpits CRM promotes the idea of automation as a crew member. Cultural aspects of aviation include professional, business, and national culture. The aviation CRM model has been adapted for training surgeons and operating room staff in human factors.

  19. Unmanned Aviation Systems Models of the Radio Communications Links: Study Results - Appendices Annex 2. Volume 1 and Volume 2

    NASA Technical Reports Server (NTRS)

    Birr, Richard B.; Spencer, Roy; Murray, Jennifer; Lash, Andrew

    2013-01-01

    This report describes the analysis of communications between the Control Station and an Unmanned Aircraft (UA) flying in the National Airspace System (NAS). This work is based on the RTCA SC-203 Operational Services and Environment Description (OSED). The OSED document seeks to characterize the highly different attributes of all UAs navigating the airspace and define their relationship to airspace users, air traffic services, and operating environments of the NAS. One goal of this report is to lead to the development of Minimum Aviation System Performance Standards for Control and Communications. This report takes the nine scenarios found in the OSED and analyzes the communication links.

  20. Tricyclic Antidepressants Found in Pilots Fatally Injured in Civil Aviation Accidents.

    PubMed

    Dulkadir, Zeki; Chaturvedi, Arvind K; Craft, Kristi J; Hickerson, Jeffery S; Cliburn, Kacey D

    2017-01-01

    Prevalence of tricyclic antidepressants (TCAs) has not been explored in pilots. The National Transportation Safety Board (NTSB) aviation accident and the Federal Aviation Administration's Civil Aerospace Medical Institute (CAMI) toxicology and medical certification databases were searched for pilots fatally injured in aviation accidents. During 1990-2012, CAMI received bio-samples of pilots from 7037 aviation accidents. Of these, 2644 cases were positive for drugs. TCAs were present in 31. TCA blood concentrations ranged from therapeutic to toxic levels. The NTSB determined that the use of drugs and ethanol as the probable cause or contributing factor in 35% (11 of 31) of the accidents. None of the 31 pilots reported the use of TCAs during their aviation medical examination. The prevalence of TCAs in aviators was less than 0.5% (31 of 7037 cases). There is a need for aviators to fully disclose the use of medications at the time of their medical examination. © 2016 American Academy of Forensic Sciences.

  1. Proceedings of the 2nd Annual Workshop on Meteorological and Environmental Inputs to Aviation Systems

    NASA Technical Reports Server (NTRS)

    Frost, W. (Editor); Camp, D. W. (Editor); Durham, D. E. (Editor)

    1978-01-01

    The proceedings of a workshop held at the University of Tennessee Space Institute, Tullahoma, Tennessee, March 28-30, 1978, are reported. The workshop was jointly sponsored by NASA, NOAA, FAA, and brought together many disciplines of the aviation communities in round table discussions. The major objectives of the workshop are to satisfy such needs of the sponsoring agencies as the expansion of our understanding and knowledge of the interactions of the atmosphere with aviation systems, as the better definition and implementation of services to operators, and as the collection and interpretation of data for establishing operational criteria, relating the total meteorological inputs from the atmospheric sciences to the needs of aviation communities.

  2. Aviation Safety Concerns for the Future

    NASA Technical Reports Server (NTRS)

    Smith, Brian E.; Roelen, Alfred L. C.; den Hertog, Rudi

    2016-01-01

    The Future Aviation Safety Team (FAST) is a multidisciplinary international group of aviation professionals that was established to identify possible future aviation safety hazards. The principle was adopted that future hazards are undesirable consequences of changes, and a primary activity of FAST became identification and prioritization of possible future changes affecting aviation. Since 2004, FAST has been maintaining a catalogue of "Areas of Change" (AoC) that could potentially influence aviation safety. The horizon for such changes is between 5 to 20 years. In this context, changes must be understood as broadly as possible. An AoC is a description of the change, not an identification of the hazards that result from the change. An ex-post analysis of the AoCs identified in 2004 demonstrates that changes catalogued many years previous were directly implicated in the majority of fatal aviation accidents over the past ten years. This paper presents an overview of the current content of the AoC catalogue and a subsequent discussion of aviation safety concerns related to these possible changes. Interactions among these future changes may weaken critical functions that must be maintained to ensure safe operations. Safety assessments that do not appreciate or reflect the consequences of significant interaction complexity will not be fully informative and can lead to inappropriate trade-offs and increases in other risks. The FAST strongly encourages a system-wide approach to safety risk assessment across the global aviation system, not just within the domain for which future technologies or operational concepts are being considered. The FAST advocates the use of the "Areas of Change" concept, considering that several possible future phenomena may interact with a technology or operational concept under study producing unanticipated hazards.

  3. Bipolar Disorder in Aviation Medicine.

    PubMed

    Vuorio, Alpo; Laukkala, Tanja; Navathe, Pooshan; Budowle, Bruce; Bor, Robert; Sajantila, Antti

    2017-01-01

    One of the most difficult challenges in aviation medicine is to diagnose, as early as possible, pilots with psychiatric disorders that may impair pilot performance and increase the risk of incidents and accidents. This diagnosis applies particularly to bipolar disorder (BD), where return to flying duty is not an option in the majority of cases. BD is a long-term mental disorder presenting remittent depressive, hypomanic, manic, or mixed episodes between low symptomatic or asymptomatic intermediate periods. Onset in most cases is in late teen or early adult years. Suicidal intentions and suicide risk are significantly elevated in individuals with BD compared to the general population. A systematic literature search was performed of BD and aviation accidents and the National Transportation Safety Board database of fatal general aviation accidents was searched. One case report and two database reports of interest from 1994 to 2014 were identified. The findings set a minimum frequency of BD in general aviation fatalities to be approximately 2 out of 8648 (0.023%) in the United States. The reported incidence may underestimate the real number of BD cases for several reasons, including the fact that the medical history of pilots is not always available or is sometimes not the primary interest of a safety investigation. This study suggests that the demarcation of psychiatric disorder related to fitness to fly is an important step in safety.Vuorio A, Laukkala T, Navathe P, Budowle B, Bor R, Sajantila A. Bipolar disorder in aviation medicine. Aerosp Med Hum Perform. 2017; 88(1):42-47.

  4. Aviation system capacity improvements through technology

    NASA Technical Reports Server (NTRS)

    Harvey, W. Don

    1995-01-01

    A study was conducted with the primary objective of determining the impact of technology on capacity improvements in the U.S. air transportation system and, consequently, to assess the areas where NASA's expertise and technical contributions would be the most beneficial. The outlook of the study is considered both near- and long-term (5 to 25 years). The approach was that of actively working with the Massachusetts Institute of Technology (MIT) Flight Transportation Laboratory and included interactions with 'users' outside of both agencies as well as with organizations within. This report includes an overall survey of what are believed to be the causes of the capacity problems, ongoing work with the Federal Aviation Administration (FAA) to alleviate the problems, and identifies improvements in technology that would increase capacity and reduce delays.

  5. General Aviation Propulsion

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Programs exploring and demonstrating new technologies in general aviation propulsion are considered. These programs are the quiet, clean, general aviation turbofan (QCGAT) program; the general aviation turbine engine (GATE) study program; the general aviation propeller technology program; and the advanced rotary, diesel, and reciprocating engine programs.

  6. A Demonstration Advanced Avionics System for general aviation

    NASA Technical Reports Server (NTRS)

    Denery, D. G.; Callas, G. P.; Jackson, C. T.; Berkstresser, B. K.; Hardy, G. H.

    1979-01-01

    A program initiated within NASA has emphasized the use of a data bus, microprocessors, electronic displays and data entry devices for general aviation. A Demonstration Advanced Avionics System (DAAS) capable of evaluating critical and promising elements of an integrating system that will perform the functions of (1) automated guidance and navigation; (2) flight planning; (3) weight and balance performance computations; (4) monitoring and warning; and (5) storage of normal and emergency check lists and operational limitations is described. Consideration is given to two major parts of the DAAS instrument panel: the integrated data control center and an electronic horizontal situation indicator, and to the system architecture. The system is to be installed in the Ames Research Center's Cessna 402B in the latter part of 1980; engineering flight testing will begin in the first part of 1981.

  7. Government, Including: Air Traffic Controllers, Aviation Safety Inspectors, Airspace Systems Inspection Pilots, Accident Investigators, Electronics Technicians, Engineers, Meteorologists. Aviation Careers Series. Revised.

    ERIC Educational Resources Information Center

    Zaharevitz, Walter

    This booklet, one in a series on aviation careers, outlines the variety of careers in aviation available in federal, state, and local governmental agencies. The first part of the booklet provides general information about civil aviation careers with the federal government, including pay scales, job classifications, and working conditions.…

  8. The Impact of Commercial Aviation on Naval Aviation

    DTIC Science & Technology

    2016-06-01

    the service after 10 years stand to earn significantly more money than those who remain until retirement. Aviation Career Continuation Pay was...to spend more money on compensation, they can close the compensation gap and hopefully prevent future retention problems. 14. SUBJECT TERMS...aviators who decide to leave the service after 10 years stand to earn significantly more money than those who remain until retirement. Aviation

  9. 32 CFR 766.8 - Procedure for review, approval, execution and distribution of aviation facility licenses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... distribution of aviation facility licenses. 766.8 Section 766.8 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.8 Procedure for review, approval, execution and distribution of aviation facility...

  10. 32 CFR 766.8 - Procedure for review, approval, execution and distribution of aviation facility licenses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... distribution of aviation facility licenses. 766.8 Section 766.8 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.8 Procedure for review, approval, execution and distribution of aviation facility...

  11. 32 CFR 766.8 - Procedure for review, approval, execution and distribution of aviation facility licenses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... distribution of aviation facility licenses. 766.8 Section 766.8 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.8 Procedure for review, approval, execution and distribution of aviation facility...

  12. 32 CFR 766.8 - Procedure for review, approval, execution and distribution of aviation facility licenses.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... distribution of aviation facility licenses. 766.8 Section 766.8 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.8 Procedure for review, approval, execution and distribution of aviation facility...

  13. Aircraft Landing Gear, Ice and Rain Control Systems (Course Outline), Aviation Mechanics 3 (Air Frame):9067.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with operation, inspection, troubleshooting, and repair of aircraft landing gear, ice and rain control systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe…

  14. Future Aspiring Aviators, Primary: An Aviation Curriculum Guide K-3

    DOT National Transportation Integrated Search

    1995-01-01

    Prepared ca. 1995. The Federal Aviation Administration is pleased to present the Aviation Education Teacher's Guide Series. The series includes four publications specifically designed as resources to those interested in aviation education. The guides...

  15. Real Time Volcanic Cloud Products and Predictions for Aviation Alerts

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay A.; Habib, Shahid; da Silva, Arlindo; Hughes, Eric; Yang, Kai; Brentzel, Kelvin; Seftor, Colin; Li, Jason Y.; Schneider, David; Guffanti, Marianne; hide

    2014-01-01

    Volcanic eruptions can inject significant amounts of sulfur dioxide (SO2) and volcanic ash into the atmosphere, posing a substantial risk to aviation safety. Ingesting near-real time and Direct Readout satellite volcanic cloud data is vital for improving reliability of volcanic ash forecasts and mitigating the effects of volcanic eruptions on aviation and the economy. NASA volcanic products from the Ozone Monitoring Insrument (OMI) aboard the Aura satellite have been incorporated into Decision Support Systems of many operational agencies. With the Aura mission approaching its 10th anniversary, there is an urgent need to replace OMI data with those from the next generation operational NASA/NOAA Suomi National Polar Partnership (SNPP) satellite. The data provided from these instruments are being incorporated into forecasting models to provide quantitative ash forecasts for air traffic management. This study demonstrates the feasibility of the volcanic near-real time and Direct Readout data products from the new Ozone Monitoring and Profiling Suite (OMPS) ultraviolet sensor onboard SNPP for monitoring and forecasting volcanic clouds. The transition of NASA data production to our operational partners is outlined. Satellite observations are used to constrain volcanic cloud simulations and improve estimates of eruption parameters, resulting in more accurate forecasts. This is demonstrated for the 2012 eruption of Copahue. Volcanic eruptions are modeled using the Goddard Earth Observing System, Version 5 (GEOS-5) and the Goddard Chemistry Aerosol and Radiation Transport (GOCART) model. A hindcast of the disruptive eruption from Iceland's Eyjafjallajokull is used to estimate aviation re-routing costs using Metron Aviation's ATM Tools.

  16. AWE: Aviation Weather Data Visualization

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2001-01-01

    The two official sources for aviation weather reports both require the pilot to mentally visualize the provided information. In contrast, our system, Aviation Weather Environment (AWE) presents aviation specific weather available to pilots in an easy to visualize form. We start with a computer-generated textual briefing for a specific area. We map this briefing onto a grid specific to the pilot's route that includes only information relevant to his flight route that includes only information relevant to his flight as defined by route, altitude, true airspeed, and proposed departure time. By modifying various parameters, the pilot can use AWE as a planning tool as well as a weather briefing tool.

  17. Integrating Safety in the Aviation System: Interdepartmental Training for Pilots and Maintenance Technicians

    NASA Technical Reports Server (NTRS)

    Mattson, Marifran; Petrin, Donald A.; Young, John P.

    2001-01-01

    The study of human factors has had a decisive impact on the aviation industry. However, the entire aviation system often is not considered in researching, training, and evaluating human factors issues especially with regard to safety. In both conceptual and practical terms, we argue for the proactive management of human error from both an individual and organizational systems perspective. The results of a multidisciplinary research project incorporating survey data from professional pilots and maintenance technicians and an exploratory study integrating students from relevant disciplines are reported. Survey findings suggest that latent safety errors may occur during the maintenance discrepancy reporting process because pilots and maintenance technicians do not effectively interact with one another. The importance of interdepartmental or cross-disciplinary training for decreasing these errors and increasing safety is discussed as a primary implication.

  18. Next Generation Air Transportation System : progress and challenges in planning and implementing the transformation of the National Airspace System : testimony before the Subcommittee on Aviation, Committee on Transportation and Infrastructure, U.S. Senat

    DOT National Transportation Integrated Search

    2010-04-21

    To prepare for future air traffic growth, the Federal Aviation Administration (FAA), including its Joint Planning and Development Office (JPDO) and Air Traffic Organization, is planning and implementing the Next Generation Air Transportation System (...

  19. Expert Performance and Time Pressure: Implications for Automation Failures in Aviation

    DTIC Science & Technology

    2016-09-30

    Sciences , 7, 454-459. Fitts, P. M. (Ed.), (1951). Human engineering for an effective air navigation and control system. Washington, DC: National...expert performance. Implications for the aviation domain are discussed. 15. SUBJECT TERMS Decision Making , Time Pressure, Error, Situational Awareness...automation interaction has been a challenge for human factors for quite some time and its relevance continues to grow (e.g., Bainbridge, 1983; de Winter

  20. Software Development With Application Generators: The Naval Aviation Logistics Command Management Information System Case

    DTIC Science & Technology

    1992-09-01

    Aviation Logistics Command Management Information System (NALCOMIS) prototyping development effort, the critical success factors required to implement prototyping with application generators in other areas of DoD.

  1. Aviation Medicine: global historical perspectives and the development of Aviation Medicine alongside the growth of Singapore's aviation landscape.

