Science.gov

Sample records for national carbon storage

  1. [Estimation for vegetation carbon storage in Tiantong National Forest Park].

    PubMed

    Guo, Chun-Zi; Wu, Yang-Yang; Ni, Jian

    2014-11-01

    Based on the field investigation and the data combination from literature, vegetation carbon storage, carbon density, and their spatial distribution were examined across six forest community types (Schima superba--Castanopsis fargesii community, S. superba--C. fargesii with C. sclerophylla community, S. superba--C. fargesii with Distylium myricoides community, Illicium lanceolatum--Choerospondias axillaris community, Liquidambar formosana--Pinus massoniana community and Hedyotis auricularia--Phylostachys pubescens community) in Tiantong National Forest Park, Zhejiang Province, by using the allometric biomass models for trees and shrubs. Results showed that: Among the six communities investigated, carbon storage and carbon density were highest in the S. superba--C. fargesii with C. sclerophylla community (storage: 12113.92 Mg C; density: 165.03 Mg C · hm(-2)), but lowest in the I. lanceolatum--C. axillaris community (storage: 680.95 Mg C; density: 101.26 Mg C · hm(-2)). Carbon storage was significantly higher in evergreen trees than in deciduous trees across six communities. Carbon density ranged from 76.08 to 144.95 Mg C · hm(-2), and from 0. 16 to 20. 62 Mg C · hm(-2) for evergreen trees and deciduous trees, respectively. Carbon storage was highest in stems among tree tissues in the tree layer throughout communities. Among vegetation types, evergreen broad-leaved forest had the highest carbon storage (23092.39 Mg C), accounting for 81.7% of the total carbon storage in all forest types, with a car- bon density of 126.17 Mg C · hm(-2). Total carbon storage for all vegetation types in Tiantong National Forest Park was 28254.22 Mg C, and the carbon density was 96.73 Mg C · hm(-2). PMID:25898604

  2. National assessment of geologic carbon dioxide storage resources: results

    USGS Publications Warehouse

    U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team

    2013-01-01

    In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resources (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins were defined on the basis of geologic and hydrologic characteristics outlined in the assessment methodology of Brennan and others (2010, USGS Open-File Report 2010–1127) and the subsequent methodology modification and implementation documentation of Blondes, Brennan, and others (2013, USGS Open-File Report 2013–1055). The mean national TASR is approximately 3,000 metric gigatons (Gt). The estimate of the TASR includes buoyant trapping storage resources (BSR), where CO2 can be trapped in structural or stratigraphic closures, and residual trapping storage resources, where CO2 can be held in place by capillary pore pressures in areas outside of buoyant traps. The mean total national BSR is 44 Gt. The residual storage resource consists of three injectivity classes based on reservoir permeability: residual trapping class 1 storage resource (R1SR) represents storage in rocks with permeability greater than 1 darcy (D); residual trapping class 2 storage resource (R2SR) represents storage in rocks with moderate permeability, defined as permeability between 1 millidarcy (mD) and 1 D; and residual trapping class 3 storage resource (R3SR) represents storage in rocks with low permeability, defined as permeability less than 1 mD. The mean national storage resources for rocks in residual trapping classes 1, 2, and 3 are 140 Gt, 2,700 Gt, and 130 Gt, respectively. The known recovery

  3. National assessment of geologic carbon dioxide storage resources: methodology implementation

    USGS Publications Warehouse

    Blondes, Madalyn S.; Brennan, Sean T.; Merrill, Matthew D.; Buursink, Marc L.; Warwick, Peter D.; Cahan, Steven M.; Corum, Margo D.; Cook, Troy A.; Craddock, William H.; DeVera, Christina A.; Drake II, Ronald M.; Drew, Lawrence J.; Freeman, P.A.; Lohr, Celeste D.; Olea, Ricardo A.; Roberts-Ashby, Tina L.; Slucher, Ernie R.; Varela, Brian A.

    2013-01-01

    In response to the 2007 Energy Independence and Security Act, the U.S. Geological Survey (USGS) conducted a national assessment of potential geologic storage resources for carbon dioxide (CO2). Storage of CO2 in subsurface saline formations is one important method to reduce greenhouse gas emissions and curb global climate change. This report provides updates and implementation details of the assessment methodology of Brennan and others (2010, http://pubs.usgs.gov/of/2010/1127/) and describes the probabilistic model used to calculate potential storage resources in subsurface saline formations.

  4. National assessment of geologic carbon dioxide storage resources: data

    USGS Publications Warehouse

    U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team

    2013-01-01

    In 2012, the U.S. Geological Survey (USGS) completed the national assessment of geologic carbon dioxide storage resources. Its data and results are reported in three publications: the assessment data publication (this report), the assessment results publication (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a, USGS Circular 1386), and the assessment summary publication (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013b, USGS Fact Sheet 2013–3020). This data publication supports the results publication and contains (1) individual storage assessment unit (SAU) input data forms with all input parameters and details on the allocation of the SAU surface land area by State and general land-ownership category; (2) figures representing the distribution of all storage classes for each SAU; (3) a table containing most input data and assessment result values for each SAU; and (4) a pairwise correlation matrix specifying geological and methodological dependencies between SAUs that are needed for aggregation of results.

  5. National assessment of geologic carbon dioxide storage resources: summary

    USGS Publications Warehouse

    U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team

    2013-01-01

    The U.S. Geological Survey (USGS) recently completed an evaluation of the technically accessible storage resource (TASR) for carbon dioxide (CO2) for 36 sedimentary basins in the onshore areas and State waters of the United States. The TASR is an estimate of the geologic storage resource that may be available for CO2 injection and storage and is based on current geologic and hydrologic knowledge of the subsurface and current engineering practices. By using a geology-based probabilistic assessment methodology, the USGS assessment team members obtained a mean estimate of approximately 3,000 metric gigatons (Gt) of subsurface CO2 storage capacity that is technically accessible below onshore areas and State waters; this amount is more than 500 times the 2011 annual U.S. energy-related CO2 emissions of 5.5 Gt (U.S. Energy Information Administration, 2012, http://www.eia.gov/environment/emissions/carbon/). In 2007, the Energy Independence and Security Act (Public Law 110–140) directed the U.S. Geological Survey to conduct a national assessment of geologic storage resources for CO2 in consultation with the U.S. Environmental Protection Agency, the U.S. Department of Energy, and State geological surveys. The USGS developed a methodology to estimate storage resource potential in geologic formations in the United States (Burruss and others, 2009, USGS Open-File Report (OFR) 2009–1035; Brennan and others, 2010, USGS OFR 2010–1127; Blondes, Brennan, and others, 2013, USGS OFR 2013–1055). In 2012, the USGS completed the assessment, and the results are summarized in this Fact Sheet and are provided in more detail in companion reports (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a,b; see related reports at right). The goal of this project was to conduct an initial assessment of storage capacity on a regional basis, and results are not intended for use in the evaluation of specific sites for potential CO2 storage. The national

  6. New insights into the nation's carbon storage potential

    USGS Publications Warehouse

    Warwick, Peter D.; Zhu, Zhi-Liang

    2012-01-01

    Carbon sequestration is a method of securing carbon dioxide (CO2) to prevent its release into the atmosphere, where it contributes to global warming as a greenhouse gas. Geologic storage of CO2 in porous and permeable rocks involves injecting high-pressure CO2 into a subsurface rock unit that has available pore space. Biologic carbon sequestration refers to both natural and anthropogenic processes by which CO2 is removed from the atmosphere and stored as carbon in vegetation, soils, and sediments.

  7. A national look at carbon capture and storage-National carbon sequestration database and geographical information system (NatCarb)

    USGS Publications Warehouse

    Carr, T.R.; Iqbal, A.; Callaghan, N.; Dana-Adkins-Heljeson; Look, K.; Saving, S.; Nelson, K.

    2009-01-01

    The US Department of Energy's Regional Carbon Sequestration Partnerships (RCSPs) are responsible for generating geospatial data for the maps displayed in the Carbon Sequestration Atlas of the United States and Canada. Key geospatial data (carbon sources, potential storage sites, transportation, land use, etc.) are required for the Atlas, and for efficient implementation of carbon sequestration on a national and regional scale. The National Carbon Sequestration Database and Geographical Information System (NatCarb) is a relational database and geographic information system (GIS) that integrates carbon storage data generated and maintained by the RCSPs and various other sources. The purpose of NatCarb is to provide a national view of the carbon capture and storage potential in the U.S. and Canada. The digital spatial database allows users to estimate the amount of CO2 emitted by sources (such as power plants, refineries and other fossil-fuel-consuming industries) in relation to geologic formations that can provide safe, secure storage sites over long periods of time. The NatCarb project is working to provide all stakeholders with improved online tools for the display and analysis of CO2 carbon capture and storage data. NatCarb is organizing and enhancing the critical information about CO2 sources and developing the technology needed to access, query, model, analyze, display, and distribute natural resource data related to carbon management. Data are generated, maintained and enhanced locally at the RCSP level, or at specialized data warehouses, and assembled, accessed, and analyzed in real-time through a single geoportal. NatCarb is a functional demonstration of distributed data-management systems that cross the boundaries between institutions and geographic areas. It forms the first step toward a functioning National Carbon Cyberinfrastructure (NCCI). NatCarb provides access to first-order information to evaluate the costs, economic potential and societal issues of

  8. National Assessment of Geologic Carbon Dioxide Storage Resources -- Trends and Interpretations

    NASA Astrophysics Data System (ADS)

    Buursink, M. L.; Blondes, M. S.; Brennan, S.; Drake, R., II; Merrill, M. D.; Roberts-Ashby, T. L.; Slucher, E. R.; Warwick, P.

    2013-12-01

    In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resource (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins or study areas were defined on the basis of geologic and hydrologic characteristics outlined in the USGS assessment methodology. The mean national TASR is approximately 3,000 metric gigatons. To augment the release of the assessment, this study reviews input estimates and output results as a part of the resource calculation. Included in this study are a collection of both cross-plots and maps to demonstrate our trends and interpretations. Alongside the assessment, the input estimates were examined for consistency between SAUs and cross-plotted to verify expected trends, such as decreasing storage formation porosity with increasing SAU depth, for instance, and to show a positive correlation between storage formation porosity and permeability estimates. Following the assessment, the output results were examined for correlation with selected input estimates. For example, there exists a positive correlation between CO2 density and the TASR, and between storage formation porosity and the TASR, as expected. These correlations, in part, serve to verify our estimates for the geologic variables. The USGS assessment concluded that the Coastal Plains Region of the eastern and southeastern United States contains the largest storage resource. Within the Coastal Plains Region, the storage resources from the U.S. Gulf Coast study area represent 59 percent of the national CO2 storage capacity

  9. Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    2012-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2) and to consult with other Federal and State agencies to locate the pertinent geological data needed for the assessment. The geologic sequestration of CO2 is one possible way to mitigate its effects on climate change. The methodology used for the national CO2 assessment (Open-File Report 2010-1127; http://pubs.usgs.gov/of/2010/1127/) is based on previous USGS probabilistic oil and gas assessment methodologies. The methodology is non-economic and intended to be used at regional to subbasinal scales. The operational unit of the assessment is a storage assessment unit (SAU), composed of a porous storage formation with fluid flow and an overlying sealing unit with low permeability. Assessments are conducted at the SAU level and are aggregated to basinal and regional results. This report identifies and contains geologic descriptions of SAUs in separate packages of sedimentary rocks within the assessed basin and focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included here will be employed, as specified in the methodology, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage

  10. Carbon Capture and Storage, 2008

    ScienceCinema

    None

    2010-01-08

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  11. Carbon Capture and Storage, 2008

    SciTech Connect

    2009-03-19

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  12. Illustrative national scale scenarios of environmental and human health impacts of Carbon Capture and Storage.

    PubMed

    Tzanidakis, Konstantinos; Oxley, Tim; Cockerill, Tim; ApSimon, Helen

    2013-06-01

    Integrated Assessment, and the development of strategies to reduce the impacts of air pollution, has tended to focus only upon the direct emissions from different sources, with the indirect emissions associated with the full life-cycle of a technology often overlooked. Carbon Capture and Storage (CCS) reflects a number of new technologies designed to reduce CO2 emissions, but which may have much broader environmental implications than greenhouse gas emissions. This paper considers a wider range of pollutants from a full life-cycle perspective, illustrating a methodology for assessing environmental impacts using source-apportioned effects based impact factors calculated by the national scale UK Integrated Assessment Model (UKIAM). Contrasting illustrative scenarios for the deployment of CCS towards 2050 are presented which compare the life-cycle effects of air pollutant emissions upon human health and ecosystems of business-as-usual, deployment of CCS and widespread uptake of IGCC for power generation. Together with estimation of the transboundary impacts we discuss the benefits of an effects based approach to such assessments in relation to emissions based techniques. PMID:23603732

  13. Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)

    DOE Data Explorer

    NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. The database contains more than 260 CCS projects worldwide in more than 30 countries across 6 continents. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.

  14. National assessment of geologic carbon dioxide storage resources: allocations of assessed areas to Federal lands

    USGS Publications Warehouse

    Buursink, Marc L.; Cahan, Steven M.; Warwick, Peter D.

    2015-01-01

    Following the geologic basin-scale assessment of technically accessible carbon dioxide storage resources in onshore areas and State waters of the United States, the U.S. Geological Survey estimated that an area of about 130 million acres (or about 200,000 square miles) of Federal lands overlies these storage resources. Consequently, about 18 percent of the assessed area associated with storage resources is allocated to Federal land management. Assessed areas are allocated to four other general land-ownership categories as follows: State lands about 4.5 percent, Tribal lands about 2.4 percent, private and other lands about 72 percent, and offshore areas about 2.6 percent.

  15. Geologic framework for the national assessment of carbon dioxide storage resources: Greater Green River Basin, Wyoming, Colorado, and Utah, and Wyoming-Idaho-Utah Thrust Belt: Chapter E in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Buursink, Marc L.; Slucher, Ernie R.; Brennan, Sean T.; Doolan, Colin A.; Drake II, Ronald M.; Merrill, Matthew D.; Warwick, Peter D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows up on previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of 14 storage assessment units (SAUs) in Ordovician to Upper Cretaceous sedimentary rocks within the Greater Green River Basin (GGRB) of Wyoming, Colorado, and Utah, and eight SAUs in Ordovician to Upper Cretaceous sedimentary rocks within the Wyoming-Idaho-Utah Thrust Belt (WIUTB). The GGRB and WIUTB are contiguous with nearly identical geologic units; however, the GGRB is larger in size, whereas the WIUTB is more structurally complex. This report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries, as well as their sealing and reservoir units, are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are typically provided to illustrate geologic factors critical to the assessment. This geologic information was employed, as specified in the USGS methodology, to calculate a probabilistic distribution of potential storage resources in each SAU. Figures in this report show SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one square mile and are derived from interpretations of variably attributed well data and a digital compilation that is known not to include all drilling.

  16. Geologic framework for the national assessment of carbon dioxide storage resources: Hanna, Laramie, and Shirley Basins, Wyoming: Chapter C in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Merrill, Matthew D.; Covault, Jacob A.; Craddock, William H.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven M.; Lohr, Celeste D.

    2012-01-01

    The 2007 Energy Independence and Security Act (Public Law 110-140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used for the national CO2 assessment is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of twelve storage assessment units (SAUs) in six separate packages of sedimentary rock within the Hanna, Laramie, and Shirley Basins of Wyoming. It focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included herein will be employed, as specified in the methodology, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data in a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.

  17. Geologic framework for the national assessment of carbon dioxide storage resources—Southern Rocky Mountain Basins: Chapter M in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Merrill, Matthew D.; Drake II, Ronald M.; Buursink, Marc L.; Craddock, William H.; East, Joseph A.; Slucher, Ernie R.; Warwick, Peter D.; Brennan, Sean T.; Blondes, Madalyn S.; Freeman, Philip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2016-01-01

    The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resources in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report, chapter M, is the geologic framework document for the Uinta and Piceance, San Juan, Paradox, Raton, Eastern Great, and Black Mesa Basins, and subbasins therein of Arizona, Colorado, Idaho, Nevada, New Mexico, and Utah. In addition to a summary of the geology and petroleum resources of studied basins, the individual storage assessment units (SAUs) within the basins are described and explanations for their selection are presented. Although appendixes in the national assessment publications include the input values used to calculate the available storage resource, this framework document provides only the context and source of the input values selected by the assessment geologists. Spatial-data files of the boundaries for the SAUs, and the well-penetration density of known well bores that penetrate the SAU seal, are available for download with the release of this report.

  18. Geologic framework for the national assessment of carbon dioxide storage resources: Permian and Palo Duro Basins and Bend Arch-Fort Worth Basin: Chapter K in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Merrill, Matthew D.; Slucher, Ernie R.; Roberts-Ashby, Tina L.; Warwick, Peter D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2015-01-01

    The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resource in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report is the geologic framework document for the Permian and Palo Duro Basins, the combined Bend arch-Fort Worth Basin area, and subbasins therein of Texas, New Mexico, and Oklahoma. In addition to a summarization of the geology and petroleum resources of studied basins, the individual storage assessment units (SAUs) within the basins are described and explanations for their selection are presented. Though appendixes in the national assessment publications include the input values used to calculate the available storage resource, this framework document provides only the context and source of inputs selected by the assessment geologists. Spatial files of boundaries for the SAUs herein, as well as maps of the density of known well bores that penetrate the SAU seal, are available for download with the release of this report.

  19. Hydrogen Storage in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Gilbert, Joseph; Gilbert, Matthew; Naab, Fabian; Savage, Lauren; Holland, Wayne; Duggan, Jerome; McDaniel, Floyd

    2004-10-01

    Hydrogen as a fuel source is an attractive, relatively clean alternative to fossil fuels. However, a major limitation in its use for the application of automobiles has been the requirement for an efficient hydrogen storage medium. Current hydrogen storage systems are: physical storage in high pressure tanks, metal hydride, and gas-on-solid absorption. However, these methods do not fulfill the Department of Energy's targeted requirements for a usable hydrogen storage capacity of 6.5 wt.%, operation near ambient temperature and pressure, quick extraction and refueling, reliability and reusability.Reports showing high capacity hydrogen storage in single-walled carbon nanotubes originally prompted great excitement in the field, but further research has shown conflicting results. Results for carbon nanostructures have ranged from less than 1 wt.% to 70 wt.%. The wide range of adsorption found in previous experiments results from the difficulty in measuring hydrogen in objects just nanometers in size. Most previous experiments relied on weight analysis and residual gas analysis to determine the amount of hydrogen being adsorbed by the CNTs. These differing results encouraged us to perform our own analysis on single-walled (SWNTs), double-walled (DWNTs), and multi-walled carbon nanotubes (MWNTs), as well as carbon fiber. We chose to utilize direct measurement of hydrogen in the materials using elastic recoil detection analysis (ERDA). This work was supported by the National Science Foundation's Research Experience for Undergraduates and the University of North Texas.

  20. Geologic framework for the national assessment of carbon dioxide storage resources: Columbia Basin of Oregon, Washington, and Idaho, and the Western Oregon-Washington basins: Chapter D in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Covault, Jacob A.; Blondes, Madalyn S.; Cahan, Steven M.; DeVera, Christina A.; Freeman, P.A.; Lohr, Celeste D.

    2013-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of three storage assessment units (SAUs) in Eocene and Oligocene sedimentary rocks within the Columbia, Puget, Willapa, Astoria, Nehalem, and Willamette Basins of Oregon, Washington, and Idaho, and focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are provided to illustrate geologic factors critical to the assessment. The designated sealing unit in the Columbia Basin is tentatively chosen to be the ubiquitous and thick Miocene Columbia River Basalt Group. As a result of uncertainties regarding the seal integrity of the Columbia River Basalt Group, the SAUs were not quantitatively assessed. Figures in this report show SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data, a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on the cell maps.

  1. Geologic framework for the national assessment of carbon dioxide storage resources: Arkoma Basin, Kansas Basins, and Midcontinent Rift Basin study areas: Chapter F in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Buursink, Marc L.; Craddock, William H.; Blondes, Madalyn S.; Freeman, Phillip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2013-01-01

    2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. This methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of three storage assessment units (SAUs) in Upper Cambrian to Mississippian sedimentary rocks within the Arkoma Basin study area, and two SAUs in Upper Cambrian to Mississippian sedimentary rocks within the Kansas Basins study area. The Arkoma Basin and Kansas Basins are adjacent with very similar geologic units; although the Kansas Basins area is larger, the Arkoma Basin is more structurally complex. The report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are usually provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information herein was employed, as specified in the USGS methodology, to calculate a probabilistic distribution of potential storage resources in each SAU. The Midcontinent Rift Basin study area was not assessed, because no suitable storage formations meeting our size, depth, reservoir quality, and regional seal guidelines were found. Figures in this report show study area boundaries along with the SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one-square mile and are

  2. Geologic framework for the national assessment of carbon dioxide storage resources─South Florida Basin: Chapter L in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Roberts-Ashby, Tina L.; Brennan, Sean T.; Merrill, Matthew D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2015-01-01

    This report presents five storage assessment units (SAUs) that have been identified as potentially suitable for geologic carbon dioxide sequestration within a 35,075-square-mile area that includes the entire onshore and State-water portions of the South Florida Basin. Platform-wide, thick successions of laterally extensive carbonates and evaporites deposited in highly cyclic depositional environments in the South Florida Basin provide several massive, porous carbonate reservoirs that are separated by evaporite seals. For each storage assessment unit identified within the basin, the areal distribution of the reservoir-seal couplet identified as suitable for geologic Carbon dioxide sequestration is presented, along with a description of the geologic characteristics that influence the potential carbon dioxide storage volume and reservoir performance. On a case-by-case basis, strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are also discussed. Geologic information presented in this report has been employed to calculate potential storage capacities for carbon dioxide sequestration in the storage assessment units assessed herein, although complete assessment results are not contained in this report.

  3. Carbon Capture and Storage

    SciTech Connect

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several

  4. FOREST MANAGEMENT AND CARBON STORAGE: AN ANALYSIS OF 12 KEY FOREST NATIONS

    EPA Science Inventory

    This paper suggests a starting approach to a global effort to expand forest management to increase C sequestration. ssessment results indicate that with the world's forests contained in 138 nations, a subset of key nations, such as the 12 selected for this analysis, can significa...

  5. U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale

    USGS Publications Warehouse

    Goodman, A.; Hakala, A.; Bromhal, G.; Deel, D.; Rodosta, T.; Frailey, S.; Small, M.; Allen, D.; Romanov, V.; Fazio, J.; Huerta, N.; McIntyre, D.; Kutchko, B.; Guthrie, G.

    2011-01-01

    A detailed description of the United States Department of Energy (US-DOE) methodology for estimating CO 2 storage potential for oil and gas reservoirs, saline formations, and unmineable coal seams is provided. The oil and gas reservoirs are assessed at the field level, while saline formations and unmineable coal seams are assessed at the basin level. The US-DOE methodology is intended for external users such as the Regional Carbon Sequestration Partnerships (RCSPs), future project developers, and governmental entities to produce high-level CO 2 resource assessments of potential CO 2 storage reservoirs in the United States and Canada at the regional and national scale; however, this methodology is general enough that it could be applied globally. The purpose of the US-DOE CO 2 storage methodology, definitions of storage terms, and a CO 2 storage classification are provided. Methodology for CO 2 storage resource estimate calculation is outlined. The Log Odds Method when applied with Monte Carlo Sampling is presented in detail for estimation of CO 2 storage efficiency needed for CO 2 storage resource estimates at the regional and national scale. CO 2 storage potential reported in the US-DOE's assessment are intended to be distributed online by a geographic information system in NatCarb and made available as hard-copy in the Carbon Sequestration Atlas of the United States and Canada. US-DOE's methodology will be continuously refined, incorporating results of the Development Phase projects conducted by the RCSPs from 2008 to 2018. Estimates will be formally updated every two years in subsequent versions of the Carbon Sequestration Atlas of the United States and Canada. ?? 2011.

  6. Geologic framework for the national assessment of carbon dioxide storage resources: Denver Basin, Colorado, Wyoming, and Nebraska: Chapter G in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Drake II, Ronald M.; Brennan, Sean T.; Covault, Jacob A.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    This is a report about the geologic characteristics of five storage assessment units (SAUs) within the Denver Basin of Colorado, Wyoming, and Nebraska. These SAUs are Cretaceous in age and include (1) the Plainview and Lytle Formations, (2) the Muddy Sandstone, (3) the Greenhorn Limestone, (4) the Niobrara Formation and Codell Sandstone, and (5) the Terry and Hygiene Sandstone Members. The described characteristics, as specified in the methodology, affect the potential carbon dioxide storage resource in the SAUs. The specific geologic and petrophysical properties of interest include depth to the top of the storage formation, average thickness, net-porous thickness, porosity, permeability, groundwater quality, and the area of structural reservoir traps. Descriptions of the SAU boundaries and the overlying sealing units are also included. Assessment results are not contained in this report; however, the geologic information included here will be used to calculate a statistical Monte Carlo-based distribution of potential storage volume in the SAUs.

  7. Geologic framework for the national assessment of carbon dioxide storage resources: U.S. Gulf Coast: Chapter H in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Roberts-Ashby, Tina L.; Brennan, Sean T.; Buursink, Marc L.; Covault, Jacob A.; Craddock, William H.; Drake II, Ronald M.; Merrill, Matthew D.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    This report presents 27 storage assessment units (SAUs) within the United States (U.S.) Gulf Coast. The U.S. Gulf Coast contains a regionally extensive, thick succession of clastics, carbonates, salts, and other evaporites that were deposited in a highly cyclic depositional environment that was subjected to a fluctuating siliciclastic sediment supply and transgressive and regressive sea levels. At least nine major depositional packages contain porous strata that are potentially suitable for geologic carbon dioxide (CO2) sequestration within the region. For each SAU identified within these packages, the areal distribution of porous rock that is suitable for geologic CO2 sequestration is discussed, along with a description of the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net-porous thickness, porosity, permeability, and groundwater salinity. Additionally, a characterization of the overlying regional seal for each SAU is presented. On a case-by-case basis, strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are also presented. Geologic information presented in this report has been employed to calculate potential storage capacities for CO2 sequestration in the SAUs that are assessed herein, although complete assessment results are not contained in this report.

  8. Hydrogen storage in carbon nanotubes.

    PubMed

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications. PMID:12908227

  9. Designing Microporus Carbons for Hydrogen Storage Systems

    SciTech Connect

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  10. Last chance for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Scott, Vivian; Gilfillan, Stuart; Markusson, Nils; Chalmers, Hannah; Haszeldine, R. Stuart

    2013-02-01

    Anthropogenic energy-related CO2 emissions are higher than ever. With new fossil-fuel power plants, growing energy-intensive industries and new sources of fossil fuels in development, further emissions increase seems inevitable. The rapid application of carbon capture and storage is a much heralded means to tackle emissions from both existing and future sources. However, despite extensive and successful research and development, progress in deploying carbon capture and storage has stalled. No fossil-fuel power plants, the greatest source of CO2 emissions, are using carbon capture and storage, and publicly supported demonstration programmes are struggling to deliver actual projects. Yet, carbon capture and storage remains a core component of national and global emissions-reduction scenarios. Governments have to either increase commitment to carbon capture and storage through much more active market support and emissions regulation, or accept its failure and recognize that continued expansion of power generation from burning fossil fuels is a severe threat to attaining objectives in mitigating climate change.

  11. [Characteristics of carbon storage of Inner Mongolia forests: a review].

    PubMed

    Yang, Hao; Hu, Zhong-Min; Zhang, Lei-Ming; Li, Sheng-Gong

    2014-11-01

    Forests in Inner Mongolia account for an important part of the forests in China in terms of their large area and high living standing volume. This study reported carbon storage, carbon density, carbon sequestration rate and carbon sequestration potential of forest ecosystems in Inner Mongolia using the biomass carbon data from the related literature. Through analyzing the data of forest inventory and the generalized allometric equations between volume and biomass, previous studies had reported that biomass carbon storage of the forests in Inner Mongolia was about 920 Tg C, which was 12 percent of the national forest carbon storage, the annual average growth rate was about 1.4%, and the average of carbon density was about 43 t · hm(-2). Carbon storage and carbon density showed an increasing trend over time. Coniferous and broad-leaved mixed forest, Pinus sylvestris var. mongolica forest and Betula platyphylla forest had higher carbon sequestration capacities. Carbon storage was reduced due to human activities such as thinning and clear cutting. There were few studies on carbon storage of the forests in Inner Mongolia with focus on the soil, showing that the soil car- bon density increased with the stand age. Study on the carbon sequestration potential of forest ecosystems was still less. Further study was required to examine dynamics of carbon storage in forest ecosystems in Inner Mongolia, i. e., to assess carbon storage in the forest soils together with biomass carbon storage, to compute biomass carbon content of species organs as 45% in the allometric equations, to build more species-specific and site-specific allometric equations including root biomass for different dominant species, and to take into account the effects of climate change on carbon sequestration rate and carbon sequestration potential. PMID:25898638

  12. Carbon storage in Amazonian podzols

    NASA Astrophysics Data System (ADS)

    Montes, Celia; Lucas, Yves; Pereira, Osvaldo; Merdy, Patricia; Santin, Roberta; Ishida, Débora; du Gardin, Beryl; Melfi, Adolpho

    2014-05-01

    It has recently been discovered that Amazonian podzols may store much larger quantities of carbon than previously thought, particularly in their deep Bh horizons (over 13.6 Pg for Brazilian Amazonia alone [1]). Similarly high carbon stocks are likely to exist in similar climate/soil areas, mainly in Africa and in Borneo. Such carbon stocks raise the problem of their stability in response to changes in land use or climate. Any significant changes in vegetation cover would significantly alter the soil water dynamics, which is likely to affect organic matter turnover in soils. The direction of the change, however, is not clear and is likely to depend on the specific conditions of carbon storage and properties of the soils. It is reasonable to assume that the drying of the Bh horizons of equatorial podzols, which are generally saturated, will lead to an increase in C mineralization, although the extent of this increase has not yet been determined. These unknowns resulted in research programs, granted by the Brazilian FAPESP and the French Région PACA-ARCUS and ANR, dedicated improving estimates of the Amazonian podzol carbon stocks and to an estimate of its mineralisability. Eight test areas were determined from the analysis of remote sensing data in the larger Amazonian podzol region located in the High Rio Negro catchment and studied in detail. Despite the extreme difficulties in carrying out the field work (difficulties in reaching the study sites and extracting the soils), more than a hundred points were sampled. In all podzols the presence of a thick deep Bh was confirmed, sometimes to depths greater than 12 m. The Bh carbon was quantified, indicating that carbon stocks in these podzols are even higher than estimated recently [1]. References 1- Montes, C.R.; Lucas, Y.; Pereira, O.J.R.; Achard, R.; Grimaldi, M.; Mefli, A.J. Deep plant?derived carbon storage in Amazonian podzols. Biogeosciences, 8, 113?120, 2011.

  13. Geologic framework for the national assessment of carbon dioxide storage resources: Powder River Basin, Wyoming, Montana, South Dakota, and Nebraska: Chapter B in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Craddock, William H.; Drake II, Ronald M.; Mars, John L.; Merrill, Matthew D.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven A.; DeVera, Christina A.; Lohr, Celeste D.

    2012-01-01

    This report presents ten storage assessment units (SAUs) within the Powder River Basin of Wyoming, Montana, South Dakota, and Nebraska. The Powder River Basin contains a thick succession of sedimentary rocks that accumulated steadily throughout much of the Phanerozoic, and at least three stratigraphic packages contain strata that are suitable for CO2 storage. Pennsylvanian through Triassic siliciclastic strata contain two potential storage units: the Pennsylvanian and Permian Tensleep Sandstone and Minnelusa Formation, and the Triassic Crow Mountain Sandstone. Jurassic siliciclastic strata contain one potential storage unit: the lower part of the Sundance Formation. Cretaceous siliciclastic strata contain seven potential storage units: (1) the Fall River and Lakota Formations, (2) the Muddy Sandstone, (3) the Frontier Sandstone and Turner Sandy Member of the Carlile Shale, (4) the Sussex and Shannon Sandstone Members of Cody Shale, and (5) the Parkman, (6) Teapot, and (7) Teckla Sandstone Members of the Mesaverde Formation. For each SAU, we discuss the areal distribution of suitable CO2 reservoir rock. We also characterize the overlying sealing unit and describe the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net thickness, porosity, permeability, and groundwater salinity. Case-by-case strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are presented. Although assessment results are not contained in this report, the geologic information included herein will be employed to calculate the potential storage space in the various SAUs.

  14. Carbon Aerogels for Hydrogen Storage

    SciTech Connect

    Baumann, T F; Worsley, M; Satcher, J H

    2008-08-11

    This effort is focused on the design of new nanostructured carbon-based materials that meet the DOE 2010 targets for on-board vehicle hydrogen storage. Carbon aerogels (CAs) are a unique class of porous materials that possess a number of desirable structural features for the storage of hydrogen, including high surface areas (over 3000 m{sup 2}/g), continuous and tunable porosities, and variable densities. In addition, the flexibility associated with CA synthesis allows for the incorporation of modifiers or catalysts into the carbon matrix in order to alter hydrogen sorption enthalpies in these materials. Since the properties of the doped CAs can be systematically modified (i.e. amount/type of dopant, surface area, porosity), novel materials can be fabricated that exhibit enhanced hydrogen storage properties. We are using this approach to design new H{sub 2} sorbent materials that can storage appreciable amounts of hydrogen at room temperature through a process known as hydrogen spillover. The spillover process involves the dissociative chemisorption of molecular hydrogen on a supported metal catalyst surface (e.g. platinum or nickel), followed by the diffusion of atomic hydrogen onto the surface of the support material. Due to the enhanced interaction between atomic hydrogen and the carbon support, hydrogen can be stored in the support material at more reasonable operating temperatures. While the spillover process has been shown to increase the reversible hydrogen storage capacities at room temperature in metal-loaded carbon nanostructures, a number of issues still exist with this approach, including slow kinetics of H{sub 2} uptake and capacities ({approx} 1.2 wt% on carbon) below the DOE targets. The ability to tailor different structural aspects of the spillover system (i.e. the size/shape of the catalyst particle, the catalyst-support interface and the support morphology) should provide valuable mechanistic information regarding the critical aspects of the

  15. Geologic framework for the national assessment of carbon dioxide storage resources: Williston Basin, Central Montana Basins, and Montana Thrust Belt study areas: Chapter J in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Buursink, Marc L.; Merrill, Matthew D.; Craddock, William H.; Roberts-Ashby, Tina L.; Brennan, Sean T.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    Figures in this report show the study area boundaries along with the SAU extent and cell maps of well penetrations through sealing units into the top of the storage formations. The USGS does not necessarily know the location of all wells and cannot guarantee the full extent of drilling through specific formations in any given cell shown on the cell maps.

  16. Geologic framework for the national assessment of carbon dioxide storage resources: Bighorn Basin, Wyoming and Montana: Chapter A in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Covault, Jacob A.; Buursink, Mark L.; Craddock, William H.; Merrill, Matthew D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.

    2012-01-01

    This report identifies and contains geologic descriptions of twelve storage assessment units (SAUs) in six separate packages of sedimentary rocks within the Bighorn Basin of Wyoming and Montana and focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included here will be employed, as specified in the methodology of earlier work, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Wells sharing the same well borehole are treated as a single penetration. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data, a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.

  17. Geologic framework for the national assessment of carbon dioxide storage resources: Alaska North Slope and Kandik Basin, Alaska: Chapter I in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Craddock, William H.; Buursink, Marc L.; Covault, Jacob A.; Brennan, Sean T.; Doolan, Colin A.; Drake II, Ronald M.; Merrill, Matthew D.; Roberts-Ashby, Tina L.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven N.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    For each SAU in both of the basins, we discuss the areal distribution of suitable CO2 sequestration reservoir rock. We also characterize the overlying sealing unit and describe the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net thickness, porosity, permeability, and groundwater salinity. Case-by-case strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are presented. Although assessment results are not contained in this report, the geologic information included herein was employed to calculate the potential storage volume in the various SAUs. Lastly, in this report, we present the rationale for not conducting assessment work in fifteen sedimentary basins distributed across the Alaskan interior and within Alaskan State waters.

  18. Landscape-scale carbon storage associated with beaver dams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2013-07-01

    Beaver meadows form when beaver dams promote prolonged overbank flooding and floodplain retention of sediment and organic matter. Extensive beaver meadows form in broad, low-gradient valley segments upstream from glacial terminal moraines. Surveyed sediment volume and total organic carbon content in beaver meadows on the eastern side of Rocky Mountain National Park are extrapolated to create a first-order approximation of landscape-scale carbon storage in these meadows relative to adjacent uplands. Differences in total organic carbon between abandoned and active beaver meadows suggest that valley-bottom carbon storage has declined substantially as beaver have disappeared and meadows have dried. Relict beaver meadows represent ~8% of total carbon storage within the landscape, but the value was closer to 23% when beaver actively maintained wet meadows. These changes reflect the general magnitude of cumulative effects in heterotrophic respiration and organic matter oxidation associated with historical declines in beaver populations across the continent.

  19. Ecological controls over global soil carbon storage

    SciTech Connect

    Schimel, D.S.

    1995-09-01

    Globally, soil carbon comprises about 2/3 of terrestrial carbon storage. Soil carbon is thus an important reservoir of carbon, but also influences the responses of ecosystems to change by controlling many aspects of nutrient cycling. While broad-scale patterns of soil carbon accumulation can be explained in terms of climatic and biome distributions, many ecological processes also influence the storage and turnover of carbon in soils. I will present a synthesis of information from field studies, model experiments and global data bases on factors controlling the turnover and storage of soil carbon. First, I will review a series of studies showing links between vegetation change (successional and invasions) and soil carbon. Then I will review model analyses of the sensitivity of soil carbon to climatic and ecological changes. Results show that soil carbon storage is broadly sensitive to climate but greatly influenced by the allocation of detritus between resistant (lignaceous and woody) and more labile forms, and that biotic changes that affect allocation, affect soil carbon substantially at regionally and perhaps global scales.

  20. Defaunation affects carbon storage in tropical forests

    PubMed Central

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A.; Magnago, Luiz Fernando S.; Rocha, Mariana F.; Lima, Renato A. F.; Peres, Carlos A.; Ovaskainen, Otso; Jordano, Pedro

    2015-01-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage. PMID:26824067

  1. Defaunation affects carbon storage in tropical forests.

    PubMed

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A; Magnago, Luiz Fernando S; Rocha, Mariana F; Lima, Renato A F; Peres, Carlos A; Ovaskainen, Otso; Jordano, Pedro

    2015-12-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage. PMID:26824067

  2. Wyoming Carbon Capture and Storage Institute

    SciTech Connect

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  3. Activated carbon monoliths for methane storage

    NASA Astrophysics Data System (ADS)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  4. Prospects for carbon capture and storage technologies

    SciTech Connect

    Soren Anderson; Richard Newell

    2003-01-15

    Carbon capture and storage (CCS) technologies remove carbon dioxide from flue gases for storage in geologic formations or the ocean. The study found that CCS is technically feasible and economically attractive within the range of carbon policies discussed domestically and internationally. Current costs are about $200 to $250 per ton of carbon, although costs are sensitive to fuel prices and other assumptions and could be reduced significantly through technical improvements. Near-term prospects favor CCS for certain industrial sources and electric power plants, with storage in depleted oil and gas reservoirs. Deep aquifers may provide an attractive longer-term storage option, whereas ocean storage poses greater technical and environmental uncertainty. Vast quantities of economically recoverable fossil fuels, sizable political obstacles to their abandonment, and inherent delay associated with developing alternative energy sources suggest that CCS should be seriously considered in the portfolio of options for addressing climate change, alongside energy efficiency and carbon-free energy. 61 refs., 5 figs., 5 tabs.

  5. Floodplain Organic Carbon Storage in the Central Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Lininger, K.; Wohl, E.

    2014-12-01

    Floodplain storage of organic carbon is an important aspect of the global carbon cycle that is not well understood or quantified. Although it is understood that rivers transport organic carbon to the ocean, little is known about the quantity of stored carbon in boreal floodplains and the influence of fluvial processes on this storage. We present results on total organic carbon (TOC) content within the floodplains of two rivers, the Dall River and Preacher Creek, in the central Yukon River Basin in the Yukon Flats National Wildlife Refuge of Alaska. The results indicate that organic carbon storage is influenced by fluvial disturbance and grain size. The Dall River, which contains a large amount of floodplain carbon, is meandering and incised, with well-developed floodplain soils, a greater percentage of relatively old floodplain surfaces and a slower floodplain turnover time, and finer grain sizes. Preacher Creek stores less TOC, transports coarser grain sizes, and has higher rates of avulsion and floodplain turnover time. Within the floodplain of a particular river, large spatial heterogeneity in TOC content also exists as a function of depositional environment and age and vegetation community of the site. In addition, saturated regions of the floodplains, such as abandoned channels and oxbow lakes, contain more TOC compared to drier floodplain environments. Frozen alluvial soils likely contain carbon that could be released into the environment with melting permafrost, and thus quantifying the organic carbon content in the active layer of floodplain soils could provide insight into the characteristics of the permafrost beneath. The hydrology in these regions is changing due to permafrost melt, and floodplain areas usually saturated could be dried out, causing breakdown and outgassing of carbon stored in previously saturated soils. Ongoing work will result in a first-order estimate of active-layer floodplain carbon storage for the central Yukon River Basin.

  6. High Density Methane Storage in Nanoporous Carbon

    NASA Astrophysics Data System (ADS)

    Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team

    2014-03-01

    Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.

  7. Underground storage of carbon dioxide

    SciTech Connect

    Tanaka, Shoichi

    1993-12-31

    Desk studies on underground storage of CO{sub 2} were carried out from 1990 to 1991 fiscal years by two organizations under contract with New Energy and Indestrial Technology Development Organization (NEDO). One group put emphasis on application of CO{sub 2} EOR (enhanced oil recovery), and the other covered various aspects of underground storage system. CO{sub 2} EOR is a popular EOR method in U.S. and some oil countries. At present, CO{sub 2} is supplied from natural CO{sub 2} reservoirs. Possible use of CO{sub 2} derived from fixed sources of industries is a main target of the study in order to increase oil recovery and storage CO{sub 2} under ground. The feasibility study of the total system estimates capacity of storage of CO{sub 2} as around 60 Gton CO{sub 2}, if worldwide application are realized. There exist huge volumes of underground aquifers which are not utilized usually because of high salinity. The deep aquifers can contain large amount of CO{sub 2} in form of compressed state, liquefied state or solution to aquifer. A preliminary technical and economical survey on the system suggests favorable results of 320 Gton CO{sub 2} potential. Technical problems are discussed through these studies, and economical aspects are also evaluated.

  8. Carbon cycling and storage in mangrove forests.

    PubMed

    Alongi, Daniel M

    2014-01-01

    Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y(-1)) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y(-1)) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests. PMID:24405426

  9. Hydrogen storage on activated carbon. Final report

    SciTech Connect

    Schwarz, J.A.

    1994-11-01

    The project studied factors that influence the ability of carbon to store hydrogen and developed techniques to enhance that ability in naturally occurring and factory-produced commercial carbon materials. During testing of enhanced materials, levels of hydrogen storage were achieved that compare well with conventional forms of energy storage, including lead-acid batteries, gasoline, and diesel fuel. Using the best materials, an electric car with a modern fuel cell to convert the hydrogen directly to electricity would have a range of over 1,000 miles. This assumes that the total allowable weight of the fuel cell and carbon/hydrogen storage system is no greater than the present weight of batteries in an existing electric vehicle. By comparison, gasoline cars generally are limited to about a 450-mile range, and battery-electric cars to 40 to 60 miles. The project also developed a new class of carbon materials, based on polymers and other organic compounds, in which the best hydrogen-storing factors discovered earlier were {open_quotes}molecularly engineered{close_quotes} into the new materials. It is believed that these new molecularly engineered materials are likely to exceed the performance of the naturally occurring and manufactured carbons seen earlier with respect to hydrogen storage.

  10. Nanoengineered Carbon Scaffolds for Hydrogen Storage

    SciTech Connect

    Leonard, A. D.; Hudson, J. L.; Fan, H.; Booker, R.; Simpson, L. J.; O'Neill, K. J.; Parilla, P. A.; Heben, M. J.; Pasquali, M.; Kittrell, C.; Tour, J. M.

    2009-01-01

    Single-walled carbon nanotube (SWCNT) fibers were engineered to become a scaffold for the storage of hydrogen. Carbon nanotube fibers were swollen in oleum (fuming sulfuric acid), and organic spacer groups were covalently linked between the nanotubes using diazonium functionalization chemistry to provide 3-dimensional (3-D) frameworks for the adsorption of hydrogen molecules. These 3-D nanoengineered fibers physisorb twice as much hydrogen per unit surface area as do typical macroporous carbon materials. These fiber-based systems can have high density, and combined with the outstanding thermal conductivity of carbon nanotubes, this points a way toward solving the volumetric and heat-transfer constraints that limit some other hydrogen-storage supports.

  11. Technology for national asset storage systems

    NASA Technical Reports Server (NTRS)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard

    1993-01-01

    An industry-led collaborative project, called the National Storage Laboratory, was organized to investigate technology for storage systems that will be the future repositories for our national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and the provider of applications. The expected result is an evaluation of a high performance storage architecture assembled from commercially available hardware and software, with some software enhancements to meet the project's goals. It is anticipated that the integrated testbed system will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte class files at gigabit-per-second data rates. The National Storage Laboratory was officially launched on 27 May 1992.

  12. Carbon nanotube materials from hydrogen storage

    SciTech Connect

    Dillon, A.C.; Bekkedahl, T.A.; Cahill, A.F.

    1995-09-01

    The lack of convenient and cost-effective hydrogen storage is a major impediment to wide scale use of hydrogen in the United States energy economy. Improvements in the energy densities of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted systems are required before viable hydrogen energy use pathways can be established. Carbon-based hydrogen adsorption materials hold particular promise for meeting and exceeding the U.S. Department of Energy hydrogen storage energy density targets for transportation if concurrent increases in hydrogen storage capacity and carbon density can be achieved. These two goals are normally in conflict for conventional porous materials, but may be reconciled by the design and synthesis of new adsorbent materials with tailored pore size distributions and minimal macroporosity. Carbon nanotubes offer the possibility to explore new designs for adsorbents because they can be fabricated with small size distributions, and naturally tend to self-assemble by van der Waals forces. This year we report heats of adsorption for hydrogen on nanotube materials that are 2 and 3 times greater than for hydrogen on activated carbon. The hydrogen which is most strongly bound to these materials remains on the carbon surface to temperatures greater than 285 K. These results suggest that nanocapillary forces are active in stabilizing hydrogen on the surfaces of carbon nanotubes, and that optimization of the adsorbent will lead to effective storage at higher temperatures. In this paper we will also report on our activities which are targeted at understanding and optimizing the nucleation and growth of single wall nanotubes. These experiments were made possible by the development of a unique feedback control circuit which stabilized the plasma-arc during a synthesis run.

  13. An Integrated Approach to Predicting Carbon Dioxide Storage Capacity in Carbonate Reservoirs

    NASA Astrophysics Data System (ADS)

    Smith, M. M.; Hao, Y.; Mason, H. E.; Carroll, S.

    2015-12-01

    Carbonate reservoirs are widespread globally but pose unique challenges for geologic carbon dioxide (CO2) storage due to the reactive nature of carbonate minerals and the inherently heterogeneous pore structures of these rock types. Carbonate mineral dissolution resulting from CO2-acidified fluids may actually create new storage capacity, but predicting the extent and location of enhanced storage is complicated by the presence of pore size distributions spanning orders of magnitude as well as common microfractures. To address this issue, core samples spanning a wide range of depths and predicted permeabilities were procured from wells drilled into the Weyburn-Midale reservoir from the IEA GHG's CO2 Monitoring and Storage Project, Saskatchewan, Canada; and from the Arbuckle dolomite at the Kansas Geological Survey's South-central Kansas CO2 Project. Our approach integrated non-invasive characterization, complex core-flooding experiments, and 3-D reactive transport simulations to calibrate relevant CO2 storage relationships among fluid flow, porosity, permeability, and chemical reactivity. The resulting observations from this work permit us to constrain (and place uncertainty limits on) some of the model parameters needed for estimating evolving reservoir CO2 storage capacity. The challenge remains, however, as to how to best interpret and implement these observations at the actual reservoir scale. We present our key findings from these projects and recommendations for storage capacity predictions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Gas storage carbon with enhanced thermal conductivity

    DOEpatents

    Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  15. Gas storage carbon with enhanced thermal conductivity

    SciTech Connect

    Burchell, T.D.; Rogers, M.R.; Judkins, R.R.

    2000-07-18

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  16. Natural Carbonation of Peridotite and Applications for Carbon Storage

    NASA Astrophysics Data System (ADS)

    Streit, E.; Kelemen, P.; Matter, J.

    2009-05-01

    Natural carbonation of peridotite in the Samail Ophiolite of Oman is surprisingly rapid and could be further enhanced to provide a safe, permanent method of CO2 storage through in situ formation of carbonate minerals. Carbonate veins form by low-temperature reaction between peridotite and groundwater in a shallow weathering horizon. Reaction with peridotite drives up the pH of the water, and extensive travertine terraces form where this groundwater emerges at the surface in alkaline springs. The potential sink for CO2 in peridotite is enormous: adding 1wt% CO2 to the peridotite in Oman could consume 1/4 of all atmospheric carbon, and several peridotite bodies of comparable size exist throughout the world. Thus carbonation rate and cost, not reservoir size, are the limiting factors on the usefulness of in situ mineral carbonation of peridotite for carbon storage. The carbonate veins in Oman are much younger than previously believed, yielding average 14C ages of 28,000 years. Age data plus estimated volumes of carbonate veins and terraces suggest 10,000 to 100,000 tons per year of CO2 are consumed by these peridotite weathering reactions in Oman. This rate can be enhanced by drilling, hydraulic fracture, injecting CO2-rich fluid, and increasing reaction temperature. Drilling and hydraulic fracture can increase volume of peridotite available for reaction. Additional fracture may occur due to the solid volume increase of the carbonation reaction, and field observations suggest that such reaction-assisted fracture may be responsible for hierarchical carbonate vein networks in peridotite. Natural carbonation of peridotite in Oman occurs at low pCO2, resulting in partial carbonation of peridotite, forming magnesite and serpentine. Raising pCO2 increases carbonation efficiency, forming of magnesite + talc, or at complete carbonation, magnesite + quartz, allowing ˜30wt% CO2 to be added to the peridotite. Increasing the temperature to 185°C can improve the reaction rate by

  17. [Carbon storage and carbon sink of mangrove wetland: research progress].

    PubMed

    Zhang, Li; Guo, Zhi-hua; Li, Zhi-yong

    2013-04-01

    Mangrove forest is a special wetland forest growing in the inter-tidal zone of tropical and subtropical regions, playing important roles in windbreak, promoting silt sedimentation, resisting extreme events such as cyclones and tsunamis, and protecting coastline, etc. The total area of global mangrove forests is about 152000 km2, only accounting for 0. 4% of all forest area. There are about 230 km2 mangrove forests in China. The mangrove forests in the tropics have an average carbon storage as high as 1023 Mg hm-2, and the global mangrove forests can sequestrate about 0. 18-0. 228 Pg C a-1. In addition to plant species composition, a variety of factors such as air temperature, seawater temperature and salinity, soil physical and chemical properties, atmospheric CO2 concentration, and human activities have significant effects on the carbon storage and sink ability of mangrove forests. Many approaches based onfield measurements, including allometric equations, remote sensing, and model simulation, are applied to quantify the carbon storage and sink ability of mangrove forest wetland. To study the carbon storage and sink ability of mangrove wetland can promote the further understanding of the carbon cycle of mangrove wetland and related controlling mechanisms, being of significance for the protection and rational utilization of mangrove wetland. PMID:23898678

  18. Hydrogen storage in engineered carbon nanospaces.

    PubMed

    Burress, Jacob; Kraus, Michael; Beckner, Matt; Cepel, Raina; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter

    2009-05-20

    It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space. PMID:19420674

  19. Plant diversity increases soil microbial activity and soil carbon storage.

    PubMed

    Lange, Markus; Eisenhauer, Nico; Sierra, Carlos A; Bessler, Holger; Engels, Christoph; Griffiths, Robert I; Mellado-Vázquez, Perla G; Malik, Ashish A; Roy, Jacques; Scheu, Stefan; Steinbeiss, Sibylle; Thomson, Bruce C; Trumbore, Susan E; Gleixner, Gerd

    2015-01-01

    Plant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon ((14)C) modelling. Here we show that higher plant diversity increases rhizosphere carbon inputs into the microbial community resulting in both increased microbial activity and carbon storage. Increases in soil carbon were related to the enhanced accumulation of recently fixed carbon in high-diversity plots, while plant diversity had less pronounced effects on the decomposition rate of existing carbon. The present study shows that elevated carbon storage at high plant diversity is a direct function of the soil microbial community, indicating that the increase in carbon storage is mainly limited by the integration of new carbon into soil and less by the decomposition of existing soil carbon. PMID:25848862

  20. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  1. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  2. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  3. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  4. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  5. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  6. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  7. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  8. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located within the...

  9. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  10. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  11. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located within the...

  12. Functional Carbon Materials for Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Zhou, Huihui

    The ability to harvest and convert solar energy has been associated with the evolution of human civilization. The increasing consumption of fossil fuels since the industrial revolution, however, has brought to concerns in ecological deterioration and depletion of the fossil fuels. Facing these challenges, humankind is forced to seek for clean, sustainable and renewable energy resources, such as biofuels, hydraulic power, wind power, geothermal energy and other kinds of alternative energies. However, most alternative energy sources, generally in the form of electrical energy, could not be made available on a continuous basis. It is, therefore, essential to store such energy into chemical energy, which are portable and various applications. In this context, electrochemical energy-storage devices hold great promises towards this goal. The most common electrochemical energy-storage devices are electrochemical capacitors (ECs, also called supercapacitors) and batteries. In comparison to batteries, ECs posses high power density, high efficiency, long cycling life and low cost. ECs commonly utilize carbon as both (symmetric) or one of the electrodes (asymmetric), of which their performance is generally limited by the capacitance of the carbon electrodes. Therefore, developing better carbon materials with high energy density has been emerging as one the most essential challenges in the field. The primary objective of this dissertation is to design and synthesize functional carbon materials with high energy density at both aqueous and organic electrolyte systems. The energy density (E) of ECs are governed by E = CV 2/2, where C is the total capacitance and V is the voltage of the devices. Carbon electrodes with high capacitance and high working voltage should lead to high energy density. In the first part of this thesis, a new class of nanoporous carbons were synthesized for symmetric supercapacitors using aqueous Li2SO4 as the electrolyte. A unique precursor was adopted to

  13. Carbon nanotube materials for hydrogen storage

    SciTech Connect

    Dillon, A.C.; Jones, K.M.; Heben, M.J.

    1996-10-01

    Hydrogen burns pollution-free and may be produced from renewable energy resources. It is therefore an ideal candidate to replace fossil fuels as an energy carrier. However, the lack of a convenient and cost-effective hydrogen storage system greatly impedes the wide-scale use of hydrogen in both domestic and international markets. Although several hydrogen storage options exist, no approach satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. A material consisting exclusively of micropores with molecular dimensions could simultaneously meet all of the requirements for transportation use if the interaction energy for hydrogen was sufficiently strong to cause hydrogen adsorption at ambient temperatures. Small diameter ({approx}1 mm) carbon single-wall nanotubes (SWNTs) are elongated micropores of molecular dimensions, and materials composed predominantly of SWNTs may prove to be the ideal adsorbent for ambient temperature storage of hydrogen. Last year the authors reported that hydrogen could be adsorbed on arc-generated soots containing 12{Angstrom} diameter nanotubes at temperatures in excess of 285K. In this past year they have learned that such adsorption does not occur on activated carbon materials, and that the cobalt nanoparticles present in their arc-generated soots are not responsible for the hydrogen which is stable at 285 K. These results indicate that enhanced adsorption forces within the internal cavities of the SWNTs are active in stabilizing hydrogen at elevated temperatures. This enhanced stability could lead to effective hydrogen storage under ambient temperature conditions. In the past year the authors have also demonstrated that single-wall carbon nanotubes in arc-generated soots may be selectively opened by oxidation in H{sub 2}O resulting in improved hydrogen adsorption, and they have estimated experimentally that the amount of hydrogen stored is {approximately}10% of the nanotube weight.

  14. Carbon Storage in Biologic and Oceanic Reservoirs: Issues and Opportunities

    NASA Astrophysics Data System (ADS)

    Caldeira, K.

    2007-12-01

    Most discussion of carbon capture and storage have focused on geologic reservoirs because these are the reservoirs most likely to provide for long-term storage with a minimum of adverse environmental consequences. Nevertheless, there is interest in storage in other reservoirs such as the biosphere or the oceans. Storage in biological reservoirs such as forests or agricultural soils may in many cases be relatively inexpensive. Because this biological storage involves carbon dioxide removal from the atmosphere, it can potentially offset emissions from the transportation sector. Biological storage can be politically popular because it can be deployed with simple technologies, can be deployed in developing countries, and in many cases involves other environmental co-benefits. However, total capacity is limited. Furthermore, biological storage is temporary unless the store is actively maintained forever. Such temporary storage can be valuable, although it is clearly not as valuable as the quasi-permanent storage offered by good geologic storage reservoirs Ocean storage options fall into two main classes. The first involves conventional separation and compression of carbon dioxide from large point sources which would then be piped into the deep ocean and released either into the water or as a lake on the sea floor. In either case, the carbon dioxide would eventually interact with the atmosphere and contribute to ocean acidification. However, there is potential for the development of long-term engineered containment of carbon dioxide on or in the sea floor. The second main ocean storage option involves increasing ocean alkalinity, probably by dissolving carbonate minerals. This approach may offer safe, quasi- permanent, and cost-effective storage in settings where coastal carbon dioxide point sources are co-located with carbonate mineral deposits. Not every location or carbon dioxide source is suitable for geologic storage of carbon dioxide. At this early stage, it is

  15. Recovery Act: 'Carbonsheds' as a Framework for Optimizing United States Carbon Capture and Storage (CCS) Pipeline Transport on a Regional to National Scale

    SciTech Connect

    Pratson, Lincoln

    2012-11-30

    Carbonsheds are regions in which the estimated cost of transporting CO{sub 2} from any (plant) location in the region to the storage site it encompasses is cheaper than piping the CO{sub 2} to a storage site outside the region. We use carbonsheds to analyze the cost of transport and storage of CO{sub 2} in deploying CCS on land and offshore of the continental U.S. We find that onshore the average cost of transport and storage within carbonsheds is roughly $10/t when sources cooperate to reduce transport costs, with the costs increasing as storage options are depleted over time. Offshore transport and storage costs by comparison are found to be roughly twice as expensive but t may still be attractive because of easier access to property rights for sub-seafloor storage as well as a simpler regulatory system, and possibly lower MMV requirements, at least in the deep-ocean where pressures and temperatures would keep the CO{sub 2} negatively buoyant. Agent-based modeling of CCS deployment within carbonsheds under various policy scenarios suggests that the most cost-effective strategy at this point in time is to focus detailed geology characterization of storage potential on only the largest onshore reservoirs where the potential for mitigating emissions is greatest and the cost of storage appears that it will be among the cheapest.

