Sample records for national citizen science

  1. Citizen(s') Science. A Response to "The Future of Citizen Science"

    ERIC Educational Resources Information Center

    Calabrese Barton, Angela M.

    2012-01-01

    Citizen science is fundamentally about participation within and for communities. Attempts to merge citizen science with schooling must call not only for a democratization of schooling and science but also for the democratization of the ways in which science is taken up by, with, and for citizen participants. Using this stance, along with critical…

  2. NEON Citizen Science: Planning and Prototyping

    NASA Astrophysics Data System (ADS)

    Newman, S. J.; Henderson, S.; Gardiner, L. S.; Ward, D.; Gram, W.

    2011-12-01

    The National Ecological Observatory Network (NEON) will be a national resource for ecological research and education. NEON citizen science projects are being designed to increase awareness and educate citizen scientists about the impacts of climate change, land-use change, and invasive species on continental-scale ecological processes as well as expand NEON data collection capacity by enabling laypersons to collect geographically distributed data. The citizen science area of the NEON web portal will enable citizen scientists to collect, contribute, interpret, and visualize scientific data, as well as access training modules, collection protocols and targeted learning experiences related to citizen science project topics. For NEON, citizen science projects are a means for interested people to interact with and contribute to NEON science. Investigations at vast spatial and temporal scales often require rapid acquisition of large amounts of data from a geographically distributed population of "human sensors." As a continental-scale ecological observatory, NEON is uniquely positioned to develop strategies to effectively integrate data collected by non-scientists into scientific databases. Ultimately, we plan to work collaboratively to transform the practice of science to include "citizens" or non-scientists in the process. Doing science is not limited to scientists, and breaking down the barriers between scientists and citizens will help people better understand the power of using science in their own decision making. In preparation for fully developing the NEON citizen science program, we are partnering with Project BudBurst (PBB), a citizen science project focused on monitoring plant phenology. The educational goals of PBB are to: (1) increase awareness of climate change, (2) educate citizen scientists about the impacts of climate change on plants and the environment, and (3) increase science literacy by engaging participants in the scientific process. Phenology was

  3. Tourist-Centric Citizen Science in Denali National Park and Preserve

    ERIC Educational Resources Information Center

    Fischer, Heather A.

    2017-01-01

    Citizen Science programs create a bi-directional flow of knowledge between scientists and citizen volunteers; this flow democratizes science in order to create an informed public (Bonney et al. 2014; Brown, Kelly, and Whitall 2014). This democratization is a fundamental part of creating a science that can address today's pressing environmental,…

  4. NEON Citizen Science: Planning and Prototyping (Invited)

    NASA Astrophysics Data System (ADS)

    Gram, W.

    2010-12-01

    The National Ecological Observatory Network (NEON) will be a national resource for ecological research and education. NEON citizen science projects are being designed to increase awareness and educate citizen scientists about the impacts of climate change, land-use change, and invasive species on continental-scale ecological processes as well as expand NEON data collection capacity by enabling laypersons to collect geographically distributed data. The citizen science area of the NEON web portal will enable citizen scientists to collect, contribute, interpret, and visualize scientific data, as well as access training modules, collection protocols and targeted learning experiences related to citizen science project topics. For NEON, citizen science projects are a means for interested people to interact with and contribute to NEON science. Investigations at vast spatial and temporal scales often require rapid acquisition of large amounts of data from a geographically distributed population of “human sensors.” As a continental-scale ecological observatory, NEON is uniquely positioned to develop strategies to effectively integrate data collected by non-scientists into scientific databases. Ultimately, we plan to work collaboratively to transform the practice of science to include “citizens” or non-scientists in the process. Doing science is not limited to scientists, and breaking down the barriers between scientists and citizens will help people better understand the power of using science in their own decision making. In preparation for fully developing the NEON citizen science program, we are partnering with Project BudBurst (PBB), a citizen science project focused on monitoring plant phenology. The educational goals of PBB are to: (1) increase awareness of climate change, (2) educate citizen scientists about the impacts of climate change on plants and the environment, and (3) increase science literacy by engaging participants in the scientific process

  5. Environmental protection belongs to the public: A vision for citizen science at EPA

    NASA Astrophysics Data System (ADS)

    Parker, A.; Dosemagen, S.

    2017-12-01

    As a collaborative and open approach to science, citizen science has the potential make science more actionable, applicable, and usable, especially when designed with scientists, communities and decision-makers as partners. In response to recent interest in citizen science from the US Environmental Protection Agency, the National Advisory Council for Environmental Policy and Technology provided EPA with advice and recommendations on how to integrate citizen science into the core work of EPA. The Council's 28 members—representatives of academia; business and industry; nongovernmental organizations; and state, local and tribal governments—identifies citizen science as an invaluable opportunity for EPA to strengthen public support for EPA's mission and the best approach for the Agency to connect with the public on environmental protection. The report recommends that EPA embrace citizen science as a core tenet of environmental protection, invest in citizen science for communities, partners, and the Agency, enable the use of citizen science data at the Agency, integrate citizen science into the full range of work of EPA. This presentation will outline principles and strategy for integrating citizen science into science and policy at the national level, increasing the usability of citizen science data for decision-making and policy, and leveraging citizen science for environmental protection.

  6. Citizen Scientists Contribute National-Scale Phenology Data for Science, Conservation and Resource Management

    NASA Astrophysics Data System (ADS)

    Weltzin, J. F.; Rosemartin, A.; Crimmins, T. M.; Posthumus, E.

    2015-12-01

    The USA National Phenology Network (USA-NPN; www.usanpn.org) serves science and society by promoting a broad understanding of plant and animal phenology and the relationships among phenological patterns and all aspects of environmental change. Data maintained by USA-NPN is being used for applications related to science, conservation and resource management. The majority of the data have been provided by "citizen scientists" participating in a national-scale, multi-taxa phenology observation program, Nature's Notebook. Since 2008, more than 5,500 active participants registered with Nature's Notebook have contributed over 5.5 million observation records for plants and animals. This presentation will demonstrate several types of questions that can be addressed by engaging citizen scientists in a standardized national monitoring system focused on field observations of biodiversity. Because the proof is often in the pudding, we will feature a diversity of recently published studies, but will also highlight several new and ongoing local- to continental-scale projects. Projects include continental bioclimatic indices, regional assessments of historical and potential future trends in phenology, sub-regional assessments of temperate deciduous forest response to recent variability in spring-time heat accumulation, state- and management unit- level foci on spatio-temporal variation in organismal activity at both the population and community level, and local monitoring for invasive species detection across platforms from ground to satellite. Additional data-mining and exploration by interested researchers and/or resource managers will likely further demonstrate the value of these data. The bottom line is that "citizen science" represents a viable approach to collect data across spatiotemporal scales often unattainable to research scientists under typical resource constraints.

  7. Citizen Science for public health.

    PubMed

    Den Broeder, Lea; Devilee, Jeroen; Van Oers, Hans; Schuit, A Jantine; Wagemakers, Annemarie

    2018-06-01

    Community engagement in public health policy is easier said than done. One reason is that public health policy is produced in a complex process resulting in policies that may appear not to link up to citizen perspectives. We therefore address the central question as to whether citizen engagement in knowledge production could enable inclusive health policy making. Building on non-health work fields, we describe different types of citizen engagement in scientific research, or 'Citizen Science'. We describe the challenges that Citizen Science poses for public health, and how these could be addressed. Despite these challenges, we expect that Citizen Science or similar approaches such as participatory action research and 'popular epidemiology' may yield better knowledge, empowered communities, and improved community health. We provide a draft framework to enable evaluation of Citizen Science in practice, consisting of a descriptive typology of different kinds of Citizen Science and a causal framework that shows how Citizen Science in public health might benefit both the knowledge produced as well as the 'Citizen Scientists' as active participants.

  8. The Future of Citizen Science

    ERIC Educational Resources Information Center

    Mueller, Michael P.; Tippins, Deborah; Bryan, Lynn A.

    2012-01-01

    There is an emerging trend of democratizing science and schooling within science education that can be characterized as citizen science. We explore the roots of this movement and some current projects to underscore the meaning of citizen science in science and schooling. We show that citizen science, as it is currently conceptualized, does not go…

  9. How Fit is Your Citizen Science Data?

    NASA Astrophysics Data System (ADS)

    Fischer, H. A.; Gerber, L. R.; Wentz, E. A.

    2017-12-01

    Data quality and accuracy is a fundamental concern with utilizing citizen science data. Although many methods can be used to assess quality and accuracy, these methods may not be sufficient to qualify citizen science data for widespread use in scientific research. While Data Fitness For Use (DFFU) does not provide a blanket assessment of data quality, it does assesses the data's ability to be used for a specific application, within a given area (Devillers and Bédard 2007). The STAAq (Spatial, Temporal, Aptness, and Accuracy) assessment was developed to assess the fitness for use of citizen science data, this assessment can be used on a stand alone dataset or be used to compare multiple datasets. The citizen science data used in this assessment was collected by volunteers of the Map of Life- Denali project, which is a tourist-centric citizen science project developed through a partnership with Arizona State University, Map of Life at Yale University, and Denali National Park and Preserve. Volunteers use the offline version of the Map of Life app to record their wildlife, insect, and plant observations in the park. To test the STAAq assessment data from different sources- Map of Life- Denali, Ride Observe and Record, and NPS wildlife surveys- were compared to determined which dataset is most fit for use for a specific research question; What is the recent Grizzly bear distribution in areas of high visitor use in Denali National Park and Preserve? These datasets were compared and ranked according to how well they performed in each of the components of the STAAq assessment. These components include spatial scale, temporal scale, aptness, and application. The Map of Life- Denali data and the ROAR program data were most for use for this research question. The STAAq assessment can be adjusted to assess the fitness for use of a single dataset or being used to compare any number of datasets. This data fitness for use assessment provides a means to assess data fitness

  10. Citizen Sky, An Update on the AAVSO's New Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Turner, Rebecca; Price, A.; Henden, A.; Stencel, R.; Kloppenborg, B.

    2011-01-01

    Citizen Sky is a multi-year, NSF-funded, citizen science project focusing on the bright variable star, epsilon Aurigae. Citizen Sky goes beyond simple observing to include a major data analysis component. The goal is to introduce the participant to the full scientific process from background research to paper writing for a peer-reviewed journal. The first year of the project, 2009-10, was dedicated to developing project infrastructure, educating participants about epsilon Aurigae, and training these participants to observe the star and report their data. Looking forward, years two and three of the project will focus on assembling teams of participants to work on their own analysis and research. Results will be published in a special issue of the peer-reviewed Journal of the AAVSO. This project has been made possible by the National Science Foundation.

  11. Project BudBurst: Citizen Science for All Seasons

    NASA Astrophysics Data System (ADS)

    Meymaris, K.; Henderson, S.; Alaback, P.; Havens, K.

    2008-12-01

    Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, now in its second year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, participants from 49 states have submitted data that is being submitted to the USA National Phenology Network (www.usanpn.org) database. Project BudBurst has been the subject of almost 200 media outlets including NPR, national and regional television broadcasts, and most of the major national and regional newspapers. This presentation will provide an overview of Project Budburst and will report on the results of the 2008 field campaign and discuss plans to expand Project BudBurst in 2009. Project BudBurst is a Windows to the Universe Citizen Science program managed by the University

  12. Citizen science for water quality monitoring: Data implications of citizen perspectives.

    PubMed

    Jollymore, Ashlee; Haines, Morgan J; Satterfield, Terre; Johnson, Mark S

    2017-09-15

    Citizen science, where citizens play an active role in the scientific process, is increasingly used to expand the reach and scope of scientific research while also achieving engagement and educational goals. Despite the emergence of studies exploring data outcomes of citizen science, the process and experience of engaging with citizens and citizen-lead groups through participatory science is less explored. This includes how citizen perspectives alter data outcomes, a critical upshot given prevalent mistrust of citizen versus scientist data. This study uses a citizen science campaign investigating watershed impacts on water quality to interrogate the nature and implications of citizen involvement in producing scientifically and societally relevant data. Data representing scientific outcomes are presented alongside a series of vignettes that offer context regarding how, why, and where citizens engaged with the project. From these vignettes, six specific lessons are examined towards understanding how integration of citizen participation alters data outcomes relative to 'professional' science. In particular, elements of participant social identity (e.g., their motivation for participation), and contextual knowledge (e.g., of the research program itself) can shape participation and resulting data outcomes. Such scientific outcomes are particularly relevant given continued concerns regarding the quality of citizen data, which could hinder scientific acceptance of citizen sciences. Importantly, the potential for meaningful engagement with citizen and participants within citizen groups - given significant capacity within the community - represents a substantial and under-realized opportunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Investing in citizen science can improve natural resource management and environmental protection

    USGS Publications Warehouse

    McKinley, Duncan C.; Miller-Rushing, Abraham J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia K.; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2015-01-01

    Citizen science has made substantive contributions to science for hundreds of years. More recently, it has contributed to many articles in peer-reviewed scientific journals and has influenced natural resource management and environmental protection decisions and policies across the nation. Over the last 10 years, citizen science—participation by the public in a scientific project—has seen explosive growth in the United States, particularly in ecology, the environmental sciences, and related fields of inquiry. In this report, we explore the current use of citizen science in natural resource and environmental science and decision making in the United States and describe the investments organizations might make to benefit from citizen science.

  14. How MESSENGER Meshes Simulations and Games with Citizen Science

    NASA Astrophysics Data System (ADS)

    Hirshon, B.; Chapman, C. R.; Edmonds, J.; Goldstein, J.; Hallau, K. G.; Solomon, S. C.; Vanhala, H.; Weir, H. M.; Messenger Education; Public Outreach (Epo) Team

    2010-12-01

    How MESSENGER Meshes Simulations and Games with Citizen Science In the film The Last Starfighter, an alien civilization grooms their future champion—a kid on Earth—using a video game. As he gains proficiency in the game, he masters the skills he needs to pilot a starship and save their civilization. The NASA MESSENGER Education and Public Outreach (EPO) Team is using the same tactic to train citizen scientists to help the Science Team explore the planet Mercury. We are building a new series of games that appear to be designed primarily for fun, but that guide players through a knowledge and skill set that they will need for future science missions in support of MESSENGER mission scientists. As players score points, they gain expertise. Once they achieve a sufficiently high score, they will be invited to become participants in Mercury Zoo, a new program being designed by Zooniverse. Zooniverse created Galaxy Zoo and Moon Zoo, programs that allow interested citizens to participate in the exploration and interpretation of galaxy and lunar data. Scientists use the citizen interpretations to further refine their exploration of the same data, thereby narrowing their focus and saving precious time. Mercury Zoo will be designed with input from the MESSENGER Science Team. This project will not only support the MESSENGER mission, but it will also add to the growing cadre of informed members of the public available to help with other citizen science projects—building on the concept that engaged, informed citizens can help scientists make new discoveries. The MESSENGER EPO Team comprises individuals from the American Association for the Advancement of Science (AAAS); Carnegie Academy for Science Education (CASE); Center for Educational Resources (CERES) at Montana State University (MSU) - Bozeman; National Center for Earth and Space Science Education (NCESSE); Johns Hopkins University Applied Physics Laboratory (JHU/APL); National Air and Space Museum (NASM); Science

  15. Citizen Science and Emerging Technologies

    EPA Science Inventory

    This session will discuss challenges and opportunities associated with citizen science and how emerging technologies can support citizen science activities. In addition, the session will provide an overview of low-cost environmental monitors and sensors and introduce the Citizen...

  16. Can citizen science enhance public understanding of science?

    PubMed

    Bonney, Rick; Phillips, Tina B; Ballard, Heidi L; Enck, Jody W

    2016-01-01

    Over the past 20 years, thousands of citizen science projects engaging millions of participants in collecting and/or processing data have sprung up around the world. Here we review documented outcomes from four categories of citizen science projects which are defined by the nature of the activities in which their participants engage - Data Collection, Data Processing, Curriculum-based, and Community Science. We find strong evidence that scientific outcomes of citizen science are well documented, particularly for Data Collection and Data Processing projects. We find limited but growing evidence that citizen science projects achieve participant gains in knowledge about science knowledge and process, increase public awareness of the diversity of scientific research, and provide deeper meaning to participants' hobbies. We also find some evidence that citizen science can contribute positively to social well-being by influencing the questions that are being addressed and by giving people a voice in local environmental decision making. While not all citizen science projects are intended to achieve a greater degree of public understanding of science, social change, or improved science -society relationships, those projects that do require effort and resources in four main categories: (1) project design, (2) outcomes measurement, (3) engagement of new audiences, and (4) new directions for research. © The Author(s) 2015.

  17. National Geographic FieldScope: Tools for Engaging a Range of Audiences in Citizen Science

    NASA Astrophysics Data System (ADS)

    OConnor, S.; Takaki, E.

    2013-12-01

    Recognizing the promise of projects that engage non-scientists in scientific research as a context for informal science learning, National Geographic set out in 2009 to develop a technology infrastructure to support public participation in scientific research (PPSR), or citizen science, projects. As a result, NG has developed a web-based platform called FieldScope to host projects in which geographically distributed participants submit local observations or measurements to a shared database. This project is motivated by the observation that historically citizen science initiatives have been siloed using different technologies, and that these projects rarely provide participants with the opportunity to participate in data analysis or any other aspects of the scientific process except for collecting and contributing data. Therefore, FieldScope has been designed to support data visualization and analysis using geospatial technologies and aims to develop social networking tools for communicating and discussing findings. Since educational impact is the project's primary priority, FieldScope is also being designed with usability by novices in mind. In addition to engaging novices in participation in citizen science, the design of the application is also meant to engage students and others in working with geospatial technologies, in this case, web-based GIS. The project's goal is to create a single, powerful infrastructure for PPSR projects that any organization can use to create their own project and support their own community of participants. The FieldScope environment will serve as a hosting environment for PPSR projects following the model of hosted communities of practice that has become widespread on the web. The goal is to make FieldScope a publicly-available resource for any PPSR project on a no- or low-cost basis. It will also make synergies possible between projects that are collecting related data in the same geographic area. NG is now in the fourth year of an

  18. Can Citizen Science Assist in Determining Koala (Phascolarctos cinereus) Presence in a Declining Population?

    PubMed Central

    Flower, Emily; Jones, Darryl; Bernede, Lilia

    2016-01-01

    Simple Summary Current scientific methods used to determine national population estimates for species like the koala, where individuals are scattered over a vast area, have failed to deliver an accurate and widely accepted result. Current citizen science projects aimed at mapping koala sightings reported by the public all use different methods and store their data in their own databases, each collecting scattered pieces of a much larger puzzle. To bring these pieces together, this study developed guidelines for a national citizen science project highlighting the importance of using one single method for data collection, and in turn assisting in the development of a national koala population database. Abstract The acceptance and application of citizen science has risen over the last 10 years, with this rise likely attributed to an increase in public awareness surrounding anthropogenic impacts affecting urban ecosystems. Citizen science projects have the potential to expand upon data collected by specialist researchers as they are able to gain access to previously unattainable information, consequently increasing the likelihood of an effective management program. The primary objective of this research was to develop guidelines for a successful regional-scale citizen science project following a critical analysis of 12 existing citizen science case studies. Secondly, the effectiveness of these guidelines was measured through the implementation of a citizen science project, Koala Quest, for the purpose of estimating the presence of koalas in a fragmented landscape. Consequently, this research aimed to determine whether citizen-collected data can augment traditional science research methods, by comparing and contrasting the abundance of koala sightings gathered by citizen scientists and professional researchers. Based upon the guidelines developed, Koala Quest methodologies were designed, the study conducted, and the efficacy of the project assessed. To combat the high

  19. Citizen science or scientific citizenship? Disentangling the uses of public engagement rhetoric in national research initiatives.

    PubMed

    Woolley, J Patrick; McGowan, Michelle L; Teare, Harriet J A; Coathup, Victoria; Fishman, Jennifer R; Settersten, Richard A; Sterckx, Sigrid; Kaye, Jane; Juengst, Eric T

    2016-06-04

    The language of "participant-driven research," "crowdsourcing" and "citizen science" is increasingly being used to encourage the public to become involved in research ventures as both subjects and scientists. Originally, these labels were invoked by volunteer research efforts propelled by amateurs outside of traditional research institutions and aimed at appealing to those looking for more "democratic," "patient-centric," or "lay" alternatives to the professional science establishment. As mainstream translational biomedical research requires increasingly larger participant pools, however, corporate, academic and governmental research programs are embracing this populist rhetoric to encourage wider public participation. We examine the ethical and social implications of this recruitment strategy. We begin by surveying examples of "citizen science" outside of biomedicine, as paradigmatic of the aspirations this democratizing rhetoric was originally meant to embody. Next, we discuss the ways these aspirations become articulated in the biomedical context, with a view to drawing out the multiple and potentially conflicting meanings of "public engagement" when citizens are also the subjects of the science. We then illustrate two uses of public engagement rhetoric to gain public support for national biomedical research efforts: its post-hoc use in the "care.data" project of the National Health Service in England, and its proactive uses in the "Precision Medicine Initiative" of the United States White House. These examples will serve as the basis for a normative analysis, discussing the potential ethical and social ramifications of this rhetoric. We pay particular attention to the implications of government strategies that cultivate the idea that members of the public have a civic duty to participate in government-sponsored research initiatives. We argue that such initiatives should draw from policy frameworks that support normative analysis of the role of citizenry. And

  20. Links and Distinctions among Citizenship, Science, and Citizen Science. A Response to "The Future of Citizen Science"

    ERIC Educational Resources Information Center

    Cooper, Caren B.

    2012-01-01

    Mueller, Tippins, and Bryan (2012) presented a new conceptualization of citizen science that is meant to facilitate emerging trends in the democratization of science and science education to produce civically engaged students. I review some relevant trends in the field of citizen science, for clarity here referred to as public participation in…

  1. Citizen CATE: Evaluating Outcomes of a Solar Eclipse Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Penn, M. J.; Haden, C.

    2017-12-01

    On August 21, 2017, a total solar eclipse will be visible along a path of totality from Oregon to South Carolina. The Citizen Continental-America Telescopic Eclipse Experiment (CATE) will use scientists, students and volunteers to take images of the solar corona using 68 identical telescopes, software and instrument packages along the 2,500-mile path of totality. CATE partners include National Solar Observatory scientists, university faculty and students, high school students, and professional and amateur astronomers. NASA funded CATE educational components including training undergraduates and volunteers on solar imaging software and equipment. The National Science Foundation and corporations including DayStar, MathWorks, Celestron and ColorMaker funded equipment. Undergraduates participated in summer research experiences to build their capacity for gathering eclipse data, and subsequently trained volunteers across the U.S. Aligned to NASA education goals, CATE goals range from providing an authentic research experience for students and lifelong learners, to making state-of-the-art solar coronal observations, to increasing scientific literacy of the public. While project investigators are examining the wealth of scientific data that will come from CATE, evaluators are examining impacts on participants. Through mixed methods, evaluators are examining outcomes related to changes in volunteers' knowledge, skills and attitudes. Additionally, the study will examine how citizen science astronomy using CATE equipment will continue after the eclipse to sustain project impacts. Preliminary findings for undergraduates indicate that they are gaining knowledge and skills related to studying solar coronal phenomena, conducting rigorous scientific research, and interfacing with the public to conduct outreach. Preliminary findings for citizen scientists indicate a high level of engagement in the research, and that they are gaining new knowledge and skills related to solar

  2. Project Citizen: Promoting Action-Oriented Citizen Science in the Classroom

    ERIC Educational Resources Information Center

    Green, Carie; Medina-Jerez, William

    2012-01-01

    In recent years, citizen science projects have emerged as a means to involve students in scientific inquiry, particularly in the fields of ecology and environmental science. A citizen scientist is "a volunteer who collects and/or processes data as part of a scientific inquiry" (Silverton 2009, p. 467). Participation in citizen science…

  3. Advertising Citizen Science: A Trailer for the Citizen Sky Project

    NASA Astrophysics Data System (ADS)

    Wyatt, Ryan; Price, A.

    2012-01-01

    Citizen Sky is a multi-year, NSF funded citizen science project involving the bright and mysterious variable star epsilon Aurigae. The project was conceived by the IYA 2009 working group on Research Experiences for Students, Teachers, and Citizen-Scientists. Citizen Sky goes beyond simple observing to include a major data analysis component, introducing participants to the full scientific process from background research to paper writing for a peer-reviewed journal. As a means of generating interest in the project, the California Academy of Sciences produced a six-minute "trailer” formatted for both traditional and fulldome planetariums as well as HD and web applications. This talk will review the production process for the trailer as well as the methods of distribution via planetariums, social media, and other venues_along with an update on the Citizen Sky Project as a whole. We will show how to use a small, professionally-produced planetarium trailer to help spread word on a citizen science project. We will also show preliminary results on a study about how participation level/type in the project affects science learning.

  4. Citizen Science Across the Disciplines

    NASA Astrophysics Data System (ADS)

    Fienberg, R. T.; Gay, P. L.; Lewis, G.; Gold, M.

    2011-09-01

    Astronomers, geologists, ornithologists, and many others across the scientific spectrum have discovered a powerful new tool for conducting research: an army of willing and enthusiastic citizen scientists. Tens of thousands of nonscientists routinely help researchers collect data, analyze it, and even interpret it, enabling scientific investigations that might otherwise be impossible. Many citizen-science projects are developed and conducted at least in part for the purposes of education and outreach, so it is appropriate to ask not only whether they are having a significant scientific impact, but also whether they are having a significant educational one. In this discussion we address issues such as the factors that determine whether a citizen-science project is successful, whether scientists and citizens benefit equally or unequally, and whether citizen science attracts a wide cross section of the public or only people who are already science literate, thereby limiting its effectiveness for EPO.

  5. Data Mining Citizen Science Results

    NASA Astrophysics Data System (ADS)

    Borne, K. D.

    2012-12-01

    Scientific discovery from big data is enabled through multiple channels, including data mining (through the application of machine learning algorithms) and human computation (commonly implemented through citizen science tasks). We will describe the results of new data mining experiments on the results from citizen science activities. Discovering patterns, trends, and anomalies in data are among the powerful contributions of citizen science. Establishing scientific algorithms that can subsequently re-discover the same types of patterns, trends, and anomalies in automatic data processing pipelines will ultimately result from the transformation of those human algorithms into computer algorithms, which can then be applied to much larger data collections. Scientific discovery from big data is thus greatly amplified through the marriage of data mining with citizen science.

  6. Citizen science can improve conservation science, natural resource management, and environmental protection

    USGS Publications Warehouse

    McKinley, Duncan C.; Miller-Rushing, Abe J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Cook-Patton, Susan; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2017-01-01

    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we show how citizen science is a powerful tool for tackling many of the challenges faced in the field of conservation biology. We describe the two interwoven paths by which citizen science can improve conservation efforts, natural resource management, and environmental protection. The first path includes building scientific knowledge, while the other path involves informing policy and encouraging public action. We explore how citizen science is currently used and describe the investments needed to create a citizen science program. We find that:Citizen science already contributes substantially to many domains of science, including conservation, natural resource, and environmental science. Citizen science informs natural resource management, environmental protection, and policymaking and fosters public input and engagement.Many types of projects can benefit from citizen science, but one must be careful to match the needs for science and public involvement with the right type of citizen science project and the right method of public participation.Citizen science is a rigorous process of scientific discovery, indistinguishable from conventional science apart from the participation of volunteers. When properly designed, carried out, and evaluated, citizen science can provide sound science, efficiently generate high-quality data, and help solve problems.

  7. Exposure Science 21: Meeting the Needs of Citizen Scientists

    EPA Science Inventory

    Since 2013 there has been an increased focus on citizen science and the role of community engagement in the research process. In response to the National Academy of Sciences in its 2012 report on Exposure Science in the 21st Century: a Vision and a Strategy, a subgroup of federal...

  8. 21st-Century Citizen Science

    ERIC Educational Resources Information Center

    Nugent, Jill; Smith, Walter; Cook, Linda; Bell, Meredith

    2015-01-01

    With rapidly evolving technology, the world is more connected than ever, and citizens around the globe can contribute to science like never before (Dickinson and Bonney 2012). Reflecting the growing capacity of citizen science, this article presents a science education continuum that moves from global awareness to global contribution. At each…

  9. A Science Products Inventory for Citizen-Science Planning and Evaluation

    PubMed Central

    Wiggins, Andrea; Bonney, Rick; LeBuhn, Gretchen; Parrish, Julia K; Weltzin, Jake F

    2018-01-01

    Abstract Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science. PMID:29867254

  10. A Science Products Inventory for Citizen-Science Planning and Evaluation

    PubMed Central

    Wiggins, Andrea; Bonney, Rick; LeBuhn, Gretchen; Parrish, Julia K; Weltzin, Jake F

    2018-01-01

    Abstract Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science. PMID:29867253

  11. A science products inventory for citizen-science planning and evaluation

    USGS Publications Warehouse

    Wiggins, Andrea; Bonney, Rick; LeBuhn, Gretchen; Parrish, Julia K.; Weltzin, Jake F.

    2018-01-01

    Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science.

  12. A Science Products Inventory for Citizen-Science Planning and Evaluation.

    PubMed

    Wiggins, Andrea; Bonney, Rick; LeBuhn, Gretchen; Parrish, Julia K; Weltzin, Jake F

    2018-06-01

    Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science.

  13. Citizen Science

    EPA Pesticide Factsheets

    Citizen Science is a fast-growing field in which scientific investigations are conducted by volunteers, which have been successful in expanding scientific knowledge, raising environmental awareness, and leveraging change.

  14. Citizen Science Data and Scaling

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Wasser, L. A.

    2013-12-01

    There is rapid growth in the collection of environmental data by non experts. So called ';citizen scientists' are collecting data on plant phenology, precipitation patterns, bird migration and winter feeding, mating calls of frogs in the spring, and numerous other topics and phenomena related to environmental science. This data is generally submitted to online programs (e.g Project BudBurst, COCORaHS, Project Feederwatch, Frogwatch USA, etc.)and is freely available to scientists, educators, land managers, and decisions makers. While the data is often used to address specific science questions, it also provides the opportunity to explore its utility in the context of ecosystem scaling. Citizen science data is being collected and submitted at an unprecedented rate and is of a spatial and temporal scale previously not possible. The amount of citizen science data vastly exceeds what scientists or land managers can collect on their own. As such, it provides opportunities to address scaling in the environmental sciences. This presentation will explore data from several citizen science programs in the context of scaling.

  15. Science experiences of citizen scientists in entomology research

    NASA Astrophysics Data System (ADS)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and

  16. Citizen Science Initiatives: Engaging the Public and Demystifying Science

    PubMed Central

    Van Vliet, Kim; Moore, Claybourne

    2016-01-01

    The Internet and smart phone technologies have opened up new avenues for collaboration among scientists around the world. These technologies have also expanded citizen science opportunities and public participation in scientific research (PPSR). Here we discuss citizen science, what it is, who does it, and the variety of projects and methods used to increase scientific knowledge and scientific literacy. We describe a number of different types of citizen-science projects. These greatly increase the number of people involved, helping to speed the pace of data analysis and allowing science to advance more rapidly. As a result of the numerous advantages of citizen-science projects, these opportunities are likely to expand in the future and increase the rate of novel discoveries. PMID:27047582

  17. Citizen Science Initiatives: Engaging the Public and Demystifying Science.

    PubMed

    Van Vliet, Kim; Moore, Claybourne

    2016-03-01

    The Internet and smart phone technologies have opened up new avenues for collaboration among scientists around the world. These technologies have also expanded citizen science opportunities and public participation in scientific research (PPSR). Here we discuss citizen science, what it is, who does it, and the variety of projects and methods used to increase scientific knowledge and scientific literacy. We describe a number of different types of citizen-science projects. These greatly increase the number of people involved, helping to speed the pace of data analysis and allowing science to advance more rapidly. As a result of the numerous advantages of citizen-science projects, these opportunities are likely to expand in the future and increase the rate of novel discoveries.

  18. Mapping species distributions: a comparison of skilled naturalist and lay citizen science recording.

    PubMed

    van der Wal, René; Anderson, Helen; Robinson, Annie; Sharma, Nirwan; Mellish, Chris; Roberts, Stuart; Darvill, Ben; Siddharthan, Advaith

    2015-11-01

    To assess the ability of traditional biological recording schemes and lay citizen science approaches to gather data on species distributions and changes therein, we examined bumblebee records from the UK's national repository (National Biodiversity Network) and from BeeWatch. The two recording approaches revealed similar relative abundances of bumblebee species but different geographical distributions. For the widespread common carder (Bombus pascuorum), traditional recording scheme data were patchy, both spatially and temporally, reflecting active record centre rather than species distribution. Lay citizen science records displayed more extensive geographic coverage, reflecting human population density, thus offering better opportunities to account for recording effort. For the rapidly spreading tree bumblebee (Bombus hypnorum), both recording approaches revealed similar distributions due to a dedicated mapping project which overcame the patchy nature of naturalist records. We recommend, where possible, complementing skilled naturalist recording with lay citizen science programmes to obtain a nation-wide capability, and stress the need for timely uploading of data to the national repository.

  19. Citizen Scientists: Investigating Science in the Community

    ERIC Educational Resources Information Center

    Jones, Gail; Childers, Gina; Stevens, Vanessa; Whitley, Blake

    2012-01-01

    Citizen science programs are becoming increasingly popular among teachers, students, and families. The term "citizen scientist" has various definitions. It can refer to those who gather information for a particular science research study or to people who lobby for environmental protection for their communities. "Citizen science" has been called…

  20. Perspectives in Marine Citizen Science

    PubMed Central

    Bear, Michael

    2016-01-01

    Citizen science can be defined as the process by which any non-scientist collects data or uses the scientific method under the guidance or mentorship of a scientist. This article presents an overview of several marine citizen-science projects as practiced by three non-profit organizations. PMID:27047591

  1. Links and Distinctions among Citizenship, Science, and Citizen Science

    ERIC Educational Resources Information Center

    Cooper, Caren B.

    2012-01-01

    Mueller, Tippins, and Bryan (2012) presented a new conceptualization of citizen science that is meant to facilitate emerging trends in the democratization of science and science education to produce civically engaged students. I review some relevant trends in the field of citizen science, for clarity here referred to as public participation in…

  2. Citizen Science and Citizen Space Exploration: Potentials for Professional Collaboration

    NASA Astrophysics Data System (ADS)

    Wright, E.

    2012-12-01

    Citizens in Space is a project of the United States Rocket Academy, with the goal of promoting citizen science and citizen space exploration. This goal is enabled by the new reusable suborbital spacecraft now under development by multiple companies in the US. For the first phase of this project, we have acquired a contract for 10 flights on the Lynx suborbital spacecraft, which is under construction by XCOR Aerospace in Mojave, CA. This represents, to the best of our knowledge, the largest single bulk purchase of suborbital flights to date. Citizens in Space has published an open call for experiments to fly on these missions, which we expect will begin in late 2013 or early 2014. We will be selecting approx. 100 small experiments and 10 citizen astronauts to fly as payload operators. Although our primary goal is to encourage citizen science, these flight opportunities are also open to professional researchers who have payloads that meet our criteria. We believe that the best citizen-science projects are collaborations between professional and citizen scientists. We will discuss various ways in which professional scientists can collaborate with citizen scientists to take advantage of the flight opportunities provided by our program. We will discuss the capabilities of the Lynx vehicle, the 1u- and 2u-CubeSat form factor we are using for our payloads, and general considerations for payload integration. As an example of the payloads we can accommodate, we will discuss a NASA-inspired experiment to collect particles from the upper atmosphere.;

  3. Framework for Processing Citizens Science Data for Applications to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Teng, William; Albayrak, Arif

    2017-01-01

    Citizen science (or crowdsourcing) has drawn much high-level recent and ongoing interest and support. It is poised to be applied, beyond the by-now fairly familiar use of, e.g., Twitter for natural hazards monitoring, to science research, such as augmenting the validation of NASA earth science mission data. This interest and support is seen in the 2014 National Plan for Civil Earth Observations, the 2015 White House forum on citizen science and crowdsourcing, the ongoing Senate Bill 2013 (Crowdsourcing and Citizen Science Act of 2015), the recent (August 2016) Open Geospatial Consortium (OGC) call for public participation in its newly-established Citizen Science Domain Working Group, and NASA's initiation of a new Citizen Science for Earth Systems Program (along with its first citizen science-focused solicitation for proposals). Over the past several years, we have been exploring the feasibility of extracting from the Twitter data stream useful information for application to NASA precipitation research, with both "passive" and "active" participation by the twitterers. The Twitter database, which recently passed its tenth anniversary, is potentially a rich source of real-time and historical global information for science applications. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. Mining the Twitter stream could augment these validation programs and, potentially, help tune existing algorithms. Our ongoing work, though exploratory, has resulted in key components for processing and managing tweets, including the capabilities to filter the Twitter stream in real time, to extract location information, to filter for exact phrases, and to plot tweet distributions. The

  4. Amateur knowledge: public art and citizen science.

    PubMed

    Rogers, Hannah

    2011-01-01

    The science studies literatures on amateurs and citizen science have remained largely unconnected despite similarities between the two categories. The essay connects amateur knowledge and citizen science through examples from public art. Through an analysis of the use of the term "amateur" by contemporary artists working to engage the public in critiques of science, connections in the ideals of democratic knowledge making by amateurs and citizen scientists are further explored.

  5. Why Citizen Science Without Usability Testing Will Underperform

    NASA Astrophysics Data System (ADS)

    Romano, C.; Gay, P.; Owens, R.; Burlea, G.

    2017-12-01

    Citizen science projects must undergo usability testing and optimization if they are to meet their stated goals. This presentation will include video of usability tests conducted upon citizen science websites. Usability testing is essential to the success of online interaction, however, citizen science projects have just begun to include this critical activity. Interaction standards in citizen science lag behind those of commercial interests, and published research on this topic is limited. Since online citizen science is by definition, an exchange of information, a clear understanding of how users experience an online project is essential to informed decision-making. Usability testing provides that insight. Usability testing collects data via direct observation of a person while she interacts with a digital product, such as a citizen science website. The test participant verbalizes her thoughts while using the website or application; the moderator follows the participant and captures quantitative measurement of the participant's confidence of success as she advances through the citizen science project. Over 15 years of usability testing, we have observed that users who do not report a consistent sense of progress are likely to abandon a website after as few as three unrewarding interactions. Since citizen science is also a voluntary activity, ensuring seamless interaction for users is mandatory. Usability studies conducted on citizen science websites demonstrate that project teams frequently underestimate a user's need for context and ease of use. Without usability testing, risks to online citizen science projects include high bounce rate (users leave the website without taking any action), abandonment (of the website, tutorials, registration), misunderstanding instructions (causing disorientation and erroneous conclusions), and ultimately, underperforming projects.

  6. Schools/Citizen Science: A Response to "The Future of Citizen Science"

    ERIC Educational Resources Information Center

    Weinstein, Matthew

    2012-01-01

    This paper builds on Mueller, Tippins, and Bryan's paper to ask how neoliberal restructuring impacts the form of appropriate and possible democratic science/education. It examines the compatibilities between antidemocratic tendencies of current schooling and common forms citizen science. It also clarifies several details regarding the street-medic…

  7. Prospects and limitations of citizen science in invasive species management: A case study with Burmese pythons in Everglades National Park

    USGS Publications Warehouse

    Falk, Bryan; Snow, Raymond W.; Reed, Robert

    2016-01-01

    Citizen-science programs have the potential to contribute to the management of invasive species, including Python molurus bivittatus (Burmese Python) in Florida. We characterized citizen-science–generated Burmese Python information from Everglades National Park (ENP) to explore how citizen science may be useful in this effort. As an initial step, we compiled and summarized records of Burmese Python observations and removals collected by both professional and citizen scientists in ENP during 2000–2014 and found many patterns of possible significance, including changes in annual observations and in demographic composition after a cold event. These patterns are difficult to confidently interpret because the records lack search-effort information, however, and differences among years may result from differences in search effort. We began collecting search-effort information in 2014 by leveraging an ongoing citizen-science program in ENP. Program participation was generally low, with most authorized participants in 2014 not searching for the snakes at all. We discuss the possible explanations for low participation, especially how the low likelihood of observing pythons weakens incentives to search. The monthly rate of Burmese Python observations for 2014 averaged ~1 observation for every 8 h of searching, but during several months, the rate was 1 python per >40 h of searching. These low observation-rates are a natural outcome of the snakes’ low detectability—few Burmese Pythons are likely to be observed even if many are present. The general inaccessibility of the southern Florida landscape also severely limits the effectiveness of using visual searches to find and remove pythons for the purposes of population control. Instead, and despite the difficulties in incentivizing voluntary participation, the value of citizen-science efforts in the management of the Burmese Python population is in collecting search-effort information.

  8. Can Citizen Science Assist in Determining Koala (Phascolarctos cinereus) Presence in a Declining Population?

    PubMed

    Flower, Emily; Jones, Darryl; Bernede, Lilia

    2016-07-14

    The acceptance and application of citizen science has risen over the last 10 years, with this rise likely attributed to an increase in public awareness surrounding anthropogenic impacts affecting urban ecosystems. Citizen science projects have the potential to expand upon data collected by specialist researchers as they are able to gain access to previously unattainable information, consequently increasing the likelihood of an effective management program. The primary objective of this research was to develop guidelines for a successful regional-scale citizen science project following a critical analysis of 12 existing citizen science case studies. Secondly, the effectiveness of these guidelines was measured through the implementation of a citizen science project, Koala Quest, for the purpose of estimating the presence of koalas in a fragmented landscape. Consequently, this research aimed to determine whether citizen-collected data can augment traditional science research methods, by comparing and contrasting the abundance of koala sightings gathered by citizen scientists and professional researchers. Based upon the guidelines developed, Koala Quest methodologies were designed, the study conducted, and the efficacy of the project assessed. To combat the high variability of estimated koala populations due to differences in counting techniques, a national monitoring and evaluation program is required, in addition to a standardised method for conducting koala population estimates. Citizen science is a useful method for monitoring animals such as the koala, which are sparsely distributed throughout a vast geographical area, as the large numbers of volunteers recruited by a citizen science project are capable of monitoring a similarly broad spatial range.

  9. Project BudBurst: Citizen Science for All Seasons

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Brewer, C.; Havens, K.; Meymaris, K.

    2007-12-01

    Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. Project BudBurst launched a pilot program in the Spring of 2007. The goals of Project BudBurst were to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From April through mid-June 2007, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of ~60 easily identifiable, broadly distributed wild and cultivated species found across the continent. We will report on the results of the pilot project and discuss plans to expand Project BudBurst as it becomes a year round event beginning in 2008. A broad consortium of collaborators, representing the Chicago Botanic Garden, Plant Conservation Alliance, ESRI, the USA-National Phenology Network, University Corporation for Atmospheric Research, University of Arizona, University of Montana, University of California-Santa Barbara, University of Wisconsin-Milwaukee and the University of Wisconsin-Madison, came together to design and implement Project BudBurst with seed funding from the U.S. Bureau of Land Management, the National Phenology Network (through a RCN grant from the NSF), and the Plant Conservation Alliance.

  10. The National Eclipse Weather Experiment: use and evaluation of a citizen science tool for schools outreach.

    PubMed

    Portas, Antonio M; Barnard, Luke; Scott, Chris; Harrison, R Giles

    2016-09-28

    The National Eclipse Weather Experiment (NEWEx) was a citizen science project for atmospheric data collection from the partial solar eclipse of 20 March 20. Its role as a tool for schools outreach is discussed here, in seeking to bridge the gap between self-identification with the role of a scientist and engagement with science, technology, engineering and mathematics subjects. (The science data generated have had other uses beyond this, explored elsewhere.) We describe the design of webforms for weather data collection, and the use of several external partners for the dissemination of the project nationwide. We estimate that up to 3500 pupils and teachers took part in this experiment, through the 127 schools postcodes identified in the data submission. Further analysis revealed that 43.3% of the schools were primary schools and 35.4% were secondary. In total, 96.3% of participants reported themselves as 'captivated' or 'inspired' by NEWEx. We also found that 60% of the schools that took part in the experiment lie within the highest quintiles of engagement with higher education, which emphasizes the need for the scientific community to be creative when using citizen science projects to target hard-to-reach audiences.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  11. Micro CSI: A Microbial Citizen Science Initiative in Urban Watersheds

    EPA Science Inventory

    Across the Nation, a number of citizen science efforts have been conducted to monitor water quality. Efforts have included monitoring of bacteriological parameters (E. coli, enterococci, and fecal coliforms) and/or physicochemical parameters (temperature, turbidity, pH, conducti...

  12. Initiating and continuing participation in citizen science for natural history.

    PubMed

    Everett, Glyn; Geoghegan, Hilary

    2016-07-22

    Natural history has a long tradition in the UK, dating back to before Charles Darwin. Developing from a principally amateur pursuit, natural history continues to attract both amateur and professional involvement. Within the context of citizen science and public engagement, we examine the motivations behind citizen participation in the national survey activities of the Open Air Laboratories (OPAL) programme, looking at: people's experiences of the surveys as 'project-based leisure'; their motivations for taking part and barriers to continued participation; where they feature on our continuum of engagement; and whether participation in an OPAL survey facilitated their movement between categories along this continuum. The paper focuses on a less-expected but very significant outcome regarding the participation of already-engaged amateur naturalists in citizen science. Our main findings relate to: first, how committed amateur naturalists (already-engaged) have also enjoyed contributing to OPAL and the need to respect and work with their interest to encourage broader and deeper involvement; and second, how new (previously-unengaged) and relatively new participants (casually-engaged) have gained confidence, renewed their interests, refocussed their activities and/or gained validation from participation in OPAL. Overall, we argue that engagement with and enthusiasm for the scientific process is a motivation shared by citizens who, prior to participating in the OPAL surveys, were previously-unengaged, casually-engaged or already-engaged in natural history activities. Citizen science has largely been written about by professional scientists for professional scientists interested in developing a project of their own. This study offers a qualitative example of how citizen science can be meaningful to participants beyond what might appear to be a public engagement data collection exercise.

  13. Project BudBurst: Continental-scale citizen science for all seasons

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Newman, S. J.; Ward, D.; Havens-Young, K.; Alaback, P.; Meymaris, K.

    2011-12-01

    Project BudBurst's (budburst.org) recent move to the National Ecological Observatory Network (NEON) has benefitted both programs. NEON has been able to use Project BudBurst as a testbed to learn best practices, network with experts in the field, and prototype potential tools for engaging people in continental-scale ecology as NEON develops its citizen science program. Participation in Project BudBurst has grown significantly since the move to NEON. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst and will report on the results of the 2010 field campaign and discuss plans to expand Project BudBurst in 2012 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago

  14. Uncertainty in Citizen Science observations: from measurement to user perception

    NASA Astrophysics Data System (ADS)

    Lahoz, William; Schneider, Philipp; Castell, Nuria

    2016-04-01

    Citizen Science activities concern general public engagement in scientific research activities when citizens actively contribute to science either with their intellectual effort or surrounding knowledge or with their tools and resources. The advent of technologies such as the Internet and smartphones, and the growth in their usage, has significantly increased the potential benefits from Citizen Science activities. Citizen Science observations from low-cost sensors, smartphones and Citizen Observatories, provide a novel and recent development in platforms for observing the Earth System, with the opportunity to extend the range of observational platforms available to society to spatio-temporal scales (10-100s m; 1 hr or less) highly relevant to citizen needs. The potential value of Citizen Science is high, with applications in science, education, social aspects, and policy aspects, but this potential, particularly for citizens and policymakers, remains largely untapped. Key areas where Citizen Science data start to have demonstrable benefits include GEOSS Societal Benefit Areas such as Health and Weather. Citizen Science observations have many challenges, including simulation of smaller spatial scales, noisy data, combination with traditional observational methods (satellite and in situ data), and assessment, representation and visualization of uncertainty. Within these challenges, that of the assessment and representation of uncertainty and its communication to users is fundamental, as it provides qualitative and/or quantitative information that influences the belief users will have in environmental information. This presentation will discuss the challenges in assessment and representation of uncertainty in Citizen Science observations, its communication to users, including the use of visualization, and the perception of this uncertainty information by users of Citizen Science observations.

  15. Citizen Science Opportunities for Monitoring Air Quality Fact Sheet

    EPA Pesticide Factsheets

    The Citizen Science Opportunities for Monitoring Air Quality fact sheet provides information on what citizen science is and the tools and resources available for citizen scientists interested in monitoring air quality.

  16. Citizen science: a new direction in canine behavior research.

    PubMed

    Hecht, Julie; Spicer Rice, Eleanor

    2015-01-01

    Researchers increasingly rely on members of the public to contribute to scientific projects-from collecting or identifying, to analyzing and disseminating data. The "citizen science" model proves useful to many thematically distinctive fields, like ornithology, astronomy, and phenology. The recent formalization of citizen science projects addresses technical issues related to volunteer participation--like data quality--so that citizen scientists can make longstanding, meaningful contributions to scientific projects. Since the late 1990s, canine science research has relied with greater frequency on the participation of the general public, particularly dog owners. These researchers do not typically consider the methods and technical issues that those conducting citizen science projects embrace and continue to investigate. As more canine science studies rely on public input, an in-depth knowledge of the benefits and challenges of citizen science can help produce relevant, high-quality data while increasing the general public's understanding of canine behavior and cognition as well as the scientific process. We examine the benefits and challenges of current citizen science models in an effort to enhance canine citizen science project preparation, execution, and dissemination. This article is part of a Special Issue entitled: Canine Behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Partnering for science: proceedings of the USGS Workshop on Citizen Science

    USGS Publications Warehouse

    Hines, Megan; Benson, Abigail; Govoni, David; Masaki, Derek; Poore, Barbara; Simpson, Annie; Tessler, Steven

    2013-01-01

    What U.S. Geological Survey (USGS) programs use citizen science? How can projects be best designed while meeting policy requirements? What are the most effective volunteer recruitment methods? What data should be collected to ensure validation and how should data be stored? What standard protocols are most easily used by volunteers? Can data from multiple projects be integrated to support new research or existing science questions? To help answer these and other questions, the USGS Community of Data Integration (CDI) supported the development of the Citizen Science Working Group (CSWG) in August 2011 and funded the working group’s proposal to hold a USGS Citizen Science Workshop in fiscal year 2012. The stated goals for our workshop were: raise awareness of programs and projects in the USGS that incorporate citizen science, create a community of practice for the sharing of knowledge and experiences, provide a forum to discuss the challenges of—and opportunities for—incorporating citizen science into USGS projects, and educate and support scientists and managers whose projects may benefit from public participation in science.To meet these goals, the workshop brought together 50 attendees (see appendix A for participant details) representing the USGS, partners, and external citizen science practitioners from diverse backgrounds (including scientists, managers, project coordinators, and technical developers, for example) to discuss these topics at the Denver Federal Center in Colorado on September 11–12, 2012. Over two and a half days, attendees participated in four major plenary sessions (Citizen Science Policy and Challenges, Engaging the Public in Scientific Research, Data Collection and Management, and Technology and Tools) comprised of 25 invited presentations and followed by structured discussions for each session designed to address both prepared and ad hoc "big questions." A number of important community support and infrastructure needs were identified

  18. An Analysis of Citizen Science Based Research: Usage and Publication Patterns.

    PubMed

    Follett, Ria; Strezov, Vladimir

    2015-01-01

    The use of citizen science for scientific discovery relies on the acceptance of this method by the scientific community. Using the Web of Science and Scopus as the source of peer reviewed articles, an analysis of all published articles on "citizen science" confirmed its growth, and found that significant research on methodology and validation techniques preceded the rapid rise of the publications on research outcomes based on citizen science methods. Of considerable interest is the growing number of studies relying on the re-use of collected datasets from past citizen science research projects, which used data from either individual or multiple citizen science projects for new discoveries, such as for climate change research. The extent to which citizen science has been used in scientific discovery demonstrates its importance as a research approach. This broad analysis of peer reviewed papers on citizen science, that included not only citizen science projects, but the theory and methods developed to underpin the research, highlights the breadth and depth of the citizen science approach and encourages cross-fertilization between the different disciplines.

  19. Safari Science: Assessing the reliability of citizen science data for wildlife surveys

    USGS Publications Warehouse

    Steger, Cara; Butt, Bilal; Hooten, Mevin B.

    2017-01-01

    Protected areas are the cornerstone of global conservation, yet financial support for basic monitoring infrastructure is lacking in 60% of them. Citizen science holds potential to address these shortcomings in wildlife monitoring, particularly for resource-limited conservation initiatives in developing countries – if we can account for the reliability of data produced by volunteer citizen scientists (VCS).This study tests the reliability of VCS data vs. data produced by trained ecologists, presenting a hierarchical framework for integrating diverse datasets to assess extra variability from VCS data.Our results show that while VCS data are likely to be overdispersed for our system, the overdispersion varies widely by species. We contend that citizen science methods, within the context of East African drylands, may be more appropriate for species with large body sizes, which are relatively rare, or those that form small herds. VCS perceptions of the charisma of a species may also influence their enthusiasm for recording it.Tailored programme design (such as incentives for VCS) may mitigate the biases in citizen science data and improve overall participation. However, the cost of designing and implementing high-quality citizen science programmes may be prohibitive for the small protected areas that would most benefit from these approaches.Synthesis and applications. As citizen science methods continue to gain momentum, it is critical that managers remain cautious in their implementation of these programmes while working to ensure methods match data purpose. Context-specific tests of citizen science data quality can improve programme implementation, and separate data models should be used when volunteer citizen scientists' variability differs from trained ecologists' data. Partnerships across protected areas and between protected areas and other conservation institutions could help to cover the costs of citizen science programme design and implementation.

  20. Online citizen science games: Opportunities for the biological sciences.

    PubMed

    Curtis, Vickie

    2014-12-01

    Recent developments in digital technologies and the rise of the Internet have created new opportunities for citizen science. One of these has been the development of online citizen science games where complex research problems have been re-imagined as online multiplayer computer games. Some of the most successful examples of these can be found within the biological sciences, for example, Foldit, Phylo and EteRNA. These games offer scientists the opportunity to crowdsource research problems, and to engage with those outside the research community. Games also enable those without a background in science to make a valid contribution to research, and may also offer opportunities for informal science learning.

  1. Housewife data: Citizen science and the case of Love Canal

    NASA Astrophysics Data System (ADS)

    Nicaise, Nolan M.

    Citizen science is defined as members of the public acting to produce science outside of their normal working lives in order to enhance or preserve their health, environment, knowledge, or capital. It is a science by the people. Over the last several decades, it has emerged as a powerful force for the democratization of science. In response to this growing trend in citizen science, this thesis addresses the question: What is citizen science? Citizen science is discussed through the development of a definition, its historical and political context, the benefits of its use, and some frameworks for understanding. Later, the thesis explores a case study of citizen science, the Love Canal environmental crisis, and offers commentary on its methods and findings.

  2. An Analysis of Citizen Science Based Research: Usage and Publication Patterns

    PubMed Central

    Follett, Ria; Strezov, Vladimir

    2015-01-01

    The use of citizen science for scientific discovery relies on the acceptance of this method by the scientific community. Using the Web of Science and Scopus as the source of peer reviewed articles, an analysis of all published articles on “citizen science” confirmed its growth, and found that significant research on methodology and validation techniques preceded the rapid rise of the publications on research outcomes based on citizen science methods. Of considerable interest is the growing number of studies relying on the re-use of collected datasets from past citizen science research projects, which used data from either individual or multiple citizen science projects for new discoveries, such as for climate change research. The extent to which citizen science has been used in scientific discovery demonstrates its importance as a research approach. This broad analysis of peer reviewed papers on citizen science, that included not only citizen science projects, but the theory and methods developed to underpin the research, highlights the breadth and depth of the citizen science approach and encourages cross-fertilization between the different disciplines. PMID:26600041

  3. A Citizen Science and Government Collaboration: Developing ...

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) is actively involved in supporting citizen science projects and providing communities with information and assistance for conducting their own air pollution monitoring. As part of a Regional Applied Research Effort (RARE) project, EPA's Office of Research and Development (ORD) worked collaboratively with EPA Region 2 and the Ironbound Community Corporation (ICC) in Newark, New Jersey, to develop and test the “Air Sensor Toolbox for Citizen Scientists.” In this collaboration, citizen scientists measured local gaseous and particulate air pollution levels by using a customized low-cost sensor pod designed and fabricated by EPA. This citizen science air quality measurement project provided an excellent opportunity for EPA to evaluate and improve the Toolbox resources available to communities. The Air Sensor Toolbox, developed in coordination with the ICC, can serve as a template for communities across the country to use in developing their own air pollution monitoring programs in areas where air pollution is a concern. This pilot project provided an opportunity for a highly motivated citizen science organization and the EPA to work together directly to address environmental concerns within the community. Useful lessons were learned about how to improve coordination between the government and communities and the types of tools and technologies needed for conducting an effective citizen science project that can be app

  4. Research Projects that use Citizen-Science Data with NGSS

    NASA Astrophysics Data System (ADS)

    Walker, C. E.

    2014-12-01

    We are exploring how to utilize the vast Globe at Night database for use in K-12, keeping in mind the guidelines set by the Next Generation Science Standards (NGSS). Areas we are focusing on include data mining, suitable research questions, data sets to compare with Globe at Night, and analysis tools, as well as how best to engage teachers and students in the research. Globe at Night, a citizen-science program on monitoring light pollution, has a database with the potential to connect with factors embedded in NGSS: students could construct explanations and design solutions to light pollution issues, engage in argument from evidence and obtain, evaluate and communicate information. Projects could be multidisciplinary in nature, connecting the effects of light pollution on human health, wildlife, energy consumption and astronomy. We welcome feedback to help determine the direction and emphasis for the next phase of Globe at Night. The presentation will include the nature of the research in the context of NGSS, building on frameworks being developed with the Cornell Ornithology Lab, the National Park Service (NPS) and Fieldscope. NPS staff have the means to make a contiguous map of light pollution across the U.S.. Fieldscope staff are developing the analysis tools online. And the Ornithology Lab has citizen-science data on various birds. The Globe at Night citizen-science campaign can be found at www.globeatnight.org.

  5. Strengthening EPA Citizen Science Partnerships for Environmental Protection

    EPA Pesticide Factsheets

    The Council’s April 2018 report, Information to Action—Strengthening EPA Citizen Science Partnerships for Environmental Protection, and the recommendations contained within were developed following extensive interviews with citizen science experts and prac

  6. Hanny and the Mystery of the Voorwerp: Citizen Science in the Classroom

    NASA Astrophysics Data System (ADS)

    Costello, K.; Reilly, E.; Bracey, G.; Gay, P.

    2012-08-01

    The highly engaging graphic comic Hanny and the Mystery of the Voorwerp is the focus of an eight-day educational unit geared to middle level students. Activities in the unit link national astronomy standards to the citizen science Zooniverse website through tutorials that lead to analysis of real data online. NASA resources are also included in the unit. The content of the session focused on the terminology and concepts - galaxy formation, types and characteristics of galaxies, use of spectral analysis - needed to classify galaxies. Use of citizen science projects as tools to teach inquiry in the classroom was the primary focus of the workshop. The session included a hands-on experiment taken from the unit, including a NASA spectral analysis activity called "What's the Frequency, Roy G Biv?" In addition, presenters demonstrated the galaxy classification tools found in the "Galaxy Zoo" project at the Zooniverse citizen science website.

  7. Citizen Science: Getting More Involved with Science

    ERIC Educational Resources Information Center

    Leeder, Poppy

    2014-01-01

    One of the things that this author enjoys most about working at the Natural Environment Research Council (NERC) is the science that she finds out about and the researchers she meets. Having loved science throughout school and then on into university, the author is always keen to learn more. The increase in citizen science projects over the last…

  8. Citizen Science: Opportunities for Girls' Development of Science Identity

    NASA Astrophysics Data System (ADS)

    Brien, Sinead Carroll

    Many students in the United States, particularly girls, have lost interest in science by the time they reach high school and do not pursue higher degrees or careers in science. Several science education researchers have found that the ways in which youth see themselves and position themselves in relation to science can influence whether they pursue science studies and careers. I suggest that participation in a citizen science program, which I define as a program in which girls interact with professional scientists and collect data that contributes to scientific research, could contribute to changing girls' perceptions of science and scientists, and promote their science identity work. I refer to science identity as self-recognition and recognition by others that one thinks scientifically and does scientific work. I examined a case study to document and analyze the relationship between girls' participation in a summer citizen science project and their development of science identity. I observed six girls between the ages of 16 and 18 during the Milkweed and Monarch Project, taking field notes on focal girls' interactions with other youth, adults, and the scientist, conducted highly-structured interviews both pre-and post- girls' program participation, and interviewed the project scientist and educator. I qualitatively analyzed field notes and interview responses for themes in girls' discussion of what it meant to think scientifically, roles they took on, and how they recognized themselves as thinking scientifically. I found that girls who saw themselves as thinking scientifically during the program seemed to demonstrate shifts in their science identity. The aspects of the citizen science program that seemed to most influence shifts in these girls' science identities were 1) the framing of the project work as "real science, 2) that it involved ecological field work, and 3) that it created a culture that valued data and scientific work. However, some of the girls only

  9. Assessing Motivations and Use of Online Citizen Science Astronomy Projects

    NASA Astrophysics Data System (ADS)

    Nona Bakerman, Maya; Buxner, Sanlyn; Bracey, Georgia; Gugliucci, Nicole

    2018-01-01

    The exponential proliferation of astronomy data has resulted in the need to develop new ways to analyze data. Recent efforts to engage the public in the discussion of the importance of science has led to projects that are aimed at letting them have hands-on experiences. Citizen science in astronomy, which has followed the model of citizen science in other scientific fields, has increased in the number and type of projects in the last few years and poses captivating ways to engage the public in science.The primary feature of this study was citizen science users’ motivations and activities related to engaging in astronomy citizen science projects. We report on participants’ interview responses related to their motivations, length and frequency of engagement, and reasons for leaving the project. From May to October 2014, 32 adults were interviewed to assess their motivations and experiences with citizen science. In particular, we looked at if and how motivations have changed for those who have engaged in the projects in order to develop support for and understandparticipants of citizen science. The predominant reasons participants took part in citizen science were: interest, helping, learning or teaching, and being part of science. Everyone interviewed demonstrated an intrinsic motivation to do citizen science projects.Participants’ reasons for ending their engagement on any given day were: having to do other things, physical effects of the computer, scheduled event that ended, attention span or tired, computer or program issues. A small fraction of the participants also indicated experiencing negative feedback. Out of the participants who no longer took part in citizen science projects, some indicated that receiving negative feedback was their primary reason and others reported the program to be frustrating.Our work is helping us to understand participants who engage in online citizen science projects so that researchers can better design projects to meet their

  10. Citizen science can improve conservation science, natural resource management, and environmental protection

    USDA-ARS?s Scientific Manuscript database

    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we sh...

  11. What can Citizen Science do for Ocean Science and Ocean Scientists?

    NASA Astrophysics Data System (ADS)

    Best, M.; Hoeberechts, M.; Mangin, A.; Oggioni, A.; Orcutt, J. A.; Parrish, J.; Pearlman, J.; Piera, J.; Tagliolato, P.

    2016-12-01

    The ocean represents over 70% of our planet's surface area, over 90% of the living space. Humans are not marine creatures, we therefore have fundamentally not built up knowledge of the ocean in the same way we have on land. The more we learn about the ocean, the more we understand it is the regulatory engine of our planet…How do we catch up? Answers to this question will need to come from many quarters; A powerful and strategic option to complement existing observation programs and infrastructure is Citizen Science. There has been significant and relevant discussion of the importance of Citizen Science to citizens and stakeholders. The missing effective question is sometimes what is the potential of citizen science for scientists? The answers for both scientists and society are: spatial coverage, remote locations, temporal coverage, event response, early detection of harmful processes, sufficient data volume for statistical analysis and identification of outliers, integrating local knowledge, data access in exchange for analysis (e.g. with industry) and cost-effective monitoring systems. Citizens can be involved in: instrument manufacture and maintenance, instrument deployment/sample collection, data collection and transmission, data analysis, data validation/verification, and proposals of new topics of research. Such opportunities are balanced by concern on the part of scientists about the quality, the consistency and the reliability of citizen observations and analyses. Experience working with citizen science groups continues to suggest that with proper training and mentoring, these issues can be addressed, understanding both benefits and limitations. How to do it- implementation and maintenance of citizen science: How to recruit, engage, train, and maintain Citizen Scientists. Data systems for acquisition, assessment, access, analysis, and visualisation of distributed data sources. Tools/methods for acquiring observations: Simple instruments, Smartphone Apps

  12. CosmoQuest: Building community around Citizen Science Collaboration

    NASA Astrophysics Data System (ADS)

    Gay, P.

    2015-12-01

    CosmoQuest was envisioned in 2011 with a singular goal: to create a place where people of all backgrounds can learn and do science in a virtual research community. Like a brick-and-mortar center, CosmoQuest includes facilities for doing science and for educating its members through classes, seminars, and other forms of professional development. CosmoQuest is unique with its combination of public engagement in doing science—known as "citizen science"— and its diversity of learning opportunities that enable STEM education. Our suite of activities is able maximize people's ability to learn and do science, while improving scientific literacy. Since its launch on January 1, 2012, CosmoQuest has grown to become the most trafficked astronomy citizen science site on the English-language internet. It has hosted five citizen science portals supporting NASA SMD science and is the only citizen science site to have produced peer-reviewed surface science results [Robbins, et al. 2014]. CosmoQuest, however, is more than just citizen science. It is a virtual research center for the public, and for the educators who teach in classrooms and science centers. Like with with any research center, CosmoQuest's success hinges on its ability to build a committed research community, and the challenge has been creating this community without the benefit of real-world interactions. In this talk, we overview how CosmoQuest has built a virtual community through screen-to-screen interactions using a suite of technologies that must constantly evolve as the internet evolves.

  13. Designing Citizen Science Projects in the Era of Mega-Information and Connected Activism

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.

    2010-12-01

    The design of citizen science projects must take many factors into account in order to be successful. Currently, there are a wide variety of citizen science projects with different aims, audiences, reporting methods, and degrees of scientific rigor and usefulness. Projects function on local, national, and worldwide scales and range in time from limited campaigns to around the clock projects. For current and future projects, advanced cell phones and mobile computing allow an unprecedented degree of connectivity and data transfer. These advances will greatly influence the design of citizen science projects. An unprecedented amount of data is available for data mining by interested citizen scientists; how can projects take advantage of this? Finally, a variety of citizen scientist projects have social activism and change as part of their mission and goals. How can this be harnessed in a constructive and efficient way? The design of projects must also select the proper role for experts and novices, provide quality control, and must motivate users to encourage long-term involvement. Effective educational and instructional materials design can be used to design responsive and effective projects in a more highly connected age with access to very large amounts of information.

  14. Blogging the Stories of Citizen Science to Inspire Participation, Build Community, and Increase Public Understanding of Science

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Cavalier, D.; Ohab, J.; Taylor, L.

    2011-12-01

    Sharing citizen science projects and the experiences that people have with science through blogs provides avenues to foster public understanding of science and showcase ways that people can get involved. Blogs, combined with other social media such as Twitter and Facebook, make science social - adding a human element to the process of scientific discovery. We have been sharing stories of citizen science through two blogs. Intended for a general public audience. The Science for Citizens blog (http://scienceforcitizens.net/blog/) was started in 2010 and links blog posts to a growing network of citizen science projects. Citizen Science Buzz (http://www.talkingscience.org/category/citizen-science-buzz/) was started in 2011 on the TalkingScience blog network, a project of the Science Friday Initiative. Both blogs aim to increase the exposure of citizen science projects, inspire people to do citizen science, and connect people with projects that interest them. The timeliness of blogs also provides a good platform for sharing information about one-time citizen science events and short-lived projects. Utilizing Facebook and Twitter increases traffic to blog posts about citizen science events in a timely manner and can help build community around events. Additionally, the timeliness of blogs provides the opportunity to connect citizen science and current events, helping to form geoscience teachable moments out of recent news. For example, highlighting citizen scientists near Birmingham, Alabama who collect weather data after the April 2011 tornado outbreak ravaged that area offers a positive note on how people are volunteering their time to help us all better understand the planet despite a catastrophic event.

  15. A Coastal Citizen Science Project - How to run an international Citizen Science Project?

    NASA Astrophysics Data System (ADS)

    Kruse, K.; Knickmeier, K.; Thiel, M.; Gatta, M.

    2016-02-01

    "Searching for plastic garbage" is an international Citizen Science project that aims to participate school students in the public discussion on the topic "plastic pollution in the ocean". For this, young people apply various research methods, evaluate their data, communicate and publish their results and investigate solutions solving this problem. The project will be carried out in Chile and Germany at the same time, which allows the participating students to share and compare their results and discuss their ideas with an international partner. This takes place on the website www.save-ocean.org. The project promotes intercultural and scientific skills of the students. They get insights into scientific research, get into another culture and experiences plastic pollution as an important global problem. Since May 2015, 450 pupils aged 10 to 15 years and 20 teachers in Germany and Chile have explored the plastic garbage on beaches. Where are the largest plastic garbage deposits? Which items of plastic are mostly found in Germany and Chile? Or where does this garbage comes from? These and other research questions are being answered by an international network between students, teachers and scientists. After completing the first Citizen Science pilot study successfully in summer 2015, the entire German and Chilean coast will be explored in spring 2016 by around 2500 participating school students. The project "Searching for plastic garbage" is the first international Citizen Science project that is a cooperation between the ocean:lab of Kiel Science Factory and the "Cientificos de la Basura", a project of the department of marine biology at University Catolica del Norte in Coquimbo, Chile. The project is supported by the Cluster of Excellence "The Future Ocean", the Leibniz Institute for Science Education and Mathematics (IPN), the Ministry of School and Professional Education of Land Schleswig-Holstein and the University Catolica del Norte in Coquimbo, Chile

  16. Current Approaches in Implementing Citizen Science in the Classroom

    PubMed Central

    Shah, Harsh R.; Martinez, Luis R.