    PubMed

    Gan, W H; Low, R; Singh, J

    2011-05-01

    Aviation Medicine traces its roots to high altitude physiology more than 400 years ago. Since then, great strides have been made in this medical specialty, initially catalysed by the need to reduce pilot medical attrition during the World Wars, and more recently, fuelled by the explosive growth in globalised commercial air travel. This paper traces the historical milestones in Aviation Medicine, and maps its development in Singapore since the 1960s. Advancements in military aviation platforms and technology as well as the establishment of Singapore as an international aviation hub have propelled Aviation Medicine in Singapore to the forefront of many domains. These span Aviation Physiology training, selection medical standards, performance maximisation, as well as crew and passenger protection against communicable diseases arising from air travel. The year 2011 marks the centennial milestone of the first manned flight in Singapore, paving the way for further growth of Aviation Medicine as a mature specialty in Singapore.

  2. Light induced fluorescence lidar developed and employed at the National Aviation Academy of Azerbaijan

    NASA Astrophysics Data System (ADS)

    Pashayev, Arif M.; Allahverdiyev, Kerim R.; Tagiyev, Bahadir G.; Sadikhov, Ilham A.

    2016-01-01

    A new laser induced fluorescence (LIF) KA-14 LIDAR (Light Identification Detection and Ranging) system for detecting of oil spills on the sea surface was developed and employed at the National Aviation Academy of Azerbaijan. Laser's parameters used in LIDAR are as follows: •laser CFR 200- type QUANTEL, λ = 355 nm, beam ∅ = 5.35 mm, f = 20 Hz, pulse duration and power τ = 7 ns and 60 mJ, respectively. The first results of measurements in the laboratory and the results of measurements at natural environment from distances up to 200 m revealed perspectives for using this LIDAR for detection of oil contaminations on sea as well as on earth surfaces (these measurements have been performed at Pirallahi Oil-Gas Production Company, Absheron peninsula, Baku, Azerbaijan). In the present work the results of emission spectra of crude oils taken from different regions of Absheron peninsula as well as the emission spectra of the oil spills on the surface of Caspian sea will be reported and discussed. These measurements open perspectives for using developed LIDAR for determination of place of oil-gas production company from which leakage takes place.

  3. An Investigation of General Aviation Problems and Issues: An Integration of Pilot-Cockpit Interface Research

    NASA Technical Reports Server (NTRS)

    Bortolussi, Michael R.

    1997-01-01

    The General Aviation (GA) industry has suffered a ten-year decline in the number of airplanes sold. This decline is due mainly to the increase cost associated with purchasing, insuring, maintaining, operating, and pilot training a GA airplane. In response to this decline the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) developed a program (Advanced General Aviation Transport Experiments - AGATE) to address these issues. The purpose of AGATE focused within this report is to reduce the costs to acquire and maintain instrument-flight-proficiency. The AGATE program defined four elements necessary to accomplish these goals: (1) new and intuitive cockpit displays and controls, (2) situation technologies for weather, traffic, and navigation, (3) expert systems for system monitoring, and (4) reduced cost training methods. One recognized need for the GA pilot and airplane is to provide cockpit displays and systems already available to transport category airplane. These displays such as Electronic Flight and Instrument System (EFIS), graphic weather and traffic displays, and flight management systems. The goal of this grant was to develop the AGATE GA Display Evaluation Workstation as a tool to test these existing and emerging technologies in the GA environment.

  4. Causal Factors and Adverse Conditions of Aviation Accidents and Incidents Related to Integrated Resilient Aircraft Control

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Sandifer, Carl E.; Jones, Sharon Monica

    2010-01-01

    The causal factors of accidents from the National Transportation Safety Board (NTSB) database and incidents from the Federal Aviation Administration (FAA) database associated with loss of control (LOC) were examined for four types of operations (i.e., Federal Aviation Regulation Part 121, Part 135 Scheduled, Part 135 Nonscheduled, and Part 91) for the years 1988 to 2004. In-flight LOC is a serious aviation problem. Well over half of the LOC accidents included at least one fatality (80 percent in Part 121), and roughly half of all aviation fatalities in the studied time period occurred in conjunction with LOC. An adverse events table was updated to provide focus to the technology validation strategy of the Integrated Resilient Aircraft Control (IRAC) Project. The table contains three types of adverse conditions: failure, damage, and upset. Thirteen different adverse condition subtypes were gleaned from the Aviation Safety Reporting System (ASRS), the FAA Accident and Incident database, and the NTSB database. The severity and frequency of the damage conditions, initial test conditions, and milestones references are also provided.

  5. Aviation safety data accessibility study index: a report on the issues related to public interest in aviation safety data

    DOT National Transportation Integrated Search

    1997-01-20

    This paper reviews aviation safety data and measurement issues relevant to the determination of the best means of providing safety information to the public while ensuring the integrity of the aviation safety system. In addition , the paper examines ...

  6. 40 Years of Safer Aviation Through Reporting

    NASA Image and Video Library

    2016-09-28

    NASA’s Aviation Safety Reporting System (ASRS) is one of the tools used to make aviation in the United States as safe as it is. Celebrating its 40th anniversary this year, NASA’s confidential ASRS is widely used by pilots and other airline employees to identify potential hazards. Over the past 40 years, the ASRS has issued more than 6,200 safety alerts to the FAA and other decision makers in the aviation community.

  7. NASA Aviation Safety Reporting System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Problems in briefing of relief by air traffic controllers are discussed, including problems that arise when duty positions are changed by controllers. Altimeter reading and setting errors as factors in aviation safety are discussed, including problems associated with altitude-including instruments. A sample of reports from pilots and controllers is included, covering the topics of ATIS broadcasts an clearance readback problems. A selection of Alert Bulletins, with their responses, is included.

  8. Determining Training Device Requirements in Army Aviation Systems

    NASA Technical Reports Server (NTRS)

    Poumade, M. L.

    1984-01-01

    A decision making methodology which applies the systems approach to the training problem is discussed. Training is viewed as a total system instead of a collection of individual devices and unrelated techniques. The core of the methodology is the use of optimization techniques such as the transportation algorithm and multiobjective goal programming with training task and training device specific data. The role of computers, especially automated data bases and computer simulation models, in the development of training programs is also discussed. The approach can provide significant training enhancement and cost savings over the more traditional, intuitive form of training development and device requirements process. While given from an aviation perspective, the methodology is equally applicable to other training development efforts.

  9. Exploratory spatial analysis of pilot fatality rates in general aviation crashes using geographic information systems.

    PubMed

    Grabowski, Jurek G; Curriero, Frank C; Baker, Susan P; Li, Guohua

    2002-03-01

    Geographic information systems and exploratory spatial analysis were used to describe the geographic characteristics of pilot fatality rates in 1983-1998 general aviation crashes within the continental United States. The authors plotted crash sites on a digital map; rates were computed at regular grid intersections and then interpolated by using geographic information systems. A test for significance was performed by using Monte Carlo simulations. Further analysis compared low-, medium-, and high-rate areas in relation to pilot characteristics, aircraft type, and crash circumstance. Of the 14,051 general aviation crashes studied, 31% were fatal. Seventy-four geographic areas were categorized as having low fatality rates and 53 as having high fatality rates. High-fatality-rate areas tended to be mountainous, such as the Rocky Mountains and the Appalachian region, whereas low-rate areas were relatively flat, such as the Great Plains. Further analysis comparing low-, medium-, and high-fatality-rate areas revealed that crashes in high-fatality-rate areas were more likely than crashes in other areas to have occurred under instrument meteorologic conditions and to involve aircraft fire. This study demonstrates that geographic information systems are a valuable tool for injury prevention and aviation safety research.

  10. Global positioning system for general aviation: Joint FAA-NASA Seminar. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Programs to examine and develop means to utilize the global positioning system (GPS) for civil aviation functions are described. User requirements in this regard are discussed, the development of technologies in the areas of antennas, receivers, and signal processors for the GPS are examined, and modifications to the GPS to fit operational and design criteria are evaluated.

  11. Aviation technology applicable to developing regions

    NASA Technical Reports Server (NTRS)

    Zuk, John; Alton, Larry R.

    1988-01-01

    This paper is an analysis of aviation technologies useful for formulation of development plans to the year 2000 for emerging nations. The Caribbean Basin was used as a specific application. This development promises to be so explosive over the next 15 years as to be virtually unpredictable.

  12. 14 CFR 91.25 - Aviation Safety Reporting Program: Prohibition against use of reports for enforcement purposes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aviation Safety Reporting Program... GENERAL OPERATING AND FLIGHT RULES General § 91.25 Aviation Safety Reporting Program: Prohibition against... to the National Aeronautics and Space Administration under the Aviation Safety Reporting Program (or...

  13. Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.

  14. Human error analysis of commercial aviation accidents: application of the Human Factors Analysis and Classification system (HFACS).

    PubMed

    Wiegmann, D A; Shappell, S A

    2001-11-01

    The Human Factors Analysis and Classification System (HFACS) is a general human error framework originally developed and tested within the U.S. military as a tool for investigating and analyzing the human causes of aviation accidents. Based on Reason's (1990) model of latent and active failures, HFACS addresses human error at all levels of the system, including the condition of aircrew and organizational factors. The purpose of the present study was to assess the utility of the HFACS framework as an error analysis and classification tool outside the military. The HFACS framework was used to analyze human error data associated with aircrew-related commercial aviation accidents that occurred between January 1990 and December 1996 using database records maintained by the NTSB and the FAA. Investigators were able to reliably accommodate all the human causal factors associated with the commercial aviation accidents examined in this study using the HFACS system. In addition, the classification of data using HFACS highlighted several critical safety issues in need of intervention research. These results demonstrate that the HFACS framework can be a viable tool for use within the civil aviation arena. However, additional research is needed to examine its applicability to areas outside the flight deck, such as aircraft maintenance and air traffic control domains.

  15. The Small Aircraft Transportation System for America: A Case in Public Infrastructure Change

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public-use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  16. Pilot-controller communication errors : an analysis of Aviation Safety Reporting System (ASRS) reports

    DOT National Transportation Integrated Search

    1998-08-01

    The purpose of this study was to identify the factors that contribute to pilot-controller communication errors. Resports submitted to the Aviation Safety Reporting System (ASRS) offer detailed accounts of specific types of errors and a great deal of ...

  17. Celebrating a history of excellence : Federal Aviation Administration/Civil Aviation Administration of China executive level cooperation and the agreement process.

    DOT National Transportation Integrated Search

    2010-07-01

    The Federal Aviation Administrations (FAA) predecessor organization, the Department of : Commerce Aeronautics Branch took an early interest in China, as it did with other nations. As : early as November 1931, the Aeronautics Branch published pr...

  18. Securing General Aviation

    DTIC Science & Technology

    2009-03-03

    ajor vulnerabilities still exist in ... general aviation security ,”3 the commission did not further elaborate on the nature of those vulnerabilities...commercial operations may make them an attractive alternative to terrorists seeking to identify and exploit vulnerabilities in aviation security . In this...3, 2003, p. A7. 2 See Report of the Aviation Security Advisory Committee Working Group on General Aviation Airport Security (October 1, 2003); and

  19. General aviation pilot and aircraft activity survey

    DOT National Transportation Integrated Search

    1979-12-01

    This report provides a summary and analysis of the data collected : 1n the 1978 General Aviation Pilot and Aircraft Activity Survey. The : survey Has conducted at a random sample of airports across the nation : and Puerto Rico, throughout the months ...

  20. General aviation pilot and aircraft activity survey

    DOT National Transportation Integrated Search

    1983-12-01

    This report provides a summary and analysis of the data collected : in the 1981 General Aviation Pilot and Aircraft Activity Survey. : The survey was conducted at a random sample of airports across the : nation throughout the months of July, August, ...

  1. General aviation pilot and aircraft activity survey.

    DOT National Transportation Integrated Search

    1983-12-01

    This report provides a summary and analysis of the data collected : in the 1981 General Aviation Pilot and Aircraft Activity Survey. : The survey was conducted at a random sample of airports across the : nation throughout the months of July, August, ...

  2. MATISSE: a meteorological aviation supporting system developed in a GIS environment

    NASA Astrophysics Data System (ADS)

    Rillo, Valeria; Mercogliano, Paola

    2014-05-01

    Awareness of weather conditions plays an increasing role in different societal and economic sectors, in particular the aviation one which is very sensitive to the meteorological conditions. In fact, adverse meteorological conditions are among the most important causes of accidents causing human and economic losses. For these reasons it is crucial to monitor and nowcast such events and avoid risks during all the flight phases. In this framework CIRA (Italian Aerospace Research Center) has implemented MATISSE (Meteorological AviaTIon Supporting SystEm), an ArcGIS Desktop Plug in, in order to detect and forecast meteorological aviation hazards over the main European airports, by using different sources of meteorological data (synoptic information, satellite data, numerical weather prediction models outputs). Such functionalities are realized after a preprocessing of raw data achieving more complex information, useful for the detection and the forecast of aviation hazards. After that, the data are stored in a database used by ArcGIS and further processed in order to provide maps, graphs and statistics. MATISSE presents a dockable toolbar in a GIS environment, allowing the user to easily select and visualize the desired information. In particular, the user can access to real time functionalities and visualize, on a map, the chosen meteorological hazard or variable (such as visibility conditions, cumulonimbi, wind speeds and directions, present weather, pressure, relative humidity, past weather, cloud cover, height of base of clouds, cloud type, geopotential, altimeter settings, three hour pressure change) over an airport or an area of interest (Europe, Italy). Such variables are represented in a user friendly way, by using simple icons easy to understand and reporting the risk level for aviation in order to provide pilots information about the meteorological conditions during the flight and the following hours. MATISSE, in fact, is able to handle the output of COSMO LM

  3. The effectiveness of national strategic guidelines at a local level: a case study of the UK general aviation industry

    NASA Astrophysics Data System (ADS)

    Lober, Terence

    The thesis is concerned with the prospects for reducing strategic-local tensions in the British planning process. It examines the conflicts surrounding small general aviation aerodromes as a means of understanding these tensions, why they have evolved, and if they might be reconciled through planning reform. The only prior academic research to have touched upon this issue through general aviation has been an ESRC funded project undertaken by Gallent and colleagues (1999), who found aerodromes provided a microcosm of planning's issues. Building on this work, the thesis develops what is meant by strategic-local tensions, which in broad terms are described as differences between national and regional guidance/plans and what actually takes place locally. Moving from a basic research question it develops a wide planning perspective based on the literature by discussing the meaning of planning, its history and issues for example, how conflicts in planning might be influenced by the broader socio-political environment. The thesis then arrives at three hypotheses which question the effectiveness of the existing strategic guideline implementation process, develops a local planning authority framework and addresses issues of reflectivity and bias. Results from three national surveys of pilots, aerodromes and manufacturers, plus longitudinal analysis of government and other datasets, are then used to detail a comprehensive and unique description of general aviation, which includes a costing based account of the direct expenditure of flying activity. This provides a substantive foundation for a local planning authority survey which both extends previous boundaries and enables the process of implementing strategic objectives to be disaggregated and evaluated. Field visits to twenty six aerodromes and five local authorities are subsequently used to explore gaps within the strategic implementation process and to develop conclusions, within the wider landscape of planning, about

  4. Human-Centered Aviation Automation: Principles and Guidelines

    NASA Technical Reports Server (NTRS)

    Billings, Charles E.