  16. Aggregation of carbon dioxide sequestration storage assessment units

    USGS Publications Warehouse

    Blondes, Madalyn S.; Schuenemeyer, John H.; Olea, Ricardo A.; Drew, Lawrence J.

    2013-01-01

    The U.S. Geological Survey is currently conducting a national assessment of carbon dioxide (CO2) storage resources, mandated by the Energy Independence and Security Act of 2007. Pre-emission capture and storage of CO2 in subsurface saline formations is one potential method to reduce greenhouse gas emissions and the negative impact of global climate change. Like many large-scale resource assessments, the area under investigation is split into smaller, more manageable storage assessment units (SAUs), which must be aggregated with correctly propagated uncertainty to the basin, regional, and national scales. The aggregation methodology requires two types of data: marginal probability distributions of storage resource for each SAU, and a correlation matrix obtained by expert elicitation describing interdependencies between pairs of SAUs. Dependencies arise because geologic analogs, assessment methods, and assessors often overlap. The correlation matrix is used to induce rank correlation, using a Cholesky decomposition, among the empirical marginal distributions representing individually assessed SAUs. This manuscript presents a probabilistic aggregation method tailored to the correlations and dependencies inherent to a CO2 storage assessment. Aggregation results must be presented at the basin, regional, and national scales. A single stage approach, in which one large correlation matrix is defined and subsets are used for different scales, is compared to a multiple stage approach, in which new correlation matrices are created to aggregate intermediate results. Although the single-stage approach requires determination of significantly more correlation coefficients, it captures geologic dependencies among similar units in different basins and it is less sensitive to fluctuations in low correlation coefficients than the multiple stage approach. Thus, subsets of one single-stage correlation matrix are used to aggregate to basin, regional, and national scales.

  17. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  18. Carbon storage in the deep reducing mantle

    NASA Astrophysics Data System (ADS)

    Rohrbach, A.; Ghosh, S.; Schmidt, M. W.; Wijbrans, C. H.; Klemme, S.

    2014-12-01

    To understand the storage and cycling of carbon in/through Earth's deep mantle it is vital to examine carbon speciations at relevant pressure, temperature, and oxygen fugacity (fO2). In particular redox conditions of the mantle critically influence the mobility of carbon bearing phases in the silicate matrix; oxidized species are generally more mobile (carbonatites, carbonated silicate melts) or have a larger impact on silicate solidi (carbonated peridotite/eclogite) than reduced species (diamond, carbides, metals). Within garnet bearing mantle lithologies, fO2 can be expected to decrease with depth [1], eventually reaching values similar to the iron-wüstite equilibrium which implies the precipitation of a Fe-Ni metal phase at pressures corresponding to the base of the upper mantle [2]. Because Ni is more noble than Fe, Ni partitions strongly into the reduced phases such that at low metal fractions the metal phase reaches XNi > 0.5. Thermodynamic calculations suggest that the mantle contains ~0.1 wt.% Fe,Ni metal at ~300 km depth [3], increasing to ~1 wt% in the lower mantle [4]. To understand the nature of carbon bearing reduced phases in the Earth mantle, we examine experimentally phase relations and melting behavior in the system Fe-Ni-C at 10 and 23 GPa. Dependent on Fe-Ni ratio and related fO2, C content, P and T we observe a variety of phases, namely (Fe,Ni)3C and (Fe,Ni)7C3 carbides, carbon bearing Fe-Ni metal, diamond and carbon rich metal-melt. In the subsolidus, mantle bulk C contents of 50 to 500 ppm [5] would result in the phase association (Fe,Ni)3C + metal + diamond at 10 GPa. In the uppermost lower mantle, about 1 wt.% metal would dissolve ca. 100 ppm C, any further C would lead to (Fe,Ni)3C carbide saturation. The solidus temperatures of theses phase assemblages however are considerably lower than the geotherm at upper and lower mantle pressures. We therefore suggest that reduced carbon bearing phases in the deep mantle are largely molten [6]. [1

  19. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  20. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  1. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  2. Carbon nanotube materials for hydrogen storage

    SciTech Connect

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J.

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  3. Global ocean storage of anthropogenic carbon

    NASA Astrophysics Data System (ADS)

    Khatiwala, S.; Tanhua, T.; Mikaloff Fletcher, S.; Gerber, M.; Doney, S. C.; Graven, H. D.; Gruber, N.; McKinley, G. A.; Murata, A.; Ríos, A. F.; Sabine, C. L.

    2013-04-01

    The global ocean is a significant sink for anthropogenic carbon (Cant), absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of Cant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of Cant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a global scale, three data-based estimates of the distribution and inventory of Cant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data assimilation techniques which combine ocean interior estimates of Cant with numerical ocean circulation models. Such methods are especially useful for estimating the air-sea flux and interior transport of Cant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate Cant. Our review also highlights the importance of repeat measurements of hydrographic and biogeochemical parameters to estimate the storage of Cant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based Cant estimates provide important constraints on forward ocean models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of Cant gives us a "best" estimate of the global ocean inventory of anthropogenic carbon in 2010 of 155 ± 31 PgC (±20% uncertainty). This estimate includes a broad range of

  4. Global ocean storage of anthropogenic carbon

    NASA Astrophysics Data System (ADS)

    Khatiwala, S.; Tanhua, T.; Mikaloff Fletcher, S.; Gerber, M.; Doney, S. C.; Graven, H. D.; Gruber, N.; McKinley, G. A.; Murata, A.; Ríos, A. F.; Sabine, C. L.; Sarmiento, J. L.

    2012-07-01

    The global ocean is a significant sink for anthropogenic carbon (Cant), absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of Cant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of Cant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a global scale, three data based estimates of the distribution and inventory of Cant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data-assimilation techniques which combine ocean interior estimates of Cant with numerical ocean circulation models. Such methods are especially useful for estimating the air-sea flux and interior transport of Cant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate Cant. Our review also highlights the importance of repeat measurements of hydrographic and biogeochemical parameters to estimate the storage of Cant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based Cant estimates provide important constraints on ocean forward models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of Cant gives us a "best" estimate of the global ocean inventory of anthropogenic carbon in 2010 of 155 Pg C with an uncertainty of ±20%. This estimate includes a broad range of

  5. Spatial dynamics of carbon storage: a case study from Turkey.

    PubMed

    Sivrikaya, Fatih; Baskent, Emin Zeki; Bozali, Nuri

    2013-11-01

    Forest ecosystems have an important role in carbon cycle at both regional and global scales as an important carbon sink. Forest degradation and land cover changes, caused by deforestation and conversion to non-forest area, have a strong impact on carbon storage. The carbon storage of forest biomass and its changes over time in the Hartlap planning unit of the southeastern part of Turkey have been estimated using the biomass expansion factor method based on field measurements of forests plots with forest inventory data between 1991 and 2002. The amount of carbon storage associated with land use and land cover changes were also analyzed. The results showed that the total forested area of the Hartlap planning unit slightly increased by 2.1%, from 27,978.7 ha to 28,282.6 ha during the 11-year period, and carbon storage increased by 9.6%, from 390,367.6 to 427,826.9 tons. Carbon storage of conifer and mixed forests accounted for about 70.6% of carbon storage in 1991, and 67.8% in 2002 which increased by 14,274.6 tons. Land use change and increasing forest area have a strong influence on increasing biomass and carbon storage. PMID:23771281

  6. Is Carbon Capture and Storage Really Needed?

    SciTech Connect

    Tsouris, Costas; Williams, Kent Alan; Aaron, D

    2010-01-01

    Two of the greatest contemporary global challenges are anthropogenic greenhouse gas emissions and energy sustainability. A popular proposed solution to the former problem is carbon capture and storage (CCS). Unfortunately, CCS has little benefit for energy sustainability and introduces significant long-term costs and risks. Thus, we propose the adoption of 'virtual CCS' by directing the resources that would have been spent on CCS to alternative energy technologies. (The term 'virtual' is used here because the concept described in this work satisfies the Merriam-Webster Dictionary definition of virtual: 'being such in essence or effect though not formally recognized or admitted.') In this example, we consider wind and nuclear power and use the funds that would have been required by CCS to invest in installation and operation of these technologies. Many other options exist in addition to wind and nuclear power including solar, biomass, geothermal, and others. These additional energy technologies can be considered in future studies. While CCS involves spending resources to concentrate CO{sub 2} in sinks, such as underground reservoirs, low-carbon alternative energy produces power, which will displace fossil fuel use while simultaneously generating revenues. Thus, these alternative energy technologies achieve the same objective as that of CCS, namely, the avoidance of atmospheric CO{sub 2} emissions.

  7. The value of carbon sequestration and storage in coastal habitats

    NASA Astrophysics Data System (ADS)

    Beaumont, N. J.; Jones, L.; Garbutt, A.; Hansom, J. D.; Toberman, M.

    2014-01-01

    Coastal margin habitats are globally significant in terms of their capacity to sequester and store carbon, but their continuing decline, due to environmental change and human land use decisions, is reducing their capacity to provide this ecosystem service. In this paper the UK is used as a case study area to develop methodologies to quantify and value the ecosystem service of blue carbon sequestration and storage in coastal margin habitats. Changes in UK coastal habitat area between 1900 and 2060 are documented, the long term stocks of carbon stored by these habitats are calculated, and the capacity of these habitats to sequester CO2 is detailed. Changes in value of the carbon sequestration service of coastal habitats are then projected for 2000-2060 under two scenarios, the maintenance of the current state of the habitat and the continuation of current trends of habitat loss. If coastal habitats are maintained at their current extent, their sequestration capacity over the period 2000-2060 is valued to be in the region of £1 billion UK sterling (3.5% discount rate). However, if current trends of habitat loss continue, the capacity of the coastal habitats both to sequester and store CO2 will be significantly reduced, with a reduction in value of around £0.25 billion UK sterling (2000-2060; 3.5% discount rate). If loss-trends due to sea level rise or land reclamation worsen, this loss in value will be greater. This case study provides valuable site specific information, but also highlights global issues regarding the quantification and valuation of carbon sequestration and storage. Whilst our ability to value ecosystem services is improving, considerable uncertainty remains. If such ecosystem valuations are to be incorporated with confidence into national and global policy and legislative frameworks, it is necessary to address this uncertainty. Recommendations to achieve this are outlined.

  8. Soil carbon storage controlled by interactions between geochemistry and climate

    NASA Astrophysics Data System (ADS)

    Doetterl, Sebastian; Stevens, Antoine; Six, Johan; Merckx, Roel; van Oost, Kristof; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Boudin, Mathieu; Zagal Venegas, Erick; Boeckx, Pascal

    2015-10-01

    Soils are an important site of carbon storage. Climate is generally regarded as one of the primary controls over soil organic carbon, but there is still uncertainty about the direction and magnitude of carbon responses to climate change. Here we show that geochemistry, too, is an important controlling factor for soil carbon storage. We measured a range of soil and climate variables at 24 sites along a 4,000-km-long north-south transect of natural grassland and shrubland in Chile and the Antarctic Peninsula, which spans a broad range of climatic and geochemical conditions. We find that soils with high carbon content are characterized by substantial adsorption of carbon compounds onto mineral soil and low rates of respiration per unit of soil carbon; and vice versa for soils with low carbon content. Precipitation and temperature were only secondary predictors for carbon storage, respiration, residence time and stabilization mechanisms. Correlations between climatic variables and carbon variables decreased significantly after removing relationships with geochemical predictors. We conclude that the interactions of climatic and geochemical factors control soil organic carbon storage and turnover, and must be considered for robust prediction of current and future soil carbon storage.

  9. Policy Needs for Carbon Capture & Storage

    NASA Astrophysics Data System (ADS)

    Peridas, G.

    2007-12-01

    Climate change is one of the most pressing environmental problems of our time. The widespread consensus that exists on climate science requires deep cuts in greenhouse gas emissions, on the order of 50-80% globally from current levels. Reducing energy demand, increasing energy efficiency and sourcing our energy from renewable sources will, and should, play a key role in achieving these cuts. Fossil fuels however are abundant, relatively inexpensive, and still make up the backbone of our energy system. Phasing out fossil fuel use will be a gradual process, and is likely to take far longer than the timeframe dictated by climate science for reducing emissions. A reliable way of decarbonizing the use of fossil fuels is needed. Carbon capture and storage (CCS) has already proven to be a technology that can safely and effectively accomplish this task. The technological know-how and the underground capacity exist to store billions of tons of carbon dioxide in mature oil and gas fields, and deep saline formations. Three large international commercial projects and several other applications have proved this, but substantial barriers remain to be overcome before CCS becomes the technology of choice in all major emitting sectors. Government has a significant role to play in surmounting these barriers. Without mandatory limits on greenhouse gas emissions and a price on carbon, CCS is likely to linger in the background. The expected initial carbon price levels and their potential volatility under such a scheme dictates that further policies be used in the early years in order for CCS to be implemented. Such policies could include a new source performance standard for power plants, and a low carbon generation obligation that would relieve first movers by spreading the additional cost of the technology over entire sectors. A tax credit for capturing and permanently sequestering anthropogenic CO2 would aid project economics. Assistance in the form of loan guarantees for components

  10. Carbon storage at defect sites in mantle mineral analogues

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Buseck, Peter R.

    2013-10-01

    A significant fraction of Earth's carbon resides in the mantle, but the mode of carbon storage presents a long-standing problem. The mantle contains fluids rich in carbon dioxide and methane, carbonate-bearing melts, carbonate minerals, graphite, diamond and carbides, as well as dissolved carbon atoms in metals. However, it is uncertain whether these can sufficiently account for the total amount of carbon thought to be stored in the mantle and the volume of carbon degassed from the mantle at volcanoes. Moreover, such carbon hosts should significantly affect the physical and chemical behaviour of the mantle, including its melting temperature, electrical conductivity and oxidation state. Here we use in situ transmission electron microscopy to measure the storage of carbon within common mantle mineral analogues--nickel-doped lanthanum chromate perovskite and titanium dioxide--in laboratory experiments at high pressure and temperature. We detect elevated carbon concentrations at defect sites in the nanocrystals, maintained at high pressures within annealed carbon nanocages. Specifically, our experiments show that small stacking faults within the mantle analogue materials are effective carbon sinks at mantle conditions, potentially providing an efficient mechanism for carbon storage in the mantle. Furthermore, this carbon can be readily released under lower pressure conditions, and may therefore help to explain carbon release in volcanic eruptions.

  11. [Prediction of spatial distribution of forest carbon storage in Heilongjiang Province using spatial error model].

    PubMed

    Liu, Chang; Li, Feng-Ri; Zhen, Zhen

    2014-10-01

    Abstract: Based on the data from Chinese National Forest Inventory (CNFI) and Key Ecological Benefit Forest Monitoring plots (5075 in total) in Heilongjiang Province in 2010 and concurrent meteorological data coming from 59 meteorological stations located in Heilongjiang, Jilin and Inner Mongolia, this paper established a spatial error model (SEM) by GeoDA using carbon storage as dependent variable and several independent variables, including diameter of living trees (DBH), number of trees per hectare (TPH), elevation (Elev), slope (Slope), and product of precipitation and temperature (Rain_Temp). Global Moran's I was computed for describing overall spatial autocorrelations of model results at different spatial scales. Local Moran's I was calculated at the optimal bandwidth (25 km) to present spatial distribution residuals. Intra-block spatial variances were computed to explain spatial heterogeneity of residuals. Finally, a spatial distribution map of carbon storage in Heilongjiang was visualized based on predictions. The results showed that the distribution of forest carbon storage in Heilongjiang had spatial effect and was significantly influenced by stand, topographic and meteorological factors, especially average DBH. SEM could solve the spatial autocorrelation and heterogeneity well. There were significant spatial differences in distribution of forest carbon storage. The carbon storage was mainly distributed in Zhangguangcai Mountain, Xiao Xing'an Mountain and Da Xing'an Mountain where dense, forests existed, rarely distributed in Songnen Plains, while Wanda Mountain had moderate-level carbon storage. PMID:25796882

  12. Integrated Assessment Modeling for Carbon Storage Risk and Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Bromhal, G. S.; Dilmore, R.; Pawar, R.; Stauffer, P. H.; Gastelum, J.; Oldenburg, C. M.; Zhang, Y.; Chu, S.

    2013-12-01

    The National Risk Assessment Partnership (NRAP) has developed tools to perform quantitative risk assessment at site-specific locations for long-term carbon storage. The approach that is being used is to divide the storage and containment system into components (e.g., reservoirs, seals, wells, groundwater aquifers), to develop detailed models for each component, to generate reduced order models (ROMs) based on the detailed models, and to reconnect the reduced order models within an integrated assessment model (IAM). CO2-PENS, developed at Los Alamos National Lab, is being used as the IAM for the simulations in this study. The benefit of this approach is that simulations of the complete system can be generated on a relatively rapid time scale so that Monte Carlo simulation can be performed. In this study, hundreds of thousands of runs of the IAMs have been generated to estimate likelihoods of the quantity of CO2 released to the atmosphere, size of aquifer impacted by pH, size of aquifer impacted by TDS, and size of aquifer with different metals concentrations. Correlations of the output variables with different reservoir, seal, wellbore, and aquifer parameters have been generated. Importance measures have been identified, and inputs have been ranked in the order of their impact on the output quantities. Presentation will describe the approach used, representative results, and implications for how the Monte Carlo analysis is implemented on uncertainty quantification.

  13. 5. VIEW SOUTH, STORAGE BUILDING PIERS Imperial Carbon Black ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SOUTH, STORAGE BUILDING PIERS - Imperial Carbon Black Plant (Ruin), North side of North Fork of Hughes River along Bunnell Run Road just over 0.5 mile from its intersection with State Route 16, Harrisville, Ritchie County, WV

  14. 9. VIEW EAST, STORAGE BUILDING PIERS Imperial Carbon Black ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW EAST, STORAGE BUILDING PIERS - Imperial Carbon Black Plant (Ruin), North side of North Fork of Hughes River along Bunnell Run Road just over 0.5 mile from its intersection with State Route 16, Harrisville, Ritchie County, WV

  15. Carbon Nanotube Films for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Kozinda, Alina

    With the rising demands for small, lightweight, and long-lasting portable electronics, the need for energy storage devices with both large power and large energy densities becomes vitally important. From their usage in hybrid electric vehicles to wearable electronics, supercapacitors and rechargeable batteries have been the focus of many previous works. Electrode materials with large specific surface areas can enhance the charging speed and total amount of stored energy. To this end, vertically self-aligned carbon nanotube (CNT) forests are well suited, as they possess outstanding electrical conductivities as well as high mechanical strength and large specific surface areas. In addition, forests of vertically aligned CNTs allow the ions within an electrolyte to pass freely between the individual CNTs from electrode to electrode. In order to minimize the system resistance of the battery or supercapacitor, a thin molybdenum current collector layer is deposited beneath catalyst of the CNT forest, thus ensuring that when the CNT forest grows from its substrate, each CNT has an innate connection to the current collector. This versatile CNT-Mo film architecture is used in this work as both supercapacitor as well as lithium-ion battery electrodes. It is desirable to have energy storage devices of adjustable shapes, such that they may conform to the shrinking form factors of modern portable electronics and mechanically flexible electrodes are an attractive prospect. The CNT-Mo film is shown here to easily release from its growth substrate, after which it may be placed onto a number of surfaces and topographies and densified. Two polymer films, KaptonRTM and Thermanox(TM) , have been used as substrates for the demonstrations of flexible supercapacitor electrodes. Test results show that the attached active CNT-Mo film can withstand bending to at least as large an angle as 180°. The specific capacitance of a 5 mm by 5 mm area electrode in the K2SO 4 aqueous electrolyte with

  16. Carbon storage of headwater riparian zones in an agricultural landscape

    PubMed Central

    2012-01-01

    Background In agricultural regions, streamside forests have been reduced in age and extent, or removed entirely to maximize arable cropland. Restoring and reforesting such riparian zones to mature forest, particularly along headwater streams (which constitute 90% of stream network length) would both increase carbon storage and improve water quality. Age and management-related cover/condition classes of headwater stream networks can be used to rapidly inventory carbon storage and sequestration potential if carbon storage capacity of conditions classes and their relative distribution on the landscape are known. Results Based on the distribution of riparian zone cover/condition classes in sampled headwater reaches, current and potential carbon storage was extrapolated to the remainder of the North Carolina Coastal Plain stream network. Carbon stored in headwater riparian reaches is only about 40% of its potential capacity, based on 242 MgC/ha stored in sampled mature riparian forest (forest > 50 y old). The carbon deficit along 57,700 km headwater Coastal Plain streams is equivalent to about 25TgC in 30-m-wide riparian buffer zones and 50 TgC in 60-m-wide buffer zones. Conclusions Estimating carbon storage in recognizable age-and cover-related condition classes provides a rapid way to better inventory current carbon storage, estimate storage capacity, and calculate the potential for additional storage. In light of the particular importance of buffer zones in headwater reaches in agricultural landscapes in ameliorating nutrient and sediment input to streams, encouraging the restoration of riparian zones to mature forest along headwater reaches worldwide has the potential to not only improve water quality, but also simultaneously reduce atmospheric CO2. PMID:22333213

  17. Hydrogen storage in carbon materials—preliminary results

    NASA Astrophysics Data System (ADS)

    Jörissen, Ludwig; Klos, Holger; Lamp, Peter; Reichenauer, Gudrun; Trapp, Victor

    1998-08-01

    Recent developments aiming at the accelerated commercialization of fuel cells for automotive applications have triggered an intensive research on fuel storage concepts for fuel cell cars. The fuel cell technology currently lacks technically and economically viable hydrogen storage technologies. On-board reforming of gasoline or methanol into hydrogen can only be regarded as an intermediate solution due to the inherently poor energy efficiency of such processes. Hydrogen storage in carbon nanofibers may lead to an efficient solution to the above described problems.

  18. Filled Carbon Nanotubes: Superior Latent Heat Storage Enhancers

    SciTech Connect

    2009-04-01

    This factsheet describes a rstudy whose technical objective is to demonstrate the feasibility of filled carbon nanotubes (CNT) as latent heat storage enhancers, with potential applications as next generation thermal management fluids in diverse applications in industries ranging from high-demand microelectronic cooling, manufacturing, power generation, transportation, to solar energy storage.

  19. Ecosystem Carbon Storage in Alpine Grassland on the Qinghai Plateau.

    PubMed

    Liu, Shuli; Zhang, Fawei; Du, Yangong; Guo, Xiaowei; Lin, Li; Li, Yikang; Li, Qian; Cao, Guangmin

    2016-01-01

    The alpine grassland ecosystem can sequester a large quantity of carbon, yet its significance remains controversial owing to large uncertainties in the relative contributions of climate factors and grazing intensity. In this study we surveyed 115 sites to measure ecosystem carbon storage (both biomass and soil) in alpine grassland over the Qinghai Plateau during the peak growing season in 2011 and 2012. Our results revealed three key findings. (1) Total biomass carbon density ranged from 0.04 for alpine steppe to 2.80 kg C m-2 for alpine meadow. Median soil organic carbon (SOC) density was estimated to be 16.43 kg C m-2 in alpine grassland. Total ecosystem carbon density varied across sites and grassland types, from 1.95 to 28.56 kg C m-2. (2) Based on the median estimate, the total carbon storage of alpine grassland on the Qinghai Plateau was 5.14 Pg, of which 94% (4.85 Pg) was soil organic carbon. (3) Overall, we found that ecosystem carbon density was affected by both climate and grazing, but to different extents. Temperature and precipitation interaction significantly affected AGB carbon density in winter pasture, BGB carbon density in alpine meadow, and SOC density in alpine steppe. On the other hand, grazing intensity affected AGB carbon density in summer pasture, SOC density in alpine meadow and ecosystem carbon density in alpine grassland. Our results indicate that grazing intensity was the primary contributing factor controlling carbon storage at the sites tested and should be the primary consideration when accurately estimating the carbon storage in alpine grassland. PMID:27494253

  20. Ecosystem Carbon Storage in Alpine Grassland on the Qinghai Plateau

    PubMed Central

    Liu, Shuli; Zhang, Fawei; Du, Yangong; Guo, Xiaowei; Lin, Li; Li, Yikang; Li, Qian; Cao, Guangmin

    2016-01-01

    The alpine grassland ecosystem can sequester a large quantity of carbon, yet its significance remains controversial owing to large uncertainties in the relative contributions of climate factors and grazing intensity. In this study we surveyed 115 sites to measure ecosystem carbon storage (both biomass and soil) in alpine grassland over the Qinghai Plateau during the peak growing season in 2011 and 2012. Our results revealed three key findings. (1) Total biomass carbon density ranged from 0.04 for alpine steppe to 2.80 kg C m-2 for alpine meadow. Median soil organic carbon (SOC) density was estimated to be 16.43 kg C m-2 in alpine grassland. Total ecosystem carbon density varied across sites and grassland types, from 1.95 to 28.56 kg C m-2. (2) Based on the median estimate, the total carbon storage of alpine grassland on the Qinghai Plateau was 5.14 Pg, of which 94% (4.85 Pg) was soil organic carbon. (3) Overall, we found that ecosystem carbon density was affected by both climate and grazing, but to different extents. Temperature and precipitation interaction significantly affected AGB carbon density in winter pasture, BGB carbon density in alpine meadow, and SOC density in alpine steppe. On the other hand, grazing intensity affected AGB carbon density in summer pasture, SOC density in alpine meadow and ecosystem carbon density in alpine grassland. Our results indicate that grazing intensity was the primary contributing factor controlling carbon storage at the sites tested and should be the primary consideration when accurately estimating the carbon storage in alpine grassland. PMID:27494253

  1. Adding Clays to Sandy Soils to Increase Carbon Storage

    NASA Astrophysics Data System (ADS)

    Harper, R. J.; Sochacki, S. J.

    2011-12-01

    Soil carbon storage is often related to clay content and mineralogy. For example, in a dryland farming area (300 mm/year annual rainfall) of Western Australia, carbon storage increased systematically with increasing clay content. Carbon storage in the surface 0.1 m was 42.5 Mg CO2-e/ha in soils with 1.7% clay compared to 99.1 Mg CO2-e/ha for soils with 9.1% clay. Similar results are evident in other data-sets, with carbon storage being related to site water balance, clay content and soil chemical fertility. We thus investigated whether soil carbon storage could be manipulated in sandy soils by adding clay. Clays are often added to farmed sandy soils to overcome water repellency and to reduce nutrient losses by leaching, but are not considered as a carbon management tool. The combined effects can improve plant productivity and thus carbon inputs to soil carbon pools. Bauxite processing residue (10% clay) had been applied in 1982 to sandy soils at different rates in an area with 760 mm/year annual rainfall. Application of 25 Mg clay/ha resulted in an increase in soil carbon content of 47.7 Mg CO2-e/ha. Soils were sampled to a depth of 0.3 m, with most (65%) of the increase being in the surface 0.1 m. Globally, there are large areas of sandy soils occurring across several soil taxonomic orders. In this presentation we describe the implications of clay amendments for increasing the carbon storage in such soils, and suggest areas of further investigation.

  2. Carbon Storage in Wetlands and Lakes of the Eastern US

    NASA Technical Reports Server (NTRS)

    Renik, Byrdie; Peteet, Dorothy; Hansen, James E. (Technical Monitor)

    2001-01-01

    Carbon stored underground may participate in a positive feedback with climate warming, as higher temperatures accelerate decomposition reactions and hence CO2 release. Assessing how below-ground carbon storage varies with modern climate and paleoclimate will advance understanding of this feedback in two ways. First, it will estimate the sensitivity of carbon storage to temperature and precipitation changes. Second, it will help quantify the size of carbon stocks available for the feedback, by indicating how current regional climate differences affect carbon storage. Whereas many studies of below-ground carbon storage concentrate on soils, this investigation focuses on the saturated and primarily organic material stored in wetlands and lake sediments. This study surveys research done on organic sediment depth and organic content at 50-100 sites in the eastern U.S., integrating our own research with the work of others. Storage depth is evaluated for sediments from the past 10,000 years, a date reflected in pollen profiles. Organic content is measured chiefly by loss-on-ignition (101). These variables are compared to characteristics of the sites such as latitude, altitude, and vegetation as well as local climate. Preliminary results suggest a strong relationship between latitude and depth of organic material stored over the last 10,000 years, with more accumulation in the northeastern US than the southeastern US. Linking the percent organic matter to actual carbon content is in progress with wetlands from Black Rock Forest and Alpine Swamp.

  3. Trade-offs and synergies between carbon storage and livelihood benefits from forest commons

    PubMed Central

    Chhatre, Ashwini; Agrawal, Arun

    2009-01-01

    Forests provide multiple benefits at local to global scales. These include the global public good of carbon sequestration and local and national level contributions to livelihoods for more than half a billion users. Forest commons are a particularly important class of forests generating these multiple benefits. Institutional arrangements to govern forest commons are believed to substantially influence carbon storage and livelihood contributions, especially when they incorporate local knowledge and decentralized decision making. However, hypothesized relationships between institutional factors and multiple benefits have never been tested on data from multiple countries. By using original data on 80 forest commons in 10 countries across Asia, Africa, and Latin America, we show that larger forest size and greater rule-making autonomy at the local level are associated with high carbon storage and livelihood benefits; differences in ownership of forest commons are associated with trade-offs between livelihood benefits and carbon storage. We argue that local communities restrict their consumption of forest products when they own forest commons, thereby increasing carbon storage. In showing rule-making autonomy and ownership as distinct and important institutional influences on forest outcomes, our results are directly relevant to international climate change mitigation initiatives such as Reduced Emissions from Deforestation and Forest Degradation (REDD) and avoided deforestation. Transfer of ownership over larger forest commons patches to local communities, coupled with payments for improved carbon storage can contribute to climate change mitigation without adversely affecting local livelihoods. PMID:19815522

  4. WATSTORE: NATIONAL WATER DATA STORAGE AND RETRIEVAL SYSTEM

    EPA Science Inventory

    The US Geological Survey (USGS) National Water Data Storage and Retrieval System (WATSTORE) consists of several files in which water data are grouped and stored by common characteristics and data-collection frequencies. Files are maintained for the storage of (1) surface-water, q...

  5. Annual Report: Carbon Storage (30 September 2012)

    SciTech Connect

    Strazisar, Brian; Guthrie, George

    2013-11-07

    Activities include laboratory experimentation, field work, and numerical modeling. The work is divided into five theme areas (or first level tasks) that each address a key research need: Flow Properties of Reservoirs and Seals, Fundamental Processes and Properties, Estimates of Storage Potential, Verifying Storage Performance, and Geospatial Data Resources. The project also includes a project management effort which coordinates the activities of all the research teams.

  6. 5. HORIZONTAL COOLEDWATER STORAGE TANKS. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. HORIZONTAL COOLED-WATER STORAGE TANKS. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  7. Carbon Materials for Chemical Capacitive Energy Storage

    SciTech Connect

    Zhai, Yunpu; Dou, Yuqian; Zhao, Dongyuan; Fulvio, Pasquale F.; Mayes, Richard T.; Dai, Sheng

    2011-09-26

    Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.

  8. NATCARB Interactive Maps and the National Carbon Explorer: a National Look at Carbon Sequestration

    DOE Data Explorer

    NATCARB is a national look at carbon sequestration. The NATCARB home page, National Carbon Explorer (http://www.natcarb.org/) provides access to information and interactive maps on a national scale about climate change, DOE's carbon sequestration program and its partnerships, CO2 emissions, and sinks. This portal provides access to interactive maps based on the Carbon Sequestration Atlas of the United States and Canada.

  9. Mechanisms of soil carbon storage in experimental grasslands

    NASA Astrophysics Data System (ADS)

    Steinbeiss, S.; Temperton, V. M.; Gleixner, G.

    2007-10-01

    We investigated the fate of root and litter derived carbon into soil organic matter and dissolved organic matter in soil profiles, in order to explain unexpected positive effects of plant diversity on carbon storage. A time series of soil and soil solution samples was investigated at the field site of The Jena Experiment. In addition to the main biodiversity experiment with C3 plants, a C4 species (Amaranthus retroflexus L.) naturally labeled with 13C was grown on an extra plot. Changes in organic carbon concentration in soil and soil solution were combined with stable isotope measurements to follow the fate of plant carbon into the soil and soil solution. A split plot design with plant litter removal versus double litter input simulated differences in biomass input. After 2 years, the no litter and double litter treatment, respectively, showed an increase of 381 g C m-2 and 263 g C m-2 to 20 cm depth, while 71 g C m-2 and 393 g C m-2 were lost between 20 and 30 cm depth. The isotopic label in the top 5 cm indicated that 11 and 15% of soil organic carbon were derived from plant material on the no litter and the double litter treatment, respectively. Without litter, this equals the total amount of carbon newly stored in soil, whereas with double litter this corresponds to twice the amount of stored carbon. Our results indicate that litter input resulted in lower carbon storage and larger carbon losses and consequently accelerated turnover of soil organic carbon. Isotopic evidence showed that inherited soil organic carbon was replaced by fresh plant carbon near the soil surface. Our results suggest that primarily carbon released from soil organic matter, not newly introduced plant organic matter, was transported in the soil solution and contributed to the observed carbon storage in deeper horizons.

  10. Carbon Storage in Urban Areas in the USA

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Brown, D.; Keoleian, G.

    2007-12-01

    It is widely accepted that human settlements occupy a small proportion of the landmass and therefore play a relatively small role in the dynamics of the global carbon cycle. Most modeling studies focusing on the land carbon cycle use models of varying complexity to estimate carbon fluxes through forests, grasses, and croplands, but completely omit urban areas from their scope. Here, we estimate carbon storage in urban areas within the United States, defined to encompass a range of observed settlement densities, and its changes from 1950 to 2000. We show that this storage is not negligible and has been continuously increasing. We include natural- and human-related components of urban areas in our estimates. The natural component includes carbon storage in urban soil and vegetation. The human related component encompasses carbon stored long term in buildings, furniture, cars, and waste. The study suggests that urban areas should receive continued attention in efforts to accurately account for carbon uptake and storage in terrestrial systems.

  11. Changes in forest biomass carbon storage in China between 1949 and 1998.

    PubMed

    Fang, J; Chen, A; Peng, C; Zhao, S; Ci, L

    2001-06-22

    The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions. PMID:11423660

  12. Microbial activity promotes carbon storage in temperate soils

    NASA Astrophysics Data System (ADS)

    Lange, Markus; Eisenhauer, Nico; Sierra, Carlos; Gleixner, Gerd

    2014-05-01

    Soils are one of the most important carbon sink and sources. Soils contain up to 3/4 of all terrestrial carbon. Beside physical aspects of soil properties (e.g. soil moisture and texture) plants play an important role in carbon sequestration. The positive effect of plant diversity on carbon storage is already known, though the underlying mechanisms remain still unclear. In the frame of the Jena Experiment, a long term biodiversity experiment, we are able to identify these processes. Nine years after an land use change from an arable field to managed grassland the mean soil carbon concentrations increased towards the concentrations of permanent meadows. The increase was positively linked to a plant diversity gradient. High diverse plant communities produce more biomass, which in turn results in higher amounts of litter inputs. The plant litter is transferred to the soil organic matter by the soil microbial community. However, higher plant diversity also causes changes in micro-climatic condition. For instance, more diverse plant communities have a more dense vegetation structure, which reduced the evaporation of soils surface and thus, increases soil moisture in the top layer. Higher inputs and higher soil moisture lead to an enlarged respiration of the soil microbial community. Most interestingly, the carbon storage in the Jena Experiment was much more related to microbial respiration than to plant root inputs. Moreover, using radiocarbon, we found a significant younger carbon age in soils of more diverse plant communities than in soils of lower diversity, indicating that more fresh carbon is integrated into the carbon pool. Putting these findings together, we could show, that the positive link between plant diversity and carbon storage is due to a higher microbial decomposition of plant litter, pointing out that carbon storage in soils is a function of the microbial community.

  13. Enhanced lithium ion storage in nanoimprinted carbon

    NASA Astrophysics Data System (ADS)

    Wang, Peiqi; Chen, Qian Nataly; Xie, Shuhong; Liu, Xiaoyan; Li, Jiangyu

    2015-07-01

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  14. Enhanced lithium ion storage in nanoimprinted carbon

    SciTech Connect

    Wang, Peiqi; Chen, Qian Nataly; Li, Jiangyu; Xie, Shuhong; Liu, Xiaoyan

    2015-07-27

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  15. Guide to monitoring carbon storage in forestry and agroforestry projects

    SciTech Connect

    MacDicken, K.G.

    1997-10-01

    As the international Joint Implementation (JI) program develops a system for trading carbon credits to offset greenhouse gas emissions, project managers need a reliable basis for measuring the carbon storage benefits of carbon offset projects. Monitoring and verifying carbon storage can be expensive, depending on the level of scientific validity needed. This guide describes a system of cost-effective methods for monitoring and verification on a commercial basis, for three types of land use; forest plantations, managed natural forests and agroforestry. Winrock International`s Forest Carbon Monitoring Program developed this system with its partners as a way to provide reliable results using accepted principles and practices of forest inventory, soil science and ecological surveys. Perhaps most important, the system brings field research methods to bear on commercial-scale inventories, at levels of precision specified by funding agencies.

  16. Weathering controls on mechanisms of carbon storage in grassland soils

    USGS Publications Warehouse

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-01-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought. Copyright 2004 by the American Geophysical Union.

  17. Weathering controls on mechanisms of carbon storage in grassland soils

    SciTech Connect

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-09-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation of Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought.

  18. Nanowire modified carbon fibers for enhanced electrical energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  19. On carbon dioxide storage based on biomineralization strategies.

    PubMed

    Lee, Seung-Woo; Park, Seung-Bin; Jeong, Soon-Kwan; Lim, Kyoung-Soo; Lee, Si-Hyun; Trachtenberg, Michael C

    2010-06-01

    This study focuses on the separation and storage of the global warming greenhouse gas CO(2), and the use of natural biocatalysts in the development of technologies to improve CO(2) storage rates and provide new methods for CO(2) capture. Carbonic anhydrase (CA) has recently been used as a biocatalyst to sequester CO(2) through the conversion of CO(2) to HCO(-) in the mineralization of CaCO(3). Biomimetic CaCO(3) mineralization for carbon capture and storage offers potential as a stable CO(2) capture technology. In this report, we review recent developments in this field and assess disadvantages and improvements in the use of CA in industrial applications. We discuss the contribution that understanding of mechanisms of CO(2) conversion to CO(3)(-) in the formation and regeneration of bivalve shells will make to developments in biomimetic CO(2) storage. PMID:20144548

  20. Management practices affects soil carbon dioxide emission and carbon storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural practices contribute about 25% of total anthropogenic carbon dioxide emission, a greenhouse gas responsible for global warming. Soil can act both as sink or source of atmospheric carbon dioxide. Carbon dioxide fixed in plant biomass through photosynthesis can be stored in soil as organi...

  1. Storage of Organic and Inorganic Carbon in Human Settlements

    NASA Astrophysics Data System (ADS)

    Churkina, G.

    2009-12-01

    It has been shown that urban areas have carbon density comparable with tropical forest. Carbon density of urban areas may be even higher, because the density of organic carbon only was taking into account. Human settlements store carbon in two forms such as organic and inorganic. Carbon is stored in organic form in living biomass such as trees, grasses or in artifacts derived from biomass such as wooden furniture, building structures, paper, clothes and shoes made from natural materials. Inorganic carbon or fossil carbon, meanwhile, is primarily stored in objects fabricated by people like concrete, plastic, asphalt, and bricks. The key difference between organic and inorganic forms of carbon is how they return to the gaseous state. Organic carbon can be returned to the atmosphere without applying additional artificial energy through decomposition of organic matter, whereas energy input such as burning is needed to release inorganic carbon. In this study I compare inorganic with organic carbon storage, discuss their carbon residence time, decomposition rates, and possible implications for carbon emissions.

  2. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    SciTech Connect

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  3. Carbon nanomaterials for advanced energy conversion and storage.

    PubMed

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. PMID:22383334

  4. Can intensive management increase carbon storage in forests

    SciTech Connect

    Schroeder, P.

    1991-01-01

    A possible response to increasing atmospheric CO2 concentration is to attempt to increase the amount of carbon stored in terrestrial vegetation. One approach to increasing the size of the terrestrial carbon sink is to increase the growth of forests by utilizing intensive forest management practices. The paper uses data from the literature and from forest growth and yield models to analyze the impact of three management practices on carbon storage: thinning, fertilization, and control of competing vegetation. Using Douglas-fir (Pseudotsuga menziesii) and loblolly pine (Pinus taeda) as example species, results showed that thinning generally does not increase carbon storage, and may actually cause a decrease. The exception is thinning of very dense young stands.

  5. Global Ocean Storage of Anthropogenic Carbon (GOSAC)

    SciTech Connect

    Orr, J C

    2002-04-02

    GOSAC was an EC-funded project (1998-2001) focused on improving the predictive capacity and accelerating development of global-scale, three-dimensional, ocean carbon-cycle models by means of standardized model evaluation and model intercomparison. Through the EC Environment and Climate Programme, GOSAC supported the participation of seven European modeling groups in the second phase of the larger international effort OCMIP (the Ocean Carbon-Cycle Model Intercomparison Project). OCMIP included model comparison and validation for both CO{sub 2} and other ocean circulation and biogeochemical tracers. Beyond the international OCMIP effort, GOSAC also supported the same EC ocean carbon cycle modeling groups to make simulations to evaluate the efficiency of purposeful sequestration of CO{sub 2} in the ocean. Such sequestration, below the thermocline has been proposed as a strategy to help mitigate the increase of CO{sub 2} in the atmosphere. Some technical and scientific highlights of GOSAC are given.

  6. Carbon coated textiles for flexible energy storage

    SciTech Connect

    Jost, Kristy; Perez, Carlos O; Mcdonough, John; Presser, Volker; Heon, Min; Dion, Genevieve; Gogotsi, Yury

    2011-01-01

    This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at 0.25 A$g1 achieved a high gravimetric and areal capacitance, an average of 85 F$g1 on cotton lawn and polyester microfiber, both corresponding to 0.43 F$cm2.

  7. Carbon coated textiles for flexible energy storage

    SciTech Connect

    Jost, Kristy; Perez, Carlos R.; McDonough, John K.; Presser, Volker; Heon, Min; Dion, Genevieve; Gogotsi, Yury

    2011-10-20

    This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at ~0.25 A·g⁻¹ achieved a high gravimetric and areal capacitance, an average of 85 F·g⁻¹ on cotton lawn and polyester microfiber, both corresponding to ~0.43 F·cm⁻².

  8. Carbon Storages in Plantation Ecosystems in Sand Source Areas of North Beijing, China

    PubMed Central

    Liu, Xiuping; Zhang, Wanjun; Cao, Jiansheng; Shen, Huitao; Zeng, Xinhua; Yu, Zhiqiang; Zhao, Xin

    2013-01-01

    Afforestation is a mitigation option to reduce the increased atmospheric carbon dioxide levels as well as the predicted high possibility of climate change. In this paper, vegetation survey data, statistical database, National Forest Resource Inventory database, and allometric equations were used to estimate carbon density (carbon mass per hectare) and carbon storage, and identify the size and spatial distribution of forest carbon sinks in plantation ecosystems in sand source areas of north Beijing, China. From 2001 to the end of 2010, the forest areas increased more than 2.3 million ha, and total carbon storage in forest ecosystems was 173.02 Tg C, of which 82.80 percent was contained in soil in the top 0–100 cm layer. Younger forests have a large potential for enhancing carbon sequestration in terrestrial ecosystems than older ones. Regarding future afforestation efforts, it will be more effective to increase forest area and vegetation carbon density through selection of appropriate tree species and stand structure according to local climate and soil conditions, and application of proper forest management including land-shaping, artificial tending and fencing plantations. It would be also important to protect the organic carbon in surface soils during forest management. PMID:24349223

  9. Improving estimates of rangeland carbon storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Terrestrial carbon sequestration on rangelands has the potential to make a substantial contribution to the reduction of greenhouse gas (GHG) levels in the atmosphere and mitigate the effects of global climate change. This enhanced sequestration can be accomplished through the management of soils and...

  10. Impacts of Geological Variability on Carbon Storage Potential

    NASA Astrophysics Data System (ADS)

    Eccles, Jordan Kaelin

    The changes to the environment caused by anthropogenic climate change pose major challenges for energy production in the next century. Carbon Capture and Storage (CCS) is a group of technologies that would permit the continued use of carbon-intense fuels such as coal for energy production while avoiding further impact on the global climate system. The mechanism most often proposed for storage is injection of CO2 below the surface of the Earth in geological media, with the most promising option for CO2 reservoirs being deep saline aquifers (DSA's). Unlike oil and gas reservoirs, deep saline aquifers are poorly characterized and the variability in their properties is large enough to have a high impact on the overall physical and economic viability of CCS. Storage in saline aquifers is likely to be a very high-capacity resource, but its economic viability is almost unknown. We consider the impact of geological variability on the total viability of the CO 2 storage system from several perspectives. First, we examine the theoretical range of costs of storage by coupling a physical and economic model of CO 2 storage with a range of possible geological settings. With the relevant properties of rock extending over several orders of magnitude, it is not surprising that we find costs and storage potential ranging over several orders of magnitude. Second, we use georeferenced data to evaluate the spatial distribution of cost and capacity. When paired together to build a marginal abatement cost curve (MACC), this cost and capacity data indicates that low cost and high capacity are collocated; storage in these promising areas is likely to be quite viable but may not be available to all CO2 sources. However, when we continue to explore the impact of geological variability on realistic, commercial-scale site sizes by invoking capacity and pressure management constraints, we find that the distribution costs and footprints of these sites may be prohibitively high. The combination

  11. IPCC special report on carbon dioxide capture and storage

    SciTech Connect

    Bert Metz; Ogunlade Davidson; Heleen de Coninck; Manuela Loos; Leo Meyer

    2005-07-01

    This Intergovernmental Panel on Climate Change (IPCC) Special Report provides information for policymakers, scientists and engineers in the field of climate change and reduction of CO{sub 2} emissions. It describes sources, capture, transport, and storage of CO{sub 2}. It also discusses the costs, economic potential, and societal issues of the technology, including public perception and regulatory aspects. Storage options evaluated include geological storage, ocean storage, and mineral carbonation. Notably, the report places CO{sub 2} capture and storage in the context of other climate change mitigation options, such as fuel switch, energy efficiency, renewables and nuclear energy. This report shows that the potential of CO{sub 2} capture and storage is considerable, and the costs for mitigating climate change can be decreased compared to strategies where only other climate change mitigation options are considered. The importance of future capture and storage of CO{sub 2} for mitigating climate change will depend on a number of factors, including financial incentives provided for deployment, and whether the risks of storage can be successfully managed. The volume includes a Summary for Policymakers approved by governments represented in the IPCC, and a Technical Summary. 5 annexes.

  12. CONSERVATION ROTATIONS FOR COTTON PRODUCTION AND CARBON STORAGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We conducted a 4-yr study on a Compass loamy sand (Plinthic Paleudult) to compare economics and soil organic carbon (SOC) storage of an intensive cropping system to standard cotton production systems in the Southeast. The system uses sunn hemp (Crotalaria juncea L.) and ultra-narrow row (UNR; 8-inc...

  13. A HIERARCHICAL MODELING FRAMEWORK FOR GEOLOGICAL STORAGE OF CARBON DIOXIDE

    EPA Science Inventory

    Carbon Capture and Storage, or CCS, is likely to be an important technology in a carbonconstrained world. CCS will involve subsurface injection of massive amounts of captured CO2, on a scale that has not previously been approached. The unprecedented scale of t...

  14. Carbon foams for energy storage devices

    DOEpatents

    Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.

    1996-01-01

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  15. Carbon foams for energy storage devices

    DOEpatents

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1996-06-25

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g-1000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.

  16. Low pressure storage of natural gas on activated carbon

    NASA Astrophysics Data System (ADS)

    Wegrzyn, J.; Wiesmann, H.; Lee, T.

    The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

  17. Carbon Honeycomb High Capacity Storage for Gaseous and Liquid Species.

    PubMed

    Krainyukova, Nina V; Zubarev, Evgeniy N

    2016-02-01

    We report an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. The allotrope structures are derived from our low temperature electron diffraction and electron microscopy data. These structures can be both periodic and random and are built exclusively from sp^{2}-bonded carbon atoms, and may be considered as three-dimensional graphene. They demonstrate high levels of physical absorption of various gases unattainable in other carbon forms such as fullerites or nanotubes. These honeycomb structures can be used not only for storage of various gases and liquids but also as a matrix for new composites. PMID:26894716

  18. Carbon Honeycomb High Capacity Storage for Gaseous and Liquid Species

    NASA Astrophysics Data System (ADS)

    Krainyukova, Nina V.; Zubarev, Evgeniy N.

    2016-02-01

    We report an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. The allotrope structures are derived from our low temperature electron diffraction and electron microscopy data. These structures can be both periodic and random and are built exclusively from s p2 -bonded carbon atoms, and may be considered as three-dimensional graphene. They demonstrate high levels of physical absorption of various gases unattainable in other carbon forms such as fullerites or nanotubes. These honeycomb structures can be used not only for storage of various gases and liquids but also as a matrix for new composites.

  19. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

    1994-10-25

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

  20. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Morrison, Robert L.; Kaschmitter, James L.

    1994-01-01

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  1. [Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China].

    PubMed

    Chen, Wen-Ying; Wu, Zong-Xin; Wang, Wei-Zhong

    2007-06-01

    Carbon capture and storage (CCS) has been widely recognized as one of the options to mitigate carbon emission to eventually stabilize carbon dioxide concentration in the atmosphere. Three parts of CCS, which are carbon capture, transport, and storage are assessed in this paper, covering comparisons of techno-economic parameters for different carbon capture technologies, comparisons of storage mechanism, capacity and cost for various storage formations, and etc. In addition, the role of CCS to mitigate global carbon emission is introduced. Finally, China MARKAL model is updated to include various CCS technologies, especially indirect coal liquefaction and poly-generation technologies with CCS, in order to consider carbon emission reduction as well as energy security issue. The model is used to generate different scenarios to study potential role of CCS to mitigate carbon emissions by 2050 in China. It is concluded that application of CCS can decrease marginal abatement cost and the decrease rate can reach 45% for the emission reduction rate of 50%, and it can lessen the dependence on nuclear power development for stringent carbon constrains. Moreover, coal resources can be cleanly used for longer time with CCS, e.g., for the scenario C70, coal share in the primary energy consumption by 2050 will increase from 10% when without CCS to 30% when with CCS. Therefore, China should pay attention to CCS R&D activities and to developing demonstration projects. PMID:17674718

  2. Future productivity and carbon storage limited by terrestrial nutrient availability

    NASA Astrophysics Data System (ADS)

    Wieder, William R.; Cleveland, Cory C.; Smith, W. Kolby; Todd-Brown, Katherine

    2015-06-01

    The size of the terrestrial sink remains uncertain. This uncertainty presents a challenge for projecting future climate-carbon cycle feedbacks. Terrestrial carbon storage is dependent on the availability of nitrogen for plant growth, and nitrogen limitation is increasingly included in global models. Widespread phosphorus limitation in terrestrial ecosystems may also strongly regulate the global carbon cycle, but explicit considerations of phosphorus limitation in global models are uncommon. Here we use global state-of-the-art coupled carbon-climate model projections of terrestrial net primary productivity and carbon storage from 1860-2100 estimates of annual new nutrient inputs from deposition, nitrogen fixation, and weathering; and estimates of carbon allocation and stoichiometry to evaluate how simulated CO2 fertilization effects could be constrained by nutrient availability. We find that the nutrients required for the projected increases in net primary productivity greatly exceed estimated nutrient supply rates, suggesting that projected productivity increases may be unrealistically high. Accounting for nitrogen and nitrogen-phosphorus limitation lowers projected end-of-century estimates of net primary productivity by 19% and 25%, respectively, and turns the land surface into a net source of CO2 by 2100. We conclude that potential effects of nutrient limitation must be considered in estimates of the terrestrial carbon sink strength through the twenty-first century.

  3. DEVELOPMENT OF DOPED NANOPOROUS CARBONS FOR HYDROGEN STORAGE

    SciTech Connect

    Lueking, Angela D.; Li, Qixiu; Badding, John V.; Fonseca, Dania; Gutierrez, Humerto; Sakti, Apurba; Adu, Kofi; Schimmel, Michael

    2010-03-31

    Hydrogen storage materials based on the hydrogen spillover mechanism onto metal-doped nanoporous carbons are studied, in an effort to develop materials that store appreciable hydrogen at ambient temperatures and moderate pressures. We demonstrate that oxidation of the carbon surface can significantly increase the hydrogen uptake of these materials, primarily at low pressure. Trace water present in the system plays a role in the development of active sites, and may further be used as a strategy to increase uptake. Increased surface density of oxygen groups led to a significant enhancement of hydrogen spillover at pressures less than 100 milibar. At 300K, the hydrogen uptake was up to 1.1 wt. % at 100 mbar and increased to 1.4 wt. % at 20 bar. However, only 0.4 wt% of this was desorbable via a pressure reduction at room temperature, and the high lowpressure hydrogen uptake was found only when trace water was present during pretreatment. Although far from DOE hydrogen storage targets, storage at ambient temperature has significant practical advantages oner cryogenic physical adsorbents. The role of trace water in surface modification has significant implications for reproducibility in the field. High-pressure in situ characterization of ideal carbon surfaces in hydrogen suggests re-hybridization is not likely under conditions of practical interest. Advanced characterization is used to probe carbon-hydrogen-metal interactions in a number of systems and new carbon materials have been developed.

  4. Relationships among carbon inputs, arbuscular mycorrhizal fungi, and soil carbon storage in a monoculture corn ecosystem

    NASA Astrophysics Data System (ADS)

    Castellano, M. J.; Brown, K.; Hofmockel, K.

    2012-12-01

    Carbon inputs are positively associated with soil organic carbon storage. Soil organic carbon can be stored in relatively stable pools through: silt + clay association and aggregation. Current models predict that the proportion of new carbon inputs that can be stabilized by silt + clay and aggregates decreases in proportion to the amount of organic matter already present in the fraction. Accordingly, as the capacity to stabilize organic matter approaches zero (full capacity), the efficiency of organic matter stabilization decreases and a greater proportion of organic matter inputs is respired as CO2 or accumulate as litter or easily mineralizable particulate organic matter. The organic matter storage capacity of silt + clay particles is a function of soil texture and mineralogy whereas aggregate storage capacity is also affected by biological factors such as mycorrhizae abundance. We explored relationships among net primary production (carbon inputs), mycorrhizae, and soil organic matter storage in a long-term monoculture corn ecosystem. Replicated plots of corn were grown with one of five nitrogen fertilizer input rates (0-228 kg ha-1 h-y) to impart differences in net primary productivity. The fertilizer rates had no effect on soil C/N ratio. However, the fertilizer rate was positively associated with mycorrhizae abundance and soil carbon storage. Soil carbon storage increases were the result of an increase in soil aggregate-protected carbon only; silt + clay associated carbon did not differ with fertilizer rate. These results are inconsistent with models that predict aggregate and silt + clay pools reach capacity at similar rates. A positive correlation among soil carbon stored in aggregates and mycorrhizae helps to explain this result.

  5. Valuing the European 'coastal blue carbon' storage benefit.

    PubMed

    Luisetti, T; Jackson, E L; Turner, R K

    2013-06-15

    'Blue' carbon ecosystems are important carbon storage providers that are currently not protected by any international mechanism, such as REDD. This study aims to contribute to raising awareness in the political domain about the 'blue' carbon issue. This analysis also provides guidance in terms of how to value stock and flows of ecosystem services adding to the debate begun by the Costanza et al. (1997) paper in Nature. Through scenario analysis we assess how human welfare benefits will be affected by changes in the European coastal blue carbon stock provision. The current extent of European coastal blue carbon has an accounting stock value of about US$180 million. If EU Environmental Protection Directives continue to be implemented and effectively enforced, society will gain an appreciating asset over time. However, a future policy reversal resulting in extensive ecosystem loss could mean economic value losses as high as US$1 billion by 2060. PMID:23623654

  6. Forest management techniques for carbon dioxide storage

    SciTech Connect

    Fujimori, Takao

    1993-12-31

    In the global ecosystem concerning carbon dioxide content in the atmosphere, the forest ecosystem plays an important role. In effect, the ratio of forest biomass to total terrestrial biomass is about 90%, and the ratio of carbon stored in the forest biomass to that in the atmosphere is two thirds. When soils and detritus of forests are added, there is more C stored in forests than in the atmosphere, about 1.3 times or more. Thus, forests can be regarded as the great holder of C on earth. If the area of forest land on the earth is constantly maintained and forests are in the climax stage, the uptake of C and the release of C by and from the forests will balance. In this case, forests are neither sinks nor sources of CO{sub 2} although they store a large amount of C. However, when forests are deforested, they become a source of C; through human activities, forests have become a source of C. According to a report by the IPCC, 1.6{+-}1.2 PgC is annually added to the atmosphere by deforestation. According to the FAO (1992), the area of land deforested annually in the tropics from 1981 to 1990 was 16.9 x 10{sup 6} ha. This value is nearly half the area of Japanese land. The most important thing for the CO{sub 2} environment concerning forests is therefore how to reduce deforestation and to successfully implement a forestation or reforestation.