    2016-01-01

    Citizen science involves a partnership between inexperienced volunteers and trained scientists engaging in research. In addition to its obvious benefit of accelerating data collection, citizen science has an unexplored role in the classroom, from K–12 schools to higher education. With recent studies showing a weakening in scientific competency of American students, incorporating citizen science initiatives in the curriculum provides a means to address deficiencies in a fragmented educational system. The integration of traditional and innovative pedagogical methods to reform our educational system is therefore imperative in order to provide practical experiences in scientific inquiry, critical thinking, and problem solving for school-age individuals. Citizen science can be used to emphasize the recognition and use of systematic approaches to solve problems affecting the community. PMID:27047583

  17. Current Approaches in Implementing Citizen Science in the Classroom.

    PubMed

    Shah, Harsh R; Martinez, Luis R

    2016-03-01

    Citizen science involves a partnership between inexperienced volunteers and trained scientists engaging in research. In addition to its obvious benefit of accelerating data collection, citizen science has an unexplored role in the classroom, from K-12 schools to higher education. With recent studies showing a weakening in scientific competency of American students, incorporating citizen science initiatives in the curriculum provides a means to address deficiencies in a fragmented educational system. The integration of traditional and innovative pedagogical methods to reform our educational system is therefore imperative in order to provide practical experiences in scientific inquiry, critical thinking, and problem solving for school-age individuals. Citizen science can be used to emphasize the recognition and use of systematic approaches to solve problems affecting the community.

  18. Facebooking Citizen Science with the Zooniverse

    NASA Astrophysics Data System (ADS)

    Moore, Joseph; Gay, P. L.; Hogan, K.; Lintott, C.; Impey, C.; Watson, C.

    2011-01-01

    While fully online citizen science projects like Galaxy Zoo and Moon Zoo are able to garner participation by tens to hundreds of thousands of people, this success pales next to the number of people who use Facebook. With a population well over half a billion, Facebook is, at the time of this writing, the largest single online community. As an experiment in social science-engagement, we have created Facebook fan pages for Zooniverse science tasks, social-sharing apps for Moon Zoo and Galaxy Zoo, and a novel galaxy-related citizen science project all within Facebook. In this poster we present early analysis on how these engagements attract both old and new users, and how users choose to share and interact through these pages.

  19. Facilitating the Development and Evaluation of a Citizen Science Web Site: A Case Study of Repeat Photography and Climate Change in Southwest Alaska's National Parks

    ERIC Educational Resources Information Center

    Mullen, Karina C.; Newman, Gregory; Thompson, Jessica L.

    2013-01-01

    Interviews with national park visitors across the country revealed that climate change education through place-based, hands-on learning using repeat photographs and technology is appealing to park visitors. This manuscript provides a summary of the development of a repeat photography citizen science Web site for national parks in Southwest Alaska.…

  20. Citizen surveillance for environmental monitoring: combining the efforts of citizen science and crowdsourcing in a quantitative data framework.

    PubMed

    Welvaert, Marijke; Caley, Peter

    2016-01-01

    Citizen science and crowdsourcing have been emerging as methods to collect data for surveillance and/or monitoring activities. They could be gathered under the overarching term citizen surveillance . The discipline, however, still struggles to be widely accepted in the scientific community, mainly because these activities are not embedded in a quantitative framework. This results in an ongoing discussion on how to analyze and make useful inference from these data. When considering the data collection process, we illustrate how citizen surveillance can be classified according to the nature of the underlying observation process measured in two dimensions-the degree of observer reporting intention and the control in observer detection effort. By classifying the observation process in these dimensions we distinguish between crowdsourcing, unstructured citizen science and structured citizen science. This classification helps the determine data processing and statistical treatment of these data for making inference. Using our framework, it is apparent that published studies are overwhelmingly associated with structured citizen science, and there are well developed statistical methods for the resulting data. In contrast, methods for making useful inference from purely crowd-sourced data remain under development, with the challenges of accounting for the unknown observation process considerable. Our quantitative framework for citizen surveillance calls for an integration of citizen science and crowdsourcing and provides a way forward to solve the statistical challenges inherent to citizen-sourced data.

  1. Lessons Learned from Citizen Science in the Classroom. A Response to "The Future of Citizen Science."

    ERIC Educational Resources Information Center

    Gray, Steven A.; Nicosia, Kristina; Jordan, Rebecca C.

    2012-01-01

    Mueller, Tippins, and Bryan's contrast of the current limitations of science education with the potential virtues of citizen science provides an important theoretical perspective about the future of democratized science and K-12 education. However, the authors fail to adequately address the existing barriers and constraints to moving…

  2. National differences in gender–science stereotypes predict national sex differences in science and math achievement

    PubMed Central

    Nosek, Brian A.; Smyth, Frederick L.; Sriram, N.; Lindner, Nicole M.; Devos, Thierry; Ayala, Alfonso; Bar-Anan, Yoav; Bergh, Robin; Cai, Huajian; Gonsalkorale, Karen; Kesebir, Selin; Maliszewski, Norbert; Neto, Félix; Olli, Eero; Park, Jaihyun; Schnabel, Konrad; Shiomura, Kimihiro; Tulbure, Bogdan Tudor; Wiers, Reinout W.; Somogyi, Mónika; Akrami, Nazar; Ekehammar, Bo; Vianello, Michelangelo; Banaji, Mahzarin R.; Greenwald, Anthony G.

    2009-01-01

    About 70% of more than half a million Implicit Association Tests completed by citizens of 34 countries revealed expected implicit stereotypes associating science with males more than with females. We discovered that nation-level implicit stereotypes predicted nation-level sex differences in 8th-grade science and mathematics achievement. Self-reported stereotypes did not provide additional predictive validity of the achievement gap. We suggest that implicit stereotypes and sex differences in science participation and performance are mutually reinforcing, contributing to the persistent gender gap in science engagement. PMID:19549876

  3. Citizen Science & MPA Monitoring: Informing adaptive management through enriched local knowledge systems

    NASA Astrophysics Data System (ADS)

    Meyer, R.; Freitag, A.; McGregor, A.; Whiteman, E.

    2013-12-01

    Along the California coast, a wealth of capacity exists among individuals, groups and organizations collecting scientific data. This citizen science can take many forms, from spontaneous observations of seabirds to organized surveys of nearshore reefs. Yet, as is often the case, state resource managers have struggled to find ways to access and use this scientific information in decision-making. A unique opportunity exists to alter this status-quo. California has the largest network of marine protected areas (MPAs) in the nation with more than 100 MPAs statewide. Monitoring is essential to inform adaptive management of this network. Traditionally, MPA monitoring has been the purview of academic or agency scientists. Yet, there is increasing recognition that this approach, while playing an important role, is unlikely by itself to provide a sustainable path forward. An opportunity therefore exists to understand how to sustainably and cost-effectively expand the capacity or human capital invested in monitoring and ocean stewardship. In this presentation we will share our collaborative approach to development of a new framework for incorporating citizen science into a partnerships-based portfolio of MPA monitoring in California. We will present initial findings and lessons learned from a broad review of published and gray literature, as well as reflections from interviews and participant observations with citizen science groups in the Central Coast region of California's MPA network. Through research, engagement with existing citizen science programs, and involvement of natural resource managers, we are identifying general best practices and specific opportunities for these groups to collaborate effectively, and for citizen science to play a constructive ongoing role in adaptive management of MPAs.

  4. General Aviation Citizen Science Pilot Study to Help Tackle Remote Sensing of Harmful Algal Blooms (HABs)

    NASA Astrophysics Data System (ADS)

    Ansari, R.

    2017-12-01

    Aerial remote sensing conducted by volunteer pilots acting as citizen scientists is providing high-quality data to help understand reasons behind outbreaks of toxic algal blooms in nation's waterways and coastlines. The toxic water can be detrimental to national economy, human health, clean drinking water, fishing industry, and water sports. We will show how general aviation pilots around the country are contributing to this NASA citizen science initiative.

  5. Challenges of citizen science contributions to modelling hydrodynamics of floods

    NASA Astrophysics Data System (ADS)

    Assumpção, Thaine Herman; Popescu, Ioana; Jonoski, Andreja; Solomatine, Dimitri P.

    2017-04-01

    Citizen science is an established mechanism in many fields of science, including ecology, biology and astronomy. Citizen participation ranges from collecting and interpreting data towards designing experiments with scientists and cooperating with water management authorities. In the environmental sciences, its potential has begun to be explored in the past decades and many studies on the applicability to water resources have emerged. Citizen Observatories are at the core of several EU-funded projects such as WeSenseIt, GroundTruth, GroundTruth 2.0 and SCENT (Smart Toolbox for Engaging Citizens into a People-Centric Observation Web) that already resulted in valuable contributions to the field. Buytaert et al. (2014) has already reviewed the role of citizen science in hydrology. The work presented here aims to complement it, reporting and discussing the use of citizen science for modelling the hydrodynamics of floods in a variety of studies. Additionally, it highlights the challenges that lie ahead to utilize more fully the citizen science potential contribution. In this work, focus is given to each component of hydrodynamic models: water level, velocity, flood extent, roughness and topography. It is addressed how citizens have been contributing to each aspect, mainly considering citizens as sensors and citizens as data interpreters. We consider to which kind of model (1D or 2D) the discussed approaches contribute and what their limitations and potential uses are. We found that although certain mechanisms are well established (e.g. the use of Volunteer Geographic Information for soft validation of land-cover and land-use maps), the applications in a modelling context are rather modest. Also, most studies involving models are limited to replacing traditional data with citizen data. We recommend that citizen science continue to be explored in modelling frameworks, in different case studies, taking advantage of the discussed mechanisms and of new sensor technologies

  6. The diversity and evolution of ecological and environmental citizen science.

    PubMed

    Pocock, Michael J O; Tweddle, John C; Savage, Joanna; Robinson, Lucy D; Roy, Helen E

    2017-01-01

    Citizen science-the involvement of volunteers in data collection, analysis and interpretation-simultaneously supports research and public engagement with science, and its profile is rapidly rising. Citizen science represents a diverse range of approaches, but until now this diversity has not been quantitatively explored. We conducted a systematic internet search and discovered 509 environmental and ecological citizen science projects. We scored each project for 32 attributes based on publicly obtainable information and used multiple factor analysis to summarise this variation to assess citizen science approaches. We found that projects varied according to their methodological approach from 'mass participation' (e.g. easy participation by anyone anywhere) to 'systematic monitoring' (e.g. trained volunteers repeatedly sampling at specific locations). They also varied in complexity from approaches that are 'simple' to those that are 'elaborate' (e.g. provide lots of support to gather rich, detailed datasets). There was a separate cluster of entirely computer-based projects but, in general, we found that the range of citizen science projects in ecology and the environment showed continuous variation and cannot be neatly categorised into distinct types of activity. While the diversity of projects begun in each time period (pre 1990, 1990-99, 2000-09 and 2010-13) has not increased, we found that projects tended to have become increasingly different from each other as time progressed (possibly due to changing opportunities, including technological innovation). Most projects were still active so consequently we found that the overall diversity of active projects (available for participation) increased as time progressed. Overall, understanding the landscape of citizen science in ecology and the environment (and its change over time) is valuable because it informs the comparative evaluation of the 'success' of different citizen science approaches. Comparative evaluation

  7. Citizen Science and the Urban Ecology of Birds and Butterflies - A Systematic Review.

    PubMed

    Wang Wei, James; Lee, Benjamin P Y-H; Bing Wen, Low

    2016-01-01

    Citizen science has gained widespread currency as a tool for ecological research over the past decade. However, in the discipline of urban ecology, the existing contributions and future potential of citizen science engagement, specifically in terms of knowledge gain, have not yet been comprehensively explored. Here, we present a systematic review of published work on the urban ecology of birds and butterflies in relation to their use of citizen science data between 2005 and 2014. We compared the number of studies that used citizen science data to the number of studies that could potentially have employed data derived from citizen science. The take-up rates of citizen science data were 21% and 26% for birds and butterflies respectively. Most studies that employed citizen science used volunteer-derived data as primary data, and adopted Collegial, Collaborative and Contributional engagement modes to the exclusion of Contractual and Co-created arrangements. There was no evidence that citizen science studies investigated a different organismal scale (community vs. species) compared to the urban ecology literature. For both taxa, citizen science contributions were lower than expected compared to their representation in the urban ecology literature for studies on species-environment relationships at landscape and micro-environment scales, as well as behavioural ecology in general. Other research topics that could benefit from further citizen science involvement include breeding studies and guild analyses for birds, and multi-taxa studies for butterflies. Promising models of citizen science engagement for urban ecology are highlighted in relation to their thematic foci and methodological detail, and a number of research questions that could be productively addressed using citizen science are identified. The dynamics of contemporary engagement between citizen science and urban ecology described by this review could inform the design and refinement of urban ecology-citizen

  8. Citizen Science as a Tool for Mosquito Control.

    PubMed

    Jordan, Rebecca C; Sorensen, Amanda E; Ladeau, Shannon

    2017-09-01

    In this paper, we share our findings from a 2-year citizen science program called Mosquito Stoppers. This pest-oriented citizen science project is part of a larger coupled natural-human systems project seeking to understand the fundamental drivers of mosquito population density and spatial variability in potential exposure to mosquito-borne pathogens in a matrix of human construction, urban renewal, and individual behaviors. Focusing on residents in West Baltimore, participants were recruited through neighborhood workshops and festivals. Citizen scientists participated in yard surveys of potential mosquito habitat and in evaluating mosquito nuisance. We found that citizen scientists, with minimal education and training, were able to accurately collect data that reflect trends found in a comparable researcher-generated database.

  9. Realizing the Value of Citizen Science Data.

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2015-12-01

    Typical data sources for both basic and mission-focused environmental research include satellite sensors, in situ observations made by scientists, and data from well established and often government-sponsored networks. While these data sources enable substantial advances in understanding our environment, they are not always complete in the picture they present. By incorporating citizen science into our portfolio of observations, we gain a powerful complement to these traditional data sources, drawing on the enthusiasm and commitment of volunteer observers. While such data can be more difficult to calibrate or quality check, these challenges can be overcome by clear and simple protocols and consistent instrumentation. One such example is the Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) in which thousands of volunteers in the United States and Canada use low-cost equipment to make point-measurements of rain, hail and snowfall near their homes or workplaces. All participants in CoCoRaHS make these measurements with the same $30 rain gauges and follow a well-established protocol in which they are trained. These observations feed into National Weather Service forecast models, sometimes directly influencing the issuing of alerts and warnings, and are used to both validate and improve these models. In other cases, observations can be more subjective, such as Buddhist monks in the Catskills documenting leaf fall, or the Audubon Society's Christmas Bird Count in which birds are surveyed annually as their habitats change. The uncertainty associated with such subjective measurements is far outweighed by the value of the data, and it can be reduced by increasing the numbers of observers and encouraging participation by the same observers year after year for consistent inputs. These citizen science efforts, and many others like them, provide tremendous scientific opportunities for complementing big-picture science with local variability, resulting in a more

  10. Citizen science applied to building healthier community environments: advancing the field through shared construct and measurement development.

    PubMed

    Hinckson, Erica; Schneider, Margaret; Winter, Sandra J; Stone, Emily; Puhan, Milo; Stathi, Afroditi; Porter, Michelle M; Gardiner, Paul A; Dos Santos, Daniela Lopes; Wolff, Andrea; King, Abby C

    2017-09-29

    Physical inactivity across the lifespan remains a public health issue for many developed countries. Inactivity has contributed considerably to the pervasiveness of lifestyle diseases. Government, national and local agencies and organizations have been unable to systematically, and in a coordinated way, translate behavioral research into practice that makes a difference at a population level. One approach for mobilizing multi-level efforts to improve the environment for physical activity is to engage in a process of citizen science. Citizen Science here is defined as a participatory research approach involving members of the public working closely with research investigators to initiate and advance scientific research projects. However, there are no common measures or protocols to guide citizen science research at the local community setting. We describe overarching categories of constructs that can be considered when designing citizen science projects expected to yield multi-level interventions, and provide an example of the citizen science approach to promoting PA. We also recommend potential measures across different levels of impact. Encouraging some consistency in measurement across studies will potentially accelerate the efficiency with which citizen science participatory research provides new insights into and solutions to the behaviorally-based public health issues that drive most of morbidity and mortality. The measures described in this paper abide by four fundamental principles specifically selected for inclusion in citizen science projects: feasibility, accuracy, propriety, and utility. The choice of measures will take into account the potential resources available for outcome and process evaluation. Our intent is to emphasize the importance for all citizen science participatory projects to follow an evidence-based approach and ensure that they incorporate an appropriate assessment protocol. We provided the rationale for and a list of contextual factors

  11. The diversity and evolution of ecological and environmental citizen science

    PubMed Central

    Tweddle, John C.; Savage, Joanna; Robinson, Lucy D.; Roy, Helen E.

    2017-01-01

    Citizen science—the involvement of volunteers in data collection, analysis and interpretation—simultaneously supports research and public engagement with science, and its profile is rapidly rising. Citizen science represents a diverse range of approaches, but until now this diversity has not been quantitatively explored. We conducted a systematic internet search and discovered 509 environmental and ecological citizen science projects. We scored each project for 32 attributes based on publicly obtainable information and used multiple factor analysis to summarise this variation to assess citizen science approaches. We found that projects varied according to their methodological approach from ‘mass participation’ (e.g. easy participation by anyone anywhere) to ‘systematic monitoring’ (e.g. trained volunteers repeatedly sampling at specific locations). They also varied in complexity from approaches that are ‘simple’ to those that are ‘elaborate’ (e.g. provide lots of support to gather rich, detailed datasets). There was a separate cluster of entirely computer-based projects but, in general, we found that the range of citizen science projects in ecology and the environment showed continuous variation and cannot be neatly categorised into distinct types of activity. While the diversity of projects begun in each time period (pre 1990, 1990–99, 2000–09 and 2010–13) has not increased, we found that projects tended to have become increasingly different from each other as time progressed (possibly due to changing opportunities, including technological innovation). Most projects were still active so consequently we found that the overall diversity of active projects (available for participation) increased as time progressed. Overall, understanding the landscape of citizen science in ecology and the environment (and its change over time) is valuable because it informs the comparative evaluation of the ‘success’ of different citizen science

  12. Destroying iPhones: Feral science and the antithetical citizen.

    PubMed

    Michael, Mike

    2017-10-01

    This exploratory article considers the implications of a particular genre - YouTube videos of iPhone destruction - for the Citizen Science and Public Understanding of Science/Public Engagement with Science and Technology. Situating this genre within a broader TV tradition of 'destructive testing' programmes, there is a description of the forms of destruction visited upon the iPhone, and an analysis of the features shared by the videos (e.g. mode of address, enactments of the experiment). Drawing on the notion of the 'idiotic', there is a discussion of the genre that aims to treat its evident lack of scientific and citizenly 'seriousness' productively. In the process of this discussion, the notions of 'feral science' and 'antithetical citizenship' are proposed, and some of their ramifications for Citizen Science and Public Understanding of Science/Public Engagement with Science and Technology presented.

  13. How do marine and coastal citizen science experiences foster environmental engagement?

    PubMed

    Dean, Angela J; Church, Emma K; Loder, Jenn; Fielding, Kelly S; Wilson, Kerrie A

    2018-05-01

    Citizen science programs enable community involvement in scientific research. In addition to fostering greater science literacy, some citizen science programs aim to foster engagement in environmental issues. However, few data are available to indicate whether and how citizen science programs can achieve greater environmental engagement. We survey individuals choosing to attend one of seventeen reef citizen science events and examine the extent to which attendees reported three indicators of greater environmental engagement: (i) willingness to share information, (ii) increased support for marine conservation and citizen science, and (iii) intentions to adopt a new behavior. Most participants reported being willing to share information about reef conservation (91%) and described increased support for marine science and conservation (87%). Half of participants (51%) reported intentions to adopt a new conservation behavior. We found that key elements of the citizen science experience associated with these outcomes were learning about actions to protect reefs and coasts (procedural learning), experiencing surprise, and experiencing negative emotions about environmental problems. Excitement was also associated with positive outcomes, but only in participants who were less likely to see themselves as environmental, or were less frequent visitors to reefs and coasts. Importantly, the association between factual learning and environmental engagement outcomes was limited or negative. These findings suggest that the way citizen science experiences make people feel, may be more important for fostering future environmental engagement than factual-based learning. When designing citizen science programs for community members, these findings provide a reminder to not focus on provision of factual information alone, but to highlight environmental impacts while providing meaningful experiences and building environmental skills. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Citizen science on a smartphone: Participants' motivations and learning.

    PubMed

    Land-Zandstra, Anne M; Devilee, Jeroen L A; Snik, Frans; Buurmeijer, Franka; van den Broek, Jos M

    2016-01-01

    Citizen science provides researchers means to gather or analyse large datasets. At the same time, citizen science projects offer an opportunity for non-scientists to be part of and learn from the scientific process. In the Dutch iSPEX project, a large number of citizens turned their smartphones into actual measurement devices to measure aerosols. This study examined participants' motivation and perceived learning impacts of this unique project. Most respondents joined iSPEX because they wanted to contribute to the scientific goals of the project or because they were interested in the project topics (health and environmental impact of aerosols). In terms of learning impact, respondents reported a gain in knowledge about citizen science and the topics of the project. However, many respondents had an incomplete understanding of the science behind the project, possibly caused by the complexity of the measurements. © The Author(s) 2015.

  15. Cultivating Citizen Scientists in the Undergraduate Science Classroom

    NASA Astrophysics Data System (ADS)

    Egger, A. E.

    2007-12-01

    Several studies indicate a strong correlation between the number of college science courses and science literacy. It is not surprising, then, that the majority of participants in citizen science projects are college graduates who enrolled in at least two science courses. If one goal of citizen science projects is to increase civic science literacy, research suggests that most are preaching to the choir. Attracting a wider audience to citizen science is, therefore, a key challenge. One way to address this challenge is to attract students to enroll and succeed in science courses in college, even if they do not pursue a major in the science, technology, engineering, and mathematics (STEM) disciplines. In fact, only 20% of students receive a degree in STEM, yet virtually all undergraduates are required to take at least one science course. Introductory science courses are therefore critical to cultivating citizen scientists, as they include a large proportion of non- STEM majors. Indeed, a major thrust of recent undergraduate STEM educational reform has been the promotion of 'science for all'. The science for all concept goes beyond recruiting students into the STEM disciplines to promoting a level of scientific literacy necessary to make informed decisions. A clear implication of this inclusive attitude is the need to redesign introductory science courses to make them accessible and explicitly related to scientific literacy. This does not mean dumbing down courses; on the contrary, it means engaging students in real scientific investigations and incorporating explicit teaching about the process of science, thus fostering a lifelong appreciation for (and, hopefully, participation in) science. Unfortunately, many students enter college with minimal understanding of the process of science. And when they arrive in their introductory classes, science is presented to them as a system of facts to be memorized - comparable to memorizing a poem in a foreign language without

  16. A natural user interface to integrate citizen science and physical exercise

    PubMed Central

    Palermo, Eduardo; Laut, Jeffrey; Nov, Oded; Porfiri, Maurizio

    2017-01-01

    Citizen science enables volunteers to contribute to scientific projects, where massive data collection and analysis are often required. Volunteers participate in citizen science activities online from their homes or in the field and are motivated by both intrinsic and extrinsic factors. Here, we investigated the possibility of integrating citizen science tasks within physical exercises envisaged as part of a potential rehabilitation therapy session. The citizen science activity entailed environmental mapping of a polluted body of water using a miniature instrumented boat, which was remotely controlled by the participants through their physical gesture tracked by a low-cost markerless motion capture system. Our findings demonstrate that the natural user interface offers an engaging and effective means for performing environmental monitoring tasks. At the same time, the citizen science activity increases the commitment of the participants, leading to a better motion performance, quantified through an array of objective indices. The study constitutes a first and necessary step toward rehabilitative treatments of the upper limb through citizen science and low-cost markerless optical systems. PMID:28231261

  17. A natural user interface to integrate citizen science and physical exercise.

    PubMed

    Palermo, Eduardo; Laut, Jeffrey; Nov, Oded; Cappa, Paolo; Porfiri, Maurizio

    2017-01-01

    Citizen science enables volunteers to contribute to scientific projects, where massive data collection and analysis are often required. Volunteers participate in citizen science activities online from their homes or in the field and are motivated by both intrinsic and extrinsic factors. Here, we investigated the possibility of integrating citizen science tasks within physical exercises envisaged as part of a potential rehabilitation therapy session. The citizen science activity entailed environmental mapping of a polluted body of water using a miniature instrumented boat, which was remotely controlled by the participants through their physical gesture tracked by a low-cost markerless motion capture system. Our findings demonstrate that the natural user interface offers an engaging and effective means for performing environmental monitoring tasks. At the same time, the citizen science activity increases the commitment of the participants, leading to a better motion performance, quantified through an array of objective indices. The study constitutes a first and necessary step toward rehabilitative treatments of the upper limb through citizen science and low-cost markerless optical systems.

  18. Citizen science as seen by scientists: Methodological, epistemological and ethical dimensions.

    PubMed

    Riesch, Hauke; Potter, Clive

    2014-01-01

    Citizen science as a way of communicating science and doing public engagement has over the past decade become the focus of considerable hopes and expectations. It can be seen as a win-win situation, where scientists get help from the public and the participants get a public engagement experience that involves them in real and meaningful scientific research. In this paper we present the results of a series of qualitative interviews with scientists who participated in the 'OPAL' portfolio of citizen science projects that has been running in England since 2007: What were their experiences of participating in citizen science? We highlight two particular sets of issues that our participants have voiced, methodological/epistemological and ethical issues. While we share the general enthusiasm over citizen science, we hope that the research in this paper opens up more debate over the potential pitfalls of citizen science as seen by the scientists themselves.

  19. Dreamers, Poets, Citizens, and Scientists: Motivations for Engaging in GalaxyZoo Citizen Science

    NASA Astrophysics Data System (ADS)

    Slater, S. J.; Mankowski, T.; Slater, T. F.; CenterAstronomy; Physics Education Research Caper Team

    2010-12-01

    A particularly successful effort to engage the public in science has been to move the nearly countless galaxies imaged by the Sloan Digital Sky Survey to citizen scientists in a project known widely as Galaxy Zoo (URL; http://www.galaxyzoo.org). To everyone’s surprise, the unexpectedly large participation in the website has caused the data set, numbering over a million images, to be classified multiple times, quicker than the project leader anticipated, and continues to boast a high hit count on the website (15 classifications per second). Within 24 hours of launch, the site was receiving 70,000 classifications an hour, and more than 50 million classifications were received by the project during its first year, from almost 150,000 people. In a parallel effort, the Galaxy Zoo forum was created to handle the flood of emails that occurred alongside the flood of classifications, the team hoping that it would encourage the participants to handle each others' questions. By examining the motivations, methods and appeal of Galaxy Zoo to the participating public, other models of citizen science might be purposefully formulated to take advantage of the success exhibited in Galaxy Zoo. In addition, we want to understand the reasons people engage in science in informal settings in order to better enhance teaching methods in formal settings. Although in the past citizen science has primarily been used as a data collection method, there are many new opportunities contained in citizen science motivations and methods that we can use in future applications. This new and innovative method of online citizen science creates data for researchers of galaxies, but there is a parallel set of underlying data that has not yet been deeply analyzed: the motivations and underlying themes within the population of citizen scientists that could lead us to improve future citizen science projects. To address this, we pursued an investigation of the underlying reasons for the success of Galaxy Zoo

  20. Citizen Science and the Urban Ecology of Birds and Butterflies — A Systematic Review

    PubMed Central

    Wang Wei, James; Lee, Benjamin P. Y-H.; Bing Wen, Low

    2016-01-01

    Citizen science has gained widespread currency as a tool for ecological research over the past decade. However, in the discipline of urban ecology, the existing contributions and future potential of citizen science engagement, specifically in terms of knowledge gain, have not yet been comprehensively explored. Here, we present a systematic review of published work on the urban ecology of birds and butterflies in relation to their use of citizen science data between 2005 and 2014. We compared the number of studies that used citizen science data to the number of studies that could potentially have employed data derived from citizen science. The take-up rates of citizen science data were 21% and 26% for birds and butterflies respectively. Most studies that employed citizen science used volunteer-derived data as primary data, and adopted Collegial, Collaborative and Contributional engagement modes to the exclusion of Contractual and Co-created arrangements. There was no evidence that citizen science studies investigated a different organismal scale (community vs. species) compared to the urban ecology literature. For both taxa, citizen science contributions were lower than expected compared to their representation in the urban ecology literature for studies on species-environment relationships at landscape and micro-environment scales, as well as behavioural ecology in general. Other research topics that could benefit from further citizen science involvement include breeding studies and guild analyses for birds, and multi-taxa studies for butterflies. Promising models of citizen science engagement for urban ecology are highlighted in relation to their thematic foci and methodological detail, and a number of research questions that could be productively addressed using citizen science are identified. The dynamics of contemporary engagement between citizen science and urban ecology described by this review could inform the design and refinement of urban ecology–citizen

  1. Crowdsourced Science: Citizen Science Using the Globe Observer Mobile App

    NASA Astrophysics Data System (ADS)

    Low, R.; Riebeek Kohl, H.

    2016-12-01

    Field-based citizen science programs broaden public understanding of the Earth's system and connect users personally in seeing and understanding the changes that are taking place on our planet. GLOBE Observer (GO) is a new initiative for citizen scientists of all ages and connects users to NASA science via a simple smartphone app. Version 1.0 includes GLOBE Clouds, which guides users in photographing clouds and recording sky observations. Citizen scientist cloud observations are compared with NASA satellite images, and provide critical ground validation of satellite data so we better understand the Earth and its environment. The GLOBE Observer mobile app is equipped with data collection capabilities and visualization opportunities that lower the barrier for public participation in data collection and analysis efforts. Future releases of the GLOBE Observer app will support public engagement in investigations of the hydrosphere and biosphere. Some of the exciting developments on the horizon include in-app training games to build skills, in-app push messaging, which challenge a citizen scientist to participate data collection missions, and automated data validation capabilities.

  2. Aurorasaurus: A citizen science platform for viewing and reporting the aurora

    NASA Astrophysics Data System (ADS)

    MacDonald, E. A.; Case, N. A.; Clayton, J. H.; Hall, M. K.; Heavner, M.; Lalone, N.; Patel, K. G.; Tapia, A.

    2015-09-01

    A new, citizen science-based, aurora observing and reporting platform has been developed with the primary aim of collecting auroral observations made by the general public to further improve the modeling of the aurora. In addition, the real-time ability of this platform facilitates the combination of citizen science observations with auroral oval models to improve auroral visibility nowcasting. Aurorasaurus provides easily understandable aurora information, basic gamification, and real-time location-based notification of verified aurora activity to engage citizen scientists. The Aurorasaurus project is one of only a handful of space weather citizen science projects and can provide useful results for the space weather and citizen science communities. Early results are promising with over 2000 registered users submitting over 1000 aurora observations and verifying over 1700 aurora sightings posted on Twitter.

  3. CosmoQuest: Creative Engagement & Citizen Science Ignite Authentic Science

    NASA Astrophysics Data System (ADS)

    Cobb, W. H.; Noel-Storr, J.; Tweed, A.; Asplund, S.; Aiello, M. P.; Lebofsky, L. A.; Chilton, H.; Gay, P.

    2016-12-01

    The CosmoQuest Virtual Research Facility offers in-depth experiences to diverse audiences nationally and internationally through pioneering citizen science. An endeavor between universities, research institutes, and NASA centers, CosmoQuest brings together scientists, educators, researchers, programmers—and individuals of all ages—to explore and make sense of our solar system and beyond. CosmoQuest creates pathways for engaging diverse audiences in authentic science, encouraging scientists to engage with learners, and learners to engage with scientists. Here is a sequence of activities developed by CosmoQuest, leveraging a NASA Discovery and New Frontiers Programs activity developed for the general STEAM community, that activates STEM learning. The Spark: Igniting Curiosity Art and the Cosmic Connection uses the elements of art—shape, line, color, texture, value—to hone observation skills and inspire questions. Learners explore NASA image data from celestial bodies in our solar system—planets, asteroids, moons. They investigate their geology, analyzing features and engaging in scientific discourse rising from evidence while creating a beautiful piece of art. The Fuel: Making Connections Crater Comparisons explore authentic NASA image data sets, engrossing learners at a deeper level. With skills learned in Art and the Cosmic Connection, learners analyze specific image sets with the feedback of mission team members. The Burn: Evolving Community Become a Solar System Mapper. Investigate and analyze NASA mission image data of Mars, Mercury, the Moon and Vesta through CosmoQuest's citizen science projects. Learners make real-world connections while contributing to NASA science. Scaffolded by an educational framework that inspires 21st century learners, CosmoQuest engages people in analyzing and interpreting real NASA data, inspiring questions, defining problems, and realizing their potential to contribute to genuine scientific results. Through social channels

  4. CosmoQuest Year 2: Citizen Science Progress, Motivations, and Education

    NASA Astrophysics Data System (ADS)

    Gugliucci, Nicole E.; Gay, P. L.; Antonenko, I.; Bracey, G.; Costello, K.; Lehan, C.; Moore, J.; Reilly, E.; Robbins, S. J.; Schmidt, B. E.; CosmoQuest Collaboration

    2014-01-01

    The CosmoQuest citizen science virtual research facility has wrapped up its second year of operations. With projects mapping the surfaces of the Moon, Mercury, and asteroid Vesta, citizen scientists have marked over 2 million craters as well as other surface features. Analysis of the mapping results show that citizen scientists map high resolution features as well as expert crater markers within a small margin of error. We’ve undertaken a study of citizen science motivations with our users, and find that an interest in astronomy and a desire to contribute new knowledge as primary motivating factors. Ten percent of users surveyed list learning or teaching science as the primary motivating factor. A full analysis of this survey will be presented. Along those lines, the CosmoQuest education team has developed a second middle school educational unit to align with its citizen science projects. In-Vesta-Gate explores asteroid science and is in the trial stage, while we report on several teacher professional development opportunities with Terraluna, a Moon-focused educational unit developed last year. We’ve also taken the CosmoQuest citizen science on the road and outside the website, having a booth and activities at several public events. We present visitor survey results from a recent exhibition at Dragon*Con, a sci-fi/fantasy convention with over 50,000 attendees. We discuss future plans for the project, including the release of several mobile apps to be previewed here.

  5. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    NASA Astrophysics Data System (ADS)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  6. Citizen Science on Your Smartphone: An ELSI Research Agenda.

    PubMed

    Rothstein, Mark A; Wilbanks, John T; Brothers, Kyle B

    2015-01-01

    The prospect of newly-emerging, technology-enabled, unregulated citizen science health research poses a substantial challenge for traditional research ethics. Unquestionably, a significant amount of research ethics study is needed to prepare for the inevitable, widespread introduction of citizen science health research. Using the case study of mobile health (mHealth) research, this article provides an ethical, legal, and social implications (ELSI) research agenda for citizen science health research conducted outside conventional research institutions. The issues for detailed analysis include the role of IRBs, recruitment, inclusion and exclusion criteria, informed consent, confidentiality and security, vulnerable participants, incidental findings, and publication and data sharing. © 2015 American Society of Law, Medicine & Ethics, Inc.

  7. Meanings teachers make of teaching science outdoors as they explore citizen science

    NASA Astrophysics Data System (ADS)

    Benavides, Aerin Benavides

    This descriptive case study examined the meanings public elementary school teachers (N = 13) made of learning to enact citizen science projects in their schoolyards in partnership with a local Arboretum. Utilizing Engestrom's (2001) framework of cultural-historical activity theory (CHAT), the Arboretum's outreach program for area Title 1 schools was viewed as an activity system composed of and acting in partnership with the teachers. The major finding was that teachers designed and mastered new ways of teaching (expansive learning) and transformed their citizen science activity to facilitate student engagement and learning. I highlight four important themes in teachers' expansive learning: (a) discussion, (b) inclusion, (c) integration, and (d) collaboration. Teacher learning communities formed when colleagues shared responsibilities, formed mentor/mentee relationships, and included student teachers and interns in the activity. This program could serve as a model for elementary school citizen science education, as well as a model for professional development for teachers to learn to teach science and Environmental Education outdoors.

  8. The invisible prevalence of citizen science in global research: migratory birds and climate change.

    PubMed

    Cooper, Caren B; Shirk, Jennifer; Zuckerberg, Benjamin

    2014-01-01

    Citizen science is a research practice that relies on public contributions of data. The strong recognition of its educational value combined with the need for novel methods to handle subsequent large and complex data sets raises the question: Is citizen science effective at science? A quantitative assessment of the contributions of citizen science for its core purpose--scientific research--is lacking. We examined the contribution of citizen science to a review paper by ornithologists in which they formulated ten central claims about the impact of climate change on avian migration. Citizen science was never explicitly mentioned in the review article. For each of the claims, these ornithologists scored their opinions about the amount of research effort invested in each claim and how strongly the claim was supported by evidence. This allowed us to also determine whether their trust in claims was, unwittingly or not, related to the degree to which the claims relied primarily on data generated by citizen scientists. We found that papers based on citizen science constituted between 24 and 77% of the references backing each claim, with no evidence of a mistrust of claims that relied heavily on citizen-science data. We reveal that many of these papers may not easily be recognized as drawing upon volunteer contributions, as the search terms "citizen science" and "volunteer" would have overlooked the majority of the studies that back the ten claims about birds and climate change. Our results suggest that the significance of citizen science to global research, an endeavor that is reliant on long-term information at large spatial scales, might be far greater than is readily perceived. To better understand and track the contributions of citizen science in the future, we urge researchers to use the keyword "citizen science" in papers that draw on efforts of non-professionals.

  9. Lessons from COASST: How Does Citizen Science Contribute to Natural Resource Management & Decision-Making?

    NASA Astrophysics Data System (ADS)

    Metes, J.; Ballard, H. L.; Parrish, J.

    2016-12-01

    As many scholars and practitioners in the environmental field turn to citizen science to collect robust scientific data as well as engage with wider audiences, it is crucial to build a more complete understanding of how citizen science influences and affects different interests within a social-ecological system. This research investigates how federal, state, and tribal natural resource managers interact with data from the Coastal Observation & Seabird Survey Team (COASST) project—a citizen science program that trains participants to monitor species and abundance of beach-cast birds on the Pacific Northwest Coast. Fifteen coastal and fisheries managers who previously requested COASST data were interviewed about how and why they used data from the project and were asked to describe how information gained from COASST affected their management decisions. Results suggest that broadly, managers value and learn from the program's capacity to gather data spanning a wide spatial-temporal range. This contribution to baseline monitoring helps managers signal and track both short- and long-term environmental change. More specifically, managers use COASST data in conjunction with other professional monitoring programs, such as the National Marine Fisheries Observer Program, to build higher degrees of reliability into management decisions. Although managers offered diverse perspectives and experiences about what the role of citizen science in natural resource management generally should be, there was agreement that agencies on their own often lack personnel and funding required to sufficiently monitor many crucial resources. Additionally, managers strongly suggested that COASST and other citizen science projects increased public awareness and support for agency decision-making and policies, and indirect yet important contribution to natural resource management.

  10. Mapping epistemic cultures and learning potential of participants in citizen science projects.

    PubMed

    Vallabh, Priya; Lotz-Sisitka, Heila; O'Donoghue, Rob; Schudel, Ingrid

    2016-06-01

    The ever-widening scope and range of global change and interconnected systemic risks arising from people-environment relationships (social-ecological risks) appears to be increasing concern among, and involvement of, citizens in an increasingly diversified number of citizen science projects responding to these risks. We examined the relationship between epistemic cultures in citizen science projects and learning potential related to matters of concern. We then developed a typology of purposes and a citizen science epistemic-cultures heuristic and mapped 56 projects in southern Africa using this framework. The purpose typology represents the range of knowledge-production purposes, ranging from laboratory science to social learning, whereas the epistemic-cultures typology is a relational representation of scientist and citizen participation and their approach to knowledge production. Results showed an iterative relationship between matters of fact and matters of concern across the projects; the nexus of citizens' engagement in knowledge-production activities varied. The knowledge-production purposes informed and shaped the epistemic cultures of all the sampled citizen science projects, which in turn influenced the potential for learning within each project. Through a historical review of 3 phases in a long-term river health-monitoring project, we found that it is possible to evolve the learning curve of citizen science projects. This evolution involved the development of scientific water monitoring tools, the parallel development of pedagogic practices supporting monitoring activities, and situated engagement around matters of concern within social activism leading to learning-led change. We conclude that such evolutionary processes serve to increase potential for learning and are necessary if citizen science is to contribute to wider restructuring of the epistemic culture of science under conditions of expanding social-ecological risk. © 2016 Society for

  11. Globe at Night Citizen Science: Reaching for the Stars

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.

    2017-12-01

    Citizen-science is a rewardingly inclusive way to bring awareness to the public on the disappearance of the starry night sky, its cause and solutions. Globe at Night (GaN) encourages citizen-scientists worldwide to record the brightness of the night sky. During ten-days per month of moonless evenings, children and adults match the appearance of a specific constellation with 7 star maps of progressively fainter stars found at www.globeatnight.org. They then submit their choice of star map in-situ using the "webapp" on a smart device. In eleven years of the program, over 160,000 observations from 180 countries have been contributed to a light pollution map. The GaN (open) database is a source of research projects. For example, students conducted research to understand the lesser long-nosed bats' avoidance of city center at night. With its analytical tools, Fieldscope will be a conduit for comparing GaN to other databases. On-the-fly mapping enables citizen-scientists to see observations immediately. There are 4 ways of taking measurements. The online app for data reporting is in 26 languages. STEM activities for young children and problem-based learning activities for older students were created to experience real-life scenarios: role-playing sea turtles hatching (misdirected by lights on shore) or analyzing an ISS image of Houston to estimate the wasted energy, cost and carbon footprint. In-situ and on-line workshops have been given on using GaN, as well as the activities. Our Facebook page exists to encourage dialogue and bring cutting edge news. To entice interest, we had monthly newsletters and serial podcasts starring the Dark Skies Crusader. GaN has been part of special campaigns like with the National Park Service, the National Geographic BioBlitz and Tucson in 2011. We have built a community of practitioners in various ways worldwide and have metrics on behavioral changes. To maintain the community and create new partnerships, we have teamed with Sci

  12. The age of citizen science: Stimulating future environmental research

    NASA Astrophysics Data System (ADS)

    Burgess, S. N.

    2010-12-01

    Public awareness of the state of the ocean is growing with issues such as climate change, over-harvesting, marine pollution, coral bleaching, ocean acidification and sea level rise appearing regularly in popular media outlets. Society is also placing greater value on the range of ecosystem services the ocean provides. This increased consciousness of environmental change due to a combination of anthropogenic activities and impacts from climate change offers scientists the opportunity of engaging citizens in environmental research. The term citizen science refers to scientific research carried out by citizens and led by professionals, which involves large scale data collection whilst simultaneously engaging and educating those who participate. Most projects that engage citizen scientists have been specifically designed to provide an educational benefit to the volunteer and benefit the scientific inquiry by collecting extensive data sets over large geographical areas. Engaging the public in environmental science is not a new concept and successful projects (such as the Audobon Christmas Bird Count and Earthwatch) have been running for several decades resulting in hundreds of thousands of people conducting long-term field research in partnership with scientists based at universities worldwide. The realm of citizen science projects is continually expanding, with public engagement options ranging from science online; to backyard afternoon studies; to fully immersive experiential learning projects running for weeks at a time. Some organisations, such as Earthwatch also work in partnership with private industry; giving scientists access to more funding opportunities than those avenues traditionally available. These scientist -industry partnerships provide mutual benefits as the results of research projects in environments such as coastal ecosystems feed directly back into business risk strategies; for example mitigating shoreline erosion, storm surges, over fishing and

  13. A typology for strategies to connect citizen science and management.

    PubMed

    Freitag, Amy

    2016-09-01

    One of the often cited benefits of citizen science is better connecting citizens and their science to adaptive management outcomes. However, there is no consensus as to whether this is a reasonable expectation, and if so, how best to approach creating a successful link to management. This review finds cases where the citizen science-management link is explicitly discussed and places each case into a meta-analysis framework that will help define some general successful approaches to forming such a link. We categorize the types of linkages between citizen science and management along two main axes: cooperative to adversarial and deliberate to serendipitous. Cooperative and deliberate types of linkages are the most common, likely due to a mix of causes: that such links are the most commonly written about in the scientific literature, because such links tend to exist for longer amounts of time, and because other types of links tend to drift toward the cooperative/deliberate approach over time.

  14. Citizen Science in Grand Teton National Park Reveals Phenological Response of Wildlife to Climate Change and Increases Public Involvement in Earth Science

    NASA Astrophysics Data System (ADS)

    Bloom, T. D. S.; Riginos, C.

    2017-12-01

    Around the world, phenology —or the timing of ecological events — is shifting as the climate warms. This can lead to a variety of consequences for individual species and for ecological communities as a whole, most notably through asynchronies that can develop between plants and animals that depend upon each other (e.g. nectar-consuming pollinators). Within the Greater Yellowstone Ecosystem (GYE) and Grand Teton National Park (GTNP), there is little understanding of how climate change is affecting plant and animal phenology, yet through detailed scientific and citizen science observation there is tremendous potential to further our knowledge of this topic and increase public awareness. Detailed historic data are rare, but in GTNP we have the opportunity to capitalize on phenology data gathered by Dr. Frank Craighead, Jr. in the 1970s, before significant warming had occurred. We have already gathered, digitized, and quality-controlled Craighead's observations of plant first flowering dates. First flowering date for 87% of a 72-species data set correlate significantly with spring temperatures in the 1970s, suggesting that these plants are now flowering earlier and will continue to flower earlier in the future. Our multi-year project has project has 3 primary goals: (1) initiate a citizen science project, Wildflower Watch GTNP, to train volunteer scientists to collect contemporary phenology data on these species (2) gather further historical records of plant phenology in the region, and (3) model continued phenological changes under future climate change scenarios using satellite derived climate data and on the ground observations. This project simultaneously increases public involvement in climate research, collaborates with the National Park Service to inform management strategies for at-risk species, and furthers scientific understanding of phenological response to climate change in the Rocky Mountains.

  15. Developing citizen science projects: Cut twigs for 'chilling' pupils

    NASA Astrophysics Data System (ADS)

    Menzel, Annette; Matiu, Michael; Laube, Julia

    2017-04-01

    Citizen science projects mainly involve two aims, science and education. Depending on the setting, either the data delivery part for answering questions raised by scientists or the educating part e.g. on scientific practices, crosscutting concepts, application of core science contents or awareness for environmental problems prevails. In this respect, spring phenology is a grateful topic because it addresses both aspects nearly symmetrically. In science, it remains unresolved which factors besides spring warming also trigger spring bud development, namely chilling / photoperiod / humidity / nutrient availability. The appearance of fresh leaves in spring has been fascinating for humans; it is linked to cultural heritage, festivals and has always attracted nature lovers, from young children to senior citizens. In our study, we set up a twig experiment to study the chilling effect on bud burst of Corylus avellana L. which was conducted by trained citizen scientists at their home. We asked the scientific question if the effects of chilling can be analysed by the twig method, and how sampling and experimental setting should be designed. Furthermore we tested if the twig method is feasible for citizen scientist projects, and report minimum requirements, successes and drawbacks.

  16. The Invisible Prevalence of Citizen Science in Global Research: Migratory Birds and Climate Change

    PubMed Central

    Cooper, Caren B.; Shirk, Jennifer; Zuckerberg, Benjamin

    2014-01-01

    Citizen science is a research practice that relies on public contributions of data. The strong recognition of its educational value combined with the need for novel methods to handle subsequent large and complex data sets raises the question: Is citizen science effective at science? A quantitative assessment of the contributions of citizen science for its core purpose – scientific research – is lacking. We examined the contribution of citizen science to a review paper by ornithologists in which they formulated ten central claims about the impact of climate change on avian migration. Citizen science was never explicitly mentioned in the review article. For each of the claims, these ornithologists scored their opinions about the amount of research effort invested in each claim and how strongly the claim was supported by evidence. This allowed us to also determine whether their trust in claims was, unwittingly or not, related to the degree to which the claims relied primarily on data generated by citizen scientists. We found that papers based on citizen science constituted between 24 and 77% of the references backing each claim, with no evidence of a mistrust of claims that relied heavily on citizen-science data. We reveal that many of these papers may not easily be recognized as drawing upon volunteer contributions, as the search terms “citizen science” and “volunteer” would have overlooked the majority of the studies that back the ten claims about birds and climate change. Our results suggest that the significance of citizen science to global research, an endeavor that is reliant on long-term information at large spatial scales, might be far greater than is readily perceived. To better understand and track the contributions of citizen science in the future, we urge researchers to use the keyword “citizen science” in papers that draw on efforts of non-professionals. PMID:25184755

  17. Crowdsourcing conservation: The role of citizen science in securing a future for seagrass.

    PubMed

    Jones, Benjamin L; Unsworth, Richard K F; McKenzie, Len J; Yoshida, Rudi L; Cullen-Unsworth, Leanne C

    2017-11-11

    Seagrass meadows are complex social-ecological systems. Understanding seagrass meadows demands a fresh approach integrating "the human dimension". Citizen science is widely acknowledged for providing significant contributions to science, education, society and policy. Although the take up of citizen science in the marine environment has been slow, the need for such methods to fill vast information gaps is arguably great. Seagrass meadows are easy to access and provide an example of where citizen science is expanding. Technological developments have been pivotal to this, providing new opportunities for citizens to engage with seagrass. The increasing use of online tools has created opportunities to collect and submit as well as help process and analyse data. Citizen science has helped researchers integrate scientific and local knowledge and engage communities to implement conservation measures. Here we use a selection of examples to demonstrate how citizen science can secure a future for seagrass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Citizen Science: Data Sharing For, By, and With the Public

    NASA Astrophysics Data System (ADS)

    Wiggins, A.

    2017-12-01

    Data sharing in citizen science is just as challenging as it is for any other type of science, except that there are more parties involved, with more diverse needs and interests. This talk provides an overview of the challenges and current efforts to advance data sharing in citizen science, and suggests refocusing data management activities on supporting the needs of multiple audiences. Early work on data sharing in citizen science advocated applying the standards and practices of academia, which can only address the needs of one of several audiences for citizen science data, and academics are not always the primary audience. Practitioners still need guidance on how to better share data other key parties, such as participants and policymakers, and which data management practices to prioritize for addressing the needs of multiple audiences. The benefits to the project of investing scarce resources into data products and dissemination strategies for each target audience still remain variable, unclear, or unpredictable. And as projects mature and change, the importance of data sharing activities and audiences are likely to change as well. This combination of multiple diverse audiences, shifting priorities, limited resources, and unclear benefits creates a perfect storm of conditions to suppress data sharing. Nonetheless, many citizen science projects make the effort, with exemplars showing substantial returns on data stewardship investments, and international initiatives are underway to bolster the data sharing capacity of the field. To improve the state of data sharing in citizen science, strategic use of limited resources suggests prioritizing data management activities that support the needs of multiple audiences. These may include better transparency about data access and usage, and standardized reporting of broader impacts from secondary data users, to both reward projects and incentivize further data sharing.

  19. Benefits and challenges of incorporating citizen science into university education

    PubMed Central

    Triska, Maggie; Liberatore, Andrea; Ashcroft, Linden; Weatherill, Richard; Longnecker, Nancy

    2017-01-01

    A common feature of many citizen science projects is the collection of data by unpaid contributors with the expectation that the data will be used in research. Here we report a teaching strategy that combined citizen science with inquiry-based learning to offer first year university students an authentic research experience. A six-year partnership with the Australian phenology citizen science program ClimateWatch has enabled biology students from the University of Western Australia to contribute phenological data on plants and animals, and to conduct the first research on unvalidated species datasets contributed by public and university participants. Students wrote scientific articles on their findings, peer-reviewed each other’s work and the best articles were published online in a student journal. Surveys of more than 1500 students showed that their environmental engagement increased significantly after participating in data collection and data analysis. However, only 31% of students agreed with the statement that “data collected by citizen scientists are reliable” at the end of the project, whereas the rate of agreement was initially 79%. This change in perception was likely due to students discovering erroneous records when they mapped data points and analysed submitted photographs. A positive consequence was that students subsequently reported being more careful to avoid errors in their own data collection, and making greater efforts to contribute records that were useful for future scientific research. Evaluation of our project has shown that by embedding a research process within citizen science participation, university students are given cause to improve their contributions to environmental datasets. If true for citizen scientists in general, enabling participants as well as scientists to analyse data could enhance data quality, and so address a key constraint of broad-scale citizen science programs. PMID:29091933

  20. Benefits and challenges of incorporating citizen science into university education.

    PubMed

    Mitchell, Nicola; Triska, Maggie; Liberatore, Andrea; Ashcroft, Linden; Weatherill, Richard; Longnecker, Nancy

    2017-01-01

    A common feature of many citizen science projects is the collection of data by unpaid contributors with the expectation that the data will be used in research. Here we report a teaching strategy that combined citizen science with inquiry-based learning to offer first year university students an authentic research experience. A six-year partnership with the Australian phenology citizen science program ClimateWatch has enabled biology students from the University of Western Australia to contribute phenological data on plants and animals, and to conduct the first research on unvalidated species datasets contributed by public and university participants. Students wrote scientific articles on their findings, peer-reviewed each other's work and the best articles were published online in a student journal. Surveys of more than 1500 students showed that their environmental engagement increased significantly after participating in data collection and data analysis. However, only 31% of students agreed with the statement that "data collected by citizen scientists are reliable" at the end of the project, whereas the rate of agreement was initially 79%. This change in perception was likely due to students discovering erroneous records when they mapped data points and analysed submitted photographs. A positive consequence was that students subsequently reported being more careful to avoid errors in their own data collection, and making greater efforts to contribute records that were useful for future scientific research. Evaluation of our project has shown that by embedding a research process within citizen science participation, university students are given cause to improve their contributions to environmental datasets. If true for citizen scientists in general, enabling participants as well as scientists to analyse data could enhance data quality, and so address a key constraint of broad-scale citizen science programs.

  1. Butterflies & Wild Bees: Biology Teachers' PCK Development through Citizen Science

    ERIC Educational Resources Information Center

    Scheuch, Martin; Panhuber, Tanja; Winter, Silvia; Kelemen-Finan, Julia; Bardy-Durchhalter, Manfred; Kapelari, Suzanne

    2018-01-01

    Citizen science is a rapidly growing emerging field in science and it is gaining importance in education. Therefore, this study was conducted to document the pedagogical content knowledge (PCK) of biology teachers who participated in a citizen science project involving observation of wild bees and identification of butterflies. In this paper,…

  2. Citizen expectations of 'academic entrepreneurship' in health research: public science, practical benefit.

    PubMed

    Miller, Fiona A; Painter-Main, Michael; Axler, Renata; Lehoux, Pascale; Giacomini, Mita; Slater, Barbara

    2015-12-01

    Responsiveness to citizens as users of technological innovation helps motivate translational research and commercial engagement among academics. Yet, retaining citizen trust and support for research encourages caution in pursuit of commercial science. We explore citizen expectations of the specifically academic nature of commercial science [i.e. academic entrepreneurship (AE)] and the influence of conflict of interest concerns, hopes about practical benefits and general beliefs. We conducted a cross-sectional national opinion survey of 1002 Canadians online in 2010. Approval of AE was moderate (mean 3.2/5, SD 0.84), but varied by entrepreneurial activity. Concern about conflict of interests (COI) was moderate (mean 2.9/5, SD 0.86) and varied by type of concern. An ordinary least-squares regression showed that expectations of practical benefits informed support for AE, specifically that academic-industry collaboration can better address real-world problems; conflict of interest concerns were insignificant. These findings suggest that citizens support AE for its potential to produce practical benefits, but enthusiasm varies and is reduced for activities that may prioritize private over public interests. Further, support exists despite concern about COI, perhaps due to trust in the academic research context. For user engagement in research priority setting, these findings suggest the need to attend to the commercial nature of translational science. For research policy, they suggest the need for governance arrangements for responsible innovation, which can sustain public trust in academic research, and realize the practical benefits that inform public support for AE. © 2014 John Wiley & Sons Ltd.

  3. Scientists@Home: what drives the quantity and quality of online citizen science participation?

    PubMed

    Nov, Oded; Arazy, Ofer; Anderson, David

    2014-01-01

    Online citizen science offers a low-cost way to strengthen the infrastructure for scientific research and engage members of the public in science. As the sustainability of online citizen science projects depends on volunteers who contribute their skills, time, and energy, the objective of this study is to investigate effects of motivational factors on the quantity and quality of citizen scientists' contribution. Building on the social movement participation model, findings from a longitudinal empirical study in three different citizen science projects reveal that quantity of contribution is determined by collective motives, norm-oriented motives, reputation, and intrinsic motives. Contribution quality, on the other hand, is positively affected only by collective motives and reputation. We discuss implications for research on the motivation for participation in technology-mediated social participation and for the practice of citizen science.

  4. Citizen Science and Lifelong Learning

    ERIC Educational Resources Information Center

    Edwards, Richard

    2014-01-01

    Citizen science projects have grown in number, scale and scope in recent years. Such projects engage members of the public in working with professional scientists in a diverse range of practices. Yet there has been little educational exploration of such projects to date. In particular, there has been limited exploration of the educational…

  5. Scientists@Home: What Drives the Quantity and Quality of Online Citizen Science Participation?

    PubMed Central

    Nov, Oded; Arazy, Ofer; Anderson, David

    2014-01-01

    Online citizen science offers a low-cost way to strengthen the infrastructure for scientific research and engage members of the public in science. As the sustainability of online citizen science projects depends on volunteers who contribute their skills, time, and energy, the objective of this study is to investigate effects of motivational factors on the quantity and quality of citizen scientists' contribution. Building on the social movement participation model, findings from a longitudinal empirical study in three different citizen science projects reveal that quantity of contribution is determined by collective motives, norm-oriented motives, reputation, and intrinsic motives. Contribution quality, on the other hand, is positively affected only by collective motives and reputation. We discuss implications for research on the motivation for participation in technology-mediated social participation and for the practice of citizen science. PMID:24690612

  6. Crowdsourcing Scientific Work: A Comparative Study of Technologies, Processes, and Outcomes in Citizen Science

    ERIC Educational Resources Information Center

    Wiggins, Andrea

    2012-01-01

    Citizen science projects involve the public with scientists in collaborative research. Information and communication technologies for citizen science can enable massive virtual collaborations based on voluntary contributions by diverse participants. As the popularity of citizen science increases, scientists need a more thorough understanding of…

  7. The Milky Way Project: A Citizen Science Catalog of Infrared Bow Shock Nebulae

    NASA Astrophysics Data System (ADS)

    Dixon, Don; Jayasinghe, Tharindu; Povich, Matthew S.

    2017-01-01

    We present preliminary results from the first citizen-science search for infrared stellar-wind bow shock candidates. This search uses the Milky Way project, hosted by the Zooniverse, an online platform with over 1 million volunteer citizen scientists. Milky Way Project volunteers examine 77,000 randomly-distributed Spitzer image cutouts at varying zoom levels. Volunteers mark the infrared arc of potential bow shock candidates as well as the star likely driving the nebula. We produce lists of candidates from bow shocks flagged by multiple volunteers, which after merging and final visual review form the basis for our catalog. Comparing our new catalog to a recently-published catalog of 709 infrared bow shock candidates identified by a small team of (primarily undergraduate) researchers will allow us to assess the effectiveness of citizen science for this type of search and should yield a more complete catalog. Planned studies using these large catalogs will improve constraints on the mass-loss rates for the massive stars that create these bow shock nebulae. Mass-loss rates are highly uncertain but are a critical component of evolutionary models for massive stars. This work is supported by the National Science Foundation under grants CAREER-1454334, AST-1411851 (RUI) and AST-1412845.

  8. Phenology observations collected by citizen scientists directly support science and natural resource management

    NASA Astrophysics Data System (ADS)

    Gerst, K.; Crimmins, T. M.; Rosemartin, A.

    2016-12-01

    The USA National Phenology Network (USA-NPN; www.usanpn.org) serves science and society by promoting a broad understanding of plant and animal phenology and the relationships among phenological patterns, climate, and environmental change. Data collected by citizen and professional scientists through Nature's Notebook - a national-scale, multi-taxa phenology observation program - serve USA-NPN strategic goals of advancing science and informing decisions. These phenology data and resultant products and maps are being used in a rapidly growing number of applications for science, conservation and resource management. Here we describe recent outcomes that have resulted from successful engagement with citizen scientists, with a focus on robust scientific products and results that would not have been possible without a coordinated national effort. Since 2009 over 7,500 Nature's Notebook participants have contributed over 7.8 million observation records of plants and animals across the United States. These data, and value-added data products developed and delivered by the USA-NPN, have been used in 24 peer-reviewed publications to date. In our presentation, we first highlight several recent published studies that demonstrate the value of data stored in the National Phenology Database (NPDb) to advance understanding of the ecological impacts of climate change. Second, we discuss local- to national-scale projects that capitalize on Nature's Notebook to inform management decisions, including scheduling street-sweeping to prevent leaves from entering inland lakes, setting the timing of herbicide treatments to maximize efficacy against invasive plants, and developing predictions of the emergence of forest pests. Finally, we present an overview of the framework we use to ensure data are of high quality. We invite researchers and partners to explore these data to address a wide range of science questions and management needs.

  9. The Citizen Sky Planetarium Trailer

    NASA Astrophysics Data System (ADS)

    Turner, Rebecca; Price, A.; Wyatt, R.

    2011-05-01

    Citizen Sky is a multi-year, citizen science project focusing on the bright variable star, epsilon Aurigae. We have developed a six-minute video presentation describing eclipsing binary stars, light curves, and the Citizen Sky project. Designed like a short movie trailer, the video can be shown at planetariums before their regular, feature shows or integrated into a longer presentation. The trailer is available in a wide range of formats for viewing on laptops all the way up to state-of-the-art planetariums. The show is narrated by Timothy Ferris and was produced by the Morrison Planetarium and Visualization Studio at the California Academy of Sciences. This project has been made possible by the National Science Foundation.

  10. Citizen Science International Pellet Watch

    ERIC Educational Resources Information Center

    Dohrenwend, Peter

    2012-01-01

    Like Tokyo, other cities, both small and large, typically have numerous universities with dedicated faculties of scientists. By using portals such as Citizen Science and SciStarter, teachers can reach beyond the four walls of their classroom. The incredible experience of forging a relationship with a local scientist can easily begin via a cordial…

  11. Leveraging Citizen Science and Information Technology for Population Physical Activity Promotion.

    PubMed

    King, Abby C; Winter, Sandra J; Sheats, Jylana L; Rosas, Lisa G; Buman, Matthew P; Salvo, Deborah; Rodriguez, Nicole M; Seguin, Rebecca A; Moran, Mika; Garber, Randi; Broderick, Bonnie; Zieff, Susan G; Sarmiento, Olga Lucia; Gonzalez, Silvia A; Banchoff, Ann; Dommarco, Juan Rivera

    2016-05-15

    While technology is a major driver of many of society's comforts, conveniences, and advances, it has been responsible, in a significant way, for engineering regular physical activity and a number of other positive health behaviors out of people's daily lives. A key question concerns how to harness information and communication technologies (ICT) to bring about positive changes in the health promotion field. One such approach involves community-engaged "citizen science," in which local residents leverage the potential of ICT to foster data-driven consensus-building and mobilization efforts that advance physical activity at the individual, social, built environment, and policy levels. The history of citizen science in the research arena is briefly described and an evidence-based method that embeds citizen science in a multi-level, multi-sectoral community-based participatory research framework for physical activity promotion is presented. Several examples of this citizen science-driven community engagement framework for promoting active lifestyles, called "Our Voice", are discussed, including pilot projects from diverse communities in the U.S. as well as internationally. The opportunities and challenges involved in leveraging citizen science activities as part of a broader population approach to promoting regular physical activity are explored. The strategic engagement of citizen scientists from socio-demographically diverse communities across the globe as both assessment as well as change agents provides a promising, potentially low-cost and scalable strategy for creating more active, healthful, and equitable neighborhoods and communities worldwide.

  12. CosmoQuest: A Glance at Citizen Science Building

    NASA Astrophysics Data System (ADS)

    Richardson, Matthew; Grier, Jennifer; Gay, Pamela; Lehan, Cory; Buxner, Sanlyn; CosmoQuest Team

    2018-01-01

    CosmoQuest is a virtual research facility focused on engaging people - citizen scientists - from across the world in authentic research projects designed to enhance our knowledge of the cosmos around us. Using image data acquired by NASA missions, our citizen scientists are first trained to identify specific features within the data and then requested to identify those features across large datasets. Responses submitted by the citizen scientists are then stored in our database where they await for analysis and eventual publication by CosmoQuest staff and collaborating professional research scientists.While it is clear that the driving power behind our projects are the eyes and minds of our citizen scientists, it is CosmoQuest’s custom software, Citizen Science Builder (CSB), that enables citizen science to be accomplished. On the front end, CosmoQuest’s CSB software allows for the creation of web-interfaces that users can access to perform image annotation through both drawing tools and questions that can accompany images. These tools include: using geometric shapes to identify regions within an image, tracing image attributes using freeform line tools, and flagging features within images. Additionally, checkboxes, dropdowns, and free response boxes may be used to collect information. On the back end, this software is responsible for the proper storage of all data, which allows project staff to perform periodic data quality checks and track the progress of each project. In this poster we present these available tools and resources and seek potential collaborations.

  13. Citizen-science, Geoethics and Human Niche

    NASA Astrophysics Data System (ADS)

    Bohle, Martin

    2017-04-01

    researching know-how and deploying it, i.e. needs 'citizen geo-scientists' to maintain the human niche. (B) Regarding knowledge-based societies: The rapidly increasing human knowledge base accelerates the scientific-technical revolution. Its industrial-societal implementation confronts societies with numerous change processes. Their speed and scope is a risk as well as the mutual interferences of different change processes that often only get obvious within everyday societal doings. This vigour of change requires robust two-way linkages between research and technological development on one side and societal activities on the other side. Research and development undertaken in cooperation with citizen scientists would improve such linkages, e.g. through increased transparency of research and development or strengthening the sense of belonging of people for their environments. Citizen scientists are a resource, because they are complementary partner to the professional researcher. On one side citizen scientists provide experiences that are rooted in everyday practices and on the other side they facilitate uptake of new practices. Both features are needed in societies that face anthropogenic global change. Summarizing, geoethics affiliates geosciences and 'citizen science' in a particular relationship, i.e. 'citizen geo-science', which is beneficial for knowledge-based societies that are functioning under conditions of anthropogenic global change. [1] http://www.geoethics.org/ (accessed: 8th November 2016) Disclaimer: The views expressed engage the author only, not the employer.

  14. Meteor Observations as Big Data Citizen Science

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Vinkovic, D.; Schwarz, G.; Nina, A.; Koschny, D.; Lyytinen, E.

    2016-12-01

    Meteor science represents an excellent example of the citizen science project, where progress in the field has been largely determined by amateur observations. Over the last couple of decades technological advancements in observational techniques have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced scientific goals. We review some of the developments that push meteor science into the Big Data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere. The recent increased interest in meteor science triggered by the Chelyabinsk fireball helps in building the case for technologically and logistically more ambitious meteor projects. This requires developing new methodological approaches in meteor research, with Big Data science and close collaboration between citizen science, geoscience and astronomy as critical elements. We discuss possibilities for improvements and promote an opportunity for collaboration in meteor science within the currently established BigSkyEarth http://bigskyearth.eu/ network.

  15. Lessons Learned from Citizen Science in the Classroom

    ERIC Educational Resources Information Center

    Gray, Steven A.; Nicosia, Kristina; Jordan, Rebecca C.

    2012-01-01

    Mueller, Tippins, and Bryan's contrast of the current limitations of science education with the potential virtues of citizen science provides an important theoretical perspective about the future of democratized science and K-12 education. However, the authors fail to adequately address the existing barriers and constraints to moving…

  16. Exposing the Science in Citizen Science: Fitness to Purpose and Intentional Design.

    PubMed

    Parrish, Julia K; Burgess, Hillary; Weltzin, Jake F; Fortson, Lucy; Wiggins, Andrea; Simmons, Brooke

    2018-05-21

    Citizen science is a growing phenomenon. With millions of people involved and billions of in-kind dollars contributed annually, this broad extent, fine grain approach to data collection should be garnering enthusiastic support in the mainstream science and higher education communities. However, many academic researchers demonstrate distinct biases against the use of citizen science as a source of rigorous information. To engage the public in scientific research, and the research community in the practice of citizen science, a mutual understanding is needed of accepted quality standards in science, and the corresponding specifics of project design and implementation when working with a broad public base. We define a science-based typology focused on the degree to which projects deliver the type(s) and quality of data/work needed to produce valid scientific outcomes directly useful in science and natural resource management. Where project intent includes direct contribution to science and the public is actively involved either virtually or hands-on, we examine the measures of quality assurance (methods to increase data quality during the design and implementation phases of a project) and quality control (post hoc methods to increase the quality of scientific outcomes). We suggest that high quality science can be produced with massive, largely one-off, participation if data collection is simple and quality control includes algorithm voting, statistical pruning and/or computational modeling. Small to mid-scale projects engaging participants in repeated, often complex, sampling can advance quality through expert-led training and well-designed materials, and through independent verification. Both approaches - simplification at scale and complexity with care - generate more robust science outcomes.