    1996-01-01

    This document presents principles and guidelines for human-centered automation in aircraft and in the aviation system. Drawing upon operational experience with highly automated aircraft, it describes classes of problems that have occurred in these vehicles, the effects of advanced automation on the human operators of the aviation system, and ways in which these problems may be avoided in the design of future aircraft and air traffic management automation. Many incidents and a few serious accidents suggest that these problems are related to automation complexity, autonomy, coupling, and opacity, or inadequate feedback to operators. An automation philosophy that emphasizes improved communication, coordination and cooperation between the human and machine elements of this complex, distributed system is required to improve the safety and efficiency of aviation operations in the future.

  5. A spin-recovery parachute system for light general-aviation airplanes

    NASA Technical Reports Server (NTRS)

    Bradshaw, C.

    1980-01-01

    A tail mounted spin recovery parachute system was designed and developed for use on light general aviation airplanes. The system was designed for use on typical airplane configurations, including low wing, high wing, single engine and twin engine designs. A mechanically triggered pyrotechnic slug gun is used to forcibly deploy a pilot parachute which extracts a bag that deploys a ring slot spin recovery parachute. The total system weighs 8.2 kg. System design factors included airplane wake effects on parachute deployment, prevention of premature parachute deployment, positive parachute jettison, compact size, low weight, system reliability, and pilot and ground crew safety. Extensive ground tests were conducted to qualify the system. The recovery parachute was used successfully in flight 17 times.

  6. Analysis of Additive Manufacturing for Sustainment of Naval Aviation Systems

    DTIC Science & Technology

    2017-09-01

    selection methodology to query the aviation spare-parts inventory for identification of additive manufacturing candidates. The methodology organizes...a component selection methodology to query the aviation spare-parts inventory for identification of additive manufacturing candidates. The... methodology organizes the resultant data using a top-down approach that aligns technical feasibility with programmatic objectives. Finally, a discrete event

  7. 'Systemic Failures' and 'Human Error' in Canadian TSB Aviation Reports Between 1996 and 2002

    NASA Technical Reports Server (NTRS)

    Holloway, C. M.; Johnson, C. W.

    2004-01-01

    This paper describes the results of an independent analysis of the primary and contributory causes of aviation accidents in Canada between 1996 and 2003. The purpose of the study was to assess the comparative frequency of a range of causal factors in the reporting of these adverse events. Our results suggest that the majority of these high consequence accidents were attributed to human error. A large number of reports also mentioned wider systemic issues, including the managerial and regulatory context of aviation operations. These issues are more likely to appear as contributory rather than primary causes in this set of accident reports.

  8. General Aviation: A Stepping Stone to a World Career in Aviation.

    ERIC Educational Resources Information Center

    Hulley, Bruce J.

    1999-01-01

    A survey of 27 countries identified private pilot flight-hour requirements, pilot training costs, youth aviation programs, and career information about aviation occupations. The information can be used to motivate young people to enter aviation careers. (JOW)

  9. Well Clear: General Aviation and Commercial Pilots' Perceptioin of Unmanned Aerial Vehicles in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Ott, Joseph

    2015-01-01

    This research explored how different pilots perceived the concept of the Well Clear Boundary (WCB) and observed if that boundary changed when dealing with manned versus unmanned aircraft systems (UAS), and the effects of other variables. Pilots' WCB perceptions were collected objectively through simulator recordings and subjectively through questionnaires. Objectively, significant differences were found in WCB perception between two pilot types (general aviation [GA], and Airline Transport Pilots [ATPs]), and significant WCB differences were evident when comparing two intruder types (manned versus unmanned aircraft). Differences were dependent on other manipulated variables (intruder approach angle, ownship speed, and background traffic levels). Subjectively, there were differences in WCB perception across pilot types; GA pilots trusted UAS aircraft higher than the more experienced ATPs. Conclusions indicate pilots' WCB mental models are more easily perceived as time-based boundaries in front of ownship, and more easily perceived as distance-based boundaries to the rear of ownship.

  10. Collegiate Aviation Review, 2000.

    ERIC Educational Resources Information Center

    Carney, Thomas Q., Ed.

    2000-01-01

    This issue contains seven papers. "University Aviation Education: An Integrated Model" (Merrill R. Karp) addresses potential educational enhancements through the implementation of an integrated aviation learning model, the Aviation Education Reinforcement Option. "The Federal Aviation Administration (FAA): A Tombstone Agency?…

  11. 32 CFR 766.10 - Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Cancellation or suspension of the aviation... (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.10 Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1...

  12. 32 CFR 766.10 - Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Cancellation or suspension of the aviation... (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.10 Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1...

  13. 32 CFR 766.10 - Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Cancellation or suspension of the aviation... (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.10 Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1...

  14. 32 CFR 766.10 - Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Cancellation or suspension of the aviation... (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.10 Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1...

  15. 32 CFR 766.10 - Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Cancellation or suspension of the aviation... (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS RULES USE OF DEPARTMENT OF THE NAVY AVIATION FACILITIES BY CIVIL AIRCRAFT § 766.10 Cancellation or suspension of the aviation facility license (OPNAV Form 3770/1...

  16. General aviation pilot and aircraft activity survey.

    DOT National Transportation Integrated Search

    1985-09-01

    This report provides a summary and analysis of the data collected in the 1984 General Aviation Pilot and Aircraft Activity Survey. The survey was conducted at a random sample of airports across the nation throughout the months of July, August, and Se...

  17. First Aviation System Technology Advanced Research (AvSTAR) Workshop

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G. (Editor); Weathers, Del W. (Editor); Rosen, Robert (Technical Monitor); Edwards, Tom (Technical Monitor)

    2001-01-01

    This Conference Proceedings documents the results of a two-day NASA/FAA/Industry workshop that was held at the NASA Ames Research Center, located at Moffett Field, CA, on September 21-22, 2000. The purpose of the workshop was to bring together a representative cross section of leaders in air traffic management, from industry. FAA, and academia, to assist in defining the requirements for a new research effort, referred to as AvSTAR Aviation Systems Technology Advanced Research). The Conference Proceedings includes the individual presentation, and summarizes the workshop discussions and recommendations.

  18. NASA Aviation Safety Program Weather Accident Prevention/weather Information Communications (WINCOMM)

    NASA Technical Reports Server (NTRS)

    Feinberg, Arthur; Tauss, James; Chomos, Gerald (Technical Monitor)

    2002-01-01

    Weather is a contributing factor in approximately 25-30 percent of general aviation accidents. The lack of timely, accurate and usable weather information to the general aviation pilot in the cockpit to enhance pilot situational awareness and improve pilot judgment remains a major impediment to improving aviation safety. NASA Glenn Research Center commissioned this 120 day weather datalink market survey to assess the technologies, infrastructure, products, and services of commercial avionics systems being marketed to the general aviation community to address these longstanding safety concerns. A market survey of companies providing or proposing to provide graphical weather information to the general aviation cockpit was conducted. Fifteen commercial companies were surveyed. These systems are characterized and evaluated in this report by availability, end-user pricing/cost, system constraints/limits and technical specifications. An analysis of market survey results and an evaluation of product offerings were made. In addition, recommendations to NASA for additional research and technology development investment have been made as a result of this survey to accelerate deployment of cockpit weather information systems for enhancing aviation safety.

  19. Research on measurement of aviation magneto ignition strength and balance

    NASA Astrophysics Data System (ADS)

    Gao, Feng; He, Zhixiang; Zhang, Dingpeng

    2017-12-01

    Aviation magneto ignition system failure accounted for two-thirds of the total fault aviation piston engine and above. At present the method used for this failure diagnosis is often depended on the visual inspections in the civil aviation maintenance field. Due to human factors, the visual inspections cannot provide ignition intensity value and ignition equilibrium deviation value among the different spark plugs in the different cylinder of aviation piston engine. So air magneto ignition strength and balance testing has become an aviation piston engine maintenance technical problem needed to resolve. In this paper, the ultraviolet sensor with detection wavelength of 185~260nm and driving voltage of 320V DC is used as the core of ultraviolet detection to detect the ignition intensity of Aviation magneto ignition system and the balance deviation of the ignition intensity of each cylinder. The experimental results show that the rotational speed within the range 0 to 3500 RPM test error less than 0.34%, ignition strength analysis and calculation error is less than 0.13%, and measured the visual inspection is hard to distinguish between high voltage wire leakage failure of deviation value of 200 pulse ignition strength balance/Sec. The method to detect aviation piston engine maintenance of magneto ignition system fault has a certain reference value.

  20. An integrated decision-making framework for transportation architectures: Application to aviation systems design

    NASA Astrophysics Data System (ADS)

    Lewe, Jung-Ho

    The National Transportation System (NTS) is undoubtedly a complex system-of-systems---a collection of diverse 'things' that evolve over time, organized at multiple levels, to achieve a range of possibly conflicting objectives, and never quite behaving as planned. The purpose of this research is to develop a virtual transportation architecture for the ultimate goal of formulating an integrated decision-making framework. The foundational endeavor begins with creating an abstraction of the NTS with the belief that a holistic frame of reference is required to properly study such a multi-disciplinary, trans-domain system. The culmination of the effort produces the Transportation Architecture Field (TAF) as a mental model of the NTS, in which the relationships between four basic entity groups are identified and articulated. This entity-centric abstraction framework underpins the construction of a virtual NTS couched in the form of an agent-based model. The transportation consumers and the service providers are identified as adaptive agents that apply a set of preprogrammed behavioral rules to achieve their respective goals. The transportation infrastructure and multitude of exogenous entities (disruptors and drivers) in the whole system can also be represented without resorting to an extremely complicated structure. The outcome is a flexible, scalable, computational model that allows for examination of numerous scenarios which involve the cascade of interrelated effects of aviation technology, infrastructure, and socioeconomic changes throughout the entire system.

  1. Aviation Research and the Internet

    NASA Technical Reports Server (NTRS)

    Scott, Antoinette M.

    1995-01-01

    The Internet is a network of networks. It was originally funded by the Defense Advanced Research Projects Agency or DOD/DARPA and evolved in part from the connection of supercomputer sites across the United States. The National Science Foundation (NSF) made the most of their supercomputers by connecting the sites to each other. This made the supercomputers more efficient and now allows scientists, engineers and researchers to access the supercomputers from their own labs and offices. The high speed networks that connect the NSF supercomputers form the backbone of the Internet. The World Wide Web (WWW) is a menu system. It gathers Internet resources from all over the world into a series of screens that appear on your computer. The WWW is also a distributed. The distributed system stores data information on many computers (servers). These servers can go out and get data when you ask for it. Hypermedia is the base of the WWW. One can 'click' on a section and visit other hypermedia (pages). Our approach to demonstrating the importance of aviation research through the Internet began with learning how to put pages on the Internet (on-line) ourselves. We were assigned two aviation companies; Vision Micro Systems Inc. and Innovative Aerodynamic Technologies (IAT). We developed home pages for these SBIR companies. The equipment used to create the pages were the UNIX and Macintosh machines. HTML Supertext software was used to write the pages and the Sharp JX600S scanner to scan the images. As a result, with the use of the UNIX, Macintosh, Sun, PC, and AXIL machines, we were able to present our home pages to over 800,000 visitors.

  2. High Speed Mobility Through On-Demand Aviation

    NASA Technical Reports Server (NTRS)

    Moore, Mark D.; Goodrich, Ken; Viken, Jeff; Smith, Jeremy; Fredericks, Bill; Trani, Toni; Barraclough, Jonathan; German, Brian; Patterson, Michael

    2013-01-01

    Game changing advances come about by the introduction of new technologies at a time when societal needs create the opportunity for new market solutions. A unique opportunity exists for NASA to bring about such a mobility revolution in General Aviation, extendable to other aviation markets, to maintain leadership in aviation by the United States. This report outlines the research carried out so far under NASA's leadership towards developing a new mobility choice, called Zip Aviation1,2,3. The feasibility, technology and system gaps that need to be addressed, and pathways for successful implementation have been investigated to guide future investment. The past decade indicates exciting trends in transportation technologies, which are quickly evolving. Automobiles are embracing automation to ease driver tasks as well as to completely control the vehicle with added safety (Figure 1). Electric propulsion is providing zero tail-pipe emission vehicles with dramatically lower energy and maintenance costs. These technologies have not yet been applied to aviation, yet offer compelling potential benefits across all aviation markets, and in particular to General Aviation (GA) as an early adopter market. The benefits of such an adoption are applicable in the following areas: ?? Safety: The GA market experiences accident rates that are substantially higher than automobiles or commercial airlines, with 7.5 fatal accidents per 100 million vehicle miles compared to 1.3 for automobiles and.068 for airlines. Approximately 80% of these accidents are caused by some form of pilot error, with another 13% caused by single point propulsion system failure. ?? Emissions: Environmental constraints are pushing for the elimination of 100Low Lead (LL) fuel used in most GA aircraft, with aviation fuel the #1 source of lead emissions into the environment. Aircraft also have no emission control systems (i.e. no catalytic converters etc.), so they are gross hydrocarbon polluters compared to

  3. A Guide to Aviation Education Resources.

    ERIC Educational Resources Information Center

    National Coalition for Aviation Education, Washington, DC.

    This resource guide details the services and materials available from the National Coalition for Aviation Education (NCAE) member organizations. An alphabetical listing of 15 NCAE member organizations provides in each case the name of a contact person, address, telephone and fax numbers, and a very brief description of whom or what the…

  4. Aviation and programmatic analyses; Volume 1, Task 1: Aviation data base development and application. [for NASA OAST programs

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A method was developed for using the NASA aviation data base and computer programs in conjunction with the GE management analysis and projection service to perform simple and complex economic analysis for planning, forecasting, and evaluating OAST programs. Capabilities of the system are discussed along with procedures for making basic data tabulations, updates and entries. The system is applied in an agricultural aviation study in order to assess its value for actual utility in the OAST working environment.

  5. Pandemic Diseases and the Aviation Network SARS, a case study

    NASA Astrophysics Data System (ADS)

    Hufnagel, Lars; Brockmann, Dirk; Geisel, Theo

    2005-03-01

    We investigate the mechanisms of the worldwide spread of infectious diseases in a modern world in which humans travel on all scales. We introduce a probabilistic model which accounts for the worldwide spread of infectious diseases on the global aviation network. The analysis indicates that a forecast of the geographical spread of an epidemic is indeed possible, provided that local dynamical parameters of the disease such as the basic reproduction number are known. The model consists of local stochastic infection dynamics and stochastic transport of individuals on the worldwide aviation network which takes into account over 95% of the entire the national and international civil aviation traffic. Our simulations of the SARS outbreak are in surprisingly good agreement with published case reports. Despite the fact that the system is stochastic with a high number of degrees of freedom the outcome of a single simulation exhibits only a small magnitude of variability. We show that this is due to the strong heterogeneity of the network ranging from a few two over 25,000 passengers between nodes of the network. Thus, we propose that our model can be employed to predict the worldwide spread of future pandemic diseases and to identify endangered regions in advance. Based on the connectivity of the aviation network we evaluate the performance of different control strategies and show that a quick and focused reaction is essential to inhibit the global spread of infectious diseases.

  6. Secure Network-Centric Aviation Communication (SNAC)

    NASA Technical Reports Server (NTRS)

    Nelson, Paul H.; Muha, Mark A.; Sheehe, Charles J.

