Sample records for national deep geological

  1. Current Status of The Romanian National Deep Geological Repository Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radu, M.; Nicolae, R.; Nicolae, D.

    2008-07-01

    Construction of a deep geological repository is a very demanding and costly task. By now, countries that have Candu reactors, have not processed the spent fuel passing to the interim storage as a preliminary step of final disposal within the nuclear fuel cycle back-end. Romania, in comparison to other nations, represents a rather small territory, with high population density, wherein the geological formation areas with radioactive waste storage potential are limited and restricted not only from the point of view of the selection criteria due to the rocks natural characteristics, but also from the point of view of their involvementmore » in social and economical activities. In the framework of the national R and D Programs, series of 'Map investigations' have been made regarding the selection and preliminary characterization of the host geological formation for the nation's spent fuel deep geological repository. The fact that Romania has many deposits of natural gas, oil, ore and geothermal water, and intensively utilizes soil and also is very forested, cause some of the apparent acceptable sites to be rejected in the subsequent analysis. Currently, according to the Law on the spent fuel and radioactive waste management, including disposal, The National Agency of Radioactive Waste is responsible and coordinates the national strategy in the field and, subsequently, further actions will be decided. The Romanian National Strategy, approved in 2004, projects the operation of a deep geological repository to begin in 2055. (authors)« less

  2. Research on geological hazard identification based on deep learning

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Cheng, Tao

    2018-05-01

    Geological hazards such as landslides, debris flows and collapses are potential hazards affecting the safety of nearby roads and people. Land and Resources Bureau and other relevant departments to undertake the responsibility of prevention and control of geological disasters, an important body, how to deal with the characteristics of sudden geological disasters in the region, according to pre-established emergency measures quickly and accurately survey, is an important issue to be solved. Based on the analysis of the types and effects of typical geological disasters, this paper studies the relevant methods of identifying typical geological disasters through artificial neural networks, and proposes and designs intelligent geological survey methods and systems based on deep learning to provide relevant departments such as Land and Resources Bureau Related Mountain Geological Survey and Information Support.

  3. Geology of Joshua Tree National Park geodatabase

    USGS Publications Warehouse

    Powell, Robert E.; Matti, Jonathan C.; Cossette, Pamela M.

    2015-09-16

    The database in this Open-File Report describes the geology of Joshua Tree National Park and was completed in support of the National Cooperative Geologic Mapping Program of the U.S. Geological Survey (USGS) and in cooperation with the National Park Service (NPS). The geologic observations and interpretations represented in the database are relevant to both the ongoing scientific interests of the USGS in southern California and the management requirements of NPS, specifically of Joshua Tree National Park (JOTR).Joshua Tree National Park is situated within the eastern part of California’s Transverse Ranges province and straddles the transition between the Mojave and Sonoran deserts. The geologically diverse terrain that underlies JOTR reveals a rich and varied geologic evolution, one that spans nearly two billion years of Earth history. The Park’s landscape is the current expression of this evolution, its varied landforms reflecting the differing origins of underlying rock types and their differing responses to subsequent geologic events. Crystalline basement in the Park consists of Proterozoic plutonic and metamorphic rocks intruded by a composite Mesozoic batholith of Triassic through Late Cretaceous plutons arrayed in northwest-trending lithodemic belts. The basement was exhumed during the Cenozoic and underwent differential deep weathering beneath a low-relief erosion surface, with the deepest weathering profiles forming on quartz-rich, biotite-bearing granitoid rocks. Disruption of the basement terrain by faults of the San Andreas system began ca. 20 Ma and the JOTR sinistral domain, preceded by basalt eruptions, began perhaps as early as ca. 7 Ma, but no later than 5 Ma. Uplift of the mountain blocks during this interval led to erosional stripping of the thick zones of weathered quartz-rich granitoid rocks to form etchplains dotted by bouldery tors—the iconic landscape of the Park. The stripped debris filled basins along the fault zones.Mountain ranges

  4. Radiation release at the nation's only operating deep geological repository--an independent monitoring perspective.

    PubMed

    Thakur, P; Ballard, S; Hardy, R

    2014-11-04

    Recent incidents at the nation's only operating deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP), resulted in the release of americium and plutonium from one or more defense-related transuranic (TRU) waste containers into the environment. WIPP is a U.S. Department of Energy mined geologic repository that has been in operation since March, 1999. Over 85,000 m3 of waste in various vented payload containers have been emplaced in the repository. The primary radionuclides within the disposed waste are 239+240Pu and 241Am, which account for more than 99% of the total TRU radioactivity disposed and scheduled for disposal in the repository. For the first time in its 15 years of operation, there was an airborne radiation release from the WIPP at approximately 11:30 PM Mountain Standard Time (MST) on Friday, February 14, 2014. The radiation release was likely caused by a chemical reaction inside a TRU waste drum that contained nitrate salts and organic sorbent materials. In a recent news release, DOE announced that photos taken of the waste underground showed evidence of heat and gas pressure resulting in a deformed lid, in material expelled through that deformation, and in melted plastic and rubber and polyethylene in the vicinity of that drum. Recent entries into underground Panel 7 have confirmed that at least one waste drum containing a nitrate salt bearing waste stream from Los Alamos National Laboratory was breached underground and was the most likely source of the release. Further investigation is underway to determine if other containers contributed to the release. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to ascertain whether or not there were releases to the ground surface. Independent analytical results of air filters from sampling stations on and near the WIPP facility have been released by us at the Carlsbad Environmental Monitoring & Research Center and confirmed

  5. A history of early geologic research in the Deep River Triassic Basin, North Carolina

    USGS Publications Warehouse

    Clark, T.W.

    1998-01-01

    The Deep River Triassic basin has one of the longest recorded histories of geologic research in North Carolina. A quick perusal of nineteenth century geologic literature in North Carolina reveals the Deep River basin has received a tremendous amount of attention, second only, perhaps, to the gold deposits of the Carolina slate belt. While these early researchers' primary interests were coal deposits, many other important discoveries, observations, and hypotheses resulted from their investigations. This article highlights many of the important advances made by these early geo-explorers by trying to include information from every major geologic investigation made in the Deep River basin from 1820 to 1955. This article also provides as thorough a consolidated history as is possible to preserve the exploration history of the Deep River basin for future investigators.

  6. About the geologic map in the National Atlas of the United States of America

    USGS Publications Warehouse

    Reed, John C.; Bush, Charles A.

    2007-01-01

    Introduction The geologic map in the National Atlas of the United States of America shows the age, distribution, and general character of the rocks that underlie the Nation, including Alaska, Hawaii, Puerto Rico, and the Virgin Islands (but excluding other small island possessions). (The National Atlas of the United States can be accessed at URL http://nationalatlas.gov/natlas/Natlasstart.asp.) The map depicts the bedrock that lies immediately beneath soils or surficial deposits except where these deposits are so thick and extensive that the type of bedrock beneath them can only be inferred by deep drilling or geophysical methods, or both. Thus, it does not show the extensive glacial deposits of the North Central and Northeastern States, the deep residuum of the Southeastern and South Central States, the relatively thin alluvium along many major rivers and basins, and extensive eolian deposits on the high plains. However, it does show, in a general way, the thick alluvial deposits along the lower Mississippi River and on the Atlantic and Gulf Coastal Plains, and in the deep basins of the western cordillera. The rocks are classified as either sedimentary, volcanic, plutonic, or metamorphic, and their geologic ages are given in terms using a simplified version of the 1999 Geological Society of America geologic time scale. In some places rocks depicted as sedimentary are interlayered with volcanic rocks, including tuff, volcanic breccia, and volcanic flows. Conversely, many of the rocks shown as volcanic include interlayered sedimentary rocks. Plutonic rocks are classified by age and as granitic, intermediate, mafic, or ultramafic, but no similar classification has been attempted for the volcanic rocks in this version of the map. Where sedimentary or volcanic rocks have been metamorphosed but still retain clear evidence of their depositional age and origin, the extent of the metamorphism is shown by a pattern. Where the metamorphism has been so intense that the rocks

  7. 3D Geological Model for "LUSI" - a Deep Geothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  8. Exploring the Relationship between Students' Understanding of Conventional Time and Deep (Geologic) Time

    NASA Astrophysics Data System (ADS)

    Cheek, Kim A.

    2013-07-01

    Many geologic processes occur in the context of geologic or deep time. Students of all ages demonstrate difficulty grasping this fundamental concept which impacts their ability to acquire other geoscience concepts. A concept of deep time requires the ability to sequence events on an immense temporal scale (succession) and to judge the durations of geologic processes based on the rates at which they occur. The twin concepts of succession and duration are the same ideas that underlie a concept of conventional time. If deep time is an extension of conventional time and not qualitatively different from it, students should display similar reasoning patterns when dealing with analogous tasks over disparate temporal periods. Thirty-five US students aged 13-24 years participated in individual task-based interviews to ascertain how they thought about succession and duration in conventional and deep time. This is the first attempt to explore this relationship in the same study in over 30 years. Most students successfully completed temporal succession tasks, but there was greater variability in responses on duration tasks. Conventional time concepts appear to impact how students reason about deep time. The application of spatial reasoning to temporal tasks sometimes leads to correct responses but in other instances does not. Implications for future research and teaching strategies are discussed.

  9. Macrostrat and GeoDeepDive: A Platform for Geological Data Integration and Deep-Time Research

    NASA Astrophysics Data System (ADS)

    Husson, J. M.; Peters, S. E.; Ross, I.; Czaplewski, J. J.