  17. The Acadia Learning Project: Lessons Learned from Engaging High School Teachers and Students in Citizen Science Supporting National Parks

    NASA Astrophysics Data System (ADS)

    Nelson, S. J.; Zoellick, B.; Davis, Y.; Lindsey, E.

    2009-12-01

    In 2007 the authors initiated a citizen science research project, supported with funding from the Maine Department of Education, designed to extend research at Acadia National Park to a broader geographic area while also providing high school students and teachers with an opportunity to engage in authentic research in cooperation with working scientists. The scientific focus of the work has been on providing information about the mercury burden of organisms at different trophic levels across different geographic and environmental settings. The pedagogical focus has been on providing students with immersion in a substantial, field-based project, including background research, hypothesis formulation, data collection and analysis, and presentation of research findings. Starting work with 6 teachers in two schools the first year, the project expanded to involve more than 20 teachers and 350 students in a dozen schools in its second year. In coming years, with support from NOAA and cooperation from other National Parks in the region, the project will expand to include work in other states along the coast of the Gulf of Maine. In this paper the authors describe evolution in the use of the Internet over the first two years of the project, a sharpened focus on professional development for teachers, survey results regarding student views of the nature of science, the importance of focusing on rigorous, useful data collection from an educational perspective, success in establishing that samples collected by students are useful in research, the disjuncture between scientific and pedagogical outcomes, an assessment of the value of student poster presentations, and lessons learned about preparation and use of curriculum support materials. The authors also describe future directions, which include an increased focus on professional development and student work with graphs, a narrower focus in sample collection, and increased use of the Internet to provide participating teachers

  18. Leveraging Citizen Science and Information Technology for Population Physical Activity Promotion

    PubMed Central

    King, Abby C.; Winter, Sandra J.; Sheats, Jylana L.; Rosas, Lisa G.; Buman, Matthew P.; Salvo, Deborah; Rodriguez, Nicole M.; Seguin, Rebecca A.; Moran, Mika; Garber, Randi; Broderick, Bonnie; Zieff, Susan G.; Sarmiento, Olga Lucia; Gonzalez, Silvia A.; Banchoff, Ann; Dommarco, Juan Rivera

    2016-01-01

    PURPOSE While technology is a major driver of many of society’s comforts, conveniences, and advances, it has been responsible, in a significant way, for engineering regular physical activity and a number of other positive health behaviors out of people’s daily lives. A key question concerns how to harness information and communication technologies (ICT) to bring about positive changes in the health promotion field. One such approach involves community-engaged “citizen science,” in which local residents leverage the potential of ICT to foster data-driven consensus-building and mobilization efforts that advance physical activity at the individual, social, built environment, and policy levels. METHOD The history of citizen science in the research arena is briefly described and an evidence-based method that embeds citizen science in a multi-level, multi-sectoral community-based participatory research framework for physical activity promotion is presented. RESULTS Several examples of this citizen science-driven community engagement framework for promoting active lifestyles, called “Our Voice”, are discussed, including pilot projects from diverse communities in the U.S. as well as internationally. CONCLUSIONS The opportunities and challenges involved in leveraging citizen science activities as part of a broader population approach to promoting regular physical activity are explored. The strategic engagement of citizen scientists from socio-demographically diverse communities across the globe as both assessment as well as change agents provides a promising, potentially low-cost and scalable strategy for creating more active, healthful, and equitable neighborhoods and communities worldwide. PMID:27525309

  19. Floating Forests: Validation of a Citizen Science Effort to Answer Global Ecological Questions

    NASA Astrophysics Data System (ADS)

    Rosenthal, I.; Byrnes, J.; Cavanaugh, K. C.; Haupt, A. J.; Trouille, L.; Bell, T. W.; Rassweiler, A.; Pérez-Matus, A.; Assis, J.

    2017-12-01

    Researchers undertaking long term, large-scale ecological analyses face significant challenges for data collection and processing. Crowdsourcing via citizen science can provide an efficient method for analyzing large data sets. However, many scientists have raised questions about the quality of data collected by citizen scientists. Here we use Floating-Forests (http://floatingforests.org), a citizen science platform for creating a global time series of giant kelp abundance, to show that ensemble classifications of satellite data can ensure data quality. Citizen scientists view satellite images of coastlines and classify kelp forests by tracing all visible patches of kelp. Each image is classified by fifteen citizen scientists before being retired. To validate citizen science results, all fifteen classifications are converted to a raster and overlaid on a calibration dataset generated from previous studies. Results show that ensemble classifications from citizen scientists are consistently accurate when compared to calibration data. Given that all source images were acquired by Landsat satellites, we expect this consistency to hold across all regions. At present, we have over 6000 web-based citizen scientists' classifications of almost 2.5 million images of kelp forests in California and Tasmania. These results are not only useful for remote sensing of kelp forests, but also for a wide array of applications that combine citizen science with remote sensing.

  20. The Citizen Sky Planetarium Trailer

    NASA Astrophysics Data System (ADS)

    Turner, R.; Price, A.; Wyatt, R.

    2012-06-01

    (Abstract only) Citizen Sky is a multi-year, citizen science project focusing on the bright variable star e Aurigae. We have developed a six-minute video presentation describing eclipsing binary stars, light curves, and the Citizen Sky project. Designed like a short movie trailer, the video can be shown at planetariums before their regular, feature shows or integrated into a longer presentation. The trailer is available in a wide range of formats for viewing on laptops all the way up to state-of-the-art planetariums. The show is narrated by Timothy Ferris and was produced by the Morrison Planetarium and Visualization Studio at the California Academy of Sciences. This project has been made possible by the National Science Foundation.

  1. Student cognition and motivation during the Classroom BirdWatch citizen science project

    NASA Astrophysics Data System (ADS)

    Tomasek, Terry Morton

    The purpose of this study was to examine and describe the ways various stakeholders (CBW project developer/coordinator, elementary and middle school teachers, and 5th through 8th grade students) envisioned, implemented and engaged in the citizen science project, eBird/Classroom BirdWatch. A multiple case study mixed-methods research design was used to examine student engagement in the cognitive processes associated with scientific inquiry as part of citizen science participation. Student engagement was described based on a sense of autonomy, competence, relatedness and intrinsic motivation. A goal of this study was to expand the taxonomy of differences between authentic scientific inquiry and simple inquiry to include those inquiry tasks associated with participation in citizen science by describing how students engaged in this type of science. This research study built upon the existing framework of cognitive processes associated with scientific inquiry described by Chinn and Malhotra (2002). This research provides a systematic analysis of the scientific processes and related reasoning tasks associated with the citizen science project eBird and the corresponding curriculum Classroom BirdWatch . Data consisted of responses to surveys, focus group interviews, document analysis and individual interviews. I suggest that citizen science could be an additional form of classroom-based science inquiry that can promote more authentic features of scientific inquiry and engage students in meaningful ways.

  2. Citizen Science Seismic Stations for Monitoring Regional and Local Events

    NASA Astrophysics Data System (ADS)

    Zucca, J. J.; Myers, S.; Srikrishna, D.

    2016-12-01

    The earth has tens of thousands of seismometers installed on its surface or in boreholes that are operated by many organizations for many purposes including the study of earthquakes, volcanos, and nuclear explosions. Although global networks such as the Global Seismic Network and the International Monitoring System do an excellent job of monitoring nuclear test explosions and other seismic events, their thresholds could be lowered with the addition of more stations. In recent years there has been interest in citizen-science approaches to augment government-sponsored monitoring networks (see, for example, Stubbs and Drell, 2013). A modestly-priced seismic station that could be purchased by citizen scientists could enhance regional and local coverage of the GSN, IMS, and other networks if those stations are of high enough quality and distributed optimally. In this paper we present a minimum set of hardware and software specifications that a citizen seismograph station would need in order to add value to global networks. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Classic And "Next Generation" Citizen Science: Expanding Data-gathering And Participant Demographics To Better Document Global Environmental Change.

    NASA Astrophysics Data System (ADS)

    Haines-Stiles, G.

    2015-12-01

    Long-standing citizen science projects such as Audubon's Christmas Bird Count have generated useful data about species range and population numbers for more than 100 years. Recent IPCC reports and the U.S. National Climate Assessment (NCA) routinely include data about changing ecosystems and enviroments. Today new forms of citizen science are beginning to join such classic examples and broaden the demographics of participants and the kinds of information that can be captured, shared and analyzed. Surfers and scientists are hoping to record near-shore measurements of ocean acidification in Smartfin, through GPS, accelerometers and pH sensors on surfboards. Trout Unlimited is working on "Angler Science", documenting water temperature and stream quality in a changing climate, and using DNA analysis to track invasive species. The West Oakland Environmental Indicators Project is adding community mobilization in the face of sea level rise to its decade-long work on air pollution, particulates and asthma. The National Phenology Network encourages year-long observations using the "-Nature's Notebook" app that extend beyond anything possible using government-funded research alone. Understanding oceans, protecting rivers and identifying long-term patterns can contribute useful data to future NCAs, helping meet the otherwise challenging goal of "continuous assessment." How can we manage what we can't measure, for reasons of limited staff or resources? This presentation will offer one answer: by enlisting more and more citizen scientists--sportsmen and women, hobbyists and outdoor enthusiasts who may not even self identify as "citizen scientists"--pursuing their passions while also contributing valuable GEC data. The presentation will also touch on what kinds of information infrastructure can help assure data quality when traditional citizen science is expanded in these ways.

  4. Failures of Engagement: Lessons Learned from a Citizen Science Pilot Study

    ERIC Educational Resources Information Center

    Druschke, Caroline Gottschalk; Seltzer, Carrie E.

    2012-01-01

    Citizen science is growing in popularity, but little research addresses participant learning outcomes. We describe the Chicago Area Pollinator Study (CAPS), which relied on citizen scientists to gather information about urban bee diversity and abundance. Based on pre- and post-CAPS participant surveys, we determined that citizen scientists…

  5. Citizen Science in Digital Worlds: The Seduction of a Temporary Escape or a Lifelong Pursuit?

    ERIC Educational Resources Information Center

    Tippins, Deborah J.; Jensen, Lucas John

    2012-01-01

    There is a vast terrain of emerging research that explores recent innovations in digital games, particularly as they relate to questions of teaching and learning science. One such game, "Citizen Science", was developed to teach players about the practice of citizen science as well as lake ecology. Citizen science is a pedagogy that has a long…

  6. Howmuch do we Knowabout the Contributors to Volunteered Geographic Information and Citizen Science Projects?

    NASA Astrophysics Data System (ADS)

    Mooney, P.; Morgan, L.

    2015-08-01

    In the last number of years there has been increased interest from researchers in investigating and understanding the characteristics and backgrounds of citizens who contribute to Volunteered Geographic Information (VGI) and Citizen Science (CS) projects. Much of the reluctance from stakeholders such as National Mapping Agencies, Environmental Ministries, etc. to use data and information generated and collected by VGI and CS projects grows from the lack of knowledge and understanding about who these contributors are. As they are drawn from the crowd there is a sense of the unknown about these citizens. Subsequently there are justifiable concerns about these citizens' ability to collect, generate and manage high quality and accurate spatial, scientific and environmental data and information. This paper provides a meta review of some of the key literature in the domain of VGI and CS to assess if these concerns are well founded and what efforts are ongoing to improve our understanding of the crowd.

  7. Using Citizen Science beyond Teaching Science Content: A Strategy for Making Science Relevant to Students' Lives

    ERIC Educational Resources Information Center

    Jenkins, Lynda L.

    2011-01-01

    I respond to Pike and Dunne by exploring the utilization of citizen science in science education. Their results indicate that students fail to pursue science beyond the secondary level, in part, because of prior educational experiences with science education. Students lack motivation to pursue degrees and careers in science because they feel…

  8. Science in the Wild: Adventure Citizen Science in the Arctic and Himalaya

    NASA Astrophysics Data System (ADS)

    Horodyskyj, U. N.; Rufat-Latre, J.; Reimuller, J. D.; Rowe, P.; Pothier, B.; Thapa, A.

    2016-12-01

    Science in the Wild provides educational hands-on adventure science expeditions for the everyday person, blending athletics and academics in remote regions of the planet. Participants receive training on field data collection techniques in order to be able to help scientists in the field while on expedition with them. At SITW, we also involve our participants in analyzing and interpreting the data, thus teaching them about data quality and sources of error and uncertainty. SITW teaches citizens the art of science storytelling, aims to make science more open and transparent, and utilizes open source software and hardware in projects. Open science serves both the research community and the greater public. For the former, it makes science reproducible, transparent and more impactful by mobilizing multidisciplinary and international collaborative research efforts. For the latter, it minimizes mistrust in the sciences by allowing the public a `behind-the-scenes' look into how scientific research is conducted, raw and unfiltered. We present results from a citizen-science expedition to Baffin Island (Canadian Arctic), which successfully skied and sampled snow for dust and black carbon concentration from the Penny Ice Cap, down the 25-mile length of Coronation Glacier, and back to the small Arctic town of Qikitarjuaq. From a May/June 2016 citizen-science expedition to Nepal (Himalaya), we present results comparing 2014/16 depth and lake floor compositional data from supraglacial lakes on Ngozumpa glacier while using open-source surface and underwater robotics. The Sherpa-Scientist Initiative, a program aimed at empowering locals in data collection and interpretation, successfully trained half a dozen Sherpas during this expedition and demonstrates the value of local engagement. In future expeditions to the region, efforts will be made to scale up the number of trainees and expand our spatial reach in the Himalaya.

  9. Activating social strategies: Face-to-face interaction in technology-mediated citizen science.

    PubMed

    Cappa, Francesco; Laut, Jeffrey; Nov, Oded; Giustiniano, Luca; Porfiri, Maurizio

    2016-11-01

    The use of crowds in research activities by public and private organizations is growing under different forms. Citizen science is a popular means of engaging the general public in research activities led by professional scientists. By involving a large number of amateur scientists, citizen science enables distributed data collection and analysis on a scale that would be otherwise difficult and costly to achieve. While advancements in information technology in the past few decades have fostered the growth of citizen science through online participation, several projects continue to fail due to limited participation. Such web-based projects may isolate the citizen scientists from the researchers. By adopting the perspective of social strategy, we investigate within a measure-manipulate-measure experiment if motivations to participate in a citizen science project can be positively influenced by a face-to-face interaction with the scientists leading the project. Such an interaction provides the participants with the possibility of asking questions on the spot and obtaining a detailed explanation of the citizen science project, its scientific merit, and environmental relevance. Social and cultural factors that moderate the effect brought about by face-to-face interactions on the motivations are also dissected and analyzed. Our findings provide an exploratory insight into a means for motivating crowds to participate in online environmental monitoring projects, also offering possible selection criteria of target audience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Ironbound Community Citizen Science Toolbox Fact Sheet

    EPA Pesticide Factsheets

    EPA is partnering with Newark’s Ironbound Community Corporation (ICC) to design, develop, and pilot a Citizen Science Toolbox that will enable communities to collect their own environmental data and increase their ability to understand local conditions.

  11. Be a Citizen Scientist!: Celebrate Earth Science Week 2006

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2006-01-01

    During Earth Science Week (October 8-14, 2006), millions of citizen scientists worldwide will be sampling groundwater, monitoring weather, touring quarries, exploring caves, preparing competition projects, and visiting museums and science centers to learn about Earth science. The American Geological Institute organizes this annual event to…

  12. Advice and Frequently Asked Questions (FAQs) for Citizen-Science Environmental Health Assessments

    PubMed Central

    Barzyk, Timothy M.; Huang, Hongtai; Williams, Ronald; Kaufman, Amanda; Essoka, Jonathan

    2018-01-01

    Citizen science provides quantitative results to support environmental health assessments (EHAs), but standardized approaches do not currently exist to translate findings into actionable solutions. The emergence of low-cost portable sensor technologies and proliferation of publicly available datasets provides unparalleled access to supporting evidence; yet data collection, analysis, interpretation, visualization, and communication are subjective approaches that must be tailored to a decision-making audience capable of improving environmental health. A decade of collaborative efforts and two citizen science projects contributed to three lessons learned and a set of frequently asked questions (FAQs) that address the complexities of environmental health and interpersonal relations often encountered in citizen science EHAs. Each project followed a structured step-by-step process in order to compare and contrast methods and approaches. These lessons and FAQs provide advice to translate citizen science research into actionable solutions in the context of a diverse range of environmental health issues and local stakeholders. PMID:29751612

  13. Advice and Frequently Asked Questions (FAQs) for Citizen-Science Environmental Health Assessments.

    PubMed

    Barzyk, Timothy M; Huang, Hongtai; Williams, Ronald; Kaufman, Amanda; Essoka, Jonathan

    2018-05-11

    Citizen science provides quantitative results to support environmental health assessments (EHAs), but standardized approaches do not currently exist to translate findings into actionable solutions. The emergence of low-cost portable sensor technologies and proliferation of publicly available datasets provides unparalleled access to supporting evidence; yet data collection, analysis, interpretation, visualization, and communication are subjective approaches that must be tailored to a decision-making audience capable of improving environmental health. A decade of collaborative efforts and two citizen science projects contributed to three lessons learned and a set of frequently asked questions (FAQs) that address the complexities of environmental health and interpersonal relations often encountered in citizen science EHAs. Each project followed a structured step-by-step process in order to compare and contrast methods and approaches. These lessons and FAQs provide advice to translate citizen science research into actionable solutions in the context of a diverse range of environmental health issues and local stakeholders.

  14. Participatory Design of Citizen Science Experiments

    ERIC Educational Resources Information Center

    Senabre, Enric; Ferran-Ferrer, Nuria; Perelló, Josep

    2018-01-01

    This article describes and analyzes the collaborative design of a citizen science research project through co-creation. Three groups of secondary school students and a team of scientists conceived three experiments on human behavior and social capital in urban and public spaces. The study goal is to address how interdisciplinary work and attention…

  15. Isn't Citizen Science a Hoot? A Case-study Exploring the Effectiveness of Citizen Science As an Instrument to Teach the Nature of Science through a Local Nocturnal Owl-monitoring Project

    NASA Astrophysics Data System (ADS)

    Kreofsky, Tess Marie

    Citizen science projects present a distinctive opportunity for professional and volunteer scientists to coordinate their efforts to gather unique sets of data that can benefit the scientific and local communities. These projects are assumed to be an effective educational tool to teach nature of science (NOS) to participants (Brossard, Lewenstein, Bonney, 2005). This case study evaluates the effectiveness of participation in a citizen science project as a way to learn about NOS. Through enhancement of the Tryon Creek Owl Monitoring Project the researcher reviewed the characteristics of a citizen science project that were thought to be necessary to impact the volunteers' knowledge of NOS. The study also explored the benefits and limitations to organizing the citizen science protect using the principles of action research. Analysis of participants' knowledge and the effectiveness of active research theory, was evaluated through pre- and post- questionnaires and interviews. Although volunteers were able to explore the core themes of NOS through actively engaging in the scientific process, they did not experience a statistically significant change in their demonstration of understanding. For a multitude of reasons, participants had a positive experience with the presence of an embedded researcher within the project. This case study supports the use of active research as a guide to ensure that within each project the needs of both the scientific community and the volunteer scientists are met.

  16. Neural network based visualization of collaborations in a citizen science project

    NASA Astrophysics Data System (ADS)

    Morais, Alessandra M. M.; Santos, Rafael D. C.; Raddick, M. Jordan

    2014-05-01

    Citizen science projects are those in which volunteers are asked to collaborate in scientific projects, usually by volunteering idle computer time for distributed data processing efforts or by actively labeling or classifying information - shapes of galaxies, whale sounds, historical records are all examples of citizen science projects in which users access a data collecting system to label or classify images and sounds. In order to be successful, a citizen science project must captivate users and keep them interested on the project and on the science behind it, increasing therefore the time the users spend collaborating with the project. Understanding behavior of citizen scientists and their interaction with the data collection systems may help increase the involvement of the users, categorize them accordingly to different parameters, facilitate their collaboration with the systems, design better user interfaces, and allow better planning and deployment of similar projects and systems. Users behavior can be actively monitored or derived from their interaction with the data collection systems. Records of the interactions can be analyzed using visualization techniques to identify patterns and outliers. In this paper we present some results on the visualization of more than 80 million interactions of almost 150 thousand users with the Galaxy Zoo I citizen science project. Visualization of the attributes extracted from their behaviors was done with a clustering neural network (the Self-Organizing Map) and a selection of icon- and pixel-based techniques. These techniques allows the visual identification of groups of similar behavior in several different ways.

  17. SciStarter 2.0: A Digital Platform to Foster and Study Sustained Engagement in Citizen Science

    NASA Astrophysics Data System (ADS)

    Hoffman, C.

    2016-12-01

    SciStarter is a popular online hotspot for citizen science. As a Match.com meets Amazon for citizen science projects, we connect the millions of citizen scientists to thousands of projects and events, and to the resources they need to participate. These opportunities represent ways for the general public from kids to adults to get involved in scientific research. Recently, SciStarter developed a new digital infrastructure to support sustained engagement in citizen science, and research into the behaviors and motivations of participants. The new digital infrastructure of SciStarter includes contribution tracking tools to make it easier to participate in multiple projects, enhanced GIS information to promote locally relevant projects, an online personal dashboard to keep track of contributions, and the use of these tools (contribution tracking, GIS, dashboard) by project owners and researchers to better understand and respond to the needs and interests of citizen science participants. We will provide an overview of these tools and the research behind their development. We will then explore how these new tools advance citizen science towards a future with more pathways to participatory policymaking, expanded access to informal STEM experiences, and lowered barriers to citizen science. Finally, we will present the research questions that can and will be answered through the site by practitioners in the diverse science and citizen science fields.

  18. Citizen-making: the role of national goals for socializing children.

    PubMed

    Bond, Michael Harris; Lun, Vivian Miu-Chi

    2014-03-01

    The ecological, political, religious and economic constraints and opportunities characterizing a nation crystallize to set the agenda for socializing children, its future citizens. Parented accordingly, members of those nations would come to adopt the values, beliefs, skills and attitudes that constitute the requisite human capital to sustain that nation. This study reports on the profiling of 55 nations by two dimensions of the socialization goals for children extracted from the World Values Survey, viz., Self-directedness versus Other-directedness, and Civility versus Practicality. An affluent, less corrupt and more gender-equal society is associated with greater focus on Self-directedness and Civility. Both dimensions show convergent and discriminant validities in their correlation with nation-level psychosocial variables such as citizen subjective well-being, values, beliefs, pace of life and trust of out-groups. These dimensions are also shown to connect a nation's ecological construct to the outcomes of its citizens, adding a psychological-developmental perspective to examine nation-building and cultural transmission. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. A citizen science campaign encouraging urban forest professionals to engage the public in the collection of tree phenological data

    NASA Astrophysics Data System (ADS)

    Clarke, K. C.

    2009-12-01

    There are growing concerns among leading national and local organizations about American scientific literacy, fundamental understanding of science, and the value of scientific research. These organizations, including the University Corporation for Atmospheric Research, have been at the forefront in addressing these concerns. In an effort to improve scientific literacy, research conducted by Sam Droege, among others, suggested using citizen science and public participation as instrumental methods to engage the public. Urban Tree Phenology (UTP), a project of Project BudBurst and the USDA Forest Service, is one such citizen science program that sought to engage the public, including the professionals and amateurs among them, in collecting urban tree phenophase data. UTP participants monitored and reported the stages of phenological events, such as First Leaf and Leaf Fall, of 24 native and cultivated urban tree species, using the steps shown in Figure 1. Data collected will support the long-term research of plant ecology, climate change, public health, urban heat islands on tree physiology, and urban tree management. UTP, using the architectures of online learning, has developed two instructional tutorials to assist data collection (Phase 1). The instructional tutorials were published online, in print and PowerPoint formats, at www.UrbanTreePhenology.com. By completing these tutorials, participants will gain the skills necessary to provide urban tree phenological data to national research databases via the Internet. Phase 2 will test and review the instructional materials developed, and in Phase 3, the administrators of UTP will distribute promotional materials to national research organizations and to participants of the Project BudBurst national citizen science campaign.

  20. Studying citizen science through adaptive management and learning feedbacks as mechanisms for improving conservation.

    PubMed

    Jordan, Rebecca; Gray, Steven; Sorensen, Amanda; Newman, Greg; Mellor, David; Newman, Greg; Hmelo-Silver, Cindy; LaDeau, Shannon; Biehler, Dawn; Crall, Alycia

    2016-06-01

    Citizen science has generated a growing interest among scientists and community groups, and citizen science programs have been created specifically for conservation. We examined collaborative science, a highly interactive form of citizen science, which we developed within a theoretically informed framework. In this essay, we focused on 2 aspects of our framework: social learning and adaptive management. Social learning, in contrast to individual-based learning, stresses collaborative and generative insight making and is well-suited for adaptive management. Adaptive-management integrates feedback loops that are informed by what is learned and is guided by iterative decision making. Participants engaged in citizen science are able to add to what they are learning through primary data collection, which can result in the real-time information that is often necessary for conservation. Our work is particularly timely because research publications consistently report a lack of established frameworks and evaluation plans to address the extent of conservation outcomes in citizen science. To illustrate how our framework supports conservation through citizen science, we examined how 2 programs enacted our collaborative science framework. Further, we inspected preliminary conservation outcomes of our case-study programs. These programs, despite their recent implementation, are demonstrating promise with regard to positive conservation outcomes. To date, they are independently earning funds to support research, earning buy-in from local partners to engage in experimentation, and, in the absence of leading scientists, are collecting data to test ideas. We argue that this success is due to citizen scientists being organized around local issues and engaging in iterative, collaborative, and adaptive learning. © 2016 Society for Conservation Biology.

  1. Rigor, Reliability, and Scientific Relevance: Citizen Science Lessons from COASST (Invited)

    NASA Astrophysics Data System (ADS)

    Parrish, J. K.

    2013-12-01

    Citizen science promises fine grain, broad extent data collected over decadal time scales, with co-benefits including increased scientific literacy and civic engagement. But does it only deliver non-standardized, unverifiable data collected episodically by individuals with little-to-no training? How do you know which projects to trust? What are the attributes of a scientifically sound citizen science project? The Coastal Observation and Seabird Survey Team (COASST) is a 15 year old citizen science project currently involving ~800 participants from northern California north to Kotzebue, Alaska and west to the Commander Islands, Russia. After a single 5-hour training delivered in-community by an expert, volunteers have the knowledge and skill sets to accurately survey a coastal site for beached bird carcasses, which they will be able to identify to species correctly ~85% of the time. Data are collected monthly, and some volunteers remain with the program for years, contributing hundreds, even thousands, of survey hours. COASST trainings, data collection materials, and data entry web portal all reinforce 'evidence first, deduction second,' a maxim that allows volunteers to learn, and gives on-staff experts the ability to independently verify all birds found. COASST data go directly into science, as part of studies as diverse as fishery entanglement, historic native uses of seabirds as food sources, and the impacts of sudden shifts in upwelling; as well as into resource management, as part of decisions on fishing regulations, waterfowl hunting limits, and ESA-listed species management. Like professional science, COASST features a specific sampling design linked to questions of interest, verifiable data, statistical analysis, and peer-reviewed publication. In addition, COASST features before-and-after testing of volunteer knowledge, independent verification of all deductive data, and recruitment and retention strategies linked to geographic community norms. As a result

  2. Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online

    NASA Technical Reports Server (NTRS)

    Romano, Cia; Graff, Paige V.; Runco, Susan

    2017-01-01

    Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online? Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image. Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project: (1) Concise explanation of the project, its context, and its purpose; (2) Including a mention of the funding agency (in this case, NASA); (3) A preview

  3. Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online

    NASA Astrophysics Data System (ADS)

    Romano, C.; Graff, P. V.; Runco, S.

    2017-12-01

    Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online?Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image.Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project:• Concise explanation of the project, its context, and its purpose;• Including a mention of the funding agency (in this case, NASA);• A preview of

  4. Citizen Science, Crowdsourcing and Big Data: A Scientific and Social Framework for Natural Resources and Environments

    NASA Astrophysics Data System (ADS)

    Glynn, P. D.; Jones, J. W.; Liu, S. B.; Shapiro, C. D.; Jenter, H. L.; Hogan, D. M.; Govoni, D. L.; Poore, B. S.

    2014-12-01

    We describe a conceptual framework for Citizen Science that can be applied to improve the understanding and management of natural resources and environments. For us, Citizen Science represents an engagement from members of the public, usually volunteers, in collaboration with paid professionals and technical experts to observe and understand natural resources and environments for the benefit of science and society. Our conceptual framework for Citizen Science includes crowdsourcing of observations (or sampling). It considers a wide range of activities, including volunteer and professional monitoring (e.g. weather and climate variables, water availability and quality, phenology, biota, image capture and remote sensing), as well as joint fact finding and analyses, and participatory mapping and modeling. Spatial distribution and temporal dynamics of the biophysical processes that control natural resources and environments are taken into account within this conceptual framework, as are the availability, scaling and diversity of tools and efforts that are needed to properly describe these biophysical processes. Opportunities are sought within the framework to properly describe, QA/QC, archive, and make readily accessible, the large amounts of information and traceable knowledge required to better understand and manage natural resources and environments. The framework also considers human motivational needs, primarily through a modern version of Maslow's hierarchy of needs. We examine several USGS-based Citizen Science efforts within the context of our framework, including the project called "iCoast - Did the Coast Change?", to understand the utility of the framework, its costs and benefits, and to offer concrete examples of how to expand and sustain specific projects. We make some recommendations that could aid its implementation on a national or larger scale. For example, implementation might be facilitated (1) through greater engagement of paid professionals, and (2

  5. The role of citizen science in monitoring biodiversity in Ireland

    NASA Astrophysics Data System (ADS)

    Donnelly, Alison; Crowe, Olivia; Regan, Eugenie; Begley, Sinead; Caffarra, Amelia

    2014-08-01

    Citizen science is proving to be an effective tool in tracking the rapid pace at which our environment is changing over large geographic areas. It is becoming increasingly popular, in places such as North America and some European countries, to engage members of the general public and school pupils in the collection of scientific data to support long-term environmental monitoring. Participants in such schemes are generally volunteers and are referred to as citizen scientists. The Christmas bird count in the US is one of the worlds longest running citizen science projects whereby volunteers have been collecting data on birds on a specific day since 1900. Similar volunteer networks in Ireland have been in existence since the 1960s and were established to monitor the number and diversity of birds throughout the country. More recently, initiatives such as Greenwave (2006) and Nature Watch (2009) invite school children and members of the general public respectively, to record phenology data from a range of common species of plant, insect and bird. In addition, the Irish butterfly and bumblebee monitoring schemes engage volunteers to record data on sightings of these species. The primary purpose of all of these networks is to collect data by which to monitor changes in wildlife development and diversity, and in the case of Greenwave to involve children in hands-on, inquiry-based science. Together these various networks help raise awareness of key environmental issues, such as climate change and loss of biodiversity, while at the same time promote development of scientific skills among the general population. In addition, they provide valuable scientific data by which to track environmental change. Here we examine the role of citizen science in monitoring biodiversity in Ireland and conclude that some of the data collected in these networks can be used to fulfil Ireland's statutory obligations for nature conservation. In addition, a bee thought previously to be extinct

  6. The role of citizen science in monitoring biodiversity in Ireland.

    PubMed

    Donnelly, Alison; Crowe, Olivia; Regan, Eugenie; Begley, Sinead; Caffarra, Amelia

    2014-08-01

    Citizen science is proving to be an effective tool in tracking the rapid pace at which our environment is changing over large geographic areas. It is becoming increasingly popular, in places such as North America and some European countries, to engage members of the general public and school pupils in the collection of scientific data to support long-term environmental monitoring. Participants in such schemes are generally volunteers and are referred to as citizen scientists. The Christmas bird count in the US is one of the worlds longest running citizen science projects whereby volunteers have been collecting data on birds on a specific day since 1900. Similar volunteer networks in Ireland have been in existence since the 1960s and were established to monitor the number and diversity of birds throughout the country. More recently, initiatives such as Greenwave (2006) and Nature Watch (2009) invite school children and members of the general public respectively, to record phenology data from a range of common species of plant, insect and bird. In addition, the Irish butterfly and bumblebee monitoring schemes engage volunteers to record data on sightings of these species. The primary purpose of all of these networks is to collect data by which to monitor changes in wildlife development and diversity, and in the case of Greenwave to involve children in hands-on, inquiry-based science. Together these various networks help raise awareness of key environmental issues, such as climate change and loss of biodiversity, while at the same time promote development of scientific skills among the general population. In addition, they provide valuable scientific data by which to track environmental change. Here we examine the role of citizen science in monitoring biodiversity in Ireland and conclude that some of the data collected in these networks can be used to fulfil Ireland's statutory obligations for nature conservation. In addition, a bee thought previously to be extinct

  7. Increasing patient engagement in rehabilitation exercises using computer-based citizen science.

    PubMed

    Laut, Jeffrey; Cappa, Francesco; Nov, Oded; Porfiri, Maurizio

    2015-01-01

    Patient motivation is an important factor to consider when developing rehabilitation programs. Here, we explore the effectiveness of active participation in web-based citizen science activities as a means of increasing participant engagement in rehabilitation exercises, through the use of a low-cost haptic joystick interfaced with a laptop computer. Using the joystick, patients navigate a virtual environment representing the site of a citizen science project situated in a polluted canal. Participants are tasked with following a path on a laptop screen representing the canal. The experiment consists of two conditions: in one condition, a citizen science component where participants classify images from the canal is included; and in the other, the citizen science component is absent. Both conditions are tested on a group of young patients undergoing rehabilitation treatments and a group of healthy subjects. A survey administered at the end of both tasks reveals that participants prefer performing the scientific task, and are more likely to choose to repeat it, even at the cost of increasing the time of their rehabilitation exercise. Furthermore, performance indices based on data collected from the joystick indicate significant differences in the trajectories created by patients and healthy subjects, suggesting that the low-cost device can be used in a rehabilitation setting for gauging patient recovery.

  8. Spatial distribution of citizen science casuistic observations for different taxonomic groups.

    PubMed

    Tiago, Patrícia; Ceia-Hasse, Ana; Marques, Tiago A; Capinha, César; Pereira, Henrique M

    2017-10-16

    Opportunistic citizen science databases are becoming an important way of gathering information on species distributions. These data are temporally and spatially dispersed and could have limitations regarding biases in the distribution of the observations in space and/or time. In this work, we test the influence of landscape variables in the distribution of citizen science observations for eight taxonomic groups. We use data collected through a Portuguese citizen science database (biodiversity4all.org). We use a zero-inflated negative binomial regression to model the distribution of observations as a function of a set of variables representing the landscape features plausibly influencing the spatial distribution of the records. Results suggest that the density of paths is the most important variable, having a statistically significant positive relationship with number of observations for seven of the eight taxa considered. Wetland coverage was also identified as having a significant, positive relationship, for birds, amphibians and reptiles, and mammals. Our results highlight that the distribution of species observations, in citizen science projects, is spatially biased. Higher frequency of observations is driven largely by accessibility and by the presence of water bodies. We conclude that efforts are required to increase the spatial evenness of sampling effort from volunteers.

  9. CosmoQuest: Building a Community of Skilled Citizen Science Contributors

    NASA Astrophysics Data System (ADS)

    Gay, P.; Lehan, C.; Bracey, G.; Durrell, P.; Komatsu, T.; Yamani, A.; Francis, M. R.

    2016-12-01

    The CosmoQuest Virtual Research Facility invites the public to participate in NASA Science Mission Directorate related research that leads to publishable results and data catalogues. CosmoQuest projects range in difficulty from simple crater and transient marking tasks to more complicated mapping tasks. To successfully engage contributors in creating usable results, training and validation are required. This is accomplished through activities that are designed to mirror the experiences students would have in a university, and include mentoring by team scientists, feedback on contributor efforts, seminars to learn about new science, and even formal classes to provide needed background. Recruitment is accomplished using new and social media, and planetarium and Science on the Sphere™ trailers and shows, and community is built through online and real-world collaboration spaces and events. In this presentation, we detail CosmoQuest's four-pronged approach of media recruitment, science education, citizen science, and community collaboration. We also discuss how it is leveraged to create a skilled collaboration of citizen scientists. Training and data validation activities will be be emphasized, with examples of both what can go right and lessons learned from when things go wrong. We conclude with strategies on how to utilize best practices in user interface design to create virtual experiences that allow major citizen science efforts to be scalable to large audiences.

  10. Citizen Science: The First Peninsular Malaysia Butterfly Count.

    PubMed

    Wilson, John-James; Jisming-See, Shi-Wei; Brandon-Mong, Guo-Jie; Lim, Aik-Hean; Lim, Voon-Ching; Lee, Ping-Shin; Sing, Kong-Wah

    2015-01-01

    Over the past 50 years, Southeast Asia has suffered the greatest losses of biodiversity of any tropical region in the world. Malaysia is a biodiversity hotspot in the heart of Southeast Asia with roughly the same number of mammal species, three times the number of butterfly species, but only 4% of the land area of Australia. Consequently, in Malaysia, there is an urgent need for biodiversity monitoring and also public engagement with wildlife to raise awareness of biodiversity loss. Citizen science is "on the rise" globally and can make valuable contributions to long-term biodiversity monitoring, but perhaps more importantly, involving the general public in science projects can raise public awareness and promote engagement. Butterflies are often the focus of citizen science projects due to their charisma and familiarity and are particularly valuable "ambassadors" of biodiversity conservation for public outreach. Here we present the data from our citizen science project, the first "Peninsular Malaysia Butterfly Count". Participants were asked to go outdoors on June 6, 2015, and (non-lethally) sample butterfly legs for species identification through DNA barcoding. Fifty-seven citizens responded to our adverts and registered to take part in the butterfly count with many registering on behalf of groups. Collectively the participants sampled 220 butterfly legs from 26 mostly urban and suburban sampling localities. These included our university campus, a highschool, several public parks and private residences. On the basis of 192 usable DNA barcodes, 43 species were sampled by the participants. The most sampled species was Appias olferna, followed by Junonia orithya and Zizina otis. Twenty-two species were only sampled once, five were only sampled twice, and four were only sampled three times. Three DNA barcodes could not be assigned species names. The sampled butterflies revealed that widely distributed, cosmopolitan species, often those recently arrived to the

  11. CitSci.org: A New Model for Managing, Documenting, and Sharing Citizen Science Data

    PubMed Central

    Wang, Yiwei; Kaplan, Nicole; Newman, Greg; Scarpino, Russell

    2015-01-01

    Citizen science projects have the potential to advance science by increasing the volume and variety of data, as well as innovation. Yet this potential has not been fully realized, in part because citizen science data are typically not widely shared and reused. To address this and related challenges, we built CitSci.org (see www.citsci.org), a customizable platform that allows users to collect and generate diverse datasets. We hope that CitSci.org will ultimately increase discoverability and confidence in citizen science observations, encouraging scientists to use such data in their own scientific research. PMID:26492521

  12. CitSci.org: A New Model for Managing, Documenting, and Sharing Citizen Science Data.

    PubMed

    Wang, Yiwei; Kaplan, Nicole; Newman, Greg; Scarpino, Russell

    2015-10-01

    Citizen science projects have the potential to advance science by increasing the volume and variety of data, as well as innovation. Yet this potential has not been fully realized, in part because citizen science data are typically not widely shared and reused. To address this and related challenges, we built CitSci.org (see www.citsci.org), a customizable platform that allows users to collect and generate diverse datasets. We hope that CitSci.org will ultimately increase discoverability and confidence in citizen science observations, encouraging scientists to use such data in their own scientific research.

  13. Using citizen science butterfly counts to predict species population trends.

    PubMed

    Dennis, Emily B; Morgan, Byron J T; Brereton, Tom M; Roy, David B; Fox, Richard

    2017-12-01

    Citizen scientists are increasingly engaged in gathering biodiversity information, but trade-offs are often required between public engagement goals and reliable data collection. We compared population estimates for 18 widespread butterfly species derived from the first 4 years (2011-2014) of a short-duration citizen science project (Big Butterfly Count [BBC]) with those from long-running, standardized monitoring data collected by experienced observers (U.K. Butterfly Monitoring Scheme [UKBMS]). BBC data are gathered during an annual 3-week period, whereas UKBMS sampling takes place over 6 months each year. An initial comparison with UKBMS data restricted to the 3-week BBC period revealed that species population changes were significantly correlated between the 2 sources. The short-duration sampling season rendered BBC counts susceptible to bias caused by interannual phenological variation in the timing of species' flight periods. The BBC counts were positively related to butterfly phenology and sampling effort. Annual estimates of species abundance and population trends predicted from models including BBC data and weather covariates as a proxy for phenology correlated significantly with those derived from UKBMS data. Overall, citizen science data obtained using a simple sampling protocol produced comparable estimates of butterfly species abundance to data collected through standardized monitoring methods. Although caution is urged in extrapolating from this U.K. study of a small number of common, conspicuous insects, we found that mass-participation citizen science can simultaneously contribute to public engagement and biodiversity monitoring. Mass-participation citizen science is not an adequate replacement for standardized biodiversity monitoring but may extend and complement it (e.g., through sampling different land-use types), as well as serving to reconnect an increasingly urban human population with nature. © 2017 The Authors. Conservation Biology published

  14. Citizen Science

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess

    2015-01-01

    Scientists and engineers constantly face new challenges, despite myriad advances in computing. More sets of data are collected today from earth and sky than there is time or resources available to carefully analyze them. Some problems either don't have fast algorithms to solve them or have solutions that must be found among millions of options, a situation akin to finding a needle in a haystack. But all hope is not lost: advances in technology and the Internet have empowered the general public to participate in the scientific process via individual computational resources and brain cognition, which isn't matched by any machine. Citizen scientists are volunteers who perform scientific work by making observations, collecting and disseminating data, making measurements, and analyzing or interpreting data without necessarily having any scientific training. In so doing, individuals from all over the world can contribute to science in ways that wouldn't have been otherwise possible.

  15. Citizen Science: Is It Worth Your Time?

    ERIC Educational Resources Information Center

    Smith, Michael Chadwick

    2015-01-01

    This dissertation investigated citizen science, a tool that connects the public to the scientific community through research-based projects and education campaigns. Benefits include volunteers adding data to long-term data sets and improved scientific literacy among the public. Oftentimes, there is trepidation among scientists, managers, and…

  16. Citizen Science Air Monitor (CSAM) Operating Procedures

    EPA Science Inventory

    The Citizen Science Air Monitor (CSAM) is an air monitoring system designed for measuring nitrogen dioxide (NO2) and particulate matter (PM) pollutants simultaneously. This self-contained system consists of a CairPol CairClip NO2 sensor, a Thermo Scientific personal DataRAM PM2.5...

  17. Citizen Science as a New Tool in Dog Cognition Research.

    PubMed

    Stewart, Laughlin; MacLean, Evan L; Ivy, David; Woods, Vanessa; Cohen, Eliot; Rodriguez, Kerri; McIntyre, Matthew; Mukherjee, Sayan; Call, Josep; Kaminski, Juliane; Miklósi, Ádám; Wrangham, Richard W; Hare, Brian

    2015-01-01

    Family dogs and dog owners offer a potentially powerful way to conduct citizen science to answer questions about animal behavior that are difficult to answer with more conventional approaches. Here we evaluate the quality of the first data on dog cognition collected by citizen scientists using the Dognition.com website. We conducted analyses to understand if data generated by over 500 citizen scientists replicates internally and in comparison to previously published findings. Half of participants participated for free while the other half paid for access. The website provided each participant a temperament questionnaire and instructions on how to conduct a series of ten cognitive tests. Participation required internet access, a dog and some common household items. Participants could record their responses on any PC, tablet or smartphone from anywhere in the world and data were retained on servers. Results from citizen scientists and their dogs replicated a number of previously described phenomena from conventional lab-based research. There was little evidence that citizen scientists manipulated their results. To illustrate the potential uses of relatively large samples of citizen science data, we then used factor analysis to examine individual differences across the cognitive tasks. The data were best explained by multiple factors in support of the hypothesis that nonhumans, including dogs, can evolve multiple cognitive domains that vary independently. This analysis suggests that in the future, citizen scientists will generate useful datasets that test hypotheses and answer questions as a complement to conventional laboratory techniques used to study dog psychology.

  18. Citizen Science as a New Tool in Dog Cognition Research

    PubMed Central

    Stewart, Laughlin; MacLean, Evan L.; Ivy, David; Woods, Vanessa; Cohen, Eliot; Rodriguez, Kerri; McIntyre, Matthew; Mukherjee, Sayan; Call, Josep; Kaminski, Juliane; Miklósi, Ádám; Wrangham, Richard W.; Hare, Brian

    2015-01-01

    Family dogs and dog owners offer a potentially powerful way to conduct citizen science to answer questions about animal behavior that are difficult to answer with more conventional approaches. Here we evaluate the quality of the first data on dog cognition collected by citizen scientists using the Dognition.com website. We conducted analyses to understand if data generated by over 500 citizen scientists replicates internally and in comparison to previously published findings. Half of participants participated for free while the other half paid for access. The website provided each participant a temperament questionnaire and instructions on how to conduct a series of ten cognitive tests. Participation required internet access, a dog and some common household items. Participants could record their responses on any PC, tablet or smartphone from anywhere in the world and data were retained on servers. Results from citizen scientists and their dogs replicated a number of previously described phenomena from conventional lab-based research. There was little evidence that citizen scientists manipulated their results. To illustrate the potential uses of relatively large samples of citizen science data, we then used factor analysis to examine individual differences across the cognitive tasks. The data were best explained by multiple factors in support of the hypothesis that nonhumans, including dogs, can evolve multiple cognitive domains that vary independently. This analysis suggests that in the future, citizen scientists will generate useful datasets that test hypotheses and answer questions as a complement to conventional laboratory techniques used to study dog psychology. PMID:26376443

  19. GoPros™ as an underwater photogrammetry tool for citizen science

    PubMed Central

    David, Peter A.; Dupont, Sally F.; Mathewson, Ciaran P.; O’Neill, Samuel J.; Powell, Nicholas N.; Williamson, Jane E.

    2016-01-01

    Citizen science can increase the scope of research in the marine environment; however, it suffers from necessitating specialized training and simplified methodologies that reduce research output. This paper presents a simplified, novel survey methodology for citizen scientists, which combines GoPro imagery and structure from motion to construct an ortho-corrected 3D model of habitats for analysis. Results using a coral reef habitat were compared to surveys conducted with traditional snorkelling methods for benthic cover, holothurian counts, and coral health. Results were comparable between the two methods, and structure from motion allows the results to be analysed off-site for any chosen visual analysis. The GoPro method outlined in this study is thus an effective tool for citizen science in the marine environment, especially for comparing changes in coral cover or volume over time. PMID:27168973

  20. GoPros™ as an underwater photogrammetry tool for citizen science.

    PubMed

    Raoult, Vincent; David, Peter A; Dupont, Sally F; Mathewson, Ciaran P; O'Neill, Samuel J; Powell, Nicholas N; Williamson, Jane E

    2016-01-01

    Citizen science can increase the scope of research in the marine environment; however, it suffers from necessitating specialized training and simplified methodologies that reduce research output. This paper presents a simplified, novel survey methodology for citizen scientists, which combines GoPro imagery and structure from motion to construct an ortho-corrected 3D model of habitats for analysis. Results using a coral reef habitat were compared to surveys conducted with traditional snorkelling methods for benthic cover, holothurian counts, and coral health. Results were comparable between the two methods, and structure from motion allows the results to be analysed off-site for any chosen visual analysis. The GoPro method outlined in this study is thus an effective tool for citizen science in the marine environment, especially for comparing changes in coral cover or volume over time.

  1. Science Resulting from U.S. Geological Survey's "Did You Feel It?" Citizen Science Portal

    NASA Astrophysics Data System (ADS)

    Wald, D. J.; Dewey, J. W.; Atkinson, G. M.; Worden, C. B.; Quitoriano, V. P. R.

    2016-12-01

    The U.S. Geological Survey (USGS) "Did You Feel It?" (DYFI) system, in operation since 1999, is an automated approach for rapidly collecting macroseismic intensity data from internet users' shaking and damage reports and generating intensity maps immediately following earthquakes felt around the globe. As with any citizen science project, a significant component of the DYFI system is public awareness and participation in the immediate aftermath of any widely felt earthquake, allowing the public and the USGS to exchange valuable post-earthquake information. The data collected are remarkably robust and useful, as indicated by the range of peer-reviewed literature that rely on these citizen-science intensity reports. A Google Scholar search results in 14,700 articles citing DYFI, a number of which rely exclusively on these data. Though focused on topics of earthquake seismology (including shaking attenuation and relationships with damage), other studies cover social media use in disasters, human risk perception, earthquake-induced landslides, rapid impact assessment, emergency response, and science education. DYFI data have also been analyzed for non-earthquake events, including explosions, aircraft sonic booms, and even bolides and DYFI is now one of the best data sources from which to study induced earthquakes. Yet, DYFI was designed primarily as an operational system to rapidly assess the effects of earthquakes for situational awareness. Oftentimes, DYFI data are the only data available pertaining to shaking levels for much of the United States. As such, DYFI provides site-specific constraints of the shaking levels that feed directly into ShakeMap; thus, these data are readily available to emergency managers and responders, the media, and the general public. As an early adopter of web-based citizen science and having worked out many kinks in the process, DYFI developers have provided guidance on many other citizen-science endeavors across a wide range of

  2. The Use of the Nature of Scientific Knowledge Scale as a Entrance Assessment in a Large, Online Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Price, Aaron

    2010-01-01

    Citizen Sky is a new three-year, astronomical citizen science project launched in June, 2009 with funding from the National Science Foundation. This paper reports on early results of an assessment delivered to 1000 participants when they first joined the project. The goal of the assessment, based on the Nature of Scientific Knowledge Scale (NSKS), is to characterize their attitudes towards the nature of scientific knowledge. Our results are that the NSKS components of the assessment achieved high levels of reliability. Both reliability and overall scores fall within the range reported from other NSKS studies in the literature. Correlation analysis with other components of the assessment reveals some factors, such as age and understanding of scientific evidence, may be reflected in scores of subscales of NSKS items. Further work will be done using online discourse analysis and interviews. Overall, we find that the NSKS can be used as an entrance assessment for an online citizen science project.

  3. Elizabeth Brown and Citizen Science in the Late 1800s (poster)

    NASA Astrophysics Data System (ADS)

    Larsen, K.

    2013-06-01

    (Abstract only) While "Citizen Science" projects are sometimes thought of as a recent permutation of the professional-amateur relationship in science, the AAVSO is an example of an organization that has been encouraging such participation for over a century. Although the AAVSO's Solar Observing Program dates back only to 1944, AAVSO members had been submitting sunspot counts to other agencies long before this time. Other countries also have a long history of collecting valuable sunspot observations. For example, prior to the AAVSO's founding in 1911, British amateurs had been collecting solar data in organizations such as the British Astronomical Association (BAA) and Liverpool Astronomical Society (LAS) since the 1880s. British amateur astronomer Elizabeth Brown served as Solar Section Director of both the BAA and the LAS, and played an important role in promoting participation in citizen science projects, not only in solar observing, but in other astronomical and meteorological projects as well. This poster will summarize this work and argue that Brown's contributions should be more widely known and studied in modern citizen science project circles.

  4. The PACA Project Ecology: Observing Campaigns, Outreach and Citizen Science

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2016-12-01

    The PACA Project has three main components: observational campaigns aligned with scientific research; outreach to engage all forms of audiences and citizen science projects that aim to produce specific scientific results, by engaging professional scientific and amateur communities and a variety of audiences. The primary observational projects are defined by specific scientific goals by professionals, resulting in global observing campaigns involving a variety of observers, and observing techniques. Some of PACA's observing campaigns have included global characterization of comets (e.g., C/ISON, SidingSpring, 67P/Churyumov-Gerasimenko, Lovejoy, etc.), planets (Jupiter, Saturn and Mars) and currently expanding to include polarimetric exploration of solar system objects with small apertures and collaboration with CITIZEN CATE, a citizen science observing campaign to observe the 2017 Continental America Total Eclipse. Our Outreach campaigns leverage the multiple social media/platforms for at least two important reasons: (i) the immediate dissemination of observations and interaction with the global network and (ii) free or inexpensive resources for most of the participants. The use of social media is becoming prevalent in citizen science projects due to these factors. The final stage of the PACA ecosystem is the integration of these components into a publication. We shall highlight some of the interesting challenges and solutions of the PACA Project so far and provide a view of future projects in all three categories with new partnerships and collaborations.

  5. Radio Jove: Citizen Science for Jupiter Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Higgins, C. A.; Thieman, J.; Reyes, F. J.; Typinski, D.; Flagg, R. F.; Greenman, W.; Brown, J.; Ashcraft, T.; Sky, J.; Cecconi, B.; Garcia, L. N.

    2016-12-01

    The Radio Jove Project (http://radiojove.gsfc.nasa.gov) has been operating as an educational activity for 18 years to introduce radio astronomy activities to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with radio observatories in real-time over the Internet. Recently some of our dedicated citizen science observers have upgraded their systems to better study radio emission from Jupiter and the Sun by adding dual-polarization spectrographs and wide-band antennas in the frequency range of 15-30 MHz. Some of these observations are being used in conjunction with professional telescopes such as the Long Wavelength Array (LWA), the Nancay Decametric Array, and the Ukrainian URAN2 Radio Telescope. In particular, there is an effort to support the Juno Mission radio waves instrument at Jupiter by using citizen science ground-based data for comparison and polarization verification. These data will be archived through a Virtual European Solar and Planetary Access (VESPA) archive (https://voparis-radiojove.obspm.fr/radiojove/welcome) for use by the amateur and professional radio science community. We overview the program and display recent observations that will be of interest to the science community.

  6. A review of citizen science and community-based environmental monitoring: issues and opportunities.

    PubMed

    Conrad, Cathy C; Hilchey, Krista G

    2011-05-01

    Worldwide, decision-makers and nongovernment organizations are increasing their use of citizen volunteers to enhance their ability to monitor and manage natural resources, track species at risk, and conserve protected areas. We reviewed the last 10 years of relevant citizen science literature for areas of consensus, divergence, and knowledge gaps. Different community-based monitoring (CBM) activities and governance structures were examined and contrasted. Literature was examined for evidence of common benefits, challenges, and recommendations for successful citizen science. Two major gaps were identified: (1) a need to compare and contrast the success (and the situations that induce success) of CBM programs which present sound evidence of citizen scientists influencing positive environmental changes in the local ecosystems they monitor and (2) more case studies showing use of CBM data by decision-makers or the barriers to linkages and how these might be overcome. If new research focuses on these gaps, and on the differences of opinions that exist, we will have a much better understanding of the social, economic, and ecological benefits of citizen science.

  7. Learning and the transformative potential of citizen science.

    PubMed

    Bela, Györgyi; Peltola, Taru; Young, Juliette C; Balázs, Bálint; Arpin, Isabelle; Pataki, György; Hauck, Jennifer; Kelemen, Eszter; Kopperoinen, Leena; Van Herzele, Ann; Keune, Hans; Hecker, Susanne; Suškevičs, Monika; Roy, Helen E; Itkonen, Pekka; Külvik, Mart; László, Miklós; Basnou, Corina; Pino, Joan; Bonn, Aletta

    2016-10-01

    The number of collaborative initiatives between scientists and volunteers (i.e., citizen science) is increasing across many research fields. The promise of societal transformation together with scientific breakthroughs contributes to the current popularity of citizen science (CS) in the policy domain. We examined the transformative capacity of citizen science in particular learning through environmental CS as conservation tool. We reviewed the CS and social-learning literature and examined 14 conservation projects across Europe that involved collaborative CS. We also developed a template that can be used to explore learning arrangements (i.e., learning events and materials) in CS projects and to explain how the desired outcomes can be achieved through CS learning. We found that recent studies aiming to define CS for analytical purposes often fail to improve the conceptual clarity of CS; CS programs may have transformative potential, especially for the development of individual skills, but such transformation is not necessarily occurring at the organizational and institutional levels; empirical evidence on simple learning outcomes, but the assertion of transformative effects of CS learning is often based on assumptions rather than empirical observation; and it is unanimous that learning in CS is considered important, but in practice it often goes unreported or unevaluated. In conclusion, we point to the need for reliable and transparent measurement of transformative effects for democratization of knowledge production. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  8. The National Eclipse Weather Experiment: an assessment of citizen scientist weather observations

    PubMed Central

    2016-01-01

    The National Eclipse Weather Experiment (NEWEx) was a citizen science project designed to assess the effects of the 20 March 2015 partial solar eclipse on the weather over the United Kingdom (UK). NEWEx had two principal objectives: to provide a spatial network of meteorological observations across the UK to aid the investigation of eclipse-induced weather changes, and to develop a nationwide public engagement activity-based participation of citizen scientists. In total, NEWEx collected 15 606 observations of air temperature, cloudiness and wind speed and direction from 309 locations across the UK, over a 3 h window spanning the eclipse period. The headline results were processed in near real time, immediately published online, and featured in UK national press articles on the day of the eclipse. Here, we describe the technical development of NEWEx and how the observations provided by the citizen scientists were analysed. By comparing the results of the NEWEx analyses with results from other investigations of the same eclipse using different observational networks, including measurements from the University of Reading’s Atmospheric Observatory, we demonstrate that NEWEx provided a fair representation of the change in the UK meteorological conditions throughout the eclipse. Despite the simplicity of the approach adopted, robust reductions in both temperature and wind speed during the eclipse were observed. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550767

  9. The value of citizen science for ecological monitoring of mammals.

    PubMed

    Parsons, Arielle Waldstein; Goforth, Christine; Costello, Robert; Kays, Roland

    2018-01-01

    Citizen science approaches are of great interest for their potential to efficiently and sustainably monitor wildlife populations on both public and private lands. Here we present two studies that worked with volunteers to set camera traps for ecological surveys. The photographs recorded by these citizen scientists were archived and verified using the eMammal software platform, providing a professional grade, vouchered database of biodiversity records. Motivated by managers' concern with perceived high bear activity, our first example enlisted the help of homeowners in a short-term study to compare black bear activity inside a National Historic Site with surrounding private land. We found similar levels of bear activity inside and outside the NHS, and regional comparisons suggest the bear population is typical. Participants benefited from knowing their local bear population was normal and managers refocused bear management given this new information. Our second example is a continuous survey of wildlife using the grounds of a nature education center that actively manages habitat to maintain a grassland prairie. Center staff incorporated the camera traps into educational programs, involving visitors with camera setup and picture review. Over two years and 5,968 camera-nights this survey has collected 41,393 detections of 14 wildlife species. Detection rates and occupancy were higher in open habitats compared to forest, suggesting that the maintenance of prairie habitat is beneficial to some species. Over 500 volunteers of all ages participated in this project over two years. Some of the greatest benefits have been to high school students, exemplified by a student with autism who increased his communication and comfort level with others through field work with the cameras. These examples show how, with the right tools, training and survey design protocols, citizen science can be used to answer a variety of applied management questions while connecting participants

  10. The value of citizen science for ecological monitoring of mammals

    PubMed Central

    Goforth, Christine; Costello, Robert; Kays, Roland

    2018-01-01

    Citizen science approaches are of great interest for their potential to efficiently and sustainably monitor wildlife populations on both public and private lands. Here we present two studies that worked with volunteers to set camera traps for ecological surveys. The photographs recorded by these citizen scientists were archived and verified using the eMammal software platform, providing a professional grade, vouchered database of biodiversity records. Motivated by managers’ concern with perceived high bear activity, our first example enlisted the help of homeowners in a short-term study to compare black bear activity inside a National Historic Site with surrounding private land. We found similar levels of bear activity inside and outside the NHS, and regional comparisons suggest the bear population is typical. Participants benefited from knowing their local bear population was normal and managers refocused bear management given this new information. Our second example is a continuous survey of wildlife using the grounds of a nature education center that actively manages habitat to maintain a grassland prairie. Center staff incorporated the camera traps into educational programs, involving visitors with camera setup and picture review. Over two years and 5,968 camera-nights this survey has collected 41,393 detections of 14 wildlife species. Detection rates and occupancy were higher in open habitats compared to forest, suggesting that the maintenance of prairie habitat is beneficial to some species. Over 500 volunteers of all ages participated in this project over two years. Some of the greatest benefits have been to high school students, exemplified by a student with autism who increased his communication and comfort level with others through field work with the cameras. These examples show how, with the right tools, training and survey design protocols, citizen science can be used to answer a variety of applied management questions while connecting participants

  11. Crowd-funded micro-grants for genomics and "big data": an actionable idea connecting small (artisan) science, infrastructure science, and citizen philanthropy.

    PubMed

    Özdemir, Vural; Badr, Kamal F; Dove, Edward S; Endrenyi, Laszlo; Geraci, Christy Jo; Hotez, Peter J; Milius, Djims; Neves-Pereira, Maria; Pang, Tikki; Rotimi, Charles N; Sabra, Ramzi; Sarkissian, Christineh N; Srivastava, Sanjeeva; Tims, Hesther; Zgheib, Nathalie K; Kickbusch, Ilona

    2013-04-01

    Biomedical science in the 21(st) century is embedded in, and draws from, a digital commons and "Big Data" created by high-throughput Omics technologies such as genomics. Classic Edisonian metaphors of science and scientists (i.e., "the lone genius" or other narrow definitions of expertise) are ill equipped to harness the vast promises of the 21(st) century digital commons. Moreover, in medicine and life sciences, experts often under-appreciate the important contributions made by citizen scholars and lead users of innovations to design innovative products and co-create new knowledge. We believe there are a large number of users waiting to be mobilized so as to engage with Big Data as citizen scientists-only if some funding were available. Yet many of these scholars may not meet the meta-criteria used to judge expertise, such as a track record in obtaining large research grants or a traditional academic curriculum vitae. This innovation research article describes a novel idea and action framework: micro-grants, each worth $1000, for genomics and Big Data. Though a relatively small amount at first glance, this far exceeds the annual income of the "bottom one billion"-the 1.4 billion people living below the extreme poverty level defined by the World Bank ($1.25/day). We describe two types of micro-grants. Type 1 micro-grants can be awarded through established funding agencies and philanthropies that create micro-granting programs to fund a broad and highly diverse array of small artisan labs and citizen scholars to connect genomics and Big Data with new models of discovery such as open user innovation. Type 2 micro-grants can be funded by existing or new science observatories and citizen think tanks through crowd-funding mechanisms described herein. Type 2 micro-grants would also facilitate global health diplomacy by co-creating crowd-funded micro-granting programs across nation-states in regions facing political and financial instability, while sharing similar disease

  12. An exploration of citizen science for population health research in retail food environments.

    PubMed

    Pomeroy, Stephanie J; Minaker, Leia M; Mah, Catherine L

    2018-01-22

    Public engagement is an essential component of public health research, practice, knowledge exchange processes, and decision making. Citizen science was first documented in the early 1900s as an approach to public engagement and there is growing interest in how it can be used in health research. This commentary describes how citizen science approaches were incorporated into a public engagement activity as part of a population health intervention research project on the retail food environment, a workshop we hosted called The Food In This Place in St. John's, Newfoundland and Labrador. We used citizen science methods and approaches to train and support participants to critically analyze a sample of everyday local retail food environments.

  13. Designing for Online Collaborations and Local Environmental Action In Citizen Science: A Multiple Case Study

    NASA Astrophysics Data System (ADS)

    Kermish-Allen, Ruth

    Traditional citizen science projects have been based on the scientific communities need to gather vast quantities of high quality data, neglecting to ask what the project participants get in return. How can participants be seen more as collaborative partners in citizen science projects? Online communities for citizen science are expanding rapidly, giving participants the opportunity to take part in a wide range of activities, from monitoring invasive species to identifying far-off galaxies. These communities can bring together the virtual and physical worlds in new ways that are egalitarian, collaborative, applied, localized and globalized to solve real environmental problems. There are a small number of citizen science projects that leverage the affordances of an online community to connect, engage, and empower participants to make local change happen. This multiple case study applies a conceptual framework rooted in sociocultural learning theory, Non-Hierarchical Online Learning Communities (NHOLCs), to three online citizen communities that have successfully fostered online collaboration and on-the-ground environmental actions. The purpose of the study is to identify the range and variation of the online and programmatic functions available in each project. The findings lead to recommendations for designing these innovative communities, specifically the technological and programmatic components of online citizen science communities that support environmental actions in our backyards.

  14. Pathways of Knowing: Integrating Citizen Science and Critical Thinking in the Adult ELL Classroom

    NASA Astrophysics Data System (ADS)

    Basham, Melody

    This action research study examines what common perceptions and constructs currently exist in educating adult immigrants in Arizona and considers how might the integration of citizen science with the current English curriculum promote higher order thinking and educational equity in this population. A citizen science project called the Mastodon Matrix Project was introduced to a Level 2 ELAA (English Language Acquisition for Adults) classroom and aligned with the Arizona Adult Standards for ELAA education. Pre and post attitudinal surveys, level tests, and personal meaning maps were implemented to assess student attitudes towards science, views on technology, English skills, and knowledge gained as a result of doing citizen science over a period of 8 weeks.

  15. A framework for evaluating and designing citizen science programs for natural resources monitoring.

    PubMed

    Chase, Sarah K; Levine, Arielle

    2016-06-01

    We present a framework of resource characteristics critical to the design and assessment of citizen science programs that monitor natural resources. To develop the framework we reviewed 52 citizen science programs that monitored a wide range of resources and provided insights into what resource characteristics are most conducive to developing citizen science programs and how resource characteristics may constrain the use or growth of these programs. We focused on 4 types of resource characteristics: biophysical and geographical, management and monitoring, public awareness and knowledge, and social and cultural characteristics. We applied the framework to 2 programs, the Tucson (U.S.A.) Bird Count and the Maui (U.S.A.) Great Whale Count. We found that resource characteristics such as accessibility, diverse institutional involvement in resource management, and social or cultural importance of the resource affected program endurance and success. However, the relative influence of each characteristic was in turn affected by goals of the citizen science programs. Although the goals of public engagement and education sometimes complimented the goal of collecting reliable data, in many cases trade-offs must be made between these 2 goals. Program goals and priorities ultimately dictate the design of citizen science programs, but for a program to endure and successfully meet its goals, program managers must consider the diverse ways that the nature of the resource being monitored influences public participation in monitoring. © 2016 Society for Conservation Biology.

  16. Citizen science participation in research in the environmental sciences: key factors related to projects' success and longevity.

    PubMed

    Cunha, Davi G F; Marques, Jonatas F; Resende, Juliana C DE; Falco, Patrícia B DE; Souza, Chrislaine M DE; Loiselle, Steven A

    2017-01-01

    The potential impacts of citizen science initiatives are increasing across the globe, albeit in an imbalanced manner. In general, there is a strong element of trial and error in most projects, and the comparison of best practices and project structure between different initiatives remains difficult. In Brazil, the participation of volunteers in environmental research is limited. Identifying the factors related to citizen science projects' success and longevity within a global perspective can contribute for consolidating such practices in the country. In this study, we explore past and present projects, including a case study in Brazil, to identify the spatial and temporal trends of citizen science programs as well as their best practices and challenges. We performed a bibliographic search using Google Scholar and considered results from 2005-2014. Although these results are subjective due to the Google Scholar's algorithm and ranking criteria, we highlighted factors to compare projects across geographical and disciplinary areas and identified key matches between project proponents and participants, project goals and local priorities, participant profiles and engagement, scientific methods and funding. This approach is a useful starting point for future citizen science projects, allowing for a systematic analysis of potential inconsistencies and shortcomings in this emerging field.

  17. Using citizen science to bridge taxonomic discovery with education and outreach.

    PubMed

    von Konrat, Matt; Campbell, Thomas; Carter, Ben; Greif, Matthew; Bryson, Mike; Larraín, Juan; Trouille, Laura; Cohen, Steve; Gaus, Eve; Qazi, Ayesha; Ribbens, Eric; Livshultz, Tatyana; Walker, Taylor J; Suwa, Tomomi; Peterson, Taylor; Rodriguez, Yarency; Vaughn, Caitlin; Yang, Christina; Aburahmeh, Selma; Carstensen, Brian; de Lange, Peter; Delavoi, Charlie; Strauss, Kalman; Drag, Justyna; Aguero, Blanka; Snyder, Chris; Martinec, Joann; Smith, Arfon

    2018-02-01

    Biological collections are uniquely poised to inform the stewardship of life on Earth in a time of cataclysmic biodiversity loss. Efforts to fully leverage collections are impeded by a lack of trained taxonomists and a lack of interest and engagement by the public. We provide a model of a crowd-sourced data collection project that produces quality taxonomic data sets and empowers citizen scientists through real contributions to science. Entitled MicroPlants, the project is a collaboration between taxonomists, citizen science experts, and teachers and students from universities and K-12. We developed an online tool that allows citizen scientists to measure photographs of specimens of a hyper-diverse group of liverworts from a biodiversity hotspot. Using the MicroPlants online tool, citizen scientists are generating high-quality data, with preliminary analysis indicating non-expert data can be comparable to expert data. More than 11,000 users from both the website and kiosk versions have contributed to the data set, which is demonstrably aiding taxonomists working toward establishing conservation priorities within this group. MicroPlants provides opportunities for public participation in authentic science research. The project's educational component helps move youth toward engaging in scientific thinking and has been adopted by several universities into curriculum for both biology and non-biology majors.