    2017-01-01

    The existing National Airspace System (NAS) communications capabilities are largely unsecured, are not designed for efficient use of spectrum and collectively are not capable of servicing the future needs of the NAS with the inclusion of new operators in Unmanned Aviation Systems (UAS) or On Demand Mobility (ODM). SNAC will provide a ubiquitous secure, network-based communications architecture that will provide new service capabilities and allow for the migration of current communications to SNAC over time. The necessary change in communication technologies to digital domains will allow for the adoption of security mechanisms, sharing of link technologies, large increase in spectrum utilization, new forms of resilience and redundancy and the possibly of spectrum reuse. SNAC consists of a long term open architectural approach with increasingly capable designs used to steer research and development and enable operating capabilities that run in parallel with current NAS systems.

  7. General Aviation in Nebraska: Nebraska SATS Project Background Paper No. 1

    NASA Technical Reports Server (NTRS)

    Smith, Russell; Wachal, Jocelyn

    2000-01-01

    The Nebraska SATS project is a state-level component of NASA's Small Aircraft Transportation System (SATS). During the next several years the project will examine several different factors affecting SATS implementation in Nebraska. These include economic and taxation issues, public policy issues, airport planning processes, information dissemination strategies, and systemic change factors. This background paper profiles the general aviation system in Nebraska. It is written to provide information about the "context" within which SATS will be pursued. The primary focus is thus on describing and providing background information about the current situation. A secondary focus is on drawing general conclusions about the ability of the current system to incorporate the types of changes implied by SATS. First, some brief information on the U.S. aviation system is provided. The next two sections profile the current general aviation aircraft and pilot base. Nebraska's system of general aviation airports is then described. Within this section of the paper, information is provided on the different types of general aviation airports in Nebraska, airport activity levels and current infrastructure. The fourth major section of the background paper looks at Nebraska's local airport authorities. These special purpose local governments oversee the majority of the general aviation airports in the state. Among the items examined are total expenditures, capital expenditures and planning activities. Next, the paper provides background information on the Nebraska Department of Aeronautics (NDA) and recent Federal funding for general aviation in Nebraska. The final section presents summary conclusions.

  8. Army Aviation Equipment Useful Life Cost Benefit Analysis

    DTIC Science & Technology

    2013-12-01

    System UFI User-friendly Interface UH Utility Helicopter ULLS–A Unit-Level Logistics System–Aviation USCG U.S. Coast Guard WW2 World...this chapter, we briefly discuss the modernization of the Army aviation fleet since World War 2 ( WW2 ). Furthermore, the chapter provides insight...U.S. Army’s aviation program is its use of helicopters since WW2 . Following that war, the Army Air Corps divested the majority of 2 its fixed-wing

  9. Aviation obstacle auto-extraction using remote sensing information

    NASA Astrophysics Data System (ADS)

    Zimmer, N.; Lugsch, W.; Ravenscroft, D.; Schiefele, J.

    2008-10-01

    An Obstacle, in the aviation context, may be any natural, man-made, fixed or movable object, permanent or temporary. Currently, the most common way to detect relevant aviation obstacles from an aircraft or helicopter for navigation purposes and collision avoidance is the use of merged infrared and synthetic information of obstacle data. Several algorithms have been established to utilize synthetic and infrared images to generate obstacle information. There might be a situation however where the system is error-prone and may not be able to consistently determine the current environment. This situation can be avoided when the system knows the true position of the obstacle. The quality characteristics of the obstacle data strongly depends on the quality of the source data such as maps and official publications. In some countries such as newly industrializing and developing countries, quality and quantity of obstacle information is not available. The aviation world has two specifications - RTCA DO-276A and ICAO ANNEX 15 Ch. 10 - which describe the requirements for aviation obstacles. It is essential to meet these requirements to be compliant with the specifications and to support systems based on these specifications, e.g. 3D obstacle warning systems where accurate coordinates based on WGS-84 is a necessity. Existing aerial and satellite or soon to exist high quality remote sensing data makes it feasible to think about automated aviation obstacle data origination. This paper will describe the feasibility to auto-extract aviation obstacles from remote sensing data considering limitations of image and extraction technologies. Quality parameters and possible resolution of auto-extracted obstacle data will be discussed and presented.

  10. Structural Behavioral Study on the General Aviation Network Based on Complex Network

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Lu, Na

    2017-12-01

    The general aviation system is an open and dissipative system with complex structures and behavioral features. This paper has established the system model and network model for general aviation. We have analyzed integral attributes and individual attributes by applying the complex network theory and concluded that the general aviation network has influential enterprise factors and node relations. We have checked whether the network has small world effect, scale-free property and network centrality property which a complex network should have by applying degree distribution of functions and proved that the general aviation network system is a complex network. Therefore, we propose to achieve the evolution process of the general aviation industrial chain to collaborative innovation cluster of advanced-form industries by strengthening network multiplication effect, stimulating innovation performance and spanning the structural hole path.

  11. Audio-Visual Situational Awareness for General Aviation Pilots

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    Weather is one of the major causes of general aviation accidents. Researchers are addressing this problem from various perspectives including improving meteorological forecasting techniques, collecting additional weather data automatically via on-board sensors and "flight" modems, and improving weather data dissemination and presentation. We approach the problem from the improved presentation perspective and propose weather visualization and interaction methods tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment (AWE), utilizes information visualization techniques, a direct manipulation graphical interface, and a speech-based interface to improve a pilot's situational awareness of relevant weather data. The system design is based on a user study and feedback from pilots.

  12. 48 CFR 209.270 - Aviation and ship critical safety items.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Aviation and ship critical safety items. 209.270 Section 209.270 Federal Acquisition Regulations System DEFENSE ACQUISITION... Requirements 209.270 Aviation and ship critical safety items. ...

  13. 48 CFR 209.270 - Aviation and ship critical safety items.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Aviation and ship critical safety items. 209.270 Section 209.270 Federal Acquisition Regulations System DEFENSE ACQUISITION... Requirements 209.270 Aviation and ship critical safety items. ...

  14. 48 CFR 209.270 - Aviation and ship critical safety items.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Aviation and ship critical safety items. 209.270 Section 209.270 Federal Acquisition Regulations System DEFENSE ACQUISITION... Requirements 209.270 Aviation and ship critical safety items. ...

  15. 48 CFR 209.270 - Aviation and ship critical safety items.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Aviation and ship critical safety items. 209.270 Section 209.270 Federal Acquisition Regulations System DEFENSE ACQUISITION... Requirements 209.270 Aviation and ship critical safety items. ...

  16. 48 CFR 209.270 - Aviation and ship critical safety items.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Requirements 209.270 Aviation and ship critical safety items. ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Aviation and ship critical safety items. 209.270 Section 209.270 Federal Acquisition Regulations System DEFENSE ACQUISITION...

  17. Assessment of a Conceptual Flap System Intended for Enhanced General Aviation Safety

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Carter, Melissa B.

    2017-01-01

    A novel multielement trailing-edge flap system for light general aviation airplanes was conceived for enhanced safety during normal and emergency landings. The system is designed to significantly reduce stall speed, and thus approach speed, with the goal of reducing maneuveringflight accidents and enhancing pilot survivability in the event of an accident. The research objectives were to assess the aerodynamic performance characteristics of the system and to evaluate the extent to which it provided both increased lift and increased drag required for the low-speed landing goal. The flap system was applied to a model of a light general aviation, high-wing trainer and tested in the Langley 12- Foot Low-Speed Wind Tunnel. Data were obtained for several device deflection angles, and component combinations at a dynamic pressure of 4 pounds per square foot. The force and moment data supports the achievement of the desired increase in lift with substantially increased drag, all at relatively shallow angles of attack. The levels of lift and drag can be varied through device deflection angles and inboard/outboard differential deflections. As such, it appears that this flap system may provide an enabling technology to allow steep, controllable glide slopes for safe rapid descent to landing with reduced stall speed. However, a simple flat-plate lower surface spoiler (LSS) provided either similar or superior lift with little impact on pitch or drag as compared to the proposed system. Higher-fidelity studies are suggested prior to use of the proposed system.

  18. Baseline ambient sound levels in Everglades National Park

    DOT National Transportation Integrated Search

    2012-11-01

    The Federal Aviation Administration (FAA) and the National Park Service (NPS), with the assistance of the U.S. Department of Transportation, John A. Volpe National Transportation Systems Center (Volpe Center) are developing Air Tour Management Plans ...

  19. Collegiate Aviation Review.

    ERIC Educational Resources Information Center

    Lehrer, Henry R., Ed.

    This document contains five research papers devoted to aviation education and training. The first paper, "An Examination of the U.S. Airline Policy Regarding Child Restraint Systems" (Larry Carstenson, Donald Sluti, and Jacqueline Luedtke), examines communication of airline policy from airline management to airline personnel to the…

  20. Secure ADS-B: Towards Airborne Communications Security in the Federal Aviation Administration’s Next Generation Air Transportation System

    DTIC Science & Technology

    2014-03-01

    76 5.2 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Recommendations for Future Work...Global Positioning System ICAO International Civil Aviation Organization IFF Identification Friend or Foe IFR Instrument Flight Rules IMO...Instrument Flight Rules ( IFR ). Under VFR, typically used by General Aviation (GA) aircraft operating under 18,000 feet, the pilot is primarily responsible

  1. Global Health Impacts of Future Aviation Emissions Under Alternative Control Scenarios

    PubMed Central

    2015-01-01

    There is strong evidence of an association between fine particulate matter less than 2.5 μm (PM2.5) in aerodynamic diameter and adverse health outcomes. This study analyzes the global excess mortality attributable to the aviation sector in the present (2006) and in the future (three 2050 scenarios) using the integrated exposure response model that was also used in the 2010 Global Burden of Disease assessment. The PM2.5 concentrations for the present and future scenarios were calculated using aviation emission inventories developed by the Volpe National Transportation Systems Center and a global chemistry-climate model. We found that while excess mortality due to the aviation sector emissions is greater in 2050 compared to 2006, improved fuel policies (technology and operations improvements yielding smaller increases in fuel burn compared to 2006, and conversion to fully sustainable fuels) in 2050 could lead to 72% fewer deaths for adults 25 years and older than a 2050 scenario with no fuel improvements. Among the four health outcomes examined, ischemic heart disease was the greatest cause of death. Our results suggest that implementation of improved fuel policies can have substantial human health benefits. PMID:25412200

  2. Global health impacts of future aviation emissions under alternative control scenarios.

    PubMed

    Morita, Haruka; Yang, Suijia; Unger, Nadine; Kinney, Patrick L

    2014-12-16

    There is strong evidence of an association between fine particulate matter less than 2.5 μm (PM2.5) in aerodynamic diameter and adverse health outcomes. This study analyzes the global excess mortality attributable to the aviation sector in the present (2006) and in the future (three 2050 scenarios) using the integrated exposure response model that was also used in the 2010 Global Burden of Disease assessment. The PM2.5 concentrations for the present and future scenarios were calculated using aviation emission inventories developed by the Volpe National Transportation Systems Center and a global chemistry-climate model. We found that while excess mortality due to the aviation sector emissions is greater in 2050 compared to 2006, improved fuel policies (technology and operations improvements yielding smaller increases in fuel burn compared to 2006, and conversion to fully sustainable fuels) in 2050 could lead to 72% fewer deaths for adults 25 years and older than a 2050 scenario with no fuel improvements. Among the four health outcomes examined, ischemic heart disease was the greatest cause of death. Our results suggest that implementation of improved fuel policies can have substantial human health benefits.

  3. Occupational aviation fatalities--Alaska, 2000-2010.

    PubMed

    2011-07-01

    Aircraft crashes are the second leading cause of occupational deaths in Alaska; during the 1990s, a total of 108 fatal aviation crashes resulted in 155 occupational fatalities. To update data and identify risk factors for occupational death from aircraft crashes, CDC reviewed data from the National Transportation Safety Board (NTSB) and the Alaska Occupational Injury Surveillance System. During 2000--2010, a total of 90 occupational fatalities occurred as a result of 54 crashes, an average of five fatal aircraft crashes and eight fatalities per year. Among those crashes, 21 (39%) were associated with intended takeoffs or landings at landing sites not registered with the Federal Aviation Administration (FAA). Fifteen crashes (28%) were associated with weather, including poor visibility, wind, and turbulence. In addition, 11 crashes (20%) resulted from pilots' loss of aircraft control; nine (17%) from pilots' failure to maintain clearance from terrain, water, or objects; and seven (13%) from engine, structure, or component failure. To reduce occupational fatalities resulting from aircraft crashes in the state, safety interventions should focus on providing weather and other flight information to increase pilots' situational awareness, maintaining pilot proficiency and decision-making abilities, and expanding the infrastructure used by pilots to fly by instruments.

  4. Aviation Education Services and Resources.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    Developed by the Aviation Education Staff of the Office of General Aviation Affairs, this document identifies sources of teaching materials. Included in this resource guide is information pertaining to: (1) films and filmstrips, (2) aviation education workshops, (3) career opportunities in aviation, (4) aviation organizations, (5) government…

  5. EMS helicopter incidents reported to the NASA Aviation Safety Reporting System

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.; Reynard, William D.

    1993-01-01

    The objectives of this evaluation were to: Identify the types of safety-related incidents reported to the Aviation Safety Reporting System (ASRS) in Emergency Medical Service (EMS) helicopter operations; Describe the operational conditions surrounding these incidents, such as weather, airspace, flight phase, time of day; and Assess the contribution to these incidents of selected human factors considerations, such as communication, distraction, time pressure, workload, and flight/duty impact.

  6. System Dynamics Aviation Readiness Modeling Demonstration

    DTIC Science & Technology

    2005-08-31

    requirements. It is recommended that the Naval Aviation Enterprise take a close look at the requirements i.e., performance measures, methodology ...unit’s capability to perform specific Joint Mission Essential Task List (JMETL) requirements now and in the future. This assessment methodology must...the time-associated costs. The new methodology must base decisions on currently available data and databases. A “useful” readiness model should be

  7. Coalition Warfare Program Tactile Situation Awareness System for Aviation Applications: Simulator Flight Test

    DTIC Science & Technology

    2015-12-01

    David Myers1 Timothy Gowen2 Angus Rupert3 Ben Lawson3 Justin Dailey3,4 1Chesapeake Technology International 2Naval Aviation Center for... Angus Rupert of the USAARL. The algorithm is described in “Configuration Parameters for the Tactile Situation Awareness System (TSAS)” dated July 2010

  8. A Survey of Text Materials Used in Aviation Maintenance Technician Schools. Final Report.

    ERIC Educational Resources Information Center

    Allen, David; Bowers, William K.

    The report documents the results of a national survey of book publishing firms and aviation maintenance technician schools to (1) identify the text materials used in the training of aviation mechanics; (2) appraise the suitability and availability of identified text materials; and (3) determine the adequacy of the text materials in meeting the…

  9. Machinist's Mate J 1 and C: Aviation.

    ERIC Educational Resources Information Center

    Naval Training Publications Center, Memphis, TN.