    2016-12-01

    Characterizing the quantity, lithology, age, and properties of rocks and sediments in the upper crust is central to many questions in Earth science. Although a large number of geological maps, regional syntheses, and sample-based measurements have been published in a variety of formats, there is no system for integrating and accessing rock record-derived data or for facilitating the large-scale quantitative interrogation of the physical, chemical, and biological properties of Earth's crust. Here we describe two data resources that aim to overcome some of these limitations: 1) Macrostrat, a geospatial database and supporting cyberinfrastructure that is designed to enable quantitative analyses of the entire assemblage of surface and subsurface sedimentary, igneous and metamorphic rocks, and 2) GeoDeepDive, a digital library and high throughput computing system designed to facilitate the location and extraction of information and data from the published literature. Macrostrat currently contains general summaries of the age and lithology of rocks and sediments in the upper crust at 1,474 regions in North and Central America, the Caribbean, New Zealand, and the deep sea. Distributed among these geographic regions are nearly 34,000 lithologically and chronologically-defined geological units, many of which are linked to a bedrock geologic map database with more than 1.7 million globally distributed units. Sample-derived data, including fossil occurrences in the Paleobiology Database and more than 180,000 geochemical and outcrop-derived measurements are linked to Macrostrat units and/or lithologies within those units. The rock names, lithological terms, and geological time intervals that are applied to Macrostrat units define a hierarchical, spatially and temporally indexed vocabulary that is leveraged by GeoDeepDive in order to provide researchers access to data within the scientific literature as it is published and ingested into the infrastructure. All data in

  10. Drilling a deep geologic test well at Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Schultz, Arthur P.; Seefelt, Ellen L.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC), is drilling a deep geologic test well at Hilton Head Island, S.C. The test well is scheduled to run between mid-March and early May 2011. When completed, the well will be about 1,000 feet deep. The purpose of this test well is to gain knowledge about the regional-scale Floridan aquifer, an important source of groundwater in the Hilton Head area. Also, cores obtained during drilling will enable geologists to study the last 60 million years of Earth history in this area.

  11. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    PubMed

    Pang, Bo; Becker, Frank

    2017-04-28

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Geologic Resource Evaluation of Kaloko-Honokohau National Historical Park, Hawai'i: Geology and Coastal Landforms

    USGS Publications Warehouse

    Richmond, Bruce M.; Gibbs, Ann E.; Cochran, Susan A.

    2008-01-01

    Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues that link the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Kaloko-Honokohau National Historical Park (KAHO) was established in 1978 in order to preserve and protect traditional native Hawaiian culture and cultural sites. The park is the site of an ancient Hawaiian settlement, occupies 469 ha and is considered a locale of considerable cultural and historical

  13. Geologic map of Big Bend National Park, Texas

    USGS Publications Warehouse

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and

  14. The Geologic Story of Colorado National Monument

    USGS Publications Warehouse

    Lohman, Stanley William

    1981-01-01

    From 1946 until about 1956 I carried out fieldwork intermittently on the geology and artesian water supply of the Grand Junction area, Colorado, the results of which have been published. The area mapped geologically contains about 332 square miles in the west-central part of Mesa County and includes all of Colorado National Monument. During the field work several successive custodians or superintendents and several park naturalists urged that upon completion of my professional paper I prepare a brief account of the geology of the Monument in terms understandable by laymen, and which could be sold at the Visitor Center. This I was happy to do and there resulted 'The geologic story of Colorado National Monument', published by the Colorado and Black Canyon Natural History Association in cooperation with the National Park Service. This report contained colored sketches by John R. Stacy and a colored cover, but the photographs and many of the drawings were reproduced in black and white.

  15. System to provide 3D information on geological anomaly zone in deep subsea

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kwon, O.; Kim, D.

    2017-12-01

    The study on building the ultra long and deep subsea tunnel of which length is 50km and depth is 200m at least, respectively, is underway in Korea. To analyze the geotechnical information required for designing and building subsea tunnel, topographic/geologiccal information analysis using 2D seabed geophysical prospecting and topographic, geologic, exploration and boring data were analyzed comprehensively and as a result, automation method to identify the geological structure zone under seabed which is needed to design the deep and long seabed tunnel was developed using geostatistical analysis. In addition, software using 3D visualized ground information to provide the information includes Gocad, MVS, Vulcan and DIMINE. This study is intended to analyze the geological anomaly zone for ultra deep seabed l and visualize the geological investigation result so as to develop the exclusive system for processing the ground investigation information which is convenient for the users. Particularly it's compatible depending on file of geophysical prospecting result and is realizable in Layer form and for 3D view as well. The data to be processed by 3D seabed information system includes (1) deep seabed topographic information, (2) geological anomaly zone, (3) geophysical prospecting, (4) boring investigation result and (5) 3D visualization of the section on seabed tunnel route. Each data has own characteristics depending on data and interface to allow interlocking with other data is granted. In each detail function, input data is displayed in a single space and each element is selectable to identify the further information as a project. Program creates the project when initially implemented and all output from detail information is stored by project unit. Each element representing detail information is stored in image file and is supported to store in text file as well. It also has the function to transfer, expand/reduce and rotate the model. To represent the all elements in

  16. The National Geological and Geophysical Data Preservation Program

    NASA Astrophysics Data System (ADS)

    Dickinson, T. L.; Steinmetz, J. C.; Gundersen, L. C.; Pierce, B. S.

    2006-12-01

    The ability to preserve and maintain geoscience data and collections has not kept pace with the growing need for accessible digital information and the technology to make it so. The Nation has lost valuable and unique geologic records and is in danger of losing much more. Many federal and state geological repositories are currently at their capacity for maintaining and storing data or samples. Some repositories are gaining additional, but temporary and substandard space, using transport containers or offsite warehouses where access is limited and storage conditions are poor. Over the past several years, there has been an increasing focus on the state of scientific collections in the United States. For example, the National Geological and Geophysical Data Preservation Program (NGGDPP) Act was passed as part of the Energy Policy Act of 2005, authorizing $30 million in funding for each of five years. The Act directs the U.S. Geological Survey to administer this program that includes a National Digital Catalog and Federal assistance to support our nation's repositories. Implementation of the Program awaits federal appropriations. The NGGDPP is envisioned as a national network of cooperating geoscience materials and data repositories that are operated independently yet guided by unified standards, procedures, and protocols for metadata. The holdings will be widely accessible through a common and mirrored Internet-based catalog (National Digital Catalog). The National Digital Catalog will tie the observations and analyses to the physical materials they come from. Our Nation's geological and geophysical data are invaluable and in some instances irreplaceable due to the destruction of outcrops, urbanization and restricted access. These data will enable the next generation of scientific research and education, enable more effective and efficient research, and may have future economic benefits through the discovery of new oil and gas accumulations, and mineral deposits.

  17. Initial public perceptions of deep geological and oceanic disposal of carbon dioxide.

    PubMed

    Palmgren, Claire R; Morgan, M Granger; Bruine de Bruin, Wändi; Keith, David W

    2004-12-15

    Two studies were conducted to gauge likely public perceptions of proposals to avoid releasing carbon dioxide from power plants to the atmosphere by injecting it into deep geological formations or the deep ocean. Following a modified version of the mental model interview method, Study 1 involved face-to-face interviews with 18 nontechnical respondents. Respondents shared their beliefs after receiving basic information about the technologies and again after getting specific details. Many interviewees wanted to frame the issue in the broader context of alternative strategies for carbon management, but public understanding of mitigation strategies is limited. The second study, administered to a sample of 126 individuals, involved a closed-form survey that measured the prevalence of general beliefs revealed in study 1 and also assessed the respondent's views of these technologies. Study results suggest that the public may develop misgivings about deep injection of carbon dioxide because it can be seen as temporizing and perhaps creating future problems. Ocean injection was seen as more problematic than geological injection. An approach to public communication and regulation that is open and respectful of public concerns is likely to be a prerequisite to the successful adoption of this technology.

  18. Teleseismic studies indicate existence of deep magma chamber below Yellowstone National Park

    USGS Publications Warehouse

    Iyer, H.M.

    1974-01-01

    The secrets of Yellowstone National Park's spectacular geysers and other hot water and steam phenomena are being explored by the U.S Geological Survey with the aid of distant earthquakes (teleseisms). For some time geologists have known that the remarkable array of steam and hot water displays, for which the park is internationally famous, is associated with intense volcanic activity that occurred in the reigon during the last 2 million years. The most recent volcanic eruption took place about 600,000 years ago creating a large caldera, or crater, 75 kilometers long and 50 kilometers wide. This caldera occupies most of the central part of the present-day park. geologists knew from studies of the surface geology that the volcanic activity which creates the present caldera was caused the present caldera was caused by a large body of magma, a mixture composed of molten rock, hot liquids, and gases, that had forced its way from the deep interior of the Earth into the upper mantle and crust below the Yellowstone area. The dimensions and depth below the surface of this magma body were largely unknown, however, because there was no way to "see" deep below the surface. A tool was needed that would enable earth scientists to look into the curst and upper mantle of the Earth. Such a tool became availabe with the installation by the Geological Survey of a network of seismograph stations in the park. 

  19. Geologic map of Chickasaw National Recreation Area, Murray County, Oklahoma

    USGS Publications Warehouse

    Blome, Charles D.; Lidke, David J.; Wahl, Ronald R.; Golab, James A.

    2013-01-01

    This 1:24,000-scale geologic map is a compilation of previous geologic maps and new geologic mapping of areas in and around Chickasaw National Recreation Area. The geologic map includes revisions of numerous unit contacts and faults and a number of previously “undifferentiated” rock units were subdivided in some areas. Numerous circular-shaped hills in and around Chickasaw National Recreation Area are probably the result of karst-related collapse and may represent the erosional remnants of large, exhumed sinkholes. Geospatial registration of existing, smaller scale (1:72,000- and 1:100,000-scale) geologic maps of the area and construction of an accurate Geographic Information System (GIS) database preceded 2 years of fieldwork wherein previously mapped geology (unit contacts and faults) was verified and new geologic mapping was carried out. The geologic map of Chickasaw National Recreation Area and this pamphlet include information pertaining to how the geologic units and structural features in the map area relate to the formation of the northern Arbuckle Mountains and its Arbuckle-Simpson aquifer. The development of an accurate geospatial GIS database and the use of a handheld computer in the field greatly increased both the accuracy and efficiency in producing the 1:24,000-scale geologic map.