  18. Citizen Science: The First Peninsular Malaysia Butterfly Count

    PubMed Central

    Jisming-See, Shi-Wei; Brandon-Mong, Guo-Jie; Lim, Aik-Hean; Lim, Voon-Ching; Lee, Ping-Shin; Sing, Kong-Wah

    2015-01-01

    Abstract Background Over the past 50 years, Southeast Asia has suffered the greatest losses of biodiversity of any tropical region in the world. Malaysia is a biodiversity hotspot in the heart of Southeast Asia with roughly the same number of mammal species, three times the number of butterfly species, but only 4% of the land area of Australia. Consequently, in Malaysia, there is an urgent need for biodiversity monitoring and also public engagement with wildlife to raise awareness of biodiversity loss. Citizen science is “on the rise” globally and can make valuable contributions to long-term biodiversity monitoring, but perhaps more importantly, involving the general public in science projects can raise public awareness and promote engagement. Butterflies are often the focus of citizen science projects due to their charisma and familiarity and are particularly valuable “ambassadors” of biodiversity conservation for public outreach. New information Here we present the data from our citizen science project, the first “Peninsular Malaysia Butterfly Count”. Participants were asked to go outdoors on June 6, 2015, and (non-lethally) sample butterfly legs for species identification through DNA barcoding. Fifty-seven citizens responded to our adverts and registered to take part in the butterfly count with many registering on behalf of groups. Collectively the participants sampled 220 butterfly legs from 26 mostly urban and suburban sampling localities. These included our university campus, a highschool, several public parks and private residences. On the basis of 192 usable DNA barcodes, 43 species were sampled by the participants. The most sampled species was Appias olferna, followed by Junonia orithya and Zizina otis. Twenty-two species were only sampled once, five were only sampled twice, and four were only sampled three times. Three DNA barcodes could not be assigned species names. The sampled butterflies revealed that widely distributed, cosmopolitan

  19. Evaluating environmental education, citizen science, and stewardship through naturalist programs.

    PubMed

    Merenlender, Adina M; Crall, Alycia W; Drill, Sabrina; Prysby, Michelle; Ballard, Heidi

    2016-12-01

    Amateur naturalists have played an important role in the study and conservation of nature since the 17th century. Today, naturalist groups make important contributions to bridge the gap between conservation science and practice around the world. We examined data from 2 regional naturalist programs to understand participant motivations, barriers, and perspectives as well as the actions they take to advance science, stewardship, and community engagement. These programs provide certification-based natural history and conservation science training for adults that is followed by volunteer service in citizen science, education, and stewardship. Studies in California and Virginia include quantitative and qualitative evaluation data collected through pre- and postcourse surveys, interviews, and long-term tracking of volunteer hours. Motivations of participants focused on learning about the local environment and plants and animals, connecting with nature, becoming certified, and spending time with people who have similar interests. Over half the participants surveyed were over 50 years old, two-thirds were women, and a majority reported household incomes of over $50,000 (60% in California, 85% in Virginia), and <20% of those surveyed in both states described themselves as nonwhite. Thus, these programs need to improve participation by a wider spectrum of the public. We interviewed younger and underrepresented adults to examine barriers to participation in citizen science. The primary barrier was lack of time due to the need to work and focus on career advancement. Survey data revealed that participants' ecological knowledge, scientific skills, and belief in their ability to address environmental issues increased after training. Documented conservation actions taken by the participants include invasive plant management, habitat restoration, and cleanups of natural areas and streams. Long-term data from Virginia on volunteer hours dedicated to environmental citizen science

  20. eButterfly: Leveraging Massive Online Citizen Science for Butterfly Conservation

    PubMed Central

    Prudic, Kathleen L.; McFarland, Kent P.; Oliver, Jeffrey C.; Hutchinson, Rebecca A.; Long, Elizabeth C.; Kerr, Jeremy T.; Larrivée, Maxim

    2017-01-01

    Data collection, storage, analysis, visualization, and dissemination are changing rapidly due to advances in new technologies driven by computer science and universal access to the internet. These technologies and web connections place human observers front and center in citizen science-driven research and are critical in generating new discoveries and innovation in such fields as astronomy, biodiversity, and meteorology. Research projects utilizing a citizen science approach address scientific problems at regional, continental, and even global scales otherwise impossible for a single lab or even a small collection of academic researchers. Here we describe eButterfly an integrative checklist-based butterfly monitoring and database web-platform that leverages the skills and knowledge of recreational butterfly enthusiasts to create a globally accessible unified database of butterfly observations across North America. Citizen scientists, conservationists, policy makers, and scientists are using eButterfly data to better understand the biological patterns of butterfly species diversity and how environmental conditions shape these patterns in space and time. eButterfly in collaboration with thousands of butterfly enthusiasts has created a near real-time butterfly data resource producing tens of thousands of observations per year open to all to share and explore. PMID:28524117

  1. eButterfly: Leveraging Massive Online Citizen Science for Butterfly Consevation.

    PubMed

    Prudic, Kathleen L; McFarland, Kent P; Oliver, Jeffrey C; Hutchinson, Rebecca A; Long, Elizabeth C; Kerr, Jeremy T; Larrivée, Maxim

    2017-05-18

    Data collection, storage, analysis, visualization, and dissemination are changing rapidly due to advances in new technologies driven by computer science and universal access to the internet. These technologies and web connections place human observers front and center in citizen science-driven research and are critical in generating new discoveries and innovation in such fields as astronomy, biodiversity, and meteorology. Research projects utilizing a citizen science approach address scientific problems at regional, continental, and even global scales otherwise impossible for a single lab or even a small collection of academic researchers. Here we describe eButterfly an integrative checklist-based butterfly monitoring and database web-platform that leverages the skills and knowledge of recreational butterfly enthusiasts to create a globally accessible unified database of butterfly observations across North America. Citizen scientists, conservationists, policy makers, and scientists are using eButterfly data to better understand the biological patterns of butterfly species diversity and how environmental conditions shape these patterns in space and time. eButterfly in collaboration with thousands of butterfly enthusiasts has created a near real-time butterfly data resource producing tens of thousands of observations per year open to all to share and explore.

  2. The role of automated feedback in training and retaining biological recorders for citizen science.

    PubMed

    van der Wal, René; Sharma, Nirwan; Mellish, Chris; Robinson, Annie; Siddharthan, Advaith

    2016-06-01

    The rapid rise of citizen science, with lay people forming often extensive biodiversity sensor networks, is seen as a solution to the mismatch between data demand and supply while simultaneously engaging citizens with environmental topics. However, citizen science recording schemes require careful consideration of how to motivate, train, and retain volunteers. We evaluated a novel computing science framework that allowed for the automated generation of feedback to citizen scientists using natural language generation (NLG) technology. We worked with a photo-based citizen science program in which users also volunteer species identification aided by an online key. Feedback is provided after photo (and identification) submission and is aimed to improve volunteer species identification skills and to enhance volunteer experience and retention. To assess the utility of NLG feedback, we conducted two experiments with novices to assess short-term (single session) and longer-term (5 sessions in 2 months) learning, respectively. Participants identified a specimen in a series of photos. One group received only the correct answer after each identification, and the other group received the correct answer and NLG feedback explaining reasons for misidentification and highlighting key features that facilitate correct identification. We then developed an identification training tool with NLG feedback as part of the citizen science program BeeWatch and analyzed learning by users. Finally, we implemented NLG feedback in the live program and evaluated this by randomly allocating all BeeWatch users to treatment groups that received different types of feedback upon identification submission. After 6 months separate surveys were sent out to assess whether views on the citizen science program and its feedback differed among the groups. Identification accuracy and retention of novices were higher for those who received automated feedback than for those who received only confirmation of the

  3. Understanding the (inter)disciplinary and institutional diversity of citizen science: A survey of current practice in Germany and Austria.

    PubMed

    Pettibone, Lisa; Vohland, Katrin; Ziegler, David

    2017-01-01

    Citizen science has become more popular in recent years, quickly taking on a variety of potentially conflicting characteristics: a way to collect massive data sets at relatively low cost, a way to break science out of the ivory tower and better engage the public, an approach to educate lay people in scientific methods. But the extent of current citizen science practice-the types of actors and scientific disciplines who take part-is still poorly understood. This article builds on recent surveys of citizen science in PLOS One by analyzing citizen science practice in Germany and Austria through the projects on two online platforms. We find evidence supporting previous findings that citizen science is a phenomenon strongest in biodiversity and environmental monitoring research, but at home in a number of scientific fields, such as history and geography. In addition, our survey method yields new insights into citizen science projects initiated by non-scientific actors. We close by discussing additional methodological considerations in attempting to present a cross-disciplinary overview of citizen science.

  4. Understanding the (inter)disciplinary and institutional diversity of citizen science: A survey of current practice in Germany and Austria

    PubMed Central

    Vohland, Katrin; Ziegler, David

    2017-01-01

    Citizen science has become more popular in recent years, quickly taking on a variety of potentially conflicting characteristics: a way to collect massive data sets at relatively low cost, a way to break science out of the ivory tower and better engage the public, an approach to educate lay people in scientific methods. But the extent of current citizen science practice—the types of actors and scientific disciplines who take part—is still poorly understood. This article builds on recent surveys of citizen science in PLOS One by analyzing citizen science practice in Germany and Austria through the projects on two online platforms. We find evidence supporting previous findings that citizen science is a phenomenon strongest in biodiversity and environmental monitoring research, but at home in a number of scientific fields, such as history and geography. In addition, our survey method yields new insights into citizen science projects initiated by non-scientific actors. We close by discussing additional methodological considerations in attempting to present a cross-disciplinary overview of citizen science. PMID:28654930

  5. Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development

    NASA Astrophysics Data System (ADS)

    Buytaert, Wouter; Zulkafli, Zed; Grainger, Sam; Acosta, Luis; Bastiaensen, Johan; De Bièvre, Bert; Bhusal, Jagat; Chanie, Tilashwork; Clark, Julian; Dewulf, Art; Foggin, Marc; Hannah, David; Hergarten, Christian; Isaeva, Aiganysh; Karpouzoglou, Timos; Pandey, Bhopal; Paudel, Deepak; Sharma, Keshav; Steenhuis, Tammo; Tilahun, Seifu; Van Hecken, Gert; Zhumanova, Munavar

    2014-10-01

    The participation of the general public in the research design, data collection and interpretation process together with scientists is often referred to as citizen science. While citizen science itself has existed since the start of scientific practice, developments in sensing technology, data processing and visualisation, and communication of ideas and results, are creating a wide range of new opportunities for public participation in scientific research. This paper reviews the state of citizen science in a hydrological context and explores the potential of citizen science to complement more traditional ways of scientific data collection and knowledge generation for hydrological sciences and water resources management. Although hydrological data collection often involves advanced technology, the advent of robust, cheap and low-maintenance sensing equipment provides unprecedented opportunities for data collection in a citizen science context. These data have a significant potential to create new hydrological knowledge, especially in relation to the characterisation of process heterogeneity, remote regions, and human impacts on the water cycle. However, the nature and quality of data collected in citizen science experiments is potentially very different from those of traditional monitoring networks. This poses challenges in terms of their processing, interpretation, and use, especially with regard to assimilation of traditional knowledge, the quantification of uncertainties, and their role in decision support. It also requires care in designing citizen science projects such that the generated data complement optimally other available knowledge. Lastly, we reflect on the challenges and opportunities in the integration of hydrologically-oriented citizen science in water resources management, the role of scientific knowledge in the decision-making process, and the potential contestation to established community institutions posed by co-generation of new knowledge.

  6. Pathways of Knowing: Integrating Citizen Science and Critical Thinking in the Adult ELL Classroom

    ERIC Educational Resources Information Center

    Basham, Melody

    2012-01-01

    This action research study examines what common perceptions and constructs currently exist in educating adult immigrants in Arizona and considers how might the integration of citizen science with the current English curriculum promote higher order thinking and educational equity in this population. A citizen science project called the Mastodon…

  7. Citizen Science as a REAL Environment for Authentic Scientific Inquiry

    ERIC Educational Resources Information Center

    Meyer, Nathan J.; Scott, Siri; Strauss, Andrea Lorek; Nippolt, Pamela L.; Oberhauser, Karen S.; Blair, Robert B.

    2014-01-01

    Citizen science projects can serve as constructivist learning environments for programming focused on science, technology, engineering, and math (STEM) for youth. Attributes of "rich environments for active learning" (REALs) provide a framework for design of Extension STEM learning environments. Guiding principles and design strategies…

  8. Citizen Science in the Classroom: Perils and Promise of the New Web

    NASA Astrophysics Data System (ADS)

    Loughran, T.; Dirksen, R.

    2010-12-01

    Classroom citizen science projects invite students to generate, curate, post, query, and analyze data, publishing and discussing results in potentially large collaborative contexts. The new web offers a rich palette of such projects for any STEM educator to select from or create. This easy access to citizen science in the classroom is full of both promise and peril for science education. By offering examples of classroom citizen science projects in particle physics, earth and environmental sciences, each supported by a common mashup of technologies available to ordinary users, we will illustrate something of the promise of these projects for science education, and point to some of the challenges and failure modes--the peril--raised by easy access and particularly easy publication of data. How one sensibly responds to this promise and peril depends on how one views the goals of science (or more broadly, STEM) education: either as the equipping of individual students with STEM knowledge and skills so as to empower them for future options, or as the issuing of effective invitations into STEM communities. Building on the claim that these are complementary perspectives, both of value, we will provide an example of a classroom citizen science project analyzed from both perspectives. The BOSCO classroom-to-classroom water source mapping project provides students both in Northern Uganda and in South Dakota a collaborative platform for analyzing and responding to local water quality concerns. Students gather water quality data, use Google Forms embedded in a project wiki to enter data in a spreadsheet, which then automatically (through Mapalist, a free web service) gets posted to a Google Map, itself embedded in the project wiki. Using these technologies, data is thus collected and posted for analysis in a collaborative environment: the stage is set for classroom citizen science. In the context of this project we will address the question of how teachers can take advantage

  9. Controversy in Biology Classrooms—Citizen Science Approaches to Evolution and Applications to Climate Change Discussions

    PubMed Central

    Yoho, Rachel A.; Vanmali, Binaben H.

    2016-01-01

    The biological sciences encompass topics considered controversial by the American public, such as evolution and climate change. We believe that the development of climate change education in the biology classroom is better informed by an understanding of the history of the teaching of evolution. A common goal for science educators should be to engender a greater respect for and appreciation of science among students while teaching specific content knowledge. Citizen science has emerged as a viable yet underdeveloped method for engaging students of all ages in key scientific issues that impact society through authentic data-driven scientific research. Where successful, citizen science may open avenues of communication and engagement with the scientific process that would otherwise be more difficult to achieve. Citizen science projects demonstrate versatility in education and the ability to test hypotheses by collecting large amounts of often publishable data. We find a great possibility for science education research in the incorporation of citizen science projects in curriculum, especially with respect to “hot topics” of socioscientific debate based on our review of the findings of other authors. Journal of Microbiology & Biology Education PMID:27047604

  10. Controversy in Biology Classrooms-Citizen Science Approaches to Evolution and Applications to Climate Change Discussions.

    PubMed

    Yoho, Rachel A; Vanmali, Binaben H

    2016-03-01

    The biological sciences encompass topics considered controversial by the American public, such as evolution and climate change. We believe that the development of climate change education in the biology classroom is better informed by an understanding of the history of the teaching of evolution. A common goal for science educators should be to engender a greater respect for and appreciation of science among students while teaching specific content knowledge. Citizen science has emerged as a viable yet underdeveloped method for engaging students of all ages in key scientific issues that impact society through authentic data-driven scientific research. Where successful, citizen science may open avenues of communication and engagement with the scientific process that would otherwise be more difficult to achieve. Citizen science projects demonstrate versatility in education and the ability to test hypotheses by collecting large amounts of often publishable data. We find a great possibility for science education research in the incorporation of citizen science projects in curriculum, especially with respect to "hot topics" of socioscientific debate based on our review of the findings of other authors. Journal of Microbiology & Biology Education.

  11. The success of the horse-chestnut leaf-miner, Cameraria ohridella, in the UK revealed with hypothesis-led citizen science.

    PubMed

    Pocock, Michael J O; Evans, Darren M

    2014-01-01

    Citizen science is an increasingly popular way of undertaking research and simultaneously engaging people with science. However, most emphasis of citizen science in environmental science is on long-term monitoring. Here, we demonstrate the opportunities provided by short-term hypothesis-led citizen science. In 2010, we ran the 'Conker Tree Science' project, in which over 3500 people in Great Britain provided data at a national scale of an insect (horse-chestnut leaf-mining moth, Cameraria ohridella) undergoing rapid range-expansion. We addressed two hypotheses, and found that (1) the levels of damage caused to leaves of the horse-chestnut tree, Aesculus hippocastanum, and (2) the level of attack by parasitoids of C. ohridella larvae were both greatest where C. ohridella had been present the longest. Specifically there was a rapid rise in leaf damage during the first three years that C. ohridella was present and only a slight rise thereafter, while estimated rates of parasitism (an index of true rates of parasitism) increased from 1.6 to 5.9% when the time C. ohridella had been present in a location increased from 3 to 6 years. We suggest that this increase is due to recruitment of native generalist parasitoids, rather than the adaptation or host-tracking of more specialized parasitoids, as appears to have occurred elsewhere in Europe. Most data collected by participants were accurate, but the counts of parasitoids from participants showed lower concordance with the counts from experts. We statistically modeled this bias and propagated this through our analyses. Bias-corrected estimates of parasitism were lower than those from the raw data, but the trends were similar in magnitude and significance. With appropriate checks for data quality, and statistically correcting for biases where necessary, hypothesis-led citizen science is a potentially powerful tool for carrying out scientific research across large spatial scales while simultaneously engaging many people with

  12. Sea turtles, light pollution, and citizen science: A preliminary report

    USGS Publications Warehouse

    Afford, Heather; Teel, Susan; Nicholas, Mark; Stanley, Thomas; White, Jeremy

    2017-01-01

    such as entanglement in fishing gear and ingestion of marine debris, as well as possible changes in sex ratios due to increasing temperatures related to human-induced global warming. Locally, light pollution from residential, commercial, and industrial neighborhoods from nearby cities impacts the entirety of Gulf Islands, which spans 160 miles along the Gulf Coast, from Florida to Mississippi, and includes critical habitat for threatened and endangered sea turtles. Because light pollution has been hypothesized to negatively impact sea turtle nesting and hatchling survival, Gulf Islands undertook an effort to understand the relationship between light pollution and sea turtles and create unique educational and outreach opportunities by launching a citizen science program called Turtle Teens Helping in the Seashore (Turtle THIS). At the onset, the Turtle THIS program had two primary goals: quantify the association between light pollution and sea turtle nesting and hatching events using rigorous scientific methods; and initiate a citizen science volunteer program to provide youth with hands-on science and environmental stewardship roles, where they also gain employable skills and career opportunities. With multiple scientific hypotheses to consider, the development of a citizen science program became crucial. Such circumstances allowed Turtle THIS to grow a volunteer and intern program, quantify hypothesized light effects on sea turtles through developed methods, and begin to gather preliminary findings.

  13. NASA Citizen Science: Looking at Impact in the Science Community and Beyond

    NASA Astrophysics Data System (ADS)

    Thaller, M.

    2017-12-01

    NASA's Science Mission Directorate has invested in several citizen scinece programs with the goal of addressing specific scientific goals which will lead to publishable results. For a complete list of these programs, go to https://science.nasa.gov/citizenscientists. In this paper, we will look at preliminary evalution of the impact of these programs, both in the production of scientific papers and the participation of the general public.

  14. Changes in Participants' Scientific Attitudes and Epistemological Beliefs during an Astronomical Citizen Science Project

    ERIC Educational Resources Information Center

    Price, C. Aaron; Lee, Hee-Sun

    2013-01-01

    Citizen science projects provide non-scientists with opportunities to take part in scientific research. While their contribution to scientific data collection has been well documented, there is limited research on how participation in citizen science projects may affect their scientific literacy. In this study, we investigated (1) how volunteers'…

  15. Trust Pathways, Trust Catalysts, Theory of Change and Citizen Science: A COASST Case Study

    NASA Astrophysics Data System (ADS)

    Burgess, H. K.; Parrish, J.; Dolliver, J.; Metes, J.; Ballard, H. L.

    2017-12-01

    Environmental challenges, from local water quality to the effects of global climate change, are overwhelming the mainstream science community. We need help. Citizen science offers one solution pathway - in the ideal, thousands of participants engaged in authentic science that delivers high quality information not otherwise obtainable. But in the real world, are citizen science data used? And more broadly: what are the interactions between citizen science and natural resource management in service of conserving or protecting system structure and function? The Coastal Observation and Seabird Survey Team (COASST) is a rigoros citizen science program focused on documenting patterns of beached bird and marine debris abundance on beaches along the coast of the Pacific Northwest and Alaska. Housed at the University of Washington, COASST partners directly with a wide range of local, tribal, state and federal agencies to effect positive change and a wide range of scientific, community and educational outcomes. Following from years of trial, error and adaptive management, we propose a "trust pathway" between citizen science and agencies that moves from an initial contact and multiple interaction types to eventual partnership and capacity sharing. Along the way are trust catalysts, including but not limited to: stakeholder engagement, data QA/QC, interactive data analysis, housing at an academic institution, and timely, repeated communication. In this presentation, we will discuss strategies and outcomes employed by COASST for fostering trust and successful partnerships, drawing on 20 years of program experience as well as reflections from a variety of partners and stakholdres.

  16. Federal Community of Practice for Crowdsourcing and Citizen Science

    EPA Pesticide Factsheets

    The community of practice includes agencies from across the federal government who convene to discuss ideas, activities, barriers, and ethics related to citizen science and crowdsourcing including scientific research, data management, and open innovation.

  17. NACEPT 2016 Report: Environmental Protection Belongs to the Public, A Vision for Citizen Science at EPA

    EPA Pesticide Factsheets

    Citizen Science, NACEPT 2016 Report, Environment Belongs to the Public, A Vision for EPA, Community Engagement, NACEPT Recommendations, E-Enterprise Advanced Monitoring Report, EPA Community of Practitioners, Community Citizen Science

  18. Crowd-Funded Micro-Grants for Genomics and “Big Data”: An Actionable Idea Connecting Small (Artisan) Science, Infrastructure Science, and Citizen Philanthropy

    PubMed Central

    Badr, Kamal F.; Dove, Edward S.; Endrenyi, Laszlo; Geraci, Christy Jo; Hotez, Peter J.; Milius, Djims; Neves-Pereira, Maria; Pang, Tikki; Rotimi, Charles N.; Sabra, Ramzi; Sarkissian, Christineh N.; Srivastava, Sanjeeva; Tims, Hesther; Zgheib, Nathalie K.; Kickbusch, Ilona

    2013-01-01

    Abstract Biomedical science in the 21st century is embedded in, and draws from, a digital commons and “Big Data” created by high-throughput Omics technologies such as genomics. Classic Edisonian metaphors of science and scientists (i.e., “the lone genius” or other narrow definitions of expertise) are ill equipped to harness the vast promises of the 21st century digital commons. Moreover, in medicine and life sciences, experts often under-appreciate the important contributions made by citizen scholars and lead users of innovations to design innovative products and co-create new knowledge. We believe there are a large number of users waiting to be mobilized so as to engage with Big Data as citizen scientists—only if some funding were available. Yet many of these scholars may not meet the meta-criteria used to judge expertise, such as a track record in obtaining large research grants or a traditional academic curriculum vitae. This innovation research article describes a novel idea and action framework: micro-grants, each worth $1000, for genomics and Big Data. Though a relatively small amount at first glance, this far exceeds the annual income of the “bottom one billion”—the 1.4 billion people living below the extreme poverty level defined by the World Bank ($1.25/day). We describe two types of micro-grants. Type 1 micro-grants can be awarded through established funding agencies and philanthropies that create micro-granting programs to fund a broad and highly diverse array of small artisan labs and citizen scholars to connect genomics and Big Data with new models of discovery such as open user innovation. Type 2 micro-grants can be funded by existing or new science observatories and citizen think tanks through crowd-funding mechanisms described herein. Type 2 micro-grants would also facilitate global health diplomacy by co-creating crowd-funded micro-granting programs across nation-states in regions facing political and financial instability, while

  19. Tools for Citizen-Science Recruitment and Student Engagement in Your Research and in Your Classroom

    PubMed Central

    Council, Sarah E.; Horvath, Julie E.

    2016-01-01

    The field of citizen science is exploding and offers not only a great way to engage the general public in science literacy through primary research, but also an avenue for teaching professionals to engage their students in meaningful community research experiences. Though this field is expanding, there are many hurdles for researchers and participants, as well as challenges for teaching professionals who want to engage their students. Here we highlight one of our projects that engaged many citizens in Raleigh, NC, and across the world, and we use this as a case study to highlight ways to engage citizens in all kinds of research. Through the use of numerous tools to engage the public, we gathered citizen scientists to study skin microbes and their associated odors, and we offer valuable ideas for teachers to tap into resources for their own students and potential citizen-science projects. PMID:27047587

  20. Identifying Opportunities in Citizen Science for Academic Libraries

    ERIC Educational Resources Information Center

    Cohen, Cynthia M.; Cheney, Liz; Duong, Khue; Lea, Ben; Unno, Zoe Pettway

    2015-01-01

    Citizen science projects continue to grow in popularity, providing opportunities for nonexpert volunteers to contribute to and become personally invested in rigorous scientific research. Academic libraries, aiming to promote and provide tools and resources to master scientific and information literacy, can support these efforts. While few examples…

  1. Zooniverse - A Platform for Data-Driven Citizen Science

    NASA Astrophysics Data System (ADS)

    Smith, A.; Lintott, C.; Bamford, S.; Fortson, L.

    2011-12-01

    In July 2007 a team of astrophysicists created a web-based astronomy project called Galaxy Zoo in which members of the public were asked to classify galaxies from the Sloan Digital Sky Survey by their shape. Over the following year a community of more than 150,000 people classified each of the 1 million galaxies more than 50 times each. Four years later this community of 'citizen scientists' is more than 450,000 strong and is contributing their time and efforts to more than 10 Zooniverse projects each with its own science team and research case. With projects ranging from transcribing ancient greek texts (ancientlives.org) to lunar science (moonzoo.org) the challenges to the Zooniverse community have gone well beyond the relatively simple original Galaxy Zoo interface. Delivering a range of citizen science projects to a large web-based audience presents challenges on a number of fronts including interface design, data architecture/modelling and reduction techniques, web-infrastructure and software design. In this paper we will describe how the Zooniverse team (a collaboration of scientists, software developers and educators ) have developed tools and techniques to solve some of these issues.

  2. A Citizen Science Program for Monitoring Lake Stages in Northern Wisconsin

    NASA Astrophysics Data System (ADS)

    Kretschmann, A.; Drum, A.; Rubsam, J.; Watras, C. J.; Cellar-Rossler, A.

    2011-12-01

    Historical data indicate that surface water levels in northern Wisconsin are fluctuating more now than they did in the recent past. In the northern highland lake district of Vilas County, Wisconsin, concern about record low lake levels in 2008 spurred local citizens and lake associations to form a lake level monitoring network comprising citizen scientists. The network is administered by the North Lakeland Discovery Center (NLDC, a local NGO) and is supported by a grant from the Citizen Science Monitoring Program of the Wisconsin Department of Natural Resources (WDNR). With technical guidance from limnologists at neighboring UW-Madison Trout Lake Research Station, citizen scientists have installed geographic benchmarks and staff gauges on 26 area lakes. The project engages citizen and student science participants including homeowners, non-profit organization member-participants, and local schools. Each spring, staff gauges are installed and referenced to fixed benchmarks after ice off by NLDC and dedicated volunteers. Volunteers read and record staff gauges on a weekly basis during the ice-free season; and maintain log books recording lake levels to the nearest 0.5 cm. At the end of the season, before ice on, gauges are removed and log books are collected by the NLDC coordinator. Data is compiled and submitted to a database management system, coordinated within the Wisconsin Surface Water Integrated Monitoring System (SWIMS), a statewide information system managed by the WDNR in Madison. Furthermore, NLDC is collaborating with the SWIMS database manager to develop data entry screens based on records collected by citizen scientists. This program is the first of its kind in Wisconsin to utilize citizen scientists to collect lake level data. The retention rate for volunteers has been 100% over the three years since inception, and the program has expanded from four lakes in 2008 to twenty-six lakes in 2011. NLDC stresses the importance of long-term monitoring and the

  3. Can citizen science produce good science? Testing the OPAL Air Survey methodology, using lichens as indicators of nitrogenous pollution.

    PubMed

    Tregidgo, Daniel J; West, Sarah E; Ashmore, Mike R

    2013-11-01

    Citizen science is having increasing influence on environmental monitoring as its advantages are becoming recognised. However methodologies are often simplified to make them accessible to citizen scientists. We tested whether a recent citizen science survey (the OPAL Air Survey) could detect trends in lichen community composition over transects away from roads. We hypothesised that the abundance of nitrophilic lichens would decrease with distance from the road, while that of nitrophobic lichens would increase. The hypothesised changes were detected along strong pollution gradients, but not where the road source was relatively weak, or background pollution relatively high. We conclude that the simplified OPAL methodology can detect large contrasts in nitrogenous pollution, but it may not be able to detect more subtle changes in pollution exposure. Similar studies are needed in conjunction with the ever-growing body of citizen science work to ensure that the limitations of these methods are fully understood. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The Validation of the Citizen Science Self-Efficacy Scale (CSSES)

    ERIC Educational Resources Information Center

    Hiller, Suzanne E.

    2016-01-01

    Citizen science programs provide opportunities for students to help professional scientists while fostering science achievement and motivation. Instruments which measure the effects of this type of programs on student motivational beliefs are limited. The purpose of this study was to describe the process of examining the reliability and validity…

  5. The epistemic culture in an online citizen science project: Programs, antiprograms and epistemic subjects.

    PubMed

    Kasperowski, Dick; Hillman, Thomas

    2018-05-01

    In the past decade, some areas of science have begun turning to masses of online volunteers through open calls for generating and classifying very large sets of data. The purpose of this study is to investigate the epistemic culture of a large-scale online citizen science project, the Galaxy Zoo, that turns to volunteers for the classification of images of galaxies. For this task, we chose to apply the concepts of programs and antiprograms to examine the 'essential tensions' that arise in relation to the mobilizing values of a citizen science project and the epistemic subjects and cultures that are enacted by its volunteers. Our premise is that these tensions reveal central features of the epistemic subjects and distributed cognition of epistemic cultures in these large-scale citizen science projects.

  6. The Global Sensor Web: A Platform for Citizen Science (Invited)

    NASA Astrophysics Data System (ADS)

    Simons, A. L.

    2013-12-01

    The Global Sensor Web (GSW) is an effort to provide an infrastructure for the collection, sharing and visualizing sensor data from around the world. Over the past three years the GSW has been developed and tested as a standardized platform for citizen science. The most developed of the citizen science projects built onto the GSW has been Distributed Electronic Cosmic-ray Observatory (DECO), which is an Android application designed to harness a global network of mobile devices, to detect the origin and behavior of the cosmic radiation. Other projects which can be readily built on top of GSW as a platform are also discussed. A cosmic-ray track candidate captured on a cell phone camera.

  7. APDA's Contribution to Current Research and Citizen Science

    NASA Astrophysics Data System (ADS)

    Barker, Thurburn; Castelaz, M. W.; Cline, J. D.; Hudec, R.

    2010-01-01

    The Astronomical Photographical Data Archive (APDA) is dedicated to the collection, restoration, preservation, and digitization of astronomical photographic data that eventually can be accessed via the Internet by the global community of scientists, researchers and students. Located on the Pisgah Astronomical Research Institute campus, APDA now includes collections from North America totaling more than 100,000 photographic plates and films. Two new large scale research projects, and one citizen science project have now been developed from the archived data. One unique photographic data collection covering the southern hemisphere contains the signatures of diffuse interstellar bands (DIBs) within the stellar spectra on objective prism plates. We plan to digitize the spectra, identify the DIBs, and map out the large scale spatial extent of DIBS. The goal is to understand the Galactic environment suitable to the DIB molecules. Another collection contains spectra with nearly the same dispersion as the GAIA Satellite low dispersion slitless spectrophotometers, BP and RP. The plates will be used to develop standards for GAIA spectra. To bring the data from APDA to the general public, we have developed the citizen science project called Stellar Classification Online - Public Exploration (SCOPE). SCOPE allows the citizen scientist to classify up to a half million stars on objective prism plates. We will present the status of each of these projects.

  8. Citizen Science for Traffic Planning: A Practical Example

    NASA Astrophysics Data System (ADS)

    Rieke, Matthes; Stasch, Christoph; Autermann, Christian; de Wall, Arne; Remke, Albert; Wulffius, Herwig; Jirka, Simon

    2017-04-01

    Measures affecting traffic flows in urban areas, e.g. changing the configuration of traffic lights, are often causing emotional debates by citizens who are affected by these measures. Up to now, citizens are usually not involved in traffic planning and the evaluation of the decisions that were taken. The enviroCar project provides an open platform for collecting and analyzing car sensor data with GPS position data. On the hardware side, enviroCar relies on using Android smartphones and OBD-II Bluetooth adapters. A Web server component collects and aggregates the readings from the cars, anonymizes them and publishes the data as open data which scientists, public administrations or other third parties can utilize for further analysis. In this work, we provide a general overview on the enviroCar project and present a project in a mid-size city in Germany. The city's administration utilized the enviroCar platform with the help of a traffic system consultancy for including citizens in the evaluation process of different traffic light configurations along major traffic axes. Therefore, a public campaign was started including local workshops to engage the citizens. More than 150 citizens were actively collecting more about 9.500 tracks including about 2.5 million measurements. Dedicated evaluation results for the different traffic axes were computed based on the collected data set. Because the data is publicly available as open data, others may prove and reproduce the evaluation results contributing to an objective discussion of traffic planning measures. In summary, the project illustrates how Citizen Science methods and technologies improve traffic planning and related discussions.

  9. Stories from dynamic Earth: developing your sense of place through Landsat-based citizen science

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Kennedy, R. E.; Nolin, A. W.; Hughes, J.; Bianchetti, R. A.; O'Connell, K.; Morrell, P.

    2016-12-01

    Many citizen science activities provide opportunities to understand a specific location on Earth at human scale and to collect local ecological knowledge that can improve the scientific endeavor of monitoring Earth. However, it can be challenging to comprehend ecological changes occurring at larger spatial and temporal scales. Based on the results of two professional development workshops designed for Oregon middle school science teachers in 2011-2013 and 2013-2016, we describe how working with multi-decade Landsat imagery transformed participants and students. Collaborating with scientists, the teachers used 30 years of time-series Landsat imagery with LandTrendr and IceTrendr algorithms to distill several study sites in Oregon, Washington, and Alaska (U.S) into periods of consistent long or short-duration landscape dynamics (e.g. stable areas, forestry activities, flooding, urbanization, tree growth). Using the spatial, tabular, and graphic outputs from this process, the teachers created climate change curriculum aligned to state and national standards. Web-enabled visualization tools, such as Google Earth, provided a platform that engaged students in understanding the drivers of their local landscape changes. Students and teachers reported increased interest in and understanding of their landscape. In addition to fulfilling classroom needs, the activities contributed data used in regional carbon modeling and land cover monitoring throughout California, Oregon, and Washington (U.S). We will discuss strategies and challenges to translating expert-level scientific data, models, methods, vocabulary, and conclusions into citizen science materials that support place-based climate change education across age ranges and educational disciplines. Finally, we share ways you can deepen your own sense of place while participating in citizen science activities that improve land cover and land use monitoring at local, regional, and global scales.

  10. Science 2.0: When Students Become Digital Citizens

    ERIC Educational Resources Information Center

    Smith, Ben; Mader, Jared

    2016-01-01

    Modern science learning requires the use of digital tools and a shift in teaching philosophy and pedagogy. The backbone to this shift rests in a yet unaddressed skill: digital citizenship. The authors discuss the Digital Citizen standard where "students (will) recognize the rights, responsibilities, and opportunities of living, learning, and…

  11. Citizen science networks in natural history and the collective validation of biodiversity data.

    PubMed

    Turnhout, Esther; Lawrence, Anna; Turnhout, Sander

    2016-06-01

    Biodiversity data are in increasing demand to inform policy and management. A substantial portion of these data is generated in citizen science networks. To ensure the quality of biodiversity data, standards and criteria for validation have been put in place. We used interviews and document analysis from the United Kingdom and The Netherlands to examine how data validation serves as a point of connection between the diverse people and practices in natural history citizen science networks. We found that rather than a unidirectional imposition of standards, validation was performed collectively. Specifically, it was enacted in ongoing circulations of biodiversity records between recorders and validators as they jointly negotiated the biodiversity that was observed and the validity of the records. These collective validation practices contributed to the citizen science character or natural history networks and tied these networks together. However, when biodiversity records were included in biodiversity-information initiatives on different policy levels and scales, the circulation of records diminished. These initiatives took on a more extractive mode of data use. Validation ceased to be collective with important consequences for the natural history networks involved and citizen science more generally. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  12. Data quality in citizen science urban tree inventories

    Treesearch

    Lara A. Roman; Bryant C. Scharenbroch; Johan P.A. Ostberg; Lee S. Mueller; Jason G. Henning; Andrew K. Koeser; Jessica R. Sanders; Daniel R. Betz; Rebecca C. Jordan

    2017-01-01

    Citizen science has been gaining popularity in ecological research and resource management in general and in urban forestry specifically. As municipalities and nonprofits engage volunteers in tree data collection, it is critical to understand data quality. We investigated observation error by comparing street tree data collected by experts to data collected by less...

  13. Creating a Successful Citizen Science Model to Detect and Report Invasive Species

    ERIC Educational Resources Information Center

    Gallo, Travis; Waitt, Damon

    2011-01-01

    The Invaders of Texas program is a successful citizen science program in which volunteers survey and monitor invasive plants throughout Texas. Invasive plants are being introduced at alarming rates, and our limited knowledge about their distribution is a major cause for concern. The Invaders of Texas program trains citizen scientists to detect the…

  14. Citizen Science Air Monitoring in the Ironbound Community ...

    EPA Pesticide Factsheets

    The Environmental Protection Agency’s (EPA) mission is to protect human health and the environment. To move toward achieving this goal, EPA is facilitating identification of potential environmental concerns, particularly in vulnerable communities. This includes actively supporting citizen science projects and providing communities with the information and assistance they need to conduct their own air pollution monitoring efforts. The Air Sensor Toolbox for Citizen Scientists1 was developed as a resource to meet stakeholder needs. Examples of materials developed for the Toolbox and ultimately pilot tested in the Ironbound Community in Newark, New Jersey are reported here. The Air Sensor Toolbox for Citizen Scientists is designed as an online resource that provides information and guidance on new, low-cost compact technologies used for measuring air quality. The Toolbox features resources developed by EPA researchers that can be used by citizens to effectively collect, analyze, interpret, and communicate air quality data. The resources include information about sampling methods, how to calibrate and validate monitors, options for measuring air quality, data interpretation guidelines, and low-cost sensor performance information. This Regional Applied Research Effort (RARE) project provided an opportunity for the Office of Research and Development (ORD) to work collaboratively with EPA Region 2 to provide the Ironbound Community with a “Toolbox” specific for c

  15. Employing citizen science to study defoliation impacts on arthropod communities on tamarisk

    NASA Astrophysics Data System (ADS)

    Kruse, Audrey L.

    The invasive tamarisk tree is widespread across the southwestern landscape of the United States and has been dominant in regulated river reaches, outcompeting native vegetation and impacting trophic webs in riparian ecosystems. The changes in riparian habitat and recreation opportunities along southwestern rivers, like the San Juan River in Utah, led to the implementation of a biocontrol program in the form of the tamarisk leaf beetle (Diorhabda spp.). It is unknown what the long term effects on riparian ecosystems are as a result of the beetles' defoliation of tamarisk each summer. This study sought to identify the current arthropod community composition and abundance over one growing season on the San Juan River between Bluff and Mexican Hat, UT and second, to involve the public in this research through a citizen science component. I found that non-native insects, including the tamarisk leaf beetle, dominated the arboreal arthropod communities within the tamarisk and there are relatively few native arthropods residing in tamarisk throughout the summer season. Foliation levels (the quantity of leaves in the canopy of tamarisk) were inconclusive predictors of arthropod abundances but varied by species and by feeding guild. This may indicate that the defoliation of the tamarisk is not necessarily negatively impacting trophic interactions in tamarisk. I incorporated youth participants on educational river rafting trips to assist in data collection of arthropods from tamarisk trees as a way to educate and bring attention to the issue of invasive species in the Southwest. After completing my own citizen science project and after doing a literature review of other, similar citizen science projects, I found that striving for both rigorous scientific data and quality educational programming is challenging for a small scale project that does not target broad spatial, geographic, or temporal data. Citizen science project developers should clearly identify their objectives

  16. CosmoQuest: Better Citizen Science Through Education

    NASA Technical Reports Server (NTRS)

    Gay, P. L.; Lehan, C.; Bracey, G.; Yamani, A.; Francis, M.; Durrell, P.; Spivey, C.; Noel-Storr, J.; Buxner, S.; Cobb, W.; hide

    2016-01-01

    In the modern era, NASA SMD missions and facilities are producing data at a rate too great for the science community to maximally utilize. While software can help, what is really needed is additional eyes, hands, and minds - help we can find in the form of citizen scientist volunteers. The CosmoQuest virtual research facility has demonstrated through published research results that classroom students and the public can, with proper training and support from Subject Matter Experts (SMEs), fill roles more traditionally filled by university students. The research question behind CosmoQuest's creation was simple: if students and the public are provided a properly scaffolded experience that mirrors that of researchers, will they come and perform as well as our students? and can they rise up to be research collaborators? In creating CosmoQuest, we started with a core of citizen science portals, educational materials for both students and life-long learners, and collaboration areas. These three primary focuses mirror the research, courses, and collaboration spaces that form the foundation of a university department. We then went on to add the features that make a center stand out - we added seminars in the form of Google Hangouts on Air, planetarium content through our Science on the Half Sphere program, and even the chance to vicariously attend conferences through live blogging by our team members. With this design for a virtual research facility, the answer to our foundational question has been a resounding yes; the public can aid us in doing science provided they are properly trained. To meet the needs of our population we have developed four areas of engagement: research, education, media, and community.

  17. What Is Citizen Science?--A Scientometric Meta-Analysis.

    PubMed

    Kullenberg, Christopher; Kasperowski, Dick

    2016-01-01

    The concept of citizen science (CS) is currently referred to by many actors inside and outside science and research. Several descriptions of this purportedly new approach of science are often heard in connection with large datasets and the possibilities of mobilizing crowds outside science to assists with observations and classifications. However, other accounts refer to CS as a way of democratizing science, aiding concerned communities in creating data to influence policy and as a way of promoting political decision processes involving environment and health. In this study we analyse two datasets (N = 1935, N = 633) retrieved from the Web of Science (WoS) with the aim of giving a scientometric description of what the concept of CS entails. We account for its development over time, and what strands of research that has adopted CS and give an assessment of what scientific output has been achieved in CS-related projects. To attain this, scientometric methods have been combined with qualitative approaches to render more precise search terms. Results indicate that there are three main focal points of CS. The largest is composed of research on biology, conservation and ecology, and utilizes CS mainly as a methodology of collecting and classifying data. A second strand of research has emerged through geographic information research, where citizens participate in the collection of geographic data. Thirdly, there is a line of research relating to the social sciences and epidemiology, which studies and facilitates public participation in relation to environmental issues and health. In terms of scientific output, the largest body of articles are to be found in biology and conservation research. In absolute numbers, the amount of publications generated by CS is low (N = 1935), but over the past decade a new and very productive line of CS based on digital platforms has emerged for the collection and classification of data.

  18. Eclipse Megamovie 2017: A Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Johnson, C.; Koh, J.; Konerding, D.; Peticolas, L. M.; Hudson, H. S.; Martinez Oliveros, J. C.; Zevin, D.

    2017-12-01

    The 2017 total solar eclipse presents an amazing opportunity for education and science outreach due to the breadth and reach of this astronomical event. The Eclipse Megamovie project looks to create organize a citizen science effort to capture images of the eclipse as it crosses the US and stitch these photos together into a continuous look at the corona. A collaboration between Google, UC Berkeley, and many other universities and amateur astronomy networks, this project looks to leverage the different strenghts of these organizations and capitalize on this rare outreach opportunity. We're excited to present the results of the project and a review of how things went.

  19. Worldwide Engagement for Digitizing Biocollections (WeDigBio): The Biocollections Community's Citizen-Science Space on the Calendar.

    PubMed

    Ellwood, Elizabeth R; Kimberly, Paul; Guralnick, Robert; Flemons, Paul; Love, Kevin; Ellis, Shari; Allen, Julie M; Best, Jason H; Carter, Richard; Chagnoux, Simon; Costello, Robert; Denslow, Michael W; Dunckel, Betty A; Ferriter, Meghan M; Gilbert, Edward E; Goforth, Christine; Groom, Quentin; Krimmel, Erica R; LaFrance, Raphael; Martinec, Joann Lacey; Miller, Andrew N; Minnaert-Grote, Jamie; Nash, Thomas; Oboyski, Peter; Paul, Deborah L; Pearson, Katelin D; Pentcheff, N Dean; Roberts, Mari A; Seltzer, Carrie E; Soltis, Pamela S; Stephens, Rhiannon; Sweeney, Patrick W; von Konrat, Matt; Wall, Adam; Wetzer, Regina; Zimmerman, Charles; Mast, Austin R

    2018-02-01

    The digitization of biocollections is a critical task with direct implications for the global community who use the data for research and education. Recent innovations to involve citizen scientists in digitization increase awareness of the value of biodiversity specimens; advance science, technology, engineering, and math literacy; and build sustainability for digitization. In support of these activities, we launched the first global citizen-science event focused on the digitization of biodiversity specimens: Worldwide Engagement for Digitizing Biocollections (WeDigBio). During the inaugural 2015 event, 21 sites hosted events where citizen scientists transcribed specimen labels via online platforms (DigiVol, Les Herbonautes, Notes from Nature, the Smithsonian Institution's Transcription Center, and Symbiota). Many citizen scientists also contributed off-site. In total, thousands of citizen scientists around the world completed over 50,000 transcription tasks. Here, we present the process of organizing an international citizen-science event, an analysis of the event's effectiveness, and future directions-content now foundational to the growing WeDigBio event.

  20. Worldwide Engagement for Digitizing Biocollections (WeDigBio): The Biocollections Community's Citizen-Science Space on the Calendar

    PubMed Central

    Kimberly, Paul; Guralnick, Robert; Flemons, Paul; Love, Kevin; Ellis, Shari; Allen, Julie M; Best, Jason H; Carter, Richard; Chagnoux, Simon; Costello, Robert; Denslow, Michael W; Dunckel, Betty A; Ferriter, Meghan M; Gilbert, Edward E; Goforth, Christine; Groom, Quentin; Krimmel, Erica R; LaFrance, Raphael; Martinec, Joann Lacey; Miller, Andrew N; Minnaert-Grote, Jamie; Nash, Thomas; Oboyski, Peter; Paul, Deborah L; Pearson, Katelin D; Pentcheff, N Dean; Roberts, Mari A; Seltzer, Carrie E; Soltis, Pamela S; Stephens, Rhiannon; Sweeney, Patrick W; von Konrat, Matt; Wall, Adam; Wetzer, Regina; Zimmerman, Charles; Mast, Austin R

    2018-01-01

    Abstract The digitization of biocollections is a critical task with direct implications for the global community who use the data for research and education. Recent innovations to involve citizen scientists in digitization increase awareness of the value of biodiversity specimens; advance science, technology, engineering, and math literacy; and build sustainability for digitization. In support of these activities, we launched the first global citizen-science event focused on the digitization of biodiversity specimens: Worldwide Engagement for Digitizing Biocollections (WeDigBio). During the inaugural 2015 event, 21 sites hosted events where citizen scientists transcribed specimen labels via online platforms (DigiVol, Les Herbonautes, Notes from Nature, the Smithsonian Institution's Transcription Center, and Symbiota). Many citizen scientists also contributed off-site. In total, thousands of citizen scientists around the world completed over 50,000 transcription tasks. Here, we present the process of organizing an international citizen-science event, an analysis of the event's effectiveness, and future directions—content now foundational to the growing WeDigBio event. PMID:29599548

  1. Using eBird to Integrate Citizen Science into an Undergraduate Ecology Field Laboratory

    ERIC Educational Resources Information Center

    Surasinghe, Thilina; Courter, Jason

    2012-01-01

    Encouraging nonprofessionals to participate in ecological research through citizen science programs is a recent innovation and an effective strategy for gathering ecological information across broad geographical areas. In this paper, we demonstrate how reporting field-based observations through eBird, a citizen-based birding and data-recording…

  2. Getting the full picture: Assessing the complementarity of citizen science and agency monitoring data.

    PubMed

    Hadj-Hammou, Jeneen; Loiselle, Steven; Ophof, Daniel; Thornhill, Ian

    2017-01-01

    While the role of citizen science in engaging the public and providing large-scale datasets has been demonstrated, the nature of and potential for this science to supplement environmental monitoring efforts by government agencies has not yet been fully explored. To this end, the present study investigates the complementarity of a citizen science programme to agency monitoring of water quality. The Environment Agency (EA) is the governmental public body responsible for, among other duties, managing and monitoring water quality and water resources in England. FreshWater Watch (FWW) is a global citizen science project that supports community monitoring of freshwater quality. FWW and EA data were assessed for their spatio-temporal complementarity by comparing the geographical and seasonal coverage of nitrate (N-NO3) sampling across the River Thames catchment by the respective campaigns between spring 2013 and winter 2015. The analysis reveals that FWW citizen science-collected data complements EA data by filling in both gaps in the spatial and temporal coverage as well as gaps in waterbody type and size. In addition, partial spatio-temporal overlap in sampling efforts by the two actors is discovered, but EA sampling is found to be more consistent than FWW sampling. Statistical analyses indicate that regardless of broader geographical overlap in sampling effort, FWW sampling sites are associated with a lower stream order and water bodies of smaller surface areas than EA sampling sites. FWW also samples more still-water body sites than the EA. As a possible result of such differences in sampling tendencies, nitrate concentrations, a measure of water quality, are lower for FWW sites than EA sites. These findings strongly indicate that citizen science has clear potential to complement agency monitoring efforts by generating information on freshwater ecosystems that would otherwise be under reported.

  3. Getting the full picture: Assessing the complementarity of citizen science and agency monitoring data

    PubMed Central

    Loiselle, Steven; Ophof, Daniel; Thornhill, Ian

    2017-01-01

    While the role of citizen science in engaging the public and providing large-scale datasets has been demonstrated, the nature of and potential for this science to supplement environmental monitoring efforts by government agencies has not yet been fully explored. To this end, the present study investigates the complementarity of a citizen science programme to agency monitoring of water quality. The Environment Agency (EA) is the governmental public body responsible for, among other duties, managing and monitoring water quality and water resources in England. FreshWater Watch (FWW) is a global citizen science project that supports community monitoring of freshwater quality. FWW and EA data were assessed for their spatio-temporal complementarity by comparing the geographical and seasonal coverage of nitrate (N-NO3) sampling across the River Thames catchment by the respective campaigns between spring 2013 and winter 2015. The analysis reveals that FWW citizen science-collected data complements EA data by filling in both gaps in the spatial and temporal coverage as well as gaps in waterbody type and size. In addition, partial spatio-temporal overlap in sampling efforts by the two actors is discovered, but EA sampling is found to be more consistent than FWW sampling. Statistical analyses indicate that regardless of broader geographical overlap in sampling effort, FWW sampling sites are associated with a lower stream order and water bodies of smaller surface areas than EA sampling sites. FWW also samples more still-water body sites than the EA. As a possible result of such differences in sampling tendencies, nitrate concentrations, a measure of water quality, are lower for FWW sites than EA sites. These findings strongly indicate that citizen science has clear potential to complement agency monitoring efforts by generating information on freshwater ecosystems that would otherwise be under reported. PMID:29211752

  4. Using Citizen Science for Water Quality Monitoring: Preaching the Message Beyond the Choir

    NASA Astrophysics Data System (ADS)

    Jollymore, A. J.

    2015-12-01

    Citizen science has emerged a means for augmenting the scope of research while educating the community. Environmental research has a particularly strong motivation for engagement, given its often-local context. We implemented a citizen science campaign to investigate relationships between land use and dissolved organic matter (DOM) in surface water environments proximal to Vancouver, British Columbia, Canada. Citizen science was intended to increase sampling breadth, and engage the community about human activities and water quality effects. Participants were given a sample kit and a simple sampling protocol; we then used fast and economic absorbance and fluorescence spectrophotometry to determine DOM concentration and composition. Participants, including individuals from over 10 municipalities and community organizations, submitted over 200 samples; these were compared to investigator-led sampling, as well as data mining existing sources, to verify results. Analyzing the fluorescence excitation-emission matrices (EEMs) with a five-component parallel factor (PARAFAC) model showed that samples from watersheds with increased urbanization had unique microbial-like peaks, suggesting variances in DOM lability and origins compared to more pristine watersheds. Community engagement was extended by making data available online in an interactive map, as well as by presenting the project to the public. Despite this, engagement occurred most with community organizations; these participants tended to have scientific training, with a higher knowledge baseline regarding their specific watershed and water quality issues generally. While this served scientific goals, our campaign was less successful at engaging citizens with less-developed scientific backgrounds. In this presentation we will discuss the merits and scientific milestones enabled by citizen science, and lessons learned about how to get beyond 'preaching to the choir' in crafting and implementing such projects.

  5. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes.

    PubMed

    Palmer, John R B; Oltra, Aitana; Collantes, Francisco; Delgado, Juan Antonio; Lucientes, Javier; Delacour, Sarah; Bengoa, Mikel; Eritja, Roger; Bartumeus, Frederic

    2017-10-24

    Recent outbreaks of Zika, chikungunya and dengue highlight the importance of better understanding the spread of disease-carrying mosquitoes across multiple spatio-temporal scales. Traditional surveillance tools are limited by jurisdictional boundaries and cost constraints. Here we show how a scalable citizen science system can solve this problem by combining citizen scientists' observations with expert validation and correcting for sampling effort. Our system provides accurate early warning information about the Asian tiger mosquito (Aedes albopictus) invasion in Spain, well beyond that available from traditional methods, and vital for public health services. It also provides estimates of tiger mosquito risk comparable to those from traditional methods but more directly related to the human-mosquito encounters that are relevant for epidemiological modelling and scalable enough to cover the entire country. These results illustrate how powerful public participation in science can be and suggest citizen science is positioned to revolutionize mosquito-borne disease surveillance worldwide.

  6. Participatory Paradoxes: Facilitating Citizen Engagement in Science and Technology from the Top-Down?

    ERIC Educational Resources Information Center

    Powell, Maria C.; Colin, Mathilde

    2009-01-01

    Mechanisms to engage lay citizens in science and technology are currently in vogue worldwide. While some engagement exercises aim to influence policy making, research suggests that they have had little discernable impacts in this regard. We explore the potentials and challenges of facilitating citizen engagement in nanotechnology from the…

  7. NGSS-Aligned, K-12 Climate Science Curricula, taught with citizen science and teacher-led inquiry methods

    NASA Astrophysics Data System (ADS)

    Zainfeld, S.

    2017-12-01

    Teacher-led inquiry into student learning is a promising method of formative assessment to gain insight into student achievement. NGSS-aligned K-12 Climate Science curricula taught with citizen science and teacher-led inquiry methods are described, along with results from a scientist-teacher collaboration survey.

  8. The Success of the Horse-Chestnut Leaf-Miner, Cameraria ohridella, in the UK Revealed with Hypothesis-Led Citizen Science

    PubMed Central

    Pocock, Michael J. O.; Evans, Darren M.

    2014-01-01

    Citizen science is an increasingly popular way of undertaking research and simultaneously engaging people with science. However, most emphasis of citizen science in environmental science is on long-term monitoring. Here, we demonstrate the opportunities provided by short-term hypothesis-led citizen science. In 2010, we ran the ‘Conker Tree Science’ project, in which over 3500 people in Great Britain provided data at a national scale of an insect (horse-chestnut leaf-mining moth, Cameraria ohridella) undergoing rapid range-expansion. We addressed two hypotheses, and found that (1) the levels of damage caused to leaves of the horse-chestnut tree, Aesculus hippocastanum, and (2) the level of attack by parasitoids of C. ohridella larvae were both greatest where C. ohridella had been present the longest. Specifically there was a rapid rise in leaf damage during the first three years that C. ohridella was present and only a slight rise thereafter, while estimated rates of parasitism (an index of true rates of parasitism) increased from 1.6 to 5.9% when the time C. ohridella had been present in a location increased from 3 to 6 years. We suggest that this increase is due to recruitment of native generalist parasitoids, rather than the adaptation or host-tracking of more specialized parasitoids, as appears to have occurred elsewhere in Europe. Most data collected by participants were accurate, but the counts of parasitoids from participants showed lower concordance with the counts from experts. We statistically modeled this bias and propagated this through our analyses. Bias-corrected estimates of parasitism were lower than those from the raw data, but the trends were similar in magnitude and significance. With appropriate checks for data quality, and statistically correcting for biases where necessary, hypothesis-led citizen science is a potentially powerful tool for carrying out scientific research across large spatial scales while simultaneously engaging many people

  9. Meteorite Fall Detection and Analysis via Weather Radar: Worldwide Potential for Citizen Science

    NASA Astrophysics Data System (ADS)

    Fries, M.; Bresky, C.; Laird, C.; Reddy, V.; Hankey, M.

    2017-12-01

    Meteorite falls can be detected using weather radars, facilitating rapid recovery of meteorites to minimize terrestrial alteration. Imagery from the US NEXRAD radar network reveals over two dozen meteorite falls where meteorites have been recovered, and about another dozen that remain unrecovered. Discovery of new meteorite falls is well suited to "citizen science" and similar outreach activities, as well as automation of computational components into internet-based search tools. Also, there are many more weather radars employed worldwide than those in the US NEXRAD system. Utilization of weather radars worldwide for meteorite recovery can not only expand citizen science opportunities but can also lead to significant improvement in the number of freshly-fallen meteorites available for research. We will discuss the methodologies behind locating and analyzing meteorite falls using weather radar, and how to make them available for citizen science efforts. An important example is the Aquarius Project, a Chicago-area consortium recently formed with the goal of recovering meteorites from Lake Michigan. This project has extensive student involvement geared toward development of actual hardware for recovering meteorites from the lake floor. Those meteorites were identified in weather radar imagery as they fell into the lake from a large meteor on 06 Feb 2017. Another example of public interaction is the meteor detection systems operated by the American Meteor Society (AMS). The AMS website has been developed to allow public reporting of meteors, effectively enabling citizen science to locate and describe significant meteor events worldwide.

  10. Augmented Citizen Science for Environmental Monitoring and Education

    NASA Astrophysics Data System (ADS)

    Albers, B.; de Lange, N.; Xu, S.

    2017-09-01

    Environmental monitoring and ecological studies detect and visualize changes of the environment over time. Some agencies are committed to document the development of conservation and status of geotopes and geosites, which is time-consuming and cost-intensive. Citizen science and crowd sourcing are modern approaches to collect data and at the same time to raise user awareness for environmental changes. Citizen scientists can take photographs of point of interests (POI) with smartphones and the PAN App, which is presented in this article. The user is navigated to a specific point and is then guided with an augmented reality approach to take a photo in a specific direction. The collected photographs are processed to time-lapse videos to visualize environmental changes. Users and experts in environmental agencies can use this data for long-term documentation.

  11. Place-based and data-rich citizen science as a precursor for conservation action.

    PubMed

    Haywood, Benjamin K; Parrish, Julia K; Dolliver, Jane

    2016-06-01

    Environmental education strategies have customarily placed substantial focus on enhancing ecological knowledge and literacy with the hope that, upon discovering relevant facts and concepts, participants will be better equipped to process and dissect environmental issues and, therefore, make more informed decisions. The assumption is that informed citizens will become active citizens--enthusiastically lobbying for, and participating in, conservation-oriented action. We surveyed and interviewed and used performance data from 432 participants in the Coastal Observation and Seabird Survey Team (COASST), a scientifically rigorous citizen science program, to explore measurable change in and links between understanding and action. We found that participation in rigorous citizen science was associated with significant increases in participant knowledge and skills; a greater connection to place and, secondarily, to community; and an increasing awareness of the relative impact of anthropogenic activities on local ecosystems specifically through increasing scientific understanding of the ecosystem and factors affecting it. Our results suggest that a place-based, data-rich experience linked explicitly to local, regional, and global issues can lead to measurable change in individual and collective action, expressed in our case study principally through participation in citizen science and community action and communication of program results to personal acquaintances and elected officials. We propose the following tenets of conservation literacy based on emergent themes and the connections between them explicit in our data: place-based learning creates personal meaning making; individual experience nested within collective (i.e., program-wide) experience facilitates an understanding of the ecosystem process and function at local and regional scales; and science-based meaning making creates informed concern (i.e., the ability to discern both natural and anthropogenic forcing

  12. Finding clean water habitats in urban landscapes: professional researcher vs citizen science approaches.

    PubMed

    McGoff, Elaine; Dunn, Francesca; Cachazo, Luis Moliner; Williams, Penny; Biggs, Jeremy; Nicolet, Pascale; Ewald, Naomi C

    2017-03-01

    This study investigated patterns of nutrient pollution in waterbody types across Greater London. Nitrate and phosphate data were collected by both citizen scientists and professional ecologists and their results were compared. The professional survey comprised 495 randomly selected pond, lake, river, stream and ditch sites. Citizen science survey sites were self-selected and comprised 76 ponds, lakes, rivers and streams. At each site, nutrient concentrations were assessed using field chemistry kits to measure nitrate-N and phosphate-P. The professional and the citizen science datasets both showed that standing waterbodies had significantly lower average nutrient concentrations than running waters. In the professional datasets 46% of ponds and lakes had nutrient levels below the threshold at which biological impairment is likely, whereas only 3% of running waters were unimpaired by nutrients. The citizen science dataset showed the same broad pattern, but there was a trend towards selection of higher quality waterbodies with 77% standing waters and 14% of rivers and streams unimpaired. Waterbody nutrient levels in the professional dataset were broadly correlated with landuse intensity. Rivers and streams had a significantly higher proportion of urban and suburban land cover than other waterbody types. Ponds had higher percentage of semi-natural vegetation within their much smaller catchments. Relationships with land cover and water quality were less apparent in the citizen-collected dataset probably because the areas visited by citizens were less representative of the landscape as whole. The results suggest that standing waterbodies, especially ponds, may represent an important clean water resource within urban areas. Small waterbodies, including ponds, small lakes<50ha and ditches, are rarely part of the statutory water quality monitoring programmes and are frequently overlooked. Citizen scientist data have the potential to partly fill this gap if they are co

  13. Exploring Event and Status Based Phenological Monitoring in Citizen Science Projects: Lessons Learned from Project BudBurst

    NASA Astrophysics Data System (ADS)

    Ward, D.; Henderson, S.; Newman, S. J.

    2012-12-01

    Citizen science projects in ecology are in a unique position to address the needs of both the science and education communities. Such projects can provide needed data to further understanding of ecological processes at multiple spatial scales while also increasing public understanding of the importance of the ecological sciences. Balancing the needs of both communities, it is important that citizen science programs also provide different 'entry' points to appeal to diverse segments of society. In the case of NEON's Project BudBurst, a national plant phenology citizen science program, two approaches were developed to address the ongoing challenge to recruitment and retention of participants. Initially, Project BudBurst was designed to be an event-based phenology program. Participants were asked to identify a plant and report on the timing of specific phenoevents throughout the year. This approach requires a certain level of participation, which while yielding useful results, is not going to appeal to the broadest audience possible. To broaden participation, in 2011 and 2012, Project BudBurst added campaigns targeted at engaging individuals in making simple status-based reports of a plant they chose. Three targeted field campaigns were identified to take advantage of times when people notice changes to plants in their environment, using simple status-based protocols: Fall Into Phenology, Cherry Blossom Blitz, and Summer Solstice Snapshot. The interest and participation in these single report phenological status-based campaigns exceeded initial expectations. For example, Fall Into Phenology attracted individuals who otherwise had not considered participating in an ongoing field campaign. In the past, observations of fall phenology events submitted to Project BudBurst had been limited. By providing the opportunity for submitting simple, single reports, the number of both new participants and submitted observations increased significantly.

  14. Student and Community Engagement in Earth, Space, and Environmental Sciences Through Experiential Learning and Citizen Science as Part of Research Broader Impact

    NASA Astrophysics Data System (ADS)

    Ibrahim, Alaa; Ahmed, Yasmin

    2015-04-01

    Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science This work is part of the PEER research project 2-239 sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htm website: http://CleanAirEgypt.org Links to cited work: Core Curriculum Course

  15. Student and Community Engagement in Earth, Space, and Environmental Sciences Through Experiential Learning and Citizen Science as Part of Research Broader Impact

    NASA Astrophysics Data System (ADS)

    Ibrahim, A. I.; Tutwiler, R.; Zakey, A.; Shokr, M. E.; Ahmed, Y.; Jereidini, D.; Eid, M.

    2014-12-01

    Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science Note: This presentation is a PEER project sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htmwebsite: http://CleanAirEgypt.orgLinks to cited work: Core Curriculum Course: http

  16. Scientific literacy of adult participants in an online citizen science project

    NASA Astrophysics Data System (ADS)

    Price, Charles Aaron

    Citizen Science projects offer opportunities for non-scientists to take part in scientific research. Scientific results from these projects have been well documented. However, there is limited research about how these projects affect their volunteer participants. In this study, I investigate how participation in an online, collaborative astronomical citizen science project can be associated with the scientific literacy of its participants. Scientific literacy is measured through three elements: attitude towards science, belief in the nature of science and competencies associated with learning science. The first two elements are measured through a pre-test given to 1,385 participants when they join the project and a post-test given six months later to 125 participants. Attitude towards science was measured using nine Likert-items custom designed for this project and beliefs in the nature of science were measured using a modified version of the Nature of Science Knowledge scale. Responses were analyzed using the Rasch Rating Scale Model. Competencies are measured through analysis of discourse occurring in online asynchronous discussion forums using the Community of Inquiry framework, which describes three types of presence in the online forums: cognitive, social and teaching. Results show that overall attitudes did not change, p = .225. However, there was significant change towards attitudes about science in the news (positive) and scientific self efficacy (negative), p < .001 and p = .035 respectively. Beliefs in the nature of science exhibited a small, but significant increase, p = .04. Relative positioning of scores on the belief items did not change much, suggesting the increase is mostly due to reinforcement of current beliefs. The cognitive and teaching presence in the online forums did not change, p = .807 and p = .505 respectively. However, the social presence did change, p = .011. Overall, these results suggest that multi-faceted, collaborative citizen

  17. Computer analysis of digital sky surveys using citizen science and manual classification

    NASA Astrophysics Data System (ADS)

    Kuminski, Evan; Shamir, Lior

    2015-01-01

    As current and future digital sky surveys such as SDSS, LSST, DES, Pan-STARRS and Gaia create increasingly massive databases containing millions of galaxies, there is a growing need to be able to efficiently analyze these data. An effective way to do this is through manual analysis, however, this may be insufficient considering the extremely vast pipelines of astronomical images generated by the present and future surveys. Some efforts have been made to use citizen science to classify galaxies by their morphology on a larger scale than individual or small groups of scientists can. While these citizen science efforts such as Zooniverse have helped obtain reasonably accurate morphological information about large numbers of galaxies, they cannot scale to provide complete analysis of billions of galaxy images that will be collected by future ventures such as LSST. Since current forms of manual classification cannot scale to the masses of data collected by digital sky surveys, it is clear that in order to keep up with the growing databases some form of automation of the data analysis will be required, and will work either independently or in combination with human analysis such as citizen science. Here we describe a computer vision method that can automatically analyze galaxy images and deduce galaxy morphology. Experiments using Galaxy Zoo 2 data show that the performance of the method increases as the degree of agreement between the citizen scientists gets higher, providing a cleaner dataset. For several morphological features, such as the spirality of the galaxy, the algorithm agreed with the citizen scientists on around 95% of the samples. However, the method failed to analyze some of the morphological features such as the number of spiral arms, and provided accuracy of just ~36%.

  18. Citizen Science participation in the NASA CERES Students' Cloud Observations Online Project (S'COOL)

    NASA Astrophysics Data System (ADS)

    Lewis, P. M.; Moore, S.; Crecelius, S.; Rogerson, T.; Chambers, L. H.