    The rate training manual is one of a series of training manuals prepared for enlisted personnel of the Navy and Naval Reserve studying for advancement from the Aviation Machinist's Mate ADJ2 rating to ADJ1 to ADJC. Aviation Machinist's Mates J maintain aircraft jet engines and their related systems. Chpater 1 discusses the enlisted rating…

  10. Aviation Maintenance Technology. General. G101 Aviation Mathematics and Physics. Instructor Material.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    These instructor materials for an aviation maintenance technology course contain three instructional modules covering safety, aviation mathematics, and aviation physics. Each module may contain an introduction and module objective, specific objectives, an instructor's module implementation guide, technical information supplements, transparency…

  11. Aviator's night vision system (ANVIS) in Operation Enduring Freedom (OEF): user acceptability survey

    NASA Astrophysics Data System (ADS)

    Hiatt, Keith L.; Trollman, Christopher J.; Rash, Clarence E.

    2010-04-01

    In 1973, the U.S. Army adopted night vision devices for use in the aviation environment. These devices are based on the principle of image intensification (I2) and have become the mainstay for the aviator's capability to operate during periods of low illumination, i.e., at night. In the nearly four decades that have followed, a number of engineering advancements have significantly improved the performance of these devices. The current version, using 3rd generation I2 technology is known as the Aviator's Night Vision Imaging System (ANVIS). While considerable experience with performance has been gained during training and peacetime operations, no previous studies have looked at user acceptability and performance issues in a combat environment. This study was designed to compare Army Aircrew experiences in a combat environment to currently available information in the published literature (all peacetime laboratory and field training studies) and to determine if the latter is valid. The purpose of this study was to identify and assess aircrew satisfaction with the ANVIS and any visual performance issues or problems relating to its use in Operation Enduring Freedom (OEF). The study consisted of an anonymous survey (based on previous validated surveys used in the laboratory and training environments) of 86 Aircrew members (64% Rated and 36% Non-rated) of an Aviation Task Force approximately 6 months into their OEF deployment. This group represents an aggregate of >94,000 flight hours of which ~22,000 are ANVIS and ~16,000 during this deployment. Overall user acceptability of ANVIS in a combat environment will be discussed.

  12. Reducing Aviation Weather-Related Accidents Through High-Fidelity Weather Information Distribution and Presentation

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Shafer, Daniel B.; Schaffner, Philip R.; Martzaklis, Konstantinos S.

    2000-01-01

    In February 1997, the US President announced a national goal to reduce the fatal accident rate for aviation by 80% within ten years. The National Aeronautics and Space Administration established the Aviation Safety Program to develop technologies needed to meet this aggressive goal. Because weather has been identified (is a causal factor in approximately 30% of all aviation accidents, a project was established for the development of technologies that will provide accurate, time and intuitive information to pilots, dispatchers, and air traffic controllers to enable the detection and avoidance of atmospheric hazards. This project addresses the weather information needs of general, corporate, regional, and transport aircraft operators. An overview and status of research and development efforts for high-fidelity weather information distribution and presentation is discussed with emphasis on weather information in the cockpit.

  13. System for Training Aviation Regulations (STAR): Using Multiple Vantage Points To Learn Complex Information through Scenario-Based Instruction and Multimedia Techniques.

    ERIC Educational Resources Information Center

    Chandler, Terrell N.

    1996-01-01

    The System for Training of Aviation Regulations (STAR) provides comprehensive training in understanding and applying Federal aviation regulations. STAR gives multiple vantage points with multimedia presentations and storytelling within four categories of learning environments: overviews, scenarios, challenges, and resources. Discusses the…

  14. Human factors in aviation maintenance, phase four : progress report.

    DOT National Transportation Integrated Search

    1995-05-01

    The fourth phase of research on human factors in aviation maintenance continued to look at the human's role in the aviation maintenance system via investigations, demonstrations, and evaluations of the research program outputs. This report describes ...

  15. National plan to enhance aviation safety through human factors improvements

    NASA Technical Reports Server (NTRS)

    Foushee, Clay

    1990-01-01

    The purpose of this section of the plan is to establish a development and implementation strategy plan for improving safety and efficiency in the Air Traffic Control (ATC) system. These improvements will be achieved through the proper applications of human factors considerations to the present and future systems. The program will have four basic goals: (1) prepare for the future system through proper hiring and training; (2) develop a controller work station team concept (managing human errors); (3) understand and address the human factors implications of negative system results; and (4) define the proper division of responsibilities and interactions between the human and the machine in ATC systems. This plan addresses six program elements which together address the overall purpose. The six program elements are: (1) determine principles of human-centered automation that will enhance aviation safety and the efficiency of the air traffic controller; (2) provide new and/or enhanced methods and techniques to measure, assess, and improve human performance in the ATC environment; (3) determine system needs and methods for information transfer between and within controller teams and between controller teams and the cockpit; (4) determine how new controller work station technology can optimally be applied and integrated to enhance safety and efficiency; (5) assess training needs and develop improved techniques and strategies for selection, training, and evaluation of controllers; and (6) develop standards, methods, and procedures for the certification and validation of human engineering in the design, testing, and implementation of any hardware or software system element which affects information flow to or from the human.

  16. General Aviation Pilot and Aircraft Activity Survey : 1978

    DOT National Transportation Integrated Search

    1979-12-01

    This report provides a summary and analysis of the data collected in the 1978 General Aviation Pilot and Aircraft Activity Survey. The survey was conducted at a random sample of airports across the nation and Puerto Rico, throughout the months of Jul...

  17. Human factors in aviation maintenance, phase five : progress report.

    DOT National Transportation Integrated Search

    1996-01-01

    The fifth phase of research on human factors in aviation maintenance continued to look at the human's role in the aviation maintenance system via investigations, demonstrations, and evaluations of the research program outputs. This report describes t...

  18. Aviation medicine, FAA-1966.

    DOT National Transportation Integrated Search

    1967-12-01

    The health and safety of more than 80,000,000 aircraft passengers, approximately 500,000 active civilian pilots and other civilian aviation personnel is the concern of the Federal Aviation Administration's Office of Aviation Medicine.

  19. A Study to Estimate the Effectiveness of Visual Testing Training for Aviation Maintenance Management

    NASA Technical Reports Server (NTRS)

    Law, Lewis Lyle

    2007-01-01

    The Air Commerce Act of 1926 set the beginning for standards in aviation maintenance. Even after deregulation in the late l970s, maintenance standards and requirements still have not changed far from their initial criteria. After a potential candidate completes Federal Aviation Administration training prerequisites, they may test for their Airframe and Powerplant (A&P) certificate. Performing maintenance in the aviation industry for a minimum of three years, the technician may then test for their Inspection Authorization (IA). After receiving their Airframe and Powerplant certificate, a technician is said to have a license to perform. At no time within the three years to eligibility for Inspection Authorization are they required to attend higher-level inspection training. What a technician learns in the aviation maintenance industry is handed down from a seasoned technician to the new hire or is developed from lessons learned on the job. Only in Europe has the Joint Aviation Authorities (JAA) required higher-level training for their aviation maintenance technicians in order to control maintenance related accidents (Lu, 2005). Throughout the 1990s both the General Accounting Office (GAO) and the National Transportation Safety Board (NTSB) made public that the FAA is historically understaffed (GAO, 1996). In a safety recommendation the NTSB stated "The Safety Board continues to lack confidence in the FAA's commitment to provide effective quality assurance and safety oversight of the ATC system (NTSB, 1990)." The Federal Aviation Administration (FAA) has been known to be proactive in creating safer skies. With such reports you would suspect the FAA to also be proactive in developing more stringent inspection training for aviation maintenance technicians. The purpose of this study is to estimate the effectiveness of higher-level inspection training, such as Visual Testing (VT) for aviation maintenance technicians, to improve the safety of aircraft and to make

  20. Developing a fatigue questionnaire for Chinese civil aviation pilots.

    PubMed

    Dai, Jing; Luo, Min; Hu, Wendong; Ma, Jin; Wen, Zhihong

    2018-03-23

    To assess the fatigue risk is an important challenge in improving flight safety in aviation industry. The aim of this study was to develop a comprehensive fatigue risk management indicators system and a fatigue questionnaire for Chinese civil aviation pilots. Participants included 74 (all males) civil aviation pilots. They finished the questionnaire in 20 minutes before a flight mission. The estimation of internal consistency with Cronbach's α and Student's t test as well as Pearson's correlation analysis were the main statistical methods. The results revealed that the fatigue questionnaire had acceptable internal consistency reliability and construct validity; there were significant differences on fatigue scores between international and domestic flight pilots. And some international flight pilots, who had taken medications as a sleep aid, had worse sleep quality than those had not. The long-endurance flight across time zones caused significant differences in circadian rhythm. The fatigue questionnaire can be used to measure Chinese civil aviation pilots' fatigue, which provided a reference for fatigue risk management system to civil aviation pilots.

  1. General aviation components. [performance and capabilities of general aviation aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An overview is presented of selected aviation vehicles. The capabilities and performance of these vehicles are first presented, followed by a discussion of the aerodynamics, structures and materials, propulsion systems, noise, and configurations of fixed-wing aircraft. Finally the discussion focuses on the history, status, and future of attempts to provide vehicles capable of short-field operations.

  2. A comparative analysis of area navigation systems in general aviation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dodge, S. M.

    1973-01-01

    Radio navigation systems which offer the capabilities of area navigation to general aviation operators are discussed. The systems considered are: (1) the VORTAC system, (2) the Loran-C system, and (3) the Differential Omega system. The inital analyses are directed toward a comparison of the systems with respect to their compliance to specified performance parameters and to the cost effectiveness of each system in relation to those specifications. Further analyses lead to the development of system cost sensitivity charts, and the employment of these charts allows conclusions to be drawn relative to the cost-effectiveness of the candidate navigation system.

  3. Maritime Aviation

    NASA Technical Reports Server (NTRS)

    Ravennes, Jean

    1922-01-01

    This report presents some studies of maritime aviation which cover the following principal points: employment of landplanes on maritime aerial warfare; their adaption to peculiar requirements of the Navy; and the establishment of a method of aerial pursuit and bombardment, likewise adapted to military aviation over land.

  4. Baseline ambient sound levels in Dry Tortugas National Park

    DOT National Transportation Integrated Search

    2012-11-01

    The Federal Aviation Administration (FAA) and the National Park Service (NPS), with the assistance of the U.S. Department of Transportation, John A. Volpe National Transportation Systems Center (Volpe Center) are developing Air Tour Management Plans ...

  5. Baseline ambient sound levels in Point Reyes National Seashore

    DOT National Transportation Integrated Search

    2011-03-01

    The Federal Aviation Administration (FAA), with the cooperation of the National Park : Service (NPS) and assistance of the U.S. Department of Transportation, John A. Volpe : National Transportation Systems Center (Volpe Center) is developing Air Tour...

  6. Using random forests to diagnose aviation turbulence.

    PubMed

    Williams, John K

    Atmospheric turbulence poses a significant hazard to aviation, with severe encounters costing airlines millions of dollars per year in compensation, aircraft damage, and delays due to required post-event inspections and repairs. Moreover, attempts to avoid turbulent airspace cause flight delays and en route deviations that increase air traffic controller workload, disrupt schedules of air crews and passengers and use extra fuel. For these reasons, the Federal Aviation Administration and the National Aeronautics and Space Administration have funded the development of automated turbulence detection, diagnosis and forecasting products. This paper describes a methodology for fusing data from diverse sources and producing a real-time diagnosis of turbulence associated with thunderstorms, a significant cause of weather delays and turbulence encounters that is not well-addressed by current turbulence forecasts. The data fusion algorithm is trained using a retrospective dataset that includes objective turbulence reports from commercial aircraft and collocated predictor data. It is evaluated on an independent test set using several performance metrics including receiver operating characteristic curves, which are used for FAA turbulence product evaluations prior to their deployment. A prototype implementation fuses data from Doppler radar, geostationary satellites, a lightning detection network and a numerical weather prediction model to produce deterministic and probabilistic turbulence assessments suitable for use by air traffic managers, dispatchers and pilots. The algorithm is scheduled to be operationally implemented at the National Weather Service's Aviation Weather Center in 2014.

  7. NASA and General Aviation. NASA SP-485.

    ERIC Educational Resources Information Center

    Ethell, Jeffrey L.

    A detailed examination of the nature and function of general aviation and a discussion of how the National Aeronautics and Space Administration (NASA) helps keep it on the cutting edge of technology are offered in this publication. The intricacies of aerodynamics, energy, and safety as well as the achievements in aeronautical experimentation are…

  8. Federal Aviation Administration Curriculum Guide for Aviation Magnet Schools Programs

    DOT National Transportation Integrated Search

    1994-01-01

    Prepared ca. 1994. This publication is designed to provide: : - a brief history of the role of aviation in motivating young : people to learn. : - examples of aviation magnet activities, programs, projects and : school curriculums. : - documentation ...

  9. Collegiate Aviation Review. September 1995.

    ERIC Educational Resources Information Center

    Barker, Ballard M., Ed.

    This document contains three papers on aviation education. "Aviation/Aerospace Teacher Education Workshops: Program Development and Implementation" (Mavis F. Green) discusses practical issues in the development of an aviation/aerospace teacher education workshop designed to help elementary school teachers promote aviation to their…

  10. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); German, Jon

    2003-01-01

    This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.

  11. A Statistically Based Training Diagnostic Tool for Marine Aviation

    DTIC Science & Technology

    2014-06-01

    mission essential task list MDG maneuver description guide MOS military occupational specialty MSHARP Marine Sierra Hotel Aviation Reporting Program...include the Defense Readiness Reporting System (DRRS) Marine Corps, the Current Readiness Program (CRP), and the Marine Sierra Hotel Aviation...Beuschel, 2008). Many of these systems focus on business decisions regarding how companies can increase their bottom line, by appealing to customers more

  12. Corporate Social Responsibility in Aviation

    NASA Technical Reports Server (NTRS)

    Phillips, Edwin D.

    2006-01-01

    The dialog within aviation management education regarding ethics is incomplete without a discussion of corporate social responsibility (CSR). CSR research requires discussion involving: (a) the current emphasis on CSR in business in general and aviation specifically; (b) business and educational theory that provide a basis for aviation companies to engage in socially responsible actions; (c) techniques used by aviation and aerospace companies to fulfill this responsibility; and (d) a glimpse of teaching approaches used in university aviation management classes. The summary of this research suggests educators explain CSR theory and practice to students in industry and collegiate aviation management programs. Doing so extends the discussion of ethical behavior and matches the current high level of interest and activity within the aviation industry toward CSR.

  13. Aviation--An Individualized Approach

    ERIC Educational Resources Information Center

    Seeds, Fred F.

    1974-01-01

    Describes an individualized aviation course for high school seniors. The course, broken down into Learner Education Guides with students progressing at their own learning rates, consists of the history of aviation, career opportunities, the space program, basic aeronautics, navigation, meteorology, Federal Aviation Administration regulations and…

  14. Aviation Weather Observations for Supplementary Aviation Weather Reporting Stations (SAWRS) and Limited Aviation Weather Reporting Stations (LAWRS). Federal Meteorological Handbook No. 9.

    ERIC Educational Resources Information Center

    Department of Transportation, Washington, DC.

    This handbook provides instructions for observing, identifying, and recording aviation weather at Limited Aviation Weather Reporting Stations (LAWRS) and Supplementary Aviation Weather Reporting Stations (SAWRS). Official technical definitions, meteorological and administrative procedures are outlined. Although this publication is intended for use…

  15. Advanced Flow Control as a Management Tool in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Wugalter, S.

    1974-01-01

    Advanced Flow Control is closely related to Air Traffic Control. Air Traffic Control is the business of the Federal Aviation Administration. To formulate an understanding of advanced flow control and its use as a management tool in the National Airspace System, it becomes necessary to speak somewhat of air traffic control, the role of FAA, and their relationship to advanced flow control. Also, this should dispell forever, any notion that advanced flow control is the inspirational master valve scheme to be used on the Alaskan Oil Pipeline.