  20. The Geologic Story of Yellowstone National Park

    USGS Publications Warehouse

    Keefer, William Richard

    1971-01-01

    In the aftermath of the Civil War, the United States expanded the exploration of her western frontiers to gain a measure of the vast lands and natural resources in the region now occupied by our Rocky Mountain States. As part of this effort, the Geological and Geographical Survey of the Territories was organized within the Department of the Interior, and staffed by a group of hardy, pioneering scientists under the leadership of geologist F. V. Hayden. During the summer of 1871, these men, accompanied by photographer William H. Jackson and artist Thomas Moran, made a reconnaissance geological study of the legendary and mysterious 'Yellowstone Wonderland' in remote northwestern Wyoming Territory. The scientific reports and illustrations prepared by Hayden and his colleagues, supplementing the startling accounts that had been published by members of the famous Washburn-Doane Expedition a year earlier, erased all doubts that this unique land was eminently worthy of being set aside 'for the benefit and enjoyment of the people.' By Act of Congress on March 1, 1872, our first National Park was established. During the past century, 50 million people have toured Yellowstone National Park, marveling at its never-ending display of natural wonders. No doubt many have paused to wonder about the origin of these unusual and complex geological features - a question, needless to say, that has intrigued and challenged scientists from the very first days of the Hayden Survey. During the past decade a group of U. S. Geological Survey scientists, in cooperation with the National Park Service and aided by the interest of the National Aeronautics and Space Administration in remote sensing of the geologic phenomena, has been probing the depths and farthest corners of the Park seeking more of the answers. Some of the results of this work, and those of earlier studies, are described in this book to provide a better understanding and enjoyment of this great National Park.

  1. Canada's Deep Geological Repository For Used Nuclear Fuel -The Geoscientific Site Evaluation Process

    NASA Astrophysics Data System (ADS)

    Hirschorn, S.; Ben Belfadhel, M.; Blyth, A.; DesRoches, A. J.; McKelvie, J. R. M.; Parmenter, A.; Sanchez-Rico Castejon, M.; Urrutia-Bustos, A.; Vorauer, A.

    2014-12-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The suitability of candidate areas will be assessed in a stepwise manner over a period of many years and include three main steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations. The Preliminary Assessment is conducted in two phases. NWMO has completed Phase 1 preliminary assessments for the first eight communities that entered into this step. While the Phase 1 desktop geoscientific assessments showed that each of the eight communities contains general areas that have the potential to satisfy the geoscientific safety requirements for hosting a deep geological repository, the assessment identified varying degrees of geoscientific complexity and uncertainty between communities, reflecting their different geological settings and structural histories. Phase 2 activities will include a sequence of high-resolution airborne geophysical surveys and focused geological field mapping to ground-truth lithology and structural features, followed by limited deep borehole drilling and testing. These activities will further evaluate the site's ability to meet the safety functions that a site would need to ultimately satisfy in order to be considered suitable. This paper provides an update on the site evaluation process and describes the approach, methods and criteria that are being used to conduct the geoscientific Preliminary Assessments.

  2. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective.

    PubMed

    McEvoy, F M; Schofield, D I; Shaw, R P; Norris, S

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1millionyears into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  3. Geologic Resource Evaluation of Pu'ukohola Heiau National Historic Site, Hawai'i: Part I, Geology and Coastal Landforms

    USGS Publications Warehouse

    Richmond, Bruce M.; Cochran, Susan A.; Gibbs, Ann E.

    2008-01-01

    Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues forming a link between the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Pu'ukohola Heiau National Historic Site (PUHE) is the smallest (~86 acres) of three National Parks located on the leeward Kona coast of the Island of Hawai'i. The main structure at PUHE, Pu'ukohola Heiau, is an important historical temple that was built during 1790-91 by King Kamehameha I

  4. 75 FR 75693 - National Cooperative Geologic Mapping Program (NCGMP) Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... DEPARTMENT OF THE INTERIOR Geological Survey National Cooperative Geologic Mapping Program (NCGMP) Advisory Committee AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of audio conference. [[Page 75694

  5. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    PubMed

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  6. Data to Support Development of Geologic Framework Models for the Deep Borehole Field Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Frank Vinton; Kelley, Richard E.

    This report summarizes work conducted in FY2017 to identify and document publically available data for developing a Geologic Framework Model (GFM) for the Deep Borehole Field Test (DBFT). Data was collected for all four of the sites being considered in 2017 for a DBFT site.

  7. Geologic Map of Wupatki National Monument and Vicinity, Coconino County, Northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Priest, Susan S.; Felger, Tracey J.

    2007-01-01

    Introduction The geologic map of Wupatki National Monument is a cooperative effort between the U.S. Geological Survey, the National Park Service, and the Navajo Nation to provide geologic information for resource management officials of the National Park Service, U.S. Forest Service, Navajo Indian Reservation (herein the Navajo Nation), and visitor information services at Wupatki National Monument, Arizona. Funding for the map was provided in part by the Water Rights Branch of the Water Resources Division of the National Park Service. Field work on the Navajo Nation was conducted under a permit from the Navajo Nation Minerals Department. Any persons wishing to conduct geologic investigations on the Navajo Nation must first apply for, and receive, a permit from the Navajo Nation Minerals Department, P.O. Box 1910, Window Rock, Arizona 86515, telephone (928)-871-6587. Wupatki National Monument lies within the USGS 1:24,000-scale Wupatki NE, Wupatki SE, Wupatki SW, Gray Mountain, East of SP Mountain, and Campbell Francis Wash quadrangles in northern Arizona. The map is bounded approximately by longitudes 111? 16' to 111? 32' 30' W. and latitudes 35? 30' to 35? 37' 40' N. The map area is in Coconino County on the southern part of the Colorado Plateaus geologic province (herein Colorado Plateau). The map area is locally subdivided into three physiographic parts, the Coconino Plateau, the Little Colorado River Valley, and the San Francisco Volcanic Field as defined by Billingsley and others (1997) [fig. 1]. Elevations range from 4,220 ft (1,286 m) at the Little Colorado River near the northeast corner of the map area to about 6,100 ft (1,859 m) at the southwest corner of the map area. The small community of Gray Mountain is about 16 mi (26 km) northwest of Wupatki National Monument Visitor Center, and Flagstaff, Arizona, the nearest metropolitan area, is about 24 mi (38 km) southwest of the Visitor Center (fig. 1). U.S. Highway 89 provides access to the west entrance of

  8. A brief geological history of Cockspur Island at Fort Pulaski National Monument, Chatham County, Georgia

    USGS Publications Warehouse

    Swezey, Christopher S.; Seefelt, Ellen L.; Parker, Mercer

    2018-03-09

    Fort Pulaski National Monument is located on Cockspur Island in Chatham County, Georgia, within the Atlantic Coastal Plain province. The island lies near the mouth of the Savannah River, and consists of small mounds (hummocks), salt marshes, and sediment dredged from the river. A 1,017-foot (ft) (310-meter [m])-deep core drilled at Cockspur Island in 2010 by the U.S. Geological Survey revealed several sedimentary units ranging in age from 43 million years old to present. Sand and mud are present at drilling depths from 0 to 182 ft (56 m), limestone is present at depths from 182 ft (56 m) to 965 ft (295 m), and glauconitic sand is present at depths from 965 ft (295 m) to 1,017 ft (310 m). The limestone and the water within the limestone are referred to collectively as the Floridan aquifer system, which is the primary source of drinking water for the City of Savannah and surrounding communities. In addition to details of the subsurface geology, this fact sheet identifies the following geologic materials used in the construction of Fort Pulaski: (1) granite, (2) bricks, (3) sandstone, and (4) lime mud with oyster shells.

  9. Nuclear Waste Facing the Test of Time: The Case of the French Deep Geological Repository Project.

    PubMed

    Poirot-Delpech, Sophie; Raineau, Laurence

    2016-12-01

    The purpose of this article is to consider the socio-anthropological issues raised by the deep geological repository project for high-level, long-lived nuclear waste. It is based on fieldwork at a candidate site for a deep storage project in eastern France, where an underground laboratory has been studying the feasibility of the project since 1999. A project of this nature, based on the possibility of very long containment (hundreds of thousands of years, if not longer), involves a singular form of time. By linking project performance to geology's very long timescale, the project attempts "jump" in time, focusing on a far distant future, without understanding it in terms of generations. But these future generations remain measurements of time on the surface, where the issue of remembering or forgetting the repository comes to the fore. The nuclear waste geological storage project raises questions that neither politicians nor scientists, nor civil society, have ever confronted before. This project attempts to address a problem that exists on a very long timescale, which involves our responsibility toward generations in the far future.

  10. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, S.; Jivkov, A.P.

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes.more » The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which

  11. Geologic Resource Evaluation of Pu'uhonua O Honaunau National Historical Park, Hawai'i: Part I, Geology and Coastal Landforms

    USGS Publications Warehouse

    Richmond, Bruce M.; Cochran, Susan A.; Gibbs, Ann E.