    2012-12-01

    Many science programs designed for the classroom see little participation when school is not in session. Many factors, such as materials, cost, needing a teacher to lead discussion, and reporting/assessment criteria are classroom-centric. The S'COOL project has the ability to serve not only as a classroom-teaching tool, but as a citizen science project in which anyone can help NASA collect cloud data. Since its inception in 1997, the S'COOL project has invited help from the citizen science community from age 6 to 99. The S'COOL project has the ability to reach everyone in the world through satellite overpasses. This provides the citizen scientist with a temporal "match", i.e., the opportunity to make cloud observations "looking up" as various NASA Earth observing satellites make cloud observations "looking down" at the same location. After an observation is made, the observing scientist completes an online report form and sends this directly to NASA Langley Research Center's Atmospheric Science Data Center. After the satellite data are processed, generally within a week, an auto-generated email informs the observer of what the satellite observed, compared side-by-side with what they observed. All of the observations are stored in a database for later viewing and analysis. The ability to view satellite matches and past observations allows the citizen scientist to develop good scientific practices, particularly skills in cloud observation and data analysis techniques. Much of the success of the S'COOL project can be associated with its aim as a classroom-based program that transcends to the citizen science community. This allows both parties to have access to the same materials and data, creating an authentic science experience. Another avenue of success can be found in the project's translation of materials into French and Spanish. Translation provides a multicultural perspective and enables broader participation. Since the aim of the S'COOL project is to collect

  19. Using Online Citizen Science to Assess Giant Kelp Abundances Across the Globe with Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Byrnes, J.; Cavanaugh, K. C.; Haupt, A. J.; Trouille, L.; Rosenthal, I.; Bell, T. W.; Rassweiler, A.; Pérez-Matus, A.; Assis, J.

    2017-12-01

    Global scale long-term data sets that document the patterns and variability of human impacts on marine ecosystems are rare. This lack is particularly glaring for underwater species - even moreso for ecologically important ones. Here we demonstrate how online Citizen Science combined with Landsat satellite imagery can help build a picture of change in the dynamics of giant kelp, an important coastal foundation species around the globe, from the 1984 to the present. Giant kelp canopy is visible from Landsat images, but these images defy easy machine classification. To get useful data, images must be processed by hand. While academic researchers have applied this method successfully at sub-regional scales, unlocking the value of the full global dataset has not been possible until given the massive effort required. Here we present Floating Forests (http://floatingforests.org), an international collaboration between kelp forest researchers and the citizen science organization Zooniverse. Floating Forests provides an interface that allows citizen scientists to identify canopy cover of giant kelp on Landsat images, enabling us to scale up the dataset to the globe. We discuss lessons learned from the initial version of the project launched in 2014, a prototype of an image processing pipeline to bring Landsat imagery to citizen science platforms, methods of assessing accuracy of citizen scientists, and preliminary data from our relaunch of the project. Through this project we have developed generalizable tools to facilitate citizen science-based analysis of Landsat and other satellite and aerial imagery. We hope that this create a powerful dataset to unlock our understanding of how global change has altered these critically important species in the sea.

  20. The Impact of a Citizen Science Program on Student Achievement and Motivation: A Social Cognitive Career Perspective

    ERIC Educational Resources Information Center

    Hiller, Suzanne E.

    2012-01-01

    Citizen science programs are joint efforts between hobbyists and professional scientists designed to collect data to support scientific research. Through these programs, biologists study species population trends while citizen scientists improve their content knowledge and science skills. The purpose of the present mixed method quasi-experimental…

  1. Focused campaign increases activity among participants in Nature's Notebook, a citizen science project

    USGS Publications Warehouse

    Crimmins, Theresa M.; Weltzin, Jake F.; Rosemartin, Alyssa H.; Surina, Echo M.; Marsh, Lee; Denny, Ellen G.

    2014-01-01

    Citizen science projects, which engage non-professional scientists in one or more stages of scientific research, have been gaining popularity; yet maintaining participants’ activity level over time remains a challenge. The objective of this study was to evaluate the potential for a short-term, focused campaign to increase participant activity in a national-scale citizen science program. The campaign that we implemented was designed to answer a compelling scientific question. We invited participants in the phenology-observing program, Nature’s Notebook, to track trees throughout the spring of 2012, to ascertain whether the season arrived as early as the anomalous spring of 2010. Consisting of a series of six electronic newsletters and costing our office slightly more than 1 week of staff resources, our effort was successful; compared with previous years, the number of observations collected in the region where the campaign was run increased by 184%, the number of participants submitting observations increased by 116%, and the number of trees registered increased by 110%. In comparison, these respective metrics grew by 25, 55, and 44%, over previous years, in the southeastern quadrant of the United States, where no such campaign was carried out. The campaign approach we describe here is a model that could be adapted by a wide variety of programs to increase engagement and thereby positively influence participant retention.

  2. Advancing the Potential of Citizen Science for Urban Water Quality Monitoring: Exploring Research Design and Methodology in New York City

    NASA Astrophysics Data System (ADS)

    Hsueh, D.; Farnham, D. J.; Gibson, R.; McGillis, W. R.; Culligan, P. J.; Cooper, C.; Larson, L.; Mailloux, B. J.; Buchanan, R.; Borus, N.; Zain, N.; Eddowes, D.; Butkiewicz, L.; Loiselle, S. A.

    2015-12-01

    Citizen Science is a fast-growing ecological research tool with proven potential to rapidly produce large datasets. While the fields of astronomy and ornithology demonstrate particularly successful histories of enlisting the public in conducting scientific work, citizen science applications to the field of hydrology have been relatively underutilized. We demonstrate the potential of citizen science for monitoring water quality, particularly in the impervious, urban environment of New York City (NYC) where pollution via stormwater runoff is a leading source of waterway contamination. Through partnerships with HSBC, Earthwatch, and the NYC Water Trail Association, we have trained two citizen science communities to monitor the quality of NYC waterways, testing for a suite of water quality parameters including pH, turbidity, phosphate, nitrate, and Enterococci (an indicator bacteria for the presence of harmful pathogens associated with fecal pollution). We continue to enhance these citizen science programs with two additions to our methodology. First, we designed and produced at-home incubation ovens for Enterococci analysis, and second, we are developing automated photo-imaging for nitrate and phosphate concentrations. These improvements make our work more publicly accessible while maintaining scientific accuracy. We also initiated a volunteer survey assessing the motivations for participation among our citizen scientists. These three endeavors will inform future applications of citizen science for urban hydrological research. Ultimately, the spatiotemporally-rich dataset of waterway quality produced from our citizen science efforts will help advise NYC policy makers about the impacts of green infrastructure and other types of government-led efforts to clean up NYC waterways.

  3. DiskDetective.org: Finding Homes for Exoplanets Through Citizen Science

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.

    2016-01-01

    The Disk Detective project is scouring the data archive from the WISE all-sky survey to find new debris disks and protoplanetary disks-the dusty dens where exoplanets form and dwell. Volunteers on this citizen science website have already performed 1.6 million classifications, searching a catalog 8x the size of any published WISE survey. We follow up candidates using ground based telescopes in California, Arizona, Chile, Hawaii, and Argentina. We ultimately expect to increase the pool of known debris disks by approx. 400 and triple the solid angle in clusters of young stars examined with WISE, providing a unique new catalog of isolated disk stars, key planet-search targets, and candidate advanced extraterrestrial civilizations. Come to this talk to hear the news about our latest dusty discoveries and the trials and the ecstasy of launching a new citizen science project. Please bring your laptop or smartphone if you like!

  4. In Their Own Words: The Significance of Participant Perceptions in Assessing Entomology Citizen Science Learning Outcomes Using a Mixed Methods Approach.

    PubMed

    Lynch, Louise I; Dauer, Jenny M; Babchuk, Wayne A; Heng-Moss, Tiffany; Golick, Doug

    2018-02-06

    A mixed methods study was used to transcend the traditional pre-, post-test approach of citizen science evaluative research by integrating adults' test scores with their perceptions. We assessed how contributory entomology citizen science affects participants' science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects. Pre- and post-test score analyses from citizen scientists ( n = 28) and a control group ( n = 72) were coupled with interviews ( n = 11) about science experiences and entomological interactions during participation. Considering quantitative data alone, no statistically significant changes were evident in adults following participation in citizen science when compared to the control group. Citizen scientists' pre-test scores were significantly higher than the control group for self-efficacy for environmental action, nature relatedness and attitude towards insects. Interview data reveal a notable discrepancy between measured and perceived changes. In general, citizen scientists had an existing, long-term affinity for the natural world and perceived increases in their science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects. Perceived influences may act independently of test scores. Scale instruments may not show impacts with variances in individual's prior knowledge and experiences. The value of mixed methods on citizen science program evaluation is discussed.

  5. In Their Own Words: The Significance of Participant Perceptions in Assessing Entomology Citizen Science Learning Outcomes Using a Mixed Methods Approach

    PubMed Central

    Lynch, Louise I.; Dauer, Jenny M.; Babchuk, Wayne A.; Heng-Moss, Tiffany

    2018-01-01

    A mixed methods study was used to transcend the traditional pre-, post-test approach of citizen science evaluative research by integrating adults’ test scores with their perceptions. We assessed how contributory entomology citizen science affects participants’ science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects. Pre- and post-test score analyses from citizen scientists (n = 28) and a control group (n = 72) were coupled with interviews (n = 11) about science experiences and entomological interactions during participation. Considering quantitative data alone, no statistically significant changes were evident in adults following participation in citizen science when compared to the control group. Citizen scientists’ pre-test scores were significantly higher than the control group for self-efficacy for environmental action, nature relatedness and attitude towards insects. Interview data reveal a notable discrepancy between measured and perceived changes. In general, citizen scientists had an existing, long-term affinity for the natural world and perceived increases in their science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects. Perceived influences may act independently of test scores. Scale instruments may not show impacts with variances in individual’s prior knowledge and experiences. The value of mixed methods on citizen science program evaluation is discussed. PMID:29415522

  6. Investigating Changes in Student Attitudes and Understanding of Science through Participation in Citizen Science Projects in College Coursework

    NASA Astrophysics Data System (ADS)

    Cardamone, Carolin; Cobb, Bethany E.

    2018-01-01

    Over the last decade, web-based “citizen science” projects such as the Zooniverse have allowed volunteers and professional scientists to work together for the advancement of science. While much attention has been paid to the benefits to science from these new projects, less attention has been paid to their impact on the participants and, in particular, to the projects’ potential to impact students who might engage in these projects through coursework. We report on a study engaging students in introductory astronomy classes at the George Washington University and Wheelock College in an assignment in which each student individually contributed to a “physics” or “space” citizen science project of their choice, and groups of students worked together to understand and articulate the scientific purpose of a citizen science project to which they all contributed. Over the course of approximately four weeks, the students kept logs of their individual contributions to the project, and recorded a brief reflection on each of their visits (noting, for example, interesting or confusing things they might encounter along the way). The project culminated with each group delivering a creative presentation that demonstrated their understanding of both the science goals of the project and the value of their own contributions to the project. In this talk, we report on the experience of the students with the project and on an assessment of the students’ attitudes toward science and knowledge of the process of science completed before the introduction of the assignment and again at its conclusion.

  7. Outreach Through Action: Using Citizen Science Pathways to Educate and Engage the Public While Collecting Real Data

    NASA Astrophysics Data System (ADS)

    Wickline, A.

    2016-02-01

    Citizens in Lewes, DE monitor local waterways by collecting physical and chemical data and checking for harmful algal blooms since 1991 through the University of Delaware Citizen Monitoring Program (UD CMP). This effort has produced lengthy time series for some sites dating back to 1991, as well as an engaged cohort of local citizens interested in coastal and estuarine processes. Though their primary goal is to monitor for conditions that could potentially be harmful to human and aquatic health, we saw an opportunity to reach out and expand their efforts by asking these citizens to sample the zooplankton community, providing more ecological context for their data. Over the past year, we have worked to engage this group through a series of talks and trainings. We explained the basics of zooplankton dynamics in our region, recruited volunteers to collect zooplankton at their sites, and worked with them to analyze their data. This small pilot project exemplifies the dual benefits of citizen science programs: collecting credible data while provided people with non-science backgrounds a chance to learn science through a hands-on project. The interactions with researchers and opportunities to work with real data offer citizens the one of the most robust science experiences, going beyond those provided by attending lab open houses or listening to talks.

  8. What Is Citizen Science? – A Scientometric Meta-Analysis

    PubMed Central

    Kullenberg, Christopher; Kasperowski, Dick

    2016-01-01

    Context The concept of citizen science (CS) is currently referred to by many actors inside and outside science and research. Several descriptions of this purportedly new approach of science are often heard in connection with large datasets and the possibilities of mobilizing crowds outside science to assists with observations and classifications. However, other accounts refer to CS as a way of democratizing science, aiding concerned communities in creating data to influence policy and as a way of promoting political decision processes involving environment and health. Objective In this study we analyse two datasets (N = 1935, N = 633) retrieved from the Web of Science (WoS) with the aim of giving a scientometric description of what the concept of CS entails. We account for its development over time, and what strands of research that has adopted CS and give an assessment of what scientific output has been achieved in CS-related projects. To attain this, scientometric methods have been combined with qualitative approaches to render more precise search terms. Results Results indicate that there are three main focal points of CS. The largest is composed of research on biology, conservation and ecology, and utilizes CS mainly as a methodology of collecting and classifying data. A second strand of research has emerged through geographic information research, where citizens participate in the collection of geographic data. Thirdly, there is a line of research relating to the social sciences and epidemiology, which studies and facilitates public participation in relation to environmental issues and health. In terms of scientific output, the largest body of articles are to be found in biology and conservation research. In absolute numbers, the amount of publications generated by CS is low (N = 1935), but over the past decade a new and very productive line of CS based on digital platforms has emerged for the collection and classification of data. PMID:26766577

  9. From the Field to the Classroom: Developing Scientifically Literate Citizens Using the Understanding Global Change Framework in Education and Citizen Science

    NASA Astrophysics Data System (ADS)

    Toupin, C.; Bean, J. R.; Gavenus, K.; Johnson, H.; Toupin, S.

    2017-12-01

    With the copious amount of science and pseudoscience reported on by non-experts in the media, it is critical for educators to help students develop into scientifically literate citizens. One of the most direct ways to help students develop deep scientific understanding and the skills to critically question the information they encounter is to bring science into their daily experiences and to contextualize scientific inquiry within the classroom. Our work aims to use a systems-based models approach to engage students in science, in both formal and informal contexts. Using the Understanding Global Change (UGC) and the Understanding Science models developed at the Museum of Paleontology at UC Berkeley, high school students from Arizona were tasked with developing a viable citizen science program for use at the Center for Alaskan Coastal Studies in Homer, Alaska. Experts used the UGC model to help students define why they were doing the work, and give context to the importance of citizen science. Empowered with an understanding of the scientific process, excited by the purpose of their work and how it could contribute to the scientific community, students whole-heartedly worked together to develop intertidal monitoring protocols for two locations while staying at Peterson Bay Field Station, Homer. Students, instructors, and scientists used system models to communicate and discuss their understanding of the biological, physical, and chemical processes in Kachemak Bay. This systems-based models approach is also being used in an integrative high school physics, chemistry, and biology curriculum in a truly unprecedented manner. Using the Understanding Global Change framework to organize curriculum scope and sequence, the course addresses how the earth systems work, how interdisciplinary science knowledge is necessary to understand those systems, and how scientists and students can measure changes within those systems.

  10. Lights, Camera…Citizen Science: Assessing the Effectiveness of Smartphone-Based Video Training in Invasive Plant Identification

    PubMed Central

    Starr, Jared; Schweik, Charles M.; Bush, Nathan; Fletcher, Lena; Finn, Jack; Fish, Jennifer; Bargeron, Charles T.

    2014-01-01

    The rapid growth and increasing popularity of smartphone technology is putting sophisticated data-collection tools in the hands of more and more citizens. This has exciting implications for the expanding field of citizen science. With smartphone-based applications (apps), it is now increasingly practical to remotely acquire high quality citizen-submitted data at a fraction of the cost of a traditional study. Yet, one impediment to citizen science projects is the question of how to train participants. The traditional “in-person” training model, while effective, can be cost prohibitive as the spatial scale of a project increases. To explore possible solutions, we analyze three training models: 1) in-person, 2) app-based video, and 3) app-based text/images in the context of invasive plant identification in Massachusetts. Encouragingly, we find that participants who received video training were as successful at invasive plant identification as those trained in-person, while those receiving just text/images were less successful. This finding has implications for a variety of citizen science projects that need alternative methods to effectively train participants when in-person training is impractical. PMID:25372597

  11. Using Citizen Science Reports to Define the Equatorial Extent of Auroral Visibility

    NASA Technical Reports Server (NTRS)

    Case, N. A.; MacDonald, E. A.; Viereck, R.

    2016-01-01

    An aurora may often be viewed hundreds of kilometers equatorward of the auroral oval owing to its altitude. As such, the NOAA Space Weather Prediction Center (SWPC) Aurora Forecast product provides a "view line" to demonstrate the equatorial extent of auroral visibility, assuming that it is sufficiently bright and high in altitude. The view line in the SWPC product is based upon the latitude of the brightest aurora, for each hemisphere, as specified by the real-time oval variation, assessment, tracking, intensity, and online nowcasting (OVATION) Prime (2010) aurora precipitation model. In this study, we utilize nearly 500 citizen science auroral reports to compare with the view line provided by an updated SWPC aurora forecast product using auroral precipitation data from OVATION Prime (2013). The citizen science observations were recorded during March and April 2015 using the Aurorasaurus platform and cover one large geomagnetic storm and several smaller events. We find that this updated SWPC view line is conservative in its estimate and that the aurora is often viewable further equatorward than Is indicated by the forecast. By using the citizen reports to modify the scaling parameters used to link the OVATION Prime (2013) model to the view line, we produce a new view line estimate that more accurately represents the equatorial extent of visible aurora. An OVATION Prime (2013) energy flux-based equatorial boundary view line is also developed and is found to provide the best overall agreement with the citizen science reports, with an accuracy of 91 percent.

  12. Galaxy Zoo: Exploring the Motivations of Citizen Science Volunteers

    ERIC Educational Resources Information Center

    Raddick, M. Jordan; Bracey, Georgia; Gay, Pamela L.; Lintott, Chris J.; Murray, Phil; Schawinski, Kevin; Szalay, Alexander S.; Vandenberg, Jan

    2010-01-01

    The Galaxy Zoo citizen science website invites anyone with an Internet connection to participate in research by classifying galaxies from the Sloan Digital Sky Survey. As of April 2009, more than 200,000 volunteers have made more than 100 million galaxy classifications. In this article, we present results of a pilot study into the motivations and…

  13. Collaboration in teacher workshops and citizen science

    NASA Astrophysics Data System (ADS)

    Gibbs, M. G.; Buxner, S.; Gay, P.; Crown, D. A.; Bracey, G.; Gugliucci, N.; Costello, K.; Reilly, E.

    2013-12-01

    The Moon and Earth system is an important topic for elementary and middle school science classrooms. Elementary and middle school teachers are challenged to keep current in science. The Planetary Science Institute created a program titled Workshops in Science Education and Resources (WISER): Planetary Perspectives to assist in-service K-12 teachers with their knowledge in earth and space science, using up-to-date science and inquiry activities to assist them in engaging their students. To augment the science and add a new aspect for teacher professional development, PSI is working in a new partnership collaborating with the Cosmoquest project in engaging teachers in authentic inquiry of the Moon. Teachers now learn about the Moon from PSI scientists and education staff and then engage in inquiry of the Moon using CosmoQuest's online citizen science project MoonMappers and its accompanying classroom curriculum TerraLuna. Through MoonMappers, teachers and students explore the lunar surface by viewing high-resolution pictures from the Lunar Reconnaissance Orbiter and marking craters and other interesting features. In addition, TerraLuna provides a unit of inquiry-based activities that bring MoonMappers and its science content into the classroom. This program addresses standards teachers need to teach and helps them not only teach about the Moon but also engage their students in authentic inquiry of the lunar surface.

  14. The Air Sensor Citizen Science Toolbox: A Collaboration in Community Air Quality Monitoring and Mapping?

    EPA Science Inventory

    Project GoalDevelop tools Citizen Scientists can use to assist them in conducting environmental monitoringResearch PlanIdentify a citizen science project as a potential pilot study locationEstablish their pollutant monitoring interestsDevelop a sensor package to meet their needs ...

  15. An Arduino Based Citizen Science Soil Moisture Sensor in Support of SMAP and GLOBE

    NASA Astrophysics Data System (ADS)

    Podest, E.; Das, N. N.; Rajasekaran, E.; Jeyaram, R.; Lohrli, C.; Hovhannesian, H.; Fairbanks, G.

    2017-12-01

    Citizen science allows individuals anywhere in the world to engage in science by collecting environmental variables. One of the longest running platforms for the collection of in situ variables is the GLOBE program, which is international in scope and encourages students and citizen scientists alike to collect in situ measurements. NASA's Soil Moisture Active Passive (SMAP) satellite mission, which has been acquiring global soil moisture measurements every 3 days of the top 5 cm of the soil since 2015, has partnered with the GLOBE program to engage students from around the world to collect in situ soil moisture and help validate SMAP measurements. The current GLOBE SMAP soil moisture protocol consists in collecting a soil sample, weighing, drying and weighing it again in order to determine the amount of water in the soil. Preparation and soil sample collection can take up to 20 minutes and drying can take up to 3 days. We have hence developed a soil moisture measurement device based on Arduino- microcontrollers along with off-the-shelf and homemade sensors that are accurate, robust, inexpensive and quick and easy to use so that they can be implemented by the GLOBE community and citizen scientists alike. In addition, we have developed a phone app, which interfaces with the Arduino, displays the soil moisture value and send the measurement to the GLOBE database. This talk will discuss building, calibration and validation of the soil moisture measuring device and assessing the quality of the measurements collected. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  16. A generalized approach for producing, quantifying, and validating citizen science data from wildlife images

    PubMed Central

    Kosmala, Margaret; Lintott, Chris; Packer, Craig

    2016-01-01

    Abstract Citizen science has the potential to expand the scope and scale of research in ecology and conservation, but many professional researchers remain skeptical of data produced by nonexperts. We devised an approach for producing accurate, reliable data from untrained, nonexpert volunteers. On the citizen science website www.snapshotserengeti.org, more than 28,000 volunteers classified 1.51 million images taken in a large‐scale camera‐trap survey in Serengeti National Park, Tanzania. Each image was circulated to, on average, 27 volunteers, and their classifications were aggregated using a simple plurality algorithm. We validated the aggregated answers against a data set of 3829 images verified by experts and calculated 3 certainty metrics—level of agreement among classifications (evenness), fraction of classifications supporting the aggregated answer (fraction support), and fraction of classifiers who reported “nothing here” for an image that was ultimately classified as containing an animal (fraction blank)—to measure confidence that an aggregated answer was correct. Overall, aggregated volunteer answers agreed with the expert‐verified data on 98% of images, but accuracy differed by species commonness such that rare species had higher rates of false positives and false negatives. Easily calculated analysis of variance and post‐hoc Tukey tests indicated that the certainty metrics were significant indicators of whether each image was correctly classified or classifiable. Thus, the certainty metrics can be used to identify images for expert review. Bootstrapping analyses further indicated that 90% of images were correctly classified with just 5 volunteers per image. Species classifications based on the plurality vote of multiple citizen scientists can provide a reliable foundation for large‐scale monitoring of African wildlife. PMID:27111678

  17. Smoke Sense Study: A Citizen Science Project Using a Mobile App

    EPA Pesticide Factsheets

    EPA researchers are planning a citizen science study called Smoke Sense to determine the extent to which exposure to wildland fire smoke affects health and productivity, and to develop health risk communication strategies that protect public health.

  18. Dark Skies Awareness through the GLOBE at Night Citizen-Science Campaign

    NASA Astrophysics Data System (ADS)

    Walker, C. E.

    2011-10-01

    The emphasis in the international citizen-science, star-hunting campaign, GLOBE at Night, is in bringing awareness to the public on issues of light pollution. Light pollution threatens not only observatory sites and our "right to starlight", but can affect energy consumption, wildlife and health. GLOBE at Night has successfully reached a few hundred thousand citizen-scientists during the annual 2-week campaign over the past 6 years. Provided is an overview, update and discussion of what steps can be taken to improve programs like GLOBE at Night.

  19. HamSCI: The Ham Radio Science Citizen Investigation

    NASA Astrophysics Data System (ADS)

    Frissell, N. A.; Moses, M. L.; Earle, G. D.; McGwier, R. W.; Miller, E. S.; Kaeppler, S. R.; Silver, H. W.; Ceglia, F.; Pascoe, D.; Sinanis, N.; Smith, P.; Williams, R.; Shovkoplyas, A.; Gerrard, A. J.

    2016-12-01

    Amateur (or "ham") radio operators are individuals with a non-pecuniary interest in radio technology, engineering, communications, science, and public service. They are licensed by their national governments to transmit on amateur radio frequencies. In many jurisdictions, there is no age requirement for a ham radio license, and operators from diverse backgrounds participate. There are more than 740,000 hams in the US, and over 3 million (estimated) worldwide. Many amateur communications are conducted using transionospheric links and thus affected by space weather and ionospheric processes. Recent technological advances have enabled the development of automated ham radio observation networks (e.g. the Reverse Beacon Network, www.reversebeacon.net) and specialized operating modes for the study of weak-signal propagation. The data from these networks have been shown to be useful for the study of ionospheric processes. In order to connect professional researchers with the volunteer-based ham radio community, HamSCI (Ham Radio Science Citizen Investigation, www.hamsci.org) has been established. HamSCI is a platform for publicizing and promoting projects that are consistent with the following objectives: (1) Advance scientific research and understanding through amateur radio activities. (2) Encourage the development of new technologies to support this research. (3) Provide educational opportunities for the amateur community and the general public. HamSCI researchers are working with the American Radio Relay League (ARRL, www.arrl.org) to publicize these objectives and recruit interested hams. The ARRL is the US national organization for amateur radio with a membership of over 170,000 and a monthly magazine, QST. HamSCI is currently preparing to support ionospheric research connected to the 21 Aug 2017 Total Solar Eclipse by expanding coverage of the Reverse Beacon Network and organizing a large-scale ham radio operating event ("QSO Party") to generate data during the

  20. Participating in a Citizen Science Monitoring Program: Implications for Environmental Education

    PubMed Central

    Branchini, Simone; Meschini, Marta; Covi, Claudia; Piccinetti, Corrado; Zaccanti, Francesco; Goffredo, Stefano

    2015-01-01

    Tourism is of growing economical importance to many nations, in particular for developing countries. Although tourism is an important economic vehicle for the host country, its continued growth has led to on-going concerns about its environmental sustainability. Coastal and marine tourism can directly affect the environment through direct and indirect tourist activities. For these reasons tourism sector needs practical actions of sustainability. Several studies have shown how education minimizes the impact on and is proactive for, preserving the natural resources. This paper evaluates the effectiveness of a citizen science program to improve the environmental education of the volunteers, by means of questionnaires provided to participants to a volunteer-based Red Sea coral reef monitoring program (STEproject). Fifteen multiple-choice questions evaluated the level of knowledge on the basic coral reef biology and ecology and the awareness on the impact of human behaviour on the environment. Volunteers filled in questionnaires twice, once at the beginning, before being involved in the project and again at the end of their stay, after several days participation in the program. We found that the participation in STEproject significantly increased both the knowledge of coral reef biology and ecology and the awareness of human behavioural impacts on the environment, but was more effective on the former. We also detected that tourists with a higher education level have a higher initial level of environmental education than less educated people and that the project was more effective on divers than snorkelers. This study has emphasized that citizen science projects have an important and effective educational value and has suggested that tourism and diving stakeholders should increase their commitment and efforts to these programs PMID:26200660

  1. Participating in a Citizen Science Monitoring Program: Implications for Environmental Education.

    PubMed

    Branchini, Simone; Meschini, Marta; Covi, Claudia; Piccinetti, Corrado; Zaccanti, Francesco; Goffredo, Stefano

    2015-01-01

    Tourism is of growing economical importance to many nations, in particular for developing countries. Although tourism is an important economic vehicle for the host country, its continued growth has led to on-going concerns about its environmental sustainability. Coastal and marine tourism can directly affect the environment through direct and indirect tourist activities. For these reasons tourism sector needs practical actions of sustainability. Several studies have shown how education minimizes the impact on and is proactive for, preserving the natural resources. This paper evaluates the effectiveness of a citizen science program to improve the environmental education of the volunteers, by means of questionnaires provided to participants to a volunteer-based Red Sea coral reef monitoring program (STEproject). Fifteen multiple-choice questions evaluated the level of knowledge on the basic coral reef biology and ecology and the awareness on the impact of human behaviour on the environment. Volunteers filled in questionnaires twice, once at the beginning, before being involved in the project and again at the end of their stay, after several days participation in the program. We found that the participation in STEproject significantly increased both the knowledge of coral reef biology and ecology and the awareness of human behavioural impacts on the environment, but was more effective on the former. We also detected that tourists with a higher education level have a higher initial level of environmental education than less educated people and that the project was more effective on divers than snorkelers. This study has emphasized that citizen science projects have an important and effective educational value and has suggested that tourism and diving stakeholders should increase their commitment and efforts to these programs.

  2. Citizen Science for Earth Observation: Applications in Environmental Monitoring and Disaster Response

    NASA Astrophysics Data System (ADS)

    Kotovirta, V.; Toivanen, T.; Tergujeff, R.; Hame, T.; Molinier, M.

    2015-04-01

    Citizen science is a promising way to increase temporal and spatial coverages of in-situ data, and to aid in data processing and analysis. In this paper, we present how citizen science can be used together with Earth observation, and demonstrate its value through three pilot projects focusing on forest biomass analysis, data management in emergencies and water quality monitoring. We also provide recommendations and ideas for follow-up activities. In the forest biomass analysis pilot, in the state of Durango (Mexico), local volunteers make in-situ forest inventory measurements with mobile devices. The collected data is combined with Landsat-8 imagery to derive forest biomass map of the area. The study area includes over 390 permanent sampling plots that will provide reference data for concept validation and verification. The emergency data management pilot focuses in the Philippines, in the areas affected by the typhoons Haiyan in November 2013 and Hagupit in December 2014. Data collected by emergency workers and citizens are combined with satellite data (Landsat-8, VHR if available) to intensify the disaster recovery activities and the coordination efforts. Simple processes for citizens, nongovernmental organisations and volunteers are developed to find and utilize up to date and freely available satellite imagery for coordination purposes and for building new not-for-profit services in disaster situations. In the water quality monitoring pilot, citizens around the Baltic Sea area contribute to the algae situation awareness by collecting algae observations using a mobile application. In-situ observations are compared with surface algal bloom products based on the satellite imagery, e.g. Aqua MODIS images with 500 meter resolution. As an outcome, the usability of the citizen observations together with satellite data in the algae monitoring will be evaluated.

  3. Citizen science: A new perspective to evaluate spatial patterns in hydrology.

    NASA Astrophysics Data System (ADS)

    Koch, J.; Stisen, S.

    2016-12-01

    Citizen science opens new pathways that can complement traditional scientific practice. Intuition and reasoning make humans often more effective than computer algorithms in various realms of problem solving. In particular, a simple visual comparison of spatial patterns is a task where humans are often considered to be more reliable than computer algorithms. However, in practice, science still largely depends on computer based solutions, which is inevitable giving benefits such as speed and the possibility to automatize processes. This study highlights the integration of the generally underused human resource into hydrology. We established a citizen science project on the zooniverse platform entitled Pattern Perception. The aim is to employ the human perception to rate similarity and dissimilarity between simulated spatial patterns of a hydrological catchment model. In total, the turnout counts more than 2,800 users that provided over 46,000 classifications of 1,095 individual subjects within 64 days after the launch. Each subject displays simulated spatial patterns of land-surface variables of a baseline model and six modelling scenarios. The citizen science data discloses a numeric pattern similarity score for each of the scenarios with respect to the reference. We investigate the capability of a set of innovative statistical performance metrics to mimic the human perception to distinguish between similarity and dissimilarity. Results suggest that more complex metrics are not necessarily better at emulating the human perception, but clearly provide flexibility and auxiliary information that is valuable for model diagnostics. The metrics clearly differ in their ability to unambiguously distinguish between similar and dissimilar patterns which is regarded a key feature of a reliable metric.

  4. Citizen Science - What's policy got to do with it? (Invited)

    NASA Astrophysics Data System (ADS)

    Shanley, L.

    2013-12-01

    Sensing capabilities, computing power, and data storage have grown rapidly and become increasingly ubiquitous. In 2012, the number of smartphones worldwide topped one billion, and it is expected to double by 2015. A growing segment of the population now has the ability to collect and share information instantly. Social media and crowdsourcing platforms help to amplify and focus online information sharing and collaboration. We have seen exiting uses of these new tools and approaches to foster broad public participation in scientific research, from classifying galaxies and collecting environmental data to collectively solving the structure of an AIDS-related enzyme through a protein-folding game. The U.S. Geological Survey (USGS), for example, is using social media and crowdsourcing to learn more about earthquakes. These techniques provide inexpensive and rapid data to augment and extend the capabilities provided by traditional monitoring techniques. A new report by the Wilson Center, Transforming Earthquake Detection and Science Through Citizen Seismology, describes these groundbreaking citizen science projects. These efforts include the Tweet Earthquake Dispatch, which uses an algorithm to provide seismologists with initial alerts of earthquakes felt around the globe via Twitter in less than two minutes. The report also examines the Quake Catcher Network, which equips the public with low-cost sensors to collect information on seismic activity, as well as Did You Feel It, which uses the Internet to survey individuals about their experiences in earthquakes, including location and extent of the damage. Projects like these, however, do not happen overnight. Citizen-based science projects at the federal level must navigate a web of practical, legal and policy considerations to make them a reality. Projects must take into account the limitations of the Privacy Act, advising people on how the information they contribute might be used and respecting fair information

  5. 20 CFR 416.1610 - How to prove you are a citizen or a national of the United States.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... prove you are a citizen or a national of the United States. (a) What you should give us. You can prove that you are a citizen or a national of the United States by giving us— (1) A certified copy of your... citizens in the United States (Immigration and Naturalization Service Form I-197); or (7) An identification...

  6. 20 CFR 416.1610 - How to prove you are a citizen or a national of the United States.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... prove you are a citizen or a national of the United States. (a) What you should give us. You can prove that you are a citizen or a national of the United States by giving us— (1) A certified copy of your... citizens in the United States (Immigration and Naturalization Service Form I-197); or (7) An identification...

  7. 20 CFR 416.1610 - How to prove you are a citizen or a national of the United States.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... prove you are a citizen or a national of the United States. (a) What you should give us. You can prove that you are a citizen or a national of the United States by giving us— (1) A certified copy of your... citizens in the United States (Immigration and Naturalization Service Form I-197); or (7) An identification...

  8. 20 CFR 416.1610 - How to prove you are a citizen or a national of the United States.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... prove you are a citizen or a national of the United States. (a) What you should give us. You can prove that you are a citizen or a national of the United States by giving us— (1) A certified copy of your... citizens in the United States (Immigration and Naturalization Service Form I-197); or (7) An identification...

  9. 20 CFR 416.1610 - How to prove you are a citizen or a national of the United States.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... prove you are a citizen or a national of the United States. (a) What you should give us. You can prove that you are a citizen or a national of the United States by giving us— (1) A certified copy of your... citizens in the United States (Immigration and Naturalization Service Form I-197); or (7) An identification...

  10. Spatiotemporal monitoring of allergic rhinitis symptoms in The Netherlands using citizen science.

    PubMed

    de Weger, L A; Hiemstra, P S; Op den Buysch, E; van Vliet, A J H

    2014-08-01

    Airborne pollen is a major symptom trigger in allergic rhinitis patients, but the impact of pollen differs among patients and regions and is influenced by environmental factors. To study these complex relationships, there is a need for data on the severity of symptoms in space and time. 'Citizen science' is increasingly recognized as an effective tool to monitor changes in our environment. The aim of this study was to investigate the feasibility of a citizen science-based survey to monitor spatiotemporal variation in allergic rhinitis symptoms. Participants were recruited through the Web site Allergieradar.nl. After registering by completing an extensive questionnaire, they entered (preferably daily) their symptoms of eyes, nose, and lungs on a scale from 1 to 10, as well as their geographic location. The registration questionnaire revealed that the majority of the participants (77%) had physician-diagnosed hay fever and 65% of the participants had been tested positively for their allergy. This study shows that the symptom scores of the participants are related to (i) pollen concentrations in the air, (ii) the self-reported sensitivity profile, and (iii) the sales of prescription antihistamines in The Netherlands. Our data indicate that the collection of allergic rhinitis symptom data by 'citizen science' is feasible and has an added value in studies on the impact of pollen. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Examining Teacher Framing, Student Reasoning, and Student Agency in School-Based Citizen Science

    ERIC Educational Resources Information Center

    Harris, Emily Mae

    2017-01-01

    This dissertation presents three interrelated studies examining opportunities for student learning through contributory citizen science (CS), where students collect and contribute data to help generate new scientific knowledge. I draw on sociocultural perspectives of learning to analyze three cases where teachers integrated CS into school science,…

  12. Citizen science project to correlate growing degree days with cranberry phenology

    USDA-ARS?s Scientific Manuscript database

    We are coordinating a citizen science project among cranberry growers. Collaborators will be collecting daily high and low temperatures and recording plant phenology throughout the summer according to a standardized protocol. This project will allow for more accurate correlation between cranberry gr...

  13. A generalized approach for producing, quantifying, and validating citizen science data from wildlife images.

    PubMed

    Swanson, Alexandra; Kosmala, Margaret; Lintott, Chris; Packer, Craig

    2016-06-01

    Citizen science has the potential to expand the scope and scale of research in ecology and conservation, but many professional researchers remain skeptical of data produced by nonexperts. We devised an approach for producing accurate, reliable data from untrained, nonexpert volunteers. On the citizen science website www.snapshotserengeti.org, more than 28,000 volunteers classified 1.51 million images taken in a large-scale camera-trap survey in Serengeti National Park, Tanzania. Each image was circulated to, on average, 27 volunteers, and their classifications were aggregated using a simple plurality algorithm. We validated the aggregated answers against a data set of 3829 images verified by experts and calculated 3 certainty metrics-level of agreement among classifications (evenness), fraction of classifications supporting the aggregated answer (fraction support), and fraction of classifiers who reported "nothing here" for an image that was ultimately classified as containing an animal (fraction blank)-to measure confidence that an aggregated answer was correct. Overall, aggregated volunteer answers agreed with the expert-verified data on 98% of images, but accuracy differed by species commonness such that rare species had higher rates of false positives and false negatives. Easily calculated analysis of variance and post-hoc Tukey tests indicated that the certainty metrics were significant indicators of whether each image was correctly classified or classifiable. Thus, the certainty metrics can be used to identify images for expert review. Bootstrapping analyses further indicated that 90% of images were correctly classified with just 5 volunteers per image. Species classifications based on the plurality vote of multiple citizen scientists can provide a reliable foundation for large-scale monitoring of African wildlife. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  14. CosmoQuest: Training Educators and Engaging Classrooms in Citizen Science through a Virtual Research Facility

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Bracey, Georgia; Summer, Theresa; Cobb, Whitney; Gay, Pamela L.; Finkelstein, Keely D.; Gurton, Suzanne; Felix-Strishock, Lisa; Kruse, Brian; Lebofsky, Larry A.; Jones, Andrea J.; Tweed, Ann; Graff, Paige; Runco, Susan; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    CosmoQuest is a Citizen Science Virtual Research Facility that engages scientists, educators, students, and the public in analyzing NASA images. Often, these types of citizen science activities target enthusiastic members of the public, and additionally engage students in K-12 and college classrooms. To support educational engagement, we are developing a pipeline in which formal and informal educators and facilitators use the virtual research facility to engage students in real image analysis that is framed to provide meaningful science learning. This work also contributes to the larger project to produce publishable results. Community scientists are being solicited to propose CosmoQuest Science Projects take advantage of the virtual research facility capabilities. Each CosmoQuest Science Project will result in formal education materials, aligned with Next Generation Science Standards including the 3-dimensions of science learning; core ideas, crosscutting concepts, and science and engineering practices. Participating scientists will contribute to companion educational materials with support from the CosmoQuest staff of data specialists and education specialists. Educators will be trained through in person and virtual workshops, and classrooms will have the opportunity to not only work with NASA data, but interface with NASA scientists. Through this project, we are bringing together subject matter experts, classrooms, and informal science organizations to share the excitement of NASA SMD science with future citizen scientists. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on our website, cosmoquest.org.

  15. A Webcast of Bird Nesting as a State-of-the-Art Citizen Science.

    PubMed

    Zárybnická, Markéta; Sklenicka, Petr; Tryjanowski, Piotr

    2017-01-01

    The quality of people's knowledge of nature has always had a significant influence on their approach to wildlife and nature conservation. However, direct interactions of people with nature are greatly limited nowadays, especially because of urbanization and modern lifestyles. As a result, our isolation from the natural world has been growing. Here, we present an example of a state-of-the-art Citizen Science project with its educational, scientific, and popularizing benefits. We conclude that modern media and new forms of education offer an effective opportunity for inspiring children and others to have fun learning to act like scientists. This approach provides broad opportunities for developing the hitherto neglected educational potential of Citizen Science.

  16. Citizen science and air quality research at the U.S. EPA

    EPA Science Inventory

    This presentation summarizes some of the broad areas of effort at EPA related to citizen science and then focuses in specifically on recent developments in air quality. The air quality focus includes briefly summarizing emerging air sensor technology and a variety of projects th...

  17. Engaging Scientists with the CosmoQuest Citizen Science Virtual Research Facility

    NASA Astrophysics Data System (ADS)

    Grier, Jennifer A.; Gay, Pamela L.; Buxner, Sanlyn; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    NASA Science Mission Directorate missions and research return more data than subject matter experts (SMEs - scientists and engineers) can effectively utilize. Citizen scientist volunteers represent a robust pool of energy and talent that SMEs can draw upon to advance projects that require the processing of large quantities of images, and other data. The CosmoQuest Virtual Research Facility has developed roles and pathways to engage SMEs in ways that advance the education of the general public while producing science results publishable in peer-reviewed journals, including through the CosmoQuest Facility Small Grants Program and CosmoAcademy. Our Facility Small Grants Program is open to SMEs to fund them to work with CosmoQuest and engage the public in analysis. Ideal projects have a specific and well-defined need for additional eyes and minds to conduct basic analysis and data collection (such as crater counting, identifying lineaments, etc.) Projects selected will undergo design and implementation as Citizen Science Portals, and citizen scientists will be recruited and trained to complete the project. Users regularly receive feedback on the quality of their data. Data returned will be analyzed by the SME and the CQ Science Team for joint publication in a peer-reviewed journal. SMEs are also invited to consider presenting virtual learning courses in the subjects of their choice in CosmoAcademy. The audience for CosmoAcademy are lifelong-learners and education professionals. Classes are capped at 10, 15, or 20 students. CosmoAcademy can also produce video material to archive seminars long-term. SMEs function as advisors in many other areas of CosmoQuest, including the Educator's Zone (curricular materials for K-12 teachers), Science Fair Projects, and programs that partner to produce material for podcasts and planetaria. Visit the CosmoQuest website at cosmoquest.org to learn more, and to investigate current opportunities to engage with us. CosmoQuest is funded

  18. A Citizen Empowered Online Platform for Communicating Climate Science to the General Public

    NASA Astrophysics Data System (ADS)

    Bourqui, Michel

    2014-05-01

    This presentation introduces a project, currently in development, of a new online platform for the interaction between climate scientists and citizen. It consists of an open-access, multi-lingual, and peer-reviewed journal publishing climate articles in non-scientific language. It follows three main long-term objectives. The first objective is to establish an ever-growing, multi-lingual library of climate articles providing a knowledge base on climate sciences accessible for free to everyone. The targeted public includes journalists, teachers, students, local actors (e.g. in politics, economy, agriculture), and any other citizen from around the world with an interest in climate sciences. The second goal is to offer a simple and direct channel for scientists wishing to disseminate their research to the general public. A high standard of climate articles is enforced through: a) requiring that the main author is an active climate scientist, and b) an innovative peer-review process involving scientific and non-scientific referees with distinct roles. The third objective is to engage citizen into the climate science. To this aim, the journal proposes three channels. Firstly, citizens are invited to contribute to the dissemination of climate knowledge to the general public by co-authoring, peer-reviewing or translating articles. Secondly, they are offered the capacity to stimulate scientific enquiry by posting invitations for manuscripts to be written on a citizen-inspired topic. Thirdly, a match-up tool is being developed for scientists to gather non-scientists teams for conducting citizen-involving research projects. This platform is scientist-initiated and is meant to be ruled and managed by the participating individuals themselves (scientists and non-scientists) as an international association. It will be financed through country-varying flat memberships. The project is now starting. The basic ideas are drawn; a prototype internet platform has been developed and is

  19. Insights from the Development of HiveScience

    EPA Science Inventory

    The National Advisory Council for Environmental Policy and Technology (NACEPT) recently assessed EPA's approach to citizen science. The Council concluded that integration of citizen science into EPA's structure will accelerate virtually every Agency activity. HiveScience is a n...

  20. The USA National Phenology Network: A national science and monitoring program for understanding climate change

    NASA Astrophysics Data System (ADS)

    Weltzin, J.

    2009-04-01

    Patterns of phenology for plants and animals control ecosystem processes, determine land surface properties, control biosphere-atmosphere interactions, and affect food production, health, conservation, and recreation. Although phenological data and models have applications related to scientific research, education and outreach, agriculture, tourism and recreation, human health, and natural resource conservation and management, until recently there was no coordinated effort to understand phenology at the national scale in the United States. The USA National Phenology Network (USA-NPN; www.usanpn.org), established in 2007, is an emerging and exciting partnership between federal agencies, the academic community, and the general public to establish a national science and monitoring initiative focused on phenology. The first year of operation of USA-NPN produced many new phenology products and venues for phenology research and citizen involvement. Products include a new web-site (www.usanpn.org) that went live in June 2008; the web-site includes a tool for on-line data entry, and serves as a clearinghouse for products and information to facilitate research and communication related to phenology. The new core Plant Phenology Program includes profiles for 200 vetted local, regional, and national plant species with descriptions and (BBCH-consistent) monitoring protocols, as well as templates for addition of new species. A partnership program describes how other monitoring networks can engage with USA-NPN to collect, manage or disseminate phenological information for science, health, education, management or predictive service applications. Project BudBurst, a USA-NPN field campaign for citizen scientists, went live in February 2008, and now includes over 3000 registered observers monitoring 4000 plants across the nation. For 2009 and beyond, we will initiate a new Wildlife Phenology Program, create an on-line clearing-house for phenology education and outreach, strengthen

  1. A Citizen Science Approach: A Detailed Ecological Assessment of Subtropical Reefs at Point Lookout, Australia.

    PubMed

    Roelfsema, Chris; Thurstan, Ruth; Beger, Maria; Dudgeon, Christine; Loder, Jennifer; Kovacs, Eva; Gallo, Michele; Flower, Jason; Gomez Cabrera, K-le; Ortiz, Juan; Lea, Alexandra; Kleine, Diana

    2016-01-01

    Subtropical reefs provide an important habitat for flora and fauna, and proper monitoring is required for conservation. Monitoring these exposed and submerged reefs is challenging and available resources are limited. Citizen science is increasing in momentum, as an applied research tool and in the variety of monitoring approaches adopted. This paper aims to demonstrate an ecological assessment and mapping approach that incorporates both top-down (volunteer marine scientists) and bottom-up (divers/community) engagement aspects of citizen science, applied at a subtropical reef at Point Lookout, Southeast Queensland, Australia. Marine scientists trained fifty citizen scientists in survey techniques that included mapping of habitat features, recording of substrate, fish and invertebrate composition, and quantifying impacts (e.g., occurrence of substrate damage, presence of litter). In 2014 these volunteers conducted four seasonal surveys along semi-permanent transects, at five sites, across three reefs. The project presented is a model on how citizen science can be conducted in a marine environment through collaboration of volunteer researchers, non-researchers and local marine authorities. Significant differences in coral and algal cover were observed among the three sites, while fluctuations in algal cover were also observed seasonally. Differences in fish assemblages were apparent among sites and seasons, with subtropical fish groups observed more commonly in colder seasons. The least physical damage occurred in the most exposed sites (Flat Rock) within the highly protected marine park zones. The broad range of data collected through this top-down/bottom-up approach to citizen science exemplifies the projects' value and application for identifying ecosystem trends or patterns. The results of the project support natural resource and marine park management, providing a valuable contribution to existing scientific knowledge and the conservation of local reefs.

  2. A Citizen Science Approach: A Detailed Ecological Assessment of Subtropical Reefs at Point Lookout, Australia

    PubMed Central

    Thurstan, Ruth; Beger, Maria; Dudgeon, Christine; Loder, Jennifer; Kovacs, Eva; Gallo, Michele; Flower, Jason; Gomez Cabrera, K-le; Ortiz, Juan; Lea, Alexandra; Kleine, Diana

    2016-01-01

    Subtropical reefs provide an important habitat for flora and fauna, and proper monitoring is required for conservation. Monitoring these exposed and submerged reefs is challenging and available resources are limited. Citizen science is increasing in momentum, as an applied research tool and in the variety of monitoring approaches adopted. This paper aims to demonstrate an ecological assessment and mapping approach that incorporates both top-down (volunteer marine scientists) and bottom-up (divers/community) engagement aspects of citizen science, applied at a subtropical reef at Point Lookout, Southeast Queensland, Australia. Marine scientists trained fifty citizen scientists in survey techniques that included mapping of habitat features, recording of substrate, fish and invertebrate composition, and quantifying impacts (e.g., occurrence of substrate damage, presence of litter). In 2014 these volunteers conducted four seasonal surveys along semi-permanent transects, at five sites, across three reefs. The project presented is a model on how citizen science can be conducted in a marine environment through collaboration of volunteer researchers, non-researchers and local marine authorities. Significant differences in coral and algal cover were observed among the three sites, while fluctuations in algal cover were also observed seasonally. Differences in fish assemblages were apparent among sites and seasons, with subtropical fish groups observed more commonly in colder seasons. The least physical damage occurred in the most exposed sites (Flat Rock) within the highly protected marine park zones. The broad range of data collected through this top-down/bottom-up approach to citizen science exemplifies the projects’ value and application for identifying ecosystem trends or patterns. The results of the project support natural resource and marine park management, providing a valuable contribution to existing scientific knowledge and the conservation of local reefs. PMID

  3. Scientific Literacy of Adult Participants in an Online Citizen Science Project

    ERIC Educational Resources Information Center

    Price, Charles Aaron

    2011-01-01

    Citizen Science projects offer opportunities for non-scientists to take part in scientific research. Scientific results from these projects have been well documented. However, there is limited research about how these projects affect their volunteer participants. In this study, I investigate how participation in an online, collaborative…

  4. NASA ROVER, Tackling Citizen Science With Grand Challenges and Everyday Problems

    NASA Technical Reports Server (NTRS)

    Crecelius, Sarah; Chambers, Lin; Rogerson, Tina

    2015-01-01

    ROVER is the Citizen Science arm of the NASA Clouds and the Earth's Radiant Energy System (CERES) Students' Cloud Observations On-Line (S'COOL) Project. Since 2007, participants around the world have been making and reporting ground truth observations of clouds to assist in the validation of the NASA CERES satellite instrument. NASA scientists are very interested in learning how clouds affect our atmosphere, weather, and climate (relating to climate change). It is the clouds, in part, that affect the overall temperature and energy balance of the Earth. The more we know about clouds, the more we will know about our Earth as a system and citizen scientists are an important piece of that puzzle! As a ROVER cloud observer, all participants follow simple online tutorials to collect data on cloud type, height, cover and related conditions. Observations are sent to NASA to be matched to similar information obtained from satellites and sent back to participants for comparison and analysis. The supporting ROVER website houses a searchable database archiving all participant reports and matching satellite data. By involving Citizen Scientists in cloud observations and reporting we can gain a valuable set of data that would have been previously unavailable to science teams due to funding, manpower, and resource limitations or would have taken an unreasonable amount of time to collect. Reports from a wide range of Citizen Scientist locations are helpful to assess the satellite data under different conditions. With nothing more than their eyes and an internet connection participants provide a different perspective and analysis of clouds, adding to a more complete picture of what's happening in the atmosphere in which we live.

  5. Lessons from Fraxinus, a crowd-sourced citizen science game in genomics

    PubMed Central

    Rallapalli, Ghanasyam; Saunders, Diane GO; Yoshida, Kentaro; Edwards, Anne; Lugo, Carlos A; Collin, Steve; Clavijo, Bernardo; Corpas, Manuel; Swarbreck, David; Clark, Matthew; Downie, J Allan; Kamoun, Sophien

    2015-01-01

    In 2013, in response to an epidemic of ash dieback disease in England the previous year, we launched a Facebook-based game called Fraxinus to enable non-scientists to contribute to genomics studies of the pathogen that causes the disease and the ash trees that are devastated by it. Over a period of 51 weeks players were able to match computational alignments of genetic sequences in 78% of cases, and to improve them in 15% of cases. We also found that most players were only transiently interested in the game, and that the majority of the work done was performed by a small group of dedicated players. Based on our experiences we have built a linear model for the length of time that contributors are likely to donate to a crowd-sourced citizen science project. This model could serve a guide for the design and implementation of future crowd-sourced citizen science initiatives. DOI: http://dx.doi.org/10.7554/eLife.07460.001 PMID:26219214

  6. Estimating False Positive Contamination in Crater Annotations from Citizen Science Data

    NASA Astrophysics Data System (ADS)

    Tar, P. D.; Bugiolacchi, R.; Thacker, N. A.; Gilmour, J. D.

    2017-01-01

    Web-based citizen science often involves the classification of image features by large numbers of minimally trained volunteers, such as the identification of lunar impact craters under the Moon Zoo project. Whilst such approaches facilitate the analysis of large image data sets, the inexperience of users and ambiguity in image content can lead to contamination from false positive identifications. We give an approach, using Linear Poisson Models and image template matching, that can quantify levels of false positive contamination in citizen science Moon Zoo crater annotations. Linear Poisson Models are a form of machine learning which supports predictive error modelling and goodness-of-fits, unlike most alternative machine learning methods. The proposed supervised learning system can reduce the variability in crater counts whilst providing predictive error assessments of estimated quantities of remaining true verses false annotations. In an area of research influenced by human subjectivity, the proposed method provides a level of objectivity through the utilisation of image evidence, guided by candidate crater identifications.

  7. Tools for Using Citizen Science in Environmental, Agricultural, and Natural Resources Extension Programs

    ERIC Educational Resources Information Center

    Stofer, Kathryn A.

    2017-01-01

    Citizen science is quickly becoming a valuable tool in the Extension professional's tool kit. This is the case whether you are a 4-H agent looking to involve youth in agriscience and agriculture-related science, technology, engineering, and math experiential learning activities or an agriculture and natural resources agent seeking to help…

  8. Using Citizen Science to Close Gaps in Cabled Ocean Observatory Research

    NASA Astrophysics Data System (ADS)

    Morley, M. G.; Moran, K.; Riddell, D. J.; Hoeberechts, M.; Flagg, R.; Walsh, J.; Dobell, R.; Longo, J.

    2015-12-01

    Ocean Networks Canada operates the world-leading NEPTUNE and VENUS cabled ocean observatories off the west coast of British Columbia, and a community observatory in Cambridge Bay, Nunavut. Continuous power and connectivity permit large volumes of data to be collected and made available to scientists and citizens alike over the Internet through a web-based interface. The Oceans 2.0 data management system contains over one quarter petabyte of data, including more than 20,000 hours of video from fixed seafloor cameras and a further 8,000 hours of video collected by remotely operated vehicles. Cabled observatory instrument deployments enable the collection of high-frequency, long-duration time series of data from a specific location. This enables the study of important questions such as whether effects of climate change—for instance, variations in temperature or sea-level—are seen over the long term. However, cabled observatory monitoring also presents challenges to scientific researchers: the overwhelming volume of data and the fixed spatial location can be barriers to addressing some big questions. Here we describe how Ocean Networks Canada is using Citizen Science to address these limitations and supplement cabled observatory research. Two applications are presented: Digital Fishers is a crowd-sourcing application in which participants watch short deep-sea video clips and make annotations based on scientific research questions. To date, 3,000 participants have contributed 140,000 scientific observations on topics including sablefish abundance, hydrothermal vent geology and deep-sea feeding behaviour. Community Fishers is a program in which ordinary citizens aboard vessels of opportunity collect ocean data including water temperature, salinity, dissolved oxygen and chlorophyll. The program's focus is to directly address the typical quality concerns around data that are collected using a citizen science approach. This is done by providing high quality scientific

  9. Breathing life into fisheries stock assessments with citizen science

    PubMed Central

    Fairclough, D. V.; Brown, J. I.; Carlish, B. J.; Crisafulli, B. M.; Keay, I. S.

    2014-01-01

    Citizen science offers a potentially cost-effective way for researchers to obtain large data sets over large spatial scales. However, it is not used widely to support biological data collection for fisheries stock assessments. Overfishing of demersal fishes along 1,000 km of the west Australian coast led to restrictive management to recover stocks. This diminished opportunities for scientists to cost-effectively monitor stock recovery via fishery-dependent sampling, particularly of the recreational fishing sector. As fishery-independent methods would be too expensive and logistically-challenging to implement, a citizen science program, Send us your skeletons (SUYS), was developed. SUYS asks recreational fishers to voluntarily donate fish skeletons of important species from their catch to allow biological data extraction by scientists to produce age structures and conduct stock assessment analyses. During SUYS, recreational fisher involvement, sample sizes and spatial and temporal coverage of samples have dramatically increased, while the collection cost per skeleton has declined substantially. SUYS is ensuring sampling objectives for stock assessments are achieved via fishery-dependent collection and reliable and timely scientific advice can be provided to managers. The program is also encouraging public ownership through involvement in the monitoring process, which can lead to greater acceptance of management decisions. PMID:25431103

  10. Breathing life into fisheries stock assessments with citizen science.

    PubMed

    Fairclough, D V; Brown, J I; Carlish, B J; Crisafulli, B M; Keay, I S

    2014-11-28

    Citizen science offers a potentially cost-effective way for researchers to obtain large data sets over large spatial scales. However, it is not used widely to support biological data collection for fisheries stock assessments. Overfishing of demersal fishes along 1,000 km of the west Australian coast led to restrictive management to recover stocks. This diminished opportunities for scientists to cost-effectively monitor stock recovery via fishery-dependent sampling, particularly of the recreational fishing sector. As fishery-independent methods would be too expensive and logistically-challenging to implement, a citizen science program, Send us your skeletons (SUYS), was developed. SUYS asks recreational fishers to voluntarily donate fish skeletons of important species from their catch to allow biological data extraction by scientists to produce age structures and conduct stock assessment analyses. During SUYS, recreational fisher involvement, sample sizes and spatial and temporal coverage of samples have dramatically increased, while the collection cost per skeleton has declined substantially. SUYS is ensuring sampling objectives for stock assessments are achieved via fishery-dependent collection and reliable and timely scientific advice can be provided to managers. The program is also encouraging public ownership through involvement in the monitoring process, which can lead to greater acceptance of management decisions.

  11. Opportunities and Challenges for the Contribution of Citizen Science to High-Quality, Traceable Indicators of Biodiversity in the Context of Climate Change

    NASA Astrophysics Data System (ADS)

    Weltzin, J. F.

    2014-12-01

    Indicators of climate change are designed to communicate key aspects of the status and trends of the physical climate, climate impacts, vulnerabilities, and preparedness to inform both decision makers and the public. The US Environmental Protection Agency (EPA) provides a suite of "Indicators of Climate Change" and the US Global Change Research Program delivers indicators via its "Global Change Information System" (GCIS). The process of research, development and delivery of appropriate indicators of linked to climate change faces challenges including but not limited to (1) lack of data for relevant variables across longitudinal time scales with a defined relationship to climate variation or change, (2) sufficient density and distribution of data across spatial scales to support indicator development for researchers, natural resource managers and decision-makers, and (3) limited engagement of intended stakeholders who may not understand how the data were derived or the potential application of the indicator to their domain. Recent advances in the field of public participation in scientific research (PPSR), also known as "citizen science," represents a potential innovation in monitoring, research, information management and public engagement that can address several of these challenges. Citizen science datasets already available can be decades long and collected at many sites across broad spatial scales; by their nature, they create direct engagement with stakeholders and the public. For example, bird distribution data collected by citizen scientists participating in the continental-scale Christmas Bird Count since 1900 are used in EPA's indicator for "Bird Wintering Ranges." Similarly, plant leafing data collected across the nation since 1956 are combined with meteorological data to create a modeled indicator of plant leafing dates for the GCIS. This presentation will focus on (1) challenges to the development of ecological indicators of biodiversity linked to

  12. rAvis: an R-package for downloading information stored in Proyecto AVIS, a citizen science bird project.

    PubMed

    Varela, Sara; González-Hernández, Javier; Casabella, Eduardo; Barrientos, Rafael

    2014-01-01

    Citizen science projects store an enormous amount of information about species distribution, diversity and characteristics. Researchers are now beginning to make use of this rich collection of data. However, access to these databases is not always straightforward. Apart from the largest and international projects, citizen science repositories often lack specific Application Programming Interfaces (APIs) to connect them to the scientific environments. Thus, it is necessary to develop simple routines to allow researchers to take advantage of the information collected by smaller citizen science projects, for instance, programming specific packages to connect them to popular scientific environments (like R). Here, we present rAvis, an R-package to connect R-users with Proyecto AVIS (http://proyectoavis.com), a Spanish citizen science project with more than 82,000 bird observation records. We develop several functions to explore the database, to plot the geographic distribution of the species occurrences, and to generate personal queries to the database about species occurrences (number of individuals, distribution, etc.) and birdwatcher observations (number of species recorded by each collaborator, UTMs visited, etc.). This new R-package will allow scientists to access this database and to exploit the information generated by Spanish birdwatchers over the last 40 years.

  13. rAvis: An R-Package for Downloading Information Stored in Proyecto AVIS, a Citizen Science Bird Project

    PubMed Central

    Varela, Sara; González-Hernández, Javier; Casabella, Eduardo; Barrientos, Rafael

    2014-01-01

    Citizen science projects store an enormous amount of information about species distribution, diversity and characteristics. Researchers are now beginning to make use of this rich collection of data. However, access to these databases is not always straightforward. Apart from the largest and international projects, citizen science repositories often lack specific Application Programming Interfaces (APIs) to connect them to the scientific environments. Thus, it is necessary to develop simple routines to allow researchers to take advantage of the information collected by smaller citizen science projects, for instance, programming specific packages to connect them to popular scientific environments (like R). Here, we present rAvis, an R-package to connect R-users with Proyecto AVIS (http://proyectoavis.com), a Spanish citizen science project with more than 82,000 bird observation records. We develop several functions to explore the database, to plot the geographic distribution of the species occurrences, and to generate personal queries to the database about species occurrences (number of individuals, distribution, etc.) and birdwatcher observations (number of species recorded by each collaborator, UTMs visited, etc.). This new R-package will allow scientists to access this database and to exploit the information generated by Spanish birdwatchers over the last 40 years. PMID:24626233

  14. Senator Fred Harris's National Social Science Foundation proposal: Reconsidering federal science policy, natural science-social science relations, and American liberalism during the 1960s.

    PubMed

    Solovey, Mark

    2012-03-01

    During the 1960s, a growing contingent of left-leaning voices claimed that the social sciences suffered mistreatment and undue constraints within the natural science-dominated federal science establishment. According to these critics, the entrenched scientific pecking order in Washington had an unreasonable commitment to the unity of the sciences, which reinforced unacceptable inequalities between the social and the natural sciences. The most important political figure who advanced this critique, together with a substantial legislative proposal for reform, was the Oklahoma Democratic Senator Fred Harris. Yet histories of science and social science have told us surprisingly little about Harris. Moreover, existing accounts of his effort to create a National Social Science Foundation have misunderstood crucial features of this story. This essay argues that Harris's NSSF proposal developed into a robust, historically unique, and increasingly critical liberal challenge to the post-World War II federal science establishment's treatment of the social sciences as "second-class citizens."

  15. The Effect of a Horseshoe Crab Citizen Science Program on Middle School Student Science Performance and STEM Career Motivation

    ERIC Educational Resources Information Center

    Hiller, Suzanne E.; Kitsantas, Anastasia

    2014-01-01

    The purpose of the present quasi-experimental study was to examine the impact of a horseshoe crab citizen science program on student achievement and science, technology, engineering, and mathematics (STEM) career motivation with 86 (n = 86) eighth-grade students. The treatment group conducted fieldwork with naturalists and collected data for a…

  16. Teaching Citizen Science Skills Online: Implications for Invasive Species Training Programs

    ERIC Educational Resources Information Center

    Newman, Greg; Crall, Alycia; Laituri, Melinda; Graham, Jim; Stohlgren, Tom; Moore, John C.; Kodrich, Kris; Holfelder, Kirstin A.

    2010-01-01

    Citizen science programs are emerging as an efficient way to increase data collection and help monitor invasive species. Effective invasive species monitoring requires rigid data quality assurances if expensive control efforts are to be guided by volunteer data. To achieve data quality, effective online training is needed to improve field skills…

  17. Citizen Science: A Gateway for Innovation in Disease-Carrying Mosquito Management?

    PubMed

    Bartumeus, Frederic; Oltra, Aitana; Palmer, John R B

    2018-05-21

    Traditional methods for tracking disease-carrying mosquitoes are hitting budget constraints as the scales over which they must be implemented grow exponentially. Citizen science offers a novel solution to this problem but requires new models of innovation in the public health sector. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Citizens Advisory Committees.

    ERIC Educational Resources Information Center

    Stemnock, Suzanne K.

    1968-01-01

    This document contains the results of a national survey designed to determine the composition and location of permanent citizens advisory committees operating within the nation's school districts. The 52 district-wide, continuing citizens advisory bodies identified by 290 responding school systems are listed alphabetically by State. The following…

  19. Citizen Science and Event-Based Science Education with the Quake-Catcher Network

    NASA Astrophysics Data System (ADS)

    DeGroot, R. M.; Sumy, D. F.; Benthien, M. L.

    2017-12-01

    The Quake-Catcher Network (QCN, quakecatcher.net) is a collaborative, citizen-science initiative to develop the world's largest, low-cost strong-motion seismic network through the utilization of sensors in laptops and smartphones or small microelectromechanical systems (MEMS) accelerometers attached to internet-connected computers. The volunteer computers monitor seismic motion and other vibrations and send the "triggers" in real-time to the QCN server hosted at the University of Southern California. The QCN servers sift through these signals and determine which ones represent earthquakes and which ones represent cultural noise. Data collected by the Quake-Catcher Network can contribute to better understanding earthquakes, provide teachable moments for students, and engage the public with authentic science experiences. QCN partners coordinate sensor installations, develop QCN's scientific tools and engagement activities, and create next generation online resources. In recent years, the QCN team has installed sensors in over 225 K-12 schools and free-choice learning institutions (e.g. museums) across the United States and Canada. One of the current goals of the program in the United States is to establish several QCN stations in K-12 schools around a local museum hub as a means to provide coordinated and sustained educational opportunities leading up to the yearly Great ShakeOut Earthquake Drill, to encourage citizen science, and enrich STEM curriculum. Several school districts and museums throughout Southern California have been instrumental in the development of QCN. For educators QCN fulfills a key component of the Next Generation Science Standards where students are provided an opportunity to utilize technology and interface with authentic scientific data and learn about emerging programs such as the ShakeAlert earthquake early warning system. For example, Sunnylands Center in Rancho Mirage, CA leads Coachella Valley Hub, which serves 31 K-12 schools, many of

  20. BudBurst Buddies: A New Tool for Engaging the Youngest Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Henderson, S.; Ward, D.

    2010-12-01

    BudBurst Buddies (www.budburstbuddies.org) introduces elementary school age children to the science of observing plants and the timing of phenological (life cycle) events. BudBurst Buddies is a new part of the Project BudBurst national citizen science initiative (www.budburst.org), which allows individuals to engage in the scientific process, contributing to a better understanding of climate change while increasing public awareness of phenology and the impacts of climate change on plants. As a first step towards engaging the next generation of citizen scientists, BudBurst Buddies provides the opportunity for children to gain experience with scientific research and increases awareness of how plants change throughout the year. Children can participate in BudBurst Buddies on their own, with their families, or in formal or informal education settings. Each child who participates creates a journal about a plant of his or her choosing, makes observations of the plant over the growing season and submits findings online, earning an official BudBurst Buddies certificate. An online storybook for kids tells how two children, Lily and Sage, observed plants in their neighborhood and became BudBurst Buddies. This presentation will provide an overview of the BudBurst Buddies newly developed resources. BudBurst Buddies is a part of Project BudBurst, a national citizen science program coordinated by the National Ecological Observatory Network (NEON) and the Chicago Botanic Garden. Funding for this resource was provided by NEON, NSF, NASA, and the National Geographic Education Foundation.

  1. Citizen Science in Libraries: Results and Insights from a Unique NASA Collaboration

    NASA Astrophysics Data System (ADS)

    Janney, D. W.; Schwerin, T. G.; Riebeek Kohl, H.; Dusenbery, P.; LaConte, K.; Taylor, J.; Weaver, K. L. K.