  16. Aviation Career Awareness

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1976

    1976-01-01

    Describes a kit containing seven units, each designed to increase the elementary school student's awareness of aviation and career possibilities in aviation. Includes a sample section from one unit. (MLH)

  17. A system-of-systems modeling methodology for strategic general aviation design decision-making

    NASA Astrophysics Data System (ADS)

    Won, Henry Thome

    General aviation has long been studied as a means of providing an on-demand "personal air vehicle" that bypasses the traffic at major commercial hubs. This thesis continues this research through development of a system of systems modeling methodology applicable to the selection of synergistic product concepts, market segments, and business models. From the perspective of the conceptual design engineer, the design and selection of future general aviation aircraft is complicated by the definition of constraints and requirements, and the tradeoffs among performance and cost aspects. Qualitative problem definition methods have been utilized, although their accuracy in determining specific requirement and metric values is uncertain. In industry, customers are surveyed, and business plans are created through a lengthy, iterative process. In recent years, techniques have developed for predicting the characteristics of US travel demand based on travel mode attributes, such as door-to-door time and ticket price. As of yet, these models treat the contributing systems---aircraft manufacturers and service providers---as independently variable assumptions. In this research, a methodology is developed which seeks to build a strategic design decision making environment through the construction of a system of systems model. The demonstrated implementation brings together models of the aircraft and manufacturer, the service provider, and most importantly the travel demand. Thus represented is the behavior of the consumers and the reactive behavior of the suppliers---the manufacturers and transportation service providers---in a common modeling framework. The results indicate an ability to guide the design process---specifically the selection of design requirements---through the optimization of "capability" metrics. Additionally, results indicate the ability to find synergetic solutions, that is solutions in which two systems might collaborate to achieve a better result than acting

  18. 76 FR 32258 - Access to Aircraft Situation Display (ASDI) and National Airspace System Status Information (NASSI)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ..., Global Business Travel Association (GBTA), McAfee & Taft P.C. (a law firm), and Patton Boggs LLP (a law... complete information, due primarily to concerns of the National Business Aviation Association (NBAA) to... business according to a published listing of service and schedule, general aviation operators do not. It is...

  19. Aviation Pilot Training I and Aviation Technician I: Task Analyses. Semester I. Field Review Copy.

    ERIC Educational Resources Information Center

    Upchurch, Richard

    This guide for aviation pilot and aviation technician training begins with a course description, resource information, and a course outline. Tasks/competencies are categorized into 10 concept/duty areas: understanding aviation career opportunities; comprehending the history of aviation; understanding classes, categories, and types of aircraft;…

  20. National Airspace System : observations on the wide area augmentation system

    DOT National Transportation Integrated Search

    1997-10-01

    This congressional testimony by Gerald L. Dillingham, Associate Director, : Transportation Issues Resources, Community, and Economic Development Division : discusses the Federal Aviation Administration's (FAA) Wide Area Augmentation : System (WAAS) p...

  1. Let's Explore Aviation

    ERIC Educational Resources Information Center

    Arvin, Jean

    1977-01-01

    Presents an intermediate level social studies unit dealing with air education, social aspects of aviation, and the importance of aviation to industry and transportation. Includes objectives, twelve activities, and evaluative procedures. (SL)

  2. Implementation of alternative bio-based fuels in aviation: The Clean Airports Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shauck, M.E.; Zanin, M.G.

    1997-12-31

    The Renewable Aviation Fuels Development Center at Baylor University in Waco, Texas, was designated, in March 1996, by the US Department of Energy (US DOE) as the national coordinator of the Clean Airports Program. This program, a spin-off of the Clean Cities Program, was initiated to increase the use of alternative fuels in aviation. There are two major fuels used in aviation today, the current piston engine aviation gasoline, and the current turbine engine fuel. The environmental impact of each of these fuels is significant. Aviation Gasoline (100LL), currently used in the General Aviation piston engine fleet, contributes 100% ofmore » the emissions containing lead in the USA today. In the case of the turbine engine fuel (Jet fuel), there are two major environmental impacts to be considered: the local, in the vicinity of the airports, and the global impact on climate change. The Clean Airports Program was established to promote the use of clean burning fuels in order to achieve and maintain clean air at and in the vicinities of airports through the use of alternative fuel-powered air and ground transportation vehicles.« less

  3. Space Debris Alert System for Aviation

    NASA Astrophysics Data System (ADS)

    Sgobba, Tommaso

    2013-09-01

    Despite increasing efforts to accurately predict space debris re-entry, the exact time and location of re-entry is still very uncertain. Partially, this is due to a skipping effect uncontrolled spacecraft may experience as they enter the atmosphere at a shallow angle. Such effect difficult to model depends on atmospheric variations of density. When the bouncing off ends and atmospheric re-entry starts, the trajectory and the overall location of surviving fragments can be precisely predicted but the time to impact with ground, or to reach the airspace, becomes very short.Different is the case of a functional space system performing controlled re-entry. Suitable forecasts methods are available to clear air and maritime traffic from hazard areas (so-called traffic segregation).In US, following the Space Shuttle Columbia accident in 2003, a re-entry hazard areas location forecast system was putted in place for the specific case of major malfunction of a Reusable Launch Vehicles (RLV) at re-entry. The Shuttle Hazard Area to Aircraft Calculator (SHAAC) is a system based on ground equipment and software analyses and prediction tools, which require trained personnel and close coordination between the organization responsible for RLV operation (NASA for Shuttle) and the Federal Aviation Administration. The system very much relies on the operator's capability to determine that a major malfunction has occurred.This paper presents a US pending patent by the European Space Agency, which consists of a "smart fragment" using a GPS localizer together with pre- computed debris footprint area and direct broadcasting of such hazard areas.The risk for aviation from falling debris is very remote but catastrophic. Suspending flight over vast swath of airspace for every re-entering spacecraft or rocket upper stage, which is a weekly occurrence, would be extremely costly and disruptive.The Re-entry Direct Broadcasting Alert System (R- DBAS) is an original merging and evolution of the Re

  4. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project KDP-C Review

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie; Sakahara, Robert; Hackenberg, Davis; Johnson, William

    2017-01-01

    The topics discussed are the UAS-NAS project life-cycle and ARMD thrust flow down, as well as the UAS environments and how we operate in those environments. NASA's Armstrong Flight Research Center at Edwards, CA, is leading a project designed to help integrate unmanned air vehicles into the world around us. The Unmanned Aircraft Systems Integration in the National Airspace System project, or UAS in the NAS, will contribute capabilities designed to reduce technical barriers related to safety and operational challenges associated with enabling routine UAS access to the NAS. The project falls under the Integrated Systems Research Program office managed at NASA Headquarters by the agency's Aeronautics Research Mission Directorate. NASA's four aeronautics research centers - Armstrong, Ames Research Center, Langley Research Center, and Glenn Research Center - are part of the technology development project. With the use and diversity of unmanned aircraft growing rapidly, new uses for these vehicles are constantly being considered. Unmanned aircraft promise new ways of increasing efficiency, reducing costs, enhancing safety and saving lives 460265main_ED10-0132-16_full.jpg Unmanned aircraft systems such as NASA's Global Hawks (above) and Predator B named Ikhana (below), along with numerous other unmanned aircraft systems large and small, are the prime focus of the UAS in the NAS effort to integrate them into the national airspace. Credits: NASA Photos 710580main_ED07-0243-37_full.jpg The UAS in the NAS project envisions performance-based routine access to all segments of the national airspace for all unmanned aircraft system classes, once all safety-related and technical barriers are overcome. The project will provide critical data to such key stakeholders and customers as the Federal Aviation Administration and RTCA Special Committee 203 (formerly the Radio Technical Commission for Aeronautics) by conducting integrated, relevant system-level tests to adequately address

  5. An Evaluation of Automatic Control System Concepts for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.

    1990-01-01

    A piloted simulation study of automatic longitudinal control systems for general aviation airplanes has been conducted. These automatic control systems were designed to make the simulated airplane easy to fly for a beginning or infrequent pilot. Different control systems are presented and their characteristics are documented. In a conventional airplane control system each cockpit controller commands combinations of both the airspeed and the vertical speed. The best system in the present study decoupled the airspeed and vertical speed responses to cockpit controller inputs. An important feature of the automatic system was that neither changing flap position nor maneuvering in steeply banked turns affected either the airspeed or the vertical speed. All the pilots who flew the control system simulation were favorably impressed with the very low workload and the excellent handling qualities of the simulated airplane.

  6. Well clear: General aviation and commercial pilots' perception of unmanned aerial vehicles in the national airspace system

    NASA Astrophysics Data System (ADS)

    Ott, Joseph T.

    The purpose of this research was to determine how different pilot types perceived the subjective concept of the Well Clear Boundary (WCB) and to observe if that boundary changed when dealing with manned versus unmanned aircraft systems (UAS) as well as the effects of other variables. Pilots' perceptions of the WCB were collected objectively through simulator recordings and subjectively through questionnaires. Together, these metrics provided quantitative and qualitative data about pilot WCB perception. The objective results of this study showed significant differences in WCB perception between two different pilot types, as well as WCB significant differences when comparing two different intruder types (manned versus unmanned aircraft). These differences were dependent on other manipulated variables, including intruder approach angle, ownship speed, and background traffic levels. Subjectively, there were evident differences in WCB perception across pilot types; general aviation (GA) pilots appeared to trust UAS aircraft slightly more than did the more experienced Airline Transport Pilots (ATPs). Overall, it is concluded that pilots' mental models of the WCB are more easily perceived as time-based boundaries in front of ownship, while being more easily perceived as distance-based boundaries to the rear of ownship.

  7. A Virtual Laboratory for Aviation and Airspace Prognostics Research

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan; Gorospe, George; Teubert, Christ; Quach, Cuong C.; Hogge, Edward; Darafsheh, Kaveh

    2017-01-01

    Integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, and other aviation technologies, in the airspace is becoming more and more complicated, and will continue to do so in the future. Inclusion of new technology and complexity into the airspace increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems and systems of systems can be challenging, expensive, and at times unsafe when implementing real life scenarios. The application of prognostics to aviation and airspace management may produce new tools and insight into these problems. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. In our research, we develop a live, distributed, hardware- in-the-loop Prognostics Virtual Laboratory testbed for aviation and airspace prognostics. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. In our earlier work1 we discussed the initial Prognostics Virtual Laboratory testbed development work and related results for milestones 1 & 2. This paper describes the design, development, and testing of the integrated tested which are part of milestone 3, along with our next steps for validation of this work. Through a framework consisting of software/hardware modules and associated interface clients, the distributed testbed enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. The testbed modules can be used cohesively to construct complex and relevant airspace scenarios for research. Four modules are key to this research: the virtual aircraft module which uses the X

  8. Aviation-Related Wildland Firefighter Fatalities--United States, 2000-2013.

    PubMed

    Butler, Corey R; O'Connor, Mary B; Lincoln, Jennifer M

    2015-07-31

    Airplanes and helicopters are integral to the management and suppression of wildfires, often operating in high-risk, low-altitude environments. To update data on aviation-related wildland firefighting fatalities, identify risk factors, and make recommendations for improved safety, CDC's National Institute for Occupational Safety and Health (NIOSH) analyzed reports from multiple data sources for the period 2000-2013. Among 298 wildland firefighter fatalities identified during 2000-2013, 78 (26.2%) were aviation-related occupational fatalities that occurred during 41 separate events involving 42 aircraft. Aircraft crashes accounted for 38 events. Pilots, copilots, and flight engineers represented 53 (68%) of the aviation-related fatalities. The leading causes of fatal aircraft crashes were engine, structure, or component failure (24%); pilot loss of control (24%); failure to maintain clearance from terrain, water, or objects (20%); and hazardous weather (15%). To reduce fatalities from aviation-related wildland firefighting activities, stringent safety guidelines need to be followed during all phases of firefighting, including training exercises. Crew resource management techniques, which use all available resources, information, equipment, and personnel to achieve safe and efficient flight operations, can be applied to firefighting operations.

  9. NASA EPSCoR Nebraska Preparation Grant: Year 1. Research Cluster: Small Aircraft Transportation System/Nebraska Implementation Template (SATS-NIT)

    NASA Technical Reports Server (NTRS)

    Bartle, John R.; Bowen, Brent D.; Gogos, George; Hinton, David W.; Holmes, Bruce J.; Lehrer, Henry R.; Moussavi, Massoum; Reed, B. J.; Schaaf, Michaela M.; Smith, Russell L.

    2000-01-01

    NASA, the U.S. Department of Transportation/Federal Aviation Administration, industry stakeholders, and academia have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to improve air access and bring next-generation technologies to small communities. The envisioned outcome is to improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public use general aviation airports. To facilitate this initiative, SATS stakeholders must plan, coordinate, and implement a comprehensive upgrade of public infrastructure within the framework of the national air transportation system. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the under-utilized airspace and general aviation facilities. The SATS investments, which begin in FY 2001, are designed to support the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  10. General aviation and community development

    NASA Technical Reports Server (NTRS)

    Sincoff, M. Z. (Editor); Dajani, J. S. (Editor)

    1975-01-01

    The summer program is summarized. The reports presented concern (1) general aviation components, (2) general aviation environment, (3) community perspective, and (4) transportation and general aviation in Virginia.

  11. An analysis of students' perceptions to Just Culture in the aviation industry: A study of a Midwest aviation training program (case study)

    NASA Astrophysics Data System (ADS)

    Mohammed, Lazo Akram

    The research will focus on the discussion of the ways in which the top-down nature of Safety Management Systems (SMS) can be used to create `Just Culture' within the aviation industry. Specific focus will be placed on an aviation program conducted by an accredited university, with the institution in focus being the midwest aviation training program. To this end, a variety of different aspects of safety culture in aviation and aviation management will be considered. The focus on the implementation strategies vital for the existence of a `Just Culture' within the aviation industry in general, and particularly within the aforementioned institution's aerospace program. Some ideas and perspectives will be subsequently suggested and designed for implementation, within the institution's program. The aspect of enhancing the overall safety output gained, from the institution, as per standards set within the greater American Aviation industry will be examined. Overall, the paper will seek to showcase the vital importance of implementing the SMS standardization model in the institution's Aerospace program, while providing some areas of concern. Such concerns will be based on a number of issues, which are pertinent to the overall enhancement of the institution's observance of aviation safety. This will be both in general application of an SMS, as well as personalized/ specific applications in areas in need of improvement. Overall, through the paper, the author hopes to provide a better understanding of the institution's placement, with regard to not only aviation safety, but also the implementation of an effective `Just Culture' within the program.

  12. Designing a Better Navy Aviation Retention Bonus

    DTIC Science & Technology

    2017-03-01

    5 A. AVIATOR CAREER PROGRESSION ...................................................5 1. Flight...7  Figure 3.  Aviation Officer Career Progression...ABBREVIATIONS ACCP Aviation Career Continuation Pay ACIP Aviation Career Incentive Pay ACP Aviation Continuation Pay ACRB Aviation Command Retention Bonus

  13. New Technologies for Reducing Aviation Weather-Related Accidents

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Watson, James F., III; Jarrell, Michael A.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) has developed technologies to reduce aviation weather-related accidents. New technologies are presented for data-link and display of weather information to aircraft in flight, for detection of turbulence ahead of aircraft in flight, and for automated insitu reporting of atmospheric conditions from aircraft.