    2008-01-01

    Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues forming a link between the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Pu'uhonua O Honaunau National Historical Park ('Place of Refuge of Honaunau') is the southernmost of the three National Parks located on the leeward Kona coast of the Island of Hawai'i. It is a relatively small park originally 73 ha (182 acres), and was expanded in 2006 with the acquisition

  12. National assessment of geologic carbon dioxide storage resources: data

    USGS Publications Warehouse

    ,

    2013-01-01

    In 2012, the U.S. Geological Survey (USGS) completed the national assessment of geologic carbon dioxide storage resources. Its data and results are reported in three publications: the assessment data publication (this report), the assessment results publication (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a, USGS Circular 1386), and the assessment summary publication (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013b, USGS Fact Sheet 2013–3020). This data publication supports the results publication and contains (1) individual storage assessment unit (SAU) input data forms with all input parameters and details on the allocation of the SAU surface land area by State and general land-ownership category; (2) figures representing the distribution of all storage classes for each SAU; (3) a table containing most input data and assessment result values for each SAU; and (4) a pairwise correlation matrix specifying geological and methodological dependencies between SAUs that are needed for aggregation of results.

  13. Geologic Map of Lassen Volcanic National Park and Vicinity, California

    USGS Publications Warehouse

    Clynne, Michael A.; Muffler, L.J. Patrick

    2010-01-01

    The geologic map of Lassen Volcanic National Park (LVNP) and vicinity encompasses 1,905 km2 at the south end of the Cascade Range in Shasta, Lassen, Tehama, and Plumas Counties, northeastern California (fig. 1, sheet 3). The park includes 430 km2 of scenic volcanic features, glacially sculpted terrain, and the most spectacular array of thermal features in the Cascade Range. Interest in preserving the scenic wonders of the Lassen area as a national park arose in the early 1900s to protect it from commercial development and led to the establishment in 1907 of two small national monuments centered on Lassen Peak and Cinder Cone. The eruptions of Lassen Peak in 1914-15 were the first in the Cascade Range since widespread settling of the West in the late 1800s. Through the printed media, the eruptions aroused considerable public interest and inspired renewed efforts, which had languished since 1907, to establish a national park. In 1916, Lassen Volcanic National Park was established by combining the areas of the previously established national monuments and adjacent lands. The southernmost Cascade Range is bounded on the west by the Sacramento Valley and the Klamath Mountains, on the south by the Sierra Nevada, and on the east by the Basin and Range geologic provinces. Most of the map area is underlain by middle to late Pleistocene volcanic rocks; Holocene, early Pleistocene, and late Pliocene volcanic rocks (<3.5 m.y.) are less common. Paleozoic and Mesozoic rocks are inferred to underlie the volcanic deposits (Jachens and Saltus, 1983), but the nearest exposures of pre-Tertiary rocks are 15 km to the south, 9 km to the southwest, and 12 km to the west. Diller (1895) recognized the young volcanic geology and produced the first geologic map of the Lassen area. The map (sheet 1) builds on and extends geologic mapping by Williams (1932), Macdonald (1963, 1964, 1965), and Wilson (1961). The Lassen Peak area mapped by Christiansen and others (2002) and published in greater

  14. Geoscientific Site Evaluation Approach for Canada's Deep Geological Repository for Used Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Sanchez-Rico Castejon, M.; Hirschorn, S.; Ben Belfadhel, M.

    2015-12-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable crystalline or sedimentary rock formation. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The site evaluation process includes three main technical evaluation steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations, to assess the suitability of candidate areas in a stepwise manner over a period of many years. By the end of 2012, twenty two communities had expressed interest in learning more about the project. As of July 2015, nine communities remain in the site selection process. To date (July 2015), NWMO has completed Initial Screenings for the 22 communities that expressed interest, and has completed the first phase of Preliminary Assessments (desktop) for 20 of the communities. Phase 2 of the Preliminary Assessments has been initiated in a number of communities, with field activities such as high-resolution airborne geophysical surveys and geological mapping. This paper describes the approach, methods and criteria being used to assess the geoscientific suitability of communities currently involved in the site selection process.

  15. Surficial geology of Shaver Hollow, Shenandoah National Park

    USGS Publications Warehouse

    Morgan, Benjamin A.

    1998-01-01

    At the request of Shenandoah National Park and the Department of Environmental Sciences at the University of Virginia, the US Geological Survey has completed an examination and map of the surficial deposits in Shaver Hollow. The work was carried out as part of the US Geological Survey - National Park Service cooperative agreement implemented in 1994. Shaver Hollow is a small, well defined drainage basin on the west slope of the Blue Ridge about 6.5 miles south of Thornton Gap and can be reached by trail from mile 37.9 on the Skyline Drive. The hollow is drained by the North Fork of Dry Run, and the watershed within the Shenandoah National park is only 2 square miles in area. The area has been the site of extensive investigations by faculty and students at the University of Virginia and by NPS scientists and investigators studying the interaction of atmosphere chemistry, water composition, and the biota of the hollow (Furman and others, written communication, 1997). Modeling of the chemistry of Dry Run surface water, based on atmospheric, biologic, and geologic data, has been attempted with limited success. Better understanding of the surficial deposits and the interaction of streams and springs with near surface materials is needed before more sophisticated models can be devised. Although the bedrock lithology was mapped at a small scale (1:62,000-scale; Gathright, 1976) no examination of the surficial deposits of the hollow was made. The description of deposits contained herein is based on field observations carried out in September - November, 1996. Also included with this report is a 1/12,000-scale map of the surficial geology of Shaver Hollow (figure 1).

  16. Geology of National Parks

    USGS Publications Warehouse

    Stoffer, Philip W.

    2008-01-01

    This is a set of two sheets of 3D images showing geologic features of many National Parks. Red-and-cyan viewing glasses are need to see the three-dimensional effect. A search on the World Wide Web will yield many sites about anaglyphs and where to get 3D glasses. Red-blue glasses will do but red-cyan glasses are a little better. This publication features a photo quiz game: Name that park! where you can explore, interpret, and identify selected park landscapes. Can you identify landscape features in the images? Can you explain processes that may have helped form the landscape features? You can get the answers online.

  17. National assessment of geologic carbon dioxide storage resources: summary

    USGS Publications Warehouse

    ,

    2013-01-01

    The U.S. Geological Survey (USGS) recently completed an evaluation of the technically accessible storage resource (TASR) for carbon dioxide (CO2) for 36 sedimentary basins in the onshore areas and State waters of the United States. The TASR is an estimate of the geologic storage resource that may be available for CO2 injection and storage and is based on current geologic and hydrologic knowledge of the subsurface and current engineering practices. By using a geology-based probabilistic assessment methodology, the USGS assessment team members obtained a mean estimate of approximately 3,000 metric gigatons (Gt) of subsurface CO2 storage capacity that is technically accessible below onshore areas and State waters; this amount is more than 500 times the 2011 annual U.S. energy-related CO2 emissions of 5.5 Gt (U.S. Energy Information Administration, 2012, http://www.eia.gov/environment/emissions/carbon/). In 2007, the Energy Independence and Security Act (Public Law 110–140) directed the U.S. Geological Survey to conduct a national assessment of geologic storage resources for CO2 in consultation with the U.S. Environmental Protection Agency, the U.S. Department of Energy, and State geological surveys. The USGS developed a methodology to estimate storage resource potential in geologic formations in the United States (Burruss and others, 2009, USGS Open-File Report (OFR) 2009–1035; Brennan and others, 2010, USGS OFR 2010–1127; Blondes, Brennan, and others, 2013, USGS OFR 2013–1055). In 2012, the USGS completed the assessment, and the results are summarized in this Fact Sheet and are provided in more detail in companion reports (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a,b; see related reports at right). The goal of this project was to conduct an initial assessment of storage capacity on a regional basis, and results are not intended for use in the evaluation of specific sites for potential CO2 storage. The national

  18. National Geological and Geophysical Data Preservation Program: Successes and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Adrian, B. M.

    2014-12-01

    The United States Geological Survey (USGS) is widely recognized in the earth science community as possessing extensive collections of geologic and geophysical materials gathered by its research personnel. Since the USGS was established in 1879, hundreds of thousands of samples have been gathered in collections that range from localized, geographically-based assemblages to ones that are national or international in scope. These materials include, but are not limited to, rock and mineral specimens; fossils; drill cores and cuttings; geochemical standards; and soil, sediment, and geochemical samples. The USGS National Geological and Geophysical Data Preservation Program (NGGDPP) was established with the passage of the Energy Policy Act of 2005. Since its implementation, the USGS NGGDPP has taken an active role in providing opportunities to inventory, archive and preserve geologic and geophysical samples, and to make these samples and ancillary data discoverable on the Internet. Preserving endangered geoscience collections is more cost effective than recollecting this information. Preserving these collections, however, is only one part of the process - there also needs to be a means to facilitate open discovery and access to the physical objects and the ancillary digital records. The NGGDPP has celebrated successes such as the development of the USGS Geologic Collections Management System (GCMS), a master catalog and collections management plan, and the implementation and advancement of the National Digital Catalog, a digital inventory and catalog of geological and geophysical data and collections held by the USGS and State geological surveys. Over this period of time there has been many lessons learned. With the successes and lessons learned, NGGDPP is poised to take on challenges the future may bring.

  19. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time.

    PubMed

    Parkes, R John; Webster, Gordon; Cragg, Barry A; Weightman, Andrew J; Newberry, Carole J; Ferdelman, Timothy G; Kallmeyer, Jens; Jørgensen, Bo B; Aiello, Ivano W; Fry, John C

    2005-07-21

    The sub-seafloor biosphere is the largest prokaryotic habitat on Earth but also a habitat with the lowest metabolic rates. Modelled activity rates are very low, indicating that most prokaryotes may be inactive or have extraordinarily slow metabolism. Here we present results from two Pacific Ocean sites, margin and open ocean, both of which have deep, subsurface stimulation of prokaryotic processes associated with geochemical and/or sedimentary interfaces. At 90 m depth in the margin site, stimulation was such that prokaryote numbers were higher (about 13-fold) and activity rates higher than or similar to near-surface values. Analysis of high-molecular-mass DNA confirmed the presence of viable prokaryotes and showed changes in biodiversity with depth that were coupled to geochemistry, including a marked community change at the 90-m interface. At the open ocean site, increases in numbers of prokaryotes at depth were more restricted but also corresponded to increased activity; however, this time they were associated with repeating layers of diatom-rich sediments (about 9 Myr old). These results show that deep sedimentary prokaryotes can have high activity, have changing diversity associated with interfaces and are active over geological timescales.