  7. Comparison of methods for geologic storage of carbon dioxide in saline formations

    SciTech Connect

    Goodman, Angela L.; Bromhal, Grant S.; Strazisar, Brian; Rodosta, Traci D.; Guthrie, William J.; Allen, Douglas E.; Guthrie, George D.

    2013-01-01

    Preliminary estimates of CO{sub 2} storage potential in geologic formations provide critical information related to Carbon Capture, Utilization, and Storage (CCUS) technologies to mitigate CO{sub 2} emissions. Currently multiple methods to estimate CO{sub 2} storage and multiple storage estimates for saline formations have been published, leading to potential uncertainty when comparing estimates from different studies. In this work, carbon dioxide storage estimates are compared by applying several commonly used methods to general saline formation data sets to assess the impact that the choice of method has on the results. Specifically, six CO{sub 2} storage methods were applied to thirteen saline formation data sets which were based on formations across the United States with adaptations to provide the geologic inputs required by each method. Methods applied include those by (1) international efforts – the Carbon Sequestration Leadership Forum (Bachu et al., 2007); (2) United States government agencies – U.S. Department of Energy – National Energy Technology Laboratory (US-DOE-NETL, 2012) and United States Geological Survey (Brennan et al., 2010); and (3) the peer-reviewed scientific community – Szulczewski et al. (2012) and Zhou et al. (2008). A statistical analysis of the estimates generated by multiple methods revealed that assessments of CO{sub 2} storage potential made at the prospective level were often statistically indistinguishable from each other, implying that the differences in methodologies are small with respect to the uncertainties in the geologic properties of storage rock in the absence of detailed site-specific characterization.

  8. Comparison of Publically Available Methodologies for Development of Geologic Storage Estimates for Carbon Dioxide in Saline Formations

    NASA Astrophysics Data System (ADS)

    Goodman, A.; Strazisar, B. R.; Guthrie, G. D.; Bromhal, G.

    2012-12-01

    High-level estimates of CO2 storage potential at the national, regional, and basin scale are required to assess the potential for carbon capture, utilization, and storage (CCUS) technologies to reduce CO2 emissions for application to saline formations. Both private and public entities worldwide rely on CO2 storage potential estimates for broad energy-related government policy and business decisions. High-level estimates of CO2 geologic storage potential, however, have a high degree of uncertainty because the assessments rely on simplifying assumptions due to the deficiency or absence of data from the subsurface associated with areas of potential storage in saline formations and the natural heterogeneity of geologic formations in general, resulting in undefined rock properties. As site characterization progresses to individual CO2 storage sites, additional site-specific data will likely be collected and analyzed that will allow for the refinement of high-level CO2 storage resource estimates and development of CO2 storage capacities. Until such detailed characterization can be documented, dependable high-level CO2 storage estimates are essential to ensure successful widespread deployment of CCUS technologies. Initiatives for assessing CO2 geologic storage potential have been conducted since 1993. Although dependable high-level CO2 storage estimates are essential to ensure successful deployment of CCUS technologies, it is difficult to assess the uncertainty of these estimates without knowing how the current methodologies targeted at high-level CO2 storage resource estimates for saline formations compare to one another. In this study, we compare high-level CO2 methodologies for development of geologic storage estimates for CO2 in saline formations to assess the uncertainty associated with various methodologies. The methodologies applied are listed as follows: (1) U.S. DOE Methodology: Development of Geologic Storage Potential for Carbon Dioxide at the National and

  9. Storing data from fusion experiments at the National Storage Laboratory

    SciTech Connect

    Butner, D.N.; Meyer, W.H.

    1993-09-03

    The National Storage Laboratory (NSL) at the National Energy Research Supercomputer Center (NERSC) is a prototype facility which is developing data storage and retrieval techniques using hardware that includes a hierarchy of storage devices. The ultimate goal is to store terabytes of data and achieve rapid retrieval times compatible with the type of media where the data is stored. Files stored in the NSL are accessed directly using the Network File System (NFS); in the future, the Andrew File System (AFS) is expected to be used. System level control of files is available using the File Transfer Protocol (FTP) or a set of program-callable routines. We have experimented with storing and retrieving data from fusion experiments at LLNL and at General Atomics in San Diego, California, using computers running UNIX and VMS operating systems. We discuss some issues associated with accessing files whose names are known, but which are not immediately available, the time required for retrieval, and other pertinent parameters.

  10. Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes.

    PubMed

    Gilroy, James J; Woodcock, Paul; Edwards, Felicity A; Wheeler, Charlotte; Medina Uribe, Claudia A; Haugaasen, Torbjørn; Edwards, David P

    2014-07-01

    With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether benefits are maximized by including many small features throughout the landscape ('land-sharing' agriculture) or a few large contiguous blocks alongside intensive farmland ('land-sparing' agriculture). In this study, we are the first to integrate carbon storage alongside multi-taxa biodiversity assessments to compare land-sparing and land-sharing frameworks. We do so by sampling carbon stocks and biodiversity (birds and dung beetles) in landscapes containing agriculture and forest within the Colombian Chocó-Andes, a zone of high global conservation priority. We show that woodland fragments embedded within a matrix of cattle pasture hold less carbon per unit area than contiguous primary or advanced secondary forests (>15 years). Farmland sites also support less diverse bird and dung beetle communities than contiguous forests, even when farmland retains high levels of woodland habitat cover. Landscape simulations based on these data suggest that land-sparing strategies would be more beneficial for both carbon storage and biodiversity than land-sharing strategies across a range of production levels. Biodiversity benefits of land-sparing are predicted to be similar whether spared lands protect primary or advanced secondary forests, owing to the close similarity of bird and dung beetle communities between the two forest classes. Land-sparing schemes that encourage the protection and regeneration of natural forest blocks thus provide a synergy between carbon and biodiversity conservation, and represent a promising strategy for reducing the negative impacts of agriculture on tropical ecosystems. However, further studies examining a wider range of ecosystem

  11. The 1981 National Waste Terminal Storage Program Information Meeting

    NASA Astrophysics Data System (ADS)

    1981-11-01

    Topics covered include: overview of the national waste terminal storage (NWTS) program; site characterization; repository development; regulatory framework; systems; socioeconomic evaluation; site screening/characterization support activities; repository data base development; regulatory implementation; systems performance assessment; sociopolitical initiatives; Earth sciences; international waste management; waste package development; quality assurance; and Overviews of NWTS Projects.

  12. Natural Gas Storage Research at Savannah River National Laboratory

    SciTech Connect

    Anton, Don; Sulic, Martin; Tamburello, David A.

    2015-05-04

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  13. The potential for carbon storage in UK peatlands

    NASA Astrophysics Data System (ADS)

    Rowson, J.; Worrall, F.; Evans, M.; Bonn, A.; Reed, M.; Chapman, D.; Holden, J.

    2008-12-01

    Upland peat soils represent a large terrestrial carbon store and as such have the potential to be either an ongoing net sink of carbon or a significant net source of carbon. In the UK many upland peats are managed for a range of purposes but these purposes have rarely included carbon stewardship. However, there is now an opportunity to consider whether management practices could be altered to enhance storage of carbon in upland peats. Further, there are now voluntary and regulated carbon trading schemes operational throughout Europe that mean stored carbon, if verified, could have an economic and tradeable value. This means that new income streams could become available for upland management. The 'Sustainable Uplands' RELU project has developed a model for calculating carbon fluxes from peat soils that covers all carbon uptake and release pathways (e.g. fluvial and gaseous pathways). The model has been developed so that the impact of common management options within UK upland peats can be considered. The model was run for a decade from 1997-2006 and applied to an area of 550 km2 of upland peat soils in the Peak District. The study estimates that the region is presently a net sink of -62 Ktonnes CO2 equivalent at an average export of - 136 tonnes CO2 equivalent/km2/yr. If management interventions were targeted across the area the total sink could increase to -160 Ktonnes CO2/yr at an average export of- 219 tonnes CO2 equivalent/km2/yr. The model suggests which management interventions would be most effective and given present costs of peatland restoration and value of carbon offsets the study suggests that 51% of those areas, where a carbon benefit was estimated by modelling for targeted action of management interventions, would show a profit from carbon offsetting within 30 years.

  14. Synthesis, characterization and hydrogen storage studies on porous carbon

    SciTech Connect

    Ruz, Priyanka Banerjee, Seemita; Sudarsan, V.; Pandey, M.

    2015-06-24

    Porous carbon sample has been prepared, using zeolite-Y as template followed by annealing at 800°C, with view to estimate the extent of hydrogen storage by the sample. Based on XRD, {sup 13}C MAS NMR and Raman spectroscopic studies it is confirmed that the porous Carbon sample contains only sp{sup 2} hybridized carbon. The hydrogen sorption isotherms have been recorded for the sample at 273, 223K and 123K and the maximum hydrogen absorption capacity is found to be 1.47wt% at 123K. The interaction energy of hydrogen with the carbon framework was determined to be ∼ 10 kJ mol{sup −1}at lower hydrogen uptake and gradually decreases with increase in hydrogen loading.

  15. [Effects of climate change on forest soil organic carbon storage: a review].

    PubMed

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed. PMID:20879549

  16. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape

    NASA Astrophysics Data System (ADS)

    Alamgir, Mohammed; Campbell, Mason J.; Turton, Stephen M.; Pert, Petina L.; Edwards, Will; Laurance, William F.

    2016-07-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m2 of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  17. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    PubMed

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-01-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity. PMID:27435389

  18. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape

    PubMed Central

    Alamgir, Mohammed; Campbell, Mason J.; Turton, Stephen M.; Pert, Petina L.; Edwards, Will; Laurance, William F.

    2016-01-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m2 of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity. PMID:27435389

  19. Impact of carbon storage through restoration of drylands on the global carbon cycle

    SciTech Connect

    Keller, A.A.; Goldstein, R.A.

    1998-09-01

    The authors evaluate the potential for global carbon storage in drylands as one of several policy options to reduce buildup of carbon dioxide in the atmosphere. They use the GLOCO model, a global carbon cycle model with eight terrestrial biomes that are described mechanistically in detail in terms of the biological processes that involve carbon and nitrogen cycling and the effect of temperature on these processes. GLOCO also considers low-latitude and high-latitude oceans, each divided further into a surface layer and several deeper layers, with an explicit description of biogeochemical processes occurring in each layer, and exchanges among ocean reservoirs and the atmosphere. GLOCO is used to study the transient response of actual vegetation, which is more realistic than looking at equilibrium conditions of potential vegetation. Using estimates of land suitable for restoration in woodlands, grasslands, and deserts, as well as estimates of the rate at which restoration can proceed, the authors estimate that carbon storage in these biomes can range up to 0.8 billion tons of carbon per year for a combination of land management strategies. A global strategy for reducing atmospheric carbon dioxide concentration will require the implementation of multiple options. The advantage of carbon storage in restored drylands is that it comes as a side benefit to programs that are also justifiable in terms of land management.

  20. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE PAGESBeta

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.; Bennett, Philip C.

    2016-02-28

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO2 conditions and identify factors that may influence survival of cells to CO2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure to acidic water, biomassmore » can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  1. Traceable components of terrestrial carbon storage capacity in biogeochemical models.

    PubMed

    Xia, Jianyang; Luo, Yiqi; Wang, Ying-Ping; Hararuk, Oleksandra

    2013-07-01

    Biogeochemical models have been developed to account for more and more processes, making their complex structures difficult to be understood and evaluated. Here, we introduce a framework to decompose a complex land model into traceable components based on mutually independent properties of modeled biogeochemical processes. The framework traces modeled ecosystem carbon storage capacity (Xss ) to (i) a product of net primary productivity (NPP) and ecosystem residence time (τE ). The latter τE can be further traced to (ii) baseline carbon residence times (τ'E ), which are usually preset in a model according to vegetation characteristics and soil types, (iii) environmental scalars (ξ), including temperature and water scalars, and (iv) environmental forcings. We applied the framework to the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model to help understand differences in modeled carbon processes among biomes and as influenced by nitrogen processes. With the climate forcings of 1990, modeled evergreen broadleaf forest had the highest NPP among the nine biomes and moderate residence times, leading to a relatively high carbon storage capacity (31.5 kg cm(-2) ). Deciduous needle leaf forest had the longest residence time (163.3 years) and low NPP, leading to moderate carbon storage (18.3 kg cm(-2) ). The longest τE in deciduous needle leaf forest was ascribed to its longest τ'E (43.6 years) and small ξ (0.14 on litter/soil carbon decay rates). Incorporation of nitrogen processes into the CABLE model decreased Xss in all biomes via reduced NPP (e.g., -12.1% in shrub land) or decreased τE or both. The decreases in τE resulted from nitrogen-induced changes in τ'E (e.g., -26.7% in C3 grassland) through carbon allocation among plant pools and transfers from plant to litter and soil pools. Our framework can be used to facilitate data model comparisons and model intercomparisons via tracking a few traceable components for all terrestrial carbon

  2. Hydrogen Energy Storage (HES) Activities at NREL; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Eichman, J.

    2015-04-21

    This presentation provides an overview of hydrogen and energy storage, including hydrogen storage pathways and international power-to-gas activities, and summarizes the National Renewable Energy Laboratory's hydrogen energy storage activities and results.

  3. Carbon Capture and Storage (CCS): Overview, Developments, and Challenges

    NASA Astrophysics Data System (ADS)

    Busch, Andreas; Amann, Alexandra; Kronimus, Alexander; Kühn, Michael

    2010-05-01

    Carbon dioxide capture and storage (CCS) is a technology that will allow the continued combustion of fossil fuels (coal, oil, gas) for e.g. power generation, transportation and industrial processes for the next decades. It therefore facilitates to bridge to a more renewable energy dominated world, enhances the stability and security of energy systems and at the same time reduces global carbon emissions as manifested by many western countries. Geological media suitable for CO2 storage are mainly saline aquifers due to the large storage volumes associated with them, but also depleted oil and gas reservoirs or deep unminable coal beds. Lately, CO2 storage into mafic- to ultramafic rocks, associated with subsequent mineral carbonation are within the R&D scope and first demonstration projects are being executed. For all these storage options various physical and chemical trapping mechanisms must reveal the necessary capacity and injectivity, and must confine the CO2 both, vertically (through an effective seal) or horizontally (through a confining geological structure). Confinement is the prime prerequisite to prevent leakage to other strata, shallow potable groundwater, soils and/or atmosphere. Underground storage of gases (e.g. CO2, H2S, CH4) in these media has been demonstrated on a commercial scale by enhanced oil recovery operations, natural gas storage and acid gas disposal. Some of the risks associated with CO2 capture and geological storage are comparable with any of these industrial activities for which extensive safety and regulatory frameworks are in place. Specific risks associated with CO2 storage relate to the operational (injection) phase and to the post-operational phase. In both phases the risks of most concern are those posed by the potential for acute or chronic CO2 leakage from the storage site. Currently there are only few operations worldwide where CO2 is injected and stored in the subsurface. Some are related to oil production enhancement but the

  4. Final Scientific/Technical Report Carbon Capture and Storage Training Northwest - CCSTNW

    SciTech Connect

    Workman, James

    2013-09-30

    This report details the activities of the Carbon Capture and Storage Training Northwest (CCSTNW) program 2009 to 2013. The CCSTNW created, implemented, and provided Carbon Capture and Storage (CCS) training over the period of the program. With the assistance of an expert advisory board, CCSTNW created curriculum and conducted three short courses, more than three lectures, two symposiums, and a final conference. The program was conducted in five phases; 1) organization, gap analysis, and form advisory board; 2) develop list serves, website, and tech alerts; 3) training needs survey; 4) conduct lectures, courses, symposiums, and a conference; 5) evaluation surveys and course evaluations. This program was conducted jointly by Environmental Outreach and Stewardship Alliance (dba. Northwest Environmental Training Center – NWETC) and Pacific Northwest National Laboratories (PNNL).

  5. [Contribution of tropical upland forests to carbon storage in Colombia].

    PubMed

    Yepes, Adriana; Herrera, Johana; Phillips, Juan; Galindo, Gustavo; Granados, Edwin; Duque, Alvaro; Barbosa, Adriana; Olarte, Claudia; Cardona, María

    2015-03-01

    The tropical montane forests in the Colombian Andean region are located above 1500 m, and have been heavily deforested. Despite the general presumption that productivity and hence carbon stocks in these ecosystems are low, studies in this regard are scarce. This study aimed to (i) to estimate Above Ground Biomass (AGB) in forests located in the South of the Colombian Andean region, (ii) to identify the carbon storage potential of tropical montane forests dominated by the black oak Colombobalanus excelsa and to identify the relationship between AGB and altitude, and (iii) to analyze the role of tropical mountain forests in conservation mechanisms such as Payment for Environmental Services (PES) and Reducing Emissions from Deforestation and Degradation (REDD+). Twenty six 0.25 ha plots were randomly distributed in the forests and all trees with D > or =10 cm were measured. The results provided important elements for understanding the role of tropical montane forests as carbon sinks. The information produced can be used in subnational initiatives, which seek to mitigate or reduce the effects of deforestation through management or conservation of these ecosystems, like REDD+ or PES. The AGB and carbon stocks results obtained were similar to those reported for lowland tropical forests. These could be explained by the dominance and abundance of C. excelsa, which accounted for over 81% of AGB/carbon. The error associated with the estimates of AGB/carbon was 10.58%. We found a negative and significant relationship between AGB and altitude, but the higher AGB values were in middle altitudes (approximatly = 700-1800 m), where the environmental conditions could be favorable to their growth. The carbon storage potential of these forests was higher. However, if the historical rate of the deforestation in the study area continues, the gross emissions of CO2e to the atmosphere could turn these forests in to an important emissions source. Nowadays, it is clear that tropical

  6. Carbon-based electrocatalysts for advanced energy conversion and storage

    PubMed Central

    Zhang, Jintao; Xia, Zhenhai; Dai, Liming

    2015-01-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER in fuel cells and batteries. We present a critical review on the recent advances in carbon-based metal-free catalysts for fuel cells and metal-air batteries, and discuss the perspectives and challenges in this rapidly developing field of practical significance. PMID:26601241

  7. Carbon-based electrocatalysts for advanced energy conversion and storage.

    PubMed

    Zhang, Jintao; Xia, Zhenhai; Dai, Liming

    2015-08-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER in fuel cells and batteries. We present a critical review on the recent advances in carbon-based metal-free catalysts for fuel cells and metal-air batteries, and discuss the perspectives and challenges in this rapidly developing field of practical significance. PMID:26601241

  8. Novel Carbons as Electrodes for Electrical Energy Storage

    NASA Astrophysics Data System (ADS)

    Ruoff, Rodney S.

    2014-03-01

    In this talk I will speculate about directions for carbon materials as the electrode(s) in EES systems such as ultracapacitors and Li ion batteries. Perhaps the penultimate electrode material for ultracapacitors (based on charge storage by electrical double layer capacitance, EDLC) would be a ``negative curvature carbon'' (NCC, akin to the Schwartzite structures) with atom thick walls, and possibly substitutionally doped with, e.g., N atoms in case the all-carbon structure were limited by quantum (i.e., intrinsic) capacitance. Such an NCC would have a distribution of pore sizes that would likely (for optimal performance) span ``mesoscale'' and ``microscale'' pores, which in the parlance of porous materials means pores ``above 2-3 nanometers'' and pores ``below about 2 nanometers,'' respectively. Making such materials offers exciting challenges for materials chemists/synthetic chemists, and to date only the ``basic'' Schwarzite structures (ideal crystals studied by DFT with periodic boundary conditions and relatively simple unit cells) have been modeled in terms of properties such as their electronic states and in some cases, potential as all carbon ferromagnets. I identified the NCCs as candidates for EES for ultracapacitors, in a paper published in Science in 2011 with coauthors. We made an aperiodic carbon that had atom thick walls and surface areas as high as 3200 m2/g, along with ``good'' powder electrical conductivity, high carbon content, and apparently close to 100% trivalently bonded carbon in the walls of this very porous carbon. We have learned in one set of experiments, as published in Energy and Environmental Science, that doping with N atoms can increase the EDLC, which we suggest could be a consequence of limiting quantum capacitance in the all-carbon analogue.

  9. Natural gas storage with activated carbon from a bituminous coal

    USGS Publications Warehouse

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  10. Electron and phonon properties and gas storage in carbon honeycombs

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Chen, Yuanping; Zhong, Chengyong; Zhang, Zhongwei; Xie, Yuee; Zhang, Shengbai

    2016-06-01

    A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m s-1. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by at least a factor of 15. Our calculations further indicate that these porous carbon networks possess high storage capacity for gaseous atoms and molecules in agreement with the experiments.A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m s-1. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by

  11. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    SciTech Connect

    Pfeifer, Peter; Wexler, Carlos; Hawthorne, M. Frederick; Lee, Mark W.; Jalistegi, Satish S.

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  12. A Probabilistic Assessment Methodology for the Evaluation of Geologic Carbon Dioxide Storage

    USGS Publications Warehouse

    Brennan, Sean T.; Burruss, Robert A.; Merrill, Matthew D.; Freeman, P.A.; Ruppert, Leslie F.

    2010-01-01

    In 2007, the Energy Independence and Security Act (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2) in cooperation with the U.S. Environmental Protection Agency and the U.S. Department of Energy. The first year of that activity was specified for development of a methodology to estimate storage potential that could be applied uniformly to geologic formations across the United States. After its release, the methodology was to receive public comment and external expert review. An initial methodology was developed and published in March 2009 (Burruss and others, 2009), and public comments were received. The report was then sent to a panel of experts for external review. The external review report was received by the USGS in December 2009. This report is in response to those external comments and reviews and describes how the previous assessment methodology (Burruss and others, 2009) was revised. The resource that is assessed is the technically accessible storage resource, which is defined as the mass of CO2 that can be stored in the pore volume of a storage formation. The methodology that is presented in this report is intended to be used for assessments at scales ranging from regional to subbasinal in which storage assessment units are defined on the basis of common geologic and hydrologic characteristics. The methodology does not apply to site-specific evaluation of storage resources or capacity.

  13. Progress and new developments in carbon capture and storage

    SciTech Connect

    Plasynski, S.I.; Litynski, J.T.; McIlvried, H.G.; Srivastava, R.D.

    2009-07-01

    Growing concern over the impact on global climate change of the buildup of greenhouse gases (GHGs) in the atmosphere has resulted in proposals to capture carbon dioxide (CO{sub 2}) at large point sources and store it in geologic formations, such as oil and gas reservoirs, unmineable coal seams, and saline formations, referred to as carbon capture and storage (CCS). There are three options for capturing CO{sub 2} from point sources: post-combustion capture, pre-combustion capture, and oxy-combustion. Several processes are available to capture CO{sub 2}, and new or improved processes are under development. However, CO{sub 2} capture is the most expensive part of CCS, typically accounting for 75% of overall cost. CCS will benefit significantly from the development of a lower cost post-combustion CO{sub 2} capture process that can be retrofitted to existing power plants. Once captured, the CO{sub 2} is compressed to about 150 atm and pipelined at supercritical conditions to a suitable storage site. Oil and gas reservoirs, because they have assured seals and are well characterized, are promising early opportunity sites. Saline formations are much more extensive and have a huge potential storage capacity, but are much less characterized. Several commercial and a number of pilot CCS projects are underway around the world.

  14. Estimation of Potential Carbon Dioxide Storage Capacities of Onshore Sedimentary Basins in Republic of Korea

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, J.; Lee, Y.

    2010-12-01

    The potential carbon dioxide storage capacities of the five main onshore sedimentary basins (Chungnam, Gyeongsang, Honam, Mungyeong, and Taebaeksan Basins) in Republic of Korea are estimated based on the methods suggested by the United States National Energy Technology Laboratory (NETL). The target geologic formations considered for geologic storage of carbon dioxide in the sedimentary basins are sandstone and coal beds. The density of carbon dioxide is set equal to 446.4 kg/m3. The adsorption capacity and density of coal (anthracite) are set equal to 2.71 × 10-2 kg/kg and 1.82 × 103 kg/m3, respectively. The average storage efficiency factors for sandstone and coal are set equal to 2.5% and 34.0%, respectively. The Chungnam Basin has the sandstone volume of 72 km3 and the coal volume of 1.24 km3. The average porosity of sandstone in the Chungnam Basin is 3.8%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Chungnam Basin are estimated to be 31 Mton and 21 Mton, respectively. The Gyeongsang Basin has the sandstone volume of 1,960 km3. The average porosity of sandstone in the Gyeongsang Basin is 4.6%. As a result, the potential carbon dioxide storage capacity of sandstone in the Gyeongsang Basin is estimated to be 1,011 Mton. The Honam Basin has the sandstone volume of 8 km3 and the coal volume of 0.27 km3. The average porosity of sandstone in the Honam Basin is 1.9%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Honam Basin are estimated to be 2 Mton and 5 Mton, respectively. The Mungyeong Basin has the sandstone volume of 60 km3 and the coal volume of 0.66 km3. The average porosity of sandstone in the Mungyeong Basin is 2.0%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Mungyeong Basin are estimated to be 13 Mton and 11 Mton, respectively. The Taebaeksan Basin has the sandstone volume of 71 km3 and the coal volume of 0.73 km3. The

  15. Carbon stocks and potential carbon storage in the mangrove forests of China.

    PubMed

    Liu, Hongxiao; Ren, Hai; Hui, Dafeng; Wang, Wenqing; Liao, Baowen; Cao, Qingxian

    2014-01-15

    Mangrove forests provide important ecosystem services, and play important roles in terrestrial and oceanic carbon (C) cycling. Although the C stocks or storage in terrestrial ecosystems in China have been frequently assessed, the C stocks in mangrove forests have often been overlooked. In this study, we estimated the C stocks and the potential C stocks in China's mangrove forests by combining our own field data with data from the National Mangrove Resource Inventory Report and from other published literature. The results indicate that mangrove forests in China store about 6.91 ± 0.57 Tg C, of which 81.74% is in the top 1 m soil, 18.12% in the biomass of mangrove trees, and 0.08% in the ground layer (i.e. mangrove litter and seedlings). The potential C stocks are as high as 28.81 ± 4.16 Tg C. On average, mangrove forests in China contain 355.25 ± 82.19 Mg C ha(-1), which is consistent with the global average of mangrove C density at similar latitudes, but higher than the average C density in terrestrial forests in China. Our results suggest that C storage in mangroves can be increased by selecting high C-density species for afforestation and stand improvement, and even more by increasing the mangrove area. The information gained in this study will facilitate policy decisions concerning the restoration of mangrove forests in China. PMID:24374165

  16. Ganglion dynamics and its implications to geologic carbon dioxide storage.

    PubMed

    Wang, Yifeng; Bryan, Charles; Dewers, Thomas; Heath, Jason E; Jove-Colon, Carlos

    2013-01-01

    Capillary trapping of a nonwetting fluid phase in the subsurface has been considered as an important mechanism for geologic storage of carbon dioxide (CO(2)). This mechanism can potentially relax stringent requirements for the integrity of cap rocks for CO(2) storage and therefore can significantly enhance storage capacity and security. We here apply ganglion dynamics to understand the capillary trapping of supercritical CO(2) (scCO(2)) under relevant reservoir conditions. We show that, by breaking the injected scCO(2) into small disconnected ganglia, the efficiency of capillary trapping can be greatly enhanced, because the mobility of a ganglion is inversely dependent on its size. Supercritical CO(2) ganglia can be engineered by promoting CO(2)-water interface instability during immiscible displacement, and their size distribution can be controlled by injection mode (e.g., water-alternating-gas) and rate. We also show that a large mobile ganglion can potentially break into smaller ganglia due to CO(2)-brine interface instability during buoyant rise, thus becoming less mobile. The mobility of scCO(2) in the subsurface is therefore self-limited. Vertical structural heterogeneity within a reservoir can inhibit the buoyant rise of scCO(2) ganglia. The dynamics of scCO(2) ganglia described here provides a new perspective for the security and monitoring of subsurface CO(2) storage. PMID:22844874

  17. Electron and phonon properties and gas storage in carbon honeycombs.

    PubMed

    Gao, Yan; Chen, Yuanping; Zhong, Chengyong; Zhang, Zhongwei; Xie, Yuee; Zhang, Shengbai

    2016-07-14

    A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ∼10(6) m s(-1). Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by at least a factor of 15. Our calculations further indicate that these porous carbon networks possess high storage capacity for gaseous atoms and molecules in agreement with the experiments. PMID:27315245

  18. Guidelines for carbon dioxide capture, transport and storage

    SciTech Connect

    Hanson, S.

    2008-07-01

    The goal of this effort was to develop a set of preliminary guidelines and recommendations for the deployment of carbon capture and storage (CCS) technologies in the United States. The CCS Guidelines are written for those who may be involved in decisions on a proposed project: the developers, regulators, financiers, insurers, project operators, and policymakers. Contents are: Part 1: introduction; Part 2: capture; Part 3: transport; Part 4; storage; Part. 5 supplementary information. Within these parts, eight recommended guidelines are given for: CO{sub 2} capture; ancillary environmental impacts from CO{sub 2}; pipeline design and operation; pipeline safety and integrity; siting CO{sub 2} pipelines; pipeline access and tariff regulation; guidelines for (MMV); risk assessment; financial responsibility; property rights and ownership; site selection and characterisation; injection operations; site closure; and post-closure. 18 figs., 9 tabs., 4 apps.

  19. Nanopores of carbon nanotubes as practical hydrogen storage media

    SciTech Connect

    Han, Sang Soo; Kim, Hyun Seok; Han, Kyu Sung; Lee, Jai Young; Lee, Hyuck Mo; Kang, Jeung Ku; Woo, Seong Ihl; Duin, Adri C.T. van; Goddard, William A. III

    2005-11-21

    We report on hydrogen desorption mechanisms in the nanopores of multiwalled carbon nanotubes (MWCNTs). The as-grown MWCNTs show continuous walls that do not provide sites for hydrogen storage under ambient conditions. However, after treating the nanotubes with oxygen plasma to create nanopores in the MWCNTs, we observed the appearance of a new hydrogen desorption peak in the 300-350 K range. Furthermore, the calculations of density functional theory and molecular dynamics simulations confirmed that this peak could be attributed to the hydrogen that is physically adsorbed inside nanopores whose diameter is approximately 1 nm. Thus, we demonstrated that 1 nm nanopores in MWCNTs offer a promising route to hydrogen storage media for onboard practical applications.

  20. Spatial and Temporal Patterns of Carbon Storage in Forest Ecosystems on Hainan Island, Southern China

    PubMed Central

    Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993–2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices. PMID:25229628

  1. 3 CFR - A Comprehensive Federal Strategy on Carbon Capture and Storage

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 3 The President 1 2011-01-01 2011-01-01 false A Comprehensive Federal Strategy on Carbon Capture... Comprehensive Federal Strategy on Carbon Capture and Storage Memorandum for the Secretary of State the Secretary... deployment of clean coal technologies, particularly carbon capture and storage (CCS), will help position...

  2. Limited opportunities for management-induced soil carbon storage in New South Wales, Australia.

    NASA Astrophysics Data System (ADS)

    Wilson, Brian; Lonergan, Vanessa

    2013-04-01

    Soil management has been promoted internationally and in Australia as a means of storing additional soil carbon to offset greenhouse gas emissions (GHG) elsewhere. Despite considerable investment in research in Australia, difficulties with reliable detection and estimation of soil carbon change remain as significant barriers to soil carbon accounting and trading. Here we present examples from an extensive dataset across the diverse production landscapes of New South Wales, Australia generated from both the NSW Statewide Soil Monitoring Program and the National Soil Carbon Research Program. Issues relating to climate, spatial variability, historical and contemporary land-management are highlighted to illustrate the challenges of detecting and estimating management-induced soil carbon change. We further demonstrate that, where it is possible to detect soil carbon change resulting from agricultural management, the quantities stored are unlikely to make a significant contribution to reductions in net greenhouse gas emissions. Historical factors and non-agricultural land-use options are likely to provide more significant potential for long-term soil carbon storage in this environment.

  3. Lignin Based Carbon Materials for Energy Storage Applications

    SciTech Connect

    Chatterjee, Sabornie; Saito, Tomonori; Rios, Orlando; Johs, Alexander

    2014-01-01

    The implementation of Li-ion battery technology into electric and hybrid electric vehicles and portable electronic devices such as smart phones, laptops and tablets, creates a demand for efficient, economic and sustainable materials for energy storage. However, the high cost and long processing time associated with manufacturing battery-grade anode and cathode materials are two big constraints for lowering the total cost of batteries and environmentally friendly electric vehicles. Lignin, a byproduct of the pulp and paper industry and biorefinery, is one of the most abundant and inexpensive natural biopolymers. It can be efficiently converted to low cost carbon fibers with optimal properties for use as anode materials. Recent developments in the preparation of lignin precursors and conversion to carbon fiber-based anode materials have created a new class of anode materials with excellent electrochemical characteristics suitable for immediate use in existing Li- or Na-ion battery technologies.

  4. Storage of Hydrogen in Single-Walled Carbon Nanotubes

    SciTech Connect

    Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J.

    1997-03-27

    Pores of molecular dimensions can adsorb large quantities of gases owing to the enhanced density of the adsorbed material inside the pores, a consequence of the attractive potential of the pore walls. Pederson and Broughton have suggested that carbon nanotubes, which have diameters of typically a few nanometres, should be able to draw up liquids by capillarity, and this effect has been seen for low-surface-tension liquids in large-diameter, multi-walled nanotubes. Here we show that a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs). Temperature-programmed desorption spectroscopy shows that hydrogen will condense inside SWNTs under conditions that do not induce adsorption within a standard mesoporous activated carbon. The very high hydrogen uptake in these materials suggests that they might be effective as a hydrogen-storage material for fuel-cell electric vehicles.

  5. Environmental Responses to Carbon Mitigation through Geological Storage

    SciTech Connect

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives. Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  6. Ecosystem and Societal Consequences of Ocean versus Atmosphere Carbon Storage

    NASA Astrophysics Data System (ADS)

    Barry, J. P.; Adams, E. E.; Bleck, R.; Caldeira, K.; Carman, K.; Erickson, D.; Kennett, J. P.; Sarmiento, J. L.; Tsouris, C.

    2005-12-01

    Climate stabilization during the next 100 to 200 y will require significant reductions in atmospheric carbon dioxide emissions to avoid large increases in global temperature. While there is only mild disagreement concerning carbon management options such as energy efficiency, alternative energy sources, and even geologic C storage, ocean storage remains controversial, due to its potential impacts for deep-sea ecosystems. A cautionary approach to carbon management might avoid any ocean C storage. However, this approach does not consider the balance between ocean and terrestrial ecosystems, or societal concerns. Using a broader perspective, we might ask whether atmospheric CO2 storage (i.e. the status quo), or deep ocean sequestration is better for Earth's ecosystems and societies? We explored the potential storage capacity of the deep ocean for carbon dioxide, under scenarios producing a 0.2 pH unit reduction, a level similar to observed scale of pH variability in deep ocean basins, which may also represent coarse thresholds for deep-sea ecosystem impacts. Roughly 500 PgC could be stored in the deep ocean to lower pH by 0.2 units, yielding a long term (~250 y) ocean sequestration program of 2 PgCy-1. The mitigation value of such ocean C sequestration for upper ocean and terrestrial systems depends strongly on future emission scenarios. Under a low emission scenario (e.g. SRES scenario A1T, B1; atm CO2 ~575 ppm, global temperature change of ~+2 oC), a 2 PgCy-1 ocean CO2 injection program could mitigate global temperature by ~-0.4 oC (20%) by 2100. This could reduce significantly the number of people at risk of water shortage and tropical diseases, with lesser improvement expected for hunger or coastal flooding. Mitigation for terrestrial and shallow ocean ecosystems is difficult to predict. A 0.4 oC reduction in warming this century is expected to delay the progression of coral reef devastation by roughly 20 y. The mitigation potential of ocean storage under very

  7. Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon.

    PubMed

    Washbourne, C-L; Renforth, P; Manning, D A C

    2012-08-01

    This paper investigates the potential for engineered urban soils to capture and store atmospheric carbon (C). Calcium (Ca) and magnesium (Mg) bearing waste silicate minerals within the soil environment can capture and store atmospheric C through the process of weathering and secondary carbonate mineral precipitation. Anthropogenic soils, known to contain substantial quantities of Ca and Mg-rich minerals derived from demolition activity (particularly cement and concrete), were systematically sampled at the surface across a 10 ha brownfield site, Science Central, located in the urban centre of Newcastle upon Tyne, U.K. Subsequent analysis yielded average carbonate contents of 21.8±4.7% wt CaCO(3). Isotopic analysis demonstrated δ(18)O values between -9.4‰ and -13.3‰ and δ(13)C values between -7.4‰ and -13.6‰ (relative to Pee Dee Belemnite), suggesting that up to 39.4±8.8% of the carbonate C has been captured from the atmosphere through hydroxylation of dissolved CO(2) in high pH solutions. The remaining carbonate C is derived from lithogenic sources. 37.4 kg of atmospheric CO(2) has already been captured and stored as carbonate per Mg of soil across the site, representing a carbon dioxide (CO(2)) removal rate of 12.5 kg CO(2) Mg(-1) yr(-1). There is the potential for capture and storage of a further 27.3 kg CO(2) Mg(-1) in residual reactive materials, which may be exploited through increased residence time (additional in situ weathering). Overall, the Science Central site has the potential to capture and store a total of 64,800 Mg CO(2) as carbonate minerals. This study illustrates the potential for managing urban soils as tools of C capture and storage, an important ecosystem service, and demonstrates the importance of studying C storage in engineering urban anthropogenic soils. PMID:22683756

  8. Impact of bioenergy production on carbon storage and soil functions

    NASA Astrophysics Data System (ADS)

    Prays, Nadia; Franko, Uwe

    2016-04-01

    An important renewable energy source is methane produced in biogas plants (BGPs) that convert plant material and animal excrements to biogas and a residue (BGR). If the plant material stems from crops produced specifically for that purpose, a BGP have a 'footprint' that is defined by the area of arable land needed for the production of these energy crops and the area for distributing the BGRs. The BGR can be used to fertilize these lands (reducing the need for carbon and nitrogen fertilizers), and the crop land can be managed to serve as a carbon sink, capturing atmospheric CO2. We focus on the ecological impact of different BGPs in Central Germany, with a specific interest in the long-term effect of BGR-fertilization on carbon storage within the footprint of a BGP. We therefore studied nutrient fluxes using the CANDY (CArbon and Nitrogen Dynamics) model, which processes site-specific information on soils, crops, weather, and land management to compute stocks and fluxes of carbon and nitrogen for agricultural fields. We used CANDY to calculated matter fluxes within the footprints of BGPs of different sizes, and studied the effect of the substrate mix for the BGP on the carbon dynamics of the soil. This included the land requirement of the BGR recycling when used as a fertilizer: the footprint of a BGP required for the production of the energy crop generally differs from its footprint required to take up its BGR. We demonstrate how these findings can be used to find optimal cropping choices and land management for sustainable soil use, maintaining soil fertility and other soil functions. Furthermore, site specific potentials and limitations for agricultural biogas production can be identified and applied in land-use planning.

  9. Carbon storage in Swedish bedrock - current status regarding potential storage areas and geophysical information

    NASA Astrophysics Data System (ADS)

    Bergman, B.; Juhojuntti, N. G.

    2010-12-01

    Carbon Capture and Storage (CCS) is increasingly considered as an option to reduce the release of CO2 to the atmosphere. There is today a significant interest from Swedish heavy industry in CCS-technology. Large point sources are found within process industry related to e.g. production of paper and steel (operating under European Union regulations). There is also significant emission of CO2 from burning of biomass for energy production. However, this process is considered to be climate neutral and thus the emissions are not included in the carbon trading schemes. Based on recent work at the Geological Survey of Sweden and by other organizations we discuss the possibilities for geological storage of CO2 in Sweden, including the locations of the potential storage sites and the main CO2 emitters. In this context, we also review the relevant geophysical data available at the Geological Survey, focusing on the seismic data but also including gravity and magnetic data. Deep saline aquifers are presently considered as the most realistic storage alternative in Sweden. Sedimentary bedrock containing such layers and which could be suitable for CO2 storage is mainly found within the southern Baltic Sea and around southernmost Sweden, close to Denmark. The knowledge about the sedimentary bedrock in these areas is mainly based on seismic measurements and drilling in connection with hydrocarbon prospecting during the 70’s and the 80’s. Approximately 40.000 km’s of seismic reflection profiles were acquired, mostly in the potential CO2 storage areas mentioned above. Data from these profiles are now archived at the Geological Survey, and currently the magnetic tapes (8000-9000 reels) are being transcribed to modern storage media, a work that will likely be finished during 2011. Despite the hydrocarbon prospecting in these areas there are remaining uncertainties regarding the suitability of the sedimentary bedrock for CO2 storage, in particular related to the porosity and

  10. Hierarchical cellulose-derived carbon nanocomposites for electrostatic energy storage

    NASA Astrophysics Data System (ADS)

    Kuzmenko, V.; Saleem, A. M.; Bhaskar, A.; Staaf, H.; Desmaris, V.; Enoksson, P.

    2015-12-01

    The problem of energy storage and its continuous delivery on demand needs new effective solutions. Supercapacitors are viewed as essential devices for solving this problem since they can quickly provide high power basically countless number of times. The performance of supercapacitors is mostly dependent on the properties of electrode materials used for electrostatic charge accumulation, i.e. energy storage. This study presents new sustainable cellulose-derived materials that can be used as electrodes for supercapacitors. Nanofibrous carbon nanofiber (CNF) mats were covered with vapor-grown carbon nanotubes (CNTs) in order to get composite CNF/CNT electrode material. The resulting composite material had significantly higher surface area and was much more conductive than pure CNF material. The performance of the CNF/CNT electrodes was evaluated by various analysis methods such as cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy and cyclic stability. The results showed that the cellulose-derived composite electrodes have fairly high values of specific capacitance and power density and can retain excellent performance over at least 2 000 cycles. Therefore it can be stated that sustainable cellulose-derived CNF/CNT composites are prospective materials for supercapacitor electrodes.

  11. Sustainability of energy and carbon capture and storage for Turkey

    NASA Astrophysics Data System (ADS)

    Alpsar, Cengiz

    This study, as study herein, is intended to approach a different way to provide sustainability of energy and environment by different aspects for Turkey. This study investigates the potential of renewable energy sources in Turkey for non-emissions of GHG and elaborates on a carbon capture and storage technology by creating a roadmap for Turkey. The main purpose of this study is to make a roadmap about carbon capture and storage (CCS) for Turkey to use as it proceeds. As one of the members of International Panel of Climate Change, which signed Kyoto protocol, it must adapt its acts and regulations. In addition, this study concentrates on the sustainable energy potential of Turkey, although the study investigated only the alternative energy resources suitable for Turkey: solar, wind, geothermal, bio-energy, and hydropower. There are huge numbers of potential renewable energy sources, and given Turkey's total energy demand of 106.3 million tons equivalent petroleum in 2010, only solar potential would be able to eventually supply the total demand, but energy from the wind and hydropower are sufficient to provide partial amounts. This study might help policy makers in their decisions regarding CCS technology. Currently, there are various technical and non-technical economic and social challenges that prevent CCS from become an extensively used commercial technology. This document discusses them and presents goals for each research pathway.

  12. Hydrogen storage reactions on titanium decorated carbon nanocones theoretical study

    NASA Astrophysics Data System (ADS)

    Shalabi, A. S.; Taha, H. O.; Soliman, K. A.; Abeld Aal, S.

    2014-12-01

    Hydrogen storage reactions on Ti decorated carbon nanocones (CNC) are investigated by using the state of the art density functional theory calculations. The single Ti atom prefers to bind at the bridge site between two hexagonal rings, and can bind up to 6 hydrogen molecules with average adsorption energies of -1.73, -0.74, -0.57, -0.45, -0.42, and -0.35 eV per hydrogen molecule. No evidence for metal clustering in the ideal circumstances, and the hydrogen storage capacity is expected to be as large as 14.34 wt%. Two types of interactions are recognized. While the interaction of 2H2 with Ti-CNC is irreversible at 532 K, the interaction of 3H2 with Ti-CNC is reversible at 392 K. Further characterizations of the former two reactions are considered in terms of projected densities of states, simulated infrared and proton magnetic resonance spectra, electrophilicity, and statistical thermodynamic stability. The free energy of the highest hydrogen storage capacity reaction between 6H2 and Ti-CNC meets the ultimate targets of department of energy at (233.15 K) and (11.843 atm) with surface coverage (0.941) and (direct/inverse) rate constants ratio (1.35).

  13. Carbon Nanomaterials for Energy Storage, Actuators and Environmental Applications

    NASA Astrophysics Data System (ADS)

    Wang, Chengwei

    Carbon nanomaterials have caught tremendous attention in the last few decades due to their unique physical and chemical properties. Tremendous effort has been made to develop new synthesis techniques for carbon nanomaterials and investigate their properties for different applications. In this work, carbon nanospheres (CNSs), carbon foams (CF), and single-walled carbon nanotubes (SWNTs) were studied for various applications, including water treatment, energy storage, actuators, and sensors. A facile spray pyrolysis synthesis technique was developed to synthesize individual CNSs with specific surface area (SSA) up to 1106 m2/g. The hollow CNSs showed adsorption of up to 300 mg rhodamine B dye per gram carbon, which is more than 15 times higher than that observed for conventional carbon black. They were also evaluated as adsorbents for removal of arsenate and selenate from water and displayed good binding to both species, outperforming commercial activated carbons for arsenate removal in pH > 8. When evaluated as supercapacitor electrode materials, specific capacitances of up to 112 F/g at a current density of 0.1 A/g were observed. When used as Li-ion battery anode materials, the CNSs achieved a discharge capacity of 270 mAh/g at a current density of 372 mA/g (1C), which is 4-fold higher than that of commercial graphite anode. Carbon foams were synthesized using direct pyrolysis and had SSA up to 2340 m2/g. When used as supercapacitor electrode materials, a specific capacitance up to 280 F/g was achieved at current density of 0.1 A/g and remained as high as 207 F/g, even at a high current density of 10 A/g. A printed walking robot was made from common plastic films and coatings of SWNTs. The solid-state thermal bimorph actuators were multifunctional energy transducers powered by heat, light, or electricity. The actuators were also investigated for photo/thermal detection. Electrochemical actuators based on MnO2 were also studied for potential underwater applications

  14. Formation Buffering Potential Pertaining to Geological Storage of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Ellis, B. R.; Peters, C. A.; Buschkuehle, M.

    2007-12-01

    One promising strategy for decreasing CO2 emissions to the atmosphere is carbon capture and storage in deep saline formations. Modeling efforts and the experimental measurements that support these efforts are critical to determining the fate of injected CO2. The focus of this work is CO2-water-rock interactions as they pertain to formation buffering potential. PHREEQC was used to model pH evolution in siliciclastic and carbonate rocks after simulated injection of CO2. The initial mineral and formation water compositions were determined from analysis of core samples and brines from several formations in the Alberta sedimentary basin in western Canada. Simulation parameters correspond to injection conditions of 50°C, CO2 pressure of 100 bar and high ionic strength. Results indicate that the carbonate formations have a higher buffering potential relative to siliciclastic formations. Considerable variability of acid-catalyzed reactions among formations with similar mineralogical compositions was also observed. To assess the effect of grain coating by clay minerals, a comparative simulation was performed with kaolinite as the dominant mineral in contact with the pore fluids. Results from this simulation showed a pronounced retardation in pH buffering reaction kinetics. This emphasizes the importance for differentiating between mineral abundance and accessibility in model calculations when clay coatings may obscure contact between pore fluids and potentially reactive minerals.

  15. PDF Weaving - Linking Inventory Data and Monte Carlo Uncertainty Analysis in the Study of how Disturbance Affects Forest Carbon Storage

    NASA Astrophysics Data System (ADS)

    Healey, S. P.; Patterson, P.; Garrard, C.

    2014-12-01

    Altered disturbance regimes are likely a primary mechanism by which a changing climate will affect storage of carbon in forested ecosystems. Accordingly, the National Forest System (NFS) has been mandated to assess the role of disturbance (harvests, fires, insects, etc.) on carbon storage in each of its planning units. We have developed a process which combines 1990-era maps of forest structure and composition with high-quality maps of subsequent disturbance type and magnitude to track the impact of disturbance on carbon storage. This process, called the Forest Carbon Management Framework (ForCaMF), uses the maps to apply empirically calibrated carbon dynamics built into a widely used management tool, the Forest Vegetation Simulator (FVS). While ForCaMF offers locally specific insights into the effect of historical or hypothetical disturbance trends on carbon storage, its dependence upon the interaction of several maps and a carbon model poses a complex challenge in terms of tracking uncertainty. Monte Carlo analysis is an attractive option for tracking the combined effects of error in several constituent inputs as they impact overall uncertainty. Monte Carlo methods iteratively simulate alternative values for each input and quantify how much outputs vary as a result. Variation of each input is controlled by a Probability Density Function (PDF). We introduce a technique called "PDF Weaving," which constructs PDFs that ensure that simulated uncertainty precisely aligns with uncertainty estimates that can be derived from inventory data. This hard link with inventory data (derived in this case from FIA - the US Forest Service Forest Inventory and Analysis program) both provides empirical calibration and establishes consistency with other types of assessments (e.g., habitat and water) for which NFS depends upon FIA data. Results from the NFS Northern Region will be used to illustrate PDF weaving and insights gained from ForCaMF about the role of disturbance in carbon

  16. Carbon storage in Organic Soils (COrS): Quantifying past variations in carbon accumulation in peatlands of South Wales, UK.

    NASA Astrophysics Data System (ADS)

    Carless, Donna; Kulessa, Bernd; Street-Perrott, Alayne; Davies, Siwan; Sinnadurai, Paul

    2014-05-01

    Globally, peatlands comprise a vital terrestrial carbon sink, currently estimated to be around 500 PgC (Yu et al., 2011, Gorham, 1991). Within the UK, peatlands represent the single most important terrestrial carbon store (IUCN, 2011). In particular, blanket and raised bogs account for around 23,000 square kilometres or 9.5 percent of the UK land area, with current estimates indicating that they store approximately 3.2 PgC (IUCN, 2011). Recent studies suggest that carbon-sequestration rates have been highly variable during the Holocene (Frolking & Roulet, 2007). Reconstructing these past fluctuations is essential to assess how peatlands will respond to future climate change, particularly the possibility that large amounts of respired below-ground carbon will be released as a result of enhanced rates of decomposition, causing positive climate feedback. Quantitative estimates of past variations in carbon accumulation provide valuable insights into the factors controlling carbon budgets. Recent developments have illustrated how ground-penetrating radar (GPR) can improve constraints on peat thickness (Holden et al., 2002, Warner et al., 1990), facilitating site-specific peat-volume estimates for carbon quantification. We shall present initial results from the COrS project, which brings together a novel combination of geophysical and proxy techniques to reconstruct variations in long-term carbon accumulation in 6 ombrotrophic peat bogs, located across the Brecon Beacons National Park (BBNP), South Wales, UK (51°55'30" N, 3°29'18" W). Detailed GPR surveys are being used to provide comprehensive estimates of total peat extent and thickness at these sites. Combined with surface-elevation data from LiDAR imagery, 3D models are being created, from which total peat-volume estimates will be extracted. Carbon-accumulation rates will be inferred from these bog-volume estimates, coupled with total organic carbon (TOC) measurements and high-resolution radiocarbon dating. In

  17. [Multiple-scale analysis on spatial distribution changes of forest carbon storage in Heilongjiang Province, Northeast China based on local statistics].

    PubMed

    Liu, Chang; Li, Feng-Ri; Jia, Wei-Wei; Zhen, Zhen

    2014-09-01

    Taking 4163 permanent sample plots from Chinese National Forest Inventory (CNFI) and key ecological benefit forest monitoring plots in Heilongjiang Province as basic data, and by using local Moran I and local statistics (local mean and local standard deviation), the spatial pattern, spatial variation and spatial autocorrelation of forest carbon storage in Heilongjiang Province with four bandwidths of 25, 50, 100 and 150 km were investigated, and the change in forest carbon storage across 2005 to 2010 was studied. The results showed that the spatial distribution of forest carbon storage in Heilongjiang Province had significantly positive spatial correlation, which indicated that the changes of carbon storage tended to be similar with their neighbors without a non-random manner. Forest carbon storage was affected by environmental factors, and the spatial heterogeneity strongly existed with a large variation in the study area. The spatial distribution of forest carbon storage was significantly different between 2005 and 2010 with an increasing trend. Local statistics are useful tools for characterizing forest carbon storage change across time and space, which are visualized by ArcGIS. PMID:25757297

  18. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of Alaska

    USGS Publications Warehouse

    2016-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to contribute to knowledge of the storage, fluxes, and balance of carbon and methane gas in ecosystems of Alaska. The carbon and methane variables were examined for major terrestrial ecosystems (uplands and wetlands) and inland aquatic ecosystems in Alaska in two time periods: baseline (from 1950 through 2009) and future (projections from 2010 through 2099). The assessment used measured and observed data and remote sensing, statistical methods, and simulation models. The national assessment, conducted using the methodology described in SIR 2010-5233, has been completed for the conterminous United States, with results provided in three separate regional reports (PP 1804, PP 1797, and PP 1897).

  19. Permanent carbon dioxide storage in deep-sea sediments.

    PubMed

    House, Kurt Zenz; Schrag, Daniel P; Harvey, Charles F; Lackner, Klaus S

    2006-08-15

    Stabilizing the concentration of atmospheric CO(2) may require storing enormous quantities of captured anthropogenic CO(2) in near-permanent geologic reservoirs. Because of the subsurface temperature profile of terrestrial storage sites, CO(2) stored in these reservoirs is buoyant. As a result, a portion of the injected CO(2) can escape if the reservoir is not appropriately sealed. We show that injecting CO(2) into deep-sea sediments below [corrected] 3,000-m water depth and a few hundred meters of sediment provides permanent geologic storage even with large geomechanical perturbations. At the high pressures and low temperatures common in deep-sea sediments, CO(2) resides in its liquid phase and can be denser than the overlying pore fluid, causing the injected CO(2) to be gravitationally stable. Additionally, CO(2) hydrate formation will impede the flow of CO(2)(l) and serve as a second cap on the system. The evolution of the CO(2) plume is described qualitatively from the injection to the formation of CO(2) hydrates and finally to the dilution of the CO(2)(aq) solution by diffusion. If calcareous sediments are chosen, then the dissolution of carbonate host rock by the CO(2)(aq) solution will slightly increase porosity, which may cause large increases in permeability. Karst formation, however, is unlikely because total dissolution is limited to only a few percent of the rock volume. The total CO(2) storage capacity within the 200-mile economic zone of the U.S. coastline is enormous, capable of storing thousands of years of current U.S. CO(2) emissions. PMID:16894174

  20. Fresh Water Generation from Aquifer-Pressured Carbon Storage

    SciTech Connect

    Aines, R D; Wolery, T J; Bourcier, W L; Wolfe, T; Haussmann, C

    2010-02-19

    Can we use the pressure associated with sequestration to make brine into fresh water? This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). Possible products are: Drinking water, Cooling water, and Extra aquifer space for CO{sub 2} storage. The conclusions are: (1) Many saline formation waters appear to be amenable to largely conventional RO treatment; (2) Thermodynamic modeling indicates that osmotic pressure is more limiting on water recovery than mineral scaling; (3) The use of thermodynamic modeling with Pitzer's equations (or Extended UNIQUAC) allows accurate estimation of osmotic pressure limits; (4) A general categorization of treatment feasibility is based on TDS has been proposed, in which brines with 10,000-85,000 mg/L are the most attractive targets; (5) Brines in this TDS range appear to be abundant (geographically and with depth) and could be targeted in planning future CCS operations (including site selection and choice of injection formation); and (6) The estimated cost of treating waters in the 10,000-85,000 mg/L TDS range is about half that for conventional seawater desalination, due to the anticipated pressure recovery.