    2017-12-01

    Libraries are local community centers and hubs for learning, with more and more libraries responding to the need to increase science literacy and support 21st century skills by adding STEM programs and resources for patrons of all ages. A collaboration has been developed between two NASA Science Mission Directorate projects - the NASA Earth Science Education Collaborative and NASA@ My Library - each bringing unique STEM assets and networks to support library staff and bring authentic STEM experiences and resources to learners in public library settings. The collaboration used Earth Day 2017 as a high profile event to engage and support 100 libraries across the U.S. (>50% serving rural communities), in developing locally-relevant programs and events that incorporated cloud observing and resources using NASA GLOBE Observer (GO) citizen science program. GO cloud observations are helping NASA scientists understand clouds from below (the ground) and above (from space). Clouds play an important role in transferring energy from the Sun to different parts of the Earth system. Because clouds can change rapidly, scientists need frequent observations from citizen scientists. Insights from the library focus groups and evaluation include promising practices, requested resources, programming ideas and approaches, particularly approaches to leveraging NASA subject matter experts and networks, to support local library programming.

  2. Opportunities in Participatory Science and Citizen Science with MRO's High Resolution Imaging Science Experiment: A Virtual Science Team Experience

    NASA Astrophysics Data System (ADS)

    Gulick, Ginny

    2009-09-01

    We report on the accomplishments of the HiRISE EPO program over the last two and a half years of science operations. We have focused primarily on delivering high impact science opportunities through our various participatory science and citizen science websites. Uniquely, we have invited students from around the world to become virtual HiRISE team members by submitting target suggestions via our HiRISE Quest Image challenges using HiWeb the team's image suggestion facility web tools. When images are acquired, students analyze their returned images, write a report and work with a HiRISE team member to write a image caption for release on the HiRISE website (http://hirise.lpl.arizona.edu). Another E/PO highlight has been our citizen scientist effort, HiRISE Clickworkers (http://clickworkers.arc.nasa.gov/hirise). Clickworkers enlists volunteers to identify geologic features (e.g., dunes, craters, wind streaks, gullies, etc.) in the HiRISE images and help generate searchable image databases. In addition, the large image sizes and incredible spatial resolution of the HiRISE camera can tax the capabilities of the most capable computers, so we have also focused on enabling typical users to browse, pan and zoom the HiRISE images using our HiRISE online image viewer (http://marsoweb.nas.nasa.gov/HiRISE/hirise_images/). Our educational materials available on the HiRISE EPO web site (http://hirise.seti.org/epo) include an assortment of K through college level, standards-based activity books, a K through 3 coloring/story book, a middle school level comic book, and several interactive educational games, including Mars jigsaw puzzles, crosswords, word searches and flash cards.

  3. Citizen Science Study Design

    EPA Pesticide Factsheets

    Community Air Monitoring Training in July 2015. Topics included motivaton, goals, data quality and quantity, recruitment of other citizen scientists, technology requirements, supporting materials, and evaluations.

  4. Results of Needs Assessments Related to Citizen Science Projects

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Bracey, Georgia; Glushko, Anna; Bakerman, Maya; Gay, Pamela L.; CosmoQuest Team

    2017-01-01

    The CosmoQuest Virtual Research Facility invites the public and classrooms to participate in NASA Science Mission Directorate related research that leads to publishable results and data catalogues. One of the main goals of the project is to support professional scientists in doing science and the general public--including parents, children, teachers, and students--in learning and doing science. Through the effort, the CosmoQuest team is developing a variety of supports and opportunities to support the doing and teaching of science. To inform our efforts, we have implemented a set of needs surveys to assess the needs of our different audiences. These surveys are being used to understand the interests, motivations, resources, challenges and demographics of our growing CosmoQuest community and others interested in engaging in citizen science projects. The surveys include those for teachers, parents, adult learners, planetarium professionals, subject matter experts (SMEs), and the general public. We will share the results of these surveys and discuss the implications of the results for broader education and outreach programs.

  5. Gravity Spy - Integrating LIGO detector characterization, citizen science, and machine learning

    NASA Astrophysics Data System (ADS)

    Zevin, Michael; Gravity Spy

    2016-06-01

    On September 14th 2015, the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) made the first direct observation of gravitational waves and opened a new field of observational astronomy. However, being the most complicated and sensitve experiment ever undertaken in gravitational physics, aLIGO is susceptible to various sources of environmental and instrumental noise that hinder the search for more gravitational waves.Of particular concern are transient, non-Gaussian noise features known as glitches. Glitches can mimic true astrophysical gravitational waves, occur at a high enough frequency to be coherent between the two detectors, and generally worsen aLIGO's detection capabilities. The proper classification and charaterization of glitches is paramount in optimizing aLIGO's ability to detect gravitational waves. However, teaching computers to identify and morphologically classify these artifacts is exceedingly difficult.Human intuition has proven to be a useful tool in classifcation probelms such as this. Gravity Spy is an innovative, interdisciplinary project hosted by Zooniverse that combines aLIGO detector characterization, citizen science, machine learning, and social science. In this project, citizen scientists and computers will work together in a sybiotic relationship that leverages human pattern recognition and the ability of machine learning to process large amounts of data systematically: volunteers classify triggers from the aLIGO data steam that are constantly updated as aLIGO takes in new data, and these classifications are used to train machine learning algorithms which proceed to classify the bulk of aLIGO data and feed questionable glithces back to the users.In this talk, I will discuss the workflow and initial results of the Gravity Spy project with regard to aLIGO's future observing runs and highlight the potential of such citizen science projects in promoting nascent fields such as gravitational wave astrophysics.

  6. Focal Plant Observations as a Standardised Method for Pollinator Monitoring: Opportunities and Limitations for Mass Participation Citizen Science

    PubMed Central

    Roy, Helen E.; Baxter, Elizabeth; Saunders, Aoine; Pocock, Michael J. O.

    2016-01-01

    Background Recently there has been increasing focus on monitoring pollinating insects, due to concerns about their declines, and interest in the role of volunteers in monitoring pollinators, particularly bumblebees, via citizen science. Methodology / Principal Findings The Big Bumblebee Discovery was a one-year citizen science project run by a partnership of EDF Energy, the British Science Association and the Centre for Ecology & Hydrology which sought to assess the influence of the landscape at multiple scales on the diversity and abundance of bumblebees. Timed counts of bumblebees (Bombus spp.; identified to six colour groups) visiting focal plants of lavender (Lavendula spp.) were carried out by about 13 000 primary school children (7–11 years old) from over 4000 schools across the UK. 3948 reports were received totalling 26 868 bumblebees. We found that while the wider landscape type had no significant effect on reported bumblebee abundance, the local proximity to flowers had a significant effect (fewer bumblebees where other flowers were reported to be >5m away from the focal plant). However, the rate of mis-identifcation, revealed by photographs uploaded by participants and a photo-based quiz, was high. Conclusions / Significance Our citizen science results support recent research on the importance of local flocal resources on pollinator abundance. Timed counts of insects visiting a lure plant is potentially an effective approach for standardised pollinator monitoring, engaging a large number of participants with a simple protocol. However, the relatively high rate of mis-identifications (compared to reports from previous pollinator citizen science projects) highlights the importance of investing in resources to train volunteers. Also, to be a scientifically valid method for enquiry, citizen science data needs to be sufficiently high quality, so receiving supporting evidence (such as photographs) would allow this to be tested and for records to be verified

  7. Focal Plant Observations as a Standardised Method for Pollinator Monitoring: Opportunities and Limitations for Mass Participation Citizen Science.

    PubMed

    Roy, Helen E; Baxter, Elizabeth; Saunders, Aoine; Pocock, Michael J O

    2016-01-01

    Recently there has been increasing focus on monitoring pollinating insects, due to concerns about their declines, and interest in the role of volunteers in monitoring pollinators, particularly bumblebees, via citizen science. The Big Bumblebee Discovery was a one-year citizen science project run by a partnership of EDF Energy, the British Science Association and the Centre for Ecology & Hydrology which sought to assess the influence of the landscape at multiple scales on the diversity and abundance of bumblebees. Timed counts of bumblebees (Bombus spp.; identified to six colour groups) visiting focal plants of lavender (Lavendula spp.) were carried out by about 13 000 primary school children (7-11 years old) from over 4000 schools across the UK. 3948 reports were received totalling 26 868 bumblebees. We found that while the wider landscape type had no significant effect on reported bumblebee abundance, the local proximity to flowers had a significant effect (fewer bumblebees where other flowers were reported to be >5m away from the focal plant). However, the rate of mis-identifcation, revealed by photographs uploaded by participants and a photo-based quiz, was high. Our citizen science results support recent research on the importance of local flocal resources on pollinator abundance. Timed counts of insects visiting a lure plant is potentially an effective approach for standardised pollinator monitoring, engaging a large number of participants with a simple protocol. However, the relatively high rate of mis-identifications (compared to reports from previous pollinator citizen science projects) highlights the importance of investing in resources to train volunteers. Also, to be a scientifically valid method for enquiry, citizen science data needs to be sufficiently high quality, so receiving supporting evidence (such as photographs) would allow this to be tested and for records to be verified.

  8. Knowledge gain and behavioral change in citizen-science programs.

    PubMed

    Jordan, Rebecca C; Gray, Steven A; Howe, David V; Brooks, Wesley R; Ehrenfeld, Joan G

    2011-12-01

    Citizen-science programs are often touted as useful for advancing conservation literacy, scientific knowledge, and increasing scientific-reasoning skills among the public. Guidelines for collaboration among scientists and the public are lacking and the extent to which these citizen-science initiatives change behavior is relatively unstudied. Over two years, we studied 82 participants in a three-day program that included education about non-native invasive plants and collection of data on the occurrence of those plants. Volunteers were given background knowledge about invasive plant ecology and trained on a specific protocol for collecting invasive plant data. They then collected data and later gathered as a group to analyze data and discuss responsible environmental behavior with respect to invasive plants. We tested whether participants without experience in plant identification and with little knowledge of invasive plants increased their knowledge of invasive species ecology, participation increased knowledge of scientific methods, and participation affected behavior. Knowledge of invasive plants increased on average 24%, but participation was insufficient to increase understanding of how scientific research is conducted. Participants reported increased ability to recognize invasive plants and increased awareness of effects of invasive plants on the environment, but this translated into little change in behavior regarding invasive plants. Potential conflicts between scientific goals, educational goals, and the motivation of participants must be considered during program design. ©2011 Society for Conservation Biology.

  9. Citizen social science: a methodology to facilitate and evaluate workplace learning in continuing interprofessional education.

    PubMed

    Dadich, Ann

    2014-05-01

    Workplace learning in continuing interprofessional education (CIPE) can be difficult to facilitate and evaluate, which can create a number of challenges for this type of learning. This article presents an innovative method to foster and investigate workplace learning in CIPE - citizen social science. Citizen social science involves clinicians as co-researchers in the systematic examination of social phenomena. When facilitated by an open-source online social networking platform, clinicians can participate via computer, smartphone, or tablet in ways that suit their needs and preferences. Furthermore, as co-researchers they can help to reveal the dynamic interplay that facilitates workplace learning in CIPE. Although yet to be tested, citizen social science offers four potential benefits: it recognises and accommodates the complexity of workplace learning in CIPE; it has the capacity to both foster and evaluate the phenomena; it can be used in situ, capturing and having direct relevance to the complexity of the workplace; and by advancing both theoretical and methodological debates on CIPE, it may reveal opportunities to improve and sustain workplace learning. By describing an example situated in the youth health sector, this article demonstrates how these benefits might be realised.

  10. Backyard Worlds: Finding Nearby Brown Dwarfs Through Citizen Science

    NASA Astrophysics Data System (ADS)

    Kuchner, Marc

    Recent discoveries of cool brown dwarfs in the solar neighborhood and microlensing surveys both point to an undiscovered population of brown dwarfs and rogue planets in the solar neighborhood. We propose to develop and sustain a novel website that enables a unique and powerful citizen-science based search for these and other high-proper-motion objects at 3.5 and 4.6 microns. Through this search, we have an opportunity to discover new ultracool Y dwarfs, crucial links between star formation and planet formation, and also the Sun's nearest neighbors-potentially a system closer than Proxima Centauri. NASA's Wide-field Infrared Survey Explorer mission (WISE) is nominally sensitive enough to detect a 250 K brown dwarf to > 6 pc and even a Jupiter analog to > 0.6 pc. However, high proper motion objects like these can easily be confused with variable stars, electronic noise, latent images, optical ghosts, cosmic ray hits, and so on in the WISE archive. Computer-based searches for high-proper motion objects falter in dense star fields, necessitating visual inspection all candidates. Our citizen science project, called "Backyard Worlds: Planet 9", remedies this problem by engaging volunteers to visually inspect WISE and NEOWISE images. Roughly 104,000 participants have already begun using a preliminary version of the site to examine time-resolved co-adds of unWISE-processed images, four epochs spanning 2010 to 2014. They have already performed more than 3.6 million classifications of these images since the site's launch on February 15, 2017. Besides seeking new brown dwarfs and nearby stars, this site is also the most sensitive all-sky WISE-based search for a planet orbiting the Sun beyond Pluto (sometimes called Planet Nine). Preliminary analysis data from the site has resulted in the discovery of 13 brown dwarf candidates including 6 T dwarfs. We obtained a spectrum of one of these candidates and published it in Astrophysical Journal Letters, with four citizen scientists

  11. Detection and Characterisation of Meteors as a Big Data Citizen Science project

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.

    2017-12-01

    Out of a total around 50,000 meteorites currently known to science, the atmospheric passage was recorded instrumentally in only 30 cases with the potential to derive their atmospheric trajectories and pre-impact heliocentric orbits. Similarly, while the observations of meteors, add thousands of new entries per month to existing databases, it is extremely rare they lead to meteorite recovery. Meteor studies thus represent an excellent example of the Big Data citizen science project, where progress in the field largely depends on the prompt identification and characterisation of meteor events as well as on extensive and valuable contributions by amateur observers. Over the last couple of decades technological advancements in observational techniques have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced scientific goals. We review some of the developments that push meteor science into the Big Data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere. The recent increased interest in meteor science triggered by the Chelyabinsk fireball helps in building the case for technologically and logistically more ambitious meteor projects. This requires developing new methodological approaches in meteor research, with Big Data science and close collaboration between citizen science, geoscience and astronomy as critical elements. We discuss possibilities for improvements and promote an opportunity for collaboration in meteor science within the currently

  12. Citizen science: Exploring its application as a tool for prodromic surveillance of vector-borne disease

    PubMed Central

    Hines, D; Sibbald, SL

    2015-01-01

    Citizen science is the systematic collection and analysis of data, development of technology, testing of natural phenomena and the dissemination of these activities by researchers on a primarily avocational or voluntary basis. The application of citizen science-informed mobile applications (apps) provides a means for Canadians to participate in the surveillance of infectious disease. This article makes the case for a mobile application that can be used to enhance the surveillance of vector-borne diseases in Canada. Lyme disease is used as an example due to its increasing incidence and lack of available real-time information. The authors also suggest how such an app could be designed and used in a way that would attract end users to download and use it as a public health tool. If successful, these type of apps could serve as supplements to active surveillance programs as well as a means for bidirectional communication between public health professionals and citizens. PMID:29769934

  13. Citizen science land cover classification based on ground and satellite imagery: Case study Day River in Vietnam

    NASA Astrophysics Data System (ADS)

    Nguyen, Son Tung; Minkman, Ellen; Rutten, Martine

    2016-04-01

    Citizen science is being increasingly used in the context of environmental research, thus there are needs to evaluate cognitive ability of humans in classifying environmental features. With the focus on land cover, this study explores the extent to which citizen science can be applied in sensing and measuring the environment that contribute to the creation and validation of land cover data. The Day Basin in Vietnam was selected to be the study area. Different methods to examine humans' ability to classify land cover were implemented using different information sources: ground based photos - satellite images - field observation and investigation. Most of the participants were solicited from local people and/or volunteers. Results show that across methods and sources of information, there are similar patterns of agreement and disagreement on land cover classes among participants. Understanding these patterns is critical to create a solid basis for implementing human sensors in earth observation. Keywords: Land cover, classification, citizen science, Landsat 8

  14. Using citizen science data to identify the sensitivity of species to human land use.

    PubMed

    Todd, Brian D; Rose, Jonathan P; Price, Steven J; Dorcas, Michael E

    2016-12-01

    Conservation practitioners must contend with an increasing array of threats that affect biodiversity. Citizen scientists can provide timely and expansive information for addressing these threats across large scales, but their data may contain sampling biases. We used randomization procedures to account for possible sampling biases in opportunistically reported citizen science data to identify species' sensitivities to human land use. We analyzed 21,044 records of 143 native reptile and amphibian species reported to the Carolina Herp Atlas from North Carolina and South Carolina between 1 January 1990 and 12 July 2014. Sensitive species significantly associated with natural landscapes were 3.4 times more likely to be legally protected or treated as of conservation concern by state resource agencies than less sensitive species significantly associated with human-dominated landscapes. Many of the species significantly associated with natural landscapes occurred primarily in habitats that had been nearly eradicated or otherwise altered in the Carolinas, including isolated wetlands, longleaf pine savannas, and Appalachian forests. Rare species with few reports were more likely to be associated with natural landscapes and 3.2 times more likely to be legally protected or treated as of conservation concern than species with at least 20 reported occurrences. Our results suggest that opportunistically reported citizen science data can be used to identify sensitive species and that species currently restricted primarily to natural landscapes are likely at greatest risk of decline from future losses of natural habitat. Our approach demonstrates the usefulness of citizen science data in prioritizing conservation and in helping practitioners address species declines and extinctions at large extents. © 2016 Society for Conservation Biology.

  15. Citizen Sky, Solving the Mystery of epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Turner, Rebecca; Price, A.; Kloppenborg, B.; Henden, A.

    2010-01-01

    Citizen Sky is a multi-year, NSF funded citizen science project involving the bright star eps Aur. The project was conceived by the IYA 2009 working group on Research Experiences for Students, Teachers, and Citizen-Scientists. Citizen Sky goes beyond simple observing to include a major data analysis component. The goal is to introduce the participant to the full scientific process from background research to paper writing for a peer-reviewed journal. It begins with a 10 Star Training Program of several types of binary and transient variable stars that are easy to observe from suburban locations with the naked eye. Participants then move on to monitoring the rare and mysterious 2009-2011 eclipse (already underway) of epsilon Aurigae. This object undergoes eclipses only every 27.1 years and each eclipse lasts nearly two years. The star is bright enough to be seen with the naked eye from most urban areas. Training will be provided in observing techniques as well as basic data analysis of photometric and visual datasets (light curve and period analysis). The project also involves two public workshops, one on observing (already held in August of 2009) and one on data analysis and scientific paper writing (to be held in 2010.) This project has been made possible by the National Science Foundation.

  16. Citizen Science- Lessons learned from non-science majors involved in Globe at Night and the Great Worldwide Star Count

    NASA Astrophysics Data System (ADS)

    Browning, S.

    2011-12-01

    Non-science majors often misunderstand the process of science, potentially leading to a fear or mistrust of scientific inquiry and current scientific theory. Citizen science projects are a critical means of reaching this audience, as many will only take a limited number of science courses during their undergraduate careers. For the past three years, our freshman Earth Science students have participated in both Globe at Night and the Great Worldwide Star Count, citizen science programs that encourage simple astronomical observations which can be compiled globally to investigate a number of issues. Our focus has been introducing students to the effect of light pollution on observational astronomy in an effort to highlight the effect of increasing urbanization in the U.S. on amateur astronomy. These programs, although focused on astronomy, often awaken natural curiosity about the Earth and man's effect on the natural world, a concept that can easily be translated to other areas of Earth science. Challenges encountered include content specific issues, such as misinterpreting the location or magnitude of the constellation being observed, as well as student disinterest or apathy if the project is not seen as being vital to their performance in the course. This presentation reports on lessons learned in the past three years, and offers suggestions for engaging these students more fully in future projects.

  17. Citizen Science and Community Engagement in Tick Surveillance-A Canadian Case Study.

    PubMed

    Lewis, Julie; Boudreau, Corinne R; Patterson, James W; Bradet-Legris, Jonathan; Lloyd, Vett K

    2018-03-02

    Lyme disease is the most common tick-borne disease in North America and Europe, and on-going surveillance is required to monitor the spread of the tick vectors as their populations expand under the influence of climate change. Active surveillance involves teams of researchers collecting ticks from field locations with the potential to be sites of establishing tick populations. This process is labor- and time-intensive, limiting the number of sites monitored and the frequency of monitoring. Citizen science initiatives are ideally suited to address this logistical problem and generate high-density and complex data from sites of community importance. In 2014, the same region was monitored by academic researchers, public health workers, and citizen scientists, allowing a comparison of the strengths and weaknesses of each type of surveillance effort. Four community members persisted with tick collections over several years, collectively recovering several hundred ticks. Although deviations from standard surveillance protocols and the choice of tick surveillance sites makes the incorporation of community-generated data into conventional surveillance analyses more complex, this citizen science data remains useful in providing high-density longitudinal tick surveillance of a small area in which detailed ecological observations can be made. Most importantly, partnership between community members and researchers has proven a powerful tool in educating communities about of the risk of tick-vectored diseases and in encouraging tick bite prevention.

  18. Science and the Citizen

    ERIC Educational Resources Information Center

    Scientific American, 1978

    1978-01-01

    Reports on the following topics: (1) a national science and technology plan for China, (2) operable nuclear power plants in the U.S., (3) the university presidents' report on scientific research, (4) the pluperfect square, (5) test tube potatoes, and (6) Russian research of paranormal phenomena a century ago. (MA)

  19. Citizen scientists monitor a deadly fungus threatening amphibian communities in northern coastal California, USA

    Treesearch

    Karen L. Pope; Greta M. Wengert; Janet E. Foley; Donald T. Ashton; Richard G. Botzler

    2016-01-01

    Ecoclub youth and supervising family members conducted citizen science to assess regional prevalence and distribution of Batrachochytrium dendrobatidis (Bd) among amphibians at Humboldt Bay National Wildlife Refuge (Refuge) and Redwood National and State Parks (Parks), Humboldt County, California, US, May 2013 through December...

  20. Citizen Science to Support Community-based Flood Early Warning and Resilience Building

    NASA Astrophysics Data System (ADS)

    Paul, J. D.; Buytaert, W.; Allen, S.; Ballesteros-Cánovas, J. A.; Bhusal, J.; Cieslik, K.; Clark, J.; Dewulf, A.; Dhital, M. R.; Hannah, D. M.; Liu, W.; Nayaval, J. L.; Schiller, A.; Smith, P. J.; Stoffel, M.; Supper, R.

    2017-12-01

    In Disaster Risk Management, an emerging shift has been noted from broad-scale, top-down assessments towards more participatory, community-based, bottom-up approaches. Combined with technologies for robust and low-cost sensor networks, a citizen science approach has recently emerged as a promising direction in the provision of extensive, real-time information for flood early warning systems. Here we present the framework and initial results of a major new international project, Landslide EVO, aimed at increasing local resilience against hydrologically induced disasters in western Nepal by exploiting participatory approaches to knowledge generation and risk governance. We identify three major technological developments that strongly support our approach to flood early warning and resilience building in Nepal. First, distributed sensor networks, participatory monitoring, and citizen science hold great promise in complementing official monitoring networks and remote sensing by generating site-specific information with local buy-in, especially in data-scarce regions. Secondly, the emergence of open source, cloud-based risk analysis platforms supports the construction of a modular, distributed, and potentially decentralised data processing workflow. Finally, linking data analysis platforms to social computer networks and ICT (e.g. mobile phones, tablets) allows tailored interfaces and people-centred decision- and policy-support systems to be built. Our proposition is that maximum impact is created if end-users are involved not only in data collection, but also over the entire project life-cycle, including the analysis and provision of results. In this context, citizen science complements more traditional knowledge generation practices, and also enhances multi-directional information provision, risk management, early-warning systems and local resilience building.

  1. NASA Citizen Science: Putting Real Data, Observations, and Analysis Methods in the Hands of the Public

    NASA Astrophysics Data System (ADS)

    Mayo, L.

    2014-12-01

    The ability for the general public, science attentive public, educators, and amateur scientists to obtain and use data from remote instrumentation in authentic research / citizen science activities has grown enormously in the past decade due to the internet, increasing bandwidths, easy translation of data formats, and an expanding population of web based acquisition, display, analysis, and publishing tools. The impact of this new and rapidly growing capability is both evolutionary and paradigm changing. At no other time in history have we had the ability to marshal planetary scale resources to educate large populations across socio economic and geographical boundaries and to push the envelope of science discovery through long baseline observing campaigns, crowd sourcing, and the like. This talk will focus on some of NASA's authentic research and citizen science campaigns and discuss opportunities for future public collaborations.

  2. A Citizen Science and Government Collaboration: Developing Tools to Facilitate Community Air Monitoring

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is actively involved in supporting citizen science projects and providing communities with information and assistance for conducting their own air pollution monitoring. As part of a Regional Applied Research Effort (RARE) project, EP...

  3. Mundane science use in a practice theoretical perspective: Different understandings of the relations between citizen-consumers and public communication initiatives build on scientific claims.

    PubMed

    Halkier, Bente

    2015-08-13

    Public communication initiatives play a part in placing complicated scientific claims in citizen-consumers' everyday contexts. Lay reactions to scientific claims framed in public communication, and attempts to engage citizens, have been important subjects of discussion in the literatures of public understanding and public engagement with science. Many of the public communication initiatives, however, address lay people as consumers rather than citizens. This creates specific challenges for understanding public engagement with science and scientific citizenship. The article compares five different understandings of the relations between citizen-consumers and public issue communication involving science, where the first four types are widely represented in the Public Understanding of Science discussions. The fifth understanding is a practice theoretical perspective. The article suggests how the public understanding of and engagement in science literature can benefit from including a practice theoretical approach to research about mundane science use and public engagement. © The Author(s) 2015.

  4. Creation of citizen science project to correlate growing degree days with cranberry phenology

    USDA-ARS?s Scientific Manuscript database

    We are coordinating a citizen science project among cranberry growers. Collaborators will be collecting daily high and low temperatures and recording plant phenology throughout the summer according to a standardized protocol. This project will allow for more accurate correlation between cranberry gr...

  5. How training citizen scientists affects the accuracy and precision of phenological data

    NASA Astrophysics Data System (ADS)

    Feldman, Richard E.; Žemaitė, Irma; Miller-Rushing, Abraham J.

    2018-05-01

    Monitoring plant and animal phenology is a critical step to anticipating and predicting changes in species interactions and biodiversity. Because phenology necessarily involves frequent and repeated observations over time, citizen scientists have become a vital part of collecting phenological data. However, there is still concern over the accuracy and precision of citizen science data. It is possible that training citizen scientists can improve data quality though there are few comparisons of trained and untrained citizen scientists in the ability of each to accurately and precisely measure phenology. We assessed how three types of observers—experts, trained citizen scientists that make repeated observations, and untrained citizen scientists making once-per-year observations—differ in quantifying temporal change in flower and fruit abundance of American mountain ash trees (Sorbus americana Marsh.) and arthropods in Acadia National Park, Maine, USA. We found that trained more so than untrained citizen science observers over- or under-estimated abundances leading to precise but inaccurate characterizations of phenological patterns. Our results suggest a new type of bias induced by repeated observations: A type of learning takes place that reduces the independence of observations taken on different trees or different dates. Thus, in this and many other cases, having individuals make one-off observations of marked plants may produce data as good if not better than individuals making repeated observations. For citizen science programs related to phenology, our results underscore the importance of (a) attracting the most number of observers possible even if they only make one observation, (b) producing easy-to-use and informative data sheets, and (c) carefully planning effective training programs that are, perhaps, repeated at different points during the data collection period.

  6. How training citizen scientists affects the accuracy and precision of phenological data.

    PubMed

    Feldman, Richard E; Žemaitė, Irma; Miller-Rushing, Abraham J

    2018-05-07

    Monitoring plant and animal phenology is a critical step to anticipating and predicting changes in species interactions and biodiversity. Because phenology necessarily involves frequent and repeated observations over time, citizen scientists have become a vital part of collecting phenological data. However, there is still concern over the accuracy and precision of citizen science data. It is possible that training citizen scientists can improve data quality though there are few comparisons of trained and untrained citizen scientists in the ability of each to accurately and precisely measure phenology. We assessed how three types of observers-experts, trained citizen scientists that make repeated observations, and untrained citizen scientists making once-per-year observations-differ in quantifying temporal change in flower and fruit abundance of American mountain ash trees (Sorbus americana Marsh.) and arthropods in Acadia National Park, Maine, USA. We found that trained more so than untrained citizen science observers over- or under-estimated abundances leading to precise but inaccurate characterizations of phenological patterns. Our results suggest a new type of bias induced by repeated observations: A type of learning takes place that reduces the independence of observations taken on different trees or different dates. Thus, in this and many other cases, having individuals make one-off observations of marked plants may produce data as good if not better than individuals making repeated observations. For citizen science programs related to phenology, our results underscore the importance of (a) attracting the most number of observers possible even if they only make one observation, (b) producing easy-to-use and informative data sheets, and (c) carefully planning effective training programs that are, perhaps, repeated at different points during the data collection period.

  7. Taking a 'Big Data' approach to data quality in a citizen science project.

    PubMed

    Kelling, Steve; Fink, Daniel; La Sorte, Frank A; Johnston, Alison; Bruns, Nicholas E; Hochachka, Wesley M

    2015-11-01

    Data from well-designed experiments provide the strongest evidence of causation in biodiversity studies. However, for many species the collection of these data is not scalable to the spatial and temporal extents required to understand patterns at the population level. Only data collected from citizen science projects can gather sufficient quantities of data, but data collected from volunteers are inherently noisy and heterogeneous. Here we describe a 'Big Data' approach to improve the data quality in eBird, a global citizen science project that gathers bird observations. First, eBird's data submission design ensures that all data meet high standards of completeness and accuracy. Second, we take a 'sensor calibration' approach to measure individual variation in eBird participant's ability to detect and identify birds. Third, we use species distribution models to fill in data gaps. Finally, we provide examples of novel analyses exploring population-level patterns in bird distributions.

  8. The Power of Engaging Citizen Scientists for Scientific Progress

    PubMed Central

    Garbarino, Jeanne; Mason, Christopher E.

    2016-01-01

    Citizen science has become a powerful force for scientific inquiry, providing researchers with access to a vast array of data points while connecting nonscientists to the authentic process of science. This citizen-researcher relationship creates an incredible synergy, allowing for the creation, execution, and analysis of research projects that would otherwise prove impossible in traditional research settings, namely due to the scope of needed human or financial resources (or both). However, citizen-science projects are not without their challenges. For instance, as projects are scaled up, there is concern regarding the rigor and usability of data collected by citizens who are not formally trained in research science. While these concerns are legitimate, we have seen examples of highly successful citizen-science projects from multiple scientific disciplines that have enhanced our collective understanding of science, such as how RNA molecules fold or determining the microbial metagenomic snapshot of an entire public transportation system. These and other emerging citizen-science projects show how improved protocols for reliable, large-scale science can realize both an improvement of scientific understanding for the general public and novel views of the world around us. PMID:27047581

  9. "The Volunteer Monitor" Newsletter: A National Publication for Citizen Scientists (Invited)

    NASA Astrophysics Data System (ADS)

    Ely, E.

    2009-12-01

    Citizen scientists have many communication tools available, including listservs, blogs, websites, and online discussion groups. What is the role of traditional publications such as newsletters or journals in this new environment? This presentation will summarize lessons learned from the 20-year history of The Volunteer Monitor newsletter, a national publication that provides a networking and information-sharing forum for citizen scientists engaged in water quality monitoring. The presenter, who has been the editor of The Volunteer Monitor since 1990, will emphasize practical tips for editors or prospective editors. Topics will include defining the publication's mission and target audience, obtaining submissions, communicating with authors, and applying basic journalistic techniques to enhance the usefulness and readability of articles.

  10. CosmoQuest MoonMappers: Citizen Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Gay, P. L.; Antonenko, I.; Robbins, S. J.; Bracey, G.; Lehan, C.; Moore, J.; Huang, D.

    2012-09-01

    The MoonMappers citizen science project is part of CosmoQuest, a virtual research facility designed for the public. CosmoQuest seeks to take the best aspects of a research center - research, seminars, journal clubs, and community discussions - and provide them to a community of citizen scientists through a virtual facility. MoonMappers was the first citizen science project within CosmoQuest, and is being used to define best practices in getting the public to effectively learn and do science.

  11. "Anyone Know What Species This Is?" - Twitter Conversations as Embryonic Citizen Science Communities.

    PubMed

    Daume, Stefan; Galaz, Victor

    2016-01-01

    Social media like blogs, micro-blogs or social networks are increasingly being investigated and employed to detect and predict trends for not only social and physical phenomena, but also to capture environmental information. Here we argue that opportunistic biodiversity observations published through Twitter represent one promising and until now unexplored example of such data mining. As we elaborate, it can contribute to real-time information to traditional ecological monitoring programmes including those sourced via citizen science activities. Using Twitter data collected for a generic assessment of social media data in ecological monitoring we investigated a sample of what we denote biodiversity observations with species determination requests (N = 191). These entail images posted as messages on the micro-blog service Twitter. As we show, these frequently trigger conversations leading to taxonomic determinations of those observations. All analysed Tweets were posted with species determination requests, which generated replies for 64% of Tweets, 86% of those contained at least one suggested determination, of which 76% were assessed as correct. All posted observations included or linked to images with the overall image quality categorised as satisfactory or better for 81% of the sample and leading to taxonomic determinations at the species level in 71% of provided determinations. We claim that the original message authors and conversation participants can be viewed as implicit or embryonic citizen science communities which have to offer valuable contributions both as an opportunistic data source in ecological monitoring as well as potential active contributors to citizen science programmes.

  12. Citizen Science in the Digital Age: examples of Innovative Projects that are Saving Lives across the United States and Internationally.

    NASA Astrophysics Data System (ADS)

    Haines-Stiles, G.; Abdalati, W.; Akuginow, E.

    2017-12-01

    Citizen science and crowdsourcing can literally save lives, whether responding to natural or human-caused disasters, and their effectiveness is all the more enhanced when volunteer observers collaborate with professional researchers. The NSF-funded THE CROWD & THE CLOUD public television series premiered on PBS stations in April 2017, and is hosted by former NASA Chief Scientist Waleed Abdalati: it continues streaming at CrowdAndCloud.org. Its four episodes feature examples directly relevant to this session, vividly demonstrating the power and potential of "Citizen Science in the Digital Age." In "Citizens + Scientists" a peer-reviewed journal article, authored by a respected MD but based on Bucket Brigade citizen science data on air quality surrounding oil and gas developments, features prominently in New York State's ban on fracking. In the wake of the Flint disaster, Virginia Tech scientists support community monitoring of lead in Philadelphia's drinking water. Citizens begin to appreciate the arcane scientific and technical details of EPA's Lead and Copper Rule, and STEM is seen to be of vital, daily significance. In "Even Big Data Starts Small" OpenStreetMap volunteers digitize satellite data to help first responders following the devastating 2015 Nepal earthquake, and Public Lab members—enthusiastic Makers and Millennials—fly modified off-the-shelf cameras beneath balloons and kites to track the BP oil spill, continuing their environmental watchdog work up through the present. CoCoRaHS observers (the Community Collaborative Rain, Hail and Snow Network) submit high quality data that has come to be trusted by NOAA's NWS and other federal agencies, enhancing flash flood warnings while project volunteers begin to appreciate the extreme variabity of local weather. Today's citizen science is much more than birds, bees and butterflies, although all those are also being protected by volunteered citizen data that helps shape state and federal conservation policies

  13. How Cool was the Eclipse? Atmospheric Measurements and Citizen Science via NASA's GLOBE Observer

    NASA Astrophysics Data System (ADS)

    Weaver, K. L. K.; Riebeek Kohl, H.

    2017-12-01

    The solar eclipse of 2017 presented an extraordinary opportunity to engage the public in shared science activity across the entire United States. While a natural focus of the eclipse was on astronomy and heliophysics, there was also an opening for excellent connections to Earth science. Because of the excitement of the event, many people gathered for long periods before and after totality, a perfect opportunity for observations and data collection to explore the impact of the eclipse on the atmosphere. The data was collected via NASA's GLOBE Observer app, a subset of the Global Learning and Observations to Benefit the Environment Program, a citizen science project which has been active for more than 20 years training teachers to collect many different types of environmental science data with their students. GLOBE Observer expands that audience to citizen scientists who might not be connected to a school, but are still interested in collecting data. In addition to the clouds observations that are normally part of GLOBE Observer, a special temporary protocol was added for the eclipse to include air temperature. Both types of measurements were collected at regular intervals for several hours before and after the point of maximum eclipse. By crowdsourcing data from all across the United States, on and off the path of totality, the hope was to be able to see patterns that wouldn't be apparent with fewer data points. In particular, there are few sources of detailed cloud data from the ground, including cloud type as well as overall cloud cover, especially as collected during a unique natural experiment such as an eclipse. This presentation will report preliminary results of the GLOBE Observer eclipse citizen science project, including participation totals and impact, data site distribution, as well as early analyses of both temperature and cloud data.

  14. Building a Co-Created Citizen Science Program with Community Members Neighboring a Hazardous Waste Site

    NASA Astrophysics Data System (ADS)

    Ramirez-Andreotta, M.; Brusseau, M. L. L.; Artiola, J. F.; Maier, R. M.; Gandolfi, A. J.

    2015-12-01

    A research project that is only expert-driven may ignore the role of local knowledge in research, often gives low priority to the development of a comprehensive strategy to engage the community, and may not deliver the results of the study to the community in an effective way. To date, only a limited number of co-created citizen science projects, where community members are involved in most or all steps of the scientific process, have been initiated at contaminated sites and even less in conjunction with risk communication. Gardenroots: The Dewey-Humboldt AZ Garden Project was a place-based, co-created citizen science project where community members and researchers together: defined the question for study, developed hypotheses, collected environmental samples, disseminated results broadly, translated the results into action, and posed new research questions. This co-created environmental research project produced new data and addressed an additional exposure route (consumption of vegetables grown in soils with elevated arsenic levels) that was not being evaluated in the current site assessment. Furthermore, co-producing science led to both individual learning and social-ecological outcomes. This approach illustrates the benefits of a co-created citizen-science program in addressing the complex problems that arise in communities neighboring a hazardous waste sites. Such a project increased the community's involvement in regional environmental assessment and decision-making, which has the potential to help mitigate environmental exposures and thereby reduce associated risks.

  15. A Citizen-Science Study Documents Environmental Exposures and Asthma Prevalence in Two Communities

    EPA Science Inventory

    A citizen-science study was conducted in two low-income, flood-prone communities in Atlanta, Georgia, in order to document environmental exposures and the prevalence of occupant asthma. Teams consisting of a public-health graduate student and a resident from one of the two commun...

  16. EarthTrek - helping scientists to get citizens involved in real science. (Invited)

    NASA Astrophysics Data System (ADS)

    Lewis, G.

    2010-12-01

    Citizen science programs are not new and many scientists can report good success at engaging the public in their research. However, many scientists who could really benefit from the collective pool of eager volunteers do not have the time or patience to develop system to track and manage the collective “enthusiasm”. EarthTrek takes on that role and provides scientists with the support for their venture into a citizen science program. EarthTrek manages the people, rewards them for their involvement and provides avenues for scientists to communicate with the participants. Scientists concentrate on developing sounds collection protocols (with EarthTrek’s help if needed) and then provide feedback once the data stars to come in. EarthTrek is about linking people with real research. EarthTrek will work with scientists from every field as long as projects are collecting data for research, are time constrained and the lead scientists agree to a communication schedule for results back to participants. Examples of active science projects include weathering rates on gravestones, invasive plant species and phenology. EarthTrek is a project of the Geological Society of America and partners around the globe. EarthTrekker collecting data for the Gravestone Project

  17. Design-Based Research and Video Game Based Learning: Developing the Educational Video Game "Citizen Science"

    ERIC Educational Resources Information Center

    Gaydos, Matthew J.

    2013-01-01

    This paper presents a series of studies detailing the research and development of the educational science video game "Citizen Science." It documents the design process, beginning with the initial grant and ending with a case study of two teachers who used the game in their classrooms. Following a design-based research approach, this…

  18. Technology assessment and citizen action

    NASA Technical Reports Server (NTRS)

    Mottur, E. R.

    1975-01-01

    Citizen participation in the nation's total social, political, economic decisionmaking processes was studied. Impediments are discussed which prevent citizens from taking effective assessment action; these include finance, organization and motivation, and information. The proposal for establishing citizens assessment associations is considered along with implications of citizen assessment action.

  19. Rasch Analysis of Scientific Literacy in an Astronomical Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Price, A.

    2012-06-01

    (Abstract only) We investigate change in attitudes towards science and belief in the nature of science by participants in a citizen science project about astronomy. A pre-test was given to 1,385 participants and a post-test was given six months later to 165 participants. Nine participants were interviewed. Responses were analyzed using the Rasch Rating Scale Model to place Likert data on an interval scale allowing for more sensitive parametric analysis. Results show that overall attitudes did not change, p = .225. However, there was significant change towards attitudes relating to science news (positive) and scientific self efficacy (negative), p = .001 and p = .035, respectively. This change was related to social activity in the project. Beliefs in the nature of science exhibited a small but significant increase, p = .04. Relative positioning of scores on the belief items suggests the increase is mostly due to reinforcement of current beliefs.

  20. Rasch Analysis of Scientific Literacy in an Astronomical Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Price, Aaron

    2011-05-01

    We investigate change in attitudes towards science and belief in the nature of science by participants in a citizen science project about astronomy. A pre-test was given to 1,385 participants and a post-test was given six months later to 165 participants. Nine participants were interviewed. Responses were analyzed using the Rasch Rating Scale Model to place Likert data on an interval scale allowing for more sensitive parametric analysis. Results show that overall attitudes did not change, p = .225. However, there was significant change towards attitudes relating to science news (positive) and scientific self efficacy (negative), p < .001 and p = .035 respectively. This change was related to social activity in the project. Beliefs in the nature of science exhibited a small, but significant increase, p = .04. Relative positioning of scores on the belief items suggests the increase is mostly due to reinforcement of current beliefs.

  1. Communicating Climate Science to Kids and Adults Through Citizen Science, Hands-On Demonstrations, and a Personal Approach

    NASA Astrophysics Data System (ADS)

    Cherry, L.; Braasch, G.

    2008-12-01

    There is a demonstrated need to increase the amount of formal and non-formal science education and to raise the level of climate literacy for children and adults. Scientists and technical leaders are more and more being called on to speak in non-academic settings ranging from grade schools to assemblies and seminars for the general public. This abstract describes some effective ways to teach and talk about climate change science in a way that engenders hope and empowerment while explaining scientific facts and research methods to non-scientists. Citizen participation in Science People's interest and learning increases when offered chances to do what scientists do. Relating science to their daily lives and showing the adventure of science can greatly increase communication. Citizen participation in science works because data collection stimulates experiential and cognitive ways of learning. Learn what programs for citizen science are available in your area. For instance, GLOBE and Budburst tie into the research of Smithsonian scientists who determined that the cherry blossoms and 40 other species of plants were blooming earlier due to climate warming. Hands-on Outdoor Activities Information enters the human brain through many different neural pathways and the more avenues that information comes in on, the more likely people are to retain that knowledge for their lifetimes. For instance, kids knowledge of how ice cores tell us about the earth's ancient history will be reinforced through making ice cores in the classroom. Gary Braasch's photographs from the children's book How We Know What We Know About Our Changing Climate: Scientists and Kids Explore Global Warming and from his adult book Earth Under Fire: How Global Warming is Changing the World will illustrate the presentation. . Making the Message Personal to the Audience. Reaching people through things they care about, their family lives, work or school and telling personal stories helps reach people. The videos

  2. The Power of Online Community and Citizen Science

    NASA Astrophysics Data System (ADS)

    Cook, J.; Nuccitelli, D. A.; Winkler, B.; Cowtan, K.; Brimelow, J.

    2012-12-01

    The Internet offers innovative and creative means of disseminating content. But where the Internet comes into its own is in the non-linear power of community. Not only can communicators interact directly with their audience, more importantly, the audience can network with each other. This enables publishers to build communities rallied around common topics of interest. Online communities lead to exciting opportunities such as citizen science where communities crowd-source the collection or analysis of data. Skeptical Science is a case study in the development of a volunteer community that produces regular content developed within an internal review system that ensures a high level of accuracy and quality. The community also engages with the peer-reviewed literature, submitting responses to peer-reviewed papers, collecting meta-data used in other scientific research and conducting the largest ever survey of climate papers. Thus this online community both contributes to the outreach effort of climate communication and also seeks to add to the body of scientific knowledge.

  3. GLOBE at Night: a Citizen-Science, Dark Skies Awareness Star Hunt during the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.

    2008-12-01

    GLOBE at Night is an international citizen-science event encouraging everyone, students, the general public, scientists and non-scientists, to measure local levels of light pollution and contribute observations online to a world map. This program is part of the Dark Skies Awareness Global Cornerstone Project for the International Year of Astronomy (IYA) in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved. Utilizing the international networks of its hosts, the GLOBE program at UCAR and the National Optical Astronomy Observatory, as well as Astronomical Society of the Pacific, the Association of Science and Technology Centers, the Astronomical League and the International Dark-Sky Association, GLOBE at Night is able to engage people from around the world. Data collection and online reporting is simple and user-friendly. During a 13-day campaign in February or March, citizen-scientists take data on light pollution levels by comparing observations with stellar maps of limiting magnitudes toward the constellation, Orion. For more precise measurements, citizen-scientists use digital sky brightness meters. During the campaign period over the last 3 years, 20,000 measurements from 100 countries have been logged. The collected data is available online in a variety of formats and for comparison with data from previous years, Earth at Night satellite data and population density data. We will discuss how students and scientists worldwide can explore and analyze these results. We will provide the "know-how" and the means for session participants to become community advocates for GLOBE at Night in their hometowns. We will also discuss lessons learned, best practices and campaign plans during IYA (March 16-28, 2009). For more information, visit http://www.globe.gov/GaN/.

  4. The role of citizen science in monitoring small-scale pollution events.

    PubMed

    Hyder, Kieran; Wright, Serena; Kirby, Mark; Brant, Jan

    2017-07-15

    Small-scale pollution events involve the release of potentially harmful substances into the marine environment. These events can affect all levels of the ecosystem, with damage to both fauna and flora. Numerous reporting structures are currently available to document spills, however there is a lack of information on small-scale events due to their magnitude and patchy distribution. To this end, volunteers may provide a useful tool in filling this data gap, especially for coastal environments with a high usage by members of the public. The potential for citizen scientists to record small-scale pollution events is explored using the UK as an example, with a focus on highlighting methods and issues associated with using this data source. An integrated monitoring system is proposed which combines citizen science and traditional reporting approaches. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. What are the prospects for citizen science in agriculture? Evidence from three continents on motivation and mobile telephone use of resource-poor farmers

    PubMed Central

    Steinke, Jonathan; van Etten, Jacob; Reidsma, Pytrik; Fadda, Carlo; Mittra, Sarika; Mathur, Prem; Kooistra, Lammert

    2017-01-01

    As the sustainability of agricultural citizen science projects depends on volunteer farmers who contribute their time, energy and skills, understanding their motivation is important to attract and retain participants in citizen science projects. The objectives of this study were to assess 1) farmers’ motivations to participate as citizen scientists and 2) farmers’ mobile telephone usage. Building on motivational factors identified from previous citizen science studies, a questionnaire based methodology was developed which allowed the analysis of motivational factors and their relation to farmers’ characteristics. The questionnaire was applied in three communities of farmers, in countries from different continents, participating as citizen scientists. We used statistical tests to compare motivational factors within and among the three countries. In addition, the relations between motivational factors and farmers characteristics were assessed. Lastly, Principal Component Analysis (PCA) was used to group farmers based on their motivations. Although there was an overlap between the types of motivations, for Indian farmers a collectivistic type of motivation (i.e., contribute to scientific research) was more important than egoistic and altruistic motivations. For Ethiopian and Honduran farmers an egoistic intrinsic type of motivation (i.e., interest in sharing information) was most important. While fun has appeared to be an important egoistic intrinsic factor to participate in other citizen science projects, the smallholder farmers involved in this research valued ‘passing free time’ the lowest. Two major groups of farmers were distinguished: one motivated by sharing information (egoistic intrinsic), helping (altruism) and contribute to scientific research (collectivistic) and one motivated by egoistic extrinsic factors (expectation, expert interaction and community interaction). Country and education level were the two most important farmers

  6. What are the prospects for citizen science in agriculture? Evidence from three continents on motivation and mobile telephone use of resource-poor farmers.

    PubMed

    Beza, Eskender; Steinke, Jonathan; van Etten, Jacob; Reidsma, Pytrik; Fadda, Carlo; Mittra, Sarika; Mathur, Prem; Kooistra, Lammert

    2017-01-01

    As the sustainability of agricultural citizen science projects depends on volunteer farmers who contribute their time, energy and skills, understanding their motivation is important to attract and retain participants in citizen science projects. The objectives of this study were to assess 1) farmers' motivations to participate as citizen scientists and 2) farmers' mobile telephone usage. Building on motivational factors identified from previous citizen science studies, a questionnaire based methodology was developed which allowed the analysis of motivational factors and their relation to farmers' characteristics. The questionnaire was applied in three communities of farmers, in countries from different continents, participating as citizen scientists. We used statistical tests to compare motivational factors within and among the three countries. In addition, the relations between motivational factors and farmers characteristics were assessed. Lastly, Principal Component Analysis (PCA) was used to group farmers based on their motivations. Although there was an overlap between the types of motivations, for Indian farmers a collectivistic type of motivation (i.e., contribute to scientific research) was more important than egoistic and altruistic motivations. For Ethiopian and Honduran farmers an egoistic intrinsic type of motivation (i.e., interest in sharing information) was most important. While fun has appeared to be an important egoistic intrinsic factor to participate in other citizen science projects, the smallholder farmers involved in this research valued 'passing free time' the lowest. Two major groups of farmers were distinguished: one motivated by sharing information (egoistic intrinsic), helping (altruism) and contribute to scientific research (collectivistic) and one motivated by egoistic extrinsic factors (expectation, expert interaction and community interaction). Country and education level were the two most important farmers' characteristics that

  7. Principles of Professionalism for Science Educators. National Science Teachers Association Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2010

    2010-01-01

    Science educators play a central role in educating, inspiring, and guiding students to become responsible, scientifically literate citizens. Therefore, teachers of science must uphold the highest ethical standards of the profession to earn and maintain the respect, trust, and confidence of students, parents, school leaders, colleagues, and other…

  8. The PACA Project: Creating Synergy Between Observing Campaigns, Outreach and Citizen Science

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma

    2017-04-01

    The PACA (Pro-Am Collaborative Astronomy) Project's primary goal is to develop and build synergy between professional and amateur astronomers from observations in the many aspects of support of missions and campaigns. To achieve this, the PACA has three main components: observational campaigns aligned with scientific research; outreach to engage all forms of audiences and citizen science projects that aim to produce specific scientific results, by engaging professional scientific and amateur communities and a variety of audiences. The primary observational projects are defined by specific scientific goals by professionals, resulting in global observing campaigns involving a variety of observers, and observing techniques. Some of PACA's observing campaigns have included global characterization of comets (e.g., C/ISON, SidingSpring, 67P/Churyumov-Gerasimenko, Lovejoy, etc.), planets (Jupiter, Saturn and Mars) and currently expanded to include (i) polarimetric exploration of solar system objects with small apertures and (ii) in collaboration with CITIZEN CATE, a citizen science observing campaign to observe the 2017 Continental America Total Eclipse, engage many levels of informal audiences using interactive social media to participate in the campaign. Our Outreach campaigns leverage the multiple social media/platforms for at least two important reasons: (i) the immediate dissemination of observations and interaction with the global network and (ii) free or inexpensive resources for most of the participants. The final stage of the PACA ecosystem is the integration of these components into publications. We shall highlight some of the interesting challenges and solutions of the PACA Project so far and provide a view of future projects and new partnerships in all three categories.

  9. Astroclimate, a Citizen Science Climate Awareness

    NASA Astrophysics Data System (ADS)

    Asorey, H.; Balaguera-Rojas, A.; Martínez-Méndez, A.; Núñez, L. A.; Peña-Rodríguez, J.; Salgado-Meza, P.; Sarmiento-Cano, C.; Suárez-Durán, M.

    2017-07-01

    Exploration and searching for life in other stellar systems have shown that its development and sustainability depend of very specific environment conditions. Due to that, preservation of the equilibrium of this conditions in our planet is very important, because small changes on it can generate high repercussions in its habitability. This work shows some preliminary results from an environmental monitoring network (RACIMO, Red Ambiental Ciudadana de Monitoreo) conformed by automatic meteorologic stations located on seven high-schools at metropolitan zone of Bucaramanga, Colombia. Data recorded by monitoring network are stored in an open web repository which can be accessed by citizens from any place with internet connection. These stations called UVAs, were developed under creative commons license, that is to say, software, hardware and data free, besides these can be built by students due to its flexibility. The UVAs are modular and re-programmable, that is, any sensor can be added to the stations and then re-configure its firmware remotely. Besides, UVAs work in automatic way, after the first setup, they will be self-sufficient and won't depend of human intervention. The data, of each UVA, are recorded with a temporal synchrony and then are upload at central repository by means of WiFi, ethernet or GSM connection. The stations can be power supplied by a solar system or the electrical grid. Currently, UVA record variables such as: pressure, temperature, humidity, irradiance, iluminance, ambient noise, rain, cloudiness, CO2 and NO2 concentration, lighting, seismic movements and its geographic position. On other hand, a calibration system has been developed to validate the data recorded by RACIMO. This project, started from an astroclimate an exoplanets habitability conditions, became an independent citizen science project to rise awareness about the very particular conditions enjoyed in our Earth planet.

  10. Better the Martian you know? Trust in the crowd vs. trust in the machine when using a Martian Citizen Science platform

    NASA Astrophysics Data System (ADS)

    Sprinks, James Christopher; Wardlaw, Jessica; Houghton, Robert; Bamford, Steven; Marsh, Stuart

    2016-10-01

    Citizen science platforms allow untrained volunteers to take part in scientific research across a range of disciplines, and often involve the analysis of remotely sensed imagery. The data collected by increasingly advanced and automated instruments has made planetary science a prime candidate for, and user of, citizen science online platforms. In order to process this large volume of information, such systems are increasingly performed in conjunction with data-mining analysis software, with varying configurations of computer and volunteer contribution. Despite citizen science being a relatively new approach, there has been a growing field of research considering the practice in its own right beyond the scientific problems they address, with studies involving interface HCI, platform functionality, and motivation particularly adding to a growing body of citizen science scholarship.Through iterations of the FP7 iMars project's 'Mars in Motion' platform, the work presented studied the effect that guidance information had on volunteers' accuracy and trust. Whilst analysing imagery for change, volunteers were told whether automated change detection software or the consensus of other citizen scientists had found change, with this information varying in terms of accuracy. Results showed that volunteers' ability to both identify change and the type of feature undergoing change was improved when both the software result and crowd opinion guidance information provided had a greater accuracy. However, when guidance information was less accurate volunteers' level of trust fell at a sharper rate when it came from the crowd than when it came from the algorithm, and participants reported more frustration - a counter-intuitive result compared to existing research. Citizen science practitioners need to consider the information they provide to volunteers and how they present it; the results of software analysis or the consensus of a crowd need to be conclusive and above all accurate

  11. Distribution models for koalas in South Australia using citizen science-collected data

    PubMed Central

    Sequeira, Ana M M; Roetman, Philip E J; Daniels, Christopher B; Baker, Andrew K; Bradshaw, Corey J A

    2014-01-01

    The koala (Phascolarctos cinereus) occurs in the eucalypt forests of eastern and southern Australia and is currently threatened by habitat fragmentation, climate change, sexually transmitted diseases, and low genetic variability throughout most of its range. Using data collected during the Great Koala Count (a 1-day citizen science project in the state of South Australia), we developed generalized linear mixed-effects models to predict habitat suitability across South Australia accounting for potential errors associated with the dataset. We derived spatial environmental predictors for vegetation (based on dominant species of Eucalyptus or other vegetation), topographic water features, rain, elevation, and temperature range. We also included predictors accounting for human disturbance based on transport infrastructure (sealed and unsealed roads). We generated random pseudo-absences to account for the high prevalence bias typical of citizen-collected data. We accounted for biased sampling effort along sealed and unsealed roads by including an offset for distance to transport infrastructures. The model with the highest statistical support (wAICc ∼ 1) included all variables except rain, which was highly correlated with elevation. The same model also explained the highest deviance (61.6%), resulted in high R2(m) (76.4) and R2(c) (81.0), and had a good performance according to Cohen's κ (0.46). Cross-validation error was low (∼ 0.1). Temperature range, elevation, and rain were the best predictors of koala occurrence. Our models predict high habitat suitability in Kangaroo Island, along the Mount Lofty Ranges, and at the tips of the Eyre, Yorke and Fleurieu Peninsulas. In the highest-density region (5576 km2) of the Adelaide–Mount Lofty Ranges, a density–suitability relationship predicts a population of 113,704 (95% confidence interval: 27,685–199,723; average density = 5.0–35.8 km−2). We demonstrate the power of citizen science data for predicting species

  12. Distribution models for koalas in South Australia using citizen science-collected data.

    PubMed

    Sequeira, Ana M M; Roetman, Philip E J; Daniels, Christopher B; Baker, Andrew K; Bradshaw, Corey J A

    2014-06-01

    The koala (Phascolarctos cinereus) occurs in the eucalypt forests of eastern and southern Australia and is currently threatened by habitat fragmentation, climate change, sexually transmitted diseases, and low genetic variability throughout most of its range. Using data collected during the Great Koala Count (a 1-day citizen science project in the state of South Australia), we developed generalized linear mixed-effects models to predict habitat suitability across South Australia accounting for potential errors associated with the dataset. We derived spatial environmental predictors for vegetation (based on dominant species of Eucalyptus or other vegetation), topographic water features, rain, elevation, and temperature range. We also included predictors accounting for human disturbance based on transport infrastructure (sealed and unsealed roads). We generated random pseudo-absences to account for the high prevalence bias typical of citizen-collected data. We accounted for biased sampling effort along sealed and unsealed roads by including an offset for distance to transport infrastructures. The model with the highest statistical support (wAIC c ∼ 1) included all variables except rain, which was highly correlated with elevation. The same model also explained the highest deviance (61.6%), resulted in high R (2)(m) (76.4) and R (2)(c) (81.0), and had a good performance according to Cohen's κ (0.46). Cross-validation error was low (∼ 0.1). Temperature range, elevation, and rain were the best predictors of koala occurrence. Our models predict high habitat suitability in Kangaroo Island, along the Mount Lofty Ranges, and at the tips of the Eyre, Yorke and Fleurieu Peninsulas. In the highest-density region (5576 km(2)) of the Adelaide-Mount Lofty Ranges, a density-suitability relationship predicts a population of 113,704 (95% confidence interval: 27,685-199,723; average density = 5.0-35.8 km(-2)). We demonstrate the power of citizen science data for predicting species

  13. To have your citizen science cake and eat it? Delivering research and outreach through Open Air Laboratories (OPAL).

    PubMed

    Lakeman-Fraser, Poppy; Gosling, Laura; Moffat, Andy J; West, Sarah E; Fradera, Roger; Davies, Linda; Ayamba, Maxwell A; van der Wal, René

    2016-07-22

    The vast array of citizen science projects which have blossomed over the last decade span a spectrum of objectives from research to outreach. While some focus primarily on the collection of rigorous scientific data and others are positioned towards the public engagement end of the gradient, the majority of initiatives attempt to balance the two. Although meeting multiple aims can be seen as a 'win-win' situation, it can also yield significant challenges as allocating resources to one element means that they may be diverted away from the other. Here we analyse one such programme which set out to find an effective equilibrium between these arguably polarised goals. Through the lens of the Open Air Laboratories (OPAL) programme we explore the inherent trade-offs encountered under four indicators derived from an independent citizen science evaluation framework. Assimilating experience from the OPAL network we investigate practical approaches taken to tackle arising tensions. Working backwards from project delivery to design, we found the following elements to be important: ensuring outputs are fit for purpose, developing strong internal and external collaborations, building a sufficiently diverse partnership and considering target audiences. We combine these 'operational indicators' with four pre-existing 'outcome indicators' to create a model which can be used to shape the planning and delivery of a citizen science project. Our findings suggest that whether the proverb in the title rings true will largely depend on the identification of challenges along the way and the ability to address these conflicts throughout the citizen science project.

  14. The Backyard Worlds: Planet 9 Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Faherty, Jacqueline K.; Kuchner, Marc; Schneider, Adam; Meisner, Aaron; Gagné, Jonathan; Filippazzo, Joeseph; Trouille, Laura; Backyard Worlds: Planet 9 Collaboration; Jacqueline Faherty

    2018-01-01

    In February of 2017 our team launched a new citizen science project entitled Backyard Worlds: Planet 9 to scan the cosmos for fast moving stars, brown dwarfs, and even planets. This Zooniverse website, BackyardWorlds.org, invites anyone with a computer or smartphone to flip through WISE images taken over a several year baseline and mark any point source that appears to move. This “blinking technique” is the same that Clyde Tombaugh discovered Pluto with over 80 years ago. In the first few days of our program we recruited over 30,000 volunteers. After 3/4 of a year with the program we have completed 30% of the sky and our participants have identified several hundred candidate movers. These include (1) over 20 candidate Y-type brown dwarfs, (2) a handful of new co-moving systems containing a previously unidentified low mass object and a known nearby star, (3) over 100 previously missed M dwarfs, (4) and more than 200 candidate L and T brown dwarfs, many of which occupy outlier positions on reduced proper motion diagrams. Our first publication credited four citizen scientists as co-authors. The Backyard Worlds: Planet 9 project is both scientifically fruitful and empowering for any mind across the globe that has ever wanted to participate in a discovery-driven astronomy research project.

  15. Supporting Geographic Investigations and Visualizations and Engaging Students as Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Takaki, E.

    2011-12-01

    Historically, citizen science projects have had to provide their own technical infrastructure to handle the data they collect. National Geographic Education Programs (funded by the National Science Foundation) has developed a free (or low cost for large projects) online data visualization and analysis tool called FieldScope, which is available to any person or group doing studies that involve geographically dispersed data. FieldScope can house and scaffold the analysis of authentic environmental data as well as augment it with other helpful layers such as precipitation, population density, water quality parameters, etc. During the session, participants will come to understand the basics of GIS, the history of FieldScope, and its unique educational features. We will spend the majority of the time exploring specific tools for analyzing authentic data, the different types of layers that make FieldScope powerful in its educational and research capacities, and examining various questions that can be addressed in a classroom or citizen science setting. We'll conclude the hands-on portion by sharing what was learned and how they were able to make meaning from the myriad of ways that data can be displayed.

  16. Using the Citizen Science Picture Post Project as the Foundation for Campus Environmental Monitoring by Undergraduate Student Researchers

    NASA Astrophysics Data System (ADS)

    Bowen, K.; Guertin, L. A.

    2014-12-01

    Penn State Brandywine is utilizing the citizen science Picture Post network as a foundation for collecting campus environmental data and for undergraduate student research investigations. The Picture Post is an environmental monitoring project a part of Digital Earth Watch, a citizen science initiative funded by NASA. Picture Post creates opportunities for educators and community members to take digital photos from octagonal platforms on posts registered as part of the Picture Post national network and then share these photos online. Penn State Brandywine joined the Picture Post project May 27, 2014, to begin a long-term monitoring program, starting with an environmental baseline of the campus landscape. Four post locations were selected on campus based upon projected major construction projects. Photos at each post are being taken by students on a weekly basis and uploaded to the Picture Post website. The campus community and beyond are also being encouraged to take their own photos to upload to the website. Instructional signage has been placed on each post, and a Penn State Brandywine Picture Post website (http://sites.psu.edu/picturepost/) has been created to explain the project and campus objectives in more detail. This project was started by a student as part of her undergraduate summer research experience and will continue to be managed by students in future semesters. With just a half-year of Picture Post photos, it is evident that there are documented changes in the environment because of construction and expected seasonal variations. The Picture Post photos have provided enough data for an initial undergraduate research project with a student analyzing and comparing the variations in the greenness factor of the photos with supplemental temperature and precipitation data. This project will continue to provide opportunities for citizen contributions to the network as well as data for student investigations of the changing campus environment.

  17. Integrating STEM Place-Based, Culturally Responsive and Citizen Science Learning in Exploring the Impacts and Feedbacks of a Changing Arctic

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Spellman, K. V.; Fabbri, C.; Comiso, J. C.; Chase, M.; Fochesatto, G. J.; Butcher, C. E.; Jones, D.; Bacsujlaky, M.; Yoshikawa, K.; Gho, C. L.; Wegner, K.

    2016-12-01

    To build capacity in navigating challenges associated with a changing climate, learning in Arctic communities must not only increase STEM and climate change literacy, but also generate new knowledge as the rapid changes occur. Among the new NASA Science Mission Directorate Science Education projects, Arctic and Earth SIGNs (STEM Integrating GLOBE and NASA assets) is providing opportunities for K-12 pre-service and in-service teachers, their students, and lifelong learners to engage in citizen science using the Global Learning and Observations to Benefit the Environment (GLOBE) methods and culturally responsive learning to help address climate change challenges within their unique community, and contribute to hypothesis driven research. This project will weave traditional knowledge and western science, and use ground observations and satellite data and best teaching practices in STEM learning, supported through a NASA cooperative agreement and collaborative partnerships. Implementation will begin in rural Alaska and grow within Alaska and throughout the United States to reach underserved and STEM underrepresented populations, through face-to-face and on-line teaching and learning as well as building partnerships among educators, scientists, local and indigenous experts, institutions, agencies, and learning communities. Partners include research and teaching institutions at the University of Alaska Fairbanks, the Association of Interior Native Educators, the North Slope Borough School District and other school districts, the Kenaitze Tribe Environmental Education program, NASA science education and research programs as well as those of NOAA and NSF, the GLOBE Implementation Office, the 4-H program and others. The program resources and model will be shared and disseminated within the United States and globally through partners for local, national and worldwide use in STEM climate change education and citizen empowerment.

  18. A Framework for Guiding Future Citizens to Think Critically about Nature of Science and Socioscientific Issues

    ERIC Educational Resources Information Center

    Yacoubian, Hagop A.

    2015-01-01

    In this article, I introduce a framework for guiding future citizens to think critically about nature of science (NOS) and "with" NOS as they engage in socioscientific decision making. The framework, referred to as the critical thinking--nature of science (CT-NOS) framework, explicates and targets both NOS as a learning objective and NOS…

  19. Climate Change, Capitalism, and Citizen Science: Developing a dialectical framework for examining volunteer participation in climate change research

    NASA Astrophysics Data System (ADS)

    Wixom, Joshua A.

    This dissertation discusses the complex social relations that link citizen science, scientific literacy, and the dissemination of information to the public. Scientific information is not produced in value-neutral settings by people removed from their social context. Instead, science is a social pursuit and the scientist's social context is embedded in the knowledge produced. Additionally, the dissemination of this information via numerous media outlets is filtered through institutional lenses and subject to journalistic norms. As a result, the general public must be able to recognize the inherent biases in this information. Yet, the rates of scientific literacy in the U.S. are quite low, which suggests that people may not be capable of fully understanding the biases present. Furthermore, people tend to seek out sources that reinforce their values and personal perspectives, thus reinforcing their own biases. Improving scientific literacy allows people to see past these biases and translate media narratives in order to comprehend the facts and evidence presented to them. Citizen science is both an epistemological tool used by scientists to collect and interpret scientific data and a means to improve the scientific literacy of participants. Citizen science programs have the ability to generate real knowledge and improve the critical thinking skills necessary for the general public to interpret scientific information.

  20. Using Citizen Science and Crowdsourcing via Aurorasaurus as a Near Real Time Data Source for Space Weather Applications

    NASA Astrophysics Data System (ADS)

    MacDonald, E.; Heavner, M.; Hall, M.; Tapia, A.; Lalone, N.; Clayon, J.; Case, N.

    2014-12-01

    Aurorasaurus is on the cutting edge of space science, citizen science, and computer science simultaneously with the broad goals to develop a real-time citizen science network, educate the general public about the northern lights, and revolutionize real-time space weather nowcasting of the aurora for the public. We are currently in the first solar maximum with social media, which enables the technological roots to connect users, citizen scientists, and professionals around a shared global, rare interest. We will introduce the project which has been in a prototype mode since 2012 and recently relaunched with a new mobile and web presence and active campaigns. We will showcase the interdisciplinary advancements which include a more educated public, disaster warning system applications, and improved real-time ground truth data including photographs and observations of the Northern Lights. We will preview new data which validates the proof of concept for significant improvements in real-time space weather nowcasting. Our aim is to provide better real-time notifications of the visibility of the Northern Lights to the interested public via the combination of noisy crowd-sourced ground truth with noisy satellite-based predictions. The latter data are available now but are often delivered with significant jargon and uncertainty, thus reliable, timely interpretation of such forecasts by the public are problematic. The former data show real-time characteristic significant rises (in tweets for instance) that correlate with other non-real-time indices of auroral activity (like the Kp index). We will discuss the source of 'noise' in each data source. Using citizen science as a platform to provide a basis for deeper understanding is one goal; secondly we want to improve understanding of and appreciation for the dynamics and beauty of the Northern Lights by the public and scientists alike.