  20. Preliminary geologic map of the Chugach National Forest Special Study Area, Alaska

    USGS Publications Warehouse

    Nelson, Steven W.; Miller, Marti L.; Haeussler, Peter J.; Snee, Lawrence W.; Philips, Patti J.; Huber, Carol

    1999-01-01

    In 1990, both the U.S. Geological Survey and U.S. Bureau of Mines were contacted by the Chugach National Forest (CNF) for the purpose of providing mineral resource information for the CNF Master Plan during the planning period fiscal years 1991-1994. This information is to address the terms and requirements of the 1986 Settlement Agreement and to provide mineral and geologic information useful to the CNF for making land-use decisions. In early 1992 an Interagency Agreement between the U.S. Geological Survey, the U.S. Bureau of Mines and the Chugach National Forest was signed. In this agreement the U.S. Geological Survey is to provide a report which estimates the undiscovered mineral endowments of the 'special' study area and to identify the potential for mineral discovery and development. The U.S. Bureau of Mines was to prepare a report updating the discovered mineral endowment of the Special Study Area. These reports are now published (Roe and Balen, 1994; Nelson and others, 1994). This geologic map is a component of the U.S. Geological Survey contribution to the overall project.

  1. Measuring Student Understanding of Geological Time

    ERIC Educational Resources Information Center

    Dodick, Jeff; Orion, Nir

    2003-01-01

    There have been few discoveries in geology more important than "deep time"--the understanding that the universe has existed for countless millennia, such that man's existence is confined to the last milliseconds of the metaphorical geological clock. The influence of deep time is felt in a variety of sciences including geology, cosmology,…

  2. Geologic map of Yosemite National Park and vicinity, California

    USGS Publications Warehouse

    Huber, N.K.; Bateman, P.C.; Wahrhaftig, Clyde

    1989-01-01

    This digital map database represents the general distribution of bedrock and surficial deposits of the Yosemite National Park vicinity. It was produced directly from the file used to create the print version in 1989. The Yosemite National Park region is comprised of portions of 15 7.5 minute quadrangles. The original publication of the map in 1989 included the map, described map units and provided correlations, as well as a geologic summary and references, all on the same sheet. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:125,000 or smaller.

  3. U.S. Department of Energy's site screening, site selection, and initial characterization for storage of CO2 in deep geological formations

    USGS Publications Warehouse

    Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and

  4. 77 FR 44266 - Agency Information Collection Activities: National Geological and Geophysical Data Preservation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... DEPARTMENT OF THE INTERIOR U.S. Geological Survey [USGS-GX12GL00DT70500] Agency Information Collection Activities: National Geological and Geophysical Data Preservation Program (NGGDPP) AGENCY: U.S. Geological Survey (USGS), Interior. ACTION: Notice of an extension of an existing information collection...

  5. Database for the geologic map of Upper Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Abendini, Atosa A.; Robinson, Joel E.; Muffler, L. J. Patrick; White, D. E.; Beeson, Melvin H.; Truesdell, A. H.

    2015-01-01

    This dataset contains contacts, geologic units, and map boundaries from Miscellaneous Investigations Series Map I-1371, "The Geologic map of upper Geyser Basin, Yellowstone, National Park, Wyoming". This dataset was constructed to produce a digital geologic map as a basis for ongoing studies of hydrothermal processes.

  6. Finite element code FENIA verification and application for 3D modelling of thermal state of radioactive waste deep geological repository

    NASA Astrophysics Data System (ADS)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.

    2017-11-01

    The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.

  7. Geologic field-trip guide to Lassen Volcanic National Park and vicinity, California

    USGS Publications Warehouse

    Muffler, L. J. Patrick; Clynne, Michael A.

    2015-07-22

    This geologic field-trip guide provides an overview of Quaternary volcanism in and around Lassen Volcanic National Park in northern California. The guide begins with a comprehensive overview of the geologic framework and the stratigraphic terminology of the Lassen region, based primarily on the “Geologic map of Lassen Volcanic National Park and vicinity” (Clynne and Muffler, 2010). The geologic overview is then followed by detailed road logs describing the volcanic features that can readily be seen in the park and its periphery. Twenty-one designated stops provide detailed explanations of important volcanic features. The guide also includes mileage logs along the highways leading into the park from the major nearby communities. The field-trip guide is intended to be a flexible document that can be adapted to the needs of a visitor approaching the park from any direction.

  8. National assessment of geologic carbon dioxide storage resources: results

    USGS Publications Warehouse

    ,

    2013-01-01

    In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resources (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins were defined on the basis of geologic and hydrologic characteristics outlined in the assessment methodology of Brennan and others (2010, USGS Open-File Report 2010–1127) and the subsequent methodology modification and implementation documentation of Blondes, Brennan, and others (2013, USGS Open-File Report 2013–1055). The mean national TASR is approximately 3,000 metric gigatons (Gt). The estimate of the TASR includes buoyant trapping storage resources (BSR), where CO2 can be trapped in structural or stratigraphic closures, and residual trapping storage resources, where CO2 can be held in place by capillary pore pressures in areas outside of buoyant traps. The mean total national BSR is 44 Gt. The residual storage resource consists of three injectivity classes based on reservoir permeability: residual trapping class 1 storage resource (R1SR) represents storage in rocks with permeability greater than 1 darcy (D); residual trapping class 2 storage resource (R2SR) represents storage in rocks with moderate permeability, defined as permeability between 1 millidarcy (mD) and 1 D; and residual trapping class 3 storage resource (R3SR) represents storage in rocks with low permeability, defined as permeability less than 1 mD. The mean national storage resources for rocks in residual trapping classes 1, 2, and 3 are 140 Gt, 2,700 Gt, and 130 Gt, respectively. The known recovery

  9. Geologic map of the Wrangell-Saint Elias National Park and Reserve, Alaska

    USGS Publications Warehouse

    Richter, Donald H.; Preller, Cindi C.; Labay, Keith A.; Shew, Nora B.

    2006-01-01

    Wrangell-Saint Elias National Park and Preserve, the largest national park within the U.S. National Park Service system, extends from the northern Pacific Ocean to beyond the eastern Alaska Range into interior Alaska. It features impressively spectacular scenery such as high and craggy mountains, active and ancient volcanoes, expansive ice fields, immense tidewater glaciers, and a myriad of alpine glaciers. The park also includes the famous Kennecott Mine, a world-class copper deposit that was mined from 1911 to 1938, and remnant ghost town, which is now a National Historic Landmark. Geologic investigations encompassing Wrangell-Saint Elias National Park and Preserve began in 1796, with Dmitriv Tarkhanov, a Russian mining engineer, who unsuccessfully ventured up the Copper River in search of rumored copper. Lieutenant H.T. Allen (1897) of the U.S. Army made a successful epic summer journey with a limited military crew up the Copper River in 1885, across the Alaska Range, and down the Tanana and Yukon Rivers. Allen?s crew was supported by a prospector named John Bremner and local Eyak and Ahtna native guides whose tribes controlled access into the Copper River basin. Allen witnessed the Ahtnas? many uses of the native copper. His stories about the copper prompted prospectors to return to this area in search of the rich copper ore in the years following his journey. The region boasts a rich mining and exploration history prior to becoming a park in 1980. Several U.S. Geological Survey geologists have conducted reconnaissance surveys in the area since Allen?s explorations. This map is the result of their work and is enhanced by more detailed investigations, which began in the late 1950s and are still continuing. For a better understanding of the processes that have shaped the geology of the park and a history of the geologic investigations in the area, we recommend U.S. Geological Survey Professional Paper 1616, ?A Geologic Guide to Wrangell-Saint Elias National Park

  10. Using National Parks to Transform Physical Geology into an Inquiry Experience

    ERIC Educational Resources Information Center

    Newbill, Phyllis Leary

    2009-01-01

    For an inquiry-based alternative to lectures and recall tests, I encouraged learners to become "geotourists"; that is, learners researched and developed a geologic guidebook to a United States National Park of their choice. Over the course of a semester, students wrote chapters on plate tectonics, the rock cycle, geologic history,…

  11. Developing a geoscience knowledge framework for a national geological survey organisation

    NASA Astrophysics Data System (ADS)

    Howard, Andrew S.; Hatton, Bill; Reitsma, Femke; Lawrie, Ken I. G.

    2009-04-01

    Geological survey organisations (GSOs) are established by most nations to provide a geoscience knowledge base for effective decision-making on mitigating the impacts of natural hazards and global change, and on sustainable management of natural resources. The value of the knowledge base as a national asset is continually enhanced by the exchange of knowledge between GSOs as data and information providers and the stakeholder community as knowledge 'users and exploiters'. Geological maps and associated narrative texts typically form the core of national geoscience knowledge bases, but have some inherent limitations as methods of capturing and articulating knowledge. Much knowledge about the three-dimensional (3D) spatial interpretation and its derivation and uncertainty, and the wider contextual value of the knowledge, remains intangible in the minds of the mapping geologist in implicit and tacit form. To realise the value of these knowledge assets, the British Geological Survey (BGS) has established a workflow-based cyber-infrastructure to enhance its knowledge management and exchange capability. Future geoscience surveys in the BGS will contribute to a national, 3D digital knowledge base on UK geology, with the associated implicit and tacit information captured as metadata, qualitative assessments of uncertainty, and documented workflows and best practice. Knowledge-based decision-making at all levels of society requires both the accessibility and reliability of knowledge to be enhanced in the grid-based world. Establishment of collaborative cyber-infrastructures and ontologies for geoscience knowledge management and exchange will ensure that GSOs, as knowledge-based organisations, can make their contribution to this wider goal.