  1. Hybrid Geo-Energy Systems for Energy Storage and Dispatchable Renewable and Low-Carbon Electricity

    NASA Astrophysics Data System (ADS)

    Buscheck, Thomas; Bielicki, Jeffrey; Ogland-Hand, Jonathan; Hao, Yue; Sun, Yunwei; Randolph, Jimmy; Saar, Martin

    2015-04-01

    Three primary challenges for energy systems are to (1) reduce the amount of carbon dioxide (CO2) being emitted to the atmosphere, (2) increase the penetration of renewable energy technologies, and (3) reduce the water intensity of energy production. Integrating variable renewable energy sources (wind, sunlight) into electric grids requires advances in energy storage approaches, which are currently expensive, and tend to have limited capacity and/or geographic deployment potential. Our approach uses CO2, that would otherwise be emitted to the atmosphere, to generate electricity from geothermal resources, to store excess energy from variable (wind, solar photovoltaic) and thermal (nuclear, fossil, concentrated solar power) sources, and to thus enable increased penetration of renewable energy technologies. We take advantage of the enormous fluid and thermal storage capacity of the subsurface to harvest, store, and dispatch energy. Our approach uses permeable geologic formations that are vertically bounded by impermeable layers to constrain pressure and the migration of buoyant CO2 and heated brine. Supercritical CO2 captured from fossil power plants is injected into these formations as a cushion gas to store pressure (bulk energy), provide an heat efficient extraction fluid for efficient power conversion in Brayton Cycle turbines, and generate artesian flow of brine -- which can be used to cool power plants and/or pre-heated (thermal storage) prior to re-injection. Concentric rings of injection and production wells create a hydraulic divide to store pressure, CO2, and thermal energy. The system is pressurized and/or heated when power supply exceeds demand and depressurized when demand exceeds supply. Time-shifting the parasitic loads from pressurizing and injecting brine and CO2 provides bulk energy storage over days to months, whereas time-shifting thermal-energy supply provides dispatchable power and addresses seasonal mismatches between supply and demand. These

  2. Accounting carbon storage in decaying root systems of harvested forests.

    PubMed

    Wang, G Geoff; Van Lear, David H; Hu, Huifeng; Kapeluck, Peter R

    2012-05-01

    Decaying root systems of harvested trees can be a significant component of belowground carbon storage, especially in intensively managed forests where harvest occurs repeatedly in relatively short rotations. Based on destructive sampling of root systems of harvested loblolly pine trees, we estimated that root systems contained about 32% (17.2 Mg ha(-1)) at the time of harvest, and about 13% (6.1 Mg ha(-1)) of the soil organic carbon 10 years later. Based on the published roundwood output data, we estimated belowground biomass at the time of harvest for loblolly-shortleaf pine forests harvested between 1995 and 2005 in South Carolina. We then calculated C that remained in the decomposing root systems in 2005 using the decay function developed for loblolly pine. Our calculations indicate that the amount of C stored in decaying roots of loblolly-shortleaf pine forests harvested between 1995 and 2005 in South Carolina was 7.1 Tg. Using a simple extrapolation method, we estimated 331.8 Tg C stored in the decomposing roots due to timber harvest from 1995 to 2005 in the conterminous USA. To fully account for the C stored in the decomposing roots of the US forests, future studies need (1) to quantify decay rates of coarse roots for major tree species in different regions, and (2) to develop a methodology that can determine C stock in decomposing roots resulting from natural mortality. PMID:22535427

  3. Capacitive energy storage in nanostructured carbon-electrolyte systems.

    PubMed

    Simon, P; Gogotsi, Y

    2013-05-21

    Securing our energy future is the most important problem that humanity faces in this century. Burning fossil fuels is not sustainable, and wide use of renewable energy sources will require a drastically increased ability to store electrical energy. In the move toward an electrical economy, chemical (batteries) and capacitive energy storage (electrochemical capacitors or supercapacitors) devices are expected to play an important role. This Account summarizes research in the field of electrochemical capacitors conducted over the past decade. Overall, the combination of the right electrode materials with a proper electrolyte can successfully increase both the energy stored by the device and its power, but no perfect active material exists and no electrolyte suits every material and every performance goal. However, today, many materials are available, including porous activated, carbide-derived, and templated carbons with high surface areas and porosities that range from subnanometer to just a few nanometers. If the pore size is matched with the electrolyte ion size, those materials can provide high energy density. Exohedral nanoparticles, such as carbon nanotubes and onion-like carbon, can provide high power due to fast ion sorption/desorption on their outer surfaces. Because of its higher charge-discharge rates compared with activated carbons, graphene has attracted increasing attention, but graphene had not yet shown a higher volumetric capacitance than porous carbons. Although aqueous electrolytes, such as sodium sulfate, are the safest and least expensive, they have a limited voltage window. Organic electrolytes, such as solutions of [N(C2H5)4]BF4 in acetonitrile or propylene carbonate, are the most common in commercial devices. Researchers are increasingly interested in nonflammable ionic liquids. These liquids have low vapor pressures, which allow them to be used safely over a temperature range from -50 °C to at least 100 °C and over a larger voltage window

  4. Increased fire frequency optimization of black carbon mixing and storage

    NASA Astrophysics Data System (ADS)

    Pyle, Lacey; Masiello, Caroline; Clark, Kenneth

    2016-04-01

    Soil carbon makes up a substantial part of the global carbon budget and black carbon (BC - produced from incomplete combustion of biomass) can be significant fraction of soil carbon. Soil BC cycling is still poorly understood - very old BC is observed in soils, suggesting recalcitrance, yet in short term lab and field studies BC sometimes breaks down rapidly. Climate change is predicted to increase the frequency of fires, which will increase global production of BC. As up to 80% of BC produced in wildfires can remain at the fire location, increased fire frequency will cause significant perturbations to soil BC accumulation. This creates a challenge in estimating soil BC storage, in light of a changing climate and an increased likelihood of fire. While the chemical properties of BC are relatively well-studied, its physical properties are much less well understood, and may play crucial roles in its landscape residence time. One important property is density. When BC density is less than 1 g/cm3 (i.e. the density of water), it is highly mobile and can easily leave the landscape. This landscape mobility following rainfall may inflate estimates of its degradability, making it crucial to understand both the short- and long term density of BC particles. As BC pores fill with minerals, making particles denser, or become ingrown with root and hyphal anchors, BC is likely to become protected from erosion. Consequently, how quickly BC is mixed deeper into the soil column is likely a primary controller on BC accumulation. Additionally the post-fire recovery of soil litter layers caps BC belowground, protecting it from erosional forces and re-combustion in subsequent fires, but still allowing bioturbation deeper into the soil column. We have taken advantage of a fire chronosequence in the Pine Barrens of New Jersey to investigate how density of BC particles change over time, and how an increase in fire frequency affects soil BC storage and soil column movement. Our plots have

  5. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage.

    PubMed

    Hudiburg, Tara; Law, Beverly; Turner, David P; Campbell, John; Donato, Dan; Duane, Maureen

    2009-01-01

    Net uptake of carbon from the atmosphere (net ecosystem production, NEP) is dependent on climate, disturbance history, management practices, forest age, and forest type. To improve understanding of the influence of these factors on forest carbon stocks and flux in the western United States, federal inventory data and supplemental field measurements at additional plots were used to estimate several important components of the carbon balance in forests in Oregon and Northern California during the 1990s. Species- and ecoregion-specific allometric equations were used to estimate live and dead biomass stores, net primary productivity (NPP), and mortality. In the semiarid East Cascades and mesic Coast Range, mean total biomass was 8 and 24 kg C/m2, and mean NPP was 0.30 and 0.78 kg C.m(-2).yr(-1), respectively. Maximum NPP and dead biomass stores were most influenced by climate, whereas maximum live biomass stores and mortality were most influenced by forest type. Within ecoregions, mean live and dead biomass were usually higher on public lands, primarily because of the younger age class distribution on private lands. Decrease in NPP with age was not general across ecoregions, with no marked decline in old stands (>200 years old) in some ecoregions. In the absence of stand-replacing disturbance, total landscape carbon stocks could theoretically increase from 3.2 +/- 0.34 Pg C to 5.9 +/- 1.34 Pg C (a 46% increase) if forests were managed for maximum carbon storage. Although the theoretical limit is probably unattainable, given the timber-based economy and fire regimes in some ecoregions, there is still potential to significantly increase the land-based carbon storage by increasing rotation age and reducing harvest rates. PMID:19323181

  6. Directed precipitation of hydrated and anhydrous magnesium carbonates for carbon storage.

    PubMed

    Swanson, Edward J; Fricker, Kyle J; Sun, Michael; Park, Ah-Hyung Alissa

    2014-11-14

    Magnesite is the most desirable phase within the magnesium carbonate family for carbon storage for a number of reasons: magnesium efficiency, omission of additional crystal waters and thermodynamic stability. For large-scale carbonation to be a viable industrial process, magnesite precipitation must be made to occur rapidly and reliably. Unfortunately, the formation of metastable hydrated magnesium carbonate phases (e.g. MgCO3·3H2O and Mg5(CO3)4(OH)2·4H2O) interferes with the production of anhydrous magnesite under a variety of reaction conditions because magnesite crystals are slower to both nucleate and grow compared to the hydrated carbonate phases. Furthermore, the reaction conditions required for the formation of each magnesium carbonate phases have not been well understood with conflicting literature data. In this study, the effects of both magnesite (MgCO3) and inert (Al2O3) seed particles on the precipitation of magnesium carbonates from a Mg(OH)2 slurry were explored. It was interesting that MgCO3 seeding was shown to accelerate anhydrous magnesite growth at temperatures (80-150 °C), where it would normally not form in short time scale. Since the specific surface areas of MgCO3 and Al2O3 seeding particles were similar, this phenomenon was due to the difference in the surface chemistry of two seeding particles. By providing a template with similar chemistry for the growth of magnesite, the precipitation of anhydrous magnesite was demonstrated. The effect of temperature on seeded carbonation was also investigated. A comparison with published MgCO3 precipitation rate laws indicated that the precipitation of magnesite was limited by either CO2 adsorption from the gas phase or the dissolution rate of Mg(OH)2. PMID:25264731

  7. Deployment models for commercialized carbon capture and storage.

    PubMed

    Esposito, Richard A; Monroe, Larry S; Friedman, Julio S

    2011-01-01

    Even before technology matures and the regulatory framework for carbon capture and storage (CCS) has been developed, electrical utilities will need to consider the logistics of how widespread commercial-scale operations will be deployed. The framework of CCS will require utilities to adopt business models that ensure both safe and affordable CCS operations while maintaining reliable power generation. Physical models include an infrastructure with centralized CO(2) pipelines that focus geologic sequestration in pooled regional storage sites or supply CO(2) for beneficial use in enhanced oil recovery (EOR) and a dispersed plant model with sequestration operations which take place in close proximity to CO(2) capture. Several prototypical business models, including hybrids of these two poles, will be in play including a self-build option, a joint venture, and a pay at the gate model. In the self-build model operations are vertically integrated and utility owned and operated by an internal staff of engineers and geologists. A joint venture model stresses a partnership between the host site utility/owner's engineer and external operators and consultants. The pay to take model is turn-key external contracting to a third party owner/operator with cash positive fees paid out for sequestration and cash positive income for CO(2)-EOR. The selection of a business model for CCS will be based in part on the desire of utilities to be vertically integrated, source-sink economics, and demand for CO(2)-EOR. Another element in this decision will be how engaged a utility decides to be and the experience the utility has had with precommercial R&D activities. Through R&D, utilities would likely have already addressed or at least been exposed to the many technical, regulatory, and risk management issues related to successful CCS. This paper provides the framework for identifying the different physical and related prototypical business models that may play a role for electric utilities in

  8. Regulation of Soil Carbon Storage by Wildfire in Boreal and Subtropical Peatlands

    NASA Astrophysics Data System (ADS)

    Benscoter, B.; Turetsky, M. R.; Johnson, J.

    2012-12-01

    Wildfire is a prominent natural disturbance in most terrestrial ecosystems, and the peat-forming wetlands of boreal western Canada and the subtropical Florida Everglades are no exception. Globally, peatlands comprise more than one-third of the terrestrial carbon pool as a result of millennia of soil carbon storage. Individual fire events disrupt peatland carbon storage through combustion and release of soil and biomass carbon and removal of living vegetation. However, peatland burning may help maintain net ecosystem carbon storage over longer time intervals. Local feedbacks between fire behavior and soil conditions result in preservation of soil carbon over multiple fire intervals as well as maintenance of vegetation communities optimal for carbon sequestration. In western Canadian bogs, high soil moisture retention capacity of the dominant ground-layer moss Sphagnum fuscum creates conditions unfavorable to burning even under drought conditions, influencing local fire behavior and preserving soil carbon stocks over multiple fire intervals. In the Florida Everglades, organic soils subside and expand quickly with seasonal changes in water depth, maintaining the majority of the soil carbon stock protected below water. Repeated surface burning may concentrate soil inorganic material in surface peat, thereby decreasing fuel quality and the likelihood of burning in subsequent fires. Additionally, removal of standing vegetation by fire resets the successional sequence. While this produces a period of minimal carbon storage immediately post-fire, vegetation recovery through succession promotes long-term persistence of vegetation communities with greater rates of carbon sequestration rather than late successional communities that may have a net release of carbon to the atmosphere. While fire may presently maintain ecosystem carbon storage, alterations of the disturbance regime due to anthropogenic activities or climate change may exceed the capacity of these feedbacks to

  9. Hierarchically structured carbon nanotubes for energy conversion and storage

    NASA Astrophysics Data System (ADS)

    Du, Feng

    As the world population continues to increase, large amounts of energy are consumed. Reality pushes us to find new energy or use our current energy more efficiently. Researches on energy conversion and storage have become increasingly important and essential. This grand challenge research has led to a recent focus on nanostructured materials. Carbon nanomaterials such as carbon nanotubes (CNTs) play a critical role in all of these nanotechnology challenges. CNTs have a very large surface area, a high electrochemical accessibility, high electronic conductivity and strong mechanical properties. This combination of properties makes them promising materials for energy device applications, such as FETs, supercapacitors, fuel cells, and lithium batteries. This study focuses on exploring the possibility of using vertically aligned carbon nanotubes (VA-CNTs) as the electrode materials in these energy applications. For the application of electrode materials, electrical conductive, vertically aligned CNTs with controllable length and diameter were synthesized. Several CVD methods for VA-CNT growth have been explored, although the iron / aluminum pre-coated catalyst CVD system was the main focus. A systematic study of several factors, including growth time, temperature, gas ratio, catalyst coating was conducted. The mechanism of VA-CNTs was discussed and a model for VA-CNT length / time was proposed to explain the CNT growth rate. Furthermore, the preferential growth of semiconducting (up to 96 atom% carbon) VA-SWNTs by using a plasma enhanced CVD process combined with fast heating was also explored, and these semiconducting materials have been directly used for making FETs using simple dispersion in organic solvent, without any separation and purification. Also, by inserting electron-accepting nitrogen atoms into the conjugated VA-CNT structure during the growth process, we synthesized vertically aligned nitrogen containing carbon nanotubes (VA-NCNTs). After purification of

  10. Early atmospheric detection of carbon dioxide from carbon capture and storage sites

    PubMed Central

    Pak, Nasrin Mostafavi; Rempillo, Ofelia; Norman, Ann-Lise; Layzell, David B.

    2016-01-01

    ABSTRACT The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = −ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1–1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites.  Implications: This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites. PMID:27111469

  11. Carbon storage and late Holocene chronostratigraphy of a Mississippi River deltaic marsh, St. Bernard Parish, Louisiana

    USGS Publications Warehouse

    Markewich, H. W., (Edited By)

    1998-01-01

    Today, the causes, results, and time scale(s) of climate change, past and potential, are the focus of much research, news coverage, and pundit speculation. Many of the US government scientific agencies have some funds earmarked for research into past and (or) future climate change (National Science and Technology Council, 1997). The Mississippi Basin Carbon Project (MBCP) is part of the U.S. Geological Survey (USGS) effort in global change research . The project is motivated by the need to increase our understanding of the role of terrestrial carbon in the global carbon cycle, particularly in the temperate latitudes of North America. The global land area between 30 O and 60 O N is thought to be a large sink for atmospheric CO2 (IPCC, 1996). The identity of this sink is unknown, but is in part the soil and sediment that makes up the upper several meters of the Earth's surface. The MBCP focuses on the Mississippi River basin, the third largest river system in the world (fig. 1), that drains an area of 3.3 x 10 6 km 2 (1.27 x 10 6 mi 2 ). The Mississippi River basin includes more than 40 percent of the land surface, and is the home of more than one-third of the population, of the conterminous United States. Because climate, vegetation, and land use vary greatly within the Mississippi River basin, the primary terrestrial sinks for carbon need to be identified and quantified for representative parts of the basin. The primary goal of the MBCP is to quantify the interactive effects of land-use, erosion, sedimentation, and soil development on carbon storage and nutrient cycles within the Mississippi River basin. The project includes spatial analysis of a wide variety of geographic data, estimation of whole-basin and sub-basin carbon and sediment budgets, development and implementation of terrestrial carbon-cycle models, and site-specific field studies of relevant processes. Areas can be studied and compared, and estimates can be made for whole-basin carbon storage and flux.

  12. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation

    NASA Astrophysics Data System (ADS)

    Matter, Jürg M.; Kelemen, Peter B.

    2009-12-01

    Anthropogenic greenhouse-gas emissions continue to increase rapidly despite efforts aimed at curbing the release of such gases. One potentially long-term solution for offsetting these emissions is the capture and storage of carbon dioxide. In principle, fluid or gaseous carbon dioxide can be injected into the Earth's crust and locked up as carbonate minerals through chemical reactions with calcium and magnesium ions supplied by silicate minerals. This process can lead to near-permanent and secure sequestration, but its feasibility depends on the ease and vigour of the reactions. Laboratory studies as well as natural analogues indicate that the rate of carbonate mineral formation is much higher in host rocks that are rich in magnesium- and calcium-bearing minerals. Such rocks include, for example, basalts and magnesium-rich mantle rocks that have been emplaced on the continents. Carbonate mineral precipitation could quickly clog up existing voids, presenting a challenge to this approach. However, field and laboratory observations suggest that the stress induced by rapid precipitation may lead to fracturing and subsequent increase in pore space. Future work should rigorously test the feasibility of this approach by addressing reaction kinetics, the evolution of permeability and field-scale injection methods.

  13. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    NASA Astrophysics Data System (ADS)

    Serrano, Oscar; Ricart, Aurora M.; Lavery, Paul S.; Mateo, Miguel Angel; Arias-Ortiz, Ariane; Masque, Pere; Rozaimi, Mohammad; Steven, Andy; Duarte, Carlos M.

    2016-08-01

    Biotic and abiotic factors influence the accumulation of organic carbon (Corg) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3- to 4-fold higher Corg stocks (averaging 6.3 kg Corg m-2) at 3- to 4-fold higher rates (12.8 g Corg m-2 yr-1) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg Corg m-2 and 3.6 g Corg m-2 yr-1). In shallower meadows, Corg stocks were mostly derived from seagrass detritus (88 % in average) compared to meadows closer to the deep limit of distribution (45 % on average). In addition, soil accumulation rates and fine-grained sediment content (< 0.125 mm) in shallower meadows (2.0 mm yr-1 and 9 %, respectively) were approximately 2-fold higher than in deeper meadows (1.2 mm yr-1 and 5 %, respectively). The Corg stocks and accumulation rates accumulated over the last 500 years in bare sediments (0.6 kg Corg m-2 and 1.2 g Corg m-2 yr-1) were 3- to 11-fold lower than in P. sinuosa meadows, while fine-grained sediment content (1 %) and seagrass detritus contribution to the Corg pool (20 %) were 8- and 3-fold lower than in Posidonia meadows, respectively. The patterns found support the hypothesis that Corg storage in seagrass soils is influenced by interactions of biological (e.g., meadow productivity, cover and density), chemical (e.g., recalcitrance of Corg stocks) and physical (e.g., hydrodynamic energy and soil accumulation rates) factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  14. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    NASA Astrophysics Data System (ADS)

    Serrano, O.; Ricart, A. M.; Lavery, P. S.; Mateo, M. A.; Arias-Ortiz, A.; Masque, P.; Steven, A.; Duarte, C. M.

    2015-11-01

    Biotic and abiotic factors influence the accumulation of organic carbon (Corg) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3 to 4-fold higher Corg stocks (averaging 6.3 kg Corg m-2) at 3 to 4-fold higher rates (12.8 g Corg m-2 yr-1) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg Corg m-2 and 3.6 g Corg m-2 yr-1). In shallower meadows, Corg stores were mostly derived from seagrass detritus (88 % in average) compared to meadows closer to the deep limit of distribution (45 % on average). Also, sediment accumulation rates and fine-grained sediment content (< 0.125 mm) in shallower meadows (2.0 mm yr-1 and 9 %, respectively) were approximately 2-fold higher than in deeper meadows (1.2 mm yr-1 and 5 %, respectively). The Corg stocks and accumulation rates accumulated over the last 500 years in bare sediments (0.6 kg Corg m-2 and 1.2 g Corg m-2 yr-1) were 3 to 11-fold lower than in P. sinuosa meadows, while fine-grained sediment content (1 %) and seagrass detritus contribution to the Corg pool (20 %) were 8 and 3-fold lower than in Posidonia meadows, respectively. The patterns found support the hypotheses that Corg storage in seagrass soils is influenced by interactions of biological (e.g. meadow productivity, cover and density), chemical (e.g. recalcitrance of Corg stocks) and physical (e.g. hydrodynamic energy and sediment accumulation rates) factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  15. Carbon Storage in an Extensive Karst-distributed Region of Southwestern China based on Multiple Methods

    NASA Astrophysics Data System (ADS)

    Guo, C.; Wu, Y.; Yang, H.; Ni, J.

    2015-12-01

    Accurate estimation of carbon storage is crucial to better understand the processes of global and regional carbon cycles and to more precisely project ecological and economic scenarios for the future. Southwestern China has broadly and continuously distribution of karst landscapes with harsh and fragile habitats which might lead to rocky desertification, an ecological disaster which has significantly hindered vegetation succession and economic development in karst regions of southwestern China. In this study we evaluated the carbon storage in eight political divisions of southwestern China based on four methods: forest inventory, carbon density based on field investigations, CASA model driven by remote sensing data, and BIOME4/LPJ global vegetation models driven by climate data. The results show that: (1) The total vegetation carbon storage (including agricultural ecosystem) is 6763.97 Tg C based on the carbon density, and the soil organic carbon (SOC) storage (above 20cm depth) is 12475.72 Tg C. Sichuan Province (including Chongqing) possess the highest carbon storage in both vegetation and soil (1736.47 Tg C and 4056.56 Tg C, respectively) among the eight political divisions because of the higher carbon density and larger distribution area. The vegetation carbon storage in Hunan Province is the smallest (565.30 Tg C), and the smallest SOC storage (1127.40 Tg C) is in Guangdong Province; (2) Based on forest inventory data, the total aboveground carbon storage in the woody vegetation is 2103.29 Tg C. The carbon storage in Yunnan Province (819.01 Tg C) is significantly higher than other areas while tropical rainforests and seasonal forests in Yunnan contribute the maximum of the woody vegetation carbon storage (account for 62.40% of the total). (3) The net primary production (NPP) simulated by the CASA model is 68.57 Tg C/yr, while the forest NPP in the non-karst region (account for 72.50% of the total) is higher than that in the karst region. (4) BIOME4 and LPJ

  16. Atmospheric monitoring for fugitive emissions from geological carbon storage

    NASA Astrophysics Data System (ADS)

    Loh, Z. M.; Etheridge, D.; Luhar, A.; Leuning, R.; Jenkins, C.

    2013-12-01

    We present a multi-year record of continuous atmospheric CO2 and CH4 concentration measurements, flask sampling (for CO2, CH4, N2O, δ13CO2 and SF6) and CO2 flux measurements at the CO2CRC Otway Project (http://www.co2crc.com.au/otway/), a demonstration site for geological storage of CO2 in south-western Victoria, Australia. The measurements are used to develop atmospheric methods for operational monitoring of large scale CO2 geological storage. Characterization of emission rates ideally requires concentration measurements upwind and downwind of the source, along with knowledge of the atmospheric turbulence field. Because only a single measurement location was available for much of the measurement period, we develop techniques to filter the record and to construct a ';pseudo-upwind' measurement from our dataset. Carbon dioxide and methane concentrations were filtered based on wind direction, downward shortwave radiation, atmospheric stability and hour-to-hour changes in CO2 flux. These criteria remove periods of naturally high concentration due to the combined effects of biogenic respiration, stable atmospheric conditions and pre-existing sources (both natural and anthropogenic), leaving a reduced data set, from which a fugitive leak from the storage reservoir, the ';(potential) source sector)', could more easily be detected. Histograms of the filtered data give a measure of the background variability in both CO2 and CH4. Comparison of the ';pseudo-upwind' dataset histogram with the ';(potential) source sector' histogram shows no statistical difference, placing limits on leakage to the atmosphere over the preceding two years. For five months in 2011, we ran a true pair of up and downwind CO2 and CH4 concentration measurements. During this period, known rates of gas were periodically released at the surface (near the original injection point). These emissions are clearly detected as elevated concentrations of CO2 and CH4 in the filtered data and in the measured

  17. Method of making improved gas storage carbon with enhanced thermal conductivity

    DOEpatents

    Burchell, Timothy D [Oak Ridge, TN; Rogers, Michael R [Knoxville, TN

    2002-11-05

    A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).

  18. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph...

  19. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph...

  20. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph...

  1. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph...

  2. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph...

  3. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective

    PubMed Central

    Zhang, Mei; Huang, Xianjin; Chuai, Xiaowei; Yang, Hong; Lai, Li; Tan, Junzhong

    2015-01-01

    Our work is the first study to explore the national and provincial composite carbon storage variations in terrestrial ecosystems of China caused by the entire flows of land use type conversion (LUTC). Only water body was excluded. The results indicated that terrestrial ecosystems of China lost 219 Tg-C due to LUTC from 1980 to 1995, and the amount was 60 Tg-C during the period 1995-2010. Despite the decrease in the total amount, carbon losses from LUTC intensified, but most of the losses were balanced by the opposite conversions. Our analyses also revealed that LUTCs in China were becoming detrimental to carbon reduction, mainly due to the insufficient increase of forest land to meet the growing demand for carbon absorption, the accelerating disappearance of grassland and the rapid expansion of settlements. More than 50% of the carbon storage variations for a single LUTC flow concentrated in several provinces. To improve China’s LUTC status from the aspect of low-carbon, Heilongjiang, Sichuan, Inner Mongolia, Tibet, Qinghai, Xinjiang and coastal regions, such as Shandong, Jiangsu and Liaoning, should be dealt with first according to their conditions. This study can be helpful to planners, policy makers and scholars concerned about carbon reduction in China. PMID:25975282

  4. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective

    NASA Astrophysics Data System (ADS)

    Zhang, Mei; Huang, Xianjin; Chuai, Xiaowei; Yang, Hong; Lai, Li; Tan, Junzhong

    2015-05-01

    Our work is the first study to explore the national and provincial composite carbon storage variations in terrestrial ecosystems of China caused by the entire flows of land use type conversion (LUTC). Only water body was excluded. The results indicated that terrestrial ecosystems of China lost 219 Tg-C due to LUTC from 1980 to 1995, and the amount was 60 Tg-C during the period 1995-2010. Despite the decrease in the total amount, carbon losses from LUTC intensified, but most of the losses were balanced by the opposite conversions. Our analyses also revealed that LUTCs in China were becoming detrimental to carbon reduction, mainly due to the insufficient increase of forest land to meet the growing demand for carbon absorption, the accelerating disappearance of grassland and the rapid expansion of settlements. More than 50% of the carbon storage variations for a single LUTC flow concentrated in several provinces. To improve China’s LUTC status from the aspect of low-carbon, Heilongjiang, Sichuan, Inner Mongolia, Tibet, Qinghai, Xinjiang and coastal regions, such as Shandong, Jiangsu and Liaoning, should be dealt with first according to their conditions. This study can be helpful to planners, policy makers and scholars concerned about carbon reduction in China.

  5. Modeling of battery energy storage in the National Energy Modeling System

    SciTech Connect

    Swaminathan, S.; Flynn, W.T.; Sen, R.K.

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  6. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    PubMed

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility. PMID:27090405

  7. Rapid Assessment of U.S. Forest and Soil Organic Carbon Storage and Forest Biomass Carbon-Sequestration Capacity

    USGS Publications Warehouse

    Sundquist, Eric T.; Ackerman, Katherine V.; Bliss, Norman B.; Kellndorfer, Josef M.; Reeves, Matt C.; Rollins, Matthew G.

    2009-01-01

    This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carbon and 0.8 PgC of forest biomass carbon occur on lands managed by the U.S. Department of the Interior (DOI). Maps of potential vegetation are used to estimate hypothetical forest biomass carbon sequestration capacities that are 3-7 PgC higher than current forest biomass carbon storage in the conterminous United States. Most of the estimated hypothetical additional forest biomass carbon sequestration capacity is accrued in areas currently occupied by agriculture and development. Hypothetical forest biomass carbon sequestration capacities calculated for existing forests and woodlands are within +or- 1 PgC of estimated current forest biomass carbon storage. Hypothetical forest biomass sequestration capacities on lands managed by the DOI in the conterminous United States are 0-0.4 PgC higher than existing forest biomass carbon storage. Implications for forest and other land management practices are not considered in this report. Uncertainties in the values reported here are large and difficult to quantify, particularly for hypothetical carbon sequestration capacities. Nevertheless, this rapid assessment helps to frame policy and management discussion by providing estimates that can be compared to amounts necessary to reduce predicted future atmospheric carbon dioxide levels.

  8. 10 CFR 95.25 - Protection of National Security Information and Restricted Data in storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Protection of National Security Information and Restricted Data in storage. 95.25 Section 95.25 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY... Protection of National Security Information and Restricted Data in storage. (a) Secret matter,...

  9. 10 CFR 95.25 - Protection of National Security Information and Restricted Data in storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Protection of National Security Information and Restricted Data in storage. 95.25 Section 95.25 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY... Protection of National Security Information and Restricted Data in storage. (a) Secret matter,...

  10. 10 CFR 95.25 - Protection of National Security Information and Restricted Data in storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Protection of National Security Information and Restricted Data in storage. 95.25 Section 95.25 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY... Protection of National Security Information and Restricted Data in storage. (a) Secret matter,...

  11. 10 CFR 95.25 - Protection of National Security Information and Restricted Data in storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Protection of National Security Information and Restricted Data in storage. 95.25 Section 95.25 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY... Protection of National Security Information and Restricted Data in storage. (a) Secret matter,...

  12. Sustained growth of the Southern Ocean carbon storage in a warming climate

    NASA Astrophysics Data System (ADS)

    Ito, Takamitsu; Bracco, Annalisa; Deutsch, Curtis; Frenzel, Hartmut; Long, Matthew; Takano, Yohei

    2015-06-01

    We investigate the mechanisms controlling the evolution of Southern Ocean carbon storage under a future climate warming scenario. A subset of Coupled Model Intercomparison Project Phase 5 models predicts that the inventory of biologically sequestered carbon south of 40°S increases about 18-34 Pg C by 2100 relative to the preindustrial condition. Sensitivity experiments with an ocean circulation and biogeochemistry model illustrates the impacts of the wind and buoyancy forcings under a warming climate. Intensified and poleward shifted westerly wind strengthens the upper overturning circulation, not only leading to an increased uptake of anthropogenic CO2 but also releasing biologically regenerated carbon to the atmosphere. Freshening of Antarctic Surface Water causes a slowdown of the lower overturning circulation, leading to an increased Southern Ocean biological carbon storage. The rectified effect of these processes operating together is the sustained growth of the carbon storage in the Southern Ocean, even under the warming climate with a weaker global ocean carbon uptake.

  13. Ectomycorrhizal fungi increase soil carbon storage: molecular signatures of mycorrhizal competition driving soil C storage at global scale

    NASA Astrophysics Data System (ADS)

    Averill, C.; Barry, B. K.; Hawkes, C.

    2015-12-01

    Soil carbon storage and decay is regulated by the activity of free-living decomposer microbes, which can be limited by nitrogen availability. Many plants associate with symbiotic ectomycorrhizal fungi on their roots, which produce nitrogen-degrading enzymes and may be able to compete with free-living decomposers for soil organic nitrogen. By doing so, ectomycorrhizal fungi may able to induce nitrogen limitation and reduce activity of free-living microbial decomposition by mining soil organic nitrogen. The implication is that ectomycorrhizal-dominated systems should have increased soil carbon storage relative to non-ectomycorrhizal systems, which has been confirmed at a global scale. To investigate these effects, we analyzed 364 globally distributed observations of soil fungal communities using 454 sequencing of the ITS region, along with soil C and N concentrations, climate and chemical data. We assigned operational taxonomic units using the QIIME pipeline and UNITE fungal database and assigned fungal reads as ectomycorrhizal or non-mycorrhizal based on current taxonomic knowledge. We tested for associations between ectomycorrhizal abundance, climate, and soil carbon and nitrogen. Sites with greater soil carbon had quantitatively more ectomycorrhizal fungi within the soil microbial community based on fungal sequence abundance, after accounting for soil nitrogen availability. This is consistent with our hypothesis that ectomycorrhizal fungi induce nitrogen-limitation of free-living decomposers and thereby increase soil carbon storage. The strength of the mycorrhizal effect increased non-linearly with ectomycorrhizal abundance: the greater the abundance, the greater the effect size. Mean annual temperature, potential evapotranspiration, soil moisture and soil pH were also significant predictors in the final AIC selected model. This analysis suggests that molecular data on soil microbial communities can be used to make quantitative biogeochemical predictions. The

  14. Total Storage and Landscape Partitioning of Soil Organic Carbon and Phytomass Carbon in Siberia

    NASA Astrophysics Data System (ADS)

    Siewert, M. B.; Hanisch, J.; Weiss, N.; Kuhry, P.; Hugelius, G.

    2014-12-01

    We present results of detailed partitioning of soil organic carbon (SOC) and phytomass carbon (PC) from two study sites in Siberia. The study sites in the Tundra (Kytalyk) and the Taiga (Spasskaya Pad) reflect two contrasting environments in the continuous permafrost zone. In total 57 individual field sites (24 and 33 per study site respectively) have have been sampled for SOC and PC along transects cutting across different land covers. In Kytalyk the sampling depth for the soil pedons was 1 m depth. In Spasskaya Pad where the active layer was significantly deeper, we aimed for 2 m depth or tried to include at least the top of the permafrost. Here the average depth of soil profiles was 152 cm. PC was sampled from 1x1 m ground coverage plots. In Spasskaya Pad tree phytomass was also estimated on a 5x5 m plot. The SOC storage was calculated separately for the intervals 0-30 cm, 30-100 cm and 100-200 cm (the latter only for Spasskaya Pad), as well as for organic layer vs. mineral soil, active layer vs. permafrost and for cryoturbated soil horizons. Landscape partitioning was performed by thematic up-scaling using a vegetation based land cover classification of very high resolution (2x2 m) satellite imagery. Non-Metric Multidimensional Scaling (NMDS) was used to explore the relationship of SOC with PC and different soil and permafrost related variables. The results show that the different land cover classes can be considered distinct storages of SOC, but that PC is not significantly related to total SOC storage. At both study sites the 30-100 cm SOC storage is more important for the total SOC storage than the 0-30 cm interval, and large portions of the total SOC are stored in the permafrost. The largest contribution comes from wetland pedons, but highly cryoturbated individual non-wetland pedons can match these. In Kytalyk the landscape partitioning of SOC mostly follows large scale geomorphological features, while in Spasskaya pad forest type also has a large

  15. Sample storage-induced changes in the quantity and quality of soil labile organic carbon

    PubMed Central

    Sun, Shou-Qin; Cai, Hui-Ying; Chang, Scott X.; Bhatti, Jagtar S.

    2015-01-01

    Effects of sample storage methods on the quantity and quality of labile soil organic carbon are not fully understood even though their effects on basic soil properties have been extensively studied. We studied the effects of air-drying and frozen storage on cold and hot water soluble organic carbon (WSOC). Cold- and hot-WSOC in air-dried and frozen-stored soils were linearly correlated with those in fresh soils, indicating that storage proportionally altered the extractability of soil organic carbon. Air-drying but not frozen storage increased the concentrations of cold-WSOC and carbohydrate in cold-WSOC, while both increased polyphenol concentrations. In contrast, only polyphenol concentration in hot-WSOC was increased by air-drying and frozen storage, suggesting that hot-WSOC was less affected by sample storage. The biodegradability of cold- but not hot-WSOC was increased by air-drying, while both air-drying and frozen storage increased humification index and changed specific UV absorbance of both cold- and hot-WSOC, indicating shifts in the quality of soil WSOC. Our results suggest that storage methods affect the quantity and quality of WSOC but not comparisons between samples, frozen storage is better than air-drying if samples have to be stored, and storage should be avoided whenever possible when studying the quantity and quality of both cold- and hot-WSOC. PMID:26617054

  16. Sample storage-induced changes in the quantity and quality of soil labile organic carbon.

    PubMed

    Sun, Shou-Qin; Cai, Hui-Ying; Chang, Scott X; Bhatti, Jagtar S

    2015-01-01

    Effects of sample storage methods on the quantity and quality of labile soil organic carbon are not fully understood even though their effects on basic soil properties have been extensively studied. We studied the effects of air-drying and frozen storage on cold and hot water soluble organic carbon (WSOC). Cold- and hot-WSOC in air-dried and frozen-stored soils were linearly correlated with those in fresh soils, indicating that storage proportionally altered the extractability of soil organic carbon. Air-drying but not frozen storage increased the concentrations of cold-WSOC and carbohydrate in cold-WSOC, while both increased polyphenol concentrations. In contrast, only polyphenol concentration in hot-WSOC was increased by air-drying and frozen storage, suggesting that hot-WSOC was less affected by sample storage. The biodegradability of cold- but not hot-WSOC was increased by air-drying, while both air-drying and frozen storage increased humification index and changed specific UV absorbance of both cold- and hot-WSOC, indicating shifts in the quality of soil WSOC. Our results suggest that storage methods affect the quantity and quality of WSOC but not comparisons between samples, frozen storage is better than air-drying if samples have to be stored, and storage should be avoided whenever possible when studying the quantity and quality of both cold- and hot-WSOC. PMID:26617054

  17. Sample storage-induced changes in the quantity and quality of soil labile organic carbon

    NASA Astrophysics Data System (ADS)

    Sun, Shou-Qin; Cai, Hui-Ying; Chang, Scott X.; Bhatti, Jagtar S.

    2015-11-01

    Effects of sample storage methods on the quantity and quality of labile soil organic carbon are not fully understood even though their effects on basic soil properties have been extensively studied. We studied the effects of air-drying and frozen storage on cold and hot water soluble organic carbon (WSOC). Cold- and hot-WSOC in air-dried and frozen-stored soils were linearly correlated with those in fresh soils, indicating that storage proportionally altered the extractability of soil organic carbon. Air-drying but not frozen storage increased the concentrations of cold-WSOC and carbohydrate in cold-WSOC, while both increased polyphenol concentrations. In contrast, only polyphenol concentration in hot-WSOC was increased by air-drying and frozen storage, suggesting that hot-WSOC was less affected by sample storage. The biodegradability of cold- but not hot-WSOC was increased by air-drying, while both air-drying and frozen storage increased humification index and changed specific UV absorbance of both cold- and hot-WSOC, indicating shifts in the quality of soil WSOC. Our results suggest that storage methods affect the quantity and quality of WSOC but not comparisons between samples, frozen storage is better than air-drying if samples have to be stored, and storage should be avoided whenever possible when studying the quantity and quality of both cold- and hot-WSOC.

  18. Trade-offs between savanna woody plant diversity and carbon storage in the Brazilian Cerrado.

    PubMed

    Pellegrini, Adam F A; Socolar, Jacob B; Elsen, Paul R; Giam, Xingli

    2016-10-01

    Incentivizing carbon storage can be a win-win pathway to conserving biodiversity and mitigating climate change. In savannas, however, the situation is more complex. Promoting carbon storage through woody encroachment may reduce plant diversity of savanna endemics, even as the diversity of encroaching forest species increases. This trade-off has important implications for the management of biodiversity and carbon in savanna habitats, but has rarely been evaluated empirically. We quantified the nature of carbon-diversity relationships in the Brazilian Cerrado by analyzing how woody plant species richness changed with carbon storage in 206 sites across the 2.2 million km(2) region at two spatial scales. We show that total woody plant species diversity increases with carbon storage, as expected, but that the richness of endemic savanna woody plant species declines with carbon storage both at the local scale, as woody biomass accumulates within plots, and at the landscape scale, as forest replaces savanna. The sharpest trade-offs between carbon storage and savanna diversity occurred at the early stages of carbon accumulation at the local scale but the final stages of forest encroachment at the landscape scale. Furthermore, the loss of savanna species quickens in the final stages of forest encroachment, and beyond a point, savanna species losses outpace forest species gains with increasing carbon accumulation. Our results suggest that although woody encroachment in savanna ecosystems may provide substantial carbon benefits, it comes at the rapidly accruing cost of woody plant species adapted to the open savanna environment. Moreover, the dependence of carbon-diversity trade-offs on the amount of savanna area remaining requires land managers to carefully consider local conditions. Widespread woody encroachment in both Australian and African savannas and grasslands may present similar threats to biodiversity. PMID:26919289

  19. Hydrogen storage on high-surface-area carbon monoliths for Adsorb hydrogen Gas Vehicle

    NASA Astrophysics Data System (ADS)

    Soo, Yuchoong; Pfeifer, Peter

    2014-03-01

    Carbon briquetting can increase hydrogen volumetric storage capacity by reducing the useless void volume resulting in a better packing density. It is a robust and efficient space-filling form for an adsorbed hydrogen gas vehicle storage tank. To optimize hydrogen storage capacity, we studied three fabrication process parameters: carbon-to-binder ratio, compaction temperature, and pyrolysis atmosphere. We found that carbon-to-binder ratio and pyrolysis atmosphere have influences on gravimetric excess adsorption. Compaction temperature has large influences on gravimetric and volumetric storage capacity. We have been able to optimize these parameters for high hydrogen storage. All monolith uptakes (up to 260 bar) were measured by a custom-built, volumetric, reservoir-type instrument.

  20. Front page or "buried" beneath the fold? Media coverage of carbon capture and storage.

    PubMed

    Boyd, Amanda D; Paveglio, Travis B

    2014-05-01

    Media can affect public views and opinions on science, policy and risk issues. This is especially true of a controversial emerging technology that is relatively unknown. The study presented here employs a media content analysis of carbon capture and storage (CCS), one potential strategy to reduce greenhouse gas emissions. The authors analyzed all mentions of CCS in two leading Canadian national newspapers and two major western regional newspapers from the first article that discussed CCS in 2004 to the end of 2009 (825 articles). An in-depth content analysis was conducted to examine factors relating to risk from CCS, how the technology was portrayed and if coverage was negatively or positively biased. We conclude by discussing the possible impact of media coverage on support or opposition to CCS adoption. PMID:23825250

  1. Induced seismicity from fracking and carbon storage is focus of study and hearing

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-07-01

    Hydraulic fracturing to recover shale gas does not pose a high risk for inducing felt seismic events, as the method is currently implemented, according to a 15 June report by the U.S. National Research Council (NRC). However, carbon capture and storage (CCS) has the potential to induce larger seismic events because of the large net volume of injected fluids involved in that process, according to the report. Scientists testifying at a 19 June hearing held by the U.S. Senate Committee on Energy and Natural Resources said they largely agreed with the report's findings. Neither the report nor the hearing focused on potential environmental impacts of hydraulic fracturing, which is commonly known as fracking.

  2. Catalytic Metal Free Production of Large Cage Structure Carbon Particles: A Candidate for Hydrogen Storage

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.

    2005-01-01

    We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.

  3. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems

    USGS Publications Warehouse

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J., Iii; Moore, B., III; Vorosmarty, C.J.

    2000-01-01

    1 The role of undisturbed tropical land ecosystems in the global carbon budget is not well understood. It has been suggested that inter-annual climate variability can affect the capacity of these ecosystems to store carbon in the short term. In this paper, we use a transient version of the Terrestrial Ecosystem Model (TEM) to estimate annual carbon storage in undisturbed Amazonian ecosystems during the period 1980-94, and to understand the underlying causes of the year-to-year variations in net carbon storage for this region. 2 We estimate that the total carbon storage in the undisturbed ecosystems of the Amazon Basin in 1980 was 127.6 Pg C, with about 94.3 Pg C in vegetation and 33.3 Pg C in the reactive pool of soil organic carbon. About 83% of the total carbon storage occurred in tropical evergreen forests. Based on our model's results, we estimate that, over the past 15 years, the total carbon storage has increased by 3.1 Pg C (+ 2%), with a 1.9-Pg C (+2%) increase in vegetation carbon and a 1.2-Pg C (+4%) increase in reactive soil organic carbon. The modelled results indicate that the largest relative changes in net carbon storage have occurred in tropical deciduous forests, but that the largest absolute changes in net carbon storage have occurred in the moist and wet forests of the Basin. 3 Our results show that the strength of interannual variations in net carbon storage of undisturbed ecosystems in the Amazon Basin varies from a carbon source of 0.2 Pg C/year to a carbon sink of 0.7 Pg C/year. Precipitation, especially the amount received during the drier months, appears to be a major controller of annual net carbon storage in the Amazon Basin. Our analysis indicates further that changes in precipitation combine with changes in temperature to affect net carbon storage through influencing soil moisture and nutrient availability. 4 On average, our results suggest that the undisturbed Amazonian ecosystems accumulated 0.2 Pg C/year as a result of climate

  4. Estimating Carbon Storage in Eelgrass Meadows in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Simpson, J.; McDowell, B.; Sacarny, M.; Colarusso, P.

    2014-12-01

    Seagrass meadows can be hotspots for carbon storage and sequestration, but the data currently available shows an enormous amount of variability. Carbon storage varies with seagrass species and region, and with meadow condition, where healthy meadows sequester carbon but those that are declining may be sources of inorganic carbon to the atmosphere. Very little is known about carbon storage in Zostera marina (eelgrass) meadows in the Gulf of Maine, where they are threatened by poor water quality and physical disturbance. In 2014 we studied two eelgrass meadows in coastal Massachusetts, U.S.A. We sampled biomass and measured carbon content in above- and below-ground plant tissues, sediments, and particulate organic matter in the water column. We estimated bed density and extent using a combination of sonar, visual imaging, and diver surveys. To investigate persistence of carbon storage in sediments, we also sampled sediments from an area where a meadow had historically existed, but had died back in 2012. Results of this work will not only support eelgrass restoration and protection measures locally, but will also help clarify our global understanding of carbon storage in blue habitats.

  5. The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage?

    PubMed

    Wiley, Erin; Huepenbecker, Sarah; Casper, Brenda B; Helliker, Brent R

    2013-11-01

    There is no consensus about how stresses such as low water availability and temperature limit tree growth. Sink limitation to growth and survival is often inferred if a given stress does not cause non-structural carbohydrate (NSC) concentrations or levels to decline along with growth. However, trees may actively maintain or increase NSC levels under moderate carbon stress, making the pattern of reduced growth and increased NSCs compatible with carbon limitation. To test this possibility, we used full and half defoliation to impose severe and moderate carbon limitation on 2-year-old Quercus velutina Lam. saplings grown in a common garden. Saplings were harvested at either 3 weeks or 4 months after treatments were applied, representing short- and longer-term effects on woody growth and NSC levels. Both defoliation treatments maintained a lower total leaf area than controls throughout the experiment with no evidence of photosynthetic up-regulation, and resulted in a similar total biomass reduction. While fully defoliated saplings had lower starch levels than controls in the short term, half defoliated saplings maintained control starch levels in both the short and longer term. In the longer term, fully defoliated saplings had the greatest starch concentration increment, allowing them to recover to near-control starch levels. Furthermore, between the two harvest dates, fully and half defoliated saplings allocated a greater proportion of new biomass to starch than did controls. The maintenance of control starch levels in half defoliated saplings indicates that these trees actively store a substantial amount of carbon before growth is carbon saturated. In addition, the allocation shift favouring storage in defoliated saplings is consistent with the hypothesis that, as an adaptation to increasing carbon stress, trees can prioritize carbon reserve formation at the expense of growth. Our results suggest that as carbon limitation increases, reduced growth is not necessarily

  6. Carbon storage in mountainous headwater streams: The role of old-growth forest and logjams

    NASA Astrophysics Data System (ADS)

    Beckman, Natalie D.; Wohl, Ellen

    2014-03-01

    We measured wood piece characteristics and particulate organic matter (POM) in stored sediments in 30 channel-spanning logjams along headwater streams in the Colorado Front Range, USA. Logjams are on streams flowing through old-growth (>200 years), disturbed (<200 years, natural disturbance), or altered (<200 years, logged) subalpine conifer forest. We examined how channel-spanning logjams influence riverine carbon storage (measured as the total volatile carbon fraction of stored sediment and instream wood). Details of carbon storage associated with logjams reflect age and disturbance history of the adjacent riparian forest. A majority of the carbon within jams is stored as wood. Wood volume is significantly larger in old-growth and disturbed reaches than in altered reaches. Carbon storage also differs in relation to forest characteristics. Sediment from old-growth streams has significantly higher carbon content than altered streams. Volume of carbon stored in jam sediment correlates with jam wood volume in old-growth and disturbed forests, but not in altered forests. Forest stand age and wood volume within a jam explain 43% of the variation of carbon stored in jam sediment. First-order estimates of the amount of carbon stored within a stream reach show an order of magnitude difference between disturbed and altered reaches. Our first-order estimates of reach-scale riverine carbon storage suggest that the carbon per hectare stored in streams is on the same order of magnitude as the carbon stored as dead biomass in terrestrial subalpine forests of the region. Of particular importance, old-growth forest correlates with more carbon storage in rivers.

  7. The role of stakeholders in developing an international regulatory framework for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Augustin, C. M.; Broad, K.; Swart, P. K.

    2011-12-01

    It is estimated that carbon capture and storage (CCS) could be used to achieve between 15% and 55% of the carbon emission reductions necessary to avoid dangerous levels of climate change. It is also believed that achieving emission reduction goals will be less costly with CCS than without it. The expansion of active CCS sites over the past decade, from three to 53 demonstrates the value that industry sees in CCS as a transition technology for governments seeking to reduce their CO2 emissions. However, to continue developing CCS for industry scale implementation, it is essential to provide the regulatory certainty needed to foster energy industry wide adoption of CCS. Existing CCS regulatory regimes are inadequate, fragmented and contradictory. There is a need for comprehensive, unifying regulations for CCS that are flexible enough to adapt as the technology develops. Governments are limited by the fact that carbon capture and storage is a multidisciplinary issue that touches on the fields of oil drilling, groundwater quality, greenhouse gas management, air quality, and risk management. Though it is in part a technological, environmental and management issue there is also a complex political element to tackling the CCS problem. Due to its cross-cutting nature, CCS regulations should be based off the best practices and standards developed by industry stakeholders. Industry standards are stakeholder developed and consensus based, created through a democratic and collaborative process by bodies such as the International Standards Organization, the National Institutes of Standards and Testing (USA), ASTM International, and the Canadian Standards Organization. Standards can typically be broken down into six general categories: test methods, specifications, classifications, practices, guides, and terminology. These standards are created by stakeholders across the industry and across geographic boundaries to create an trade-wide, rather than nationwide, consensus and

  8. Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive charge storage.

    PubMed

    Yun, Y S; Kim, D-H; Hong, S J; Park, M H; Park, Y W; Kim, B H; Jin, H-J; Kang, K

    2015-10-01

    We report microporous carbon nanosheets containing numerous redox active heteroatoms fabricated from exfoliated waste coffee grounds by simple heating with KOH for pseudocapacitive charge storage. We found that various heteroatom combinations in carbonaceous materials can be a redox host for lithium ion storage. The bio-inspired nanomaterials had unique characteristics, showing superior electrochemical performances as cathode for asymmetric pseudocapacitors. PMID:26315977

  9. Fracture Toughness Properties of Savannah River Site Storage Tank ASTM A285 Low Carbon Steel

    SciTech Connect

    Subramanian, K.H.

    2002-05-22

    A materials test program was developed to measure mechanical properties of ASTM A285 Grade B low carbon steel for application to structural and flaw stability analysis of storage tanks at the Department of Energy (DOE) Savannah River Site (SRS). Under this plan, fracture toughness and tensile testing are being performed at conditions that are representative of storage tank

  10. CARBON STORAGE AND FLUXES IN PONDEROSA PINE AT DIFFERENT SUCCESSIONAL STAGES

    EPA Science Inventory

    We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, and eddy flux estimates of net ecosystem exchange. The young site (Y site) was previously an old-growth pondero...

  11. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets

    PubMed Central

    Zomer, Robert J.; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-01-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha−1. Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases. PMID:27435095

  12. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets.

    PubMed

    Zomer, Robert J; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-01-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha(-1). Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases. PMID:27435095

  13. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets

    NASA Astrophysics Data System (ADS)

    Zomer, Robert J.; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-07-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha‑1. Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.

  14. Impacts of Soil Organic Stability on Carbon Storage in Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Williams, E. K.; Rosenheim, B. E.

    2015-12-01

    Coastal wetlands store vast amounts of organic carbon, globally, and are becoming increasingly vulnerable to the effects of anthropogenic sea level rise. Recently, we used ramped pyrolysis/oxidation decomposition characteristics as proxies for soil organic carbon (SOC) stability to understand the fate of carbon storage in coastal wetlands (fresh, brackish, and salt marshes) comprising the Mississippi River deltaic plain, undergoing rapid rates of local sea level rise. At equivalent soil depths, we observed that fresh marsh SOC was more thermochemically stable than brackish and salt marsh SOC. The differences in stability imply stronger carbon sequestration potential of fresh marsh soil carbon, compared to that of salt and brackish marshes. Here, we expand upon these results of differential organic carbon stability/reactivity and model how projected changes in salinity due to sea-level rise and other environmental changes will impact carbon storage in this region with implications globally.

  15. Applications for activated carbons from waste tires: Natural gas storage and air pollution control

    USGS Publications Warehouse

    Brady, T.A.; Rostam-Abadi, M.; Rood, M.J.

    1996-01-01

    Natural gas storage for natural gas vehicles and the separation and removal of gaseous contaminants from gas streams represent two emerging applications for carbon adsorbents. A possible precursor for such adsorbents is waste tires. In this study, activated carbon has been developed from waste tires and tested for its methane storage capacity and SO2 removal from a simulated flue-gas. Tire-derived carbons exhibit methane adsorption capacities (g/g) within 10% of a relatively expensive commercial activated carbon; however, their methane storage capacities (Vm/Vs) are almost 60% lower. The unactivated tire char exhibits SO2 adsorption kinetics similar to a commercial carbon used for flue-gas clean-up. Copyright ?? 1996 Elsevier Science Ltd.

  16. The Environmental and Economic Sustainability of Carbon Capture and Storage

    PubMed Central

    Hardisty, Paul E.; Sivapalan, Mayuran; Brooks, Peter

    2011-01-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO2 abated—there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications—indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO2 entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically

  17. The environmental and economic sustainability of carbon capture and storage.

    PubMed

    Hardisty, Paul E; Sivapalan, Mayuran; Brooks, Peter

    2011-05-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO(2) abated--there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications-indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO(2) entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically

  18. Effect of Forest Structural Change on Carbon Storage in a Coastal Metasequoia glyptostroboides Stand

    PubMed Central

    Cheng, Xiangrong; Yu, Mukui; Wu, Tonggui

    2013-01-01

    Forest structural change affects the forest's growth and the carbon storage. Two treatments, thinning (30% thinning intensity) and underplanting plus thinning, are being implemented in a coastal Metasequoia glyptostroboides forest shelterbelt in Eastern China. The vegetation carbon storage significantly increased in the underplanted and thinned treatments compared with that in the unthinned treatment (P < 0.05). The soil and litterfall carbon storage in the underplanted treatment were significantly higher than those in the unthinned treatment (P < 0.05). The total forest ecosystem carbon storage in the underplanted and thinned treatments increased by 35.3% and 26.3%, respectively, compared with that in the unthinned treatment, an increase that mainly came from the growth of vegetation aboveground. Total ecosystem carbon storage showed no significant difference between the underplanted and thinned treatments (P > 0.05). The soil light fraction organic carbon (LFOC) was significantly higher at the 0–15 cm soil layer in the thinned and underplanted stands compared with that in the unthinned stand (P < 0.05). The soil respiration of the underplanted treatment was significantly higher than that of the unthinned treatment only in July (P < 0.05). This study concludes that 30% thinning and underplanting after thinning could be more favorable to carbon sequestration for M. glyptostroboides plantations in the coastal areas of Eastern China. PMID:24187525

  19. Spatial Simulation of Land Use based on Terrestrial Ecosystem Carbon Storage in Coastal Jiangsu, China

    PubMed Central

    Chuai, Xiaowei; Huang, Xianjin; Wang, Wanjing; Wu, Changyan; Zhao, Rongqin

    2014-01-01

    This paper optimises projected land-use structure in 2020 with the goal of increasing terrestrial ecosystem carbon storage and simulates its spatial distribution using the CLUE-S model. We found the following: The total carbon densities of different land use types were woodland > water area > cultivated land > built-up land > grassland > shallows. Under the optimised land-use structure projected for 2020, coastal Jiangsu showed the potential to increase carbon storage, and our method was effective even when only considering vegetation carbon storage. The total area will increase by reclamation and the original shallows will be exploited, which will greatly increase carbon storage. For built-up land, rural land consolidation caused the second-largest carbon storage increase, which might contribute the most as the rural population will continue to decrease in the future, while the decrease of cultivated land will contribute the most to carbon loss. The area near the coastline has the greatest possibility for land-use change and is where land management should be especially strengthened. PMID:25011476

  20. Cyanophycin mediates the accumulation and storage of fixed carbon in non-heterocystous filamentous cyanobacteria from coniform mats.

    PubMed

    Liang, Biqing; Wu, Ting-Di; Sun, Hao-Jhe; Vali, Hojatollah; Guerquin-Kern, Jean-Luc; Wang, Chung-Ho; Bosak, Tanja

    2014-01-01

    Thin, filamentous, non-heterocystous, benthic cyanobacteria (Subsection III) from some marine, lacustrine and thermal environments aggregate into macroscopic cones and conical stromatolites. We investigate the uptake and storage of inorganic carbon by cone-forming cyanobacteria from Yellowstone National Park using high-resolution stable isotope mapping of labeled carbon (H(13)CO3 (-)) and immunoassays. Observations and incubation experiments in actively photosynthesizing enrichment cultures and field samples reveal the presence of abundant cyanophycin granules in the active growth layer of cones. These ultrastructurally heterogeneous granules rapidly accumulate newly fixed carbon and store 18% of the total particulate labeled carbon after 120 mins of incubation. The intracellular distribution of labeled carbon during the incubation experiment demonstrates an unexpectedly large contribution of PEP carboxylase to carbon fixation, and a large flow of carbon and nitrogen toward cyanophycin in thin filamentous, non-heterocystous cyanobacteria. This pattern does not occur in obvious response to a changing N or C status. Instead, it may suggest an unusual interplay between the regulation of carbon concentration mechanisms and accumulation of photorespiratory products that facilitates uptake of inorganic C and reduces photorespiration in the dense, surface-attached communities of cyanobacteria from Subsection III. PMID:24516596

  1. Cyanophycin Mediates the Accumulation and Storage of Fixed Carbon in Non-Heterocystous Filamentous Cyanobacteria from Coniform Mats

    PubMed Central

    Liang, Biqing; Wu, Ting-Di; Sun, Hao-Jhe; Vali, Hojatollah; Guerquin-Kern, Jean-Luc; Wang, Chung-Ho; Bosak, Tanja

    2014-01-01

    Thin, filamentous, non-heterocystous, benthic cyanobacteria (Subsection III) from some marine, lacustrine and thermal environments aggregate into macroscopic cones and conical stromatolites. We investigate the uptake and storage of inorganic carbon by cone-forming cyanobacteria from Yellowstone National Park using high-resolution stable isotope mapping of labeled carbon (H13CO3−) and immunoassays. Observations and incubation experiments in actively photosynthesizing enrichment cultures and field samples reveal the presence of abundant cyanophycin granules in the active growth layer of cones. These ultrastructurally heterogeneous granules rapidly accumulate newly fixed carbon and store 18% of the total particulate labeled carbon after 120 mins of incubation. The intracellular distribution of labeled carbon during the incubation experiment demonstrates an unexpectedly large contribution of PEP carboxylase to carbon fixation, and a large flow of carbon and nitrogen toward cyanophycin in thin filamentous, non-heterocystous cyanobacteria. This pattern does not occur in obvious response to a changing N or C status. Instead, it may suggest an unusual interplay between the regulation of carbon concentration mechanisms and accumulation of photorespiratory products that facilitates uptake of inorganic C and reduces photorespiration in the dense, surface-attached communities of cyanobacteria from Subsection III. PMID:24516596

  2. Inhibited Carbonate Precipitation in Seawater Allows Carbon Dioxide Storage as Carbonate Alkalinity

    NASA Astrophysics Data System (ADS)

    Rau, G. H.; Caldeira, K.