  1. WATERS - Integrating Science and Education Through the Development of an Education & Outreach Program that Engages Scientists, Students and Citizens

    NASA Astrophysics Data System (ADS)

    Eschenbach, E. A.; Conklin, M. H.

    2007-12-01

    The need to train students in hydrologic science and environmental engineering is well established. Likewise, the public requires a raised awareness of the seriousness of water quality and availability problems. The WATERS Network (WATer and Environmental Research Systems Network ) has the potential to significantly change the way students, researchers, citizens, policy makers and industry members learn about environmental problems and solutions regarding water quality, quantity and distribution. This potential can be met if the efforts of water scientists, computer scientists, and educators are integrated appropriately. Successful pilot projects have found that cyberinfrastructure for education and outreach needs to be developed in parallel with research related cyberinfrastructure. We propose further integration of research, education and outreach activities. Through the use of technology that connects students, faculty, researchers, policy makers and others, WATERS Network can provide learning opportunities and teaching efficiencies that can revolutionize environmental science and engineering education. However, there are a plethora of existing environmental science and engineering educational programs. In this environment, WATERS can make a greater impact through careful selection of activities that build upon its unique strengths, that have high potential for engaging the members, and that meet identified needs: (i) modernizing curricula and pedagogy (ii) integrating science and education, (iii) sustainable professional development, and (iv) training the next generation of interdisciplinary water and social scientists and environmental engineers. National and observatory-based education facilities would establish the physical infrastructure necessary to coordinate education and outreach activities. Each observatory would partner with local educators and citizens to develop activities congruent with the scientific mission of the observatory. An unprecedented

  2. The Solar Stormwatch CME catalogue: Results from the first space weather citizen science project

    NASA Astrophysics Data System (ADS)

    Barnard, L.; Scott, C.; Owens, M.; Lockwood, M.; Tucker-Hood, K.; Thomas, S.; Crothers, S.; Davies, J. A.; Harrison, R.; Lintott, C.; Simpson, R.; O'Donnell, J.; Smith, A. M.; Waterson, N.; Bamford, S.; Romeo, F.; Kukula, M.; Owens, B.; Savani, N.; Wilkinson, J.; Baeten, E.; Poeffel, L.; Harder, B.

    2014-12-01

    Solar Stormwatch was the first space weather citizen science project, the aim of which is to identify and track coronal mass ejections (CMEs) observed by the Heliospheric Imagers aboard the STEREO satellites. The project has now been running for approximately 4 years, with input from >16,000 citizen scientists, resulting in a data set of >38,000time-elongation profiles of CME trajectories, observed over 18 preselected position angles. We present our method for reducing this data set into a CME catalogue. The resulting catalogue consists of 144 CMEs over the period January 2007 to February 2010, of which 110 were observed by STEREO-A and 77 were observed by STEREO-B. For each CME, the time-elongation profiles generated by the citizen scientists are averaged into a consensus profile along each position angle that the event was tracked. We consider this catalogue to be unique, being at present the only citizen science-generated CME catalogue, tracking CMEs over an elongation range of 4° out to a maximum of approximately 70°. Using single spacecraft fitting techniques, we estimate the speed, direction, solar source region, and latitudinal width of each CME. This shows that at present, the Solar Stormwatch catalogue (which covers only solar minimum years) contains almost exclusively slow CMEs, with a mean speed of approximately 350 km s-1. The full catalogue is available for public access at www.met.reading.ac.uk/~spate/solarstormwatch. This includes, for each event, the unprocessed time-elongation profiles generated by Solar Stormwatch, the consensus time-elongation profiles, and a set of summary plots, as well as the estimated CME properties.

  3. Online Citizen Science with Clickworkers & MRO HiRISE E/PO

    NASA Astrophysics Data System (ADS)

    Gulick, V. C.; Deardorff, G.; Kanefsky, B.; HiRISE Science Team

    2010-12-01

    The High-Resolution Imaging Science Experiment’s E/PO has fielded several online citizen science projects. Our efforts are guided by HiRISE E/PO’s philosophy of providing innovative opportunities for students and the public to participate in the scientific discovery process. HiRISE Clickworkers, a follow-on to the original Clickworkers crater identification and size diameter marking website, provides an opportunity for the public to identify & mark over a dozen landform feature types in HiRISE images, including dunes, gullies, patterned ground, wind streaks, boulders, craters, layering, volcanoes, etc. In HiRISE Clickworkers, the contributor views several sample images showing variations of different landforms, and simply marks all the landform types they could spot while looking at a small portion of a HiRISE image. Contributors then submit their work & once validated by comparison to the output of other participants, results are then added to geologic feature databases. Scientists & others will eventually be able to query these databases for locations of particular geologic features in the HiRISE images. Participants can also mark other features that they find intriguing for the HiRISE camera to target. The original Clickworkers website pilot study ran from November 2000 until September 2001 (Kanefsky et al., 2001, LPSC XXXII). It was among the first online Citizen Science efforts for planetary science. In its pilot study, we endeavored to answer two questions: 1) Was the public willing & able to help science, & 2) Can the public produce scientifically useful results? Since its inception over 3,500,000 craters have been identified, & over 350,000 of these craters have been classified. Over 2 million of these craters were marked on Viking Orbiter image mosaics, nearly 800,000 craters were marked on Mars Orbiter Camera (MOC) images. Note that these are not counts of distinct craters. For example, each crater in the Viking orbiter images was counted by about 50

  4. Massive Mortality of a Planktivorous Seabird in Response to a Marine Heatwave: A Citizen Science Case-study

    NASA Astrophysics Data System (ADS)

    Jones, T.; Parrish, J.; MacCready, P.; Peterson, W. T.; Bjorkstedt, E.; Bond, N. A.; Ballance, L. T.; Bowes, V.; Hipfner, J. M.; Lindquist, K.; Lindsey, J.; Nevins, H. M.; Burgess, H. K.; Robertson, R.; Roletto, J.; Wilson, L.; Joyce, T. W.; Harvey, J.

    2017-12-01

    Citizen science data collection is a powerful tool for documenting mass mortality events, as they often occur without warning and can be extensive in space, precluding standard methods of data collection. The Coastal Observation and Seabird Survey Team (COASST) is one such citizen science program that specializes in the collection of information on beachcast seabird abundance and identity. Using the COASST dataset, in combination with federal monitoring data and novel modeling techniques, we investigated the 2014/15 mass mortality event of Cassin's Auklets (Ptychoramphus aleuticus), a small zooplanktivorous seabird, that occurred during the largest marine heatwave (MHW) ever recorded - the NE Pacific MHW of 2014-2016. Estimated at 275,000-530,000 birds, or 11% of the global adult population, and spanning 2,000 km of the North American Pacific coastline, this marine bird die-off is among the largest ever recorded. Carcass deposition followed an effective reduction in the energy content of zooplankton, coincident with the loss of cold-water foraging habitat caused by the intrusion of the NE Pacific MHW. Models examining interannual variability in effort-controlled carcass abundance (2001-2014) identified the biomass of lipid-poor zooplankton as the primary predictor of increased carcass abundance, suggesting that the relative abundance of smaller, lipid-poor zooplankton is a strong predictor of Cassin's Auklets overwinter survival. Furthermore, dispersing Cassin's Auklets were likely compressed into a nearshore band of upwelled water, and ultimately died from starvation following the shift in zooplankton composition associated with the onshore transport of the NE Pacific MHW. The information regarding the magnitude of this event, as well as its causal mechanism, comes as a direct result of rigorous data collection by citizen science volunteers, demonstrating that citizen science can, and does, contribute to our understanding of how climate change is altering marine

  5. Scientific Discovery through Citizen Science via Popular Amateur Astrophotography

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.; Bonnell, Jerry T.; Allen, Alice

    2015-01-01

    Can popular astrophotography stimulate real astronomical discovery? Perhaps surprisingly, in some cases, the answer is yes. Several examples are given using the Astronomy Picture of the Day (APOD) site as an example venue. One reason is angular -- popular wide and deep images sometimes complement professional images which typically span a more narrow field. Another reason is temporal -- an amateur is at the right place and time to take a unique and illuminating image. Additionally, popular venues can be informational -- alerting professionals to cutting-edge amateur astrophotography about which they might not have known previously. Methods of further encouraging this unusual brand of citizen science are considered.

  6. The Role of Citizen Science in Risk Mitigation and Disaster Response: A Case Study of 2015 Nepalese Earthquake Using OpenStreetMap

    NASA Astrophysics Data System (ADS)

    Rieger, C.; Byrne, J. M.

    2015-12-01

    Citizen science includes networks of ordinary people acting as sensors, observing and recording information for science. OpenStreetMap is one such sensor network which empowers citizens to collaboratively produce a global picture from free geographic information. The success of this open source software is extended by the development of freely used open databases for the user community. Participating citizens do not require a high level of skill. Final results are processed by professionals following quality assurance protocols before map information is released. OpenStreetMap is not only the cheapest source of timely maps in many cases but also often the only source. This is particularly true in developing countries. Emergency responses to the recent earthquake in Nepal illustrates the value for rapidly updated geographical information. This includes emergency management, damage assessment, post-disaster response, and future risk mitigation. Local disaster conditions (landslides, road closings, bridge failures, etc.) were documented for local aid workers by citizen scientists working remotely. Satellites and drones provide digital imagery of the disaster zone and OpenStreetMap participants shared the data from locations around the globe. For the Nepal earthquake, OpenStreetMap provided a team of volunteers on the ground through their Humanitarian OpenStreetMap Team (HOT) which contribute data to the disaster response through smartphones and laptops. This, combined with global citizen science efforts, provided immediate geographically useful maps to assist aid workers, including the Red Cross and Canadian DART Team, and the Nepalese government. As of August 2014, almost 1.7 million users provided over 2.5 billion edits to the OpenStreetMap map database. Due to the increased usage of smartphones, GPS-enabled devices, and the growing participation in citizen science projects, data gathering is proving an effective way to contribute as a global citizen. This paper

  7. Citizen science: A new perspective to advance spatial pattern evaluation in hydrology.

    PubMed

    Koch, Julian; Stisen, Simon

    2017-01-01

    Citizen science opens new pathways that can complement traditional scientific practice. Intuition and reasoning often make humans more effective than computer algorithms in various realms of problem solving. In particular, a simple visual comparison of spatial patterns is a task where humans are often considered to be more reliable than computer algorithms. However, in practice, science still largely depends on computer based solutions, which inevitably gives benefits such as speed and the possibility to automatize processes. However, the human vision can be harnessed to evaluate the reliability of algorithms which are tailored to quantify similarity in spatial patterns. We established a citizen science project to employ the human perception to rate similarity and dissimilarity between simulated spatial patterns of several scenarios of a hydrological catchment model. In total, the turnout counts more than 2500 volunteers that provided over 43000 classifications of 1095 individual subjects. We investigate the capability of a set of advanced statistical performance metrics to mimic the human perception to distinguish between similarity and dissimilarity. Results suggest that more complex metrics are not necessarily better at emulating the human perception, but clearly provide auxiliary information that is valuable for model diagnostics. The metrics clearly differ in their ability to unambiguously distinguish between similar and dissimilar patterns which is regarded a key feature of a reliable metric. The obtained dataset can provide an insightful benchmark to the community to test novel spatial metrics.

  8. Citizen science: A new perspective to advance spatial pattern evaluation in hydrology

    PubMed Central

    Stisen, Simon

    2017-01-01

    Citizen science opens new pathways that can complement traditional scientific practice. Intuition and reasoning often make humans more effective than computer algorithms in various realms of problem solving. In particular, a simple visual comparison of spatial patterns is a task where humans are often considered to be more reliable than computer algorithms. However, in practice, science still largely depends on computer based solutions, which inevitably gives benefits such as speed and the possibility to automatize processes. However, the human vision can be harnessed to evaluate the reliability of algorithms which are tailored to quantify similarity in spatial patterns. We established a citizen science project to employ the human perception to rate similarity and dissimilarity between simulated spatial patterns of several scenarios of a hydrological catchment model. In total, the turnout counts more than 2500 volunteers that provided over 43000 classifications of 1095 individual subjects. We investigate the capability of a set of advanced statistical performance metrics to mimic the human perception to distinguish between similarity and dissimilarity. Results suggest that more complex metrics are not necessarily better at emulating the human perception, but clearly provide auxiliary information that is valuable for model diagnostics. The metrics clearly differ in their ability to unambiguously distinguish between similar and dissimilar patterns which is regarded a key feature of a reliable metric. The obtained dataset can provide an insightful benchmark to the community to test novel spatial metrics. PMID:28558050

  9. EclipseMob: Results from a nation-wide citizen science experiment on the effects of the 2017 Solar Eclipse on Low-frequency (LF) Radio Propagation

    NASA Astrophysics Data System (ADS)

    Liles, W. C.; Lukes, L.; Nelson, J.; Henry, J.; Oputa, J.; Kerby-Patel, K. C.

    2017-12-01

    the continental U.S. Here we will report out on lessons learned about organizing and leading a nation-wide citizen science experiment during the 2017 total solar eclipse and preliminary results from the analysis of low frequency signals and geospatial patterns.

  10. Creating Better Citizens? Effects of a Model Citizens' Assembly on Student Political Attitudes and Behavior

    ERIC Educational Resources Information Center

    Gershtenson, Joseph; Rainey, Glenn W., Jr.; Rainey, Jane G.

    2010-01-01

    Perceiving political engagement to be dangerously low among American citizens, many political science professors in recent years have attempted to promote engagement and "healthier" political attitudes. The effectiveness of these efforts appears variable and generally quite modest. Following the model of Canadian citizens' assemblies, we…

  11. Improving and integrating data on invasive species collected by citizen scientists

    USGS Publications Warehouse

    2010-01-01

    Limited resources make it difficult to effectively document, monitor, and control invasive species across large areas, resulting in large gaps in our knowledge of current and future invasion patterns. We surveyed 128 citizen science program coordinators and interviewed 15 of them to evaluate their potential role in filling these gaps. Many programs collect data on invasive species and are willing to contribute these data to public databases. Although resources for education and monitoring are readily available, groups generally lack tools to manage and analyze data. Potential users of these data also retain concerns over data quality. We discuss how to address these concerns about citizen scientist data and programs while preserving the advantages they afford. A unified yet flexible national citizen science program aimed at tracking invasive species location, abundance, and control efforts could be designed using centralized data sharing and management tools. Such a system could meet the needs of multiple stakeholders while allowing efficiencies of scale, greater standardization of methods, and improved data quality testing and sharing. Finally, we present a prototype for such a system (see www.citsci.org).

  12. Engaging Remote Sensing and Citizen Science into Water Quality Monitoring: A Case Study in Nhue-Day River Basin, Vietnam

    NASA Astrophysics Data System (ADS)

    Thi Van Le, Khoa; Minkman, Ellen; Nguyen Thi Phuong, Thuy; Rutten, Martine; Bastiaanssen, Wim

    2016-04-01

    Remote sensing and citizen science can be utilized to fulfill the gap of conventional monitoring methods. However, how to engage these techniques, principally taking advantage of local capacities and of globally accessible data for satisfying the continuous data requirements and uncertainties are exciting challenges. Previous studies in Vietnam showed that official documents regulated towards responding the vital need of upgrading national water monitoring infrastructures do not put the huge potentials of free satellite images and crowd-based data collection into account, this factor also limits publications related to these techniques. In this research, a new water monitoring approach will be developed friendly with areas suffering poor quality monitoring works. Particularly, algorithms respecting to the relationship between temperature, total suspended sediment (TSS), chlorophyll and information collected by sensors onboard Landsat-8 and Sentinel-2 MSI satellites are built in the study area in Northern Vietnam; additionally, undergraduate student volunteers were sent to the sites with all the measurement activities are designed to coincide with the time when the study area captured by the satellites to compare the results. While conventional techniques are proving their irreplaceable role in the water monitoring network, the utilization of remote sensing techniques and citizen science in this study will demonstrate highly supportive values, saving monitoring costs and time; advantaging local human resources to science; providing an inclusive assessment of water quality changes along with land-use change in the study area, these approaches are excellent alternatives to meet the demand of real-time, continuous data nationwide.

  13. Visualization and characterization of users in a citizen science project

    NASA Astrophysics Data System (ADS)

    Morais, Alessandra M. M.; Raddick, Jordan; Coelho dos Santos, Rafael D.

    2013-05-01

    Recent technological advances allowed the creation and use of internet-based systems where many users can collaborate gathering and sharing information for specific or general purposes: social networks, e-commerce review systems, collaborative knowledge systems, etc. Since most of the data collected in these systems is user-generated, understanding of the motivations and general behavior of users is a very important issue. Of particular interest are citizen science projects, where users without scientific training are asked for collaboration labeling and classifying information (either automatically by giving away idle computer time or manually by actually seeing data and providing information about it). Understanding behavior of users of those types of data collection systems may help increase the involvement of the users, categorize users accordingly to different parameters, facilitate their collaboration with the systems, design better user interfaces, and allow better planning and deployment of similar projects and systems. Behavior of those users could be estimated through analysis of their collaboration track: registers of which user did what and when can be easily and unobtrusively collected in several different ways, the simplest being a log of activities. In this paper we present some results on the visualization and characterization of almost 150.000 users with more than 80.000.000 collaborations with a citizen science project - Galaxy Zoo I, which asked users to classify galaxies' images. Basic visualization techniques are not applicable due to the number of users, so techniques to characterize users' behavior based on feature extraction and clustering are used.

  14. Changes in Participants’ Scientific Attitudes and Epistemological Beliefs During an Astronomical Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Price, Aaron

    2012-01-01

    Citizen science projects offer opportunities for non-scientists to take part in scientific research. While their contribution to scientific data collection has been well documented, there is limited research on changes that may occur to their volunteer participants. In this study, we investigated (1) how volunteers’ attitudes towards science and beliefs in the nature of science changed over six months of participation in an astronomy-themed citizen science project and (2) how the level of project participation accounted for these changes. To measure attitudes towards science and beliefs about the nature of science, identical pre- and post-tests were used. We used pre-test data from 1,375 participants and post-test data collected from 175 participants. Responses were analyzed using the Rasch Rating Scale Model. The pre-test sample was used to create the Rasch scales for the two scientific literacy measures. For the pre/post-test comparisons, data from those who completed both tests were used. Fourteen participants who took the pre/post-tests were interviewed. Results show that overall scientific attitudes did not change, p = .812. However, we did find significant changes related towards two scientific attitude items about science in the news (positive change; p < .001, p < .05) and one related to scientific self-efficacy (negative change, p < .05). These changes were related to the participants’ social activity in the project. Beliefs in the nature of science significantly increased between the pre- and post-tests, p = .014. Relative positioning of individual items on the belief scale did not change much and this change was not related to any of our recorded project activity variables. The interviews suggest that the social aspect of the project is important to participants and the change in self-efficacy is not due to a lowering of esteem but rather a greater appreciation for what they have yet to learn.

  15. A Citizen Science Campaign to Validate Snow Remote-Sensing Products

    NASA Astrophysics Data System (ADS)

    Wikstrom Jones, K.; Wolken, G. J.; Arendt, A. A.; Hill, D. F.; Crumley, R. L.; Setiawan, L.; Markle, B.

    2017-12-01

    The ability to quantify seasonal water retention and storage in mountain snow packs has implications for an array of important topics, including ecosystem function, water resources, hazard mitigation, validation of remote sensing products, climate modeling, and the economy. Runoff simulation models, which typically rely on gridded climate data and snow remote sensing products, would be greatly improved if uncertainties in estimates of snow depth distribution in high-elevation complex terrain could be reduced. This requires an increase in the spatial and temporal coverage of observational snow data in high-elevation data-poor regions. To this end, we launched Community Snow Observations (CSO). Participating citizen scientists use Mountain Hub, a multi-platform mobile and web-based crowdsourcing application that allows users to record, submit, and instantly share geo-located snow depth, snow water equivalence (SWE) measurements, measurement location photos, and snow grain information with project scientists and other citizen scientists. The snow observations are used to validate remote sensing products and modeled snow depth distribution. The project's prototype phase focused on Thompson Pass in south-central Alaska, an important infrastructure corridor that includes avalanche terrain and the Lowe River drainage and is essential to the City of Valdez and the fisheries of Prince William Sound. This year's efforts included website development, expansion of the Mountain Hub tool, and recruitment of citizen scientists through a combination of social media outreach, community presentations, and targeted recruitment of local avalanche professionals. We also conducted two intensive field data collection campaigns that coincided with an aerial photogrammetric survey. With more than 400 snow depth observations, we have generated a new snow remote-sensing product that better matches actual SWE quantities for Thompson Pass. In the next phase of the citizen science portion of

  16. Food Control and a Citizen Science Approach for Improving Teaching of Genetics in Universities

    ERIC Educational Resources Information Center

    Borrell, Y. J.; Muñoz-Colmenero, A. M.; Dopico, E.; Miralles, L.; Garcia-Vazquez, E.

    2016-01-01

    A Citizen Science approach was implemented in the laboratory practices of Genetics at the University of Oviedo, related with the engaging topic of Food Control. Real samples of food products consumed by students at home ("students as samplers") were employed as teaching material in three different courses of Genetics during the academic…

  17. Process, not product: investigating recommendations for improving citizen science "success".

    PubMed

    Freitag, Amy; Pfeffer, Max J

    2013-01-01

    Citizen science programs are increasingly popular for a variety of reasons, from public education to new opportunities for data collection. The literature published in scientific journals resulting from these projects represents a particular perspective on the process. These articles often conclude with recommendations for increasing "success". This study compared these recommendations to those elicited during interviews with program coordinators for programs within the United States. From this comparison, success cannot be unilaterally defined and therefore recommendations vary by perspective on success. Program coordinators tended to have more locally-tailored recommendations specific to particular aspects of their program mission.

  18. THE MILKY WAY PROJECT: LEVERAGING CITIZEN SCIENCE AND MACHINE LEARNING TO DETECT INTERSTELLAR BUBBLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaumont, Christopher N.; Williams, Jonathan P.; Goodman, Alyssa A.

    We present Brut, an algorithm to identify bubbles in infrared images of the Galactic midplane. Brut is based on the Random Forest algorithm, and uses bubbles identified by >35,000 citizen scientists from the Milky Way Project to discover the identifying characteristics of bubbles in images from the Spitzer Space Telescope. We demonstrate that Brut's ability to identify bubbles is comparable to expert astronomers. We use Brut to re-assess the bubbles in the Milky Way Project catalog, and find that 10%-30% of the objects in this catalog are non-bubble interlopers. Relative to these interlopers, high-reliability bubbles are more confined to themore » mid-plane, and display a stronger excess of young stellar objects along and within bubble rims. Furthermore, Brut is able to discover bubbles missed by previous searches—particularly bubbles near bright sources which have low contrast relative to their surroundings. Brut demonstrates the synergies that exist between citizen scientists, professional scientists, and machine learning techniques. In cases where ''untrained' citizens can identify patterns that machines cannot detect without training, machine learning algorithms like Brut can use the output of citizen science projects as input training sets, offering tremendous opportunities to speed the pace of scientific discovery. A hybrid model of machine learning combined with crowdsourced training data from citizen scientists can not only classify large quantities of data, but also address the weakness of each approach if deployed alone.« less

  19. Controlling populations of invasive pygmy mussel (Xenostrobus securis) through citizen science and environmental DNA.

    PubMed

    Miralles, Laura; Dopico, Eduardo; Devlo-Delva, Floriaan; Garcia-Vazquez, Eva

    2016-09-15

    Early detection of dangerous exotic species is crucial for stopping marine invasions. The New Zealand pygmy mussel Xenostrobus securis is a problematic species in coasts of temperate regions in the northern hemisphere. In this study we have controlled a population of this invader that recently expanded in a north Iberian estuary with both a participatory approach involving researchers and citizens, and employing a sensitive eDNA-based tool to monitor the population expansion in the estuary. Results demonstrate successful eradication of pygmy mussels in the outer part of the estuary with citizen science and the practical utility of eDNA for controlling biological invasions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Minimizing the Threat of Light Pollution on Observatories through Education: Globe at Night Citizen-Science

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; M, Pompea, Stephen

    2018-01-01

    Citizen-science is a rewardingly inclusive way to bring awareness to the public on the disappearance of the starry night sky, its cause and solutions. Globe at Night (GaN) encourages citizen-scientists worldwide to record the brightness of the night sky. During ten-days per month of moonless evenings, children and adults match the appearance of a specified constellation with 7 star maps of progressively fainter stars found at www.globeatnight.org. They then submit their choice of star map in-situ with the “webapp” by smart device to add to a light pollution map worldwide. In the eleven years of the program, over 170,000 observations from 180 countries have been contributed to the campaign.The Globe at Night (open) database is a source of research projects, even with other disciplines. For example, students conducted research to understand the lesser long-nosed bats’ avoidance of city center at night. On-the-fly mapping enables citizen-scientists to see contributed observations immediately. The 12 campaigns per year offer 4 ways of taking measurements. The online app for data submission is in 28 languages. STEM activities for young children and problem-based learning activities for older students were created to experience real-life scenarios: role-playing sea turtles hatching (misdirected by lights on shore) or analyzing an ISS image of Houston to estimate the wasted energy, cost and carbon footprint. In-situ and on-line workshops have been given on using GaN in all its capacities, as well as for the activities. Our Facebook page exists to encourage dialogue and bring cutting edge news. To entice interest, we had monthly newsletters and serial podcasts starring the Dark Skies Crusader. GaN has been part of special campaigns like with the National Park Service, the National Geographic BioBlitz and Tucson in 2011. Partnerships also include SciStarter (working with participants), Fieldscope (working with data analysis), and STARS4ALL (working with other light

  1. National Commission on Libraries and Information Science, Mountain Plains Regional Hearing, September 18, 1974, Denver, Colorado. Volume Three; Written Testimony.

    ERIC Educational Resources Information Center

    National Commission on Libraries and Information Science, Washington, DC.

    Many librarians, library students, and other concerned citizens accepted the opportunity to write to the National Commission on Libraries and Information Science on the occasion of the Mountain Plains Regional Hearing, September 18, 1974 in Denver, Colorado. There were communications on countless facets of library and information services. Some…

  2. Citizen Science: Broadening Access and Engagement Through Community Partnerships, Aerospace Education and Water Quality Research

    NASA Astrophysics Data System (ADS)

    Johnson, M. A.

    2016-12-01

    We applied a new approach to the design and development of citizen science learning opportunities to enhance outreach to diverse student populations, while advancing water quality research and aerospace education. This collaborative approach to informal science, technology, engineering, and math (STEM) and aerospace education required innovative partnerships between private general aviation pilots, researchers, teachers, and students. This research explored the development of active partnerships required to facilitate community engaged science, with an emphasis on increased participation of women and girls and people of color, while creating new exploratory pathways for broadening access to and engagement in STEM learning experiences. We developed an outreach program through collaborative planning with local schools to create new STEM learning experiences based upon basic aerospace education concepts and an existing water quality research project designed to track harmful algal blooms (HAB) that can produce toxins called cyanobacteria, also known as blue-green algae, which can impact drinking, fishing, and recreational waters. General aviation pilots functioning as citizen scientists obtained high-resolution aerial images while flying over potentially impacted waters. Aerial data was made available to teachers and students, as well as researchers participating in the existing water quality program lead by NASA Glenn Research Center. Teachers used the images and results to educate in climate change and the dangers of HAB. Students were able to compare aerial data with their own observations, and also gained experience in aeronautical science through field trips to local airports, hands-on experience with private research aircraft, specialized equipment used for data collection, and advanced ground instruction from research pilots. As a result of reaching out to local educators serving diverse student populations and facilitating collaborative planning, we

  3. Analysis of chemistry textbook content and national science education standards in terms of air quality-related learning goals

    NASA Astrophysics Data System (ADS)

    Naughton, Wendy

    In this study's Phase One, representatives of nine municipal agencies involved in air quality education were interviewed and interview transcripts were analyzed for themes related to what citizens need to know or be able to do regarding air quality concerns. Based on these themes, eight air quality Learning Goal Sets were generated and validated via peer and member checks. In Phase Two, six college-level, liberal-arts chemistry textbooks and the National Science Education Standards (NSES) were analyzed for congruence with Phase One learning goals. Major categories of desired citizen understandings highlighted in agency interviews concerned air pollution sources, impact, detection, and transport. Identified cognitive skills focused on information-gathering and -evaluating skills, enabling informed decision-making. A content match was found between textbooks and air quality learning goals, but most textbooks fail to address learning goals that remediate citizen misconceptions and inabilities---particularly those with a "personal experience" focus. A partial match between NSES and air quality learning goals was attributed to differing foci: Researcher-derived learning goals deal specifically with air quality, while NSES focus is on "fundamental science concepts," not "many science topics." Analysis of findings within a situated cognition framework suggests implications for instruction and NSES revision.

  4. Social.Water--Open Source Citizen Science Software for CrowdHydrology

    NASA Astrophysics Data System (ADS)

    Fienen, M. N.; Lowry, C.

    2013-12-01

    CrowdHydrology is a crowd-sourced citizen science project in which passersby near streams are encouraged to read a gage and send an SMS (text) message with the water level to a number indicated on a sign. The project was initially started using free services such as Google Voice, Gmail, and Google Maps to acquire and present the data on the internet. Social.Water is open-source software, using Python and JavaScript, that automates the acquisition, categorization, and presentation of the data. Open-source objectives pervade both the project and the software as the code is hosted at Github, only free scripting codes are used, and any person or organization can install a gage and join the CrowdHydrology network. In the first year, 10 sites were deployed in upstate New York, USA. In the second year, expansion to 44 sites throughout the upper Midwest USA was achieved. Comparison with official USGS and academic measurements have shown low error rates. Citizen participation varies greatly from site to site, so surveys or other social information is sought for insight into why some sites experience higher rates of participation than others.

  5. Food control and a citizen science approach for improving teaching of Genetics in universities.

    PubMed

    Borrell, Y J; Muñoz-Colmenero, A M; Dopico, E; Miralles, L; Garcia-Vazquez, E

    2016-09-10

    A Citizen Science approach was implemented in the laboratory practices of Genetics at the University of Oviedo, related with the engaging topic of Food Control. Real samples of food products consumed by students at home (students as samplers) were employed as teaching material in three different courses of Genetics during the academic year 2014-2015: Experimental Methods in Food Production (MBTA) (Master level), and Applied Molecular Biology (BMA) and Conservation Genetics and Breeding (COMGE) (Bachelor/Degree level). Molecular genetics based on PCR amplification of DNA markers was employed for species identification of 22 seafood products in COMGE and MBTA, and for detection of genetically modified (GM) maize from nine products in BMA. In total six seafood products incorrectly labeled (27%), and two undeclared GM maize (22%) were found. A post-Laboratory survey was applied for assessing the efficacy of the approach for improving motivation in the Laboratory Practices of Genetics. Results confirmed that students that worked on their own samples from local markets were significantly more motivated and better evaluated their Genetic laboratory practices than control students (χ(2)  = 12.11 p = 0.033). Our results suggest that citizen science approaches could not be only useful for improving teaching of Genetics in universities but also to incorporate students and citizens as active agents in food control. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):450-462, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  6. NASA Citizen Science for Earth Systems Program: fusing public participation and remote sensing to improve our understanding of the planet

    NASA Astrophysics Data System (ADS)

    Whitehurst, A.; Murphy, K. J.

    2017-12-01

    The objectives of the NASA Citizen Science for Earth Systems Program (CSESP) include both the evaluation of using citizen science data in NASA Earth science related research and engaging the public in Earth systems science. Announced in 2016, 16 projects were funded for a one year prototype phase, with the possibility of renewal for 3 years pending a competitive evaluation. The current projects fall into the categories of atmospheric composition (5), biodiversity and conservation (5), and surface hydrology/water and energy cycle (6). Out of the 16, 8 of the projects include the development and/or implementation of low cost sensors to facilitate data collection. This presentation provides an overview of the NASA CSESP program to both highlight the diversity of innovative projects being funded and to share information with future program applicants.

  7. Working With Greenlandic Fishermen: A New Approach to Citizen Science

    NASA Astrophysics Data System (ADS)

    Turrin, M.; Porter, D. F.; Greve, S.

    2014-12-01

    'Leveraging Local Knowledge to Measure Greenland Fjords' is a science project designed with local knowledge sharing and data collection at its core. Citizen Science can take many different forms but in each instance it incorporates active participation of the general public in science research through integrating outreach, instruction, information gathering and data exchange. The strongest projects focus on two-way information exchange with both the citizen scientist and the professional scientist learning when they share their knowledge. Working in cooperation with both teachers and fishermen in a small local community in northwest Greenland, we collected novel oceanographic measurements from a small 5 m fishing boat in the local fjord. We established connections with the local school for developing education initiatives, sharing maps and other resources, and worked through the teachers to connect with the village residents. We hosted a community meeting to provide a forum for a two-way information exchange with the science team providing background on the research project and the local residents providing both narrative information on local environmental change over the last one to three decades, and more quantitative and immediately useful information on fjord depths, iceberg flow directions and timing of seasonal ice break up and move out. The local fishermen were intimately familiar with the local environment, having intrinsically collected data on fjord depth from their regular lowering of fishing line to catch Greenlandic halibut, a benthic fish. For our first trip they worked with us locating the deep and shallow parts of the fjord from many seasons of watching icebergs ground on the shallow shoals, and showed us how to navigate into the ice packed glacial front through the dense ice mélange. The local community interest in the project and in learning how to use the equipment we had brought encouraged us to discuss a long-term data gathering relationship

  8. Eclipse Megamovie Citizen Science: The Diamond Ring

    NASA Astrophysics Data System (ADS)

    Hudson, H. S.; Mcintosh, S. W.; Martinez Oliveros, J. C.; Pasachoff, J. M.; Peticolas, L. M.; Bender, M.

    2016-12-01

    The 2017 North American total eclipse has begun to encourage many outreach and citizen-science activiites. We describe here a part of the Eclipse Megamovie program, in which we deploy a smartphone app to enable anybody with a GPS-equipped smartphone to record correct images of Baily's Beads (the "Diamond Ring" effect) for subsequent analysis. The multiply oversampled recordings of 2nd and 3rd contacts, across and along the track, will provide material for unique movie representations of the astronomical phenomenon. After the fact, this highly oversampled dataset can be used to confirm and/or extend detailed satellite topography of the Moon from Kaguya and LRO. In addition the high angular resolution inherent in the "knife-edge" motion will provide a unique view of the structure of the solar limb itself. The low angular resolution of the smartphone cameras is a handicap, but excellent time resolution and massive oversampling are great advantages. We anticipate public participation in image selection to get the best sequences of last few-millisecond imagery for the science product here, which can follow the known motions of the solar limb due to p-modes and granulation. No comparable database exists, and so the final product of this crowdsourcing will be a public archive of the data and metadata for future studies.

  9. Examining Teacher Framing, Student Reasoning, and Student Agency in School-Based Citizen Science

    NASA Astrophysics Data System (ADS)

    Harris, Emily Mae

    This dissertation presents three interrelated studies examining opportunities for student learning through contributory citizen science (CS), where students collect and contribute data to help generate new scientific knowledge. I draw on sociocultural perspectives of learning to analyze three cases where teachers integrated CS into school science, one third grade, one fourth grade, and one high school Marine Biology classroom. Chapter 2 is a conceptual investigation of the opportunities for students to engage in scientific reasoning practices during CS data collection activities. Drawing on science education literature and vignettes from case studies, I argue that the teacher plays an important role in mediating opportunities for students to engage in investigative, explanatory, and argumentative practices of science through CS. Chapter 3 focuses on teacher framing of CS, how teachers perceive what is going on (Goffman, 1974) and how they communicate that to students as they launch CS tasks. Through analysis of videos and interviews of two upper elementary school teachers, I found that teachers frame CS for different purposes. These framings were influenced by teachers' goals, orientations towards science and CS, planning for instruction, and prior knowledge and experience. Chapter 4 examines how students demonstrate agency with environmental science as they explore their personal interests across their third grade classroom, school garden, and science lab contexts, through the lens of social practice theory (Holland, Lachicotte, Skinner, & Cain, 1998). Through analysis of classroom observations, student interviews, teacher interviews and important moments for three focal students, I found that student agency was enabled and constrained by the different cultures of the classroom, garden, and science lab. Despite affordances of the garden and science lab, the teachers' epistemic authority in the classroom permeated all three contexts, constraining student agency. In

  10. Drought Information Supported by Citizen Scientists (DISCS)

    NASA Astrophysics Data System (ADS)

    Molthan, A.; Maskey, M.; Hain, C.; Meyer, P.; Nair, U. S.; Handyside, C. T.; White, K.; Amin, M.

    2017-12-01

    Each year, drought impacts various regions of the United States on time scales of weeks, months, seasons, or years, which in turn leads to a need to document these impacts and inform key decisions on land management, use of water resources, and disaster response. Mapping impacts allows decision-makers to understand potential damage to agriculture and loss of production, to communicate and document drought impacts on crop yields, and to inform water management decisions. Current efforts to collect this information includes parsing of media reports, collaborations with local extension offices, and partnerships with the National Weather Service cooperative observer network. As part of a NASA Citizen Science for Earth Systems proposal award, a research and applications team from Marshall Space Flight Center, the University of Alabama in Huntsville, and collaborators within the NWS have developed a prototype smartphone application focused on the collection of citizen science observations of crop health and drought impacts, along with development of innovative low-cost soil moisture sensors to supplement subjective assessments of local soil moisture conditions. Observations provided by citizen scientists include crop type and health, phase of growth, soil moisture conditions, irrigation status, along with an optional photo and comment to provide visual confirmation and other details. In exchange for their participation, users of the app also have access to unique land surface modeling data sets produced at MSFC such as the NASA Land Information System soil moisture and climatology/percentile products from the Short-term Prediction Research and Transition (SPoRT) Center, assessments of vegetation health and stress from NASA and NOAA remote sensing platforms (e.g. MODIS/VIIRS), outputs from a crop stress model developed at the University of Alabama in Huntsville, recent rainfall estimates from the NOAA/NWS network of ground-based weather radars, and other observations made

  11. 22 CFR 51.45 - Department discretion to require evidence of U.S. citizenship or non-citizen nationality.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Department discretion to require evidence of U.S. citizenship or non-citizen nationality. 51.45 Section 51.45 Foreign Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS Evidence of U.S. Citizenship or Nationality § 51.45 Department discretion...

  12. 22 CFR 51.45 - Department discretion to require evidence of U.S. citizenship or non-citizen nationality.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Department discretion to require evidence of U.S. citizenship or non-citizen nationality. 51.45 Section 51.45 Foreign Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS Evidence of U.S. Citizenship or Nationality § 51.45 Department discretion...

  13. 22 CFR 51.45 - Department discretion to require evidence of U.S. citizenship or non-citizen nationality.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Department discretion to require evidence of U.S. citizenship or non-citizen nationality. 51.45 Section 51.45 Foreign Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS Evidence of U.S. Citizenship or Nationality § 51.45 Department discretion...

  14. 22 CFR 51.45 - Department discretion to require evidence of U.S. citizenship or non-citizen nationality.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Department discretion to require evidence of U.S. citizenship or non-citizen nationality. 51.45 Section 51.45 Foreign Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS Evidence of U.S. Citizenship or Nationality § 51.45 Department discretion...

  15. 22 CFR 51.45 - Department discretion to require evidence of U.S. citizenship or non-citizen nationality.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Department discretion to require evidence of U.S. citizenship or non-citizen nationality. 51.45 Section 51.45 Foreign Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS Evidence of U.S. Citizenship or Nationality § 51.45 Department discretion...

  16. Teaching citizen science skills online: Implications for invasive species training programs

    USGS Publications Warehouse

    Newman, G.; Crall, A.; Laituri, M.; Graham, J.; Stohlgren, T.; Moore, J.C.; Kodrich, K.; Holfelder, K.A.

    2010-01-01

    Citizen science programs are emerging as an efficient way to increase data collection and help monitor invasive species. Effective invasive species monitoring requires rigid data quality assurances if expensive control efforts are to be guided by volunteer data. To achieve data quality, effective online training is needed to improve field skills and reach large numbers of remote sentinel volunteers critical to early detection and rapid response. The authors evaluated the effectiveness of online static and multimedia tutorials to teach citizen science volunteers (n = 54) how to identify invasive plants; establish monitoring plots; measure percent cover; and use Global Positioning System (GPS) units. Participants trained using static and multimedia tutorials provided less (p <.001) correct species identifications (63% and 67%) than did professionals (83%) across all species, but they did not differ (p =.125) between each other. However, their ability to identify conspicuous species was comparable to that of professionals. The variability in percent plant cover estimates between static (??10%) and multimedia (??13%) participants did not differ (p =.86 and.08, respectively) from those of professionals (??9%). Trained volunteers struggled with plot setup and GPS skills. Overall, the online approach used did not influence conferred field skills and abilities. Traditional or multimedia online training augmented with more rigorous, repeated, and hands-on, in-person training in specialized skills required for more difficult tasks will likely improve volunteer abilities, data quality, and overall program effectiveness. ?? Taylor & Francis Group, LLC.

  17. A Teacher Professional Development Program for an Authentic Citizen-Science Program: GLOBE at Night

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Sparks, R.

    2009-12-01

    An authentic science research program in the classroom can take many forms as can the teacher professional development that accompanies the programs. One different approach invites educators to invoke 21st century skills with their students while focusing on a real-world issue of both local and global concern. The citizen-science program on light pollution, GLOBE at Night, has students and the general public measure the darkness of their local skies and contribute observations online to a world map. They do this by looking toward Orion for the faintest stars and matching what they see to one of seven different star maps. (For more precise measurements, digital sky-brightness meters are used.) These measurements can be compared with data from the previous 4 years, as well as with satellite data, population densities, and electrical power-usage maps. Measurements can be examined online via Google Earth or other tools and are downloadable as datasets from the website. Data from multiple locations in one city or region are especially interesting, and have been used as the basis of research in a classroom or science fair project or even to inform the development of public policy. This year, GLOBE at Night has been expanding its role in training educators on fundamental concepts and data collection to include more data analysis for a topical variety of local projects. Many on-site workshops have and are being given to teachers in grades 5 through high school. Some of the U.S. school communities created mini-campaigns that combined local students with public advocates and representatives from local city and county governments, and also collaborated with students in Wales, Canada, Romania and north-central Chile (near major observatories). Internationally, training has been given via on-line forums, telecon-powerpoint presentations, videoconferencing via Skype, and blogs. Informal educators have come from national and international networks of science, technology and

  18. Assessing the Role of Technology in Citizen Science: A Volunteer's Perspective

    NASA Astrophysics Data System (ADS)

    Wei, J. H.; Force, A.

    2017-12-01

    From a volunteer's perspective, citizen science can provide a direct connection between outdoor enthusiasts and the scientists who study these natural environments. These experiences are both rewarding and engaging, as participants become aware of field sites, the scientific method, and their own environmental impacts. Recent technological advances (i.e. smart phones and mobile applications) have the potential to transform citizen science, specifically as technology can both enable and modernize the networks between a large community of potential volunteers and scientists using these data. By providing volunteers who venture into largely understudied and remote areas with an easy method for data collection and entry, it becomes easier to encourage volunteer engagement in science, while maintaining quality control over the data collection process. Participating in Adventure Scientists' projects demonstrates the application of technology as an effective engagement tool, especially when compared to traditional pen and paper surveys often conducted. Pairing volunteers with simple, familiar technology increases engagement, particularly for volunteers otherwise intimidated by the scientific process. When equipped with useful features, such as GPS functionality, smartphone apps offer a simple and standardized method of data collection and description. Yet a variety of factors can complicate field sampling; final choices are ultimately left to the judgment of the volunteer and perhaps could be guided by use of a phone/app. Importantly, Adventure Scientists conducts follow ups and volunteer surveys, which are critical to the continued evaluation of volunteer experiences and the sampling methods themselves. For future projects, creating a forum in which scientists and volunteers can interact (perhaps also through a phone app) could provide scientific context for volunteers, further investing them in the scientific process and their continued participation. Overall, the

  19. Is there a weekend bias in clutch-initiation dates from citizen science? Implications for studies of avian breeding phenology.

    PubMed

    Cooper, Caren B

    2014-09-01

    Accurate phenology data, such as the timing of migration and reproduction, is important for understanding how climate change influences birds. Given contradictory findings among localized studies regarding mismatches in timing of reproduction and peak food supply, broader-scale information is needed to understand how whole species respond to environmental change. Citizen science-participation of the public in genuine research-increases the geographic scale of research. Recent studies, however, showed weekend bias in reported first-arrival dates for migratory songbirds in databases created by citizen-science projects. I investigated whether weekend bias existed for clutch-initiation dates for common species in US citizen-science projects. Participants visited nests on Saturdays more frequently than other days. When participants visited nests during the laying stage, biased timing of visits did not translate into bias in estimated clutch-initiation dates, based on back-dating with the assumption of one egg laid per day. Participants, however, only visited nests during the laying stage for 25% of attempts of cup-nesting species and 58% of attempts in nest boxes. In some years, in lieu of visit data, participants provided their own estimates of clutch-initiation dates and were asked "did you visit the nest during the laying period?" Those participants who answered the question provided estimates of clutch-initiation dates with no day-of-week bias, irrespective of their answer. Those who did not answer the question were more likely to estimate clutch initiation on a Saturday. Data from citizen-science projects are useful in phenological studies when temporal biases can be checked and corrected through protocols and/or analytical methods.

  20. The Sungrazer Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Battams, K.

    2016-12-01

    The NASA-funded Sungrazer Project is one of the oldest and most successful Citizen Science projects, having more than doubled the number of officially designated comets since it became public in 2002. The Sungrazer Project has enabled the discovery of more than 3,100 previously unknown near-Sun and Sungrazing comets in images returned by the joint ESA-NASA Solar and Heliospheric Observatory (SOHO), which was launched in 1995, and the NASA Solar Terrestrial Relations Observatories (STEREO), launched in 2006. The Sungrazer Project offers a centralized web site for amateur astronomers ("comet hunters") to report potential comets in SOHO and STEREO data, which the Project PI then confirms/rejects. It is then the task of the Project PI to perform precise astrometric measurements of all new comets, and supply the resulting data to the Minor Planet Center for official orbit determinations and designation. Almost 100 individuals from all over the world have discovered comets via the Project, with successful participants as young as 13-years old. In this talk I will discuss the history of the project, report the current discovery statistics, and highlight a few of the major discoveries enabled by the Project. I will also discuss the logistic of the program, participation requirements, day-to-day operations, and outreach efforts. Finally I will present an outlook for the project with respect to future space-based heliophysics missions.

  1. Citizen Science: linking the recent rapid advances of plant flowering in Canada with climate variability.

    PubMed

    Gonsamo, Alemu; Chen, Jing M; Wu, Chaoyang

    2013-01-01

    The timing of crucial events in plant life cycles is shifting in response to climate change. We use phenology records from PlantWatch Canada 'Citizen Science' networks to study recent rapid shifts of flowering phenology and its relationship with climate. The average first flower bloom day of 19 Canadian plant species has advanced by about 9 days during 2001-2012. 73% of the rapid and unprecedented first bloom day advances are explained by changes in mean annual national temperature, allowing the reconstruction of historic flower phenology records starting from 1948. The overall trends show that plant flowering in Canada is advancing by about 9 days per °C. This analysis reveals the strongest biological signal yet of climate warming in Canada. This finding has broad implications for niche differentiation among coexisting species, competitive interactions between species, and the asynchrony between plants and the organisms they interact with.

  2. Citizen Science and Wildlife Disease Surveillance.

    PubMed

    Lawson, Becki; Petrovan, Silviu O; Cunningham, Andrew A

    2015-12-01

    Achieving effective wildlife disease surveillance is challenging. The incorporation of citizen science (CS) in wildlife health surveillance can be beneficial, particularly where resources are limited and cost-effectiveness is paramount. Reports of wildlife morbidity and mortality from the public facilitate large-scale surveillance, both in time and space, which would otherwise be financially infeasible, and raise awareness of incidents occurring on privately owned land. CS wildlife disease surveillance schemes benefit scientists, the participating public and wildlife alike. CS has been employed for targeted, scanning and syndromic surveillance of wildlife disease. Whilst opportunistic surveillance is most common, systematic observations enable the standardisation of observer effort and, combined with wildlife population monitoring schemes, can allow evaluation of disease impacts at the population level. Near-universal access to digital media has revolutionised reporting modalities and facilitated rapid and economical means of sharing feedback with participants. Here we review CS schemes for wildlife disease surveillance and highlight their scope, benefits, logistical considerations, financial implications and potential limitations. The need to adopt a collaborative and multidisciplinary approach to wildlife health surveillance is increasingly recognised and the general public can make a significant contribution through CS.

  3. National Science Board: 2020 Vision for the National Science Foundation. NSB-05-142

    ERIC Educational Resources Information Center

    National Science Foundation, 2005

    2005-01-01

    History suggests that a nation that relinquishes the torch of science puts its future prosperity at risk and jeopardizes its place in the history of civilization. The National Science Board believes this fate must not be allowed to befall the country. The National Science Board 2020 Vision for the National Science Foundation (NSF) provides a…

  4. Developing a user-friendly photometric software for exoplanets to increase participation in Citizen Science

    NASA Astrophysics Data System (ADS)

    Kokori, A.; Tsiaras, A.

    2017-09-01

    Previous research on Citizen Science projects agree that Citizen Science (CS) would serve as a way of both increasing levels of public understanding of science and public participation in scientific research. Historically, the concept of CS is not new, it dates back to the 20th century when citizens where making skilled observations, particularly in archaeology, ecology, and astronomy. Recently, the idea of CS has been improved due to technological progress and the arrival of Internet. The phrase "astronomy from the chair" that is being used in the literature highlights the extent of the convenience for analysing observational data. Citizen science benefits a variety of communities, such as scientific researchers, volunteers and STEM educators. Participating in CS projects is not only engaging the volunteers with the research goals of a science team, but is also helping them learning more about specialised scientific topics. In the case of astronomy, typical examples of CS projects are gathering observational data or/and analysing them. The Holomon Photometric Software (HOPS) is a user-friendly photometric software for exoplanets, with graphical representations, statistics, models, options are brought together into a single package. It was originally developed to analyse observations of transiting exoplanets obtained from the Holomon Astronomical Station of the Aristotle University of Thessaloniki. Here, we make the case that this software can be used as part of a CS project in analysing transiting exoplanets and producing light-curves. HOPS could contribute to the scientific data analysis but it could be used also as an educational tool for learning and visualizing photometry analyses of transiting exoplanets. Such a tool could be proven very efficient in the context of public participation in the research. In recent successful representative examples such as Galaxy Zoo professional astronomers cooperating with CS discovered a group of rare galaxies by using

  5. Climate research, citizen science and art in Bangladesh

    NASA Astrophysics Data System (ADS)

    Stiller-Reeve, Mathew; Naznin, Zakia; Blanchard, Anne; Bremer, Scott

    2017-04-01

    Our research project focuses on climate information for adaptation in the northeast region of Bangladesh. In this project, we work closely with local rural communities. Since these local people are carrying out citizen science together, then a sense of community and good team spirit are essential for success. We collaborated with a Bangladeshi artist to achieve some important goals. Not only did we want to create new and exciting outreach materials, we -more importantly- wanted to see how the artistic process could nurture a sense of community for the local participants. Despite being limited by time, we saw some promising outcomes from the collaboration. The artist successfully interacted with the project researchers and the local participants. The final artwork was a real collaboration between the artist and the participants whom felt pride and ownership in the results.

  6. Smoke Sense Demonstration at National Academies of Science Citizen Science Expo

    EPA Science Inventory

    Exposure to wildland fire smoke can be sudden and unexpected, last hours to weeks, and affect communities that may or may not have a public health response plan to reduce the adverse impacts of smoke exposure. EPA is continuing to advance the science and technology required to u...

  7. Using Citizen Scientists to Measure the Effects of Ozone Damage on Native Wildflowers

    ERIC Educational Resources Information Center

    Bricker, Patricia Lynn; Sachs, Susan; Binkley, Russell

    2010-01-01

    Since 2004, middle and high school students have been monitoring the effects of ground-level ozone by collecting data on observable leaf injury on cutleaf coneflower ("Rudbeckia laciniata") and crownbeard ("Verbesina occidentalis") in the Great Smoky Mountains National Park. This project is part of an ongoing citizen-science effort in which…

  8. Technology assessment and citizen action

    NASA Technical Reports Server (NTRS)

    Mottur, E. R.

    1972-01-01

    The importance of citizen participation in the assessment process is discussed, and a system for citizen assessment action is proposed. A national assessment system is outlined. Citizen participation is considered essential in the assessment process, and impediments to effective action taken by citizens are discussed. These impediments are finance, organization and motivation, and information. The establishment of citizens' assessment associations is proposed, whose functioning would be fostered and regulated by the Citizens' Assessment Administration. The organization, functions, and financing of these associations are described. The implications of citizen action are indicated as the extensive use of class action suits, the broad interpretation of associated costs of litigation, and the use of present scientific research as evidence to assert that it is reasonable to conclude that certain consequences are probable to occur in the future.

  9. Citizen Science: Dune Restoration with Sea Oats by Junior Friends of MacArthur Beach State Park

    NASA Astrophysics Data System (ADS)

    Allen, S.

    2016-12-01

    As a crucial part of the dune ecosystem, Sea Oats are a protected species in Florida. They provide excellent habitat for small birds and mammals and prevent dune erosion with their fibrous roots.Citizen science is a research and education tool that involves everyday people in real and meaningful forms of science. My volunteer group, Junior friends of Macarthur Beach State Park, used citizen science to restore dunes by growing and planting Sea Oats. Junior friends is a group of 6-12th grade students whose purpose is to support the park through monthly activities and special events. Junior Friends asked,what is the best way to germinate/grow/and plant Sea Oats to renourish the beach dune. Specifically, what planting medium is most conducive for maximizing growth of Sea Oats? We tested three scenarios: 100% potting soil, 100% sand from the beach, 50% sand-50% potting soil mixture.Using harvested Sea Oat seeds from Macarthur Beach State Park, we separated the seeds from their casings, known as spiklets. We then monitored the plant's weekly over the course of 14 weeks and charted their growth. All the seeds had similar growth rates, but the seeds that grew in 100% potting soil consistently grew the tallest. The second tallest Sea Oats were 100% sand; the 50% sand-50% potting soil mixture produced the least amount of growth. When seedlings reached their desired growth of 6-8 inches and established a root ball, we planted the Sea Oats on the dune for restoration. After planting them,we monitored the growth of the Sea Oats on the MacArthur Beach dune throughout the rest of the year, charting the height of the planted Sea Oats. Using Citizen science we had meaningful data that helped us have a better understanding of restoring Sea Oats on Florida dunes and will help further future restorations.

  10. “Anyone Know What Species This Is?” – Twitter Conversations as Embryonic Citizen Science Communities

    PubMed Central

    Daume, Stefan; Galaz, Victor

    2016-01-01

    Social media like blogs, micro-blogs or social networks are increasingly being investigated and employed to detect and predict trends for not only social and physical phenomena, but also to capture environmental information. Here we argue that opportunistic biodiversity observations published through Twitter represent one promising and until now unexplored example of such data mining. As we elaborate, it can contribute to real-time information to traditional ecological monitoring programmes including those sourced via citizen science activities. Using Twitter data collected for a generic assessment of social media data in ecological monitoring we investigated a sample of what we denote biodiversity observations with species determination requests (N = 191). These entail images posted as messages on the micro-blog service Twitter. As we show, these frequently trigger conversations leading to taxonomic determinations of those observations. All analysed Tweets were posted with species determination requests, which generated replies for 64% of Tweets, 86% of those contained at least one suggested determination, of which 76% were assessed as correct. All posted observations included or linked to images with the overall image quality categorised as satisfactory or better for 81% of the sample and leading to taxonomic determinations at the species level in 71% of provided determinations. We claim that the original message authors and conversation participants can be viewed as implicit or embryonic citizen science communities which have to offer valuable contributions both as an opportunistic data source in ecological monitoring as well as potential active contributors to citizen science programmes. PMID:26967526

  11. Does the public communication of science influence scientific vocation? Results of a national survey.

    PubMed

    Stekolschik, Gabriel; Draghi, Cecilia; Adaszko, Dan; Gallardo, Susana

    2010-09-01

    The purpose of this work was to determine if public communication of science and technology (PCST) has any influence on people's decision to become dedicated to scientific research. For this reason, a national survey involving 852 researchers from all disciplines was conducted in Argentina. The results showed that the factors affecting scientific vocation are many, and that, regardless of differences in gender, age or discipline, the greatest influence on the decision to go into scientific research is exerted by teachers. The analysis also demonstrated that different manifestations of PCST (science books, press articles, audiovisual material, and activities such as visits to science museums) play a significant role in awakening the vocation for science. From these results it may be stated that PCST--in addition to its function of informing and forming citizens--exerts a significant influence in fostering scientific vocation.

  12. Mitigating Mosquito Disease Vectors with Citizen Science: a Review of the GLOBE Observer Mosquito Habitat Mapper Pilot and Implications for Wide-scale Implementation

    NASA Astrophysics Data System (ADS)

    Riebeek Kohl, H.; Low, R.; Boger, R. A.; Schwerin, T. G.; Janney, D. W.

    2017-12-01

    The spread of disease vectors, including mosquitoes, is an increasingly significant global environmental issue driven by a warming climate. In 2017, the GLOBE Observer Program launched a new citizen science initiative to map mosquito habitats using the free GLOBE Observer App for smart phones and tablets. The app guides people to identify mosquito larvae and breeding sites, and then once documented, to eliminate or treat the site to prevent further breeding. It also gives citizen scientists the option to identify the mosquito larvae species to determine whether it is one of three genera that potentially could transmit Zika, dengue fever, yellow fever, chikungunya, and other diseases. This data is uploaded to an international database that is freely available to the public and science community. GLOBE Observer piloted the initiative with educators in the United States, Brazil, and Peru, and it is now open for global participation. This presentation will discuss lessons learned in the pilot phase as well as plans to implement the initiative worldwide in partnership with science museums and science centers. GLOBE Observer is the non-student citizen science arm of the Global Learning and Observations to Benefit the Environment (GLOBE) Program, a long-standing, international science and education program that provides students and citizen scientists with the opportunity to participate in data collection and the scientific process, and contribute meaningfully to our understanding of the Earth system and global environment. GLOBE Observer data collection also includes cloud cover and cloud type and land cover/land use (in late 2017).

  13. The Role of the National Laboratory in Improving Secondary Science Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White,K.; Morris, M.; Stegman, M.

    While the role of science, technology, engineering, and mathematics (STEM) teachers in our education system is obvious, their role in our economic and national security system is less so. Our nation relies upon innovation and creativity applied in a way that generates new technologies for industry, health care, and the protection of our national assets and citizens. Often, it is our science teachers who generate the excitement that leads students to pursue science careers. While academia provides these teachers with the tools to educate, the rigors of a science and technology curriculum, coupled with the requisite teaching courses, often limitmore » teacher exposure to an authentic research environment. As the single largest funding agency for the physical sciences, the US Department of Energy's (DOE) Office of Science plays an important role in filling this void. For STEM teachers, the DOE Academies Creating Teacher Scientists program (ACTS) bridges the worlds of research and education. The ACTS program at Brookhaven National Laboratory (BNL), one of several across the country, exemplifies the value of this program for participating teachers. Outcomes of the work at BNL as evidenced by the balance of this report, include the following: (1) Teachers have developed long-term relationships with the Laboratory through participation in ongoing research, and this experience has both built enthusiasm for and enriched the content knowledge of the participants. (2) Teachers have modified the way they teach and are more likely to engage students in authentic research and include more inquiry-based activities. (3) Teachers have reported their students are more interested in becoming involved in science through classes, extra-curricular clubs, and community involvement. (4) Teachers have established leadership roles within their peer groups, both in their own districts and in the broader teaching community. National laboratories are making an important contribution to the

  14. Galaxy Zoo: Motivations of Citizen Scientists

    ERIC Educational Resources Information Center

    Raddick, M. Jordan; Bracey, Georgia; Gay, Pamela L.; Lintott, Chris J.; Cardamone, Carie; Murray, Phil; Schawinski, Kevin; Szalay, Alexander S.; Vandenberg, Jan

    2013-01-01

    Citizen science, in which volunteers work with professional scientists to conduct research, is expanding due to large online datasets. To plan projects, it is important to understand volunteers' motivations for participating. This paper analyzes results from an online survey of nearly 11000 volunteers in Galaxy Zoo, an astronomy citizen science…

  15. Immersive participation: Smartphone-Apps and Virtual Reality - tools for knowledge transfer, citizen science and interactive collaboration

    NASA Astrophysics Data System (ADS)

    Dotterweich, Markus

    2017-04-01

    In the last few years, the use of smartphone-apps has become a daily routine in our life. However, only a few approaches have been undertaken to use apps for transferring scientific knowledge to the public audience. The development of learning apps or serious games requires large efforts and several levels of simplification which is different to traditional text books or learning webpages. Current approaches often lack a connection to the real life and/or innovative gamification concepts. Another almost untapped potential is the use of Virtual Reality, a fast growing technology which replicates a virtual environment in order to simulate physical experiences in artificial or real worlds. Hence, smartphone-apps and VR provides new opportunities for capacity building, knowledge transfer, citizen science or interactive engagement in the realm of environmental sciences. This presentation will show some examples and discuss the advantages of these immersive approaches to improve the knowledge transfer between scientists and citizens and to stimulate actions in the real world.

  16. Process, Not Product: Investigating Recommendations for Improving Citizen Science “Success”

    PubMed Central

    Freitag, Amy; Pfeffer, Max J.

    2013-01-01

    Citizen science programs are increasingly popular for a variety of reasons, from public education to new opportunities for data collection. The literature published in scientific journals resulting from these projects represents a particular perspective on the process. These articles often conclude with recommendations for increasing “success”. This study compared these recommendations to those elicited during interviews with program coordinators for programs within the United States. From this comparison, success cannot be unilaterally defined and therefore recommendations vary by perspective on success. Program coordinators tended to have more locally-tailored recommendations specific to particular aspects of their program mission. PMID:23691154

  17. Our Light or Starlight? Citizen Science, Public Involvement and You

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.

    2010-10-01

    With half of the world's population now living in cities, many urban dwellers have never experienced the wonderment of pristinely dark skies and maybe never will. Light pollution is obscuring people's long-standing natural heritage to view stars. The GLOBE at Night program (www.globeatnight.org) is an international citizen-science campaign to raise public awareness of the impact of light pollution by encouraging everyone everywhere to measure local levels of night sky brightness and contribute observations online to a world map. In the last 5 years, GLOBE at Night has been the most productive public light pollution monitoring campaign, collecting over 52,000 observations in a two-week period annually. This year, during the moonless two weeks in March, the campaign set a record high of over 17,800 measurements from people in 86 countries. Foundational resources are available to facilitate the public's participation in promoting dark skies awareness. The GLOBE at Night website explains clearly the simple-to-participate-in 5 step program and offers background information and interactive games on key concepts. The program has been expanded to include trainings of the general public, but especially educators in schools, museums and science centers, in unique ways. Education kits for dark skies awareness have been distributed at the training workshops. The kit includes material for a light shielding demonstration, a digital Sky Quality Meter and ``Dark Skies Rangers'' activities. The activities are on how unshielded light wastes energy, how light pollution affects wildlife and how you can participate in a citizen-science star-hunt like GLOBE at Night. In addition, projects are being developed for what to do with the data once it is taken. The GLOBE at Night data from different years can be compared to look for trends over time or with population density maps. The data can also be used to search for dark sky oases or to monitor lighting ordinance compliance. Most recently

  18. Creating a national citizen engagement process for energy policy

    PubMed Central

    Pidgeon, Nick; Demski, Christina; Butler, Catherine; Parkhill, Karen; Spence, Alexa

    2014-01-01

    This paper examines some of the science communication challenges involved when designing and conducting public deliberation processes on issues of national importance. We take as our illustrative case study a recent research project investigating public values and attitudes toward future energy system change for the United Kingdom. National-level issues such as this are often particularly difficult to engage the public with because of their inherent complexity, derived from multiple interconnected elements and policy frames, extended scales of analysis, and different manifestations of uncertainty. With reference to the energy system project, we discuss ways of meeting a series of science communication challenges arising when engaging the public with national topics, including the need to articulate systems thinking and problem scale, to provide balanced information and policy framings in ways that open up spaces for reflection and deliberation, and the need for varied methods of facilitation and data synthesis that permit access to participants’ broader values. Although resource intensive, national-level deliberation is possible and can produce useful insights both for participants and for science policy. PMID:25225393

  19. Creating a national citizen engagement process for energy policy.

    PubMed

    Pidgeon, Nick; Demski, Christina; Butler, Catherine; Parkhill, Karen; Spence, Alexa

    2014-09-16

    This paper examines some of the science communication challenges involved when designing and conducting public deliberation processes on issues of national importance. We take as our illustrative case study a recent research project investigating public values and attitudes toward future energy system change for the United Kingdom. National-level issues such as this are often particularly difficult to engage the public with because of their inherent complexity, derived from multiple interconnected elements and policy frames, extended scales of analysis, and different manifestations of uncertainty. With reference to the energy system project, we discuss ways of meeting a series of science communication challenges arising when engaging the public with national topics, including the need to articulate systems thinking and problem scale, to provide balanced information and policy framings in ways that open up spaces for reflection and deliberation, and the need for varied methods of facilitation and data synthesis that permit access to participants' broader values. Although resource intensive, national-level deliberation is possible and can produce useful insights both for participants and for science policy.

  20. Scientific Value and Educational Goals: Balancing Priorities and Increasing Adult Engagement in a Citizen Science Project

    ERIC Educational Resources Information Center

    Sickler, Jessica; Cherry, Tammy Messick; Allee, Leslie; Smyth, Rebecca Rice; Losey, John

    2014-01-01

    The Lost Ladybug Project is a citizen science project that engages individuals and groups in research and learning about ladybug population dynamics. With a dual purpose of advancing scientists' research about ladybug populations and achieving learning outcomes with participants, the project's summative evaluation led to critical reflection on the…

  1. Citizen Science Air Sensor Project with Clean Air Carolina and the Eastern Band of Cherokee Indians Fact Sheet

    EPA Pesticide Factsheets

    EPA scientists are partnering with Clean Air Carolina (CAC) in Charlotte, N.C., and the Eastern Band of Cherokee Indians (EBCI) in Cherokee, N.C., to conduct a citizen science air quality project in these regions.

  2. Faith in science in global perspective: Implications for transhumanism.

    PubMed

    Evans, John H

    2014-10-01

    While citizens can know scientific facts, they also have faith in science - with faith defined as a firm belief for which there is no proof. Using national public opinion surveys from twelve nations from 1993 to 2010, I examine three different types of faith in science that citizens could hold. I examine temporal changes in levels of faith in science as well as the social determinants of each type of faith. I focus on the implications of these levels of faith for the transhumanist movement, which is particularly dependent on faith in science. I find that two of three types of faith in science are on the rise across the West, and that the social determinants of these types of faith suggest particular challenges for the transhumanist movement. © The Author(s) 2014.

  3. Jupiter Observation Campaign - Citizen Science At The Outer Planets: A Progress Report

    NASA Astrophysics Data System (ADS)

    Houston Jones, J.; Dyches, P.

    2012-12-01

    Amateur astronomers and astrophotographers diligently image Mars, Saturn and Jupiter in amazing detail. They often capture first views of storms on Saturn, impacts on Jupiter and changes in the planet's atmospheres. Many of the worldwide cadre of imagers share their images with each other and with planetary scientists. This new Jupiter focused citizen science program seeks to collect images and sort them into categories useful to scientists. In doing so, it provides a larger population of amateur astronomers with the opportunity to contribute their observations to NASA's JUNO Mission.

  4. Is there a weekend bias in clutch-initiation dates from citizen science? Implications for studies of avian breeding phenology

    NASA Astrophysics Data System (ADS)

    Cooper, Caren B.

    2014-09-01

    Accurate phenology data, such as the timing of migration and reproduction, is important for understanding how climate change influences birds. Given contradictory findings among localized studies regarding mismatches in timing of reproduction and peak food supply, broader-scale information is needed to understand how whole species respond to environmental change. Citizen science—participation of the public in genuine research—increases the geographic scale of research. Recent studies, however, showed weekend bias in reported first-arrival dates for migratory songbirds in databases created by citizen-science projects. I investigated whether weekend bias existed for clutch-initiation dates for common species in US citizen-science projects. Participants visited nests on Saturdays more frequently than other days. When participants visited nests during the laying stage, biased timing of visits did not translate into bias in estimated clutch-initiation dates, based on back-dating with the assumption of one egg laid per day. Participants, however, only visited nests during the laying stage for 25 % of attempts of cup-nesting species and 58 % of attempts in nest boxes. In some years, in lieu of visit data, participants provided their own estimates of clutch-initiation dates and were asked "did you visit the nest during the laying period?" Those participants who answered the question provided estimates of clutch-initiation dates with no day-of-week bias, irrespective of their answer. Those who did not answer the question were more likely to estimate clutch initiation on a Saturday. Data from citizen-science projects are useful in phenological studies when temporal biases can be checked and corrected through protocols and/or analytical methods.