  12. Deepwater Program: Lophelia II, continuing ecological research on deep-sea corals and deep-reef habitats in the Gulf of Mexico

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Ross, Steve W.; Kellogg, Christina A.; Morrison, Cheryl L.; Nizinski, Martha S.; Prouty, Nancy G.; Bourque, Jill R.; Galkiewicz, Julie P.; Gray, Michael A.; Springmann, Marcus J.; Coykendall, D. Katharine; Miller, Andrew; Rhode, Mike; Quattrini, Andrea; Ames, Cheryl L.; Brooke, Sandra D.; McClain Counts, Jennifer; Roark, E. Brendan; Buster, Noreen A.; Phillips, Ryan M.; Frometa, Janessy

    2017-12-11

    The deep sea is a rich environment composed of diverse habitat types. While deep-sea coral habitats have been discovered within each ocean basin, knowledge about the ecology of these habitats and associated inhabitants continues to grow. This report presents information and results from the Lophelia II project that examined deep-sea coral habitats in the Gulf of Mexico. The Lophelia II project focused on Lophelia pertusa habitats along the continental slope, at depths ranging from 300 to 1,000 meters. The chapters are authored by several scientists from the U.S. Geological Survey, National Oceanic and Atmospheric Administration, University of North Carolina Wilmington, and Florida State University who examined the community ecology (from microbes to fishes), deep-sea coral age, growth, and reproduction, and population connectivity of deep-sea corals and inhabitants. Data from these studies are presented in the chapters and appendixes of the report as well as in journal publications. This study was conducted by the Ecosystems Mission Area of the U.S. Geological Survey to meet information needs identified by the Bureau of Ocean Energy Management.

  13. Geologic map of southwestern Sequoia National Park, Tulare County, California

    USGS Publications Warehouse

    Sisson, Thomas W.; Moore, James G.

    2013-01-01

    This map shows the geology of 675 km2 (260 mi2) on the west slope of the Sierra Nevada, California, mainly in Sequoia National Park and Sequoia National Forest. It was produced by the U.S. Geological Survey (USGS) at the request of the National Park Service to complete the geologic map coverage of Kings Canyon and Sequoia National Parks. The area includes the Mineral King 15’ topographic quadrangle (sheet 1) and strips along the east and northeast edges of the Kaweah 15’ topographic quadrangle (sheet 2), both in Tulare County. Mapping was performed mainly on the 1:24,000-scale Mineral King, Silver City, Quinn Peak, Moses Mountain, Case Mountain, and Dennison Peak 7.5’ topographic quadrangle bases. Rocks within the study area are chiefly Cretaceous granites and granodiorites of the Sierra Nevada batholith that intruded coherent masses of Mesozoic metasedimentary and metavolcanic rocks. Quaternary till and talus are the principal surficial deposits, with the exception of a large bouldery alluvial apron near the southwest corner of the map area. The study area includes the headwaters of the Kaweah River (East and South Forks), Tule River (North Fork and North Fork of the Middle Fork), and the Little Kern River. Relief is considerable, with elevations spanning from 1,500 feet along the Middle Fork Kaweah River to 12,432 feet at the summit of Florence Peak along the crest of the Great Western Divide.

  14. Geology of Badlands National Park: a preliminary report

    USGS Publications Warehouse

    Stoffer, Philip W.

    2003-01-01

    Badlands National Park is host to perhaps the most scenic geology and landscape features in the Western Interior region of the United States. Ongoing erosion that forms the "badlands" exposes ancient sedimentary strata of Late Cretaceous through Oligocene age. Quaternary erosional and depositional processes are responsible for most of the modern landscape features in the park and surrounding region. This report provides a basic overview of the park geology The discussions presented within include both well-established concepts and theories and new, preliminary data and interpretations. Much emphasis is placed on presenting information about the oldest and least studied rocks in the park (particularly the Late Cretaceous and earliest Tertiary deposits that underlie the White River beds throughout the park region). Rock formations and selected fossils they contain are described. Faults, folds, unconformities, and other geologic structures in the North Unit of the park are illustrated, including features associated with the Sage Creek anticline and fault system.

  15. National Oceanic and Atmospheric Administration hydrographic survey data used in a U.S. Geological Survey regional geologic framework study along the Delmarva Peninsula

    USGS Publications Warehouse

    Pendleton, Elizabeth A.; Brothers, Laura L.; Thieler, E. Robert; Danforth, William W.; Parker, Castle E.

    2014-01-01

    The U.S. Geological Survey obtained raw Reson multibeam data files from Science Applications International Corporation and the National Oceanic and Atmospheric Administration for 20 hydrographic surveys and extracted backscatter data using the Fledermaus Geocoder Toolbox from Quality Positioning Service. The backscatter mosaics produced by the U.S. Geological Survey for the inner continental shelf of the Delmarva Peninsula using National Oceanic and Atmospheric Administration data increased regional geophysical surveying efficiency, collaboration among government agencies, and the area over which geologic data can be interpreted by the U.S. Geological Survey. This report describes the methods by which the backscatter data were extracted and processed and includes backscatter mosaics and interpolated bathymetric surfaces.

  16. Geologic map of the Great Smoky Mountains National Park region, Tennessee and North Carolina

    USGS Publications Warehouse

    Southworth, Scott; Schultz, Art; Aleinikoff, John N.; Merschat, Arthur J.

    2012-01-01

    The geology of the Great Smoky Mountains National Park region of Tennessee and North Carolina was studied from 1993 to 2003 as part of a cooperative investigation by the U.S. Geological Survey with the National Park Service (NPS). This work resulted in a 1:100,000-scale geologic map derived from mapping that was conducted at scales of 1:24,000 and 1:62,500. The geologic data are intended to support cooperative investigations with the NPS, the development of a new soil map by the Natural Resources Conservation Service, and the All Taxa Biodiversity Inventory. In response to a request by the NPS, we mapped previously unstudied areas, revised the geology where problems existed, and developed a map database for use in interdisciplinary research, land management, and interpretive programs for park visitors.

  17. Estimating the supply and demand for deep geologic CO2 storage capacity over the course of the 21st Century: A meta-analysis of the literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooley, James J.

    2013-08-05

    Whether there is sufficient geologic CO2 storage capacity to allow CCS to play a significant role in mitigating climate change has been the subject of debate since the 1990s. This paper presents a meta- analysis of a large body of recently published literature to derive updated estimates of the global deep geologic storage resource as well as the potential demand for this geologic CO2 storage resource over the course of this century. This analysis reveals that, for greenhouse gas emissions mitigation scenarios that have end-of-century atmospheric CO2 concentrations of between 350 ppmv and 725 ppmv, the average demand for deepmore » geologic CO2 storage over the course of this century is between 410 GtCO2 and 1,670 GtCO2. The literature summarized here suggests that -- depending on the stringency of criteria applied to calculate storage capacity – global geologic CO2 storage capacity could be: 35,300 GtCO2 of “theoretical” capacity; 13,500 GtCO2 of “effective” capacity; 3,900 GtCO2, of “practical” capacity; and 290 GtCO2 of “matched” capacity for the few regions where this narrow definition of capacity has been calculated. The cumulative demand for geologic CO2 storage is likely quite small compared to global estimates of the deep geologic CO2 storage capacity, and therefore, a “lack” of deep geologic CO2 storage capacity is unlikely to be an impediment for the commercial adoption of CCS technologies in this century.« less

  18. Geological, geochemical, and geophysical studies by the U.S. Geological Survey in Big Bend National Park, Texas

    USGS Publications Warehouse

    Page, W.R.; Turner, K.J.; Bohannon, R.G.; Berry, M.E.; Williams, V.S.; Miggins, D.P.; Ren, M.; Anthony, E.Y.; Morgan, L.A.; Shanks, P.W.C.; Gray, J. E.; Theodorakos, P.M.; Krabbenhoft, D. P.; Manning, A.H.; Gemery-Hill, P. A.; Hellgren, E.C.; Stricker, C.A.; Onorato, D.P.; Finn, C.A.; Anderson, E.; Gray, J. E.; Page, W.R.

    2008-01-01

    Big Bend National Park (BBNP), Tex., covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mile (190-km) stretch of the Rio Grande at the United States-Mexico border. The park is in the Chihuahuan Desert, an ecosystem with high mountain ranges and basin environments containing a wide variety of native plants and animals, including more than 1,200 species of plants, more than 450 species of birds, 56 species of reptiles, and 75 species of mammals. In addition, the geology of BBNP, which varies widely from high mountains to broad open lowland basins, also enhances the beauty of the park. For example, the park contains the Chisos Mountains, which are dominantly composed of thick outcrops of Tertiary extrusive and intrusive igneous rocks that reach an altitude of 7,832 ft (2,387 m) and are considered the southernmost mountain range in the United States. Geologic features in BBNP provide opportunities to study the formation of mineral deposits and their environmental effects; the origin and formation of sedimentary and igneous rocks; Paleozoic, Mesozoic, and Cenozoic fossils; and surface and ground water resources. Mineral deposits in and around BBNP contain commodities such as mercury (Hg), uranium (U), and fluorine (F), but of these, the only significant mining has been for Hg. Because of the biological and geological diversity of BBNP, more than 350,000 tourists visit the park each year. The U.S. Geological Survey (USGS) has been investigating a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP to provide fundamental information needed by the National Park Service (NPS) to address resource management goals in this park. Scientists from the USGS Mineral Resources and National Cooperative Geologic Mapping Programs have been working cooperatively with the NPS and several universities on several research studies within BBNP

  19. Geologic Map of the Shenandoah National Park Region, Virginia

    USGS Publications Warehouse

    Southworth, Scott; Aleinikoff, John N.; Bailey, Christopher M.; Burton, William C.; Crider, E.A.; Hackley, Paul C.; Smoot, Joseph P.; Tollo, Richard P.