    2005-12-01

    As we have previously described, contacting flue gas (from fossil fuel combustion) with water and limestone presents a simple way of spontaneously reacting CO2 out of point-source waste gas streams to form a bicarbonate-rich solution via the reaction: CO2 + CaCO3 + H2O <--> Ca2+ + 2HCO3-. This process, we term Accelerated Weathering of Limestone (AWL), can provide a low-tech, inexpensive, high-capacity, environmentally friendly CO2 capture and sequestration technology in locations where limestone and abundant water are in close proximity to CO2 sources. Coastal locations are especially attractive because the ocean provides a source of water as well as a receptacle for the resulting bicarbonate solution. However, as evident in the preceding equation, the reaction will be driven to the right and hence excess bicarbonate will theoretically remain in solution only so long as excess CO2 is present. If the solution's excess CO2 is allowed to contact and thus degas to the atmosphere, carbonate ions will become supersaturated and solid carbonate will precipitate, thus reversing the original reaction and the CO2 mitigation potential of the process. Yet in the case of seawater, an important caveat is that carbonate precipitation is chemically hindered by the presence of phosphate, organic compounds, magnesium ions, and possibly other solutes. Indeed, the surface ocean is typically 6X supersaturated in calcite and 4X in aragonite, and it has been experimentally shown that seawater can tolerate >18X supersaturation before carbonate precipitation is chemically initiated. This means that: i) a substantial fraction of AWL-captured and -converted carbon will stay in solution in the form of carbonate alkalinity even if the solution's CO2 is fully equilibrated with the atmosphere, ii) significant CO2 mitigation can be achieved regardless of depth or location of solution disposal in the ocean, and iii) the resulting elevation in solution pH following CO2 degassing would be helpful in

  3. Carbon in conurbations: Afforestation and carbon storage as consequences of urban sprawl in Colorado's Front Range

    NASA Astrophysics Data System (ADS)

    Golubiewski, Nancy Ellen

    In the arid western United States, urbanization transforms landscapes from sparsely vegetated grasslands with tree-lined riparian corridors into matrices of asphalt, concrete, turf grass, and multi-strata wooded stands. This research sought to understand the consequences of urbanization upon carbon pools in the Front Range of Colorado, a metropolitan area undergoing expansive urban transformation. Vegetative and edaphic C, as well as biomass and other soil physical/chemical properties, were measured throughout the Denver-Boulder metropolitan area in 2000 and 2001. Anthropogenic activities leave clear signatures on all three C compartments measured. The comparison of C storage in the vegetated spaces of urban areas to that in grasslands and agricultural fields reveals a marked increase as well as a proportional shift in storage from belowground to aboveground. Lawn grass produces more biomass and stores more C than local prairie or agricultural fields. Introduced woody vegetation comprises a substantial C pool in urban greenspaces and represents a wholly new ecosystem feature. Established urban greenspaces harbor larger C pools than native grasslands on a per area basis. Rather than map the urban land-cover types, regional detection of the proportion of the urbanized landscape occupied by vegetated and anthropogenic components extracted biophysical information of the urban/rural matrix. Convex geometry and partial unmixing algorithms were used to extract major landscape elements from an AVIRIS image of Boulder, including six vegetation endmembers. Other scene components were also identified, including soil, water, and five impervious surfaces. The fractional abundance of urban vegetation equaled or exceeded that of vegetation in surrounding areas. In order to understand the effect of the per-area C increase in anthropogenic landscapes regionally, the distribution of carbon in land covers across the landscape was investigated. Regional C estimates were based on both

  4. Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest.

    PubMed

    Shen, Yong; Yu, Shixiao; Lian, Juyu; Shen, Hao; Cao, Honglin; Lu, Huanping; Ye, Wanhui

    2016-01-01

    Tropical forests play a disproportionately important role in the global carbon (C) cycle, but it remains unclear how local environments and functional diversity regulate tree aboveground C storage. We examined how three components (environments, functional dominance and diversity) affected C storage in Dinghushan 20-ha plot in China. There was large fine-scale variation in C storage. The three components significantly contributed to regulate C storage, but dominance and diversity of traits were associated with C storage in different directions. Structural equation models (SEMs) of dominance and diversity explained 34% and 32% of variation in C storage. Environments explained 26-44% of variation in dominance and diversity. Similar proportions of variation in C storage were explained by dominance and diversity in regression models, they were improved after adding environments. Diversity of maximum diameter was the best predictor of C storage. Complementarity and selection effects contributed to C storage simultaneously, and had similar importance. The SEMs disengaged the complex relationships among the three components and C storage, and established a framework to show the direct and indirect effects (via dominance and diversity) of local environments on C storage. We concluded that local environments are important for regulating functional diversity and C storage. PMID:27278688

  5. Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest

    PubMed Central

    Shen, Yong; Yu, Shixiao; Lian, Juyu; Shen, Hao; Cao, Honglin; Lu, Huanping; Ye, Wanhui

    2016-01-01

    Tropical forests play a disproportionately important role in the global carbon (C) cycle, but it remains unclear how local environments and functional diversity regulate tree aboveground C storage. We examined how three components (environments, functional dominance and diversity) affected C storage in Dinghushan 20-ha plot in China. There was large fine-scale variation in C storage. The three components significantly contributed to regulate C storage, but dominance and diversity of traits were associated with C storage in different directions. Structural equation models (SEMs) of dominance and diversity explained 34% and 32% of variation in C storage. Environments explained 26–44% of variation in dominance and diversity. Similar proportions of variation in C storage were explained by dominance and diversity in regression models, they were improved after adding environments. Diversity of maximum diameter was the best predictor of C storage. Complementarity and selection effects contributed to C storage simultaneously, and had similar importance. The SEMs disengaged the complex relationships among the three components and C storage, and established a framework to show the direct and indirect effects (via dominance and diversity) of local environments on C storage. We concluded that local environments are important for regulating functional diversity and C storage. PMID:27278688

  6. Carbon Cycle 2.0: Nitash Balsara: Energy Storage

    SciTech Connect

    Nitash Balsara

    2010-02-16

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  7. Carbon Cycle 2.0: Nitash Balsara: Energy Storage

    ScienceCinema

    Nitash Balsara

    2010-09-01

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  8. Management of irrigated agriculture to increase carbon storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fossil fuel burning at the present rate, will double atmospheric carbon dioxide in this century, raising air temperature 1.5 to 5 degrees C. Sequestering carbon (C) in soil can reduce atmospheric carbon dioxide concentration. We measured inorganic and organic C in southern Idaho soils having long ...

  9. Storage ring development at the National Synchrotron Light Source

    SciTech Connect

    Krinsky, S.; Bittner, J.; Fauchet, A.M.; Johnson, E.D.; Keane, J.; Murphy, J.; Nawrocky, R.J.; Rogers, J.; Singh, O.V.; Yu, L.H.

    1991-09-01

    This report contains papers on the following topics: Transverse Beam Profile Monitor; Bunch Length Measurements in the VUV Storage Ring; Photoelectric Effect Photon Beam Position Monitors; RF Receivers for Processing Electron Beam Pick-up Electrode Signals; Real-Time Global Orbit Feedback Systems; Local Orbit Feedback; Active Interlock System for High Power Insertion Devices in the X-ray Ring; Bunch Lengthening Cavity for the VUV Ring; SXLS Storage Ring Design.

  10. 10 CFR 95.25 - Protection of National Security Information and Restricted Data in storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Protection of National Security Information and Restricted Data in storage. 95.25 Section 95.25 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Physical Security § 95.25 Protection of National...

  11. Carbon dioxide storage in unconventional reservoirs workshop: summary of recommendations

    USGS Publications Warehouse

    Jones, Kevin B.; Blondes, Madalyn S.

    2015-01-01

    The storage capacity for all unconventional reservoirs may be modeled using a volumetric equation starting with the extent of the rock unit and adjusted using these key factors and reaction terms. The ideas that were developed during this workshop can be used by USGS scientists to develop a methodology to assess the CO2 storage resource in unconventional reservoirs. This methodology could then be released for public comment and peer review. After completing this development process, the USGS could then use the methodology to assess the CO2 storage resource in unconventional reservoirs.

  12. Radiocarbon evidence for enhanced respired carbon storage in the Atlantic at the Last Glacial Maximum.

    PubMed

    Freeman, E; Skinner, L C; Waelbroeck, C; Hodell, D

    2016-01-01

    The influence of ocean circulation changes on atmospheric CO2 hinges primarily on the ability to alter the ocean interior's respired nutrient inventory. Here we investigate the Atlantic overturning circulation at the Last Glacial Maximum and its impact on respired carbon storage using radiocarbon and stable carbon isotope data from the Brazil and Iberian Margins. The data demonstrate the existence of a shallow well-ventilated northern-sourced cell overlying a poorly ventilated, predominantly southern-sourced cell at the Last Glacial Maximum. We also find that organic carbon remineralization rates in the deep Atlantic remained broadly similar to modern, but that ventilation ages in the southern-sourced overturning cell were significantly increased. Respired carbon storage in the deep Atlantic was therefore enhanced during the last glacial period, primarily due to an increase in the residence time of carbon in the deep ocean, rather than an increase in biological carbon export. PMID:27346723

  13. Radiocarbon evidence for enhanced respired carbon storage in the Atlantic at the Last Glacial Maximum

    PubMed Central

    Freeman, E.; Skinner, L. C.; Waelbroeck, C.; Hodell, D.

    2016-01-01

    The influence of ocean circulation changes on atmospheric CO2 hinges primarily on the ability to alter the ocean interior's respired nutrient inventory. Here we investigate the Atlantic overturning circulation at the Last Glacial Maximum and its impact on respired carbon storage using radiocarbon and stable carbon isotope data from the Brazil and Iberian Margins. The data demonstrate the existence of a shallow well-ventilated northern-sourced cell overlying a poorly ventilated, predominantly southern-sourced cell at the Last Glacial Maximum. We also find that organic carbon remineralization rates in the deep Atlantic remained broadly similar to modern, but that ventilation ages in the southern-sourced overturning cell were significantly increased. Respired carbon storage in the deep Atlantic was therefore enhanced during the last glacial period, primarily due to an increase in the residence time of carbon in the deep ocean, rather than an increase in biological carbon export. PMID:27346723

  14. Radiocarbon evidence for enhanced respired carbon storage in the Atlantic at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Freeman, E.; Skinner, L. C.; Waelbroeck, C.; Hodell, D.

    2016-06-01

    The influence of ocean circulation changes on atmospheric CO2 hinges primarily on the ability to alter the ocean interior's respired nutrient inventory. Here we investigate the Atlantic overturning circulation at the Last Glacial Maximum and its impact on respired carbon storage using radiocarbon and stable carbon isotope data from the Brazil and Iberian Margins. The data demonstrate the existence of a shallow well-ventilated northern-sourced cell overlying a poorly ventilated, predominantly southern-sourced cell at the Last Glacial Maximum. We also find that organic carbon remineralization rates in the deep Atlantic remained broadly similar to modern, but that ventilation ages in the southern-sourced overturning cell were significantly increased. Respired carbon storage in the deep Atlantic was therefore enhanced during the last glacial period, primarily due to an increase in the residence time of carbon in the deep ocean, rather than an increase in biological carbon export.

  15. 110 Years of change in urban tree stocks and associated carbon storage

    PubMed Central

    Díaz-Porras, Daniel F; Gaston, Kevin J; Evans, Karl L

    2014-01-01

    Understanding the long-term dynamics of urban vegetation is essential in determining trends in the provision of key resources for biodiversity and ecosystem services and improving their management. Such studies are, however, extremely scarce due to the lack of suitable historical data. We use repeat historical photographs from the 1900s, 1950s, and 2010 to assess general trends in the quantity and size distributions of the tree stock in urban Sheffield and resultant aboveground carbon storage. Total tree numbers declined by a third from the 1900s to the 1950s, but increased by approximately 50% from the 1900s–2010, and by 100% from the 1950s–2010. Aboveground carbon storage in urban tree stocks had doubled by 2010 from the levels present in the 1900s and 1950s. The initial decrease occurred at a time when national and regional tree stocks were static and are likely to be driven by rebuilding following bombing of the urban area during the Second World War and by urban expansion. In 2010, trees greater than 10 m in height comprised just 8% of those present. The increases in total tree numbers are thus largely driven by smaller trees and are likely to be associated with urban tree planting programmes. Changes in tree stocks were not constant across the urban area but varied with the current intensity of urbanization. Increases from 1900 to 2010 in total tree stocks, and smaller sized trees, tended to be greatest in the most intensely urbanized areas. In contrast, the increases in the largest trees were more marked in areas with the most green space. These findings emphasize the importance of preserving larger fragments of urban green space to protect the oldest and largest trees that contribute disproportionately to carbon storage and other ecosystem services. Maintaining positive trends in urban tree stocks and associated ecosystem service provision will require continued investment in urban tree planting programmes in combination with additional measures, such

  16. 110 Years of change in urban tree stocks and associated carbon storage.

    PubMed

    Díaz-Porras, Daniel F; Gaston, Kevin J; Evans, Karl L

    2014-04-01

    Understanding the long-term dynamics of urban vegetation is essential in determining trends in the provision of key resources for biodiversity and ecosystem services and improving their management. Such studies are, however, extremely scarce due to the lack of suitable historical data. We use repeat historical photographs from the 1900s, 1950s, and 2010 to assess general trends in the quantity and size distributions of the tree stock in urban Sheffield and resultant aboveground carbon storage. Total tree numbers declined by a third from the 1900s to the 1950s, but increased by approximately 50% from the 1900s-2010, and by 100% from the 1950s-2010. Aboveground carbon storage in urban tree stocks had doubled by 2010 from the levels present in the 1900s and 1950s. The initial decrease occurred at a time when national and regional tree stocks were static and are likely to be driven by rebuilding following bombing of the urban area during the Second World War and by urban expansion. In 2010, trees greater than 10 m in height comprised just 8% of those present. The increases in total tree numbers are thus largely driven by smaller trees and are likely to be associated with urban tree planting programmes. Changes in tree stocks were not constant across the urban area but varied with the current intensity of urbanization. Increases from 1900 to 2010 in total tree stocks, and smaller sized trees, tended to be greatest in the most intensely urbanized areas. In contrast, the increases in the largest trees were more marked in areas with the most green space. These findings emphasize the importance of preserving larger fragments of urban green space to protect the oldest and largest trees that contribute disproportionately to carbon storage and other ecosystem services. Maintaining positive trends in urban tree stocks and associated ecosystem service provision will require continued investment in urban tree planting programmes in combination with additional measures, such as

  17. [Forest biomass carbon storage and its dynamics in Tanjiang River basin].

    PubMed

    Yang, Kun; Guan, Dongsheng; Zhou, Chunhua

    2006-09-01

    Based on an improved estimation method of forest carbon storage and the inventory of forest resources, this paper estimated the forest carbon storage and its dynamic changes in Tanjiang River basin, and analyzed the relationships of the carbon storage and its density with the increase of population density and GDP during the urbanization in 1990-2001. The results showed that the forest carbon storage in Tanjiang River basin increased from 5.906 x 10(6) t in 1990 to 7.852 x 10(6) t in 2001, with an annual average accumulation amount of 0.18 x 10(6) t or an annual average accumulation rate of 3.05%, and playing a role of carbon sink. The rapid increase of population density and GDP didn't influence the increase of forest carbon storage and density, but the development of forestry was far lower than that of economy. To have a better service function of forest ecosystem in the process of urbanization, and to promote the sustainable development of regional ecological environment, the key point is the reasonable coordination of forestry management with the development of economy. PMID:17147160

  18. Microbial Carbon Pump ---A New Mechanism for Long-Term Carbon Storage in the Global Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Jiao, N.; Azam, F.; McP Working Group; Scor Wg134

    2010-12-01

    Marine dissolved organic matter (DOM) reservoir, containing carbon equivalent to the total carbon inventory of atmospheric CO2, is an important issue in understanding the role of the ocean in climate change. The known biological mechanism for oceanic carbon sequestration is the biological pump, which depends on vertical transportation of carbon either through particulate organic matter (POM) sedimentation or DOM export by mixing and downwelling. Both the POM and the DOM are subject to microbial mineralization and most of the organic carbon will be returned to dissolved inorganic carbon within a few decades. Only a small fraction of the POM escapes mineralization and reaches the sediment where organic carbon can be buried and stored for thousands and even millions of years. The efficiency of the biological pump is currently the basic measure of the ocean’s ability to store biologically fixed carbon. However, the production and fate of the large pool of recalcitrant DOM with an averaged turnover time of 4000-6000 thousands of years in the water column has not been adequately considered to date. Marine microbes essentially monopolize the utilization of DOM. Although their diverse adaptive strategies for using newly fixed carbon are well known, major gaps exist in our knowledge on how they interact with the large pool of DOM that appears to be recalcitrant. This is an important problem, as DOM molecules that are not degraded for extended periods of time constitute carbon storage in the ocean. A newly proposed concept - the “microbial carbon pump (MCP)” (NATURE REVIEWS Microbiology 2010.8:593-599) (also see diagram below) provides a formalized focus on the significance of microbial processes in carbon storage in the recalcitrant DOM reservoir, and a framework for testing hypotheses on the sources and sinks of DOM and the underlying biogeochemical mechanisms. The MCP, through concessive processing of DOM, transforms some organic carbon from the reactive DOM pools

  19. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities.

  20. The potential storage of carbon caused by eutrophication of the biosphere

    NASA Technical Reports Server (NTRS)

    Peterson, B. J.; Melillo, J. M.

    1985-01-01

    The hypothesis that the rate of atmospheric CO2 increase has been reduced due to increased net storage of carbon in forests, coastal oceans, and the open sea, caused by eutrophication of the biosphere with nitrogen and phosphorus, is examined. The potential for carbon storage, the balance of C, N, and P, and man's influence on the forests, rivers, coastal oceans, and the open sea is studied and discussed. It is concluded that biotic carbon sinks are small relative to the rate of CO2 release from fossil fuel; therefore, storage is limited. Man has reduced the stocks of carbon held in forests and soils and there is a redistribution of C, N, and P from the land to the oceans.

  1. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    PubMed

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-01

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles. PMID:26763714

  2. Spatio-temporal change in forest cover and carbon storage considering actual and potential forest cover in South Korea.

    PubMed

    Nam, Kijun; Lee, Woo-Kyun; Kim, Moonil; Kwak, Doo-Ahn; Byun, Woo-Hyuk; Yu, Hangnan; Kwak, Hanbin; Kwon, Taesung; Sung, Joohan; Chung, Dong-Jun; Lee, Seung-Ho

    2015-07-01

    This study analyzes change in carbon storage by applying forest growth models and final cutting age to actual and potential forest cover for six major tree species in South Korea. Using National Forest Inventory data, the growth models were developed to estimate mean diameter at breast height, tree height, and number of trees for Pinus densiflora, Pinus koraiensis, Pinus rigida, Larix kaempferi, Castanea crenata and Quercus spp. stands. We assumed that actual forest cover in a forest type map will change into potential forest covers according to the Hydrological and Thermal Analogy Groups model. When actual forest cover reaches the final cutting age, forest volume and carbon storage are estimated by changed forest cover and its growth model. Forest volume between 2010 and 2110 would increase from 126.73 to 157.33 m(3) hm(-2). Our results also show that forest cover, volume, and carbon storage could abruptly change by 2060. This is attributed to the fact that most forests are presumed to reach final cutting age. To avoid such dramatic change, a regeneration and yield control scheme should be prepared and implemented in a way that ensures balance in forest practice and yield. PMID:25666842

  3. Cyanophycin mediates the accumulation and storage of fixed carbon in non-heterocystous filamentous cyanobacteria from coniform mats

    NASA Astrophysics Data System (ADS)

    Liang, B.; Wu, T.; Vali, H.; Wang, C.; Bosak, T.

    2013-12-01

    Thin, filamentous, non-heterocystous, benthic cyanobacteria (Subsection III) in some marine and thermal environments aggregate into macroscopic cones and conical stromatolites. We investigated the uptake and storage of inorganic carbon by cone-forming cyanobacteria from Yellowstone National Park using high-resolution stable isotope mapping of labeled carbon (H13CO3-) and immunoassays. Observations and incubation experiments in actively photosynthesizing enrichment cultures and field samples reveal the presence of abundant cyanophycin granules in the active growth layer of cones. These granules are ultrastructurally heterogeneous and rapidly accumulate newly fixed carbon, storing about 20% of the total particulate labeled carbon after 2 hours of incubation. These experiments demonstrate an unexpectedly large contribution of PEP carboxylase to carbon fixation, and a large flow of carbon and nitrogen toward cyanophycin in thin filamentous, non-heterocystous cyanobacteria. This pattern does not occur in obvious response to a changing N or C status. Instead, it suggests an unusual interplay between the regulation of carbon concentration mechanisms and accumulation of photorespiratory products in cone-forming cyanobacteria.

  4. Using conservative and reactive tracers to monitor and verify permanent carbon dioxide storage in basalt

    NASA Astrophysics Data System (ADS)

    Hall, J. L.; Matter, J. M.; Stute, M.; Bausch, A.

    2012-12-01

    Carbon capture and storage methods can assist in reducing greenhouse gas emissions and tackling global warming. Long term, thermodynamically stable storage of carbon dioxide through mineral carbonation is one such method, in which divalent cations released from rocks such as basalt react with CO2 to form carbonates. [1] Currently used monitoring techniques for geologic CO2 storage fail to detect dissolved or chemically transformed CO2. We use conservative and reactive tracers in an ongoing pilot CO2 injection project in Iceland to characterize subsurface CO2 transport and in situ CO2-water-rock reactions. The Carbfix project in Iceland is a field scale pilot project where CO2 and H2S emissions from the Hellisheidi geothermal power plant are dissolved in groundwater and injected into a permeable basalt formation at ~500 m depth below surface. Trifluormethylsulphur pentafluoride (SF5CF3) and sulfurhexafluoride (SF6) are added as conservative tracers to the injected CO2 for the purpose of characterizing the migration of the injected CO2 in the basaltic storage reservoir. Furthermore, the injected CO2 is labeled with radiocarbon (14C) to monitor the extent of CO2-water-rock reactions and mineral carbonation. Initial results from the monitoring wells show a fast dispersion and reaction of the injected CO2. Breakthrough curves of SF6, SF5CF3 and 14C can be observed in nearby monitoring wells from samples collected and analyzed by gas chromatography or accelerator mass spectrometry, respectively. Changes in the ratios between reactive and conservative tracers demonstrate that mixing and CO2-water-rock reactions are occurring. The use of conservative and reactive tracers contributes to the monitoring, verification and accounting information needed to establish the extent and security of carbon storage and be helpful in furthering the public acceptance of geological CO2 storage via mineral carbonation as a contribution to reducing carbon dioxide emissions. [1] Oelkers, et

  5. Preparation and characterization of ordered porous carbons for increasing hydrogen storage behaviors

    SciTech Connect

    Lee, Seul-Yi; Park, Soo-Jin

    2011-10-15

    We prepared ordered porous carbons (PCs) by using a replication method that had well-organized mesoporous silica as a template with various carbonization temperatures in order to investigate the possibility of energy storage materials. The microstructure and morphologies of the samples are characterized by XRD, TEM, and FT-Raman spectroscopy. N{sub 2} adsorption isotherms are analyzed by the t-plot method, as well as the BET and the H-K method in order to characterize the specific surface area, pore volume, and pore size distribution of the samples, respectively. The capacity of the hydrogen adsorption of the samples is evaluated by BEL-HP at 77 K and 1 bar. From the results, we are able to confirm that the synthesis of the samples can be accurately governed by the carbonization temperature, which is one of the effective parameters for developing the textural properties of the carbon materials, which affects the behaviors of the hydrogen storage. - Graphical abstract: It is described that the considerable long-range ordering and the presence of mono-dimensional aligned channels between the two aligned nanorods of the porous framework from the SBA-15 was retained in the T-950 sample during the carbonization process. Highlights: > Ordered porous carbons (PCs) are synthesized with various carbonization temperatures by using a replication method. > Carbonization temperature plays an important role in shrinking the micropores during the carbonization process of PCs. > The textural and structural properties of the PCs are good parameters for enhancing the hydrogen storage capacity.

  6. Changes in Carbon Storage and Net Carbon Exchange After a Shelterwood Harvest at Howland Forest, Maine

    NASA Astrophysics Data System (ADS)

    Scott, N. A.; Rodrigues, C. A.; Hughes, H.; Lee, J. T.; Davidson, E. A.; Dail, D. B.; Goltz, S. M.; Malerba, P.; Hollinger, D. Y.

    2003-12-01

    While many forests are actively sequestering carbon, little research has examined the direct effects of forest management practices on carbon sequestration. This is a critical issue in North America, where a large proportion of forests are managed. At the Howland Forest in Maine, we are using eddy covariance, biometric techniques and modeling to evaluate changes in carbon storage following a shelterwood cut that removed just under 30% of aboveground biomass. This management regime is becoming increasingly common throughout the region. Prior to harvest, the stand contained about 76 Mg C ha-1 (30 m2ha-1 basal area) in above- and below-ground live biomass. Harvesting removed about 15 Mg C ha-1 (SEM=2.1), and created about 5.3 Mg C ha-1 (SEM=1.1) of aboveground and 5.2 Mg C ha-1 (SEM=0.7) of root/stump detritus. Leaf-area index and litterfall declined by about 40% with harvest. Approximately half of the harvested wood was used for paper products (half-life of 3.5 years) and half for longer-lived wood products (half-life of 45 years). In a nearby, unharvested stand, eddy covariance measurements indicated that net ecosystem exchange (NEE) averages about 1.8 Mg C ha-1 y-1. A comparison of NEE at unharvested and harvested stands, both pre- and post-harvest, indicated that NEE declined following the harvest by about 18%, which is less than expected based on basal area and LAI changes. Both daily uptake and nocturnal respiration declined after harvest. Soil respiration declined slightly with harvest, suggesting no major soil C loss after harvest; harvesting had little effect on soil moisture and temperature. When decay of paper and wood products is included in a preliminary carbon budget, we predict that the forest will be a net C source to the atmosphere for at least 5 years, assuming pre-harvest growth rates of trees. How quickly the carbon balance becomes positive will depend largely on whether post-harvest tree growth rates increase.

  7. Selection and preparation of activated carbon for fuel gas storage

    DOEpatents

    Schwarz, James A.; Noh, Joong S.; Agarwal, Rajiv K.

    1990-10-02

    Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

  8. Carbon storage estimation of main forestry ecosystems in Northwest Yunnan Province using remote sensing data

    NASA Astrophysics Data System (ADS)

    Wang, Jinliang; Wang, Xiaohua; Yue, Cairong; Xu, Tian-shu; Cheng, Pengfei

    2014-05-01

    Estimating regional forest organic carbon pool has became a hot issue in the study of forest ecosystem carbon cycle. The forest ecosystem in Shangri-La County, Northwest Yunnan Province, are well preserved, and the area of Picea Likiangensis, Quercus Aquifolioides, Pinus Densata and Pinus Yunnanensis amounts to 80% of the total arboreal forest area in Shangri-La County. Based on the field measurements, remote sensing data and GIS analysis, three models were established for carbon storage estimation. The remote sensing information model with the highest accuracy were used to calculate the carbon storages of the four main forest ecosystems. The results showed: (1) the total carbon storage of the four forest ecosystems in Shangri-La is 302.984 TgC, in which tree layer, shrub layer, herb layer, litter layer, soil layer are 60.196TgC, 5.433TgC, 1.080TgC, 3.582TgC and 232.692TgC, accounting for 19.87%, 1.79%, 0.36%, 1.18%, 76.80% of the total carbon storage respectively. (2)The order of the carbon storage from high to low is soil layer, tree layer, shrub layer, litter layer and herb layer respectively for the four main forest ecosystems. (3)The total average carbon density of the four main forest ecosystems is 403.480 t/hm2, and the carbon densities of the Picea Likiangensis, Quercus Aquifolioides, Pinus Densata and Pinus Yunnanensis are 576.889 t/hm2, 326.947 t/hm2, 279.993 t/hm2 and 255.792 t/hm2 respectively.

  9. Lianas reduce carbon accumulation and storage in tropical forests

    PubMed Central

    van der Heijden, Geertje M. F.; Powers, Jennifer S.; Schnitzer, Stefan A.

    2015-01-01

    Tropical forests store vast quantities of carbon, account for one-third of the carbon fixed by photosynthesis, and are a major sink in the global carbon cycle. Recent evidence suggests that competition between lianas (woody vines) and trees may reduce forest-wide carbon uptake; however, estimates of the impact of lianas on carbon dynamics of tropical forests are crucially lacking. Here we used a large-scale liana removal experiment and found that, at 3 y after liana removal, lianas reduced net above-ground carbon uptake (growth and recruitment minus mortality) by ∼76% per year, mostly by reducing tree growth. The loss of carbon uptake due to liana-induced mortality was four times greater in the control plots in which lianas were present, but high variation among plots prevented a significant difference among the treatments. Lianas altered how aboveground carbon was stored. In forests where lianas were present, the partitioning of forest aboveground net primary production was dominated by leaves (53.2%, compared with 39.2% in liana-free forests) at the expense of woody stems (from 28.9%, compared with 43.9%), resulting in a more rapid return of fixed carbon to the atmosphere. After 3 y of experimental liana removal, our results clearly demonstrate large differences in carbon cycling between forests with and without lianas. Combined with the recently reported increases in liana abundance, these results indicate that lianas are an important and increasing agent of change in the carbon dynamics of tropical forests. PMID:26460031

  10. Towards Regional, Error-Bounded Landscape Carbon Storage Estimates for Data-Deficient Areas of the World

    PubMed Central

    Willcock, Simon; Phillips, Oliver L.; Platts, Philip J.; Balmford, Andrew; Burgess, Neil D.; Lovett, Jon C.; Ahrends, Antje; Bayliss, Julian; Doggart, Nike; Doody, Kathryn; Fanning, Eibleis; Green, Jonathan; Hall, Jaclyn; Howell, Kim L.; Marchant, Rob; Marshall, Andrew R.; Mbilinyi, Boniface; Munishi, Pantaleon K. T.; Owen, Nisha; Swetnam, Ruth D.; Topp-Jorgensen, Elmer J.; Lewis, Simon L.

    2012-01-01

    Monitoring landscape carbon storage is critical for supporting and validating climate change mitigation policies. These may be aimed at reducing deforestation and degradation, or increasing terrestrial carbon storage at local, regional and global levels. However, due to data-deficiencies, default global carbon storage values for given land cover types such as ‘lowland tropical forest’ are often used, termed ‘Tier 1 type’ analyses by the Intergovernmental Panel on Climate Change (IPCC). Such estimates may be erroneous when used at regional scales. Furthermore uncertainty assessments are rarely provided leading to estimates of land cover change carbon fluxes of unknown precision which may undermine efforts to properly evaluate land cover policies aimed at altering land cover dynamics. Here, we present a repeatable method to estimate carbon storage values and associated 95% confidence intervals (CI) for all five IPCC carbon pools (aboveground live carbon, litter, coarse woody debris, belowground live carbon and soil carbon) for data-deficient regions, using a combination of existing inventory data and systematic literature searches, weighted to ensure the final values are regionally specific. The method meets the IPCC ‘Tier 2’ reporting standard. We use this method to estimate carbon storage over an area of33.9 million hectares of eastern Tanzania, reporting values for 30 land cover types. We estimate that this area stored 6.33 (5.92–6.74) Pg C in the year 2000. Carbon storage estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been underestimated for this region of Africa. Our study demonstrates the importance of obtaining regionally appropriate carbon storage estimates, and shows how such values can be produced for

  11. CAN INTENSIVE MANAGEMENT INCREASE CARBON STORAGE IN FORESTS?

    EPA Science Inventory

    A possible response to increasing atmospheric CO2 concentration is to attempt to increase the amount of carbon stored in terrestrial vegetation. ne approach to increasing the size of the terrestrial carbon sink is to increase the growth of forests by utilizing intensive forest ma...

  12. CARBON STORAGE POTENTIAL OF SHORT ROTATION TROPICAL TREE PLANTATIONS

    EPA Science Inventory

    Forests are a major sin or car on an play an important role in the global carbon cycle. ot only do forests contain hugh amounts of carbon, they exchange it very actively with the atmosphere. xpanding the world's forests, therefore, may present an opportunity to increase the terre...

  13. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Technical Reports Server (NTRS)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  14. Carbon storage assessment of U.S. Great Plains relies on data from Landsat and other sources

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-12-01

    A new assessment of carbon storage in the U.S. Great Plains region helps to improve the understanding of carbon and greenhouse gas fluxes in parts of 14 states. It is the first of a series of such assessments, with the entire national assessment set for completion around 2013, the U.S. Geological Survey (USGS) announced at a 6 December press briefing at the AGU Fall Meeting in San Francisco, Calif. The assessment, based on measured and observed data collected by USGS from Landsat and other sources, also indicates the value of the troubled Landsat satellites, according to USGS director Marcia McNutt. The assessment of the 2.17-million-square-kilometer region of the country, which contains a number of different ecosystems, examines carbon storage as well as carbon, methane, and nitrous oxide fluxes in all terrestrial ecosystems in the region during a baseline period. Projections of these fluxes also were extended to 2050. The report was carried out to fulfill a section of the Energy Independence and Security Act of 2007.

  15. Estimates of Carbon Sequestration and Storage in Tidal Coastal Wetlands Along the US East Coast

    EPA Science Inventory

    Globally, salt marshes are reported to sequester carbon (210 g C m-2 y -1), and along with mangroves in the US, they are reported to account for 1–2 % of the carbon sink for the conterminous US. Using the published salt marsh carbon sequestration rate and National Wetland Invent...

  16. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    NASA Astrophysics Data System (ADS)

    Koteen, Laura E.; Baldocchi, Dennis D.; Harte, John

    2011-10-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  17. In situ carbonation of peridotite for CO2 storage

    PubMed Central

    Kelemen, Peter B.; Matter, Jürg

    2008-01-01

    The rate of natural carbonation of tectonically exposed mantle peridotite during weathering and low-temperature alteration can be enhanced to develop a significant sink for atmospheric CO2. Natural carbonation of peridotite in the Samail ophiolite, an uplifted slice of oceanic crust and upper mantle in the Sultanate of Oman, is surprisingly rapid. Carbonate veins in mantle peridotite in Oman have an average 14C age of ≈26,000 years, and are not 30–95 million years old as previously believed. These data and reconnaissance mapping show that ≈104 to 105 tons per year of atmospheric CO2 are converted to solid carbonate minerals via peridotite weathering in Oman. Peridotite carbonation can be accelerated via drilling, hydraulic fracture, input of purified CO2 at elevated pressure, and, in particular, increased temperature at depth. After an initial heating step, CO2 pumped at 25 or 30 °C can be heated by exothermic carbonation reactions that sustain high temperature and rapid reaction rates at depth with little expenditure of energy. In situ carbonation of peridotite could consume >1 billion tons of CO2 per year in Oman alone, affording a low-cost, safe, and permanent method to capture and store atmospheric CO2.

  18. Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive charge storage

    NASA Astrophysics Data System (ADS)

    Yun, Y. S.; Kim, D.-H.; Hong, S. J.; Park, M. H.; Park, Y. W.; Kim, B. H.; Jin, H.-J.; Kang, K.

    2015-09-01

    We report microporous carbon nanosheets containing numerous redox active heteroatoms fabricated from exfoliated waste coffee grounds by simple heating with KOH for pseudocapacitive charge storage. We found that various heteroatom combinations in carbonaceous materials can be a redox host for lithium ion storage. The bio-inspired nanomaterials had unique characteristics, showing superior electrochemical performances as cathode for asymmetric pseudocapacitors.We report microporous carbon nanosheets containing numerous redox active heteroatoms fabricated from exfoliated waste coffee grounds by simple heating with KOH for pseudocapacitive charge storage. We found that various heteroatom combinations in carbonaceous materials can be a redox host for lithium ion storage. The bio-inspired nanomaterials had unique characteristics, showing superior electrochemical performances as cathode for asymmetric pseudocapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04231c

  19. Palladium-doped Nanoporous Carbon Fibers for Hydrogen Storage

    SciTech Connect

    Gallego, Nidia C; Contescu, Cristian I; Bhat, Vinay V; van Benthem, Klaus; Tekinalp, Halil; Edie, Dan

    2008-01-01

    Pd-free and Pd-containing activated carbon fibers (Pd-ACF) were synthesized from isotropic pitch as a carbon precursor. The source of Pd was a palladium salt that was premixed with pitch before carbonization. Hydrogen adsorption was measured at near-ambient temperatures (5 to 80 oC) and moderate pressures (up to 20 bar). It was found that adsorption on Pd-ACF is always higher than that on corresponding ACF, and in excess of what it would be expected based solely on formation of Pd hydride. This fact can be explained based on the mechanism of hydrogen spillover. It was also found that temperature and pressure have opposite effects on physisorption and spillover. It was hypothesized that a narrow temperature range exists, where the kinetic advantage of H2 spillover in Pd-ACF overlaps synergistically with the thermodynamic advantage of physisorption, thus contributing to enhanced uptakes compared with the Pd-free carbons.

  20. NATional CARBon Sequestration Database and Geographic Information System (NATCARB)

    SciTech Connect

    Timothy R. Carr

    2006-01-09

    This report provides a brief summary of the milestone for Quarter 1 of 2006 of the NATional CARBon Sequestration Database and Geographic Information System (NATCARB) This milestone assigns consistent symbology to the ''National CO{sub 2} Facilities'' GIS layer on the NATCARB website. As a default, CO{sub 2} sources provided by the Regional Carbon Sequestration Partnerships and the National Group are now all one symbol type. In addition for sinks such as oil and gas fields where data is drawn from multiple partnerships, the symbology is given a single color. All these modifications are accomplished as the layer is passed through the national portal (www.natcarb.org). This documentation is sent to National Energy Technology Laboratory (NETL) as a Topical Report and will be included in the next Annual Report.

  1. Dynamics and structure of carbon storage in the postagrogenic ecosystems of the southern taiga

    NASA Astrophysics Data System (ADS)

    Ryzhova, I. M.; Erokhova, A. A.; Podvezennaya, M. A.

    2014-12-01

    The dynamics and structure of the carbon storage in postagrogenic ecosystems during the natural reforestation of agrosoddy-podzolic soils in the southern taiga zone of European Russia have been considered. Calculation experiments based on the nonlinear model of the carbon cycle in soils (NAMSOM) have revealed different tendencies in the changes of the soil carbon reserves during the postagrogenic succession depending of the preceding land use and the soil texture. It has been shown that, in spite of the possible decrease in the reserves of soil carbon in some cases, the total carbon reserves in the ecosystems always increase during the postagrogenic succession due to the multiple increases in the phytomass and the accumulation of carbon in the litter. Thus, the obtained results indicate the sequestering of carbon in the abandoned lands of the southern taiga of European Russia.

  2. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    SciTech Connect

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  3. Spatial Variations in Carbon Storage along Headwater Fluvial Networks with Differing Valley Geometry

    NASA Astrophysics Data System (ADS)

    Wohl, E. E.; Dwire, K. A.; Polvi, L. E.; Sutfin, N. A.; Bazan, R. A.

    2011-12-01

    We distinguish multiple valley types along headwater fluvial networks in the Colorado Front Range based on valley geometry (downstream gradient and valley-bottom width relative to active channel width) and the presence of biotic drivers (beaver dams or channel-spanning logjams associated with old-growth forest) capable of creating a multi-thread channel pattern. Valley type influences storage of fine sediment, organic matter, and carbon. Deep, narrow valleys have limited storage potential, whereas wide, shallow valleys with multi-thread channels have substantial storage potential. Multi-thread channels only occur in the presence of a biotic driver. Given the importance of headwater streams in the global carbon cycle, it becomes important to understand the spatial distribution and magnitude of carbon storage along these streams, as well as the processes governing patterns of storage. We compare carbon stored in three reservoirs: riparian vegetation (live, dead, and litter), instream and floodplain large wood, and floodplain soils for 100-m-long valley segments in seven different valley types. The valley types are (i) laterally confined valleys in old-growth forest, (ii) partly confined valleys in old-growth forest, (iii) laterally unconfined valleys with multi-thread channels in old-growth forest, (iv) laterally unconfined valleys with single-thread channels in old-growth forest, (v) laterally confined valleys in younger forest, (vi) recently abandoned beaver-meadow complexes with multi-thread channels and willow thickets, and (vii) longer abandoned beaver-meadow complexes with single-thread channels and very limited woody vegetation. Preliminary results suggest that, although multi-thread channel segments driven by beavers or logjams cover less than 25 percent of the total length of headwater river networks in the study area, they account for more than three-quarters of the carbon stored along the river network. Historical loss of beavers and old-growth forest has

  4. Coupled Socio-Ecological Drivers of Carbon Storage in South African Coastal Lowland Landscapes

    NASA Astrophysics Data System (ADS)

    Smithwick, E. A.

    2011-12-01

    The amount of carbon stored in African terrestrial ecosystems is unknown, varying from 30 to >250 Mg C ha-1 in tropical forests. Several prominent efforts are improving this estimate through forest inventories and modeling, but carbon storage varies across ecosystems and some ecosystems remain vastly understudied. This is critical given that Africa's net carbon flux ranges from a source to a substantial carbon sink, making it one of the weakest links in the global carbon cycle. One such understudied ecosystem is the coastal lowland forest along the Eastern Cape of South Africa, which lies between two internationally recognized biodiversity hotspots and is a current focus of conservation efforts in the region. Six permanent forest plots were established within two nature reserves during February 2011. Using empirical wood density estimates, aboveground tree carbon was estimated using established allometric equations. Results indicated that forests store between 50 and 100 Mg C ha-1, with significant variability among sites. However, the landscapes of the nature reserves differ significantly in the amount of forest cover due to differences in fire frequencies (ranging from <3 to >100 years), which are largely determined by rates of wildlife poaching within nature reserves. Thus, although estimates of forest carbon storage are heterogeneous within Eastern Cape forests, landscape-scale carbon storage is governed largely by human activities and reflects strongly coupled socio-ecological drivers. Estimates of landscape-scale carbon storage can help guide conservation management strategies and form the basis of future modeling efforts exploring interactions of climate, disturbance, and human livelihoods.

  5. Effect of interannual climate variability on carbon storage in Amazonian ecosystems

    USGS Publications Warehouse

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K., III; Moore, B., III; Vorosmarty, C.J.

    1998-01-01

    The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.

  6. Reversible Storage of Hydrogen and Natural Gas in Nanospace-Engineered Activated Carbons

    NASA Astrophysics Data System (ADS)

    Romanos, Jimmy; Beckner, Matt; Rash, Tyler; Yu, Ping; Suppes, Galen; Pfeifer, Peter

    2012-02-01

    An overview is given of the development of advanced nanoporous carbons as storage materials for natural gas (methane) and molecular hydrogen in on-board fuel tanks for next-generation clean automobiles. High specific surface areas, porosities, and sub-nm/supra-nm pore volumes are quantitatively selected by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process. Tunable bimodal pore-size distributions of sub-nm and supra-nm pores are established by subcritical nitrogen adsorption. Optimal pore structures for gravimetric and volumetric gas storage, respectively, are presented. Methane and hydrogen adsorption isotherms up to 250 bar on monolithic and powdered activated carbons are reported and validated, using several gravimetric and volumetric instruments. Current best gravimetric and volumetric storage capacities are: 256 g CH4/kg carbon and 132 g CH4/liter carbon at 293 K and 35 bar; 26, 44, and 107 g H2/kg carbon at 303, 194, and 77 K respectively and 100 bar. Adsorbed film density, specific surface area, and binding energy are analyzed separately using the Clausius-Clapeyron equation, Langmuir model, and lattice gas models.

  7. On the use of data mining for estimating carbon storage in the trees

    PubMed Central

    2013-01-01

    Forests contribute to climate change mitigation by storing carbon in tree biomass. The amount of carbon stored in this carbon pool is estimated by using either allometric equations or biomass expansion factors. Both of the methods provide estimate of the carbon stock based on the biometric parameters of a model tree. This study calls attention to the potential advantages of the data mining technique known as instance-based classification, which is not used currently for this purpose. The analysis of the data on the carbon storage in 30 trees of Brazilian pine (Araucaria angustifolia) shows that the instance-based classification provides as relevant estimates as the conventional methods do. The coefficient of correlation between the estimated and measured values of carbon storage in tree biomass does not vary significantly with the choice of the method. The use of some other measures of method performance leads to the same result. In contrast to the convention methods the instance-based classification does not presume any specific form of the function relating carbon storage to the biometric parameters of the tree. Since the best form of such function is difficult to find, the instance-based classification could outperform the conventional methods in some cases, or simply get rid of the questions about the choice of the allometric equations. PMID:23758745

  8. Whole ecosystem estimates of carbon exchange and storage in a New England salt marsh

    NASA Astrophysics Data System (ADS)

    Forbrich, I.; Giblin, A.

    2013-12-01

    Salt marshes are wetlands situated at the interface of land and ocean. They are among the most productive ecosystems worldwide and store substantial amounts of carbon as peat. Their long-term stability is dependent on sediment accretion and carbon accumulation to avoid submergence when sea level is rising. Currently, estimates of carbon storage in salt marshes are uncertain because our understanding of the coupling between marsh plant productivity and carbon release to the adjacent ocean is limited. To evaluate the capacity to store carbon as well as the resilience of the ecosystem, long-term studies of carbon cycling considering both vertical and lateral fluxes are necessary. To study the net exchange between marsh and atmosphere, we chose the non-intrusive eddy covariance which allows nearly continuous half hourly flux measurements of net ecosystem exchange (NEE) on the ecosystem scale. Since spring 2012, we have been investigating the marsh-atmosphere exchange of carbon dioxide (CO2) at a Spartina patens high marsh at the Plum Island Ecosystems Long-Term Ecological Research site. Seasonal dynamics of CO2 exchange during summer were controlled by the phenology of S. patens. Preliminary estimates for seasonal carbon storage range from 185 to 228 g C m-2 (5/1/2012 to 10/31/2012). During the winter months we observed small fluxes, but carbon uptake still occurred during the day. We attribute this to microalgae productivity. Winter carbon release is estimated to be approximately 130 g C m-2 (12/6/2012 to 4/30/2013), when uptake by microalgae is not taken into account. This emphasizes the relevance of transitional and cold season carbon cycling for the carbon storage capacity of northern salt marshes, since a large proportion of fixed carbon is released during these periods. Direct tidal effects on the marsh-atmosphere carbon exchange are visible especially during monthly spring tides, when both daytime carbon uptake and night time respiration were reduced during

  9. Human and environmental controls over aboveground carbon storage in Madagascar

    PubMed Central

    2012-01-01

    Background Accurate, high-resolution mapping of aboveground carbon density (ACD, Mg C ha-1) could provide insight into human and environmental controls over ecosystem state and functioning, and could support conservation and climate policy development. However, mapping ACD has proven challenging, particularly in spatially complex regions harboring a mosaic of land use activities, or in remote montane areas that are difficult to access and poorly understood ecologically. Using a combination of field measurements, airborne Light Detection and Ranging (LiDAR) and satellite data, we present the first large-scale, high-resolution estimates of aboveground carbon stocks in Madagascar. Results We found that elevation and the fraction of photosynthetic vegetation (PV) cover, analyzed throughout forests of widely varying structure and condition, account for 27-67% of the spatial variation in ACD. This finding facilitated spatial extrapolation of LiDAR-based carbon estimates to a total of 2,372,680 ha using satellite data. Remote, humid sub-montane forests harbored the highest carbon densities, while ACD was suppressed in dry spiny forests and in montane humid ecosystems, as well as in most lowland areas with heightened human activity. Independent of human activity, aboveground carbon stocks were subject to strong physiographic controls expressed through variation in tropical forest canopy structure measured using airborne LiDAR. Conclusions High-resolution mapping of carbon stocks is possible in remote regions, with or without human activity, and thus carbon monitoring can be brought to highly endangered Malagasy forests as a climate-change mitigation and biological conservation strategy. PMID:22289685

  10. Thermokarst Lake Carbon Storage and Transport near Cherskiy, Northeast Siberia

    NASA Astrophysics Data System (ADS)

    Berman, S. L.; Frey, K. E.; Griffin, C. G.; Zimov, N.

    2013-12-01

    Thermokarst lakes are prevalent features across the pan-Arctic landscape. As the Arctic climate warms further, thermokarst lakes currently situated in continuous permafrost will likely increase in size and number. Shifting lake distributions may have significant impacts on the land-atmosphere exchange of carbon, as these lakes act as reservoirs and conduits that store and transport carbon and other organic material across the landscape. Using field data collected in the Kolyma River basin in the continuous permafrost region near Cherskiy, Northeast Siberia, we investigate the carbon dynamics of four thermokarst lakes in the Y4 watershed, a small, upland drainage area. Through bathymetric mapping of these four lakes, total lake volume was calculated. Depth profiles of temperature, specific conductivity, pH, and dissolved oxygen were collected across horizontal transects and subsequently integrated with these total volume measurements to determine physical characteristics of the lakes. Additionally, water samples were collected at various stations and depths for analyses of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM). With these physical and biogeochemical measurements in concert, we investigated the ability for these lakes to store and transport carbon through the Y4 watershed. Furthermore, detailed knowledge of CDOM concentrations in these lakes provides an understanding of the lability and molecular weight of the organic matter as well as potential light transmittance through the water column. This watershed area provides a representative example of the potential for thermokarst lakes in yedoma regions to process and move carbon across the landscape and ultimately to larger systems such as the Kolyma River basin. This baseline characterization of regional lakes will lead to a better understanding of how further warming and permafrost instability may impact the carbon dynamics of thermokarst lakes and ultimately how they function

  11. Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes

    NASA Astrophysics Data System (ADS)

    Hasegawa, George; Kanamori, Kazuyoshi; Kannari, Naokatsu; Ozaki, Jun-ichi; Nakanishi, Kazuki; Abe, Takeshi

    2016-06-01

    Hard carbons emerge as one of the most promising candidate for an anode of Na-ion batteries. This research focuses on the carbon monolith derived from resorcinol-formaldehyde (RF) gels as a model hard carbon electrode. A series of binder-free monolithic carbon electrodes heat-treated at varied temperatures allow the comparative investigation of the correlation between carbon nanotexture and electrochemical Na+-ion storage. The increase in carbonization temperature exerts a favorable influence on electrode performance, especially in the range between 1600 °C and 2500 °C. The comparison between Li+- and Na+-storage behaviors in the carbon electrodes discloses that the Na+-trapping in nanovoids is negligible when the carbonization temperature is higher than 1600 °C. On the other hand, the high-temperature sintering at 2500-3000 °C enlarges the resistance for Na+-insertion into interlayer spacing as well as Na+-filling into nanovoids. In addition, the study on the effect of pore size clearly demonstrates that not the BET surface area but the surface area related to meso- and macropores is a predominant factor for the initial irreversible capacity. The outcomes of this work are expected to become a benchmark for other hard carbon electrodes prepared from various precursors.

  12. The lifetime of carbon capture and storage as a climate-change mitigation technology

    SciTech Connect

    Juanes, Ruben

    2013-12-30

    In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and sustainable injection rates, which has contributed to the absence of concerted government policy. Here, we clarify the potential of CCS to mitigate emissions in the United States by developing a storage-capacity supply curve that, unlike current large-scale capacity estimates, is derived from the fluid mechanics of CO2 injection and trapping and incorporates injection-rate constraints. We show that storage supply is a dynamic quantity that grows with the duration of CCS, and we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the storage demand curve from CO2 production. We show that in the United States, if CO2 production from power generation continues to rise at recent rates, then CCS can store enough CO2 to stabilize emissions at current levels for at least 100 years. This result suggests that the large-scale implementation of CCS is a geologically viable climate-change mitigation option in the United States over the next century.

  13. Lifetime of carbon capture and storage as a climate-change mitigation technology

    PubMed Central

    Szulczewski, Michael L.; MacMinn, Christopher W.; Herzog, Howard J.; Juanes, Ruben

    2012-01-01

    In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and sustainable injection rates, which has contributed to the absence of concerted government policy. Here, we clarify the potential of CCS to mitigate emissions in the United States by developing a storage-capacity supply curve that, unlike current large-scale capacity estimates, is derived from the fluid mechanics of CO2 injection and trapping and incorporates injection-rate constraints. We show that storage supply is a dynamic quantity that grows with the duration of CCS, and we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the storage demand curve from CO2 production. We show that in the United States, if CO2 production from power generation continues to rise at recent rates, then CCS can store enough CO2 to stabilize emissions at current levels for at least 100 y. This result suggests that the large-scale implementation of CCS is a geologically viable climate-change mitigation option in the United States over the next century. PMID:22431639

  14. Physical and chemical changes during carbon dioxide injection and storage (Invited)

    NASA Astrophysics Data System (ADS)

    Faulkner, D. R.; Armitage, P. J.; Blake, O. O.; Worden, R.

    2013-12-01

    Many of the lessons learnt from carbon capture and storage projects can be instructive for other applications, such as geothermal energy. More than 3M tonnes of carbon dioxide was injected at In Salah, Algeria between 2004 to 2011. We have tested rocks from this field to investigate the change in properties resulting from geomechanical and geochemical changes produced by injection and storage. Injection produced inflation of the reservoir that was recorded at the surface by satellite measurements. The uplift was asymmetrical around the injection wells indicating an inherent permeability anisotropy of around 15. Laboratory measurements of permeability indicate that a maximum horizontal permeability anisotropy of a factor of 2 is possible from the differential stress field alone. The permeability anisotropy can be explained by fracture damage produced by sub-failure stresses, as shown in laboratory experiments. The base of the caprock to the storage reservoir shows significant increases in permeability during flow of carbon dioxide-saturated water. The acidic fluid rapidly dissolves siderite and chlorite within the pore throats. Precipitation of the dissolved material is likely where lower carbon dioxide concentrations are present and may produce a lower permeability caprock at some distance from the injection well. Identifying changes that occur within carbon dioxide storage sites not only helps with future planning of these sites but can also provide valuable insights into likely processes in geothermal fields.

  15. Growth and activity of reservoir microorganisms under carbon capture and storage conditions

    NASA Astrophysics Data System (ADS)

    Rakoczy, Jana; Gniese, Claudia; Krüger, Martin

    2015-04-01

    Carbon capture and storage is a technology to decelerate global warming by reducing CO2 emissions into the atmosphere. To ensure safe long-term storage of CO2 in the underground a number of factors need to be considered. One of them is microbial activity in storage reservoirs, which can lead to the formation of acidic metabolites, H2S or carbonates which then might affect injectivity, permeability, pressure build-up and long-term operability. Our research focused on the effect of high CO2 concentrations on growth and activity of selected thermophilic fermenting and sulphate-reducing bacteria isolated from deep reservoirs. Experiments with supercritical carbon dioxide at 100 bar completely inhibited growth of freshly inoculated cultures and also caused a rapid decrease of growth of a pre-grown culture. This demonstrated that supercritical carbon dioxide had a certain sterilizing effect on cells. This effect was not observed in control cultures with 100 bar of hydrostatic pressure. However, when provided with a surface for attachment, CO2-inhibited cells restarted growth after CO2 release. The same was observed for organisms able to form spores. Further experiments will examine physiological and molecular properties of the model organism allowing for prediction of its sensitivity and/or adaptability to carbon dioxide in potential future storage sites.

  16. Carbon Sequestration and Carbon Capture and Storage (CCS) in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hisyamudin Muhd Nor, Nik; Norhana Selamat, Siti; Hanif Abd Rashid, Muhammad; Fauzi Ahmad, Mohd; Jamian, Saifulnizan; Chee Kiong, Sia; Fahrul Hassan, Mohd; Mohamad, Fariza; Yokoyama, Seiji

    2016-06-01

    Southeast Asia is a standout amongst the most presented districts to unnatural weather change dangers even they are not principle worldwide carbon dioxide (CO2) maker, its discharge will get to be significant if there is no move made. CO2 wellsprings of Southeast Asia are mainly by fossil fuel through era of power and warmth generation, and also transportation part. The endeavors taken by these nations can be ordered into administrative and local level. This paper review the potential for carbon catch and capacity (CCS) as a part of the environmental change moderation system for the Malaysian power area utilizing an innovation appraisal structure. The country's recorded pattern of high dependence on fossil fuel for its power segment makes it a prime possibility for CCS reception. This issue leads to gradual increment of CO2 emission. It is evident from this evaluation that CCS can possibly assume a vital part in Malaysia's environmental change moderation methodology gave that key criteria are fulfilled. With the reason to pick up considerations from all gatherings into the earnestness of an Earth-wide temperature boost issue in Southeast Asia, assume that more efficient measures can be taken to effectively accomplish CO2 diminishment target.

  17. Impact of Forest Management on Future Forest Carbon Storage in Alaska Coastal Forests

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Kushch, S. A.

    2014-12-01

    The forest in Coastal Alaska are unique in many ways. Two groups of forest types occur in the Alaska region: boreal and temperate rain forests. About eighty-eight percent of these forests are in public ownership. High proportations of reserved forests and old-growth forests make the forests in coastal Alaska differ from that in other coastal regions. This study is focused on how forest management actions may impact the future carbon stocks and flux in coastal Alaska forests. The Forest Inventory and Analysis (FIA) data collected by US Forest Service are the primary data used for estimation of current carbon storage and projections of future forest carbon storage for all forest carbon pools in Alaska coastal forests under different management scenarios and climate change effect.