  5. A citizen science based survey method for estimating the density of urban carnivores.

    PubMed

    Scott, Dawn M; Baker, Rowenna; Charman, Naomi; Karlsson, Heidi; Yarnell, Richard W; Mill, Aileen C; Smith, Graham C; Tolhurst, Bryony A

    2018-01-01

    Globally there are many examples of synanthropic carnivores exploiting growth in urbanisation. As carnivores can come into conflict with humans and are potential vectors of zoonotic disease, assessing densities in suburban areas and identifying factors that influence them are necessary to aid management and mitigation. However, fragmented, privately owned land restricts the use of conventional carnivore surveying techniques in these areas, requiring development of novel methods. We present a method that combines questionnaire distribution to residents with field surveys and GIS, to determine relative density of two urban carnivores in England, Great Britain. We determined the density of: red fox (Vulpes vulpes) social groups in 14, approximately 1km2 suburban areas in 8 different towns and cities; and Eurasian badger (Meles meles) social groups in three suburban areas of one city. Average relative fox group density (FGD) was 3.72 km-2, which was double the estimates for cities with resident foxes in the 1980's. Density was comparable to an alternative estimate derived from trapping and GPS-tracking, indicating the validity of the method. However, FGD did not correlate with a national dataset based on fox sightings, indicating unreliability of the national data to determine actual densities or to extrapolate a national population estimate. Using species-specific clustering units that reflect social organisation, the method was additionally applied to suburban badgers to derive relative badger group density (BGD) for one city (Brighton, 2.41 km-2). We demonstrate that citizen science approaches can effectively obtain data to assess suburban carnivore density, however publicly derived national data sets need to be locally validated before extrapolations can be undertaken. The method we present for assessing densities of foxes and badgers in British towns and cities is also adaptable to other urban carnivores elsewhere. However this transferability is contingent on

  6. A citizen science based survey method for estimating the density of urban carnivores

    PubMed Central

    Baker, Rowenna; Charman, Naomi; Karlsson, Heidi; Yarnell, Richard W.; Mill, Aileen C.; Smith, Graham C.; Tolhurst, Bryony A.

    2018-01-01

    Globally there are many examples of synanthropic carnivores exploiting growth in urbanisation. As carnivores can come into conflict with humans and are potential vectors of zoonotic disease, assessing densities in suburban areas and identifying factors that influence them are necessary to aid management and mitigation. However, fragmented, privately owned land restricts the use of conventional carnivore surveying techniques in these areas, requiring development of novel methods. We present a method that combines questionnaire distribution to residents with field surveys and GIS, to determine relative density of two urban carnivores in England, Great Britain. We determined the density of: red fox (Vulpes vulpes) social groups in 14, approximately 1km2 suburban areas in 8 different towns and cities; and Eurasian badger (Meles meles) social groups in three suburban areas of one city. Average relative fox group density (FGD) was 3.72 km-2, which was double the estimates for cities with resident foxes in the 1980’s. Density was comparable to an alternative estimate derived from trapping and GPS-tracking, indicating the validity of the method. However, FGD did not correlate with a national dataset based on fox sightings, indicating unreliability of the national data to determine actual densities or to extrapolate a national population estimate. Using species-specific clustering units that reflect social organisation, the method was additionally applied to suburban badgers to derive relative badger group density (BGD) for one city (Brighton, 2.41 km-2). We demonstrate that citizen science approaches can effectively obtain data to assess suburban carnivore density, however publicly derived national data sets need to be locally validated before extrapolations can be undertaken. The method we present for assessing densities of foxes and badgers in British towns and cities is also adaptable to other urban carnivores elsewhere. However this transferability is contingent on

  7. Citizen science contributes to our knowledge of invasive plant species distributions

    USGS Publications Warehouse

    Crall, Alycia W.; Jarnevich, Catherine S.; Young, Nicholas E.; Panke, Brendon; Renz, Mark; Stohlgren, Thomas

    2015-01-01

    Citizen science is commonly cited as an effective approach to expand the scale of invasive species data collection and monitoring. However, researchers often hesitate to use these data due to concerns over data quality. In light of recent research on the quality of data collected by volunteers, we aimed to demonstrate the extent to which citizen science data can increase sampling coverage, fill gaps in species distributions, and improve habitat suitability models compared to professionally generated data sets used in isolation. We combined data sets from professionals and volunteers for five invasive plant species (Alliaria petiolata, Berberis thunbergii, Cirsium palustre, Pastinaca sativa, Polygonum cuspidatum) in portions of Wisconsin. Volunteers sampled counties not sampled by professionals for three of the five species. Volunteers also added presence locations within counties not included in professional data sets, especially in southern portions of the state where professional monitoring activities had been minimal. Volunteers made a significant contribution to the known distribution, environmental gradients sampled, and the habitat suitability of P. cuspidatum. Models generated with professional data sets for the other four species performed reasonably well according to AUC values (>0.76). The addition of volunteer data did not greatly change model performance (AUC > 0.79) but did change the suitability surface generated by the models, making them more realistic. Our findings underscore the need to merge data from multiple sources to improve knowledge of current species distributions, and to predict their movement under present and future environmental conditions. The efficiency and success of these approaches require that monitoring efforts involve multiple stakeholders in continuous collaboration via established monitoring networks.

  8. 78 FR 68480 - National Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... NATIONAL SCIENCE FOUNDATION National Science Board The National Science Board's ad hoc Committee on Honorary Awards, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation... gives notice in regard to the scheduling of a meeting for the transaction of National Science Board...

  9. A-Train Education Activities: Partnerships to Engage Citizens with Atmospheric Science

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; Taylor, J.; Chambers, L. H.; Graham, S.; Butcher, G. J.

    2016-12-01

    Since the launch of Aqua in 2002, the A-Train satellites have been at the forefront of observing Earth's atmosphere using the wide variety of instruments on the spacecraft in the formation. Similarly, the A-Train missions have also taken a variety of perspectives on engaging the general public with NASA science. These approaches have included a range of formal education partnerships featuring the GLOBE program (including a cloud observation network through CloudSat, several initiatives to understand and measure aerosols, and development of a new elementary story book), unique citizen-science activities such as Students' Cloud Observations On Line (S'COOL), connections with the PBS Kids SciGirls program, and much more. An education component was also featured at the first A-Train symposium in New Orleans, engaging local educators to learn about the many education resources available from the A-Train missions. Increasingly, the mission education teams have been working together to drive home thematic science content, such as the roles of clouds in our climate system and regular measurements of Earth's radiant energy balance. This paper describes the evolution of A-Train education efforts over the past decade, highlights key achievements, and presents information on new initiatives to continue to engage the public with A-Train science.

  10. 77 FR 1956 - National Science Board; Notice of Opportunity for Public Comment on the National Science Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Notice of Opportunity for Public Comment on the National Science Board Data Policies Report AGENCY: National Science Board (NSB), NSF. ACTION: Request for public comments. SUMMARY: The National Science Board seeks comments from the public on the...

  11. The national science agenda as a ritual of modern nation-statehood: The consequences of national "Science for National Development" projects

    NASA Astrophysics Data System (ADS)

    Drori, Gili S.

    This study is a comparative investigation of the ways by which the globalization of modern science affects the characteristics of different nation-states. Whereas much research and policy discussion focuses on science as an instrumental, or technical, system with immediate consequences for national conditions, such as economic development, science should also be regarded as a general cultural framework, which is highly institutionalized at the global level. As such, the institutionalization of science at both the global and national levels affects a wide variety of national properties. Following this line of reasoning, this dissertation study employs cross-national and longitudinal data and multiple-indicator methods to show national-level consequences of scientific expansion on the processes of rationalization and modernization of social and political life. It appears that the cross-national expansion of science practice results in, or is associated with, a variety of measures of (a) the standardization of civil and governmental procedures and (b) the expansion of the political rights and political engagement. I conclude from these empirical findings that scientization encourages (a) greater general societal rationalization and (b) expanded notions of social actorhood and agency. This evidence demonstrates how the globalization of science alters local conditions, both civil and political, by supporting the institutionalization of bureaucratic practices and participatory politics. Thus, the expansion of science--clearly affected by global processes--carries a general secularized faith in a rationalized world and in human agency. In this sense, the practice of science is a national ritual, whose social role is as a legitimacy-providing institution, rather then a technically functional institution. On a broader level, the study emphasizes the relations between globalization processes and the sovereignty of the nation-state. I conclude that science carries modernist

  12. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers' recording behaviour.

    PubMed

    Boakes, Elizabeth H; Gliozzo, Gianfranco; Seymour, Valentine; Harvey, Martin; Smith, Chloë; Roy, David B; Haklay, Muki

    2016-09-13

    The often opportunistic nature of biological recording via citizen science leads to taxonomic, spatial and temporal biases which add uncertainty to biodiversity estimates. However, such biases may also give valuable insight into volunteers' recording behaviour. Using Greater London as a case-study we examined the composition of three citizen science datasets - from Greenspace Information for Greater London CIC, iSpot and iRecord - with respect to recorder contribution and spatial and taxonomic biases, i.e. when, where and what volunteers record. We found most volunteers contributed few records and were active for just one day. Each dataset had its own taxonomic and spatial signature suggesting that volunteers' personal recording preferences may attract them towards particular schemes. There were also patterns across datasets: species' abundance and ease of identification were positively associated with number of records, as was plant height. We found clear hotspots of recording activity, the 10 most popular sites containing open water. We note that biases are accrued as part of the recording process (e.g. species' detectability) as well as from volunteer preferences. An increased understanding of volunteer behaviour gained from analysing the composition of records could thus enhance the fit between volunteers' interests and the needs of scientific projects.

  13. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour

    PubMed Central

    Boakes, Elizabeth H.; Gliozzo, Gianfranco; Seymour, Valentine; Harvey, Martin; Smith, Chloë; Roy, David B.; Haklay, Muki

    2016-01-01

    The often opportunistic nature of biological recording via citizen science leads to taxonomic, spatial and temporal biases which add uncertainty to biodiversity estimates. However, such biases may also give valuable insight into volunteers’ recording behaviour. Using Greater London as a case-study we examined the composition of three citizen science datasets – from Greenspace Information for Greater London CIC, iSpot and iRecord - with respect to recorder contribution and spatial and taxonomic biases, i.e. when, where and what volunteers record. We found most volunteers contributed few records and were active for just one day. Each dataset had its own taxonomic and spatial signature suggesting that volunteers’ personal recording preferences may attract them towards particular schemes. There were also patterns across datasets: species’ abundance and ease of identification were positively associated with number of records, as was plant height. We found clear hotspots of recording activity, the 10 most popular sites containing open water. We note that biases are accrued as part of the recording process (e.g. species’ detectability) as well as from volunteer preferences. An increased understanding of volunteer behaviour gained from analysing the composition of records could thus enhance the fit between volunteers’ interests and the needs of scientific projects. PMID:27619155

  14. The Smartfin: How Citizen Scientist Surfers Could Help Inform Coastal Ocean Science and Conservation.

    NASA Astrophysics Data System (ADS)

    Stern, A.

    2016-12-01

    Coastal marine ecosystems only represent a small percentage of the global ocean's surface area. However, these ecosystems are highly productive, rich in biodiversity, and are where the vast majority of human activity occurs. The complex interaction between seawater, land, and atmosphere makes coastal ecosystems some of the most dynamic in terms of seawater chemistry. In order to capture these dynamic changes in seawater chemistry across appropriate spatial and temporal scales requires a large amount of measurements. Unfortunately, it is often challenging to maintain an array of oceanographic sensors in coastal ecosystems, especially in high energy areas like the surf zone. Citizen science has the potential to increase the collection of oceanographic data from coastal systems where traditional methods are more difficult or expensive to implement. This talk will highlight the Smartfin, a surfboard mounted fin that measures seawater chemical parameters, physical wave characteristics, and GPS location during an ordinary surf session. Created by environmental non-profit Lost Bird, the Smartfin is a partnership between non-profits (Lost Bird and Surfrider Foundation), researchers (Scripps Institution of Oceanography), engineers (Board Formula), and the citizen science community. With an estimated 23 million surfers worldwide the Smartfin could greatly enhance vital data collection in coastal regions as well as raise awareness about our changing coastal and ocean ecosystems.

  15. Crowdsourcing Science to Promote Human Health: New Tools to Promote Sampling of Mosquito Populations by Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Boger, R. A.; Low, R.; Jaroensutasinee, M.; Jaroensutasinee, K.; Sparrow, E. B.; Costosa, J. I.; Medina, J.; Randolph, G.

    2015-12-01

    GLOBE in Thailand and GLOBE in Africa independently developed citizen science protocols for collecting and analyzing mosquito larvae. These protocols have been piloted in several workshops and implemented in schools. Data collected have been used for several secondary, undergraduate and graduate student research studies. Over this past year, 2015, these protocols have been synthesized into one protocol that will be made available to the world-wide community through the GLOBE website (www.globe.gov). This new protocol is designed to be flexible in the mosquito species that can be collected and the types of environments sampled (e.g., containers in and around the house, ponds, irrigation ditches in a rice paddy field). Plans are underway to enable web-based data entry and mobile apps for data collection and submission. Once everything is finalized, a GLOBE field campaign will be initiated for citizen scientists to collect meaningful data on where different types of mosquito larvae are found and how the abundance and distribution is changing seasonally. To assist in the standardization of data collection and quality control, training slides are being developed and will be made available in early 2016. This will enable a wider participation of citizen scientists to participate in this effort to collect mosquito data by making it easier to become part of the GLOBE community. As with mosquito larvae, training slides are being created for hydrosphere, biosphere, atmosphere, and pedosphere GLOBE measurement protocols. The development of the mosquito protocol and the training slides are in direct response to the GLOBE community's desire to increase citizen science participation beyond primary and secondary schools, in observing and measuring environmental change.

  16. Conservation mycology in Australia and the potential role of citizen science.

    PubMed

    Irga, Peter J; Barker, Katherine; Torpy, Fraser R

    2018-04-23

    Fungi are undoubtedly important for ecosystem functioning, however they are relatively poorly considered in biodiversity conservation planning. Fungi have been omitted or given scant attention in most biodiversity policy documents, management plans and formal conservation schedules throughout the world. This oversight may be due to a general lack of awareness in the scientific community, compounded by a scarcity of mycology-associated curricula at the tertiary level, along with a lack of mycologists in research institutions. While molecular advancements the systematic cataloging of fungi and facilitate insights into fungal communities, the scarcity of professional mycologists in the environmental sciences hampers conservation efforts. Conversely, citizen science initiatives are making significant contributions to the mycology discipline, by both increasing awareness as well as extending the scope of fungal surveys. Future research by professional and amateur mycologists into the distribution and functionality in ecosystems will help us identify wider, and more effective conservation goals. This article is protected by copyright. All rights reserved.

  17. Women's Representation in Science Predicts National Gender-Science Stereotypes: Evidence from 66 Nations

    ERIC Educational Resources Information Center

    Miller, David I.; Eagly, Alice H.; Linn, Marcia C.

    2015-01-01

    In the past 40 years, the proportion of women in science courses and careers has dramatically increased in some nations but not in others. Our research investigated how national differences in women's science participation related to gender-science stereotypes that associate science with men more than women. Data from ~350,000 participants in 66…

  18. eBird—Using citizen-science data to help solve real-world conservation challenges (Invited)

    NASA Astrophysics Data System (ADS)

    Sullivan, B. L.; Iliff, M. J.; Wood, C. L.; Fink, D.; Kelling, S.

    2010-12-01

    eBird (www.ebird.org) is an Internet-based citizen-science project that collects bird observations worldwide. eBird is foremost a tool for birders, providing users with a resource for bird information and a way to keep track of their personal bird lists, thus establishing a model for sustained participation and new project growth. Importantly, eBird data are shared with scientists and conservationists working to save birds and their habitats. Here we highlight two different ways these data are used: as a real-time data gathering and visualization tool; and as the primary resource for developing large-scale bird distribution models that explore species-habitat associations and climate change scenarios. eBird provides data across broad temporal and spatial scales, and is a valuable tool for documenting and monitoring bird populations facing a multitude of anthropogenic and environmental impacts. For example, a focused effort to monitor birds on Gulf Coast beaches using eBird is providing essential baseline data and enabling long-term monitoring of bird populations throughout the region. Additionally, new data visualization tools that incorporate data from eBird, NOAA, and Google, are specifically designed to highlight the potential impacts of the Gulf oil spill on bird populations. Through a collaboration of partners in the DataONE network, such as the Oak Ridge National Laboratory, we will use supercomputing time from the National Science Foundation’s TeraGrid to allow Lab scientists to model bird migration phenology at the population level based on eBird data. The process involves combining bird observations with remotely sensed variables such as landcover and greening index to predict bird movements. Preliminary results of these models allow us to animate bird movements across large spatial scales, and to explore how migration timing might be affected under different climate change scenarios.

  19. Tracking Galaxy Evolution Through Low-Frequency Radio Continuum Observations using SKA and Citizen-Science Research using Multi-Wavelength Data

    NASA Astrophysics Data System (ADS)

    Hota, Ananda; Konar, C.; Stalin, C. S.; Vaddi, Sravani; Mohanty, Pradeepta K.; Dabhade, Pratik; Dharmik Bhoga, Sai Arun; Rajoria, Megha; Sethi, Sagar

    2016-12-01

    We present a brief review of progress in the understanding of general spiral and elliptical galaxies, through merger, star formation and AGN activities. With reference to case studies performed with the GMRT, we highlight the unique aspects of studying galaxies in the radio wavelengths where powerful quasars and bright radio galaxies are traditionally the dominating subjects. Though AGN or quasar activity is extremely energetic, it is extremely short-lived. This justify focussing on transitional galaxies to find relic-evidences of the immediate past AGN-feedback which decide the future course of evolution of a galaxy. Relic radio lobes can be best detected in low frequency observations with the GMRT, LOFAR and in future SKA. The age of these relic radio plasma can be as old as a few hundred Myr. There is a huge gap between this and what is found in optical bands. The very first relic-evidences of a past quasar activity (Hanny's Voorwerp) was discovered in 2007 by a Galaxy Zoo citizen-scientist, a school teacher, in the optical bands. This relic is around a few tens of thousand years old. More discoveries needed to match these time-scales with star formation time-scales in AGN host galaxies to better understand black hole galaxy co-evolution process via feedback-driven quenching of star formation. It is now well-accepted that discovery and characterization of such faint fuzzy relic features can be more efficiently done by human eye than a machine. Radio interferometry images are more complicated than optical and need the citizen-scientists to be trained. RAD@home, the only Indian citizen-science research project in astronomy, analysing TIFR GMRT Sky Survey (TGSS) 150 MHz data and observing from the Giant Meterwave Radio Telescope (GMRT), was launched in April 2013. Unique, zero-infrastructure zero-funded design of RAD@home as a collaboratory of 69 trained e-astronomers is briefly described. Some of the new-found objects like episodic radio galaxies, radio-jet and

  20. Nature's Notebook and Extension: Engaging Citizen-Scientists and 4-H Youth to Observe a Changing Environment

    ERIC Educational Resources Information Center

    Posthumus, Erin E.; Barnett, LoriAnne; Crimmins, Theresa M.; Kish, George R.; Sheftall, Will; Stancioff, Esperanza; Warren, Peter

    2013-01-01

    Extension, with its access to long-term volunteers, has the unique ability to teach citizen scientists about the connection between climate variability and the resulting effects on plants, animals, and thus, humans. The USA National Phenology Network's Nature's Notebook on-line program provides a science learning tool for Extension's Master…

  1. Connecting Teachers and Students to the Natural World through "Operation Spider": An Aspirations Citizen Science Project

    ERIC Educational Resources Information Center

    Paige, Kathy; Lloyd, David; Zeegers, Yvonne; Roetman, Philip; Daniels, Chris; Hoekman, Brad; Linnell, Lisa; George, Ann-Louise; Szilassy, David

    2012-01-01

    This paper reports on a year-long citizen science project that focused on improving learning for students identified as most at risk of not succeeding at school. This project was one element of a broader university-based aspirations Initiative which aimed to engage students from low socio-economic schools in rigorous learning in order to increase…

  2. Marine anthropogenic litter on British beaches: A 10-year nationwide assessment using citizen science data.

    PubMed

    Nelms, S E; Coombes, C; Foster, L C; Galloway, T S; Godley, B J; Lindeque, P K; Witt, M J

    2017-02-01

    Growing evidence suggests that anthropogenic litter, particularly plastic, represents a highly pervasive and persistent threat to global marine ecosystems. Multinational research is progressing to characterise its sources, distribution and abundance so that interventions aimed at reducing future inputs and clearing extant litter can be developed. Citizen science projects, whereby members of the public gather information, offer a low-cost method of collecting large volumes of data with considerable temporal and spatial coverage. Furthermore, such projects raise awareness of environmental issues and can lead to positive changes in behaviours and attitudes. We present data collected over a decade (2005-2014 inclusive) by Marine Conservation Society (MCS) volunteers during beach litter surveys carried along the British coastline, with the aim of increasing knowledge on the composition, spatial distribution and temporal trends of coastal debris. Unlike many citizen science projects, the MCS beach litter survey programme gathers information on the number of volunteers, duration of surveys and distances covered. This comprehensive information provides an opportunity to standardise data for variation in sampling effort among surveys, enhancing the value of outputs and robustness of findings. We found that plastic is the main constituent of anthropogenic litter on British beaches and the majority of traceable items originate from land-based sources, such as public littering. We identify the coast of the Western English Channel and Celtic Sea as experiencing the highest relative litter levels. Increasing trends over the 10-year time period were detected for a number of individual item categories, yet no statistically significant change in total (effort-corrected) litter was detected. We discuss the limitations of the dataset and make recommendations for future work. The study demonstrates the value of citizen science data in providing insights that would otherwise not be

  3. The Maine Vernal Pool Mapping and Assessment Program: Engaging Municipal Officials and Private Landowners in Community-Based Citizen Science

    NASA Astrophysics Data System (ADS)

    Jansujwicz, Jessica S.; Calhoun, Aram J. K.; Lilieholm, Robert J.

    2013-12-01

    The Vernal Pool Mapping and Assessment Program (VPMAP) was initiated in 2007 to create a vernal pool database as a planning tool to foster local compliance with new state vernal pool regulations. In the northeastern United States, vernal pools are seasonal wetlands that provide critical breeding habitat for a number of amphibians and invertebrates and provide important resting and foraging habitat for some rare and endangered state-listed species. Using participant observation, interviews, and focus groups, we examined the engagement of municipal officials and private landowners in VPMAP. Important outcomes of municipal and landowner engagement included mobilization of town support for proactive planning, improved awareness and understanding of vernal pools, and increased interactions between program coordinators, municipal officials, and private landowners. Challenges to municipal and landowner engagement included an inconsistency in expectations between coordinators and municipal officials and a lack of time and sufficient information for follow-up with landowners participating in VPMAP. Our study highlights the importance of developing relationships among coordinators, municipal officials, and private landowners in facilitating positive outcomes for all stakeholders and for effective resource management. We suggest an expanded citizen science model that focuses on improving two-way communication among project coordinators, municipal officials, and local citizens and places communication with private landowners on par with volunteer citizen scientist recruitment and field training. Lessons learned from this research can inform the design and implementation of citizen science projects on private land.

  4. The Moon Zoo citizen science project: Preliminary results for the Apollo 17 landing site

    NASA Astrophysics Data System (ADS)

    Bugiolacchi, Roberto; Bamford, Steven; Tar, Paul; Thacker, Neil; Crawford, Ian A.; Joy, Katherine H.; Grindrod, Peter M.; Lintott, Chris

    2016-06-01

    Moon Zoo is a citizen science project that utilises internet crowd-sourcing techniques. Moon Zoo users are asked to review high spatial resolution images from the Lunar Reconnaissance Orbiter Camera (LROC), onboard NASA's LRO spacecraft, and perform characterisation such as measuring impact crater sizes and identify morphological 'features of interest'. The tasks are designed to address issues in lunar science and to aid future exploration of the Moon. We have tested various methodologies and parameters therein to interrogate and reduce the Moon Zoo crater location and size dataset against a validated expert survey. We chose the Apollo 17 region as a test area since it offers a broad range of cratered terrains, including secondary-rich areas, older maria, and uplands. The assessment involved parallel testing in three key areas: (1) filtering of data to remove problematic mark-ups; (2) clustering methods of multiple notations per crater; and (3) derivation of alternative crater degradation indices, based on the statistical variability of multiple notations and the smoothness of local image structures. We compared different combinations of methods and parameters and assessed correlations between resulting crater summaries and the expert census. We derived the optimal data reduction steps and settings of the existing Moon Zoo crater data to agree with the expert census. Further, the regolith depth and crater degradation states derived from the data are also found to be in broad agreement with other estimates for the Apollo 17 region. Our study supports the validity of this citizen science project but also recommends improvements in key elements of the data acquisition planning and production.

  5. Science & Technology Review September 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duoss, Eric B.; Kotta, Paul R.; Meissner, Caryn N.

    This is the September 2017 edition of the LLNL, Science and Technology Review. At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  6. Phylo: A Citizen Science Approach for Improving Multiple Sequence Alignment

    PubMed Central

    Kam, Alfred; Kwak, Daniel; Leung, Clarence; Wu, Chu; Zarour, Eleyine; Sarmenta, Luis; Blanchette, Mathieu; Waldispühl, Jérôme

    2012-01-01

    Background Comparative genomics, or the study of the relationships of genome structure and function across different species, offers a powerful tool for studying evolution, annotating genomes, and understanding the causes of various genetic disorders. However, aligning multiple sequences of DNA, an essential intermediate step for most types of analyses, is a difficult computational task. In parallel, citizen science, an approach that takes advantage of the fact that the human brain is exquisitely tuned to solving specific types of problems, is becoming increasingly popular. There, instances of hard computational problems are dispatched to a crowd of non-expert human game players and solutions are sent back to a central server. Methodology/Principal Findings We introduce Phylo, a human-based computing framework applying “crowd sourcing” techniques to solve the Multiple Sequence Alignment (MSA) problem. The key idea of Phylo is to convert the MSA problem into a casual game that can be played by ordinary web users with a minimal prior knowledge of the biological context. We applied this strategy to improve the alignment of the promoters of disease-related genes from up to 44 vertebrate species. Since the launch in November 2010, we received more than 350,000 solutions submitted from more than 12,000 registered users. Our results show that solutions submitted contributed to improving the accuracy of up to 70% of the alignment blocks considered. Conclusions/Significance We demonstrate that, combined with classical algorithms, crowd computing techniques can be successfully used to help improving the accuracy of MSA. More importantly, we show that an NP-hard computational problem can be embedded in casual game that can be easily played by people without significant scientific training. This suggests that citizen science approaches can be used to exploit the billions of “human-brain peta-flops” of computation that are spent every day playing games. Phylo is

  7. The notes from nature tool for unlocking biodiversity records from museum records through citizen science.

    PubMed

    Hill, Andrew; Guralnick, Robert; Smith, Arfon; Sallans, Andrew; Rosemary Gillespie; Denslow, Michael; Gross, Joyce; Murrell, Zack; Tim Conyers; Oboyski, Peter; Ball, Joan; Thomer, Andrea; Prys-Jones, Robert; de Torre, Javier; Kociolek, Patrick; Fortson, Lucy

    2012-01-01

    Legacy data from natural history collections contain invaluable and irreplaceable information about biodiversity in the recent past, providing a baseline for detecting change and forecasting the future of biodiversity on a human-dominated planet. However, these data are often not available in formats that facilitate use and synthesis. New approaches are needed to enhance the rates of digitization and data quality improvement. Notes from Nature provides one such novel approach by asking citizen scientists to help with transcription tasks. The initial web-based prototype of Notes from Nature is soon widely available and was developed collaboratively by biodiversity scientists, natural history collections staff, and experts in citizen science project development, programming and visualization. This project brings together digital images representing different types of biodiversity records including ledgers , herbarium sheets and pinned insects from multiple projects and natural history collections. Experts in developing web-based citizen science applications then designed and built a platform for transcribing textual data and metadata from these images. The end product is a fully open source web transcription tool built using the latest web technologies. The platform keeps volunteers engaged by initially explaining the scientific importance of the work via a short orientation, and then providing transcription "missions" of well defined scope, along with dynamic feedback, interactivity and rewards. Transcribed records, along with record-level and process metadata, are provided back to the institutions.  While the tool is being developed with new users in mind, it can serve a broad range of needs from novice to trained museum specialist. Notes from Nature has the potential to speed the rate of biodiversity data being made available to a broad community of users.

  8. GLOBE at Night: Raising Public Awareness and Involvement through Citizen Science

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Sparks, R. T.

    2010-12-01

    With half of the world’s population now living in cities, many urban dwellers have never experienced the wonderment of pristinely dark skies and maybe never will. Light pollution is obscuring people’s long-standing natural heritage to view stars. The GLOBE at Night program (www.globeatnight.org) is an international citizen-science campaign to raise public awareness of the impact of light pollution by encouraging everyone everywhere to measure local levels of night sky brightness and contribute observations online to a world map. In the last 5 years, GLOBE at Night has been the most productive public light pollution monitoring campaign, collecting over 52,000 observations in a two-week period annually. This year, during the moonless two weeks in March, the campaign set a record high of over 17,800 measurements from people in 86 countries. Foundational resources are available to facilitate the public’s participation in promoting dark skies awareness. The GLOBE at Night website explains clearly the simple-to-participate-in 5 step program and offers background information and interactive games on key concepts. The program has been expanded to include trainings of the general public, but especially educators in schools, museums and science centers, in unique ways. Education kits for dark skies awareness have been distributed at the training workshops. The kit includes material for a light shielding demonstration, a digital Sky Quality Meter and “Dark Skies Rangers” activities. The activities are on how unshielded light wastes energy, how light pollution affects wildlife and how you can participate in a citizen-science star-hunt like GLOBE at Night. In addition, projects are being developed for what to do with the data once it is taken. The GLOBE at Night data from different years can be compared to look for trends over time or with population density maps. The data can also be used to search for dark sky oases or to monitor lighting ordinance compliance. Most

  9. Using a Concept Inventory to Assess the Reasoning Component of Citizen-Level Science Literacy: Results from a 17,000-Student Study.

    PubMed

    Nuhfer, Edward B; Cogan, Christopher B; Kloock, Carl; Wood, Gregory G; Goodman, Anya; Delgado, Natalie Zayas; Wheeler, Christopher W

    2016-03-01

    After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs), we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI). In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE) science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science's way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions' higher mean SAT and ACT scores. Socioeconomic factors of a) first-generation student, b) English as a native language, and c) interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders.

  10. Safecast: How disaster led to empowerment of crowdsourced citizen science for radiation measurement and communication after Fukushima

    NASA Astrophysics Data System (ADS)

    Brown, Azby; Franken, Peter; Bonner, Sean; Moross, Joe; Dolezal, Nick

    2016-04-01

    Safecast, an international, volunteer-based organization devoted to monitoring and openly sharing information on environmental radiation and other pollutants, was initiated on March 12, 2011, one day following the start of the Fukushima Daichi Nuclear Power Plant accident, in response to the lack of publicly available, accurate and trustworthy information about the spread of radioactive fallout. Since its inception, Safecast has grown in size, scope, and geographical reach, as well as in the technical sophistication of its citizen-science-based hardware and software systems. The focus of the group's work is to provide citizens worldwide with the tools they need to inform themselves by gathering and sharing accurate environmental data, in an open and participatory fashion. This effort combines hardware and software design for original radiation and air quality measurement devices; visualizations which are made available online and as applications for mobile and desktop; strong public outreach and education programs; and open forums for discussion of radiation, air pollution, and other hazards. The Safecast system is agile and flexible in terms of development and deployment, and all designs, software programs, and data is provided on an open-source basis. In addition, because the group takes no public stance either for or against nuclear power, it has become an important unbiased source of information regarding radiation risks. The Fukushima Daichi NPP disaster provided a crucial opportunity to evaluate the state of preparation on the part the powerplant operator, government agencies, and international oversight bodies, to gather necessary information on radiation risks quickly and to share it both with emergency responders and the general public. The inadequacy of this preparation and the chaotic nature of inter-agency and inter-governmental communication has been well noted in several official reports on the disaster, including those issued by The National Diet of

  11. Combining citizen science species distribution models and stable isotopes reveals migratory connectivity in the secretive Virginia rail

    USGS Publications Warehouse

    Fournier, Auriel M. V.; Sullivan, Alexis R.; Bump, Joseph K.; Perkins, Marie; Shieldcastle, Mark C.; King, Sammy L.

    2017-01-01

    Stable hydrogen isotope (δD) methods for tracking animal movement are widely used yet often produce low resolution assignments. Incorporating prior knowledge of abundance, distribution or movement patterns can ameliorate this limitation, but data are lacking for most species. We demonstrate how observations reported by citizen scientists can be used to develop robust estimates of species distributions and to constrain δD assignments.We developed a Bayesian framework to refine isotopic estimates of migrant animal origins conditional on species distribution models constructed from citizen scientist observations. To illustrate this approach, we analysed the migratory connectivity of the Virginia rail Rallus limicola, a secretive and declining migratory game bird in North America.Citizen science observations enabled both estimation of sampling bias and construction of bias-corrected species distribution models. Conditioning δD assignments on these species distribution models yielded comparably high-resolution assignments.Most Virginia rails wintering across five Gulf Coast sites spent the previous summer near the Great Lakes, although a considerable minority originated from the Chesapeake Bay watershed or Prairie Pothole region of North Dakota. Conversely, the majority of migrating Virginia rails from a site in the Great Lakes most likely spent the previous winter on the Gulf Coast between Texas and Louisiana.Synthesis and applications. In this analysis, Virginia rail migratory connectivity does not fully correspond to the administrative flyways used to manage migratory birds. This example demonstrates that with the increasing availability of citizen science data to create species distribution models, our framework can produce high-resolution estimates of migratory connectivity for many animals, including cryptic species. Empirical evidence of links between seasonal habitats will help enable effective habitat management, hunting quotas and population monitoring and

  12. Science & Technology Review June 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, Ramona L.; Chinn, Ken B.; Kotta, Paul

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  13. Zooniverse - Web scale citizen science with people and machines. (Invited)

    NASA Astrophysics Data System (ADS)

    Smith, A.; Lynn, S.; Lintott, C.; Simpson, R.

    2013-12-01

    The Zooniverse (zooniverse.org) began in 2007 with the launch of Galaxy Zoo, a project in which more than 175,000 people provided shape analyses of more than 1 million galaxy images sourced from the Sloan Digital Sky Survey. These galaxy 'classifications', some 60 million in total, have since been used to produce more than 50 peer-reviewed publications based not only on the original research goals of the project but also because of serendipitous discoveries made by the volunteer community. Based upon the success of Galaxy Zoo the team have gone on to develop more than 25 web-based citizen science projects, all with a strong research focus in a range of subjects from astronomy to zoology where human-based analysis still exceeds that of machine intelligence. Over the past 6 years Zooniverse projects have collected more than 300 million data analyses from over 1 million volunteers providing fantastically rich datasets for not only the individuals working to produce research from their project but also the machine learning and computer vision research communities. The Zooniverse platform has always been developed to be the 'simplest thing that works' implementing only the most rudimentary algorithms for functionality such as task allocation and user-performance metrics - simplifications necessary to scale the Zooniverse such that the core team of developers and data scientists can remain small and the cost of running the computing infrastructure relatively modest. To date these simplifications have been appropriate for the data volumes and analysis tasks being addressed. This situation however is changing: next generation telescopes such as the Large Synoptic Sky Telescope (LSST) will produce data volumes dwarfing those previously analyzed. If citizen science is to have a part to play in analyzing these next-generation datasets then the Zooniverse will need to evolve into a smarter system capable for example of modeling the abilities of users and the complexities of

  14. National GDP, Science Interest and Science Achievement: A Person-by-Nation Interaction

    PubMed Central

    Drob, Elliot M. Tucker; Cheung, Amanda K.; Briley, Daniel A.

    2014-01-01

    Maximizing science achievement is a critical target of educational policy, with important implications for national and international economic and technological competitiveness. Previous research has identified both science interest and socioeconomic status (SES) as robust predictors of science achievement, but little research has examined their joint effects. In a dataset drawn from approximately 400,000 high school students from 57 countries, we document large interest by SES and interest by per capita gross domestic product (GDP) interactions in the prediction of science achievement. Student interest in science is a substantially stronger predictor of science achievement in higher socioeconomic contexts and in higher GDP nations. Our results are consistent with the hypothesis that, in higher opportunity contexts, motivational factors play larger roles in learning and achievement. They add to the growing body of evidence indicating that substantial cross national differences in psychological effect sizes are not simply a logical possibility, but in many cases, an empirical reality. PMID:25304883

  15. Using Food Science Demonstrations to Engage Students of All Ages in Science, Technology, Engineering, and Mathematics (STEM)

    ERIC Educational Resources Information Center

    Schmidt, Shelly J.; Bohn, Dawn M.; Rasmussen, Aaron J.; Sutherland, Elizabeth A.

    2012-01-01

    The overarching goal of the Science, Technology, Engineering, and Mathematics (STEM) Education Initiative is to foster effective STEM teaching and learning throughout the educational system at the local, state, and national levels, thereby producing science literate citizens and a capable STEM workforce. To contribute to achieving this goal, we…

  16. Integrating Remote Sensing and Citizen Science to Study the Environmental Context and Ecological Consequences of Returning Avian Predators

    NASA Astrophysics Data System (ADS)

    Zuckerberg, B.; McCabe, J.; Yin, H.; Pidgeon, A. M.; Bonter, D. N.; Radeloff, V.

    2017-12-01

    Urbanization causes the simplification of animal communities dominated by exotic and invasive species with few top predators. In recent years, however, many animal predators (e.g., coyotes, cougars, and hawks) have become increasingly common in urban environments. As predator recovery is central to the mission of conservation biology, this colonization of urban environments represents a unique experiment in predator colonization and its associated ecological consequences. One such predator that is recovering from decades of widespread population declines are accipiter hawks. These woodland hawks are widely distributed throughout North America and are increasingly common in urban and suburban landscapes. Using data from Project FeederWatch, a national citizen science program, we quantified 25 years (1990-2015) of changes in the spatiotemporal dynamics of accipiter hawks in Washington D.C. and Chicago. We estimated change in hawk occupancy over time and identified the environmental characteristics associated with occupancy for two accipiter hawk species, Cooper's Hawk (Accipiter cooperii) and Sharp-shinned Hawk (Accipiter striatus), using Bayesian hierarchical models and remotely-sensed temperature (MODIS) and land cover data (NLCD). We found the proportion of sites recording the presence of accipiter hawks increased from 10% in the early 1990's to over 80% in 2015. This increase in occupancy followed a discrete pattern of establishment, growth, and saturation. Colonizing hawks were more strongly associated with remnant forest patches in urban environments. Over time, we found hawks became more tolerant of urban landscapes with higher amounts of impervious surface, suggesting that these predators became adapted to urbanization. The implications of returning predators and altered ecological dynamics in urban environments is of critical importance to conservation biology, and integrating remote sensing observations and citizen science allowed for an unprecedented

  17. Understanding Human-Coyote Encounters in Urban Ecosystems Using Citizen Science Data: What Do Socioeconomics Tell Us?

    NASA Astrophysics Data System (ADS)

    Wine, Stuart; Gagné, Sara A.; Meentemeyer, Ross K.

    2015-01-01

    The coyote ( Canis latrans) has dramatically expanded its range to include the cities and suburbs of the western US and those of the Eastern Seaboard. Highly adaptable, this newcomer's success causes conflicts with residents, necessitating research to understand the distribution of coyotes in urban landscapes. Citizen science can be a powerful approach toward this aim. However, to date, the few studies that have used publicly reported coyote sighting data have lacked an in-depth consideration of human socioeconomic variables, which we suggest are an important source of overlooked variation in data that describe the simultaneous occurrence of coyotes and humans. We explored the relative importance of socioeconomic variables compared to those describing coyote habitat in predicting human-coyote encounters in highly-urbanized Mecklenburg County, North Carolina, USA using 707 public reports of coyote sightings, high-resolution land cover, US Census data, and an autologistic multi-model inference approach. Three of the four socioeconomic variables which we hypothesized would have an important influence on encounter probability, namely building density, household income, and occupation, had effects at least as large as or larger than coyote habitat variables. Our results indicate that the consideration of readily available socioeconomic variables in the analysis of citizen science data improves the prediction of species distributions by providing insight into the effects of important factors for which data are often lacking, such as resource availability for coyotes on private property and observer experience. Managers should take advantage of citizen scientists in human-dominated landscapes to monitor coyotes in order to understand their interactions with humans.

  18. Amphibian and reptile road-kills on tertiary roads in relation to landscape structure: using a citizen science approach with open-access land cover data.

    PubMed

    Heigl, Florian; Horvath, Kathrin; Laaha, Gregor; Zaller, Johann G

    2017-06-26

    Amphibians and reptiles are among the most endangered vertebrate species worldwide. However, little is known how they are affected by road-kills on tertiary roads and whether the surrounding landscape structure can explain road-kill patterns. The aim of our study was to examine the applicability of open-access remote sensing data for a large-scale citizen science approach to describe spatial patterns of road-killed amphibians and reptiles on tertiary roads. Using a citizen science app we monitored road-kills of amphibians and reptiles along 97.5 km of tertiary roads covering agricultural, municipal and interurban roads as well as cycling paths in eastern Austria over two seasons. Surrounding landscape was assessed using open access land cover classes for the region (Coordination of Information on the Environment, CORINE). Hotspot analysis was performed using kernel density estimation (KDE+). Relations between land cover classes and amphibian and reptile road-kills were analysed with conditional probabilities and general linear models (GLM). We also estimated the potential cost-efficiency of a large scale citizen science monitoring project. We recorded 180 amphibian and 72 reptile road-kills comprising eight species mainly occurring on agricultural roads. KDE+ analyses revealed a significant clustering of road-killed amphibians and reptiles, which is an important information for authorities aiming to mitigate road-kills. Overall, hotspots of amphibian and reptile road-kills were next to the land cover classes arable land, suburban areas and vineyards. Conditional probabilities and GLMs identified road-kills especially next to preferred habitats of green toad, common toad and grass snake, the most often found road-killed species. A citizen science approach appeared to be more cost-efficient than monitoring by professional researchers only when more than 400 km of road are monitored. Our findings showed that freely available remote sensing data in combination with a

  19. Can Observation Skills of Citizen Scientists Be Estimated Using Species Accumulation Curves?

    PubMed

    Kelling, Steve; Johnston, Alison; Hochachka, Wesley M; Iliff, Marshall; Fink, Daniel; Gerbracht, Jeff; Lagoze, Carl; La Sorte, Frank A; Moore, Travis; Wiggins, Andrea; Wong, Weng-Keen; Wood, Chris; Yu, Jun

    2015-01-01

    Volunteers are increasingly being recruited into citizen science projects to collect observations for scientific studies. An additional goal of these projects is to engage and educate these volunteers. Thus, there are few barriers to participation resulting in volunteer observers with varying ability to complete the project's tasks. To improve the quality of a citizen science project's outcomes it would be useful to account for inter-observer variation, and to assess the rarely tested presumption that participating in a citizen science projects results in volunteers becoming better observers. Here we present a method for indexing observer variability based on the data routinely submitted by observers participating in the citizen science project eBird, a broad-scale monitoring project in which observers collect and submit lists of the bird species observed while birding. Our method for indexing observer variability uses species accumulation curves, lines that describe how the total number of species reported increase with increasing time spent in collecting observations. We find that differences in species accumulation curves among observers equates to higher rates of species accumulation, particularly for harder-to-identify species, and reveals increased species accumulation rates with continued participation. We suggest that these properties of our analysis provide a measure of observer skill, and that the potential to derive post-hoc data-derived measurements of participant ability should be more widely explored by analysts of data from citizen science projects. We see the potential for inferential results from analyses of citizen science data to be improved by accounting for observer skill.

  20. Can Observation Skills of Citizen Scientists Be Estimated Using Species Accumulation Curves?

    PubMed Central

    Kelling, Steve; Johnston, Alison; Hochachka, Wesley M.; Iliff, Marshall; Fink, Daniel; Gerbracht, Jeff; Lagoze, Carl; La Sorte, Frank A.; Moore, Travis; Wiggins, Andrea; Wong, Weng-Keen; Wood, Chris; Yu, Jun

    2015-01-01

    Volunteers are increasingly being recruited into citizen science projects to collect observations for scientific studies. An additional goal of these projects is to engage and educate these volunteers. Thus, there are few barriers to participation resulting in volunteer observers with varying ability to complete the project’s tasks. To improve the quality of a citizen science project’s outcomes it would be useful to account for inter-observer variation, and to assess the rarely tested presumption that participating in a citizen science projects results in volunteers becoming better observers. Here we present a method for indexing observer variability based on the data routinely submitted by observers participating in the citizen science project eBird, a broad-scale monitoring project in which observers collect and submit lists of the bird species observed while birding. Our method for indexing observer variability uses species accumulation curves, lines that describe how the total number of species reported increase with increasing time spent in collecting observations. We find that differences in species accumulation curves among observers equates to higher rates of species accumulation, particularly for harder-to-identify species, and reveals increased species accumulation rates with continued participation. We suggest that these properties of our analysis provide a measure of observer skill, and that the potential to derive post-hoc data-derived measurements of participant ability should be more widely explored by analysts of data from citizen science projects. We see the potential for inferential results from analyses of citizen science data to be improved by accounting for observer skill. PMID:26451728

  1. Use of social media and online tools for participative space education and citizen science in India: Perspectives of future space leaders

    NASA Astrophysics Data System (ADS)

    Khan, Aafaque; Sridhar, Apoorva

    2012-07-01

    review with various examples of present existing projects such as Open NASA, Zooniverse, SETI, Google Earth etc. Support these perspectives. Further, the authors put light on how developing countries can benefit from Space outreach and citizen science through Social Media to connect with the society. The paper concludes with various innovative ideas that are derived from the survey and discussions with these prospective space leaders, along with the insights of the authors on future strategies for such approaches in India and other developing nations. Demographically, youth provides the largest user-base to the Social Media and these young future space leaders are expert at using Social Media in their daily life. Thus, it is important that their collective and shared opinion is presented to the present policymakers and leaders of space agencies and industry.

  2. A Citizen-Science Study Documents Environmental ...

    EPA Pesticide Factsheets

    A citizen-science study was conducted in two low-income, flood-prone communities in Atlanta, Georgia, in order to document environmental exposures and the prevalence of occupant asthma. Teams consisting of a public-health graduate student and a resident from one of the two communities administered a questionnaire, inspected residences for mold growth, and collected a dust sample for quantifying mold contamination. The dust samples were analyzed for the 36 molds that make up the Environmental Relative Moldiness Index (ERMI). Most residents (76%) were renters. The median duration of residence was 2.5 years. Although only 12% of occupants reported a history of flooding, 46% reported at least one water leak. Homes with visible mold (35%) had significantly (P < 0.05) higher mean ERMI values compared to homes without (14.0 versus 9.6). The prevalence of self-reported, current asthma among participants was 14%. In logistic regression models controlling for indoor smoking, among participants residing at their current residence for two years or less, a positive association was observed between asthma and the homes' ERMI values (adjusted odds ratio per unit increase in ERMI = 1.12, 95% confidence intervals (CI): 1.01-1.25; two-tailed P = 0.04). Documentation of the exposures and asthma prevalence has been presented to the communities and public officials. Community-based organizations have taken responsibility for planning and implementing activities in response to the st

  3. The Citizen Science Project 'Mueckenatlas' Helps Monitor the Distribution and Spread of Invasive Mosquito Species in Germany.

    PubMed

    Walther, Doreen; Kampen, Helge

    2017-11-07

    The citizen science project 'Mueckenatlas' (mosquito atlas) was implemented in early 2012 to improve mosquito surveillance in Germany. Citizens are asked to support the spatiotemporal mapping of culicids by submitting mosquito specimens collected in their private surroundings. The Mueckenatlas has developed into an efficient tool for data collection with close to 30,000 mosquitoes submitted by the end of 2015. While the vast majority of submissions included native mosquito species, a small percentage represented invasive species. The discovery of Aedes albopictus (Skuse) (Diptera: Culicidae), Aedes japonicus japonicus (Theobald) (Diptera: Culicidae) and Aedes koreicus (Edwards) (Diptera: Culicidae) specimens via the Mueckenatlas project prompted targeted monitoring activities in the field which produced additional information on the distribution of these species in Germany. Among others, Mueckenatlas submissions led to the detection of three populations of Ae. j. japonicus in West, North and Southeast Germany in 2012, 2013, and 2015, respectively. As demonstrated by on-site monitoring, the origins of Ae. j. japonicus specimens submitted to the Mueckenatlas mirror the distribution areas of the four presently known German populations as found by active field sampling (the fourth population already reported prior to the launch of the Mueckenatlas). The data suggest that a citizen science project such as the Mueckenatlas may aid in detecting changes in the mosquito fauna and can therefore be used to guide the design of more targeted field surveillance activities. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  4. Using a Concept Inventory to Assess the Reasoning Component of Citizen-Level Science Literacy: Results from a 17,000-Student Study†

    PubMed Central

    Nuhfer, Edward B.; Cogan, Christopher B.; Kloock, Carl; Wood, Gregory G.; Goodman, Anya; Delgado, Natalie Zayas; Wheeler, Christopher W.

    2016-01-01

    After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs), we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI). In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE) science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science’s way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions’ higher mean SAT and ACT scores. Socioeconomic factors of a) first-generation student, b) English as a native language, and c) interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders. PMID:27047612

  5. Validating novel air pollution sensors to improve exposure estimates for epidemiological analyses and citizen science.

    PubMed

    Jerrett, Michael; Donaire-Gonzalez, David; Popoola, Olalekan; Jones, Roderic; Cohen, Ronald C; Almanza, Estela; de Nazelle, Audrey; Mead, Iq; Carrasco-Turigas, Glòria; Cole-Hunter, Tom; Triguero-Mas, Margarita; Seto, Edmund; Nieuwenhuijsen, Mark

    2017-10-01

    Low cost, personal air pollution sensors may reduce exposure measurement errors in epidemiological investigations and contribute to citizen science initiatives. Here we assess the validity of a low cost personal air pollution sensor. Study participants were drawn from two ongoing epidemiological projects in Barcelona, Spain. Participants repeatedly wore the pollution sensor - which measured carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO 2 ). We also compared personal sensor measurements to those from more expensive instruments. Our personal sensors had moderate to high correlations with government monitors with averaging times of 1-h and 30-min epochs (r ~ 0.38-0.8) for NO and CO, but had low to moderate correlations with NO 2 (~0.04-0.67). Correlations between the personal sensors and more expensive research instruments were higher than with the government monitors. The sensors were able to detect high and low air pollution levels in agreement with expectations (e.g., high levels on or near busy roadways and lower levels in background residential areas and parks). Our findings suggest that the low cost, personal sensors have potential to reduce exposure measurement error in epidemiological studies and provide valid data for citizen science studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Geographically Distributed Citizen Scientist Training for the 2017 Citizen CATE Experiment

    NASA Astrophysics Data System (ADS)

    Gelderman, Richard; Penn, Matt; Baer, Robert; Isberner, Fred; Pierce, Michael; Walter, Donald K.; Yanamandra-Fisher, Padma; Sheeley, Neil R.

    2016-01-01

    The solar eclipse of 21 August 2017 will be visible to over a half billion people across the entire North American continent. The roughly 100-mile wide path of totality, stretching from Oregon to South Carolina, will be the destination for tens of millions of people. In the decades since 1979, when the last total solar eclipse was visible from the continental USA, the phenomenon of Internet enabled citizen science has grown to be an accepted mode for science. The Citizen Continental-America Telescopic Eclipse (Citizen CATE) experiment has been funded as one of the three 2017 eclipse related NASA STEM agreements to engage citizen scientists in a unique, cutting-edge solar physics experiment. Teams across the USA will be trained to use standardized refracting telescope and digital imager set-ups to observe the solar corona during the eclipse, acquiring multiple exposures to create one high dynamic range image. After observing during the eclipse, the CATE volunteers will upload the combined image to a cloud-storage site and the CATE team will then work to properly orient and align all the images collected from across the continent to produce a continuous 90-minutes movie. A time-compressed first cut of the entire sequence will be made available to media outlets on the same afternoon of the eclipse, with hope that high quality images will encourage the most accurate coverage of this Great American Eclipse. We discuss overall the project, as well as details of the initial tests of the prototype set-up (including in the Faroe Islands during the March 2015 total solar eclipse) and plans for the future night-time and day-time observing campaigns, and for a handful of observing teams positioned for overlapping observations of the March 2016 total solar eclipse in the South Pacific.

  7. Addressing Common Student Technical Errors in Field Data Collection: An Analysis of a Citizen-Science Monitoring Project.

    PubMed

    Philippoff, Joanna; Baumgartner, Erin

    2016-03-01

    The scientific value of citizen-science programs is limited when the data gathered are inconsistent, erroneous, or otherwise unusable. Long-term monitoring studies, such as Our Project In Hawai'i's Intertidal (OPIHI), have clear and consistent procedures and are thus a good model for evaluating the quality of participant data. The purpose of this study was to examine the kinds of errors made by student researchers during OPIHI data collection and factors that increase or decrease the likelihood of these errors. Twenty-four different types of errors were grouped into four broad error categories: missing data, sloppiness, methodological errors, and misidentification errors. "Sloppiness" was the most prevalent error type. Error rates decreased with field trip experience and student age. We suggest strategies to reduce data collection errors applicable to many types of citizen-science projects including emphasizing neat data collection, explicitly addressing and discussing the problems of falsifying data, emphasizing the importance of using standard scientific vocabulary, and giving participants multiple opportunities to practice to build their data collection techniques and skills.

  8. Citizen science identifies the effects of nitrogen dioxide and other environmental drivers on tar spot of sycamore.

    PubMed

    Gosling, Laura; Ashmore, Mike; Sparks, Tim; Bell, Nigel

    2016-07-01

    Elevated sulphur dioxide (SO2) concentrations were the major cause of the absence of symptoms of tar spot (Rhytisma acerinum) of sycamore (Acer pseudoplatanus), in urban areas in the 1970s. The subsequent large decline in SO2 concentrations has not always been accompanied by increased tar spot symptoms, for reasons that have remained unresolved. We used a large citizen science survey, providing over 1000 records across England, to test two competing hypotheses proposed in earlier studies. We were able to demonstrate the validity of both hypotheses; tar spot symptoms were reduced where there were fewer fallen leaves as a source of inoculum, and elevated nitrogen dioxide concentrations reduced tar spot symptoms above a threshold concentration of about 20 μg m(-3). Symptom severity was also lower at sites with higher temperature and lower rainfall. Our findings demonstrate the power of citizen science to resolve competing hypotheses about the impacts of air pollution and other environmental drivers. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Mars in Motion: An online Citizen Science platform looking for changes on the surface of Mars

    NASA Astrophysics Data System (ADS)

    Sprinks, James Christopher; Wardlaw, Jessica; Houghton, Robert; Bamford, Steven; Marsh, Stuart

    2016-10-01

    The European FP7 iMars project has developed tools and 3D models of the Martian surface through the co-registration of NASA and ESA mission data dating from the Viking missions of the 1970s to the present day, for a much more comprehensive interpretation of the geomorphological and climatic processes that have taken and do take place. We present the Citizen Science component of the project, 'Mars in Motion', created through the Zooniverse's Panoptes framework to allow volunteers to look for and identify changes on the surface of Mars over time. 'Mars in Motion', as with many other current citizen science platforms of a planetary or other disciplinary focus, has been developed to compliment the results of automated data mining analysis software, both by validation through the creation of training data and by adding context - gathering more in-depth data on the type and metrics of change initially detected.Through the analysis of initial volunteer results collected in the second half of 2016, the accuracy and ability of untrained participants to identify geomorphological changes is considered, as well as the impact of their position in the system. Volunteer contribution, either as a filter for poor quality imagery pre-algorithm, validation of algorithmic analysis, or adding context to pre-detected change, and their awareness and interpretation of its importance, can directly influence engagement with the platform and therefore ultimately its success. Understanding the effect of the volunteer and software's role in the system on both the results of and engagement with planetary science citizen science platforms will be an important lesson for the future, especially as the next generation of planetary missions will likely collect data orders of magnitude greater in volume. To deal with the data overload, it is likely that human or software solutions alone will not be sufficient, and that a combination of the two working together in a complimentary system that combines

  10. Dragonfly Mercury Project—A citizen science driven approach to linking surface-water chemistry and landscape characteristics to biosentinels on a national scale

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Nelson, Sarah J.; Willacker,, James J.; Flanagan Pritz, Colleen M.; Krabbenhoft, David P.

    2016-02-29

    Mercury is a globally distributed pollutant that threatens human and ecosystem health. Even protected areas, such as national parks, are subjected to mercury contamination because it is delivered through atmospheric deposition, often after long-range transport. In aquatic ecosystems, certain environmental conditions can promote microbial processes that convert inorganic mercury to an organic form (methylmercury). Methylmercury biomagnifies through food webs and is a potent neurotoxicant and endocrine disruptor. The U.S. Geological Survey (USGS), the University of Maine, and the National Park Service (NPS) Air Resources Division are working in partnership at more than 50 national parks across the United States, and with citizen scientists as key participants in data collection, to develop dragonfly nymphs as biosentinels for mercury in aquatic food webs. To validate the use of these biosentinels, and gain a better understanding of the connection between biotic and abiotic pools of mercury, this project also includes collection of landscape data and surface-water chemistry including mercury, methylmercury, pH, sulfate, and dissolved organic carbon and sediment mercury concentration. Because of the wide geographic scope of the research, the project also provides a nationwide “snapshot” of mercury in primarily undeveloped watersheds.

  11. Historical citizen science to understand and predict climate-driven trout decline

    PubMed Central

    Ninyerola, Miquel; Hermoso, Virgilio; Filipe, Ana Filipa; Pla, Magda; Villero, Daniel; Brotons, Lluís; Delibes, Miguel

    2017-01-01

    Historical species records offer an excellent opportunity to test the predictive ability of range forecasts under climate change, but researchers often consider that historical records are scarce and unreliable, besides the datasets collected by renowned naturalists. Here, we demonstrate the relevance of biodiversity records developed through citizen-science initiatives generated outside the natural sciences academia. We used a Spanish geographical dictionary from the mid-nineteenth century to compile over 10 000 freshwater fish records, including almost 4 000 brown trout (Salmo trutta) citations, and constructed a historical presence–absence dataset covering over 2 000 10 × 10 km cells, which is comparable to present-day data. There has been a clear reduction in trout range in the past 150 years, coinciding with a generalized warming. We show that current trout distribution can be accurately predicted based on historical records and past and present values of three air temperature variables. The models indicate a consistent decline of average suitability of around 25% between 1850s and 2000s, which is expected to surpass 40% by the 2050s. We stress the largely unexplored potential of historical species records from non-academic sources to open new pathways for long-term global change science. PMID:28077766

  12. Capitalizing on Citizen Science Data for Validating Models and Generating Hypotheses Describing Meteorological Drivers of Mosquito-Borne Disease Risk

    NASA Astrophysics Data System (ADS)

    Boger, R. A.; Low, R.; Paull, S.; Anyamba, A.; Soebiyanto, R. P.

    2017-12-01

    Temperature and precipitation are important drivers of mosquito population dynamics, and a growing set of models have been proposed to characterize these relationships. Validation of these models, and development of broader theories across mosquito species and regions could nonetheless be improved by comparing observations from a global dataset of mosquito larvae with satellite-based measurements of meteorological variables. Citizen science data can be particularly useful for two such aspects of research into the meteorological drivers of mosquito populations: i) Broad-scale validation of mosquito distribution models and ii) Generation of quantitative hypotheses regarding changes to mosquito abundance and phenology across scales. The recently released GLOBE Observer Mosquito Habitat Mapper (GO-MHM) app engages citizen scientists in identifying vector taxa, mapping breeding sites and decommissioning non-natural habitats, and provides a potentially useful new tool for validating mosquito ubiquity projections based on the analysis of remotely sensed environmental data. Our early work with GO-MHM data focuses on two objectives: validating citizen science reports of Aedes aegypti distribution through comparison with accepted scientific data sources, and exploring the relationship between extreme temperature and precipitation events and subsequent observations of mosquito larvae. Ultimately the goal is to develop testable hypotheses regarding the shape and character of this relationship between mosquito species and regions.

  13. [Can tobacco companies be good corporate citizens?].

    PubMed

    Palazzo, G; Mena, S

    2009-07-01

    Tobacco companies have jumped on the Corporate social responsibility (CSR) bandwagon as a tentative to be societally accepted as responsible actors and good corporate citizens. This is however not possible for two reasons. First, the product they sell is lethal and thus not compatible with the precondition of doing no harm to be a good corporate citizen. Second, the behavior of tobacco firms is not responsible, being illustrated by four examples: junk science versus sound science strategy, seducing young smokers, political lobbying and getting customers on new markets. To conclude, three implications for regulating the activities of the tobacco industry are given.

  14. Citizen Science and Crowdsourcing as effective STEM Education and Engagement activities for Diverse Audiences: case studies featured in THE CROWD & THE CLOUD public TV series.

    NASA Astrophysics Data System (ADS)

    Haines-Stiles, G.; Abdalati, W.; Akuginow, E.

    2017-12-01

    Citizen science and crowdsourcing are relatively unfamiliar terms to the general public, including parents, children and teachers, as seen in focus groups convened by the NSF-funded THE CROWD & THE CLOUD public television series. Once aware, however, of the potential of today's citizen science—often relying on smartphones, apps and innovative sensors—both citizens and professional scientists become excited and seek to learn more. CROWD & CLOUD, premiering on PBS stations in April 2017, hosted by former NASA Chief Scientist Waleed Abdalati, and streaming at CrowdAndCloud.org, features a wide range of projects supported by NASA, NOAA, USGS, EPA and other Federal agencies. Some, such as EyesOnALZ, a startup which aims to accelerate research on Alzheimer's disease, adapt a crowdsourcing model first developed to help analyze data returned by NASA's Stardust spacecraft. Early results from its "StallCatchers" puzzle-game show both high quality data and have been shown to cut one year's worth of academic labor down to one month of effort by "the crowd." While longstanding citizen science projects such as Audubon's Christmas Bird Count (starting in 1900) have proven their worth, Smartfin—embedding sensors in surfboard fins—is taking advantage of recent technical innovations to track sea surface temperatures and ocean acidification, with their accuracy validated by the Scripps Institution of Oceanography. The NASA-supported GLOBE Observer mosquito habitat mapper project uses a $6 microscope attached to a smartphone to aid in species identification. Some projects tap adult volunteers, but many, such as USGS's Nature's Notebook, also appeal to youngsters. In Albuquerque local teens track invasive species and help refuge managers, usefully supplementing the sole salaried ranger. In the Rockaways, New York, high school students plant pollinator gardens and promote ecosystem resilience following Superstorm Sandy. This presentation will feature short videos demonstrating

  15. Low-cost Citizen Science Balloon Platform for Measuring Air Pollutants to Improve Satellite Retrieval Algorithms

    NASA Astrophysics Data System (ADS)

    Potosnak, M. J.; Beck-Winchatz, B.; Ritter, P.

    2016-12-01

    High-altitude balloons (HABs) are an engaging platform for citizen science and formal and informal STEM education. However, the logistics of launching, chasing and recovering a payload on a 1200 g or 1500 g balloon can be daunting for many novice school groups and citizen scientists, and the cost can be prohibitive. In addition, there are many interesting scientific applications that do not require reaching the stratosphere, including measuring atmospheric pollutants in the planetary boundary layer. With a large number of citizen scientist flights, these data can be used to constrain satellite retrieval algorithms. In this poster presentation, we discuss a novel approach based on small (30 g) balloons that are cheap and easy to handle, and low-cost tracking devices (SPOT trackers for hikers) that do not require a radio license. Our scientific goal is to measure air quality in the lower troposphere. For example, particulate matter (PM) is an air pollutant that varies on small spatial scales and has sources in rural areas like biomass burning and farming practices such as tilling. Our HAB platform test flight incorporates an optical PM sensor, an integrated single board computer that records the PM sensor signal in addition to flight parameters (pressure, location and altitude), and a low-cost tracking system. Our goal is for the entire platform to cost less than $500. While the datasets generated by these flights are typically small, integrating a network of flight data from citizen scientists into a form usable for comparison to satellite data will require big data techniques.

  16. Geological Education and the Senior Citizen.

    ERIC Educational Resources Information Center

    Larkin, Robert P.

    1982-01-01

    Although most educational programs for senior citizens emphasize arts and crafts, model science programs designed specifically for seniors, emphasizing geological science, have been developed at the University of Colorado (Colorado Springs). The programs have been well received and can be useful in integrating or mainstreaming seniors into the…

  17. The notes from nature tool for unlocking biodiversity records from museum records through citizen science

    PubMed Central

    Hill, Andrew; Guralnick, Robert; Smith, Arfon; Sallans, Andrew; Rosemary Gillespie; Denslow, Michael; Gross, Joyce; Murrell, Zack; Tim Conyers; Oboyski, Peter; Ball, Joan; Thomer, Andrea; Prys-Jones, Robert; de Torre, Javier; Kociolek, Patrick; Fortson, Lucy

    2012-01-01

    Abstract Legacy data from natural history collections contain invaluable and irreplaceable information about biodiversity in the recent past, providing a baseline for detecting change and forecasting the future of biodiversity on a human-dominated planet. However, these data are often not available in formats that facilitate use and synthesis. New approaches are needed to enhance the rates of digitization and data quality improvement. Notes from Nature provides one such novel approach by asking citizen scientists to help with transcription tasks. The initial web-based prototype of Notes from Nature is soon widely available and was developed collaboratively by biodiversity scientists, natural history collections staff, and experts in citizen science project development, programming and visualization. This project brings together digital images representing different types of biodiversity records including ledgers , herbarium sheets and pinned insects from multiple projects and natural history collections. Experts in developing web-based citizen science applications then designed and built a platform for transcribing textual data and metadata from these images. The end product is a fully open source web transcription tool built using the latest web technologies. The platform keeps volunteers engaged by initially explaining the scientific importance of the work via a short orientation, and then providing transcription “missions” of well defined scope, along with dynamic feedback, interactivity and rewards. Transcribed records, along with record-level and process metadata, are provided back to the institutions.  While the tool is being developed with new users in mind, it can serve a broad range of needs from novice to trained museum specialist. Notes from Nature has the potential to speed the rate of biodiversity data being made available to a broad community of users. PMID:22859890

  18. The how and why of societal publications for citizen science projects and scientists

    NASA Astrophysics Data System (ADS)

    van Vliet, Arnold J. H.; Bron, Wichertje A.; Mulder, Sara

    2014-05-01

    In the scientific community, the importance of communication to society is often underestimated. Scientists and scientific organisations often lack the skills to organise such communication effectively. The Dutch citizen science phenology network Nature's Calendar has been successful in communicating to the general public via numerous newspaper articles, television appearances, presentations, websites and social media. We refer to these publications as societal publications. Due to active communication to mass media, we frequently reach millions of people. This communication helped us to involve thousands of volunteers in recording the timing of phenological events like the start of flowering, leaf unfolding and bird migration, but also several health-related events like hay fever symptoms and tick bites. In this paper, we analyse and present our experiences with the Nature's Calendar project regarding societal publications. Based on this analysis, we explain the importance of societal publications for citizen science projects and scientists in general, and we show how scientists can increase the newsworthiness of scientific information and what factors and activities can increase the chances of media paying attention to this news. We show that societal publications help phenological networks by facilitating the recruitment, retention and instruction of observers. Furthermore, they stimulate the generation of new ideas and partners that lead to an increase in knowledge, awareness and behavioural change of the general public or specific stakeholders. They make projects, and scientists involved, better known to the public and increase their credibility and authority. Societal publications can catalyse the production of new publications, thereby enforcing the previous mentioned points.

  19. The how and why of societal publications for citizen science projects and scientists.

    PubMed

    van Vliet, Arnold J H; Bron, Wichertje A; Mulder, Sara

    2014-05-01

    In the scientific community, the importance of communication to society is often underestimated. Scientists and scientific organisations often lack the skills to organise such communication effectively. The Dutch citizen science phenology network Nature's Calendar has been successful in communicating to the general public via numerous newspaper articles, television appearances, presentations, websites and social media. We refer to these publications as societal publications. Due to active communication to mass media, we frequently reach millions of people. This communication helped us to involve thousands of volunteers in recording the timing of phenological events like the start of flowering, leaf unfolding and bird migration, but also several health-related events like hay fever symptoms and tick bites. In this paper, we analyse and present our experiences with the Nature's Calendar project regarding societal publications. Based on this analysis, we explain the importance of societal publications for citizen science projects and scientists in general, and we show how scientists can increase the news worthiness of scientific information and what factors and activities can increase the chances of media paying attention to this news. We show that societal publications help phenological networks by facilitating the recruitment, retention and instruction of observers. Furthermore, they stimulate the generation of new ideas and partners that lead to an increase in knowledge, awareness and behavioural change of the general public or specific stakeholders. They make projects, and scientists involved, better known to the public and increase their credibility and authority. Societal publications can catalyse the production of new publications, thereby enforcing the previous mentioned points.

  20. Science & Technology Review October/November 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orme, C.; Meissner, C.; Kotta, P. A.

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.