  14. An Overview of the NASA Aviation Safety Program Propulsion Health Monitoring Element

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2000-01-01

    The NASA Aviation Safety Program (AvSP) has been initiated with aggressive goals to reduce the civil aviation accident rate, To meet these goals, several technology investment areas have been identified including a sub-element in propulsion health monitoring (PHM). Specific AvSP PHM objectives are to develop and validate propulsion system health monitoring technologies designed to prevent engine malfunctions from occurring in flight, and to mitigate detrimental effects in the event an in-flight malfunction does occur. A review of available propulsion system safety information was conducted to help prioritize PHM areas to focus on under the AvSP. It is noted that when a propulsion malfunction is involved in an aviation accident or incident, it is often a contributing factor rather than the sole cause for the event. Challenging aspects of the development and implementation of PHM technology such as cost, weight, robustness, and reliability are discussed. Specific technology plans are overviewed including vibration diagnostics, model-based controls and diagnostics, advanced instrumentation, and general aviation propulsion system health monitoring technology. Propulsion system health monitoring, in addition to engine design, inspection, maintenance, and pilot training and awareness, is intrinsic to enhancing aviation propulsion system safety.

  15. A Study of Future Communications Concepts and Technologies for the National Airspace System-Part I

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise S.; Apaza, Rafael D.; Wichgers, Joel M.; Haynes, Brian; Roy, Aloke

    2013-01-01

    The National Aviation and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present progress made in the studies and describe the communications challenges and opportunities that have been identified during the studies' first phase.

  16. NASA Research on General Aviation Power Plants

    NASA Technical Reports Server (NTRS)

    Stewart, W. L.; Weber, R. J.; Willis, E. A.; Sievers, G. K.

    1978-01-01

    Propulsion systems are key factors in the design and performance of general aviation airplanes. NASA research programs that are intended to support improvements in these engines are described. Reciprocating engines are by far the most numerous powerplants in the aviation fleet; near-term efforts are being made to lower their fuel consumption and emissions. Longer-term work includes advanced alternatives, such as rotary and lightweight diesel engines. Work is underway on improved turbofans and turboprops.

  17. Crew Factors in Flight Operations XV: Alertness Management in General Aviation Education Module

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Co, Elizabeth L.; Neri, David F.; Oyung, Raymond L.; Mallis, Melissa M.; Cannon, Mary M. (Technical Monitor)

    2002-01-01

    Regional operations encompass a broad range of pilots and equipment. This module is intended to help all those involved in regional aviation, including pilots, schedulers, dispatchers, maintenance technicians, policy makers, and others, to understand the physiological factors underlying fatigue, how flight operations affect fatigue, and what can be done to counteract fatigue and maximize alertness and performance in their operations. The overall purpose of this module is to promote aviation safety, performance, and productivity. It is intended to meet three specific objectives: (1) to explain the current state of knowledge about the physiological mechanisms underlying fatigue; (2) to demonstrate how this knowledge can be applied to improving flight crew sleep, performance, and alertness; and (3) to offer strategies for alertness management. Aviation Safety Reporting System (ASRS) and National Transportation Safety Board (NISH) reports are used throughout this module to demonstrate that fatigue is a safety issue in the regional operations community. The appendices at the end of this module include the ASRS reports used for the examples contained in this publication, brief introductions to sleep disorders and relaxation techniques, summaries of relevant NASA publications, and a list of general readings on sleep, sleep disorders, and circadian rhythms.

  18. The Air Force Aviation Investment Challenge

    DTIC Science & Technology

    2015-12-17

    7 Procurement percentage excludes modification funding. 8 IOC from Department of Defense, Annual Aviation Inventory and Funding Plan, Fiscal Years...its engineering and manufacturing development phase, is projected to triple over the course of the FYDP. 9 The newer programs begin with relatively...Through a Non-Air Force Budget As part of its markup of the Navy’s proposed FY2015 budget, Congress created the National Sea- Based Deterrence Fund

  19. Do we need a national incident reporting system for medical imaging?

    PubMed

    Itri, Jason N; Krishnaraj, Arun

    2012-05-01

    The essential role of an incident reporting system as a tool to improve safety and reliability has been described in high-risk industries such as aviation and nuclear power, with anesthesia being the first medical specialty to successfully integrate incident reporting into a comprehensive quality improvement strategy. Establishing an incident reporting system for medical imaging that effectively captures system errors and drives improvement in the delivery of imaging services is a key component of developing and evaluating national quality improvement initiatives in radiology. Such a national incident reporting system would be most effective if implemented as one piece of a comprehensive quality improvement strategy designed to enhance knowledge about safety, identify and learn from errors, raise standards and expectations for improvement, and create safer systems through implementation of safe practices. The potential benefits of a national incident reporting system for medical imaging include reduced morbidity and mortality, improved patient and referring physician satisfaction, reduced health care expenses and medical liability costs, and improved radiologist satisfaction. The purposes of this article are to highlight the positive impact of external reporting systems, discuss how similar advancements in quality and safety can be achieved with an incident reporting system for medical imaging in the United States, and describe current efforts within the imaging community toward achieving this goal. Copyright © 2012 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  20. 76 FR 11308 - Aviation Noise Impacts Roadmap Annual Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... impacts. The purpose of the meeting is to update and advance our collective scientific knowledge of the... Aviation Administration (FAA), National Aeronautics and Space Administration (NASA), Department of Defense... knowledge gaps and future research activities. The intent of the Roadmap is to define systematic, focused...

  1. Aeronautics and Aviation Science: Careers and Opportunities Project

    NASA Technical Reports Server (NTRS)

    Texter, P. Cardie

    1998-01-01

    The National Aeronautics and Space Administration funded project, Aeronautics and Aviation Science: Careers and Opportunities has been in operation since July, 1995. This project operated as a collaboration with Massachusetts Corporation for Educational Telecommunications, the Federal Aviation Administration, Bridgewater State College and four targeted "core sites" in the greater Boston area. In its first and second years, a video series on aeronautics and aviation science was developed and broadcast via "live, interactive" satellite feed. Accompanying teacher and student supplementary instructional materials for grades 6-9 were produced and disseminated by the Massachusetts Corporation for Educational Telecommunications (MCET). In the MCET grant application it states that project Take Off! in its initial phase would recruit and train teachers at "core" sites in the greater Boston area, as well as opening participation to other on-line users of MCET's satellite feeds. "Core site" classrooms would become equipped so that teachers and students might become engaged in an interactive format which aimed at not only involving the students during the "live" broadcast of the instructional video series, but which would encourage participation in electronic information gathering and sharing among participants. As a Take Off! project goal, four schools with a higher than average proportion of minority and underrepresented youth were invited to become involved with the project to give these students the opportunity to consider career exploration and development in the field of science aviation and aeronautics. The four sites chosen to participate in this project were: East Boston High School, Dorchester High School, Randolph Junior-Senior High School and Malden High School. In year 3 Dorchester was unable to continue to fully participate and exited out. Danvers was added to the "core site" list in year 3. In consideration of Goals 2000, the National Science Foundation

  2. Measuring weather for aviation safety in the 1980's

    NASA Technical Reports Server (NTRS)

    Wedan, R. W.

    1980-01-01

    Requirements for an improved aviation weather system are defined and specifically include the need for (1) weather observations at all airports with instrument approaches, (2) more accurate and timely radar detection of weather elements hazardous to aviation, and (3) better methods of timely distribution of both pilot reports and ground weather data. The development of the discrete address beacon system data link, Doppler weather radar network, and various information processing techniques are described.

  3. Aircraft Fuel, Fuel Metering, Induction and Exhaust Systems (Course Outline), Aviation Mechanics (Power Plant): 9057.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to help the trainee gain the skills and knowledge necessary to become an aviation powerplant mechanic. The course outlines the theory of operation of various fuel systems, fuel metering, induction, and exhaust system components with an emphasis on troubleshooting, maintenance, and…

  4. Human error analysis of commercial aviation accidents using the human factors analysis and classification system (HFACS)

    DOT National Transportation Integrated Search

    2001-02-01

    The Human Factors Analysis and Classification System (HFACS) is a general human error framework : originally developed and tested within the U.S. military as a tool for investigating and analyzing the human : causes of aviation accidents. Based upon ...

  5. Aviation. Teacher Resources.

    ERIC Educational Resources Information Center

    2001

    This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on aviation. The guide is divided into seven sections: (1) "Drawing Activities" (Airmail Art; Eyewitness; Kite Power); (2) "Geography" (U.S. Airports); (3) "Information" (Aviation Alphabet; Glossary; Four Forces…

  6. Progress on coal-derived fuels for aviation systems

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1978-01-01

    Synthetic aviation kerosene (Syn. Jet-A), liquid methane (LCH4), and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Liquid hydrogen aircraft configurations, their fuel systems, and their ground requirements at the airport are identified. These aircraft appear viable, particularly for long haul use, where aircraft fueled with coal derived LH2 would consume 9 percent less coal resources than would aircraft fueled with coal derived Syn. Jet-A. Distribution of hydrogen from the point of manufacture to airports may pose problems. Synthetic JET-A would appear to cause fewer concerns to the air transportation industry. Of the three candidate fuels, LCH4 is the most energy efficient to produce, and an aircraft fueled with coal derived LCH4 may provide both the most efficient utilization of coal resources and the least expensive ticket as well.

  7. Agricultural aviation research

    NASA Technical Reports Server (NTRS)

    Chevalier, H. L. (Compiler); Bouse, L. F. (Compiler)

    1977-01-01

    A compilation of papers, comments, and results is provided during a workshop session. The purpose of the workshop was to review and evaluate the current state of the art of agricultural aviation, to identify and rank potentially productive short and long range research and development areas, and to strengthen communications between research scientists and engineers involved in agricultural research. Approximately 71 individuals actively engaged in agricultural aviation research were invited to participate in the workshop. These were persons familiar with problems related to agricultural aviation and processing expertise which are of value for identifying and proposing beneficial research.

  8. SHM reliability and implementation - A personal military aviation perspective

    NASA Astrophysics Data System (ADS)

    Lindgren, Eric A.

    2016-02-01

    Structural Health Monitoring has been proposed as a solution to address the needs of military aviation to reduce the time and cost to perform nondestructive inspections. While the potential to realize significant benefits exist, there are considerations that have to be addressed before such systems can be integrated into military platforms. Some considerations are pervasive to all aviation, such as how to assess the reliability and reproducible capability of these systems. However, there are other challenges unique to military aviation that must be overcome before these types of systems can be used. This presentation and paper are intended as a complement to the review of the outcome of the SAE G-11 SHM committee special workshop on SHM reliability in April of 2015. It will address challenges unique to military aviation that stem from different approaches to managing structural integrity (i.e. safety), frequency of use, design differences, various maintenance practices, and additional descriptions addressing differences in the execution of inspections. The objective of this presentation is to improve the awareness of the research and development community to the different and unique requirements found in military aviation, including the differences between countries, services, and aircraft type. This information should assist the research and development community in identifying and attacking key challenges. It is not intended to be comprehensive overview of all stakeholders' perspectives, but to serve as a launch point for additional discussion and exploration of opportunities to realize the potential of Structural Health Monitoring to assist in the management of military aviation assets. The views expressed in this publication are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government.

  9. ARMD Strategic Thrust 6: Assured Autonomy for Aviation Transformation

    NASA Technical Reports Server (NTRS)

    Ballin, Mark; Holbrook, Jon; Sharma, Shivanjli

    2016-01-01

    In collaboration with the external community and other government agencies, NASA will develop enabling technologies, standards, and design guidelines to support cost-effective applications of automation and limited autonomy for individual components of aviation systems. NASA will also provide foundational knowledge and methods to support the next epoch. Research will address issues of verification and validation, operational evaluation, national policy, and societal cost-benefit. Two research and development approaches to aviation autonomy will advance in parallel. The Increasing Autonomy (IA) approach will seek to advance knowledge and technology through incremental increases in machine-based support of existing human-centered tasks, leading to long-term reallocation of functions between humans and machines. The Autonomy as a New Technology (ANT) approach seeks advances by developing technology to achieve goals that are not currently possible using human-centered concepts of operation. IA applications are mission-enhancing, and their selection will be based on benefits achievable relative to existing operations. ANT applications are mission-enabling, and their value will be assessed based on societal benefit resulting from a new capability. The expected demand for small autonomous unmanned aircraft systems (UAS) provides an opportunity for development of ANT applications. Supervisory autonomy may be implemented as an expansion of the number of functions or systems that may be controlled by an individual human operator. Convergent technology approaches, such as the use of electronic flight bags and existing network servers, will be leveraged to the maximum extent possible.

  10. Federal Aviation Administration's Standard Terminal Automation Replacement System (STARS)

    DOT National Transportation Integrated Search

    1997-11-17

    On October 30, 1997, at a hearing of the Subcommittee on Transportation and Related Agencies, Committee on Appropriations, U.S. House of Representatives, OIG provided their observations on the Federal Aviation Administration's (FAA) Standard Terminal...

  11. 77 FR 33777 - General Aviation Safety Forum: Climbing to the Next Level

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... NATIONAL TRANSPORTATION SAFETY BOARD General Aviation Safety Forum: Climbing to the Next Level The National Transportation Safety Board (NTSB) will convene a 2- day forum focused on safety issues related to... the Next Level,'' will be chaired by NTSB Chairman Deborah A. P. Hersman and all five Board Members...

  12. Develop a Normative or Descriptive Model of the International/Domestic Civil Aviation Industry. Volume 3.

    DTIC Science & Technology

    1982-09-30

    agencies, and airports, conducting aviation safety related- research and development, and managing and operating the national air space system. At the end of...1978 there were almost 800,000 active FAA certificated , t including slightly over 200,000 student pilots.2 Mechanics, control tower operators, and...U.S., and 107 overseas. The FAA operates and maintains 25 air route traffic control centers, 428 airport traffic control centers, 21 ccmbined stations

  13. Aviation Instructor's Handbook.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This handbook is designed for ground instructors, flight instructors, and aviation maintenance instructors, providing beginning instructors the foundation to understand and apply fundamentals of instruction. The handbook also provides aviation instructors with up-to-date information on learning and teaching, and how to relate this information to…

  14. Analysis of technology requirements and potential demand for general aviation avionics systems for operation in the 1980's

    NASA Technical Reports Server (NTRS)

    Cohn, D. M.; Kayser, J. H.; Senko, G. M.; Glenn, D. R.

    1974-01-01

    Avionics systems are identified which promise to reduce economic constraints and provide significant improvements in performance, operational capability and utility for general aviation aircraft in the 1980's.

  15. Human factors in aviation maintenance, phase three : volume 1 progress report.

    DOT National Transportation Integrated Search

    1993-08-01

    The third phase of research on Human Factors in Aviation Maintenance continued to look at the human's role in the aviation maintenance system via investigations, demonstrations, and evaluations of the research program outputs. This report describes a...

  16. Human factors in aviation maintenance : phase three, volume 2 progress report.

    DOT National Transportation Integrated Search

    1994-07-01

    The third phase of research on human factors in aviation maintenance continued to look at the human's role in the aviation maintenance system via investigations, demonstrations, and evaluations of the research program outputs. This report describes t...