    2009-01-01

    The geology of the Shenandoah National Park region of Virginia was studied from 1995 to 2008. The focus of the study was the park and surrounding areas to provide the National Park Service with modern geologic data for resource management. Additional geologic data of the adjacent areas are included to provide regional context. The geologic map can be used to support activities such as ecosystem delineation, land-use planning, soil mapping, groundwater availability and quality studies, aggregate resources assessment, and engineering and environmental studies. The study area is centered on the Shenandoah National Park, which is mostly situated in the western part of the Blue Ridge province. The map covers the central section and western limb of the Blue Ridge-South Mountain anticlinorium. The Skyline Drive and Appalachian National Scenic Trail straddle the drainage divide of the Blue Ridge highlands. Water drains northwestward to the South Fork of the Shenandoah River and southeastward to the James and Rappahannock Rivers. East of the park, the Blue Ridge is an area of low relief similar to the physiography of the Piedmont province. The Great Valley section of the Valley and Ridge province is west of Blue Ridge and consists of Page Valley and Massanutten Mountain. The distribution and types of surficial deposits and landforms closely correspond to the different physiographic provinces and their respective bedrock. The Shenandoah National Park is underlain by three general groups of rock units: (1) Mesoproterozoic granitic gneisses and granitoids, (2) Neoproterozoic metasedimentary rocks of the Swift Run Formation and metabasalt of the Catoctin Formation, and (3) siliciclastic rocks of the Lower Cambrian Chilhowee Group. The gneisses and granitoids mostly underlie the lowlands east of Blue Ridge but also rugged peaks like Old Rag Mountain (996 meter). Metabasalt underlies much of the highlands, like Stony Man (1,200 meters). The siliciclastic rocks underlie linear

  20. Geologic framework for the national assessment of carbon dioxide storage resources—Southern Rocky Mountain Basins: Chapter M in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Merrill, Matthew D.; Drake, Ronald M.; Buursink, Marc L.; Craddock, William H.; East, Joseph A.; Slucher, Ernie R.; Warwick, Peter D.; Brennan, Sean T.; Blondes, Madalyn S.; Freeman, Philip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2016-06-02

    The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resources in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report, chapter M, is the geologic framework document for the Uinta and Piceance, San Juan, Paradox, Raton, Eastern Great, and Black Mesa Basins, and subbasins therein of Arizona, Colorado, Idaho, Nevada, New Mexico, and Utah. In addition to a summary of the geology and petroleum resources of studied basins, the individual storage assessment units (SAUs) within the basins are described and explanations for their selection are presented. Although appendixes in the national assessment publications include the input values used to calculate the available storage resource, this framework document provides only the context and source of the input values selected by the assessment geologists. Spatial-data files of the boundaries for the SAUs, and the well-penetration density of known well bores that penetrate the SAU seal, are available for download with the release of this report.

  1. Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection.

    PubMed

    Stock, Alexandra; Edgcomb, Virginia; Orsi, William; Filker, Sabine; Breiner, Hans-Werner; Yakimov, Michail M; Stoeck, Thorsten

    2013-07-08

    Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The "isolated island character" of the different brines

  2. Deep-sea geohazards in the South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Shiguo; Wang, Dawei; Völker, David

    2018-02-01

    Various geological processes and features that might inflict hazards identified in the South China Sea by using new technologies and methods. These features include submarine landslides, pockmark fields, shallow free gas, gas hydrates, mud diapirs and earthquake tsunami, which are widely distributed in the continental slope and reefal islands of the South China Sea. Although the study and assessment of geohazards in the South China Sea came into operation only recently, advances in various aspects are evolving at full speed to comply with National Marine Strategy and `the Belt and Road' Policy. The characteristics of geohazards in deep-water seafloor of the South China Sea are summarized based on new scientific advances. This progress is aimed to aid ongoing deep-water drilling activities and decrease geological risks in ocean development.

  3. Macrostrat: A Platform for Geological Data Integration and Deep-Time Earth Crust Research

    NASA Astrophysics Data System (ADS)

    Peters, Shanan E.; Husson, Jon M.; Czaplewski, John

    2018-04-01

    Characterizing the lithology, age, and physical-chemical properties of rocks and sediments in the Earth's upper crust is necessary to fully assess energy, water, and mineral resources and to address many fundamental questions. Although a large number of geological maps, regional geological syntheses, and sample-based measurements have been produced, there is no openly available database that integrates rock record-derived data, while also facilitating large-scale, quantitative characterization of the volume, age, and material properties of the upper crust. Here we describe Macrostrat, a relational geospatial database and supporting cyberinfrastructure that is designed to enable quantitative spatial and geochronological analyses of the entire assemblage of surface and subsurface sedimentary, igneous, and metamorphic rocks. Macrostrat contains general, comprehensive summaries of the age and properties of 33,903 lithologically and chronologically defined geological units distributed across 1,474 regions in North and South America, the Caribbean, New Zealand, and the deep sea. Sample-derived data, including fossil occurrences in the Paleobiology Database, more than 180,000 geochemical and outcrop-derived measurements, and more than 2.3 million bedrock geologic map units from over 200 map sources, are linked to specific Macrostrat units and/or lithologies. Macrostrat has generated numerous quantitative results and its infrastructure is used as a data platform in several independently developed mobile applications. It is necessary to expand geographic coverage and to refine age models and material properties to arrive at a more precise characterization of the upper crust globally and test fundamental hypotheses about the long-term evolution of Earth systems.

  4. Geology of the Deep Creek area, Washington, and its regional significance

    USGS Publications Warehouse

    Yates, Robert Giertz

    1976-01-01

    This report, although primarily concerned with the stratigraphy and structure of a lead-zinc mining district in northern Stevens County, Washington, discusses and integrates the geology of the region about the Deep Creek area. Although the study centers in an area of about 200 square miles immediately south of the International Boundary, the regional background comes from: (1)the previously undescribed Northport quadrangle to the west, (2) published reports and reconnaissance of the Metaline quadrangle to the east, and (3) from published reports and maps of a 16 mile wide area that lies to the north adjacent to these three quadrangles in British Columbia. The report is divided into three parts: (1) descriptions of rocks and structures of the Deep Creek area, (2) descriptions of the regional setting of the Deep Creek area, and (3) an analysis and interpretation of the depositional and tectonic events that produced the geologic features exposed today. In the Deep Creek area surficial deposits of sand and gravel of glacial origin cover much of the consolidated rocks, which range in age from greenschist of the late Precambrlan to albite granite of the Eocene. Three broad divisions of depositional history are represented: (1) Precambrian, (2) lower Paleozoic and (3) upper Paleozoic; the record of the Mesozoic and Eocene is fragmentary. The lower Paleozoic division is the only fossil-controlled sequence; the age of the other two divisions were established by less direct methods. Both Precambrian and upper Paleozoic sequences are dominated by fine-grained detrital sediments, the Precambrian tending towards the alumina-rich and the upper Paleozoic tending towards the black shale facies with high silica. Neither sequence has more than trivial amounts of coarse clastics. Both include limestones, but in minor abundance. The lower Paleozoic sequence, on the other hand, represents a progressive change in deposition. The sequence began during the very late Precambrian with the

  5. Geospatial resources for the geologic community: The USGS National Map

    USGS Publications Warehouse

    Witt, Emitt C.

    2015-01-01

    Geospatial data are a key component of investigating, interpreting, and communicating the geological sciences. Locating geospatial data can be time-consuming, which detracts from time spent on a study because these data are not obviously placed in central locations or are served from many disparate databases. The National Map of the US Geological Survey is a publicly available resource for accessing the geospatial base map data needs of the geological community from a central location. The National Map data are available through a viewer and download platform providing access to eight primary data themes, plus the US Topo and scanned historical topographic maps. The eight themes are elevation, orthoimagery, hydrography, geographic names, boundaries, transportation, structures, and land cover, and they are being offered for download as predefined tiles in formats supported by leading geographic information system software. Data tiles are periodically refreshed to capture the most current content and are an efficient method for disseminating and receiving geospatial information. Elevation data, for example, are offered as a download from the National Map as 1° × 1° tiles for the 10- and 30- m products and as 15′ × 15′ tiles for the higher-resolution 3-m product. Vector data sets with smaller file sizes are offered at several tile sizes and formats. Partial tiles are not a download option—any prestaged data that intersect the requesting bounding box will be, in their entirety, part of the download order. While there are many options for accessing geospatial data via the Web, the National Map represents authoritative sources of data that are documented and can be referenced for citation and inclusion in scientific publications. Therefore, National Map products and services should be part of a geologist’s first stop for geospatial information and data.