  18. Activated carbon derived from waste coffee grounds for stable methane storage

    NASA Astrophysics Data System (ADS)

    Kemp, K. Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M.; Kim, Kwang S.

    2015-09-01

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m2 g-1 and a micropore volume of 0.574 cm3 g-1 and exhibits a stable CH4 adsorption capacity of ˜4.2 mmol g-1 at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

  19. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    SciTech Connect

    BOOMER, K.D.

    2007-08-21

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed.

  20. Sandia National Laboratories Electrochemical Storage System Abuse Test Procedure Manual

    SciTech Connect

    Unkelhaeuser, Terry; Smallwood David

    1999-07-01

    The series of tests described in this report are intended to simulate actual use and abuse conditions and internally initiated failures that may be experienced in electrochemical storage systems (ECSS). These tests were derived from Failure Mode and Effect Analysis, user input, and historical abuse testing. The tests are to provide a common framework for various ECSS technologies. The primary purpose of testing is to gather response information to external/internal inputs. Some tests and/or measurements may not be required for some ECSS technologies and designs if it is demonstrated that a test is not applicable, and the measurements yield no useful information.

  1. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.

    PubMed

    Means, Mary M; Ahn, Changwoo; Korol, Alicia R; Williams, Lisa D

    2016-01-01

    Wetland creation has become a commonplace method for mitigating the loss of natural wetlands. Often mitigation projects fail to restore ecosystem services of the impacted natural wetlands. One of the key ecosystem services of newly created wetlands is carbon accumulation/sequestration, but little is known about how planting diversity (PD) affects the ability of herbaceous wetland plants to store carbon in newly created wetlands. Most mitigation projects involve a planting regime, but PD, which may be critical in establishing biologically diverse and ecologically functioning wetlands, is seldom required. Using a set of 34 mesocosms (∼1 m(2) each), we investigated the effects of planting diversity on carbon storage potential of four native wetland plant species that are commonly planted in created mitigation wetlands in Virginia - Carex vulpinoidea, Eleocharis obtusa, Juncus effusus, and Mimulus ringens. The plants were grown under the four distinctive PD treatments [i.e., monoculture (PD 1) through four different species mixture (PD 4)]. Plant biomass was harvested after two growing seasons and analyzed for tissue carbon content. Competition values (CV) were calculated to understand how the PD treatment affected the competitive ability of plants relative to their biomass production and thus carbon storage potentials. Aboveground biomass ranged from 988 g/m(2) - 1515 g/m(2), being greatest in monocultures, but only when compared to the most diverse mixture (p = 0.021). However, carbon storage potential estimates per mesocosm ranged between 344 g C/m(2) in the most diverse mesocosms (PD 4) to 610 g C/m(2) in monoculture ones with no significant difference (p = 0.089). CV of E. obtusa and C. vulpinoidea showed a declining trend when grown in the most diverse mixtures but J. effusus and M. ringens displayed no difference across the PD gradient (p = 0.910). In monocultures, both M. ringens, and J. effusus appeared to store carbon as biomass more

  2. Stakeholder views on financing carbon capture and storage demonstration projects in China.

    PubMed

    Reiner, David; Liang, Xi

    2012-01-17

    Chinese stakeholders (131) from 68 key institutions in 27 provinces were consulted in spring 2009 in an online survey of their perceptions of the barriers and opportunities in financing large-scale carbon dioxide capture and storage (CCS) demonstration projects in China. The online survey was supplemented by 31 follow-up face-to-face interviews. The National Development and Reform Commission (NDRC) was widely perceived as the most important institution in authorizing the first commercial-scale CCS demonstration project and authorization was viewed as more similar to that for a power project than a chemicals project. There were disagreements, however, on the appropriate size for a demonstration plant, the type of capture, and the type of storage. Most stakeholders believed that the international image of the Chinese Government could benefit from demonstrating commercial CCS and that such a project could also create advantages for Chinese companies investing in CCS technologies. In more detailed interviews with 16 financial officials, we found striking disagreements over the perceived risks of demonstrating CCS. The rate of return seen as appropriate for financing demonstration projects was split between stakeholders from development banks (who supported a rate of 5-8%) and those from commercial banks (12-20%). The divergence on rate alone could result in as much as a 40% difference in the cost of CO(2) abatement and 56% higher levelized cost of electricity based on a hypothetical case study of a typical 600-MW new build ultrasupercritical pulverized coal-fired (USCPC) power plant. To finance the extra operational costs, there were sharp divisions over which institutions should bear the brunt of financing although, overall, more than half of the support was expected to come from foreign and Chinese governments. PMID:22191735

  3. Uncertainty assessment of carbon dioxide storage capacity evaluation in deep saline aquifer:a case study in Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yang, X.

    2012-12-01

    Carbon dioxide Capture and Storage techniques (CCS) are one of the effective measures for reduction Carbon dioxide emissions to the atmosphere to mitigate the global warming. Among the Carbon dioxide geological storage options, deep saline aquifers offer the largest storage potential and are widely distributed throughout the Earth. Implementation of carbon dioxide capture and geological storage to reduce greenhouse gas emissions requires carbon dioxide storage capacity in deep saline aquifers. The storage capacity estimation depends on the storage trapping mechanisms and the availability, resolution and certainty of data. There are five different types of trapping mechanisms in deep saline aquifers namely structural and stratigraphic trapping, residual gas trapping, solubility trapping, mineral trapping and hydrodynamic trapping in which storage capacity by solubility trapping is the largest. The carbon dioxide storage capacities in deep saline aquifer can be evaluated by the method recommended by Carbon Sequestration Leadership Forum (CSLF), which mainly depends on the area of study area, thickness and porosity of sandstone, density and carbon dioxide content (mass fraction) in formation water at initial and saturated state. Hydrogeological parameters in aquifer are uncertainty because of uncertainty of measurement and the spatial variety, which leads evaluation uncertainty of carbon dioxide storage capacity. In this paper, acceptance of evaluated carbon dioxide storage capacity in deep saline aquifer caused by hydrological parameters was discussed based on geostatistical methods and stochastic simulation. The stratum named Yaojialing group in the center depressed area of Songliao Basin was chosen as study area because of the rich data. The porosity of sandstone, thickness ration of sandstone to stratum and the total dissolved solid in formation water were regarded as the main source of the uncertainty of carbon dioxide storage capacity evaluation in deep saline

  4. Optimized carbonation of magnesium silicate mineral for CO2 storage.

    PubMed

    Eikeland, Espen; Blichfeld, Anders Bank; Tyrsted, Christoffer; Jensen, Anca; Iversen, Bo Brummerstedt

    2015-03-11

    The global ambition of reducing the carbon dioxide emission makes sequestration reactions attractive as an option of storing CO2. One promising environmentally benign technology is based on forming thermodynamically stable carbonated minerals, with the drawback that these reactions usually have low conversion rates. In this work, the carbonation reaction of Mg rich olivine, Mg2SiO4, under supercritical conditions has been studied. The reaction produces MgCO3 at elevated temperature and pressure, with the addition of NaHCO3 and NaCl to improve the reaction rates. A sequestration rate of 70% was achieved within 2 h, using olivine particles of sub-10 μm, whereas 100% conversion was achieved in 4 h. This is one of the fastest complete conversions for this reaction reported to date. The CO2 sequestration rate is found to be highly dependent on the applied temperature and pressure, as well as the addition of NaHCO3. In contrast, adding NaCl was found to have limited effect on the reaction rate. The roles of NaHCO3 and NaCl as catalysts are discussed and especially how their effect changes with increased olivine particle size. The products have been characterized by Rietveld refinement of powder X-ray diffraction, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy revealing the formation of amorphous silica and micrometer-sized magnesium carbonate crystals. PMID:25688577

  5. Soil Carbon Storage by Switchgrass Grown for Bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Life-cycle assessments (LCAs) of bioenergy crops such as switchgrass (Panicum virgatum L.) require data on soil organic carbon (SOC) change and harvested C yields to accurately estimate net greenhouse gas emissions. To date, nearly all information on SOC change under switchgrass has been based on e...

  6. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of the eastern United States

    USGS Publications Warehouse

    Zhu, Zhi-Liang; Reed, Bradley C.

    2014-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to conduct a comprehensive national assessment of storage and flux (flow) of carbon and the fluxes of other greenhouse gases in ecosystems of the Eastern United States. These carbon and greenhouse gas variables were examined for major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and aquatic ecosystems (rivers, streams, lakes, estuaries, and coastal waters) in the Eastern United States in two time periods: baseline (from 2001 through 2005) and future (projections from the end of the baseline through 2050). The Great Lakes were not included in this assessment due to a lack of input data. The assessment was based on measured and observed data collected by the U.S. Geological Survey and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  7. Fast Synthesis of Multilayer Carbon Nanotubes from Camphor Oil as an Energy Storage Material

    PubMed Central

    TermehYousefi, Amin; Bagheri, Samira; Shinji, Kawasaki; Rouhi, Jalal; Rusop Mahmood, Mohamad; Ikeda, Shoichiro

    2014-01-01

    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs. PMID:25258714

  8. Simulating impacts of Woody Biomass Harvesting on North Temperate Forest Carbon and Nitrogen Cycling and Storage

    NASA Astrophysics Data System (ADS)

    Hua, D.; Desai, A. R.; Bolstad, P.; Cook, B. D.; Scheller, R.

    2012-12-01

    Woody biomass harvesting is a common feature of forest management given its importance to society for acquisition of pulp and paper, lumber, and wood-based biofuel. Harvest affects many aspects of the forest environment such as biodiversity, soil nutrient quality, physical properties of soil, water quality, wildlife habitat, and climate feedbacks. In this study, we applied a modified CENTURY model to the Willow Creek, Wisconsin Ameriflux site for simulation of the impacts of woody biomass removal on forest carbon and nitrogen storage. Woody biomass harvesting scenarios with different harvesting types, interval, tree species, and soil properties were designed and tested in the model to explore the impact of harvesting on forest productivity, soil and biomass carbon and nitrogen storage, and net carbon exchange between terrestrial ecosystem and the atmosphere. Comparisons of the impacts among harvesting scenarios indicate that woody biomass harvesting significantly alters long-term net soil carbon and nitrogen storage as well as carbon exchange between terrestrial ecosystem and the atmosphere. The simulation results also provide a framework for incorporating carbon management into sustainable forest management practices.

  9. A general approach towards carbon nanotube and iron oxide coaxial architecture and its lithium storage capability

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Ni, Jiangfeng; Wang, Wencong; Li, Liang

    2015-12-01

    Coaxial architectures consisting of metal oxide and carbon nanotube are promising for many energy applications due to their synergetic interaction. The engineering and development of coaxial structures through a simple approach are highly desirable but remain a challenge. Herein, we present a general and facile ethylene glycol bath approach to fabricate coaxial architectures in which the metal oxide component is sandwiched by carbon nanotube and amorphous carbon. These unique architectures can serve as efficient electrode for lithium storage. The internal carbon nanotube allows rapid electron transport, while the external amorphous carbon acts as flexible buffer to accommodate volume variation upon lithium uptake. When evaluated in lithium cells, the carbon nanotube and iron oxide coaxial material exhibits a remarkable electrochemical lithium storage. It affords a capacity of 1083 mAh g-1 over 60 cycles, and retains 529 mAh g-1 at a high rate of 5 A g-1, drastically outperforming the pure iron oxide counterpart. This facile approach is in principle applicable to constructing other coaxial electrodes, and thus holds great potential in the manipulation of battery materials for lithium storage application.

  10. Fast synthesis of multilayer carbon nanotubes from camphor oil as an energy storage material.

    PubMed

    TermehYousefi, Amin; Bagheri, Samira; Shinji, Kawasaki; Rouhi, Jalal; Rusop Mahmood, Mohamad; Ikeda, Shoichiro

    2014-01-01

    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs. PMID:25258714

  11. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000

    NASA Astrophysics Data System (ADS)

    Yu, Yanyan; Guo, Zhengtang; Wu, Haibin; Kahmann, Julia A.; Oldfield, Frank

    2009-06-01

    We address the spatial changes in organic carbon density and storage in cultivated soils in China from 1980 to 2000 on the basis of measured data from individual studies and those acquired during the second national soil survey in China. The results show a carbon gain in ˜66% of the cultivated area of China as a whole with the increase in soil organic carbon (SOC) density mostly ranging from 10% to 30%. Soil organic carbon density increased in fluvi-aquic soils (fluvisols, Food and Agriculture Organization (FAO) of the United Nations) in north China, irrigated silting soils (calcaric fluvisols) in northwest China, latosolic red earths (haplic acrisols/alisols), and paddy soils (fluvisols/cambisols) in south China. In contrast, significant decreases are observed in black soils (phaeozems) in northeast China and latosols (haplic acrisols) in southwest China. No significant changes are detected in loessial soils (calcaric regosols) and dark loessial soils (calcisols) in the loess plateau region. The total SOC storage and average density in the upper 20 cm in the late 1990s are estimated to be ˜5.37 Pg C and 2.77 kg/m2, respectively, compared with the values of ˜5.11 Pg C and 2.63 kg/m2 in the early 1980s. This reveals an increase of SOC storage of 0.26 Pg C and suggests an overall carbon sink for cultivated soils in China, which has contributed 2-3% to the global terrestrial ecosystem carbon absorption from 1980 to 2000. Statistical analyses suggest an insignificant contribution to the observed SOC increase from climate change, and we infer that it is mostly attributable to improved agricultural practices. Despite the SOC density increases over 20 years, the SOC density of the cultivated soils in China in the late 1990s is still ˜30% lower compared to their uncultivated counterparts in comparable soil types, suggesting a considerable potential for SOC restoration through improving management practices. Assuming a restoration of ˜50% of the lost SOC in the next 30

  12. "Not in (or under) my backyard": Geographic proximity and public acceptance of carbon capture and storage facilities.

    PubMed

    Krause, Rachel M; Carley, Sanya R; Warren, David C; Rupp, John A; Graham, John D

    2014-03-01

    Carbon capture and storage (CCS) is an innovative technical approach to mitigate the problem of climate change by capturing carbon dioxide emissions and injecting them underground for permanent geological storage. CCS has been perceived both positively, as an innovative approach to facilitate a more environmentally benign use of fossil fuels while also generating local economic benefits, and negatively, as a technology that prolongs the use of carbon-intensive energy sources and burdens local communities with prohibitive costs and ecological and human health risks. This article extends existing research on the "not in my backyard" (NIMBY) phenomenon in a direction that explores the public acceptance of CCS. We utilize survey data collected from 1,001 residents of the coal-intensive U.S. state of Indiana. Over 80% of respondents express support for the general use of CCS technology. However, 20% of these initial supporters exhibit a NIMBY-like reaction and switch to opposition as a CCS facility is proposed close to their communities. Respondents' worldviews, their beliefs about the local economic benefits that CCS will generate, and their concerns about its safety have the greatest impact on increasing or decreasing the acceptance of nearby facilities. These results lend valuable insights into the perceived risks associated with CCS technology and the possibilities for its public acceptance at both a national and local scale. They may be extended further to provide initial insights into likely public reactions to other technologies that share a similar underground dimension, such as hydraulic fracturing. PMID:24117789

  13. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage.

    PubMed

    Averill, Colin; Turner, Benjamin L; Finzi, Adrien C

    2014-01-23

    Soil contains more carbon than the atmosphere and vegetation combined. Understanding the mechanisms controlling the accumulation and stability of soil carbon is critical to predicting the Earth's future climate. Recent studies suggest that decomposition of soil organic matter is often limited by nitrogen availability to microbes and that plants, via their fungal symbionts, compete directly with free-living decomposers for nitrogen. Ectomycorrhizal and ericoid mycorrhizal (EEM) fungi produce nitrogen-degrading enzymes, allowing them greater access to organic nitrogen sources than arbuscular mycorrhizal (AM) fungi. This leads to the theoretical prediction that soil carbon storage is greater in ecosystems dominated by EEM fungi than in those dominated by AM fungi. Using global data sets, we show that soil in ecosystems dominated by EEM-associated plants contains 70% more carbon per unit nitrogen than soil in ecosystems dominated by AM-associated plants. The effect of mycorrhizal type on soil carbon is independent of, and of far larger consequence than, the effects of net primary production, temperature, precipitation and soil clay content. Hence the effect of mycorrhizal type on soil carbon content holds at the global scale. This finding links the functional traits of mycorrhizal fungi to carbon storage at ecosystem-to-global scales, suggesting that plant-decomposer competition for nutrients exerts a fundamental control over the terrestrial carbon cycle. PMID:24402225

  14. From Fundamental Understanding To Predicting New Nanomaterials For High Capacity Hydrogen/Methane Storage and Carbon Capture

    SciTech Connect

    Yildirim, Taner

    2015-03-03

    On-board hydrogen/methane storage in fuel cell-powered vehicles is a major component of the national need to achieve energy independence and protect the environment. The main obstacles in hydrogen storage are slow kinetics, poor reversibility and high dehydrogenation temperatures for the chemical hydrides; and very low desorption temperatures/energies for the physisorption materials (MOF’s, porous carbons). Similarly, the current methane storage technologies are mainly based on physisorption in porous materials but the gravimetric and volumetric storage capacities are below the target values. Finally, carbon capture, a critical component of the mitigation of CO2 emissions from industrial plants, also suffers from similar problems. The solid-absorbers such as MOFs are either not stable against real flue-gas conditions and/or do not have large enough CO2 capture capacity to be practical and cost effective. In this project, we addressed these challenges using a unique combination of computational, synthetic and experimental methods. The main scope of our research was to achieve fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen/methane and carbon capture in a wide spectrum of candidate materials. We studied the effect of scaffolding and doping of the candidate materials on their storage and dynamics properties. We reviewed current progress, challenges and prospect in closely related fields of hydrogen/methane storage and carbon capture.[1-5] For example, for physisorption based storage materials, we show that tap-densities or simply pressing MOFs into pellet forms reduce the uptake capacities by half and therefore packing MOFs is one of the most important challenges going forward. For room temperature hydrogen storage application of MOFs, we argue that MOFs are the most promising scaffold materials for Ammonia-Borane (AB) because of their unique interior active metal-centers for AB binding and well

  15. Rock Physics of Geologic Carbon Sequestration/Storage

    SciTech Connect

    Dvorkin, Jack; Mavko, Gary

    2013-05-31

    This report covers the results of developing the rock physics theory of the effects of CO{sub 2} injection and storage in a host reservoir on the rock's elastic properties and the resulting seismic signatures (reflections) observed during sequestration and storage. Specific topics addressed are: (a) how the elastic properties and attenuation vary versus CO{sub 2} saturation in the reservoir during injection and subsequent distribution of CO{sub 2} in the reservoir; (b) what are the combined effects of saturation and pore pressure on the elastic properties; and (c) what are the combined effects of saturation and rock fabric alteration on the elastic properties. The main new results are (a) development and application of the capillary pressure equilibrium theory to forecasting the elastic properties as a function of CO{sub 2} saturation; (b) a new method of applying this theory to well data; and (c) combining this theory with other effects of CO{sub 2} injection on the rock frame, including the effects of pore pressure and rock fabric alteration. An important result is translating these elastic changes into synthetic seismic responses, specifically, the amplitude-versus-offset (AVO) response depending on saturation as well as reservoir and seal type. As planned, three graduate students participated in this work and, as a result, received scientific and technical training required should they choose to work in the area of monitoring and quantifying CO{sub 2} sequestration.

  16. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

    PubMed

    Fink, Cornel; Montandon-Clerc, Mickael; Laurenczy, Gabor

    2015-01-01

    This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes. PMID:26842324

  17. INTERACTION OF CLIMATE AND LAND USE IN FUTURE TERRESTRIAL CARBON STORAGE AND RELEASE

    EPA Science Inventory

    The processes controlling total carbon (C) storage and release from the terrestrial biosphere are still poorly quantified. e conclude from analysis of paleodata and climate biome model output that terrestrial C exchanges since the last glacial maximum (LGM) were dominated by slow...

  18. Economic and environmental evaluation of flexible integrated gasification polygeneration facilities with carbon capture and storage

    EPA Science Inventory

    One innovative option for reducing greenhouse gas (GHG) emissions involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from co-processed coal and biomass. In this scheme, the feedstocks are first converted to syngas, from which ...

  19. Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS).

    PubMed

    Nielsen, Claus J; Herrmann, Hartmut; Weller, Christian

    2012-10-01

    This critical review addresses the atmospheric gas phase and aqueous phase amine chemistry that is relevant to potential emissions from amine-based carbon capture and storage (CCS). The focus is on amine, nitrosamine and nitramine degradation, and nitrosamine and nitramine formation processes. A comparison between the relative importance of the various atmospheric sinks for amines, nitrosamines and nitramines is presented. PMID:22729147

  20. Carbon storage and nitrous oxide emissions of cropping systems in eastern Washington: A simulation study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage is an agricultural strategy to mitigate atmospheric greenhouse gas (GHG) emissions. In eastern Washington we evaluated the long-term effects of conventional tillage (CT), reduced tillage (RT) and no-tillage (NT) on soil organic carbon (SOC) storage and nitrous oxide emissions at...

  1. FOREST MANAGEMENT AND THE ECONOMICS OF CARBON STORAGE: THE NONFINANCIAL COMPONENT

    EPA Science Inventory

    Interest has grown internationally in the past decade for stepping up management of world forests. his paper focuses on the economic considerations for forest management for carbon storage and argues for the need to include nonfinancial benefits and costs. sing a series of 30 pla...

  2. Soil classification and carbon storage in cacao agroforestry farming systems of Bahia, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information concerning the classification of soils and their properties under cacao agroforestry systems of the Atlantic rain forest biome region in the Southeast of Bahia Brazil is largely unknown. Soil and climatic conditions in this region are favorable for high soil carbon storage. This study is...

  3. Capturing King Coal: deploying carbon capture and storage systems in the US at scale

    SciTech Connect

    Fernando, H.; Venezia, J.; Rigdon, C.; Verma, P.

    2008-05-15

    This paper examines the challenges in the deployment of carbon capture and storage (CCS) systems in the USA under the four broad categories of technology, policy, legal and regulatory framework, and investment, and their implications for CCS as part of the solution to mitigate adverse climate change impacts.

  4. Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment

    SciTech Connect

    2009-03-01

    This factsheet describes a research project whose goal is to translate a unique approach for the synthesis of self-assembled nanostructured carbon into industrially viable technologies for two important, large-scale applications: electrochemical double-layer capacitors (also referred to as ultracapacitors) for electrical energy storage, and capacitive deionization (CDI) systems for water treatment and desalination.

  5. Organic Carbon Storage in Four Ecosystem Types in the Karst Region of Southwestern China

    PubMed Central

    Wang, Shijie; Guo, Ke; Yang, Jun; Zhang, Xinshi; Li, Guoqing

    2013-01-01

    Karst ecosystems are important landscape types that cover about 12% of the world's land area. The role of karst ecosystems in the global carbon cycle remains unclear, due to the lack of an appropriate method for determining the thickness of the solum, a representative sampling of the soil and data of organic carbon stocks at the ecosystem level. The karst region in southwestern China is the largest in the world. In this study, we estimated biomass, soil quantity and ecosystem organic carbon stocks in four vegetation types typical of karst ecosystems in this region, shrub grasslands (SG), thorn shrubbery (TS), forest - shrub transition (FS) and secondary forest (F). The results showed that the biomass of SG, TS, FS, and F is 0.52, 0.85, 5.9 and 19.2 kg m−2, respectively and the corresponding organic cabon storage is 0.26, 0.40, 2.83 and 9.09 kg m−2, respectively. Nevertheless, soil quantity and corresponding organic carbon storage are very small in karst habitats. The quantity of fine earth overlaying the physical weathering zone of the carbonate rock of SG, TS, FS and F is 38.10, 99.24, 29.57 and 61.89 kg m−2, respectively, while the corresponding organic carbon storage is only 3.34, 4.10, 2.37, 5.25 kg m−2, respectively. As a whole, ecosystem organic carbon storage of SG, TS, FS, and F is 3.81, 4.72, 5.68 and 15.1 kg m−2, respectively. These are very low levels compared to other ecosystems in non-karst areas. With the restoration of degraded vegetation, karst ecosystems in southwestern China may play active roles in mitigating the increasing CO2 concentration in the atmosphere. PMID:23451047

  6. Warming-Induced Shrub Expansion May Enhance Future Soil Carbon Storage on the Eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Klein, J. A.; Ojima, D.; Harte, J.; Zhao, X.

    2005-12-01

    Our objective is to quantify how ecosystem carbon storage responds to climate variability and grazing on the eastern Tibetan Plateau and to compare results across a suite of study approaches: experimental manipulations, space for time observations, and biogeochemical modeling. Four years of experimental manipulations of climate and grazing resulted in a 25gm-2yr-1 increase in shrub foliar productivity with experimental warming; grazing dampened the warming-induced shrub expansion. There was no discernable change in soil carbon storage with warming. Examination of the soil carbon in ambient plots within meadow versus shrubland habitats demonstrates 3.5% more soil carbon at the shrublands (9.4%C) than at the meadows (5.9%C). These differences in soil carbon are likely due to the highly recalcitrant nature of the shrub leaf litter, which contains 33% lignin of the total dry leaf mass. The comparable figures are 11% for forbs and 18% for graminoids. The experimental plots are likely exhibiting a delayed response to experimental warming. We predict that over the longer-term, soil carbon storage will increase with warming-induced shrub expansion. We use the CENTURY ecosystem model to illuminate the biogeochemical consequences of shrub expansion in this region and to identify temporal aspects of this transformation. While future increased carbon storage is beneficial in terms of climate mitigation, the warming-induced shrub expansion will negatively affect the availability and quality of forage resources in this region. This highlights the potential conflict between management goals in ecosystems where local livelihoods are directly dependent upon ecosystem goods and services.

  7. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    SciTech Connect

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

  8. Process for producing carbon foams for energy storage devices

    DOEpatents

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1998-08-04

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g--1,000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.

  9. Process for producing carbon foams for energy storage devices

    DOEpatents

    Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.

    1998-01-01

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  10. Hydrology affects carbon storage potential of prairie potholes

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-06-01

    Prairie potholes, the small, dynamic, unconnected ponds that dot central Canada as well as parts of the north central United States, can store significant amounts of soil nutrients that can be transformed to carbon dioxide and other greenhouse gases. Scientists would like to better understand how these regions could contribute to climate warming, but there are challenges, given the large heterogeneity in greenhouse gas emissions over the prairie pothole landscape.

  11. Forests and ozone: productivity, carbon storage, and feedbacks

    PubMed Central

    Wang, Bin; Shugart, Herman H.; Shuman, Jacquelyn K.; Lerdau, Manuel T.

    2016-01-01

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution. PMID:26899381

  12. Synthesis, characterization, and modeling of hydrogen storage in carbon aerogels

    SciTech Connect

    Pekala, R.W.; Coronado, P.R.; Calef, D.F.

    1995-04-01

    Carbon aerogels are a special class of open-cell foams with an ultrafine cell/pore size (<50 nm), high surface area (600-800 m{sup 2}/g), and a solid matrix composed of interconnected colloidal-like particles or fibers with characteristic diameters of 10 nm. These materials are usually synthesized from the sol-gel polymerization of resorcinol-formaldehyde or phenolic-furfural, followed by supercritical extraction of the solvent and pyrolysis in an inert atmosphere. The resultant aerogel has a nanocrystalline structure with micropores (<2 nm diameter) located within the solid matrix. Carbon aerogel monoliths can be prepared at densities ranging from 0.05-1.0 g/cm{sup 3}, leading to volumetric surface areas (> 500 m{sup 2}/cm{sup 3}) that are much larger than commercially available materials. This research program is directed at optimization of the aerogel structure for maximum hydrogen adsorption over a wide range of temperatures and pressures. Computer modeling of hydrogen adsorption at carbon surfaces was also examined.

  13. Micrometeorological Technique for Monitoring of Geological Carbon Capture, Utilization and Storage: Methodology, Workflow and Resources

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Madsen, R.; Feese, K.

    2013-12-01

    The eddy covariance (EC) method is a micrometeorological technique for direct high-speed measurements of the transport of gases and energy between land or water surfaces and the atmosphere [1]. This method allows for observations of gas transport scales from 20-40 times per second to multiple years, represents gas exchange integrated over a large area, from hundreds of square meters to tens of square kilometres, and corresponds to gas exchange from the entire surface, including canopy, and soil or water layers. Gas fluxes, emission and exchange rates are characterized from single-point in situ measurements using permanent or mobile towers, or moving platforms such as automobiles, helicopters, airplanes, etc. Presently, over 600 eddy covariance stations are in operation in over 120 countries [1]. EC is now recognized as an effective method in regulatory and industrial applications, including CCUS [2-10]. Emerging projects utilize EC to continuously monitor large areas before and after the injections, to locate and quantify leakages where CO2 may escape from the subsurface, to improve storage efficiency, and for other CCUS characterizations [5-10]. Although EC is one of the most direct and defensible micrometeorological techniques measuring gas emission and transport, and complete automated stations and processing are readily available, the method is mathematically complex, and requires careful setup and execution specific to the site and project. With this in mind, step-by-step instructions were created in [1] to introduce a novice to the EC method, and to assist in further understanding of the method through more advanced references. In this presentation we provide brief highlights of the eddy covariance method, its application to geological carbon capture, utilization and storage, key requirements, instrumentation and software, and review educational resources particularly useful for carbon sequestration research. References: [1] Burba G. Eddy Covariance Method

  14. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    SciTech Connect

    Bigelow, Erik

    2013-01-01

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries

  15. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    SciTech Connect

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride

  16. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Eichman, Joshua

    2015-07-30

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is compared to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.

  17. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires

    USGS Publications Warehouse

    Sun, Jielun; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A.

    1997-01-01

    Activated carbons for natural gas storage were produced from Illinois bituminous coals (IBC-102 and IBC-106) and scrap tires by physical activation with steam or CO2 and by chemical activation with KOH, H3PO4, or ZnCl2. The products were characterized for N2-BET area, micropore volume, bulk density, pore size distribution, and volumetric methane storage capacity (Vm/Vs). Vm/Vs values for Illinois coal-derived carbons ranged from 54 to 83 cm3/cm3, which are 35-55% of a target value of 150 cm3/cm3. Both granular and pelletized carbons made with preoxidized Illinois coal gave higher micropore volumes and larger Vm/Vs values than those made without preoxidation. This confirmed that preoxidation is a desirable step in the production of carbons from caking materials. Pelletization of preoxidized IBC-106 coal, followed by steam activation, resulted in the highest Vm/Vs value. With roughly the same micropore volume, pelletization alone increased Vm/Vs of coal carbon by 10%. Tire-derived carbons had Vm/Vs values ranging from 44 to 53 cm3/cm3, lower than those of coal carbons due to their lower bulk densities. Pelletization of the tire carbons increased bulk density up to 160%. However, this increase was offset by a decrease in micropore volume of the pelletized materials, presumably due to the pellet binder. As a result, Vm/Vs values were about the same for granular and pelletized tire carbons. Compared with coal carbons, tire carbons had a higher percentage of mesopores and macropores.

  18. Hydrogen Storage in Novel Carbon-Based Nanostructured Materials

    SciTech Connect

    Whitney, E. S.; Curtis, C. J.; Engtrakul, C.; Davis, M. F.; Su, T.; Parilla, P. A.; Simpson, L. J.; Blackburn, J. L.; Zhao, Y.; Kim, Y.-H.; Zhang, S. B.; Heben, M. J.; Dillon, A. C.

    2006-01-01

    Experimental wet chemical approaches to complex an iron atom with two C60 fullerenes, representing a new molecule, dubbed a 'bucky dumbbell', have been demonstrated. The structure of this molecule has been determined by 13C solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). Furthermore, this structure has been shown to have unique binding sites for dihydrogen molecules with the technique of temperature programmed desorption (TPD). The new adsorption sites have binding energies that are stronger than that observed for hydrogen physisorbed on planar graphite, but significantly weaker than a chemical C-H bond. Further development of these molecules could make them ideal candidates for onboard vehicular hydrogen storage.

  19. Soil carbon storage and respiration potential across a landscape age and climate gradient in western Greenland

    NASA Astrophysics Data System (ADS)

    Bradley-Cook, J. I.; Virginia, R. A.; Hammond Wagner, C.; Racine, P. E.

    2013-12-01

    The soil formation state factors proposed by Hans Jenny (climate, organisms, relief, parent material, time) explain many soil characteristics, yet geological controls on biological carbon cycling are not well represented in regional carbon models. Landscape age, for instance, can directly affect the quantity and quality of soil organic carbon, which are key determinants of the temperature sensitivity of soil organic matter (SOM) to decomposition. Temperature control of SOM decomposition is of particular importance in Arctic soils, which contain nearly half of global belowground organic carbon and have a permafrost thermal regime that straddles the freeze-thaw threshold. We investigated soil carbon storage and respiration potential across a west Greenland transect, and related the landscape carbon patterns to regional variation in climate and landscape age. The four study sites capture a range in: landscape age from 180 years on the inland Little Ice Age moraine near Kangerlussuaq to ~10,000 years at the coastal sites near Sisimiut and Nuuk, mean annual air temperatures from -5.7 to -1.4 °C, and mean annual precipitation from 149 to 752 mm. At each site, we collected surface and mineral samples from nine soil pits within similar vegetation cover and relief classes. We measured total organic carbon and nitrogen though elemental analysis, and incubated soils at 4 °C and field capacity moisture for 175 day to measure carbon dioxide production from which we derived soil respiration potential. We hypothesized that soil carbon storage and respiration potential would be greatest at the sites with the oldest landscape age. Soil carbon content was more than four times greater at the 10,000 year sites (Nuuk = 24.03%, Sisimiut = 17.34%) than the inland sites (Ørkendalen = 3.49%, LIA = 0.05%). Carbon quality decreased across the age gradient, as measured by a nearly two-fold increase in C:N ratio from the youngest and driest to the oldest and wettest soils (LIA = 12.2, Nuuk

  20. Mass storage system experiences and future needs at the National Center for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    Olear, Bernard T.

    1991-01-01

    A summary and viewgraphs of a discussion presented at the National Space Science Data Center (NSSDC) Mass Storage Workshop is included. Some of the experiences of the Scientific Computing Division at the National Center for Atmospheric Research (NCAR) dealing the the 'data problem' are discussed. A brief history and a development of some basic mass storage system (MSS) principles are given. An attempt is made to show how these principles apply to the integration of various components into NCAR's MSS. Future MSS needs for future computing environments is discussed.

  1. Increased tree carbon storage in response to nitrogen deposition in the US

    NASA Astrophysics Data System (ADS)

    Quinn Thomas, R.; Canham, Charles D.; Weathers, Kathleen C.; Goodale, Christine L.

    2010-01-01

    Human activities have greatly accelerated emissions of both carbon dioxide and biologically reactive nitrogen to the atmosphere. As nitrogen availability often limits forest productivity, it has long been expected that anthropogenic nitrogen deposition could stimulate carbon sequestration in forests. However, spatially extensive evidence for deposition-induced stimulation of forest growth has been lacking, and quantitative estimates from models and plot-level studies are controversial. Here, we use forest inventory data to examine the impact of nitrogen deposition on tree growth, survival and carbon storage across the northeastern and north-central USA during the 1980s and 1990s. We show a range of growth and mortality responses to nitrogen deposition among the region's 24 most common tree species. Nitrogen deposition (which ranged from 3 to 11kgha-1yr-1) enhanced the growth of 11 species and decreased the growth of 3 species. Nitrogen deposition enhanced growth of all tree species with arbuscular mycorrhizal fungi associations. In the absence of disturbances that reduced carbon stocks by more than 50%, above-ground biomass increment increased by 61kg of carbon per kg of nitrogen deposited, amounting to a 40% enhancement over pre-industrial conditions. Extrapolating to the globe, we estimate that nitrogen deposition could increase tree carbon storage by 0.31Pg carbon yr-1.

  2. Percolative metal-organic framework/carbon composites for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Xie, Shuqian; Hwang, Jiann-Yang; Sun, Xiang; Shi, Shangzhao; Zhang, Zheng; Peng, Zhiwei; Zhai, Yuchun

    2014-05-01

    Percolative Metal-organic framework/Carbon (MOFAC) composites are synthesized by IRMOF8 (isoreticular metal-organic frameworks) directly depositing on activated carbon via heterogeneous nucleation. Carbon content is calculated by TGA (Thermogravimetric analysis) tests. XRD (X-ray diffraction) and FESEM (Field emission-scanning electron microscope) are carried out to characterize the structures of the samples. BET surface areas and the pore size distribution are measured. The dielectric constant is measured with impedance analyzer and a specially designed sample holder. The dielectric constants of the MOFAC composites rise with increasing the carbon content, and the composites possess the insulator-conductor transition as the carbon content increases from 17.77 wt% to 22.2 wt%. The composites are further tested for hydrogen storage capability under assist of the PMN-PT (single crystal lead magnesium niobate-lead titanate) generated electric field. With help from the PMN-PT, the hydrogen uptake capability is increased about 31.5% over the MOFAC3 (MOF-Carbon composite with 22.2 wt% of carbon) without PMN-PT, which is elucidated by the charge distribution mechanisms. The improved storage is due to a stronger electrostatic interaction between IRMOF8 and hydrogen molecule caused by field polarization. Meanwhile, rapid adsorption/desorption kinetics and total reversibility on the samples are observed in the present or absence of external electric field.

  3. Carbon storage in Amazonia during the last glacial maximum: secondary data and uncertainties.

    PubMed

    Turcq, Bruno; Cordeiro, Renato C; Sifeddine, Abdefettah; Simões Filho, Francisco F L; Albuquerque, Ana Luisa S; Abrão, Jorge J

    2002-12-01

    The Amazonian forest is, due to its great size, carbon storage capacity and present-day variability in carbon uptake and release, an important component of the global carbon cycle. Paleo-environmental reconstruction is difficult for Amazonia due to the scarcity of primary palynological data and the mis-interpretation of some secondary data. Studies of lacustrine sediment records have shown that Amazonia has known periods in which the climate was drier than it is today. However, not all geomorphological features such as dunes, and slope erosion, which are thought to indicate rainforest regression, date from the time of the Late Glacial Maximum (LGM) and these features do not necessarily correspond to episodes of forest regression. There is also uncertainty concerning LGM carbon storage due to rainforest soils and biomass estimates. Soil carbon content may decrease moderately during the LGM, whereas rainforest biomass may change considerably in response to changes in the global environment. Biomass per unit area in Amazonia has probably been reduced by the cumulative effects of low CO2 concentration, a drier climate and lower temperatures. As few paleo-vegetation data are available, there is considerable uncertainty concerning the amount of carbon stored in Amazonia during the LGM, which may have corresponded to 44-94% of the carbon currently stored in biomass and soils. PMID:12430660

  4. Sodium carbonate facility at Argonne National Laboratory - West

    SciTech Connect

    McDermott, M.D.; Henslee, S.P.; Michelbacher, J.A.; Rosenberg, K.E.; Wells, P.B.

    1997-09-01

    The Sodium Carbonate Facility, located at Argonne National Laboratory - West (ANL-W) in Idaho, was designed and built as an addition to the existing Sodium Processing Facility. The Sodium Process and Sodium Carbonate Facilities will convert radioactive sodium into a product that is acceptable for land disposal in Idaho. The first part of the process occurs in the Sodium Process Facility where radioactive sodium is converted into sodium hydroxide (caustic). The second part of the process occurs in the Sodium Carbonate Facility where the caustic solution produced in the Sodium Process Facility is converted into a dry sodium carbonate waste suitable for land disposal. Due to the radioactivity in the sodium, shielding, containment, and HEPA filtered off-gas systems are required throughout both processes.

  5. Expanding the potential for saline formations : modeling carbon dioxide storage, water extraction and treatment for power plant cooling.

    SciTech Connect

    Not Available

    2011-04-01

    The National Water, Energy and Carbon Sequestration simulation model (WECSsim) is being developed to address the question, 'Where in the current and future U.S. fossil fuel based electricity generation fleet are there opportunities to couple CO{sub 2} storage and extracted water use, and what are the economic and water demand-related impacts of these systems compared to traditional power systems?' The WECSsim collaborative team initially applied this framework to a test case region in the San Juan Basin, New Mexico. Recently, the model has been expanded to incorporate the lower 48 states of the U.S. Significant effort has been spent characterizing locations throughout the U.S. where CO{sub 2} might be stored in saline formations including substantial data collection and analysis efforts to supplement the incomplete brine data offered in the NatCarb database. WECSsim calculates costs associated with CO{sub 2} capture and storage (CCS) for the power plant to saline formation combinations including parasitic energy costs of CO{sub 2} capture, CO{sub 2} pipelines, water treatment options, and the net benefit of water treatment for power plant cooling. Currently, the model can identify the least-cost deep saline formation CO{sub 2} storage option for any current or proposed coal or natural gas-fired power plant in the lower 48 states. Initial results suggest that additional, cumulative water withdrawals resulting from national scale CCS may range from 676 million gallons per day (MGD) to 30,155 MGD depending on the makeup power and cooling technologies being utilized. These demands represent 0.20% to 8.7% of the U.S. total fresh water withdrawals in the year 2000, respectively. These regional and ultimately nation-wide, bottom-up scenarios coupling power plants and saline formations throughout the U.S. can be used to support state or national energy development plans and strategies.

  6. Titanium-capped carbon chains as promising new hydrogen storage media

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Sheng; An, Hui; Zeng, Zhi

    The capacity of Ti-capped sp carbon atomic chains for use as hydrogen storage media is studied using first-principles density functional theory. The Ti atom is strongly attached at one end of the carbon chains via d-p hybridization, forming stable TiCn complexes. We demonstrate that the number of adsorbed H2 on Ti through Kubas interaction depends upon the chain types. For polyyne (n even) or cumulene (n odd) structures, each Ti atom can hold up to five or six H2 molecules, respectively. Furthermore, the TiC5 chain effectively terminated on a C20 fullerene can store hydrogen with optimal binding of 0.52 eV/H2. Our results reveal a possible way to explore high-capacity hydrogen storage materials in truly one-dimensional carbon structures.

  7. Titanium-capped carbon chains as promising new hydrogen storage media.

    PubMed

    Liu, Chun-Sheng; An, Hui; Zeng, Zhi

    2011-02-14

    The capacity of Ti-capped sp carbon atomic chains for use as hydrogen storage media is studied using first-principles density functional theory. The Ti atom is strongly attached at one end of the carbon chains via d-p hybridization, forming stable TiC(n) complexes. We demonstrate that the number of adsorbed H(2) molecules on Ti through Kubas interactions depends upon the chain types. For polyyne (n even) or cumulene (n odd) structures, each Ti atom can hold up to five or six H(2) molecules, respectively. Furthermore, the TiC(5) chain effectively terminated on a C(20) fullerene can store hydrogen with an optimal binding energy of 0.52 eV per H(2) molecule. Our results reveal a possible way to explore high-capacity hydrogen storage materials in truly one-dimensional carbon structures. PMID:21135955

  8. Development of a Probabilistic Assessment Methodology for Evaluation of Carbon Dioxide Storage

    USGS Publications Warehouse

    Burruss, Robert A.; Brennan, Sean T.; Freeman, P.A.; Merrill, Matthew D.; Ruppert, Leslie F.; Becker, Mark F.; Herkelrath, William N.; Kharaka, Yousif K.; Neuzil, Christopher E.; Swanson, Sharon M.; Cook, Troy A.; Klett, Timothy R.; Nelson, Philip H.; Schenk, Christopher J.

    2009-01-01

    This report describes a probabilistic assessment methodology developed by the U.S. Geological Survey (USGS) for evaluation of the resource potential for storage of carbon dioxide (CO2) in the subsurface of the United States as authorized by the Energy Independence and Security Act (Public Law 110-140, 2007). The methodology is based on USGS assessment methodologies for oil and gas resources created and refined over the last 30 years. The resource that is evaluated is the volume of pore space in the subsurface in the depth range of 3,000 to 13,000 feet that can be described within a geologically defined storage assessment unit consisting of a storage formation and an enclosing seal formation. Storage assessment units are divided into physical traps (PTs), which in most cases are oil and gas reservoirs, and the surrounding saline formation (SF), which encompasses the remainder of the storage formation. The storage resource is determined separately for these two types of storage. Monte Carlo simulation methods are used to calculate a distribution of the potential storage size for individual PTs and the SF. To estimate the aggregate storage resource of all PTs, a second Monte Carlo simulation step is used to sample the size and number of PTs. The probability of successful storage for individual PTs or the entire SF, defined in this methodology by the likelihood that the amount of CO2 stored will be greater than a prescribed minimum, is based on an estimate of the probability of containment using present-day geologic knowledge. The report concludes with a brief discussion of needed research data that could be used to refine assessment methodologies for CO2 sequestration.

  9. Allocation to carbon storage pools in Norway spruce saplings under drought and low CO2.

    PubMed

    Hartmann, Henrik; McDowell, Nate G; Trumbore, Susan

    2015-03-01

    Non-structural carbohydrates (NSCs) are critical to maintain plant metabolism under stressful environmental conditions, but we do not fully understand how NSC allocation and utilization from storage varies with stress. While it has become established that storage allocation is unlikely to be a mere overflow process, very little empirical evidence has been produced to support this view, at least not for trees. Here we present the results of an intensively monitored experimental manipulation of whole-tree carbon (C) balance (young Picea abies (L.) H Karst.) using reduced atmospheric [CO2] and drought to reduce C sources. We measured specific C storage pools (glucose, fructose, sucrose, starch) over 21 weeks and converted concentration measurement into fluxes into and out of the storage pool. Continuous labeling ((13)C) allowed us to track C allocation to biomass and non-structural C pools. Net C fluxes into the storage pool occurred mainly when the C balance was positive. Storage pools increased during periods of positive C gain and were reduced under negative C gain. (13)C data showed that C was allocated to storage pools independent of the net flux and even under severe C limitation. Allocation to below-ground tissues was strongest in control trees followed by trees experiencing drought followed by those grown under low [CO2]. Our data suggest that NSC storage has, under the conditions of our experimental manipulation (e.g., strong progressive drought, no above-ground growth), a high allocation priority and cannot be considered an overflow process. While these results also suggest active storage allocation, definitive proof of active plant control of storage in woody plants requires studies involving molecular tools. PMID:25769339

  10. Synthesis and applications of carbon nanomaterials for energy generation and storage

    PubMed Central

    Notarianni, Marco; Liu, Jinzhang; Vernon, Kristy

    2016-01-01

    Summary The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future. PMID:26925363

  11. Synthesis and applications of carbon nanomaterials for energy generation and storage.

    PubMed

    Notarianni, Marco; Liu, Jinzhang; Vernon, Kristy; Motta, Nunzio

    2016-01-01

    The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage - the key to the portable electronics of the future. PMID:26925363

  12. Carbon storage in Chinese grassland ecosystems: Influence of different integrative methods

    PubMed Central

    Ma, Anna; He, Nianpeng; Yu, Guirui; Wen, Ding; Peng, Shunlei

    2016-01-01

    The accurate estimate of grassland carbon (C) is affected by many factors at the large scale. Here, we used six methods (three spatial interpolation methods and three grassland classification methods) to estimate C storage of Chinese grasslands based on published data from 2004 to 2014, and assessed the uncertainty resulting from different integrative methods. The uncertainty (coefficient of variation, CV, %) of grassland C storage was approximately 4.8% for the six methods tested, which was mainly determined by soil C storage. C density and C storage to the soil layer depth of 100 cm were estimated to be 8.46 ± 0.41 kg C m−2 and 30.98 ± 1.25 Pg C, respectively. Ecosystem C storage was composed of 0.23 ± 0.01 (0.7%) above-ground biomass, 1.38 ± 0.14 (4.5%) below-ground biomass, and 29.37 ± 1.2 (94.8%) Pg C in the 0–100 cm soil layer. Carbon storage calculated by the grassland classification methods (18 grassland types) was closer to the mean value than those calculated by the spatial interpolation methods. Differences in integrative methods may partially explain the high uncertainty in C storage estimates in different studies. This first evaluation demonstrates the importance of multi-methodological approaches to accurately estimate C storage in large-scale terrestrial ecosystems. PMID:26883467

  13. Carbon storage in Chinese grassland ecosystems: Influence of different integrative methods.

    PubMed

    Ma, Anna; He, Nianpeng; Yu, Guirui; Wen, Ding; Peng, Shunlei

    2016-01-01

    The accurate estimate of grassland carbon (C) is affected by many factors at the large scale. Here, we used six methods (three spatial interpolation methods and three grassland classification methods) to estimate C storage of Chinese grasslands based on published data from 2004 to 2014, and assessed the uncertainty resulting from different integrative methods. The uncertainty (coefficient of variation, CV, %) of grassland C storage was approximately 4.8% for the six methods tested, which was mainly determined by soil C storage. C density and C storage to the soil layer depth of 100 cm were estimated to be 8.46 ± 0.41 kg C m(-2) and 30.98 ± 1.25 Pg C, respectively. Ecosystem C storage was composed of 0.23 ± 0.01 (0.7%) above-ground biomass, 1.38 ± 0.14 (4.5%) below-ground biomass, and 29.37 ± 1.2 (94.8%) Pg C in the 0-100 cm soil layer. Carbon storage calculated by the grassland classification methods (18 grassland types) was closer to the mean value than those calculated by the spatial interpolation methods. Differences in integrative methods may partially explain the high uncertainty in C storage estimates in different studies. This first evaluation demonstrates the importance of multi-methodological approaches to accurately estimate C storage in large-scale terrestrial ecosystems. PMID:26883467

  14. Carbon storage in Chinese grassland ecosystems: Influence of different integrative methods

    NASA Astrophysics Data System (ADS)

    Ma, Anna; He, Nianpeng; Yu, Guirui; Wen, Ding; Peng, Shunlei

    2016-02-01

    The accurate estimate of grassland carbon (C) is affected by many factors at the large scale. Here, we used six methods (three spatial interpolation methods and three grassland classification methods) to estimate C storage of Chinese grasslands based on published data from 2004 to 2014, and assessed the uncertainty resulting from different integrative methods. The uncertainty (coefficient of variation, CV, %) of grassland C storage was approximately 4.8% for the six methods tested, which was mainly determined by soil C storage. C density and C storage to the soil layer depth of 100 cm were estimated to be 8.46 ± 0.41 kg C m-2 and 30.98 ± 1.25 Pg C, respectively. Ecosystem C storage was composed of 0.23 ± 0.01 (0.7%) above-ground biomass, 1.38 ± 0.14 (4.5%) below-ground biomass, and 29.37 ± 1.2 (94.8%) Pg C in the 0-100 cm soil layer. Carbon storage calculated by the grassland classification methods (18 grassland types) was closer to the mean value than those calculated by the spatial interpolation methods. Differences in integrative methods may partially explain the high uncertainty in C storage estimates in different studies. This first evaluation demonstrates the importance of multi-methodological approaches to accurately estimate C storage in large-scale terrestrial ecosystems.

  15. [Effects of revegetation on organic carbon storage in deep soils in hilly Loess Plateau region of Northwest China].

    PubMed

    Zhang, Jin; Xu, Ming-Xiang; Wang, Zheng; Ma, Xin-Xin; Qiu, Yu-Jie

    2012-10-01

    Taking the Robinia pseudoacacia woodlands, Caragana korshinskii shrublands, and abandoned croplands with different years of revegetation in the hilly Loess Plateau region of Northwest China as test objects, this paper studied the profile distribution and accumulation dynamics of organic carbon storage in deep soil (100-400 cm), with those in 0-100 cm soil profile as the control. In 0-100 cm soil profile, the organic carbon storage decreased significantly with the increase of soil depth; while in deep soil, the organic carbon storage had a slight fluctuation. The total organic carbon storage in 100-400 cm soil profile was considerably high, accounting for approximately 60% of that in 0-400 cm soil profile. The organic carbon storage in 80-100 cm soil layer had a significant linear correlation with that in 100-200 and 200-400 cm soil layers, and among the organic carbon storages in the five layers in 0-100 cm soil profile, the organic carbon storage in 80-100 cm soil layer had the strongest correlation with that in 100-400 cm soil profile, being able to be used to estimate the organic carbon storage in deep soil in this region. The organic carbon storage in 0-20 cm soil layer in the three types of revegetation lands was significantly higher than that in slope croplands, but the organic carbon storage in deep soil had no significant difference among the land use types. The organic carbon storage in deep soil increased with the increasing years of revegetation. In R. pseudoacacia woodlands and C. korshinskii shrub lands, the average increasing rate of the organic carbon storage in 100-400 cm soil layer was 0.14 and 0.19 t x hm(-2) x a(-1), respectively, which was comparable to that in the 0-100 cm soil layer in C. korshinskii shrublands. It was suggested that in the estimation of the soil carbon sequestration effect of revegetation in hilly Loess Plateau region, the organic carbon accumulation in deep soil should be taken into consideration. Otherwise, the effect of

  16. Assessing and Monitoring Spatial and Temporal Distributions of Ecosystem Carbon Storage and Changes in the United States

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Liu, S.; Sleeter, B. M.; Sohl, T. L.; Hawbaker, T. J.; Stackpoole, S. M.

    2011-12-01

    Land changes (land use and ecosystem disturbances) are the primary driver of stability and vulnerability of ecosystem carbon sequestration. Advances in remote sensing and modeling make it possible that carbon storage in relation to land changes can be assessed and monitored at the national and regional scales. Using remote sensing and modeling tools, the U.S. Geological Survey is conducting a national assessment to estimate spatial and temporal distributions of carbon storage in relation to land changes. The assessment covers all major ecosystems: forests, shrub and grasslands, croplands, wetlands, and aquatic systems. Recent land changes (baseline, 1992 to current) are mapped on an annual basis using Landsat imagery; future land changes (current to 2050) are modeled by incorporating IPCC socioeconomic storylines and climate change projections (three storylines and projections used: A1B, A2, and B1, each with multiple GCM runs). Carbon storage in, and transitions between, ecosystems are modeled and estimated annually using biogeochemical models, with the baseline and future potential land use changes and fire disturbances as the primary input. Effects of land changes and management activities are analyzed. A series of regional-scale maps and datasets are produced as deliverables of the assessment. The Great Plains region of the United States is the first region to complete for the assessment. The region encompasses 2.17 million square kilometers from eastern half of Montana south to Texas and east to Minnesota and Iowa. Changes in land use between 1992 and 2050 are pronounced for major ecosystems, including 7-16% gains in agriculture, 8-17% losses of grasslands and 18-19% losses of wetlands under A1B and A2 scenarios. More environmental oriented scenarios such as B1 will see gains in wetlands (15%) while holding areas of other ecosystems stable. For fire disturbances, number, size, and severity of large wildland fires in the region are highly variable, depending on

  17. Threshold Dynamics in Soil Carbon Storage for Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Woo, D.; Quijano, J.; Kumar, P.; Chaoka, S.; Bernacchi, C.

    2014-12-01

    Due to increasing demands for bioenergy, a considerable amount of land in the Midwestern United States could be devoted to the cultivation of second-generation bioenergy crops, such as switchgrass and miscanthus. In this study, we attempt to explore and analyze how different amounts of above-ground biomass returned to the soil at harvest affect the below-ground dynamics of carbon and nitrogen as a comparative study between miscanthus, swichgrass, and corn-corn-soybean rotation. The simulation results show that there is a threshold effect in the amount of above-ground litter input in the soil after harvest that will reach a critical organic matter C:N ratio in the soil, triggering a reduction of the soil microbial population, with significant consequences in other microbe-related processes such as decomposition and mineralization. These thresholds are approximately 25% and 15% of above-ground biomass for switchgrass and miscanthus, respectively. However, we do not observe such threshold effects for corn-corn-soybean rotation. These results suggest that values above these thresholds could result in a significant reduction of decomposition and mineralization, which in turn would enhance the sequestration of atmospheric carbon dioxide in the topsoil and reduce inorganic nitrogen losses when compared with a corn-corn-soybean rotation.