  17. General aviation IFR operational problems

    NASA Technical Reports Server (NTRS)

    Bolz, E. H.; Eisele, J. E.

    1979-01-01

    Operational problems of general aviation IFR operators (particularly single pilot operators) were studied. Several statistical bases were assembled and utilized to identify the more serious problems and to demonstrate their magnitude. These bases include official activity projections, historical accident data and delay data, among others. The GA operating environment and cockpit environment were analyzed in detail. Solutions proposed for each of the problem areas identified are based on direct consideration of currently planned enhancements to the ATC system, and on a realistic assessment of the present and future limitations of general aviation avionics. A coordinated set of research program is suggested which would provide the developments necessary to implement the proposed solutions.

  18. Fatal aviation accidents in Lower Saxony from 1979 to 1996.

    PubMed

    Ast, F W; Kernbach-Wighton, G; Kampmann, H; Koops, E; Püschel, K; Tröger, H D; Kleemann, W J

    2001-06-01

    So far no national or regional studies have been published in Germany regarding the number of fatal aviation accidents and results of autopsy findings. Therefore, we evaluated all fatal aviation accidents occurring in Lower Saxony from 1979 to 1996. A total of 96 aviation accidents occurred in this period involving 73 aeroplanes. The crashes resulted in the death of 154 people ranging in age from 19 to 68 years. The greatest number of victims in a single crash of an aircraft was (n=7). Other types of fatal accidents were crashes of aircraft and helicopter while on the ground (n=5), hot-air balloons (n=2), parachutes (n=10), hang glider accidents (n=5) and the striking of a bystander by a model airplane. Autopsies were performed on 68 of the 154 victims (44.2%), including 39 of the 73 pilots (53.4%). Some of the autopsies yielded findings relevant to the cause of the accident: gunshot wounds, the presence of alcohol or drugs in blood and preexisting diseases. Our findings emphasize the need for autopsy on all aviation accident victims, especially pilots, as this is the only reliable method to uncover all factors contributing to an accident.

  19. Development of Low Cost Satellite Communications System for Helicopters and General Aviation

    NASA Technical Reports Server (NTRS)

    Farazian, K.; Abbe, B.; Divsalar, D.; Raphaeli, D.; Tulintseff, A.; Wu, T.; Hinedi, S.

    1994-01-01

    In this paper, the development of low-cost satellite communications (SATCOM) system for helicopters and General Aviation (GA) aircrafts is described. System design and standards analysis have been conducted to meet the low-cost, light-weight, small-size and low-power system requirements for helicopters and GA aircraft environments. Other specific issues investigated include coding schemes, spatial diversity, and antenna arraying techniques. Coding schemes employing Channel State Information (CSI) and inverleaving have been studied in order to mitigate severe banking angle fading and the periodic RF signal blockage due to the helicopter rotor blades. In addition, space diversity and antenna arraying techniques have been investigated to further reduce the fading effects and increase the link margin.

  20. A review of NASA's propulsion programs for aviation

    NASA Technical Reports Server (NTRS)

    Stewart, W. L.; Johnson, H. W.; Weber, R. J.

    1978-01-01

    A review of five NASA engine-oriented propulsion programs of major importance to civil aviation are presented and discussed. Included are programs directed at exploring propulsion system concepts for (1) energy conservation subsonic aircraft (improved current turbofans, advanced turbofans, and advanced turboprops); (2) supersonic cruise aircraft (variable cycle engines); (3) general aviation aircraft (improved reciprocating engines and small gas turbines); (4) powered lift aircraft (advanced turbofans); and (5) advanced rotorcraft.

  1. 75 FR 67805 - The Future of Aviation Advisory Committee (FAAC) Subcommittee on Aviation Safety; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ...-2010-0074] The Future of Aviation Advisory Committee (FAAC) Subcommittee on Aviation Safety; Notice of..., announces a meeting of the FAAC Subcommittee on Aviation Safety, which will be held at the offices [[Page... needs, challenges, and opportunities of the global economy. The Subcommittee on Aviation Safety will...

  2. Tennessee long-range transportation plan : aviation system plan update

    DOT National Transportation Integrated Search

    2005-01-01

    This plan update is streamlined in nature and will only consider the ttates six commercial service airports and 14 regional airports. The tasks completed for this update included an inventory of facilities, aviation industry review, review and upd...

  3. Taxation of United States general aviation

    NASA Astrophysics Data System (ADS)

    Sobieralski, Joseph Bernard

    General aviation in the United States has been an important part of the economy and American life. General aviation is defined as all flying excluding military and scheduled airline operations, and is utilized in many areas of our society. The majority of aircraft operations and airports in the United States are categorized as general aviation, and general aviation contributes more than one percent to the United States gross domestic product each year. Despite the many benefits of general aviation, the lead emissions from aviation gasoline consumption are of great concern. General aviation emits over half the lead emissions in the United States or over 630 tons in 2005. The other significant negative externality attributed to general aviation usage is aircraft accidents. General aviation accidents have caused over 8000 fatalities over the period 1994-2006. A recent Federal Aviation Administration proposed increase in the aviation gasoline tax from 19.4 to 70.1 cents per gallon has renewed interest in better understanding the implications of such a tax increase as well as the possible optimal rate of taxation. Few studies have examined aviation fuel elasticities and all have failed to study general aviation fuel elasticities. Chapter one fills that gap and examines the elasticity of aviation gasoline consumption in United States general aviation. Utilizing aggregate time series and dynamic panel data, the price and income elasticities of demand are estimated. The price elasticity of demand for aviation gasoline is estimated to range from -0.093 to -0.185 in the short-run and from -0.132 to -0.303 in the long-run. These results prove to be similar in magnitude to automobile gasoline elasticities and therefore tax policies could more closely mirror those of automobile tax policies. The second chapter examines the costs associated with general aviation accidents. Given the large number of general aviation operations as well as the large number of fatalities and

  4. 1978 Status Report on Aviation and Space Related High School Courses

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1978

    1978-01-01

    Presents a national compilation of statistical data pertaining to secondary level aviation and aerospace education for the 1977-78 school year. Data include trends and patterns of course structure, design, and operation in table form. (SL)

  5. Technologies to counter aviation security threats

    NASA Astrophysics Data System (ADS)

    Karoly, Steve

    2017-11-01

    The Aviation and Transportation Security Act (ATSA) makes TSA responsible for security in all modes of transportation, and requires that TSA assess threats to transportation, enforce security-related regulations and requirements, and ensure the adequacy of security measures at airports and other transportation facilities. Today, TSA faces a significant challenge and must address a wide range of commercial, military grade, and homemade explosives and these can be presented in an infinite number of configurations and from multiple vectors. TSA screens 2 million passengers and crew, and screens almost 5 million carry-on items and 1.2 million checked bags daily. As TSA explores new technologies for improving efficiency and security, those on the forefront of research and development can help identify unique and advanced methods to combat terrorism. Research and Development (R&D) drives the development of future technology investments that can address an evolving adversary and aviation threat. The goal is to rethink the aviation security regime in its entirety, and rather than focusing security at particular points in the enterprise, distribute security from the time a reservation is made to the time a passenger boards the aircraft. The ultimate objective is to reengineer aviation security from top to bottom with a continued focus on increasing security throughout the system.

  6. General aviation airports : a national asset, May 2012.

    DOT National Transportation Integrated Search

    2012-05-01

    There are over 19,000 airports, heliports, seaplane bases, and other landing facilities in the United States and its territories. Of these, 3,330 are included in the FAAs National Plan of Integrated Airport Systems (NPIAS), are open to the public,...

  7. Aviation Fueling: A Cleaner, Greener Approach

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.; Shouse, Dale T.

    2010-01-01

    Projected growth of aviation depends on fueling where specific needs must be met. Safety is paramount, and along with political, social, environmental and legacy transport systems requirements, alternate aviation fueling becomes an opportunity of enormous proportions. Biofuels sourced from halophytes, algae, cyanobacteria, and weeds using wastelands, waste water, and seawater have the capacity to be drop-in fuel replacements for petroleum fuels. Biojet fuels from such sources solves the aviation CO2 emissions issue and do not compete with food or freshwater needs. They are not detrimental to the social or environmental fabric and use the existing fuels infrastructure. Cost and sustainable supply remains the major impediments to alternate fuels. Halophytes are the near-term solution to biomass/biofuels capacity at reasonable costs; they simply involve more farming, at usual farming costs. Biofuels represent a win-win approach, proffering as they do at least the ones we are studying massive capacity, climate neutral-to-some sequestration, and ultimately, reasonable costs.

  8. Flight test and evaluation of Omega navigation for general aviation

    NASA Technical Reports Server (NTRS)

    Hwoschinsky, P. V.

    1975-01-01

    A seventy hour flight test program was performed to determine the suitability and accuracy of a low cost Omega navigation receiver in a general aviation aircraft. An analysis was made of signal availability in two widely separated geographic areas. Comparison is made of the results of these flights with other navigation systems. Conclusions drawn from the test experience indicate that developmental system improvement is necessary before a competent fail safe or fail soft area navigation system is offered to general aviation.

  9. General Aviation Task Force report

    NASA Technical Reports Server (NTRS)

    1993-01-01

    General aviation is officially defined as all aviation except scheduled airlines and the military. It is the only air transportation to many communities throughout the world. In order to reverse the recent decline in general aviation aircraft produced in the United States, the Task Force recommends that NASA provide the expertise and facilities such as wind tunnels and computer codes for aircraft design. General aviation manufacturers are receptive to NASA's innovations and technological leadership and are expected to be effective users of NASA-generated technologies.

  10. Aviation Education Services and Resources.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Office of General Aviation.

    A list of sources of information and material relating to aviation education is presented in this pamphlet issued in May, 1972. Following a brief description of the mission of the Federal Aviation Administration (FAA), reference materials mostly appropriate for school use are incorporated under the headings: Aviation Education Workshops, Careers…

  11. Collegiate Aviation Review. September 1994.

    ERIC Educational Resources Information Center

    Barker, Ballard M., Ed.

    This document contains four papers on aviation education. The first paper, "Why Aren't We Teaching Aeronautical Decision Making?" (Richard J. Adams), reviews 15 years of aviation research into the causes of human performance errors in aviation and provides guidelines for designing the next generation of aeronautical decision-making materials.…

  12. Collegiate Aviation Review. September 1996.

    ERIC Educational Resources Information Center

    Barker, Ballard M., Ed.

    This document contains three papers on aviation education. "Academic Integrity in Higher Education: Is Collegiate Aviation Education at Risk?" (Jeffrey A. Johnson) discusses academic integrity and legal issues in higher education and argues that academic integrity needs to be an integral part of collegiate aviation education if students expect to…

  13. A pilot study of human response to general aviation aircraft noise

    NASA Technical Reports Server (NTRS)

    Stearns, J.; Brown, R.; Neiswander, P.

    1983-01-01

    A pilot study, conducted to evaluate procedures for measuring the noise impact and community response to general aviation aircraft around Torrance Municipal Airport, a typical large GA airport, employed Torrance Airport's computer-based aircraft noise monitoring system, which includes nine permanent monitor stations surrounding the airport. Some 18 residences near these monitor stations were equipped with digital noise level recorders to measure indoor noise levels. Residents were instructed to fill out annoyance diaries for periods of 5-6 days, logging the time of each annoying aircraft overflight noise event and judging its degree of annoyance on a seven-point scale. Among the noise metrics studied, the differential between outdoor maximum A-weighted noise level of the aircraft and the outdoor background level showed the best correlation with annoyance; this correlation was clearly seen at only high noise levels, And was only slightly better than that using outdoor aircraft noise level alone. The results indicate that, on a national basis, a telephone survey coupled with outdoor noise measurements would provide an efficient and practical means of assessing the noise impact of general aviation aircraft.

  14. Issues Involved in the Development of an Open Standard for Data Link of Aviation Weather Information

    NASA Technical Reports Server (NTRS)

    Grappel, R. D.

    2000-01-01

    This paper describes how an effective and efficient data link system for the dissemination of aviation weather information could be constructed. The system is built upon existing 'open standard' foundations drawn from current aviation and computer technologies. Issues of communications protocols and application data formats are discussed. The proposed aviation weather data link system is dependent of the actual link mechanism selected.

  15. Summary report of the General Aviation Committee

    NASA Technical Reports Server (NTRS)

    Goodrich, W. C.

    1977-01-01

    Fatal weather involved general aviation accidents and the criteria for weather observations at general aviation airports were discussed. It was generally agreed that: (1) meteorologists do not seem to have sufficient understanding of general aviation requirements, (2) pilots are not aware of the meteorological services and publications which are available to them; (3) Uniform capability is not being utilized to the degree possible; and (4) there is a wealth of weather data available within the Department of Defense which is not available in the system for civil use. The committee recommends that student pilot training programs include actual inflight weather experience accomplished through instructor training, and efforts be made to make real time weather data available to the pilot from all sources to include military installations, Unicom operators, tower and approach controllers, and air traffic controllers.

  16. NASA's aviation safety research and technology program

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.

    1977-01-01

    Aviation safety is challenged by the practical necessity of compromising inherent factors of design, environment, and operation. If accidents are to be avoided these factors must be controlled to a degree not often required by other transport modes. The operational problems which challenge safety seem to occur most often in the interfaces within and between the design, the environment, and operations where mismatches occur due to ignorance or lack of sufficient understanding of these interactions. Under this report the following topics are summarized: (1) The nature of operating problems, (2) NASA aviation safety research, (3) clear air turbulence characterization and prediction, (4) CAT detection, (5) Measurement of Atmospheric Turbulence (MAT) Program, (6) Lightning, (7) Thunderstorm gust fronts, (8) Aircraft ground operating problems, (9) Aircraft fire technology, (10) Crashworthiness research, (11) Aircraft wake vortex hazard research, and (12) Aviation safety reporting system.

  17. 47 CFR 22.877 - Unacceptable interference to part 90 non-cellular 800 MHz licensees from commercial aviation air...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-cellular 800 MHz licensees from commercial aviation air-ground systems. 22.877 Section 22.877...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.877 Unacceptable interference to part 90 non-cellular 800 MHz licensees from commercial aviation air-ground systems. The definition...

  18. 47 CFR 22.877 - Unacceptable interference to Part 90 non-cellular 800 MHz licensees from commercial aviation air...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-cellular 800 MHz licensees from commercial aviation air-ground systems. 22.877 Section 22.877...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.877 Unacceptable interference to Part 90 non-cellular 800 MHz licensees from commercial aviation air-ground systems. The definition...

  19. 47 CFR 22.877 - Unacceptable interference to Part 90 non-cellular 800 MHz licensees from commercial aviation air...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-cellular 800 MHz licensees from commercial aviation air-ground systems. 22.877 Section 22.877...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.877 Unacceptable interference to Part 90 non-cellular 800 MHz licensees from commercial aviation air-ground systems. The definition...

  20. 47 CFR 22.877 - Unacceptable interference to Part 90 non-cellular 800 MHz licensees from commercial aviation air...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-cellular 800 MHz licensees from commercial aviation air-ground systems. 22.877 Section 22.877...-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.877 Unacceptable interference to Part 90 non-cellular 800 MHz licensees from commercial aviation air-ground systems. The definition...