  18. Threshold dynamics in soil carbon storage for bioenergy crops.

    PubMed

    Woo, Dong K; Quijano, Juan C; Kumar, Praveen; Chaoka, Sayo; Bernacchi, Carl J

    2014-10-21

    Because of increasing demands for bioenergy, a considerable amount of land in the midwestern United States could be devoted to the cultivation of second-generation bioenergy crops, such as switchgrass and miscanthus. The foliar carbon/nitrogen ratio (C/N) in these bioenergy crops at harvest is significantly higher than the ratios in replaced crops, such as corn or soybean. We show that there is a critical soil organic matter C/N ratio, where microbial biomass can be impaired as microorganisms become dependent upon net immobilization. The simulation results show that there is a threshold effect in the amount of aboveground litter input in the soil after harvest that will reach a critical organic matter C/N ratio in the soil, triggering a reduction of the soil microbial population, with significant consequences in other microbe-related processes, such as decomposition and mineralization. These thresholds are approximately 25 and 15% of aboveground biomass for switchgrass and miscanthus, respectively. These results suggest that values above these thresholds could result in a significant reduction of decomposition and mineralization, which, in turn, would enhance the sequestration of atmospheric carbon dioxide in the topsoil and reduce inorganic nitrogen losses when compared to a corn-corn-soybean rotation. PMID:25207669

  19. Report of the Interagency Task Force on Carbon Capture and Storage

    SciTech Connect

    2010-08-01

    Carbon capture and storage (CCS) refers to a set of technologies that can greatly reduce carbon dioxide (CO{sub 2}) emissions from new and existing coal- and gas-fired power plants, industrial processes, and other stationary sources of CO{sub 2}. In its application to electricity generation, CCS could play an important role in achieving national and global greenhouse gas (GHG) reduction goals. However, widespread cost-effective deployment of CCS will occur only if the technology is commercially available and a supportive national policy framework is in place. In keeping with that objective, on February 3, 2010, President Obama established an Interagency Task Force on Carbon Capture and Storage composed of 14 Executive Departments and Federal Agencies. The Task Force, co-chaired by the Department of Energy (DOE) and the Environmental Protection Agency (EPA), was charged with proposing a plan to overcome the barriers to the widespread, cost-effective deployment of CCS within ten years, with a goal of bringing five to ten commercial demonstration projects online by 2016. Composed of more than 100 Federal employees, the Task Force examined challenges facing early CCS projects as well as factors that could inhibit widespread commercial deployment of CCS. In developing the findings and recommendations outlined in this report, the Task Force relied on published literature and individual input from more than 100 experts and stakeholders, as well as public comments submitted to the Task Force. The Task Force also held a large public meeting and several targeted stakeholder briefings. While CCS can be applied to a variety of stationary sources of CO{sub 2}, its application to coal-fired power plant emissions offers the greatest potential for GHG reductions. Coal has served as an important domestic source of reliable, affordable energy for decades, and the coal industry has provided stable and quality high-paying jobs for American workers. At the same time, coal-fired power

  20. National Carbon Sequestration Database and Geographic Information System (NatCarb)

    SciTech Connect

    Kenneth Nelson; Timothy Carr

    2009-03-31

    This annual and final report describes the results of the multi-year project entitled 'NATional CARBon Sequestration Database and Geographic Information System (NatCarb)' (http://www.natcarb.org). The original project assembled a consortium of five states (Indiana, Illinois, Kansas, Kentucky and Ohio) in the midcontinent of the United States (MIDCARB) to construct an online distributed Relational Database Management System (RDBMS) and Geographic Information System (GIS) covering aspects of carbon dioxide (CO{sub 2}) geologic sequestration. The NatCarb system built on the technology developed in the initial MIDCARB effort. The NatCarb project linked the GIS information of the Regional Carbon Sequestration Partnerships (RCSPs) into a coordinated regional database system consisting of datasets useful to industry, regulators and the public. The project includes access to national databases and GIS layers maintained by the NatCarb group (e.g., brine geochemistry) and publicly accessible servers (e.g., USGS, and Geography Network) into a single system where data are maintained and enhanced at the local level, but are accessed and assembled through a single Web portal to facilitate query, assembly, analysis and display. This project improves the flow of data across servers and increases the amount and quality of available digital data. The purpose of NatCarb is to provide a national view of the carbon capture and storage potential in the U.S. and Canada. The digital spatial database allows users to estimate the amount of CO{sub 2} emitted by sources (such as power plants, refineries and other fossil-fuel-consuming industries) in relation to geologic formations that can provide safe, secure storage sites over long periods of time. The NatCarb project worked to provide all stakeholders with improved online tools for the display and analysis of CO{sub 2} carbon capture and storage data through a single website portal (http://www.natcarb.org/). While the external project is

  1. Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model

    NASA Astrophysics Data System (ADS)

    Weng, Ensheng; Luo, Yiqi; Wang, Weile; Wang, Han; Hayes, Daniel J.; McGuire, A. David; Hastings, Alan; Schimel, David S.

    2012-09-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U · τE · ?, where U is ecosystem carbon influx, τE is ecosystem carbon residence time, and τ1 is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval (λ) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45°N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  2. Ecosystem carbon storage capacity as affected by disturbance regimes: a general theoretical model

    NASA Astrophysics Data System (ADS)

    Weng, E.; Luo, Y.; Wang, W.; Wang, H.; Hayes, D. J.; McGuire, A. D.; Hastings, A.; Schimel, D.

    2012-12-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x]=UτE λ/(λ+sτ1) , where U is ecosystem carbon influx, τE is ecosystem carbon residence time, and τ1 is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval (λ) and the mean disturbance severity (s). It is a Michaelis-Menten type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model , for example, approximately 1.8 Pg C will be lost in the high latitude regions of North America (>45°N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of 21st century, which will require around 12% increases in NPP to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  3. Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model

    SciTech Connect

    Weng, Ensheng; Luo, Yiqi; Wang, Weile; Wang, Han; Hayes, Daniel J; McGuire, A. David; Hastings, Alan; Schimel, David

    2012-01-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U {center_dot} {tau}{sub E} {center_dot} {lambda}{lambda} + s {tau} 1, where U is ecosystem carbon influx, {tau}{sub E} is ecosystem carbon residence time, and {tau}{sub 1} is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval ({lambda}) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45{sup o} N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  4. Variability in the Carbon Storage of Seagrass Habitats and Its Implications for Global Estimates of Blue Carbon Ecosystem Service

    PubMed Central

    Lavery, Paul S.; Mateo, Miguel-Ángel; Serrano, Oscar; Rozaimi, Mohammad

    2013-01-01

    The recent focus on carbon trading has intensified interest in ‘Blue Carbon’–carbon sequestered by coastal vegetated ecosystems, particularly seagrasses. Most information on seagrass carbon storage is derived from studies of a single species, Posidonia oceanica, from the Mediterranean Sea. We surveyed 17 Australian seagrass habitats to assess the variability in their sedimentary organic carbon (Corg) stocks. The habitats encompassed 10 species, in mono-specific or mixed meadows, depositional to exposed habitats and temperate to tropical habitats. There was an 18-fold difference in the Corg stock (1.09–20.14 mg Corg cm−3 for a temperate Posidonia sinuosa and a temperate, estuarine P. australis meadow, respectively). Integrated over the top 25 cm of sediment, this equated to an areal stock of 262–4833 g Corg m−2. For some species, there was an effect of water depth on the Corg stocks, with greater stocks in deeper sites; no differences were found among sub-tidal and inter-tidal habitats. The estimated carbon storage in Australian seagrass ecosystems, taking into account inter-habitat variability, was 155 Mt. At a 2014–15 fixed carbon price of A$25.40 t−1 and an estimated market price of $35 t−1 in 2020, the Corg stock in the top 25 cm of seagrass habitats has a potential value of $AUD 3.9–5.4 bill. The estimates of annual Corg accumulation by Australian seagrasses ranged from 0.093 to 6.15 Mt, with a most probable estimate of 0.93 Mt y−1 (10.1 t. km−2 y−1). These estimates, while large, were one-third of those that would be calculated if inter-habitat variability in carbon stocks were not taken into account. We conclude that there is an urgent need for more information on the variability in seagrass carbon stock and accumulation rates, and the factors driving this variability, in order to improve global estimates of seagrass Blue Carbon storage. PMID:24040052

  5. Incorporating Peatland Plant Communities into the Enzymic 'Latch' Hypothesis: Can Vegetation Influence Carbon Storage Mechanisms?

    NASA Astrophysics Data System (ADS)

    Romanowicz, K. J.; Daniels, A. L.; Potvin, L. R.; Kane, E. S.; Kolka, R. K.; Chimner, R. A.; Lilleskov, E. A.

    2012-12-01

    High water table conditions in peatland ecosystems are known to favor plant production over decomposition and carbon is stored. Dominant plant communities change in response to water table but little is know of how these changes affect belowground carbon storage. One hypothesis known as the enzymic 'latch' proposed by Freeman et al. suggests that oxygen limitations due to high water table conditions inhibit microorganisms from synthesizing specific extracellular enzymes essential for carbon and nutrient mineralization, allowing carbon to be stored as decomposition is reduced. Yet, this hypothesis excludes plant community interactions on carbon storage. We hypothesize that the dominant vascular plant communities, sedges and ericaceous shrubs, will have inherently different effects on peatland carbon storage, especially in response to declines in water table. Sedges greatly increase in abundance following water table decline and create extensive carbon oxidation and mineralization hotspots through the production of deep roots with aerenchyma (air channels in roots). Increased oxidation may enhance aerobic microbial activity including increased enzyme activity, leading to peat subsidence and carbon loss. In contrast, ericaceous shrubs utilize enzymatically active ericoid mycorrhizal fungi that suppress free-living heterotrophs, promoting decreased carbon mineralization by mediating changes in rhizosphere microbial communities and enzyme activity regardless of water table declines. Beginning May 2010, bog monoliths were harvested, housed in mesocosm chambers, and manipulated into three vegetation treatments: unmanipulated (+sedge, +Ericaceae), sedge (+sedge, -Ericaceae), and Ericaceae (-sedge, +Ericaceae). Following vegetation manipulations, two distinct water table manipulations targeting water table seasonal profiles were implemented: (low intra-seasonal variability, higher mean water table; high intra-seasonal variability, lower mean water table). In 2012, peat

  6. Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage

    SciTech Connect

    Schwarz, Haiqing L.

    2016-01-01

    We developed a novel porous graphitic carbon nanofiber material using a synthesis strategy combining electrospinning and catalytic graphitization. RF hydrogel was used as carbon precursors, transition metal ions were successfully introduced into the carbon matrix by binding to the carboxylate groups of a resorcinol derivative. Transition metal particles were homogeneously distributed throughout the carbon matrix, which are used as in-situ catalysts to produce graphitic fullerene-like nanostructures surrounding the metals. The success design of graphitic carbons with enlarged interlayer spacing will enable the multivalent ion intercalation for the development of multivalent rechargeable batteries.

  7. Carbon Uptake and Storage in Old-Growth and Second-Growth Forests in Central Vermont

    NASA Astrophysics Data System (ADS)

    Lloyd, A. H.; Weisser, O.

    2013-12-01

    Managing forests towards the goal of maximizing carbon uptake and storage provides an important tool for climate change mitigation. There is significant spatial and temporal variation among forests, even within an ecosystem type, in annual uptake and storage of carbon. Understanding the causes for that variation is important in refining management practices and restoration goals that promote carbon storage. We explore the variation in carbon storage and uptake among forests differing in age in central Vermont, comparing young, intermediate-aged, and old-growth forests. We generally expected that younger forests would have a higher annual uptake of carbon than older forests. Significant uncertainty exists, however, about the temporal trajectory from a young, rapidly growing forest to an old-growth forest that may be in a steady-state, with no net uptake of carbon. Within each forest, we compare differences among functional groups of species (e.g., hardwoods versus softwoods) in contribution to overall forest carbon uptake and storage. Our study sites include an old-growth hemlock/mixed hardwood forest that has not been directly affected by human activities, and which contains trees upwards of 350 years old; a 130-year-old mixed hardwood forest that has recolonized former pasture land; and a 90-year-old mixed hardwood forest on formerly agricultural floodplain land. Carbon storage in live and dead biomass pools was estimated from allometric equations, based on repeated measurements of tree diameters in permanently marked study plots. Historical patterns of carbon storage in living biomass were estimated by reconstructing tree diameter from measured increment cores, and then estimating the living biomass in each year. As expected, the old-growth forest stored almost twice the C in live biomass as the two second-growth forests, which stored equivalent amounts of carbon, despite the difference in age. Dead biomass was a larger pool of C in the old-growth forest than in

  8. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    SciTech Connect

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  9. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage

    NASA Astrophysics Data System (ADS)

    Blackford, Jerry; Stahl, Henrik; Bull, Jonathan M.; Bergès, Benoît J. P.; Cevatoglu, Melis; Lichtschlag, Anna; Connelly, Douglas; James, Rachael H.; Kita, Jun; Long, Dave; Naylor, Mark; Shitashima, Kiminori; Smith, Dave; Taylor, Peter; Wright, Ian; Akhurst, Maxine; Chen, Baixin; Gernon, Tom M.; Hauton, Chris; Hayashi, Masatoshi; Kaieda, Hideshi; Leighton, Timothy G.; Sato, Toru; Sayer, Martin D. J.; Suzumura, Masahiro; Tait, Karen; Vardy, Mark E.; White, Paul R.; Widdicombe, Steve

    2014-11-01

    Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate, yet many economies will remain reliant on these technologies for several decades. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system. In many regions storage reservoirs are located offshore, over a kilometre or more below societally important shelf seas. Therefore, concerns about the possibility of leakage and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d-1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.

  10. Limits of mechanical energy storage and structural changes in twisted carbon nanotube ropes

    NASA Astrophysics Data System (ADS)

    Fthenakis, Zacharias G.; Zhu, Zhen; Teich, David; Seifert, Gotthard; Tománek, David

    2013-12-01

    Arrays of twisted carbon nanotubes and nanotube ropes are equivalent to a torsional spring capable of storing energy. The advantage of carbon nanotubes over a twisted rubber band, which is used to store energy in popular toys, is their unprecedented toughness. Using ab initio and parametrized density functional calculations, we determine the elastic range and energy storage capacity of twisted carbon nanotubes and nanotube ropes. We find that a twisted nanotube rope may reversibly store energy by twisting, stretching, bending, and compressing constituent nanotubes. We find that in the elastic regime, the interior of a twisted rope encounters hydrostatic pressures of up to tens of GPa. We examine the limits of reversible energy storage and identify structural deformations beyond the elastic limit, where irreversibility is associated with breaking and forming new covalent bonds. Under optimum conditions, the calculated reversible mechanical energy storage capacity of twisted carbon nanotube ropes surpasses that of advanced Li-ion batteries by up to a factor of 4 to 10.

  11. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors

    SciTech Connect

    Simon, P.; Gogotsi, Y.

    2010-06-21

    Electrochemical capacitors, also known as supercapacitors, are energy storage devices that fill the gap between batteries and dielectric capacitors. Thanks to their unique features, they have a key role to play in energy storage and harvesting, acting as a complement to or even a replacement of batteries which has already been achieved in various applications. One of the challenges in the supercapacitor area is to increase their energy density. Some recent discoveries regarding ion adsorption in microporous carbon exhibiting pores in the nanometre range can help in designing the next generation of high-energy-density supercapacitors.

  12. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors.

    PubMed

    Simon, Patrice; Gogotsi, Yury

    2010-07-28

    Electrochemical capacitors, also known as supercapacitors, are energy storage devices that fill the gap between batteries and dielectric capacitors. Thanks to their unique features, they have a key role to play in energy storage and harvesting, acting as a complement to or even a replacement of batteries which has already been achieved in various applications. One of the challenges in the supercapacitor area is to increase their energy density. Some recent discoveries regarding ion adsorption in microporous carbon exhibiting pores in the nanometre range can help in designing the next generation of high-energy-density supercapacitors. PMID:20566518

  13. Physical Controls on Delta Formation and Carbon Storage in Mountain Lakes

    NASA Astrophysics Data System (ADS)

    Scott, D.; Wohl, E.

    2014-12-01

    Carbon acts as a component in greenhouse gases that regulate global climate. It is imperative to understand the transport and storage of carbon in order to understand and manage climate change. We examine terrestrial carbon storage in mountain lake deltas as a way of furthering our understanding of the terrestrial carbon sink, which is a poorly understood but significant contributor to the global carbon cycle. We examined subalpine lake deltas in the Washington Cascade Range and Colorado Front Range to test the following hypotheses: 1) The size of the deltaic carbon sink is strongly correlated with incision at the outlet of the lake and the topography of the basin. 2) Areas of high exhumation rates will have smaller and fewer deltas because a high exhumation rate should lead to more confined basins and more colluvium available to dam lake outlets, preventing lake level drop and corresponding delta formation. 3) High-energy deltas will transport more carbon to lakes, avoiding the deltaic carbon sink. At 27 lakes, we surveyed mountain lake deltas and took sediment samples, surveyed lake outlets in the field, and measured lake valley confinement in GIS to test hypotheses 1 and 3. Across the Snoqualmie and Skykomish watersheds in the Washington Cascades and the Colorado Front Range, we took a census of the number of natural lakes and the proportion of those lakes with deltas to test hypothesis 2. Preliminary results indicate that the Washington Cascades (high exhumation rate) have a higher density of lakes, but fewer deltas, than the Colorado Front Range (low exhumation rate). We also suspect that deltas in the Washington Cascades will have a lower carbon content than the Colorado Front Range due to generally higher energy levels on deltas. Finally, we found a substantial difference in the geomorphology and sediment type between beaver-affected and non-beaver-affected lakes in the Colorado Front Range.

  14. Vegetation persistence and carbon storage: Implications for environmental water management for Phragmites australis

    NASA Astrophysics Data System (ADS)

    Whitaker, Kai; Rogers, Kerrylee; Saintilan, Neil; Mazumder, Debashish; Wen, Li; Morrison, R. J.

    2015-07-01

    Environmental water allocations are used to improve the ecological health of wetlands. There is now increasing demand for allocations to improve ecosystem productivity and respiration, and enhance carbon sequestration. Despite global recognition of wetlands as carbon sinks, information regarding carbon dynamics is lacking. This is the first study estimating carbon sequestration for semiarid Phragmites australis reedbeds. The study combined aboveground biomass assessments with stable isotope analyses of soils and modeling of biomass using Normalized Digital Vegetation Index (NDVI) to investigate the capacity of environmental water allocations to improve carbon storage. The study considered relationships between soil organic carbon (SOC), carbon sources, and reedbed persistence in the Macquarie Marshes, a regulated semiarid floodplain of the Murray-Darling Basin, Australia. SOC storage levels to 1 m soil depth were higher in persistent reedbeds (167 Mg ha-1) than ephemeral reedbeds (116-138 Mg ha-1). In situ P. australis was the predominant source of surface SOC at persistent reedbeds; mixed sources of surface SOC were proposed for ephemeral reedbeds. 13C enrichment with increasing soil depth occurred in persistent and ephemeral reedbeds and may not relate to flow characteristics. Despite high SOC at persistent reedbeds, differences in the rate of accretion contributed to significantly higher rates of carbon sequestration at ephemeral reedbeds (approximately 554 and 465 g m-2 yr-1) compared to persistent reedbeds (5.17 g m-2 yr-1). However, under current water regimes, rapid accretion at ephemeral reedbeds cannot be maintained. Effective management of persistent P. australis reedbeds may enhance carbon sequestration in the Macquarie Marshes and floodplain wetlands more generally.

  15. Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century

    USGS Publications Warehouse

    Balshi, M. S.; McGuire, Anthony David; Duffy, P.; Flannigan, M.; Kicklighter, David W.; Melillo, J.

    2009-01-01

    The boreal forest contains large reserves of carbon. Across this region, wildfires influence the temporal and spatial dynamics of carbon storage. In this study, we estimate fire emissions and changes in carbon storage for boreal North America over the 21st century. We use a gridded data set developed with a multivariate adaptive regression spline approach to determine how area burned varies each year with changing climatic and fuel moisture conditions. We apply the process-based Terrestrial Ecosystem Model to evaluate the role of future fire on the carbon dynamics of boreal North America in the context of changing atmospheric carbon dioxide (CO2) concentration and climate in the A2 and B2 emissions scenarios of the CGCM2 global climate model. Relative to the last decade of the 20th century, decadal total carbon emissions from fire increase by 2.5–4.4 times by 2091–2100, depending on the climate scenario and assumptions about CO2fertilization. Larger fire emissions occur with warmer climates or if CO2 fertilization is assumed to occur. Despite the increases in fire emissions, our simulations indicate that boreal North America will be a carbon sink over the 21st century if CO2 fertilization is assumed to occur in the future. In contrast, simulations excluding CO2 fertilization over the same period indicate that the region will change to a carbon source to the atmosphere, with the source being 2.1 times greater under the warmer A2 scenario than the B2 scenario. To improve estimates of wildfire on terrestrial carbon dynamics in boreal North America, future studies should incorporate the role of dynamic vegetation to represent more accurately post-fire successional processes, incorporate fire severity parameters that change in time and space, account for human influences through increased fire suppression, and integrate the role of other disturbances and their interactions with future fire regime.

  16. Chemically Accelerated Carbon Mineralization: Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals as Novel Carbon Capture and Storage

    SciTech Connect

    2010-07-01

    IMPACCT Project: Columbia University is developing a process to pull CO2 out of the exhaust gas of coal-fired power plants and turn it into a solid that can be easily and safely transported, stored above ground, or integrated into value-added products (e.g. paper filler, plastic filler, construction materials, etc.). In nature, the reaction of CO2 with various minerals over long periods of time will yield a solid carbonate—this process is known as carbon mineralization. The use of carbon mineralization as a CO2 capture and storage method is limited by the speeds at which these minerals can be dissolved and CO2 can be hydrated. To facilitate this, Columbia University is using a unique process and a combination of chemical catalysts which increase the mineral dissolution rate, and the enzymatic catalyst carbonic anhydrase which speeds up the hydration of CO2.

  17. Evaluation of Impacts of Permeability and Porosity of Storage Formations on Leakage Risk of Deep Groundwater and Carbon Dioxide Due to Geologic Carbon Dioxide Storage

    NASA Astrophysics Data System (ADS)

    Lee, S.; Park, J. Y.; Park, S. U.; Kim, J. M.; Kihm, J. H.

    2014-12-01

    A series of analysis modeling was performed using a behavior prediction model and a leakage risk analysis model to evaluate quantitatively impacts of hydrogeologic properties (intrinsic permeability and porosity) of storage formations (reservoir rocks) on leakage risk of deep groundwater (brine) and carbon dioxide (CO2) due to geologic CO2 storage. In this study, an abandoned well and a fault are considered as leakage pathways for deep groundwater and CO2 leakage from a storage formation into an overlying near-surface aquifer. A series of prediction modeling of behavior of deep groundwater and CO2 in the storage formation was performed first using a behavior prediction model TOUGH2 (Pruess et al., 1999, 2012) to obtain spatial and temporal distributions of the pressure, temperature, and saturation of deep groundwater and CO2 as well as the mass fraction (solubility) of CO2 in deep groundwater along the upper boundary of the storage formation beneath the overlying cap rock. These spatial and temporal distributions are used as input data in the next leakage risk analysis modeling. A series of analysis modeling of leakage risk of deep groundwater and CO2 through either the abandoned well or the fault was then performed using a leakage risk analysis model CO2-LEAK (Kim, 2012). The analysis modeling results show that CO2 injection can cause deep groundwater (brine) and CO2 (both free fluid and aqueous phases) leakage into the overlying near-surface aquifer through either the abandoned well or the fault. In that case, brine leaks first, aqueous phase of CO2 then leaks, and free fluid phase of CO2 leaks finally, whereas their leakage rates and amounts through the fault is much greater than those through the abandoned well. The analysis modeling results also reveal that the leakage rate and amount of deep groundwater are almost independent of permeability and porosity of the storage formation. However, the leakage rate and amount of CO2 are dependent on and inversely

  18. Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus.

    PubMed

    Toledo-Cervantes, Alma; Morales, Marcia; Novelo, Eberto; Revah, Sergio

    2013-02-01

    An indigenous microalga was isolated from the springs in Cuatro Ciénegas, México. It was morphologically identified as Scenedesmus obtusiusculus and cultivated in bubble-column photobioreactors in batch operation mode. This microalga grows at 10% of carbon dioxide (CO(2)) showing a maximum CO(2) fixation rate of 970gm(-3)d(-1). The microalga, without any nutrient limitation, contained 20% of nonpolar lipids with a biomass productivity of 500gm(-3)d(-1) and a maximum biomass concentration of around 6,000gm(-3) at 5% CO(2) and irradiance of 134μmolm(-2)s(-1). Furthermore, it was observed that the microalga stored 55.7% of nonpolar lipids when 5% CO(2) was fed at 0.8vvm and 54.7μmolm(-2)s(-1) under nitrogen starvation. The lipid profile included C16:0, C18:0, C18:1n9t, C18:1n9c, C18:3n6 with a productivity of 200g lipid m(-3)d(-1). Therefore, the microalga may have biotechnological potential producing lipids for biodiesel. PMID:23334023

  19. An Analysis of the Distribution and Economics of Oil Fields for Enhanced Oil Recovery-Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Hall, Kristyn Ann

    The rising carbon dioxide emissions contributing to climate change has lead to the examination of potential ways to mitigate the environmental impact. One such method is through the geological sequestration of carbon (CCS). Although there are several different forms of geological sequestration (i.e. Saline Aquifers, Oil and Gas Reservoirs, Unminable Coal Seams) the current projects are just initiating the large scale-testing phase. The lead entry point into CCS projects is to combine the sequestration with enhanced oil recovery (EOR) due to the improved economic model as a result of the oil recovery and the pre-existing knowledge of the geological structures. The potential scope of CCS-EOR projects throughout the continental United States in terms of a systematic examination of individual reservoir storage potential has not been examined. Instead the majority of the research completed has centered on either estimating the total United States storage potential or the potential of a single specific reservoir. The purpose of this paper is to examine the relationship between oil recovery, carbon dioxide storage and cost during CCS-EOR. The characteristics of the oil and gas reservoirs examined in this study from the Nehring Oil and Gas Database were used in the CCS-EOR model developed by Sean McCoy to estimate the lifting and storage costs of the different reservoirs throughout the continental United States. This allows for an examination of both technical and financial viability of CCS-EOR as an intermediate step for future CCS projects in other geological formations. One option for mitigating climate change is to store industrial CO2 emissions in geologic reservoirs as part of a process known as carbon capture and storage (CCS). There is general consensus that large-scale deployment of CCS would best be initiated by combining geologic sequestration with enhanced oil recovery (EOR), which can use CO2 to improve production from declining oil fields. Revenues from the

  20. Quantifying historical carbon and climate debts among nations

    NASA Astrophysics Data System (ADS)

    Matthews, H. Damon

    2016-01-01

    Contributions to historical climate change have varied substantially among nations. These differences reflect underlying inequalities in wealth and development, and pose a fundamental challenge to the implementation of a globally equitable climate mitigation strategy. This Letter presents a new way to quantify historical inequalities among nations using carbon and climate debts, defined as the amount by which national climate contributions have exceeded a hypothetical equal per-capita share over time. Considering only national CO2 emissions from fossil fuel combustion, accumulated carbon debts across all nations from 1990 to 2013 total 250 billion tonnes of CO2, representing 40% of cumulative world emissions since 1990. Expanding this to reflect the temperature response to a range of emissions, historical climate debts accrued between 1990 and 2010 total 0.11 °C, close to a third of observed warming over that period. Large fractions of this debt are carried by industrialized countries, but also by countries with high levels of deforestation and agriculture. These calculations could contribute to discussions of climate responsibility by providing a tangible way to quantify historical inequalities, which could then inform the funding of mitigation, adaptation and the costs of loss and damages in those countries that have contributed less to historical warming.

  1. Sensitivity of Decomposition Rates and Long-term Carbon Sequestration to Modeled Disturbance Scenarios: Implications for National Monitoring Efforts

    NASA Astrophysics Data System (ADS)

    O'Neill, K. P.; Harden, J. W.

    2002-12-01

    Soil systems are central to carbon, water, and nutrient cycles and play a key role in regulating CO{2} exchange in terrestrial systems. While recent advances have been made for measuring plant production, the mechanisms that control the loss of carbon from land are masked by difficulties in detecting and scaling belowground processes. National and international reporting requirements have placed increased emphasis on the development of spatially explicit soil carbon inventories based on monitoring changes in major soil reservoirs. Although this inventory approach provides critical baseline information, the ecological significance of this soil carbon ultimately depends upon the level of chemical and physical protection, the response of the soil system to disturbance, and the temporal and spatial scales of interest. In this paper, we model the sensitivity of carbon storage estimates to differing assumptions of decomposition and disturbance response using data from the USDA Forest Service's Forest Inventory and Analysis (FIA) Program. The FIA soil indicator program represents the only nationally consistent source of forest soil monitoring data in the United States and forms the basis for national reporting on the Montreal Process Criteria and Indicators of Sustainable Management. A mass-balance model of long term soil carbon dynamics is used to address the following questions: (1) how sensitive are soil carbon inventories to current assumptions of inputs, turnover, and disturbance response; (2) which soil processes have the greatest influence on C storage over the time scales relevant to land use policies and how can we best monitor these processes; (3) what are the critical data gaps limiting the use of inventory data in regional and global carbon models.

  2. On the relative magnitudes of photosynthesis, respiration, growth and carbon storage in vegetation

    NASA Astrophysics Data System (ADS)

    van Oijen, M.

    2012-04-01

    • Background and Aims. The carbon balance of vegetation is dominated by the two large fluxes of photosynthesis (P) and respiration (R). Mechanistic models have attempted to simulate the two fluxes separately, each with their own set of internal and external controls. This has led to model predictions where environmental change causes R to exceed P, with consequent dieback of vegetation. However, empirical evidence suggests that the R:P ratio is constrained to a narrow range of about 0.4-0.5. Physiological explanations for the narrow range are not conclusive. We aim to introduce a novel perspective by theoretical study of the quantitative relationship between the four carbon fluxes of P, R, growth and storage (or its inverse, remobilisation). • Methods. Starting from the law of conservation of mass - in this case carbon - we derive equations for the relative magnitudes of all carbon fluxes which depend on only two parameters: the R:P ratio and the relative rate of storage of carbon into remobilisable reserves. The equations are used to explain observed flux ratios and to analyse incomplete data sets of carbon fluxes. • Key Results. Storage rate is shown to be a freely varying parameter, whereas R:P is narrowly constrained. This explains the constancy of the ratio reported in the literature. With the information thus gained, a data set of R and P in grassland was analysed, and flux estimates could be derived for the periods after cuts in which plant growth is dominated by remobilisation before photosynthesis takes over. • Conclusions. We conclude that the relative magnitudes of photosynthesis, respiration, growth and substrate storage are indeed tightly constrained, but because of mass conservation rather than for physiological reasons. This facilitates analysis of incomplete data sets. Mechanistic models, as the embodiment of physiological mechanisms, need to show consistency with the constraints. • Reference. Van Oijen, M., Schapendonk, A. & Höglind, M

  3. Graphene Oxide Derived Carbons (GODC); High-Surface Area NanoPorous Materials for Hydrogen Storage and Carbon Capture

    NASA Astrophysics Data System (ADS)

    Yildirim, Taner

    2012-02-01

    Even though there has been extensive research on gas adsorption properties of various carbon materials based on activated carbon and nanotubes, there has been little work done on the gas adsorption properties of graphite oxide (GO). In this study [1], we show that one-and-a-half-century-old graphite oxide can be easily turned into a potentially useful gas storage material. In order to create high-surface nanoporous materials from GO, we used two different approaches. In the first approach, we have successfully synthesized graphene-oxide framework materials (GOFs) by interlinking GO layers by diboronic acids. The resulting GOF materials have well defined pore size and BET surface area up to 500 m2/g with twice larger heat of adsorption of H2 and CO2 than those found in other physisorption materials such as MOF5. In the second approach, we synthesized a range of high surface area GO derived carbons (GODC) and studied their applications toward H2, CO2 and CH4 gas storage. The GODCs, with wide range of pore structure, have been prepared by chemical activation with potassium hydroxide (KOH). We obtain largely increased surface areas up to nearly 1900 m^2/g for GODC samples from 10 m^2/g for initial GO. A detailed experimental study of high pressure excess sorption isotherms on GODCs reveal an increase in both CO2 and CH4 storage capacities compared to other high surface area activated carbons. Finally, we compared the gas sorption properties of our GO-based matarials with other systems such as MOFs, ZIFs, and COFs. [4pt] [1] See http://www.ncnr.nist.gov/staff/taner for references and more information.

  4. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States

    USGS Publications Warehouse

    Schimel, D.; Melillo, J.; Tian, H.; McGuire, A.D.; Kicklighter, D.; Kittel, T.; Rosenbloom, N.; Running, S.; Thornton, P.; Ojima, D.; Parton, W.; Kelly, R.; Sykes, M.; Neilson, R.; Rizzo, B.

    2000-01-01

    The effects of increasing carbon dioxide (CO2) and climate on net carbon storage in terrestrial ecosystems of the conterminous United States for the period 1895-1993 were modeled with new, detailed historical climate information. For the period 1980-1993, results from an ensemble of three models agree within 25%, simulating a land carbon sink from CO2 and climate effects of 0.08 gigaton of carbon per year. The best estimates of the total sink from inventory data are about three times larger, suggesting that processes such as regrowth on abandoned agricultural land or in forests harvested before 1980 have effects as large as or larger than the direct effects of CO2 and climate. The modeled sink varies by about 100% from year to year as a result of climate variability.

  5. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage.

    PubMed

    Comănescu, Cezar; Capurso, Giovanni; Maddalena, Amedeo

    2012-09-28

    Mesoporous carbon frameworks were synthesized using the soft-template method. Ca(BH(4))(2) was incorporated into activated mesoporous carbon by the incipient wetness method. The activation of mesoporous carbon was necessary to optimize the surface area and pore size. Thermal programmed absorption measurements showed that the confinement of this borohydride into carbon nanoscaffolds improved its reversible capacity (relative to the reactive portion) and performance of hydrogen storage compared to unsupported borohydride. Hydrogen release from the supported hydride started at a temperature as low as 100 °C and the dehydrogenation rate was fast compared to the bulk borohydride. In addition, the hydrogen pressure necessary to regenerate the borohydride from the dehydrogenation products was reduced. PMID:22948563

  6. Spatial distribution and variability of carbon storage in different sympodial bamboo species in China.

    PubMed

    Teng, Jiangnan; Xiang, Tingting; Huang, Zhangting; Wu, Jiasen; Jiang, Peikun; Meng, Cifu; Li, Yongfu; Fuhrmann, Jeffry J

    2016-03-01

    Selection of tree species is potentially an important management decision for increasing carbon storage in forest ecosystems. This study investigated and compared spatial distribution and variability of carbon storage in 8 sympodial bamboo species in China. The results of this study showed that average carbon densities (CDs) in the different organs decreased in the order: culms (0.4754 g g(-1)) > below-ground (0.4701 g g(-1)) > branches (0.4662 g g(-1)) > leaves (0.4420 g g(-1)). Spatial distribution of carbon storage (CS) on an area basis in the biomass of 8 sympodial bamboo species was in the order: culms (17.4-77.1%) > below-ground (10.6-71.7%) > branches (3.8-11.6%) > leaves (0.9-5.1%). Total CSs in the sympodial bamboo ecosystems ranged from 103.6 Mg C ha(-1) in Bambusa textilis McClure stand to 194.2 Mg C ha(-1) in Dendrocalamus giganteus Munro stand. Spatial distribution of CSs in 8 sympodial bamboo ecosystems decreased in the order: soil (68.0-83.5%) > vegetation (16.8-31.1%) > litter (0.3-1.7%). Total current CS and biomass carbon sequestration rate in the sympodial bamboo stands studied in China is 93.184 × 10(6) Mg C ha(-1) and 8.573 × 10(6) Mg C yr(-1), respectively. The sympodial bamboos had a greater CSs and higher carbon sequestration rates relative to other bamboo species. Sympodial bamboos can play an important role in improving climate and economy in the widely cultivated areas of the world. PMID:26696605

  7. Controls of Parent Material and Topography on Soil Carbon Storage in the Critical Zone

    NASA Astrophysics Data System (ADS)

    Patton, N. R.; Seyfried, M. S.; Lohse, K. A.; Link, T. E.

    2014-12-01

    Semi-arid environments make up a large percentage of the world's terrestrial ecosystems, and climate is a major factor influencing soil carbon storage and release. However, the roles of local controls such as parent material, aspect and microtopography have received less attention and are important for consideration in soil carbon modeling. The purpose of this study is to understand the role that parent material, aspect and micro-topography play in storage and release of soil carbon along an elevation gradient in a semi-arid climate. Johnston Draw (JD) is a first order watershed within the Reynolds Creek Critical Zone Observatory in southwestern Idaho with underlining late cretaceous, granitic Idaho batholith bedrock. Upper Sheep Creek (USC) is a first order watershed consisting of basalt. Both watersheds were chosen for this project due to similar size, aspect, elevation, vegetation and for the contrast in parent material. Two transects, totaling approximately nine soil pits, were excavated on both the north and south facing slopes of each watershed running parallel to the water channel. Soil carbon was generally higher in basalt compared to the granite parent material in pits with similar aspect, elevation and vegetation. Preliminary data using soil organic matter (SOM) as a proxy for organic carbon (OC) and soil water dynamics showed that percent OC declines markedly with elevation in JD and soil depth at lower elevations and is more homogenous throughout the profile moving up elevation (1646 meters 4.3-9.7%; 1707 meters 6.87-3.83%). Similarly, aspect controls patterns of SOM at depth more strongly at lower elevations. Findings from our study suggest that parent material and topography may play as important roles in semi-arid ecosystems as climate factors in controlling soil carbon storage.

  8. Does deciduous tree species identity affect carbon storage in temperate soils?

    NASA Astrophysics Data System (ADS)

    Jungkunst, Hermann; Schleuß, Per; Heitkamp, Felix

    2015-04-01

    Forest soils contribute roughly 70 % to the global terrestrial soil organic carbon (SOC) pool and thus play a vital role in the global carbon cycle. It is less clear, however, whether temperate tree species identity affects SOC storage beyond the coarse differentiation between coniferous and deciduous trees. The most important driver for soil SOC storage definitely is the fine mineral fraction (clay and fine silt) because of its high sorption ability. It is difficult to disentangle any additional biotic effects since clay and silt vary considerably in nature. For experimental approaches, the process of soil carbon accumulation is too slow and, therefore, sound results cannot be expected for decades. Here we will present our success to distinguish between the effects of fine particle content (abiotic) and tree species composition (biotic) on the SOC pool in an old-growth broad-leaved forest plots along a tree diversity gradient , i.e., 1- (beech), 3- (plus ash and lime tree)- and 5-(plus maple and hornbeam) species. The particle size fractions were separated first and then the carbon concentrations of each fraction was measured. Hence, the carbon content per unit clay was not calculated, as usually done, but directly measured. As expected, the variation in SOC content was mainly explained by the variations in clay content but not entirely. We found that the carbon concentration per unit clay and fine silt in the subsoil was by 30-35% higher in mixed than in monospecific stands indicating a significant species identity or species diversity effect on C stabilization. In contrast to the subsoil, no tree species effects was identified for the topsoil. Indications are given that the mineral phase was already carbon saturated and thus left no more room for a possible biotic effect. Underlying processes must remain speculative, but we will additionally present our latest microcosm results, including isotopic signatures, to underpin the proposed deciduous tree species

  9. The role of tree-fall dynamics in long-term carbon storage of tropical peatlands

    NASA Astrophysics Data System (ADS)

    Dommain, R.; Cobb, A.; Joosten, H.; Glaser, P. H.; Chua, A.; Gandois, L.; Kai, F. M.; Noren, A. J.; Kamariah, A. S.; Su'ut, N. S.; Harvey, C. F.

    2015-12-01

    The forested peatlands of the Earth's tropical belt represent a major terrestrial carbon pool that may contain over 90 petagram C. However, the mechanisms that led to the build-up of this significant pool of carbon are poorly understood. Moreover, the rates of carbon uptake by peat accumulation in these tropical settings have rarely been quantified and natural variations in uptake on decadal to millennial scales are not well constrained. We studied carbon accumulation dynamics on these timescales of a peat swamp forest dominated by the dipterocarp Shorea albida - a unique forest type that, until recently, widely covered the lowlands of northwest Borneo. The impressive Shorea albida trees may reach heights of 70 m and are therefore strongly susceptible to windthrow and lightning. Such natural disturbances cause these trees to fall and uproot - excavating over 1 m deep holes into the peat that fill with water to become tip-up pools. The analysis of high-resolution aerial photographs and radiocarbon dated peat cores from our field site in Brunei together with the construction of a simulation model of peat accumulation allowed us to determine the role of tree-fall and tip-up pools in carbon storage. In a hectare of Shorea albida forest four tip-up pools form per decade. A pool completely fills with organic matter within 200 years according to our pollen record and a dated pool deposit stored 40 kg C m-2 of the total 110 kg C m-2 large local peat carbon pool. The carbon accumulation rates in these pools reach over 800 g C m-2 yr-1 - within the range of annual litterfall in dipterocarp forests. The simulation model indicates that up to 60% of the peat deposits under Shorea albida forests could be derived from infilled pools. Tip-up pools are therefore local hotspots for carbon storage in tropical forested peatlands.

  10. Performance Evaluation of Lower-Energy Energy Storage Alternatives for Full-Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Gonder, J.; Cosgrove, J.; Pesaran, A.

    2014-02-11

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle fuel use. However, the incremental cost of HEVs such as the Toyota Prius or Ford Fusion Hybrid remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The b b b b battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can correspondingly improve the vehicle-level cost/benefit relationship. Such an improvement would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The United States Advanced Battery Consortium (USABC) and the U.S. Department of Energy (DOE) Energy Storage Program managers asked the National Renewable Energy Laboratory (NREL) to collaborate with a USABC Workgroup and analyze the trade-offs between vehicle fuel economy and reducing the decade-old minimum energy requirement for power-assist HEVs. NREL’s analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than the previous targets, which prompted USABC to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform, and laboratory as well as in-vehicle evaluation results with alternate energy storage configurations as compared to the production battery system. The alternate energy storage technologies considered include lithium-ion capacitors -- i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery

  11. STEM Imaging of Single Pd Atoms in Activated Carbon Fibers Considered for Hydrogen Storage

    SciTech Connect

    Van Benthem, Klaus; Bonifacio, Cecile S; Contescu, Cristian I; Pennycook, Stephen J; Gallego, Nidia C

    2011-01-01

    Aberration corrected scanning transmission electron microscopy was used to demonstrate the feasibility of imaging individual Pd atoms that are highly dispersed throughout the volume of activated carbon fibers. Simultaneous acquisition of high-angle annular dark-field and bright-field images allows correlation of the location of single Pd atoms with microstructural features of the carbon host material. Sub-Angstrom imaging conditions revealed that 18 wt% of the total Pd content is dispersed as single Pd atoms in three re-occurring local structural arrangements. The identified structural configurations may represent effective storage sites for molecular hydrogen through Kubas complex formation as discussed in detail in the preceding article.

  12. Considerations in forecasting the demand for carbon sequestration and biotic storage technologies

    SciTech Connect

    Trexler, M.C.

    1997-12-31

    The Intergovernmental Panel on Climate Change (IPCC) has identified forestry and other land-use based mitigation measures as possible sources and sinks of greenhouse gases. An overview of sequestration and biotic storage is presented, and the potential impacts of the use of carbon sequestration as a mitigation technology are briefly noted. Carbon sequestration is also compare to other mitigation technologies. Biotic mitigation technologies are concluded to be a legitimate and potentially important part of greenhouse gas mitigation due to their relatively low costs, ancillary benefits, and climate impact. However, not all biotic mitigation techniques perfectly match the idealized definition of a mitigation measure, and policies are becoming increasingly biased against biotic technologies.

  13. Effect of climate on the storage and turnover of carbon in soils

    NASA Technical Reports Server (NTRS)

    Trumbore, Susan; Chadwick, Oliver; Amundson, Ronald; Brasher, Benny

    1994-01-01

    Climate is, in many instances, the dominant variable controlling the storage of carbon in soils. It has proven difficult, however, to determine how soil properties influenced by climate, such as soil temperature and soil moisture, actually operate to determine the rates of accumulation and decomposition of soil organic matter. Our approach has been to apply a relatively new tool, the comparison of C-14 in soil organic matter from pre- and post-bomb soils, to quantify carbon turnover rates along climosequences. This report details the progress made toward this end by work under this contract.

  14. Estimating changes in terrestrial vegetation and carbon storage. Using palaeoecological data and models

    NASA Astrophysics Data System (ADS)

    Peng, C. H.; Guiot, J.; Van Campo, E.

    Climatic changes that accompanied the transition from the last glacial to the present interglacial conditions over the past 18,000 14C years impacted both terrestrial ecosystem structure (vegetation distribution) and function (carbon dynamics), which in turn influenced the climate through biogeophysical mechanisms. Palaeoecological records provide not only past records of vegetation patterns at various spatial and temporal scales, but also a means of evaluating the associated change in past terrestrial carbon storage. After a brief review of the role of palaeoecological data and biosphere models in evaluating the potential impacts of past climate change on terrestrial ecosystems, we synthesize the methods for reconstructing the vegetation patterns from palaeoecological data and the way to integrate it with biosphere models to reconstruct the long-term terrestrial carbon dynamics since the Last Glacial Maximum (LGM). The main results obtained at both the global and regional scales suggest that colder, more arid and low atmospheric CO 2 climatic conditions at the LGM may have favored the extensions of steppe and grassland dominated by C4 plants, to the detriment of forested ecosystems. However, the warmer and wetter climatic conditions during the Holocene favored extensions of temperate deciduous forests in mid-latitudes and reduced the tundra and taiga forests at high latitudes. Carbon storage in terrestrial vegetation was relatively low during the full-glacial time and increased considerably to a maximum during the mid-Holocene. Most of the recent estimates converge to an increase of about 30% global carbon storage from the LGM to the present. There still is a significant gap in our understanding of ice-age terrestrial carbon budget. The difference between the marine and terrestrial estimations is about 150-430 Pg C (1 Pg=10 15 g). It results from the uncertainties in reconstruction of terrestrial vegetation and carbon storage as well as the uncertainties in the

  15. Scaling up carbon storage in human-dominated heterogeneous landscapes in the Great Lakes region

    NASA Astrophysics Data System (ADS)

    Currie, W.; Brown, D. G.; Kiger, S.; Nassauer, J. I.; Robinson, D. T.

    2013-12-01

    Humans alter vegetation worldwide for a variety of purposes, including production of timber, food, fuelwood, and biofuels. While providing key social and economic benefits, these activities alter vegetation community composition, vertical structure, ecology, and biogeochemistry including carbon cycling. Joint outcomes at the landscape scale, such as ecological and social outcomes, arise over time through coupled social-ecological processes and feedbacks. We focused on measuring and modeling carbon storage in low-density (exurban) residential landscapes in southeastern Michigan, but our findings are relevant for human-dominated vegetation more broadly, particularly scaling up carbon storage in fragmented and spatially heterogeneous tree cover. We studied soil and vegetation carbon storage in 23, 1 km-scale landscapes that had been converted to low-density residential land from agricultural land or forest remnant patches in the last 50 years. The use of three hierarchical spatial scales was key. These included (1) distinct ecological zones at the sub-parcel scale, such as dense trees and shrubs, turfgrass, and turfgrass with sparse woody vegetation; (2) traditional land-cover categories at the sub-1-km scale such as tree cover and impervious surfaces; and (3) differences among four distinct neighborhood types, distinguished by parcel size, road access, and tree cover, at the sub-township to regional scale. Low-density residential land stored ca. 19,000 g C / m2 on average, which is much lower than that of individual old-growth forest patches in the region, but surprisingly similar to C storage in regionally-averaged second-growth forests. In residential land, the presence of large trees was important to C storage but interestingly, many large trees occurred outside of forest patches. Another important location for C storage in our exurban landscapes was soil to 1 m depth, which stored greater C than comparative forests in the region. This high soil C storage arose

  16. Economic and Environmental Evaluation of Flexible Integrated Gasification Polygeneration Facilities Equipped with Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Aitken, M.; Yelverton, W. H.; Dodder, R. S.; Loughlin, D. H.

    2014-12-01

    Among the diverse menu of technologies for reducing greenhouse gas (GHG) emissions, one option involves pairing carbon capture and storage (CCS) with the generation of synthetic fuels and electricity from co-processed coal and biomass. In this scheme, the feedstocks are first converted to syngas, from which a Fischer-Tropsch (FT) process reactor and combined cycle turbine produce liquid fuels and electricity, respectively. With low concentrations of sulfur and other contaminants, the synthetic fuels are expected to be cleaner than conventional crude oil products. And with CO2 as an inherent byproduct of the FT process, most of the GHG emissions can be eliminated by simply compressing the CO2 output stream for pipeline transport. In fact, the incorporation of CCS at such facilities can result in very low—or perhaps even negative—net GHG emissions, depending on the fraction of biomass as input and its CO2 signature. To examine the potential market penetration and environmental impact of coal and biomass to liquids and electricity (CBtLE), which encompasses various possible combinations of input and output parameters within the overall energy landscape, a system-wide analysis is performed using the MARKet ALlocation (MARKAL) model. With resource supplies, energy conversion technologies, end-use demands, costs, and pollutant emissions as user-defined inputs, MARKAL calculates—using linear programming techniques—the least-cost set of technologies that satisfy the specified demands subject to environmental and policy constraints. In this framework, the U.S. Environmental Protection Agency (EPA) has developed both national and regional databases to characterize assorted technologies in the industrial, commercial, residential, transportation, and generation sectors of the U.S. energy system. Here, the EPA MARKAL database is updated to include the costs and emission characteristics of CBtLE using figures from the literature. Nested sensitivity analysis is then

  17. Earthquake triggering and large-scale geologic storage of carbon dioxide

    PubMed Central

    Zoback, Mark D.; Gorelick, Steven M.

    2012-01-01

    Despite its enormous cost, large-scale carbon capture and storage (CCS) is considered a viable strategy for significantly reducing CO2 emissions associated with coal-based electrical power generation and other industrial sources of CO2 [Intergovernmental Panel on Climate Change (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, eds Metz B, et al. (Cambridge Univ Press, Cambridge, UK); Szulczewski ML, et al. (2012) Proc Natl Acad Sci USA 109:5185–5189]. We argue here that there is a high probability that earthquakes will be triggered by injection of large volumes of CO2 into the brittle rocks commonly found in continental interiors. Because even small- to moderate-sized earthquakes threaten the seal integrity of CO2 repositories, in this context, large-scale CCS is a risky, and likely unsuccessful, strategy for significantly reducing greenhouse gas emissions. PMID:22711814

  18. Earthquake triggering and large-scale geologic storage of carbon dioxide.

    PubMed

    Zoback, Mark D; Gorelick, Steven M

    2012-06-26

    Despite its enormous cost, large-scale carbon capture and storage (CCS) is considered a viable strategy for significantly reducing CO(2) emissions associated with coal-based electrical power generation and other industrial sources of CO(2) [Intergovernmental Panel on Climate Change (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, eds Metz B, et al. (Cambridge Univ Press, Cambridge, UK); Szulczewski ML, et al. (2012) Proc Natl Acad Sci USA 109:5185-5189]. We argue here that there is a high probability that earthquakes will be triggered by injection of large volumes of CO(2) into the brittle rocks commonly found in continental interiors. Because even small- to moderate-sized earthquakes threaten the seal integrity of CO(2) repositories, in this context, large-scale CCS is a risky, and likely unsuccessful, strategy for significantly reducing greenhouse gas emissions. PMID:22711814

  19. Adsorbed Natural Gas Storage in Optimized High Surface Area Microporous Carbon

    NASA Astrophysics Data System (ADS)

    Romanos, Jimmy; Rash, Tyler; Nordwald, Erik; Shocklee, Joshua Shawn; Wexler, Carlos; Pfeifer, Peter

    2011-03-01

    Adsorbed natural gas (ANG) is an attractive alternative technology to compressed natural gas (CNG) or liquefied natural gas (LNG) for the efficient storage of natural gas, in particular for vehicular applications. In adsorbants engineered to have pores of a few molecular diameters, a strong van der Walls force allows reversible physisorption of methane at low pressures and room temperature. Activated carbons were optimized for storage by varying KOH:C ratio and activation temperature. We also consider the effect of mechanical compression of powders to further enhance the volumetric storage capacity. We will present standard porous material characterization (BET surface area and pore-size distribution from subcritical N2 adsorption) and methane isotherms up to 250 bar at 293K. At sufficiently high pressure, specific surface area, methane binding energy and film density can be extracted from supercritical methane adsorption isotherms. Research supported by the California Energy Commission (500-08-022).

  20. Li and Ca Co-decorated carbon nitride nanostructures as high-capacity hydrogen storage media

    NASA Astrophysics Data System (ADS)

    Wang, Yusheng; Ji, Yong; Li, Meng; Yuan, Pengfei; Sun, Qiang; Jia, Yu

    2011-11-01

    Using first-principles method based on density functional theory, we perform a detailed study of the hydrogen storage properties of Li and Ca co-decorated graphene-like carbon nitride (g-CN) nanostructures. The results show that the average adsorption energy of the molecular hydrogen is ˜0.26 eV/H2, which is acceptable for reversible H2 adsorption/desorption near ambient temperature. Moreover, the findings also show that the storage capacity of the Li and Ca co-decorated g-CN can reach up to 9.17 wt %, presenting a good potential as hydrogen storage material. Regarding the H2 adsorption mechanism, it is demonstrated that the Li adatoms become positively charged through charge transferring to g-CN and then bind hydrogen molecules via the polarization mechanism.

  1. Soil organic carbon in the Sanjiang Plain of China: storage, distribution and controlling factors

    NASA Astrophysics Data System (ADS)

    Mao, D. H.; Wang, Z. M.; Li, L.; Miao, Z. H.; Ma, W. H.; Song, C. C.; Ren, C. Y.; Jia, M. M.

    2015-03-01

    The accurate estimation of soil organic carbon (SOC) storage and determination of its pattern-controlling factors is critical to understanding the ecosystem carbon cycle and ensuring ecological security. The Sanjiang Plain, an important grain production base in China, is typical of ecosystems, yet its SOC storage and pattern has not been fully investigated because of insufficient soil investigation. In this study, 419 soil samples obtained in 2012 for each of the three soil depth ranges 0-30, 30-60, and 60-100 cm and a geostatistical method are used to estimate the total SOC storage and density (SOCD) of this region. The results give rise to 2.32 Pg C for the SOC storage and 21.20 kg m-2 for SOCD, which is higher than the mean value for the whole country. The SOCD shows notable changes in lateral and vertical distribution. In addition, vegetation, climate, and soil texture, as well as agricultural activities, are demonstrated to have remarkable impacts on the variation in SOCD of this region. Soil texture has stronger impacts on the distribution of SOCD than climate in the Sanjiang Plain. Specifically, clay content can explain the largest proportion of the SOC variations (21.2% in the top 30 cm) and is the most dominant environmental controlling factor. Additionally, the effects of both climate and soil texture on SOCD show a weakening with increasing soil layer depth. This study indicates that reducing the loss of SOC requires effective conservation and restoration efforts of wetlands and forestlands, as well as sensible fertilization. The results from this study provide the most up-to-date knowledge on the storage and pattern of SOC in the Sanjiang Plain and have important implications for the determination of ecosystem carbon budgets and understanding ecosystem services.

  2. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC

    SciTech Connect

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.; Elizondo, Marcelo A.; Jin, Chunlian; Nguyen, Tony B.; Viswanathan, Vilayanur V.; Zhang, Yu

    2012-06-01

    To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancing requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.

  3. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution

    NASA Astrophysics Data System (ADS)

    Siewert, Matthias B.; Hanisch, Jessica; Weiss, Niels; Kuhry, Peter; Maximov, Trofim C.; Hugelius, Gustaf

    2015-10-01

    Permafrost-affected ecosystems are important components in the global carbon (C) cycle that, despite being vulnerable to disturbances under climate change, remain poorly understood. This study investigates ecosystem carbon storage in two contrasting continuous permafrost areas of NE and East Siberia. Detailed partitioning of soil organic carbon (SOC) and phytomass carbon (PC) is analyzed for one tundra (Kytalyk) and one taiga (Spasskaya Pad/Neleger) study area. In total, 57 individual field sites (24 and 33 in the respective areas) have been sampled for PC and SOC, including the upper permafrost. Landscape partitioning of ecosystem C storage was derived from thematic upscaling of field observations using a land cover classification from very high resolution (2 × 2 m) satellite imagery. Nonmetric multidimensional scaling was used to explore patterns in C distribution. In both environments the ecosystem C is mostly stored in the soil (≥86%). At the landscape scale C stocks are primarily controlled by the presence of thermokarst depressions (alases). In the tundra landscape, site-scale variability of C is controlled by periglacial geomorphological features, while in the taiga, local differences in catenary position, soil texture, and forest successions are more important. Very high resolution remote sensing is highly beneficial to the quantification of C storage. Detailed knowledge of ecosystem C storage and ground ice distribution is needed to predict permafrost landscape vulnerability to projected climatic changes. We argue that vegetation dynamics are unlikely to offset mineralization of thawed permafrost C and that landscape-scale reworking of SOC represents the largest potential changes to C cycling.

  4. Storage of spent fuel from the nation`s nuclear reactors: Status, technology, and policy options

    SciTech Connect

    Not Available

    1989-10-01

    Since the beginning of the commercial nuclear electric power industry, it has been recognized that spent nuclear reactor fuel must be able to be readily removed from the reactor vessel in the plant and safely stored on-site. The need for adjacent ready storage is first for safety. In the event of an emergency, or necessary maintenance that requires the removal of irradiated fuel from the reactor vessel, cooled reserve storage capacity for the full amount of fuel from the reactor core must be available. Also, the uranium fuel in the reactor eventually reaches the point where its heat generation is below the planned efficiency for steam production which drives the turbines and generators. It then must be replaced by fresh uranium fuel, with the ``spent fuel`` elements being removed to a safe and convenient storage location near the reactor vessel. The federal nuclear waste repository program, even without delays in the current schedule of disposal becoming available in 2003, will result in a large percentage of the 111 existing operable commercial reactors requiring expansion of their spent fuel storage capacity. How that need can and will be met raises issues of both technology and policy that will be reviewed in this report.

  5. Temporal and Spatial Deployment of Carbon Dioxide Capture and Storage Technologies across the Representative Concentration Pathways

    SciTech Connect

    Dooley, James J.; Calvin, Katherine V.

    2011-04-18

    The Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment (to be published in 2013-2014) will to a significant degree be built around four Representative Concentration Pathways (RCPs) that are intended to represent four scenarios of future development of greenhouse gas emissions, land use, and concentrations that span the widest range of potential future atmospheric radiative forcing. Under the very stringent climate policy implied by the 2.6 W/m2 overshoot scenario, all electricity is eventually generated from low carbon sources. However, carbon dioxide capture and storage (CCS) technologies never comprise more than 50% of total electricity generation in that very stringent scenario or in any of the other cases examined here. There are significant differences among the cases studied here in terms of how CCS technologies are used, with the most prominent being is the significant expansion of biomass+CCS as the stringency of the implied climate policy increases. Cumulative CO2 storage across the three cases that imply binding greenhouse gas constraints ranges by nearly an order of magnitude from 170GtCO2 (radiative forcing of 6.0W/m2 in 2100) to 1600GtCO2 (2.6W/m2 in 2100) over the course of this century. This potential demand for deep geologic CO2 storage is well within published estimates of total global CO2 storage capacity.

  6. High Black Carbon (BC) Concentrations along Indian National Highways

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Singh, A. K.; Singh, R. P.

    2015-12-01

    Abstract:Black carbon (BC), the optically absorbing component of carbonaceous aerosol, has direct influence on radiation budget and global warming. Vehicular pollution is one of the main sources for poor air quality and also atmospheric pollution. The number of diesel vehicles has increased on the Indian National Highways during day and night; these vehicles are used for the transport of goods from one city to another city and also used for public transport. A smoke plume from the vehicles is a common feature on the highways. We have made measurements of BC mass concentrations along the Indian National Highways using a potable Aethalometer installed in a moving car. We have carried out measurements along Varanasi to Kanpur (NH-2), Varanasi to Durgapur (NH-2), Varanasi to Singrauli (SH-5A) and Varanasi to Ghazipur (NH-29). We have found high concentration of BC along highways, the average BC mass concentrations vary in the range 20 - 40 µg/m3 and found high BC mass concentrations up to 600 μg/m3. Along the highways high BC concentrations were characteristics of the presence of industrial area, power plants, brick kilns and slow or standing vehicles. The effect of increasing BC concentrations along the National Highways and its impact on the vegetation and human health will be presented. Key Words: Black Carbon; Aethalometer; mass concentration; Indian National Highways.

  7. Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage.

    PubMed

    Sassin, Megan B; Mansour, Azzam N; Pettigrew, Katherine A; Rolison, Debra R; Long, Jeffrey W

    2010-08-24

    We describe a simple self-limiting electroless deposition process whereby conformal, nanoscale iron oxide (FeO(x)) coatings are generated at the interior and exterior surfaces of macroscopically thick ( approximately 90 microm) carbon nanofoam paper substrates via redox reaction with aqueous K(2)FeO(4). The resulting FeO(x)-carbon nanofoams are characterized as device-ready electrode structures for aqueous electrochemical capacitors and they demonstrate a 3-to-7 fold increase in charge-storage capacity relative to the native carbon nanofoam when cycled in a mild aqueous electrolyte (2.5 M Li(2)SO(4)), yielding mass-, volume-, and footprint-normalized capacitances of 84 F g(-1), 121 F cm(-3), and 0.85 F cm(-2), respectively, even at modest FeO(x) loadings (27 wt %). The additional charge-storage capacity arises from faradaic pseudocapacitance of the FeO(x) coating, delivering specific capacitance >300 F g(-1) normalized to the content of FeO(x) as FeOOH, as verified by electrochemical measurements and in situ X-ray absorption spectroscopy. The additional capacitance is electrochemically addressable within tens of seconds, a time scale of relevance for high-rate electrochemical charge storage. We also demonstrate that the addition of borate to buffer the Li(2)SO(4) electrolyte effectively suppresses the electrochemical dissolution of the FeO(x) coating, resulting in <20% capacitance fade over 1000 consecutive cycles. PMID:20731433

  8. Buried black soils surrounding the white roof of Africa as regional carbon storage hotspot

    NASA Astrophysics Data System (ADS)

    Zech, M.; Hörold, C.; Leiber-Sauheitl, K.; Hemp, A.; Zech, W.

    2012-04-01

    Mt. Kilimanjaro, the at least still "white roof" of Africa, attracts much attention because of its dramatically shrinking ice caps. By contrast, it was discovered only recently that intriguing paleosol sequences with buried and often strikingly black soils developed along the slopes of Mt. Kilimanjaro during the Late Quaternary. In our study we investigated in detail the soil organic carbon (SOC) contents and SOC stocks of soil profiles which are situated along two altitudinal transects; one along the humid southern slopes and the other one along the more arid northern slopes. We found up to 3 m thick paleosol sequences occurring almost area-wide particularly in the montane forest zone. SOC contents are remarkable high with values of up to more than 10%, indicating high preservation of soil organic matter (SOM). We suggest that the SOM preservation is favoured by several factors, such as (i) the burial by aeolian deposition, (ii) lower temperatures and (iii) more resistant Erica litter during glacial periods, (iv) formation of stable organo-mineral complexes and (v) high black carbon (BC) contents. The SOC-rich buried black soils account for mean SOC stocks of ~82 kg m-2 in the montane rainforest. Extrapolating this SOC storage and comparing it with the SOC storage achieved by the surrounding savannah soils of the Maasai Steppe highlights that the buried black soils are a prominent regional carbon storage hotspot.

  9. Carbon storage and release in Indonesian peatlands since the last deglaciation

    NASA Astrophysics Data System (ADS)

    Dommain, René; Couwenberg, John; Glaser, Paul H.; Joosten, Hans; Suryadiputra, I. Nyoman N.

    2014-08-01

    Peatlands have been recognised as globally important carbon sinks over long timescales that produced a global, net-climatic cooling effect over the Holocene. However, little is known about the role of tropical peatlands in the global carbon cycle. We therefore determine the past rates of carbon storage and release in the Indonesian peatlands of Kalimantan and Sumatra - the largest global concentration of tropical peatlands - since 20 ka (kiloannum before present). Using a novel GIS (geographic information system) approach we provide a spatially-explicit reconstruction of peatland expansion in a series of paleogeographic maps. Sea-level change is identified as the principal driver for peatland formation and expansion in western Indonesia as it controls both atmospheric moisture supply and the hydrological gradient on the islands. Initiation of inland peatlands in Kalimantan was coupled to periods of rapid deglacial sea-level rise with rates of over 10 mm yr-1 whereas coastal peatlands could only form after 7 ka when the rate of sea-level rise had slowed to 2.4 mm yr-1. Falling sea levels after 5 ka led to rapid peatland expansion in coastal lowlands and a doubling of the total peatland area in western Indonesia to 131,500 km2 between 2.3 ka and 0 ka. As a result of slow peatland expansion from 15 to 6 ka and rapid expansion afterwards the rate of annual carbon storage of all western Indonesian peatlands remained <1 Tg C yr-1 until 6 ka and then increased to 7.2 Tg C yr-1 by 0 ka. Associated with this rise in carbon storage was an exponential growth of the peat carbon pool from 0.01 Pg C by 15 ka to 23.2 Pg C at present, of which 70% is stored in coastal peatlands. In inland Kalimantan peatlands, falling sea levels together with increased El Niño activity induced an annual carbon release of 0.15 Tg C yr-1 from aerobic peat decay since 2 ka. Cumulative carbon losses from anaerobic decomposition do not seem to limit peat bog growth in the tropical peatlands of

  10. Divergent predictions of carbon storage between two global land models: attribution of the causes through traceability analysis

    NASA Astrophysics Data System (ADS)

    Rafique, Rashid; Xia, Jianyang; Hararuk, Oleksandra; Asrar, Ghassem R.; Leng, Guoyong; Wang, Yingping; Luo, Yiqi

    2016-07-01

    Representations of the terrestrial carbon cycle in land models are becoming increasingly complex. It is crucial to develop approaches for critical assessment of the complex model properties in order to understand key factors contributing to models' performance. In this study, we applied a traceability analysis which decomposes carbon cycle models into traceable components, for two global land models (CABLE and CLM-CASA') to diagnose the causes of their differences in simulating ecosystem carbon storage capacity. Driven with similar forcing data, CLM-CASA' predicted ˜ 31 % larger carbon storage capacity than CABLE. Since ecosystem carbon storage capacity is a product of net primary productivity (NPP) and ecosystem residence time (τE), the predicted difference in the storage capacity between the two models results from differences in either NPP or τE or both. Our analysis showed that CLM-CASA' simulated 37 % higher NPP than CABLE. On the other hand, τE, which was a function of the baseline carbon residence time (τ'E) and environmental effect on carbon residence time, was on average 11 years longer in CABLE than CLM-CASA'. This difference in τE was mainly caused by longer τ'E of woody biomass (23 vs. 14 years in CLM-CASA'), and higher proportion of NPP allocated to woody biomass (23 vs. 16 %). Differences in environmental effects on carbon residence times had smaller influences on differences in ecosystem carbon storage capacities compared to differences in NPP and τ'E. Overall, the traceability analysis showed that the major causes of different carbon storage estimations were found to be parameters setting related to carbon input and baseline carbon residence times between two models.

  11. PAF-derived nitrogen-doped 3D Carbon Materials for Efficient Energy Conversion and Storage

    PubMed Central

    Xiang, Zhonghua; Wang, Dan; Xue, Yuhua; Dai, Liming; Chen, Jian-Feng; Cao, Dapeng

    2015-01-01

    Owing to the shortage of the traditional fossil fuels caused by fast consumption, it is an urgent task to develop the renewable and clean energy sources. Thus, advanced technologies for both energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) are being studied extensively. In this work, we use porous aromatic framework (PAF) as precursor to produce nitrogen-doped 3D carbon materials, i.e., N-PAF-Carbon, by exposing NH3 media. The “graphitic” and “pyridinic” N species, large surface area, and similar pore size as electrolyte ions endow the nitrogen-doped PAF-Carbon with outstanding electronic performance. Our results suggest the N-doping enhance not only the ORR electronic catalysis but also the supercapacitive performance. Actually, the N-PAF-Carbon obtains ~70 mV half-wave potential enhancement and 80% increase as to the limiting current after N doping. Moreover, the N-PAF-Carbon displays free from the CO and methanol crossover effect and better long-term durability compared with the commercial Pt/C benchmark. Moreover, N-PAF-Carbon also possesses large capacitance (385 F g−1) and excellent performance stability without any loss in capacitance after 9000 charge–discharge cycles. These results clearly suggest that PAF-derived N-doped carbon material is promising metal-free ORR catalyst for fuel cells and capacitor electrode materials. PMID:26045229

  12. Soil carbon storage and temperature sensitivity associated with shrub and graminoid vegetation in Kangerlussuaq, Greenland

    NASA Astrophysics Data System (ADS)

    Bradley-Cook, J. I.; Petrenko, C. L.; Friedland, A. J.; Virginia, R. A.

    2014-12-01

    The Arctic tundra is experiencing rapid change, including warming temperatures, shrub expansion and shifts in precipitation patterns. Environmental conditions and vegetation cover are strong controls on soil carbon storage, respiration, and temperature sensitivity of decomposition. Temperature control of soil organic matter processing is particularly important in permafrost soils, which contain more than two times the carbon in the atmosphere and exist at the freeze-thaw threshold. To investigate sensitivity of decomposition to abiotic controls in a heterogeneous landscape, we conducted a laboratory incubation experiment on mineral soils collected in shrub and graminoid vegetation types near Kangerlussuaq, Greenland. We crossed temperature and moisture treatments and measured soil respiration rates over a seven-week incubation period. We measured soil carbon and nitrogen concentrations through elemental analysis and conducted sequential chemical extractions to measure carbon fractions and quantify soil carbon quality. Results show soils overlain by graminoids have higher carbon concentrations at shallow depth and respiration rates than soils overlain by shrub (mean ± 1 s.e. organic carbon concentration, 0-10 cm: graminoid = 68.7 ± 8.1 mg C * g soil-1, shrub = 48.8 ± 2.9 mg C * g soil-1). Temperature sensitivity was higher in graminoid soils, with no effect from soil moisture level. Carbon fractions and quality varied by vegetation type and profile depth. This study informs our understanding of the relationship between carbon quality and the temperature and moisture sensitivity of decomposition in western Greenland and demonstrates the importance of landscape heterogeneity in understanding soil carbon response to environmental drivers.

  13. Phenolic resin-based porous carbons for adsorption and energy storage applications

    NASA Astrophysics Data System (ADS)

    Wickramaratne, Nilantha P.

    The main objective of this dissertation research is to develop phenolic resin based carbon materials for range of applications by soft-templating and Stober-like synthesis strategies. Applications Studied in this dissertation are adsorption of CO2, bio-molecular and heavy metal ions, and energy storage devices. Based on that, our goal is to design carbon materials with desired pore structure, high surface area, graphitic domains, incorporated metal nanoparticles, and specific organic groups and heteroatoms. In this dissertation the organic-organic self-assembly of phenolic resins and triblock copolymers under acidic conditions will be used to obtain mesoporous carbons/carbon composites and Stober-like synthesis involving phenolic resins under basic condition will be used to prepare polymer/carbon particles and their composites. The structure of this dissertation consists of an introductory chapter (Chapter 1) discussing the general synthesis of carbon materials, particularly the soft-templating strategy and Stober-like carbon synthesis. Also, Chapter 1 includes a brief outline of applications namely adsorption of CO2, biomolecule and heavy metal ions, and supercapacitors. Chapter 2 discusses the techniques used for characterization of the carbon materials studied. This chapter starts with nitrogen adsorption analysis, which is used to measure the specific surface area, pore volume, distribution of pore sizes, and pore width. In addition to nitrogen adsorption, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution thermogravimetric analysis (HR-TGA), cyclic voltammetry (CV) and CHNS elemental analysis (EA) are mentioned too. Chapter 3 is focused on carbon materials for CO2 adsorption. There are different types of porous solid materials such as silicate, MOFs, carbons, and zeolites studied for CO2 adsorption. However, the carbon based materials are considered to be the best candidates for CO 2 adsorption to the industrial point of

  14. Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors

    SciTech Connect

    Lee, Seul-Yi; Yop Rhee, Kyong; Nahm, Seung-Hoon; Park, Soo-Jin

    2014-02-15

    In this study, the hydrogen storage behaviors of p-type multi-walled carbon nanotubes (MWNTs) were investigated through the surface modification of MWNTs by immersing them in sulfuric acid (H{sub 2}SO{sub 4}) and hydrogen peroxide (H{sub 2}O{sub 2}) at various ratios. The presence of acceptor-functional groups on the p-type MWNT surfaces was confirmed by X-ray photoelectron spectroscopy. Measurement of the zeta-potential determined the surface charge transfer and dispersion of the p-type MWMTs, and the hydrogen storage capacity was evaluated at 77 K and 1 bar. From the results obtained, it was found that acceptor-functional groups were introduced onto the MWNT surfaces, and the dispersion of MWNTs could be improved depending on the acid-mixed treatment conditions. The hydrogen storage was increased by acid-mixed treatments of up to 0.36 wt% in the p-type MWNTs, compared with 0.18 wt% in the As-received MWNTs. Consequently, the hydrogen storage capacities were greatly influenced by the acceptor-functional groups of p-type MWNT surfaces, resulting in increased electron acceptor–donor interaction at the interfaces. - Graphical abstract: Hydrogen storage behaviors of the p-type MWNTs with the acid-mixed treatments are described. Display Omitted Display Omitted.

  15. Influence of CO 2 activation on hydrogen storage behaviors of platinum-loaded activated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Seul-Yi; Park, Soo-Jin

    2010-12-01

    In this work, platinum (Pt) metal loaded activated multi-walled carbon nanotubes (MWNTs) were prepared with different structural characteristics for hydrogen storage applications. The process was conducted by a gas phase CO 2 activation method at 1200 °C as a function of the CO 2 flow time. Pt-loaded activated MWNTs were also formulated to investigate the hydrogen storage characteristics. The microstructures of the Pt-loaded activated MWNTs were characterized by XRD and TEM measurements. The textural properties of the samples were analyzed using N 2 adsorption isotherms at 77 K. The BET, D-R, and BJH equations were used to observe the specific surface areas and the micropore and mesopore structures. The hydrogen storage capacity of the Pt-loaded activated MWNTs was measured at 298 K at a pressure of 100 bar. The hydrogen storage capacity was increased with CO 2 flow time. It was found that the micropore volume of the activated MWNTs plays a key role in the hydrogen storage capacity.

  16. A synthesis of current knowledge on forests and carbon storage in the United States.

    PubMed

    McKinley, Duncan C; Ryan, Michael G; Birdsey, Richard A; Giardina, Christian P; Harmon, Mark E; Heath, Linda S; Houghton, Richard A; Jackson, Robert B; Morrison, James F; Murray, Brian C; Patakl, Diane E; Skog, Kenneth E

    2011-09-01

    Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding

  17. Influence of the pore size in multi-walled carbon nanotubes on the hydrogen storage behaviors

    SciTech Connect

    Lee, Seul-Yi; Park, Soo-Jin

    2012-10-15

    Activated multi-walled carbon nanotubes (A-MWCNTs) were prepared using a chemical activation method to obtain well-developed pore structures for use as hydrogen storage materials. The microstructure and crystallinity of the A-MWCNTs were evaluated by X-ray diffraction and Fourier transform Raman spectroscopy. The textural properties of the A-MWCNTs were investigated by nitrogen gas sorption analysis at 77 K. The hydrogen storage capacity of the A-MWCNTs was evaluated at 77 K and 1 bar. The results showed that the specific surface area of the MWCNTs increased from 327 to 495 m{sup 2}/g as the activation temperature was increased. The highest hydrogen storage capacity was observed in the A-MWCNTs sample activated at 900 Degree-Sign C (0.54 wt%). This was attributed to it having the narrowest microporosity, which is a factor closely related to the hydrogen storage capacity. This shows that the hydrogen storage behaviors depend on the pore volume. Although a high pore volume is desirable for hydrogen storage, it is also severely affected if the pore size in the A-MWCNTs for the hydrogen molecules is suitable for creating the activation process. Highlights: Black-Right-Pointing-Pointer The AT-800 and AT-900 samples were prepared by a chemical activation method at activation temperature of 800 and 900 Degree-Sign C, respectively. Black-Right-Pointing-Pointer The AT-900 sample has the narrowest peak in comparison with the AT-800 sample, resulting from the overlap of the two peaks (Peak I and Peak II). Black-Right-Pointing-Pointer This overlapping effect is due to the newly created micropores or shrinkages of pores in Peak II. So, these determining characteristics are essential for designing materials that are suitable for molecular hydrogen storage.

  18. Impact of Brine Extraction and Well Placement Optimization on Geologic Carbon Storage Capacity Estimation

    NASA Astrophysics Data System (ADS)

    Ganjdanesh, R.; Hosseini, S. A.

    2015-12-01

    Capacity of carbon dioxide storage aquifers depends on a variety of factors including geologic properties and operational designs. The injection well numbers, well spacing and location, open versus closed boundary conditions, and injection with or without extraction of brine are of the parameters that impact the capacity of a storage site. Brine extraction from storage formations has been introduced as an effective strategy for enhancing the storage capacity and mitigating the risk of rapid pressure buildup. It is proposed that extracted brine can be disposed within an overlying formation or will be desalinated at surface facilities. Optimal well placement and rate of CO2 injection/brine extraction control achieving a predefined pressure constraint at the end of a specific period of storage operation. Reservoir simulation study is required to solve the two-phase flow of gas/brine and pressure buildup in the aquifer. Numerical simulation of geological storage using multiple injectors and extractors is costly and time consuming. Instead, analytical simulation can provide the results with a very good accuracy in a fraction of time compared to the numerical simulation. In this study, an analytical solution was implemented for pressure buildup calculation. The analytical model includes the effects of two-phase relative permeability, CO2 dissolution into reservoir brine and formation of a dry-out zone around the wellbore. Through the optimization algorithm coupled with analytical model, the optimal rates and locations of CO2 injectors and brine extractors were estimated, while simultaneously satisfying the pressure constraint to avoid fracture pressure in all injectors. The optimized results of analytical model was verified with a numerical simulator for several reservoir conditions, well configurations and operating constraints. The comparison of the results shows that the analytical model is a reliable tool for preliminary capacity estimation of saline aquifers and

  19. Combination of herbivore removal and nitrogen deposition increases upland carbon storage.

    PubMed

    Smith, Stuart W; Johnson, David; Quin, Samuel L O; Munro, Kyle; Pakeman, Robin J; van der Wal, René; Woodin, Sarah J

    2015-08-01

    Ecosystem carbon (C) accrual and storage can be enhanced by removing large herbivores as well as by the fertilizing effect of atmospheric nitrogen (N) deposition. These drivers are unlikely to operate independently, yet their combined effect on aboveground and belowground C storage remains largely unexplored. We sampled inside and outside 19 upland grazing exclosures, established for up to 80 years, across an N deposition gradient (5-24 kg N ha(-1) yr(-1) ) and found that herbivore removal increased aboveground plant C stocks, particularly in moss, shrubs and litter. Soil C storage increased with atmospheric N deposition, and this was moderated by the presence or absence of herbivores. In exclosures receiving above 11 kg N ha(-1) year(-1) , herbivore removal resulted in increased soil C stocks. This effect was typically greater for exclosures dominated by dwarf shrubs (Calluna vulgaris) than by grasses (Molinia caerulea). The same pattern was observed for ecosystem C storage. We used our data to predict C storage for a scenario of removing all large herbivores from UK heathlands. Predictions were made considering herbivore removal only (ignoring N deposition) and the combined effects of herbivore removal and current N deposition rates. Predictions including N deposition resulted in a smaller increase in UK heathland C storage than predictions using herbivore removal only. This finding was driven by the fact that the majority of UK heathlands receive low N deposition rates at which herbivore removal has little effect on C storage. Our findings demonstrate the crucial link between herbivory by large mammals and atmospheric N deposition, and this interaction needs to be considered in models of biogeochemical cycling. PMID:25930662

  20. Summary report for the tank tightness testing of underground storage tanks, Idaho National Engineering Laboratory

    SciTech Connect

    Not Available

    1990-03-01

    Between August 14, 1989, and August 26, 1989, 16 underground storage tanks were tank tightness tested for leaks as part of the Idaho National Engineering Laboratory tank management program. This report summarizes the results of these tank tightness tests, the modifications and repairs made to the tank systems, fuel transfer records, and any problems that affected the tank testing schedule. Of the 16 underground storage tanks tested, five failed the tank tightness test. Attempts were made to repair the tanks that failed the tank tightness test. Of those tanks, two were tested three times (one passed and one failed), and three were tested twice (two passed and one failed). The five failed tanks were removed and will be replaced with tanks that meet the Environmental Protection Agency regulations of underground storage tanks. 3 refs., 1 fig., 3 tabs.

  1. The Potential of Microbial Activity to Increase the Efficacy of Geologic Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Cunningham, A. B.; Gerlach, R.; Phillips, A. J.; Eldring, J.; Lauchnor, E.; Klapper, I.; Ebigbo, A.; Mitchell, A. C.; Spangler, L.

    2012-12-01

    Geologic carbon capture and storage involves the injection of CO2 into underground formations such as brine aquifers where microbe-rock-fluid interactions will occur. These interactions may be important for the long-term fate of the injected CO2 particularly near well bores and potential leakage pathways. Herein, concepts and results are presented from bench to meso-scale experiments focusing on the utility of attached microorganisms and biofilms to enhance storage security of injected CO2. Batch and flow experiments at atmospheric and geologic CO2storage-relevant pressures have demonstrated the ability of microbial biofilms to decrease the permeability of natural and artificial porous media, survive the exposure to scCO2, and facilitate the conversion of CO2 into long-term stable carbonate phases as well as increase the solubility of CO2 in brines. Recently, the microbially catalyzed process of ureolysis has been investigated for the potential to promote calcium carbonate mineralization in subsurface reservoirs using native or introduced ureolytic microorganisms, which increase the saturation state of CaCO3 via the hydrolysis of urea. The anticipated applications for this biomineralization process in the subsurface include sealing microfractures and CO2 leakage pathways for increased security of geologic carbon storage. Recent work has focused on facilitating this biomineralization process in large scale (74 cm diameter, 38 cm high sandstone) radial flow systems under ambient and subsurface relevant pressures with the goal of developing injection strategies suited for field scale deployment. Methods for microscopic and macroscopic visualization of relevant processes, such as growth of microbial biofilms, their interactions with minerals and influence on pore spaces in porous media reactors are being developed and have been used to calibrate reactive transport models. As a result, these models are being used to predict the effect of biological processes on CO2

  2. Climate change impacts on soil carbon storage in global croplands: 1901-2010

    NASA Astrophysics Data System (ADS)

    Ren, W.; Tian, H.

    2015-12-01

    New global data finds 12% of earth's surface in cropland at present. Croplands will take on the responsibility to support approximate 60% increase in food production by 2050 as FAO estimates. In addition to nutrient supply to plants, cropland soils also play a major source and sink of greenhouse gases regulating global climate system. It is a big challenge to understand how soils function under global changes, but it is also a great opportunity for agricultural sector to manage soils to assure sustainability of agroecosystems and mitigate climate change. Previous studies have attempted to investigate the impacts of different land uses and climates on cropland soil carbon storage. However, large uncertainty still exists in magnitude and spatiotemporal patterns of global cropland soil organic carbon, due to the lack of reliable environmental databases and relatively poorly understanding of multiple controlling factors involved climate change and land use etc. Here, we use a process-based agroecosystem model (DLEM-Ag) in combination with diverse data sources to quantify magnitude and tempo-spatial patterns of soil carbon storage in global croplands during 1901-2010. We also analyze the relative contributions of major environmental variables (climate change, land use and management etc.). Our results indicate that intensive land use management may hidden the vulnerability of cropland soils to climate change in some regions, which may greatly weaken soil carbon sequestration under future climate change.

  3. Activated carbon derived from waste coffee grounds for stable methane storage.

    PubMed

    Kemp, K Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M; Kim, Kwang S

    2015-09-25

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m(2) g(-1) and a micropore volume of 0.574 cm(3) g(-1) and exhibits a stable CH4 adsorption capacity of ∼4.2 mmol g(-1) at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon. PMID:26329310

  4. Microbially enhanced carbon capture and storage - from pores to cores (Invited)

    NASA Astrophysics Data System (ADS)

    Mitchell, A. C.; Cunningham, A. B.; Spangler, L.; Gerlach, R.

    2010-12-01

    During the operation of Geologic Carbon Capture and Storage (CCS) and the injection of supercritical CO2 into underground formations, microbe-rock-fluid interactions occur. These interactions may be important for controlling the ultimate fate of the injected CO2, and may also be manipulated to enhance the storage of the CO2, via mineral-trapping, solubility trapping, formation trapping, and leakage reduction. We have demonstrated that engineered microbial biofilms are capable of enhancing formation, mineral, and solubility trapping in carbon sequestration-relevant formation materials. Batch and flow experiments at atmospheric and high pressures (> 74 bar) have shown the ability of microbial biofilms to decrease the permeability of natural and artificial porous media, survive the exposure to supercritical CO2, and facilitate the conversion of gaseous and supercritical CO2 into long-term stable carbonate phases as well as increase the solubility of CO2 in brines. Ongoing microscopy and modelling studies aim to understand these processes at both the pore- and core-scale in order to facilitate larger scale understanding and potential manipulation for biologically based CCS engineering. Successful development of these biologically-based concepts could result in microbially enhanced carbon sequestration strategies as well as CO2 leakage mitigation technologies, which can be applied either before CO2 injection or as a remedial measure around injection wells.

  5. Quantifying the effects of soil drainage on carbon storage in boreal soils

    NASA Astrophysics Data System (ADS)

    Pruett, L. E.; Czimczik, C. I.; Harden, J. W.; Trumbore, S.

    2006-12-01

    The accumulation of terrestrial carbon in boreal soils happens predominately in the organic layers and is determined by biological processes. It is, however, strongly influenced by environmental conditions such as perennially cold temperatures and high moisture content. Net primary productivity (NPP) and decomposition, along with fire regimes and the chemical composition of the organic matter, also play a role in determining organic stocks. Carbon stocks in these organic soils usually increase as soil drainage capability lessens due to the suppression of decomposition caused by cool temperatures and a lack of oxygen, as well as a lower risk of loss from fire. Climate change can potentially alter all of these factors and so it is important to understand the current mechanisms for carbon storage in northern ecosystems and the vulnerability of these stores to an altered climate. In this study, we compared paired moderately well- and poorly-drained black spruce stands that burned in 1964, 1930, or 1850 to investigate whether site differences in drainage and temperature were largely responsible for higher carbon storage in the poorly-drained sites. These sites were located within the BOREAS Northern Study area near Thompson, Manitoba, Canada. For all sites, the organic soil layers at the poorly drained stands were on average warmer (0.71 to 2.01 ° C) during the growing season (May September) than the moderately well-drained stands. The average temperature of the organic soil during the winter and the mineral soil (both seasons) showed no consistent trends. At all sites, the largest proportion of carbon was present in the organic layers overlying the mineral soil. In both poorly- and moderately well-drained sites, carbon stocks in the upper 20 cm of the soil increased with time since fire to a maximum of about 1.86 g C cm-2 at the 1850 burn. Organic layers were also thicker and carbon stocks were larger at the poorly-, versus moderately well-drained, sites. There was no

  6. Enhanced light use efficiency as a mechanism for forest carbon storage resilience following disturbance

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Hardiman, B. S.; Bohrer, G.; Maurer, K.; Nave, L. E.; Vogel, C. S.; Curtis, P.; University of Michigan Biological Station Forest Ecosystem STudy (FEST) Team

    2011-12-01

    Disturbances to forests such as those caused by herbivory, wind, pathogens, and age-related mortality may subtly alter canopy structure, with variable consequences for carbon (C) cycling. Forest C storage resilience following disturbance in which only a fraction of the canopy is defoliated may depend upon canopy structural shifts that compensate for lost leaf area by improving the efficiency of light-use by the altered canopy. In a forest at the University of Michigan Biological Station that is regionally representative of the northern Great Lakes, we initiated an experiment that examines forest C storage following subtle canopy disturbance. The Forest Accelerated Succession ExperimenT (FASET), in which >6,700 aspen and birch trees (~35 % LAI) were stem girdled within a 39 ha area, is investigating how C storage changes as Great Lakes forests broadly undergo a transition in which early successional canopy trees die and give way to an assemblage of later successional canopy dominants. The experiment employs a suite of paired C cycling measurements within separate treatment and control meteorological flux tower footprints. Forest carbon storage, quantified as annual net ecosystem production (NEP) and net primary production (NPP), was resilient to partial canopy defoliation, with rapid structural changes improving canopy light-use efficiency (LUE). Declining aspen and birch leaf area was offset by new foliar growth from later successional species already present in the canopy; however, the distribution of foliage within the canopy became more heterogeneous following disturbance as patchy aspen and birch mortality produced gaps and the vertical structure of the forest diversified. These canopy structural alterations prompted by small-scale patchy disturbance may have permitted deeper light penetration into the canopy, decreasing the fraction of absorbed photosynthetically active radiation (PAR) while increasing the efficiency in which absorbed light was used to drive

  7. High and Mid-Latitude Wetlands, Climate Change, and Carbon Storage

    NASA Technical Reports Server (NTRS)

    Peteet, Dorothy

    2000-01-01

    Pollen and macrofossil stratigraphy from wetlands associated with AMS chronology provides a vegetational and climatic history over thousands of years. From these records we establish a record of climate change which can be compared with independent records of carbon accumulation rates in these same wetlands. In this way, inferences can be made concerning carbon storage during different climatic regimes. One focus of our research has been high-latitude regions such as Alaskan and Siberian tundra, from which we have paleorecords which span the last 10,000 years. We will present records from the Malaspina Glacier region, Alaska and the Pur-Taz region of Western Siberia. A second focus of our research is in mid-latitude eastern North America. We will present paleorecords from wetlands in Vermont, New York, and Virginia showing the relationship between carbon accumulation rates and climatic changes since the late Pleistocene.

  8. AGU Embassy Lecture Event Focuses on Carbon Capture and Storage Technology

    NASA Astrophysics Data System (ADS)

    March, Gabriella

    2010-09-01

    A program entitled “Carbon Capture and Storage (CCS)—Viable technology or risky gamble?” was the inaugural event of AGU's Embassy Lecture Series and part of the European Embassy Science Series. With many countries looking into ways to reduce carbon dioxide emissions, the 9 September event at the Germany Embassy in Washington, D. C., focused on the technological and commercial feasibility of CCS. Four speakers addressed questions including whether CCS can be implemented successfully on a commercial scale and if the technology is economically feasible with or without a cap and trade system, and whether the public will support CCS. They stressed the importance of good science, proper planning, and sound monitoring to ensure that the carbon captured will be stored permanently.

  9. Quantifying regional changes in terrestrial carbon storage by extrapolation from local ecosystem models

    SciTech Connect

    King, A W

    1991-12-31

    A general procedure for quantifying regional carbon dynamics by spatial extrapolation of local ecosystem models is presented Monte Carlo simulation to calculate the expected value of one or more local models, explicitly integrating the spatial heterogeneity of variables that influence ecosystem carbon flux and storage. These variables are described by empirically derived probability distributions that are input to the Monte Carlo process. The procedure provides large-scale regional estimates based explicitly on information and understanding acquired at smaller and more accessible scales.Results are presented from an earlier application to seasonal atmosphere-biosphere CO{sub 2} exchange for circumpolar ``subarctic`` latitudes (64{degree}N-90{degree}N). Results suggest that, under certain climatic conditions, these high northern ecosystems could collectively release 0.2 Gt of carbon per year to the atmosphere. I interpret these results with respect to questions about global biospheric sinks for atmospheric CO{sub 2} .

  10. A Survey of Measurement, Mitigation, and Verification Field Technologies for Carbon Sequestration Geologic Storage

    NASA Astrophysics Data System (ADS)

    Cohen, K. K.; Klara, S. M.; Srivastava, R. D.

    2004-12-01

    The U.S. Department of Energy's (U.S. DOE's) Carbon Sequestration Program is developing state-of-the-science technologies for measurement, mitigation, and verification (MM&V) in field operations of geologic sequestration. MM&V of geologic carbon sequestration operations will play an integral role in the pre-injection, injection, and post-injection phases of carbon capture and storage projects to reduce anthropogenic greenhouse gas emissions. Effective MM&V is critical to the success of CO2 storage projects and will be used by operators, regulators, and stakeholders to ensure safe and permanent storage of CO2. In the U.S. DOE's Program, Carbon sequestration MM&V has numerous instrumental roles: Measurement of a site's characteristics and capability for sequestration; Monitoring of the site to ensure the storage integrity; Verification that the CO2 is safely stored; and Protection of ecosystems. Other drivers for MM&V technology development include cost-effectiveness, measurement precision, and frequency of measurements required. As sequestration operations are implemented in the future, it is anticipated that measurements over long time periods and at different scales will be required; this will present a significant challenge. MM&V sequestration technologies generally utilize one of the following approaches: below ground measurements; surface/near-surface measurements; aerial and satellite imagery; and modeling/simulations. Advanced subsurface geophysical technologies will play a primary role for MM&V. It is likely that successful MM&V programs will incorporate multiple technologies including but not limited to: reservoir modeling and simulations; geophysical techniques (a wide variety of seismic methods, microgravity, electrical, and electromagnetic techniques); subsurface fluid movement monitoring methods such as injection of tracers, borehole and wellhead pressure sensors, and tiltmeters; surface/near surface methods such as soil gas monitoring and infrared

  11. Carbon storage increases by major forest ecosystems in tropical South America since the Last Glacial Maximum and the early Holocene

    NASA Astrophysics Data System (ADS)

    Behling, Hermann

    2002-06-01

    To study the carbon storage increase of major forest ecosystems in tropical South America, such as Amazon rain forest, Atlantic rain forest, semideciduous forest, and Araucaria forest, the Last Glacial Maximum (LGM) and the early Holocene vegetation cover were reconstructed by pollen records. Marked forest expansion points to a significant total carbon storage increase by tropical forests in South America since the LGM and the early Holocene. The Amazon rain forest expansion, about 39% in area, had 28.3×10 9 tC (+20%), the highest carbon storage increase since the LGM. The expansion of the other much smaller forest areas also had a significant carbon storage increase since the LGM, the Atlantic rain forest with 4.9×10 9 tC (+55%), the semideciduous forest of eastern Brazil with 6.3×10 9 tC (+46%), the Araucaria forest with 3.4×10 9 tC (+108%). The estimated carbon storage increase of the four forest biomes since the early Holocene is also remarkable. The extensive deforestation in the last century strongly affected the carbon storage by tropical forests.

  12. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States

    USGS Publications Warehouse

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.

    1999-01-01

    We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere-biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900-1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95 years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3 Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2 Pg C) and soil organic carbon decreasing by 1.9% (1.1 Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr-1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17

  13. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2

    NASA Astrophysics Data System (ADS)

    Sulman, Benjamin N.; Phillips, Richard P.; Oishi, A. Christopher; Shevliakova, Elena; Pacala, Stephen W.

    2014-12-01

    The sensitivity of soil organic carbon (SOC) to changing environmental conditions represents a critical uncertainty in coupled carbon cycle-climate models. Much of this uncertainty arises from our limited understanding of the extent to which root-microbe interactions induce SOC losses (through accelerated decomposition or `priming') or indirectly promote SOC gains (via `protection' through interactions with mineral particles). We developed a new SOC model to examine priming and protection responses to rising atmospheric CO2. The model captured disparate SOC responses at two temperate free-air CO2 enrichment (FACE) experiments. We show that stabilization of `new' carbon in protected SOC pools may equal or exceed microbial priming of `old' SOC in ecosystems with readily decomposable litter and high clay content (for example, Oak Ridge). In contrast, carbon losses induced through priming dominate the net SOC response in ecosystems with more resistant litters and lower clay content (for example, Duke). The SOC model was fully integrated into a global terrestrial carbon cycle model to run global simulations of elevated CO2 effects. Although protected carbon provides an important constraint on priming effects, priming nonetheless reduced SOC storage in the majority of terrestrial areas, partially counterbalancing SOC gains from enhanced ecosystem productivity.

  14. Soil moisture feedback mediates increased carbon storage under elevated CO{sub 2}

    SciTech Connect

    Hungate, B.A.; Chapin, F.S. III; Jackson, R.B.

    1995-09-01

    After 3 years of exposure to elevated atmospheric CO{sub 2}, soil carbon increased in an extremely nutrient-limited serpentine grassland, but did not change in a more productive sandstone grassland. The increase in the serpentine shows the potential for nutrient-limited ecosystems to sequester carbon under elevated CO{sub 2}, but lack of response in the sandstone grassland suggests that increased soil carbon is not a general ecosystem response to elevated CO{sub 2}. Changes in soil moisture under elevated CO{sub 2} may explain the lack of response in the sandstone. Elevated CO{sub 2} decreases transpiration in plants from both ecosystems, but this consistently increases soil moisture only on the sandstone, where plants more strongly control evapotranspiration than on the serpentine. Increased soil moisture stimulates decomposition in these systems, potentially compensating for increased carbon input to soil under elevated CO{sub 2}, resulting in no net change in soil carbon. Increased soil moisture also stimulates plant growth directly and stimulates nitrogen mineralization and plant nitrogen uptake, potentially increasing plant production under elevated CO{sub 2}. We suggest that, in ecosystems with well developed plant canopies where increased soil moisture is likely under elevated CO{sub 2}, feedbacks through soil moisture may increase production, but may also constrain increased carbon storage in soil.

  15. Popcorn-Derived Porous Carbon for Energy Storage and CO2 Capture.

    PubMed

    Liang, Ting; Chen, Chunlin; Li, Xing; Zhang, Jian

    2016-08-16

    Porous carbon materials have drawn tremendous attention due to its applications in energy storage, gas/water purification, catalyst support, and other important fields. However, producing high-performance carbons via a facile and efficient route is still a big challenge. Here we report the synthesis of microporous carbon materials by employing a steam-explosion method with subsequent potassium activation and carbonization of the obtained popcorn. The obtained carbon features a large specific surface area, high porosity, and doped nitrogen atoms. Using as an electrode material in supercapacitor, it displays a high specific capacitance of 245 F g(-1) at 0.5 A g(-1) and a remarkable stability of 97.8% retention after 5000 cycles at 5 A g(-1). The product also exhibits a high CO2 adsorption capacity of 4.60 mmol g(-1) under 1066 mbar and 25 °C. Both areal specific capacitance and specific CO2 uptake are directly proportional to the surface nitrogen content. This approach could thus enlighten the batch production of porous nitrogen-doped carbons for a wide range of energy and environmental applications. PMID:27455183

  16. Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage

    PubMed Central

    Garcillán, Pedro P.

    2016-01-01

    Given their relatively small area, mangroves and their organic sediments are of disproportionate importance to global carbon sequestration and carbon storage. Peat deposition and preservation allows some mangroves to accrete vertically and keep pace with sea-level rise by growing on their own root remains. In this study we show that mangroves in desert inlets in the coasts of the Baja California have been accumulating root peat for nearly 2,000 y and harbor a belowground carbon content of 900–34,00 Mg C/ha, with an average value of 1,130 (± 128) Mg C/ha, and a belowground carbon accumulation similar to that found under some of the tallest tropical mangroves in the Mexican Pacific coast. The depth–age curve for the mangrove sediments of Baja California indicates that sea level in the peninsula has been rising at a mean rate of 0.70 mm/y (± 0.07) during the last 17 centuries, a value similar to the rates of sea-level rise estimated for the Caribbean during a comparable period. By accreting on their own accumulated peat, these desert mangroves store large amounts of carbon in their sediments. We estimate that mangroves and halophyte scrubs in Mexico’s arid northwest, with less than 1% of the terrestrial area, store in their belowground sediments around 28% of the total belowground carbon pool of the whole region. PMID:27035950

  17. Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage.

    PubMed

    Ezcurra, Paula; Ezcurra, Exequiel; Garcillán, Pedro P; Costa, Matthew T; Aburto-Oropeza, Octavio

    2016-04-19

    Given their relatively small area, mangroves and their organic sediments are of disproportionate importance to global carbon sequestration and carbon storage. Peat deposition and preservation allows some mangroves to accrete vertically and keep pace with sea-level rise by growing on their own root remains. In this study we show that mangroves in desert inlets in the coasts of the Baja California have been accumulating root peat for nearly 2,000 y and harbor a belowground carbon content of 900-34,00 Mg C/ha, with an average value of 1,130 (± 128) Mg C/ha, and a belowground carbon accumulation similar to that found under some of the tallest tropical mangroves in the Mexican Pacific coast. The depth-age curve for the mangrove sediments of Baja California indicates that sea level in the peninsula has been rising at a mean rate of 0.70 mm/y (± 0.07) during the last 17 centuries, a value similar to the rates of sea-level rise estimated for the Caribbean during a comparable period. By accreting on their own accumulated peat, these desert mangroves store large amounts of carbon in their sediments. We estimate that mangroves and halophyte scrubs in Mexico's arid northwest, with less than 1% of the terrestrial area, store in their belowground sediments around 28% of the total belowground carbon pool of the whole region. PMID:27035950

  18. Ecological carbon sequestration via wood harvest and storage: Practical constraints and real-world possibilities

    NASA Astrophysics Data System (ADS)

    Zeng, N.; King, A. W.; Zaitchik, B. F.; Wullschleger, S. D.

    2014-12-01

    A carbon sequestration strategy was recently proposed in which a forest is sustainably managed, and a fraction of the wood is selectively harvested and stored to prevent decomposition under anaerobic, dry or cold conditions. Because a large flux of CO2 is constantly assimilated into the world's forests via photosynthesis, partially cutting off its return pathway to the atmosphere forms an effective carbon sink. The live trees serve as a 'carbon scrubber' or 'carbon remover' that provides continuous sequestration. The stored wood is a semi-permanent carbon sink, but also serves as a 'biomass/bioenergy reserve' that could be utilized in the future if deemed more beneficial, for instance, by contributing to supply infrastructure for biomass power generation. Based on global forest coarse wood production rate, land availability, conservation, other wood use, and other practical constraints, we estimate a carbon sequestration potential for wood harvest and storage (WHS) 1-3 GtC y-1. The implementation of such a scheme at our estimated lower value of 1 GtC y-1 would imply a doubling of the current world wood harvest rate. This can be achieved by harvesting wood at a modest harvesting intensity of 1.2 tC ha-1 y-1, over a forest area of 8 Mkm2 (800 Mha). To achieve the higher value of 3 GtC y-1, forests need to be managed this way on half of the world's forested land, or on a smaller area but with higher harvest intensity. However, any successful implementation strategy will need to balance the needs of the local community and environment. It nonethelss provides a novel new addition to a portfolio of existing forest management strategies. We propose 'carbon sequestration and biomass farms' with mixed land use for carbon, energy, agriculture, as well as conservation, provided that governance issues are properly dealt with. In another example, the forests damaged by insects, fire, storms such as in the America West could be thinned to reduce fire danger and harvested for

  19. Simulation of natural gas production from submarine gas hydrate deposits combined with carbon dioxide storage

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2013-04-01

    The recovery of methane from gas hydrate layers that have been detected in several submarine sediments and permafrost regions around the world so far is considered to be a promising measure to overcome future shortages in natural gas as fuel or raw material for chemical syntheses. Being aware that natural gas resources that can be exploited with conventional technologies are limited, research is going on to open up new sources and develop technologies to produce methane and other energy carriers. Thus various research programs have started since the early 1990s in Japan, USA, Canada, South Korea, India, China and Germany to investigate hydrate deposits and develop technologies to destabilize the hydrates and obtain the pure gas. In recent years, intensive research has focussed on the capture and storage of carbon dioxide from combustion processes to reduce climate change. While different natural or manmade reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid carbon dioxide, the storage of carbon dioxide as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in form of hydrates. This has been shown in several laboratory tests and simulations - technical field tests are still in preparation. Within the scope of the German research project »SUGAR«, different technological approaches are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical effects are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs like CMG STARS and COMSOL Multiphysics. New simulations based on field data have been carried out. The studies focus on the evaluation of the gas production

  20. Trends in Global Demonstrations of Carbon Management Technologies to Advance Coal- Based Power Generation With Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Cohen, K. K.; Plasynski, S.; Feeley, T. J.

    2008-05-01

    Atmospheric CO2 concentrations increased an estimated 35% since preindustrial levels two centuries ago, reportedly due to the burning of fossil fuels combined with increased deforestation. In the U.S., energy-related activities account for 75% of anthropogenic greenhouse gas (GHG) emissions, with more than 50% from large stationary sources such as power plants and about one-third from transportation. Mitigation technologies for CO2 atmospheric stabilization based on energy and economic scenarios include coal-based power plant- carbon capture and storage (CCS), and the U.S. Department of Energy (DOE) is assessing CCS operations and supporting technologies at U.S. locations and opportunities abroad reported here. The Algerian In Salah Joint Industry Project injecting 1 million tons CO2 (MtCO2)/year into a gas field sandstone, and the Canadian Weyburn-Midale CO2 Monitoring and Storage Project injecting over 1.8 MtCO2/year into carbonate oil reservoirs are ongoing industrial-scale storage operations DOE participates in. DOE also supports mid-scale CCS demonstrations at the Australian Otway Project and CO2SINK in Germany. Enhanced oil recovery operations conducted for decades in west Texas and elsewhere have provided the industrial experience to build on, and early pilots such as Frio-I Texas in 2004 have spearheaded technology deployment. While injecting 1,600 tons of CO2 into a saline sandstone at Frio, time-lapse borehole and surface seismic detected P-wave velocity decreases and reflection amplitude changes resulting from the replacement of brine with CO2 in the reservoir. Just two of many cutting-edge technologies tested at Frio, these and others are now deployed by U.S. researchers with international teams to evaluate reservoir injectivity, capacity, and integrity, as well as to assess CO2 spatial distribution, trapping, and unlikely leakage. Time-lapse Vertical Seismic Profiling at Otway and microseismic at In Salah and Otway, monitor injection and reservoir

  1. Pore-scale imaging of geological carbon dioxide storage under in situ conditions

    NASA Astrophysics Data System (ADS)

    Andrew, Matthew; Bijeljic, Branko; Blunt, Martin J.

    2013-08-01

    While geological carbon dioxide (CO2) storage could contribute to reducing global emissions, it must be designed such that the CO2 cannot escape from the porous rock into which it is injected. An important mechanism to immobilize the CO2, preventing escape, is capillary trapping, where CO2 is stranded as disconnected pore-scale droplets (ganglia) in the rock, surrounded by water. We used X-Ray microtomography to image, at a resolution of 6.4 µm, the pore-scale arrangement and distribution of trapped CO2 clusters in a limestone. We applied high pressures and temperatures typical of a storage formation, while maintaining chemical equilibrium between the CO2, brine, and rock. Substantial amounts of CO2 were trapped, with an average saturation of 0.18. The cluster sizes obeyed a power law distribution, with an exponent of approximately -2.1, consistent with predictions from percolation theory. This work confirms that residual trapping could aid storage security in carbonate aquifers.

  2. A Meta-analysis of Timber Harvest and Site Preparation Effects on Soil Carbon Storage

    NASA Astrophysics Data System (ADS)

    Nave, L. E.; Swanston, C. S.; Vance, E. D.; Curtis, P. S.

    2008-12-01

    Management practices can dramatically alter soil carbon (C) storage in forests. Timber harvesting and site preparation are a widely employed and studied form of forest management, yet abundant experimental data from this area of research have not recently been synthesized. We are using meta-analysis to test a database developed from 86 studies with published soil C storage values for paired harvested and un- harvested forests, in order to identify how timber harvesting and site preparation affect soil C pool sizes. Most of the studies in the database are from coniferous or hardwood forests of the continental United States, although temperate forests of Asia, Australia, Canada, and Europe also are represented. We have identified factors that influence soil C responses to harvest at global to regional scales, and estimated soil C storage shifts in pools of different vulnerability. At the global scale, soil C storage changes due to harvest differ according to soil horizon, soil taxonomic order, and species composition. Within soil types and at regional scales, climate, species composition, and harvest and site preparation methods appear to have more significant effects on forest soil C storage. At all spatial scales, forest floors and surface mineral soils show different levels of vulnerability to C loss or increase, highlighting the importance of constraining turnover times for C incorporated into these two soil pools as efforts to model the C cycle improve. As part of a larger effort to understand how soil C pools are impacted by management and global change, our meta-analysis identifies opportunities for increased soil C storage, situations where soil C losses are highly probable, and areas requiring improved understanding of mechanisms of forest soil C accumulation and loss.

  3. Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration

    USGS Publications Warehouse

    McGuire, David A.; Melillo, J.M.; Kicklighter, D.W.; Pan, Y.; Xiao, X.; Helfrich, J.; Moore, B., III; Vorosmarty, C.J.; Schloss, A.L.

    1997-01-01

    We ran the terrestrial ecosystem model (TEM) for the globe at 0.5?? resolution for atmospheric CO2 concentrations of 340 and 680 parts per million by volume (ppmv) to evaluate global and regional responses of net primary production (NPP) and carbon storage to elevated CO2 for their sensitivity to changes in vegetation nitrogen concentration. At 340 ppmv, TEM estimated global NPP of 49.0 1015 g (Pg) C yr-1 and global total carbon storage of 1701.8 Pg C; the estimate of total carbon storage does not include the carbon content of inert soil organic matter. For the reference simulation in which doubled atmospheric CO2 was accompanied with no change in vegetation nitrogen concentration, global NPP increased 4.1 Pg C yr-1 (8.3%), and global total carbon storage increased 114.2 Pg C. To examine sensitivity in the global responses of NPP and carbon storage to decreases in the nitrogen concentration of vegetation, we compared doubled CO2 responses of the reference TEM to simulations in which the vegetation nitrogen concentration was reduced without influencing decomposition dynamics ("lower N" simulations) and to simulations in which reductions in vegetation nitrogen concentration influence decomposition dynamics ("lower N+D" simulations). We conducted three lower N simulations and three lower N+D simulations in which we reduced the nitrogen concentration of vegetation by 7,5, 15.0, and 22.5%. In the lower N simulations, the response of global NPP to doubled atmospheric CO2 increased approximately 2 Pg C yr-1 for each incremental 7.5% reduction in vegetation nitrogen concentration, and vegetation carbon increased approximately an additional 40 Pg C, and soil carbon increased an additional 30 Pg C, for a total carbon storage increase of approximately 70 Pg C. In the lower N+D simulations, the responses of NPP and vegetation carbon storage were relatively insensitive to differences in the reduction of nitrogen concentration, but soil carbon storage showed a large change. The

  4. Accelerated soil carbon turnover under tree plantations limits soil carbon storage

    NASA Astrophysics Data System (ADS)

    Chen, Guangshui; Yang, Yusheng; Yang, Zhijie; Xie, Jinsheng; Guo, Jianfen; Gao, Ren; Yin, Yunfeng; Robinson, David

    2016-01-01

    The replacement of native forests by tree plantations is increasingly common globally, especially in tropical and subtropical areas. Improving our understanding of the long-term effects of this replacement on soil organic carbon (SOC) remains paramount for effectively managing ecosystems to mitigate anthropogenic carbon emissions. Meta-analyses imply that native forest replacement usually reduces SOC stocks and may switch the forest from a net sink to a net source of atmospheric carbon. Using a long-term chronosequence during which areas of subtropical native forest were replaced by Chinese fir, we show by direct measurement that plantations have significantly accelerated SOC turnover compared with native forest, an effect that has persisted for almost a century. The immediate stimulation of SOC decomposition was caused by warmer soil before the closure of the plantation’s canopy. Long-term reductions in SOC mean residence times were coupled to litter inputs. Faster SOC decomposition was associated with lower soil microbial carbon use efficiency, which was due to smaller litter inputs and reduced nutrient availabilities. Our results indicate a previously unelucidated control on long-term SOC dynamics in native forests and demonstrate a potential constraint on climate mitigation when such forests are replaced by plantations.

  5. Accelerated soil carbon turnover under tree plantations limits soil carbon storage.

    PubMed

    Chen, Guangshui; Yang, Yusheng; Yang, Zhijie; Xie, Jinsheng; Guo, Jianfen; Gao, Ren; Yin, Yunfeng; Robinson, David

    2016-01-01

    The replacement of native forests by tree plantations is increasingly common globally, especially in tropical and subtropical areas. Improving our understanding of the long-term effects of this replacement on soil organic carbon (SOC) remains paramount for effectively managing ecosystems to mitigate anthropogenic carbon emissions. Meta-analyses imply that native forest replacement usually reduces SOC stocks and may switch the forest from a net sink to a net source of atmospheric carbon. Using a long-term chronosequence during which areas of subtropical native forest were replaced by Chinese fir, we show by direct measurement that plantations have significantly accelerated SOC turnover compared with native forest, an effect that has persisted for almost a century. The immediate stimulation of SOC decomposition was caused by warmer soil before the closure of the plantation's canopy. Long-term reductions in SOC mean residence times were coupled to litter inputs. Faster SOC decomposition was associated with lower soil microbial carbon use efficiency, which was due to smaller litter inputs and reduced nutrient availabilities. Our results indicate a previously unelucidated control on long-term SOC dynamics in native forests and demonstrate a potential constraint on climate mitigation when such forests are replaced by plantations. PMID:26805949

  6. Accelerated soil carbon turnover under tree plantations limits soil carbon storage

    PubMed Central

    Chen, Guangshui; Yang, Yusheng; Yang, Zhijie; Xie, Jinsheng; Guo, Jianfen; Gao, Ren; Yin, Yunfeng; Robinson, David

    2016-01-01

    The replacement of native forests by tree plantations is increasingly common globally, especially in tropical and subtropical areas. Improving our understanding of the long-term effects of this replacement on soil organic carbon (SOC) remains paramount for effectively managing ecosystems to mitigate anthropogenic carbon emissions. Meta-analyses imply that native forest replacement usually reduces SOC stocks and may switch the forest from a net sink to a net source of atmospheric carbon. Using a long-term chronosequence during which areas of subtropical native forest were replaced by Chinese fir, we show by direct measurement that plantations have significantly accelerated SOC turnover compared with native forest, an effect that has persisted for almost a century. The immediate stimulation of SOC decomposition was caused by warmer soil before the closure of the plantation’s canopy. Long-term reductions in SOC mean residence times were coupled to litter inputs. Faster SOC decomposition was associated with lower soil microbial carbon use efficiency, which was due to smaller litter inputs and reduced nutrient availabilities. Our results indicate a previously unelucidated control on long-term SOC dynamics in native forests and demonstrate a potential constraint on climate mitigation when such forests are replaced by plantations. PMID:26805949

  7. Sub-Seafloor Carbon Dioxide Storage Potential on the Juan de Fuca Plate, Western North America

    SciTech Connect

    Jerry Fairley; Robert Podgorney

    2012-11-01

    The Juan de Fuca plate, off the western coast of North America, has been suggested as a site for geological sequestration of waste carbon dioxide because of its many attractive characteristics (high permeability, large storage capacity, reactive rock types). Here we model CO2 injection into fractured basalts comprising the upper several hundred meters of the sub-seafloor basalt reservoir, overlain with low-permeability sediments and a large saline water column, to examine the feasibility of this reservoir for CO2 storage. Our simulations indicate that the sub-seafloor basalts of the Juan de Fuca plate may be an excellent CO2 storage candidate, as multiple trapping mechanisms (hydrodynamic, density inversions, and mineralization) act to keep the CO2 isolated from terrestrial environments. Questions remain about the lateral extent and connectivity of the high permeability basalts; however, the lack of wells or boreholes and thick sediment cover maximize storage potential while minimizing potential leakage pathways. Although promising, more study is needed to determine the economic viability of this option.

  8. Modeling geologic storage of carbon dioxide: Comparison ofnon-hysteretic chracteristic curves

    SciTech Connect

    Doughty, Christine

    2006-04-28

    TOUGH2 models of geologic storage of carbon dioxide (CO2) in brine-bearing formations use characteristic curves to represent the interactions of non-wetting-phase CO2 and wetting-phase brine. When a problem includes both injection of CO2 (a drainage process) and its subsequent post-injection evolution (a combination of drainage and wetting), hysteretic characteristic curves are required to correctly capture the behavior of the CO2 plume. In the hysteretic formulation, capillary pressure and relative permeability depend not only on the current grid-block saturation, but also on the history of the saturation in the grid block. For a problem that involves only drainage or only wetting, a nonhysteretic formulation, in which capillary pressure and relative permeability depend only on the current value of the grid-block saturation, is adequate. For the hysteretic formulation to be robust computationally, care must be taken to ensure the differentiability of the characteristic curves both within and beyond the turning-point saturations where transitions between branches of the curves occur. Two example problems involving geologic CO2 storage are simulated using non-hysteretic and hysteretic models, to illustrate the applicability and limitations of non-hysteretic methods: the first considers leakage of CO2 from the storage formation to the ground surface, while the second examines the role of heterogeneity within the storage formation.

  9. Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dual-Doped Carbon Network.

    PubMed

    Wang, Min; Yang, Zhenzhong; Li, Weihan; Gu, Lin; Yu, Yan

    2016-05-01

    Carbonaceous materials have attracted immense interest as anode materials for Na-ion batteries (NIBs) because of their good chemical, thermal stabilities, as well as high Na-storage capacity. However, the carbonaceous materials as anodes for NIBs still suffer from the lower rate capability and poor cycle life. An N,O-dual doped carbon (denoted as NOC) network is designed and synthesized, which is greatly favorable for sodium storage. It exhibits high specific capacity and ultralong cycling stability, delivering a capacity of 545 mAh g(-1) at 100 mA g(-1) after 100 cycles and retaining a capacity of 240 mAh g(-1) at 2 A g(-1) after 2000 cycles. The NOC composite with 3D well-defined porosi