  6. Canada's Deep Geological Repository for Used Nuclear Fuel - Geo-scientific Site Evaluation Process - 13117

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blyth, Alec; Ben Belfadhel, Mahrez; Hirschorn, Sarah

    2013-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable rock formation at a depth of approximately 500 meters (m) (1,640 feet [ft]). In May 2010, the NWMO published a nine-step site selection process that serves as the road map to decision-making on the location for the deep geological repository. The safetymore » and appropriateness of any potential site will be assessed against a number of factors, both technical and social in nature. The selected site will be one that can be demonstrated to be able to safely contain and isolate used nuclear fuel, protecting humans and the environment over the very long term. The geo-scientific suitability of potential candidate sites will be assessed in a stepwise manner following a progressive and thorough site evaluation process that addresses a series of geo-scientific factors revolving around five safety functions. The geo-scientific site evaluation process includes: Initial Screenings; Preliminary Assessments; and Detailed Site Evaluations. As of November 2012, 22 communities have entered the site selection process (three in northern Saskatchewan and 18 in northwestern and southwestern Ontario). (authors)« less

  7. The geologic story of Isle Royale National Park

    USGS Publications Warehouse

    Huber, N. King

    1975-01-01

    Isle Royale is an outstanding example of relatively undisturbed northwoods lake wilderness. But more than simple preservation of such an environment is involved in its inclusion in our National Park System. Its isolation from the mainland provides an almost untouched laboratory for research in the natural sciences, especially those studies whose very nature depends upon such isolation. One excellent example of such research is the intensive study of the predator-prey relationship of the timber wolf and moose, long sponsored by the National Park Service and Purdue University. In probably no other place in North America are the necessary ecological conditions for such a study so admirably fulfilled as on Isle Royale. The development of a natural laboratory with such conditions is ultimately dependent upon geologic processes and events that although not unique in themselves, produced in their interplay a unique result, the island archipelago as we know it today, with its hills and valleys, swamps and bogs the ecological framework of the plant and animal world. Even the most casual visitor can hardly fail to be struck by the fiordlike nature of many of the bays, the chains of fringing islands, the ridge-and-valley topography, and the linear nature of all these features. The distinctive topography of the archipelago is, of course, only the latest manifestation of geologic processes in operation since time immemorial. Fragments of geologic history going back over a billion years can be read from the rocks of the island, and with additional data from other parts of the Lake Superior region, we can fill in some of the story of Isle Royale. After more than a hundred years of study by man, the story is still incomplete. But then, geologic stories are seldom complete, and what we do know allows a deeper appreciation of one of our most naturally preserved parks and whets our curiosity about the missing fragments.

  8. National assessment of geologic carbon dioxide storage resources: methodology implementation

    USGS Publications Warehouse

    Blondes, Madalyn S.; Brennan, Sean T.; Merrill, Matthew D.; Buursink, Marc L.; Warwick, Peter D.; Cahan, Steven M.; Corum, Margo D.; Cook, Troy A.; Craddock, William H.; DeVera, Christina A.; Drake II, Ronald M.; Drew, Lawrence J.; Freeman, P.A.; Lohr, Celeste D.; Olea, Ricardo A.; Roberts-Ashby, Tina L.; Slucher, Ernie R.; Varela, Brian A.

    2013-01-01

    In response to the 2007 Energy Independence and Security Act, the U.S. Geological Survey (USGS) conducted a national assessment of potential geologic storage resources for carbon dioxide (CO2). Storage of CO2 in subsurface saline formations is one important method to reduce greenhouse gas emissions and curb global climate change. This report provides updates and implementation details of the assessment methodology of Brennan and others (2010, http://pubs.usgs.gov/of/2010/1127/) and describes the probabilistic model used to calculate potential storage resources in subsurface saline formations.

  9. Surficial Geologic Map of Mesa Verde National Park, Montezuma County, Colorado

    USGS Publications Warehouse

    Carrara, Paul E.

    2012-01-01

    Mesa Verde National Park in southwestern Colorado was established in 1906 to preserve and protect the artifacts and dwelling sites, including the famous cliff dwellings, of the Ancestral Puebloan people who lived in the area from about A.D. 550 to A.D. 1300. In 1978, the United Nations designated the park as a World Heritage Site. The geology of the park played a key role in the lives of these ancient people. For example, the numerous (approximately 600) cliff dwellings are closely associated with the Cliff House Sandstone of Late Cretaceous age, which weathers to form deep alcoves. In addition, the ancient people farmed the thick, red loess (wind-blown dust) deposits on the mesa tops, which because of its particle size distribution has good moisture retention properties. The soil in this loess cover and the seasonal rains allowed these people to grow their crops (corn, beans, and squash) on the broad mesa tops. Today, geology is still an important concern in the Mesa Verde area because the landscape is susceptible to various forms of mass movement (landslides, debris flows, rockfalls), swelling soils, and flash floods that affect the park's archeological sites and its infrastructure (roads, septic systems, utilities, and building sites). The map, which encompasses an area of about 100 mi2 (260 km2), includes all of Mesa Verde National Park, a small part of the Ute Mountain Indian Reservation that borders the park on its southern and western sides, and some Bureau of Land Management and privately owned land to the north and east. Surficial deposits depicted on the map include: artificial fills, alluvium of small ephemeral streams, alluvium deposited by the Mancos River, residual gravel on high mesas, a combination of alluvial and colluvial deposits, fan deposits, colluvial deposits derived from the Menefee Formation, colluvial deposits derived from the Mancos Shale, rockfall deposits, debris flow deposits, earthflow deposits, translational and rotational landslide

  10. 76 FR 19783 - National Cooperative Geologic Mapping Program (NCGMP) and National Geological and Geophysical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... of the U.S. Geological Survey Headquarters building, 12201 Sunrise Valley Drive, Reston, Virginia..., academic institutions, and private companies, shall advise the Director of the U.S. Geological Survey on...

  11. Model United Nations and Deep Learning: Theoretical and Professional Learning

    ERIC Educational Resources Information Center

    Engel, Susan; Pallas, Josh; Lambert, Sarah

    2017-01-01

    This article demonstrates that the purposeful subject design, incorporating a Model United Nations (MUN), facilitated deep learning and professional skills attainment in the field of International Relations. Deep learning was promoted in subject design by linking learning objectives to Anderson and Krathwohl's (2001) four levels of knowledge or…

  12. Planning and acquiring a national center for the United States Geological Survey

    USGS Publications Warehouse

    Schmidt, William A.

    1993-01-01

    This history of building a National Center for the U.S. Geological Survey is a "nuts and bolts" account of the planning, design and construction, forgotten happenings, and frustrations in the planning and authorization process, and the political and other considerations which played a significant role in the culmination of a dream about a National Center for the Geological Survey. This documented data of unique procedures in the acquisition and financing of Federal buildings, the choice and development of the building site, and its location as a contribution to the enhancement of the "new town" concept of the 1960's in the planning and development of the National Capital Area, may well provide guidance in the future to those who have to decide whether a building of true worth should be preserved.

  13. An Integrated Geologic Framework for EarthScope's USArray

    NASA Astrophysics Data System (ADS)

    Tikoff, Basil; van der Pluijm, Ben; Hibbard, Jim; Keller, George Randy; Mogk, David; Selverstone, Jane; Walker, Doug

    2006-06-01

    The GeoFrame initiative is a new geologic venture that focuses on the construction, stabilization, and modification of the North American continent through time. The initiative's goals can be achieved through systematic integration of geologic knowledge-and particularly geologic time-with the unprecedented Earth imaging to be collected under the USArray program of EarthScope (http://www.earthscope.org/usarray). The GeoFrame initiative encourages a cooperative community approach to collecting and sharing data and will take a coast-to-coast perspective of the continent, focusing not only on the major geologic provinces, but also on the boundaries between these provinces. GeoFrame also offers a tangible, `you can see it and touch it' basis for a national approach to education and outreach in the Earth sciences. The EarthScope project is a massive undertaking to investigate the structure and evolution of the North American continent. Sponsored by the U.S. National Science Foundation (NSF), EarthScope uses modern observational, analytical, and telecommunications technologies to establish fundamental and applied research in the Earth's dynamics, contributing to natural resource exploration and development, the mitigation of geologic hazards and risk, and a greater public understanding of solid Earth systems. One part of this project is USArray, a moving, continent-scale network of seismic stations designed to provide a foundation for the study of the lithosphere and deep Earth.

  14. Surficial Geologic Map of the Great Smoky Mountains National Park Region, Tennessee and North Carolina

    USGS Publications Warehouse

    Southworth, Scott; Schultz, Art; Denenny, Danielle; Triplett, James

    2004-01-01

    The Surficial Geology of the Great Smoky Mountains National Park Region, Tennessee and North Carolina was mapped from 1993 to 2003 under a cooperative agreement between the U.S. Geological Survey (USGS) and the National Park Service (NPS). This 1:100,000-scale digital geologic map was compiled from 2002 to 2003 from unpublished field investigations maps at 1:24,000-scale. The preliminary surficial geologic data and map support cooperative investigations with NPS, the U.S. Natural Resource Conservation Service, and the All Taxa Biodiversity Inventory (http://www.dlia.org/) (Southworth, 2001). Although the focus of our work was within the Park, the geology of the surrounding area is provided for regional context. Surficial deposits document the most recent part of the geologic history of this part of the western Blue Ridge and eastern Tennessee Valley of the Valley and Ridge of the Southern Appalachians. Additionally, there is great variety of surficial materials, which directly affect the different types of soil and associated flora and fauna. The surficial deposits accumulated over tens of millions of years under varied climatic conditions during the Cenozoic era and resulted from a composite of geologic processes.

  15. Environmental and health impacts of February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository.

    PubMed

    Thakur, P; Lemons, B G; Ballard, S; Hardy, R

    2015-08-01

    The environmental impact of the February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) was assessed using monitoring data from an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC). After almost 15 years of safe and efficient operations, the WIPP had one of its waste drums rupture underground resulting in the release of moderate levels of radioactivity into the underground air. A small amount of radioactivity also escaped to the surface through the ventilation system and was detected above ground. It was the first unambiguous release from the WIPP repository. The dominant radionuclides released were americium and plutonium, in a ratio that matches the content of the breached drum. The accelerated air monitoring campaign, which began following the accident, indicates that releases were low and localized, and no radiation-related health effects among local workers or the public would be expected. The highest activity detected was 115.2 μBq/m(3) for (241)Am and 10.2 μBq/m(3) for (239+240)Pu at a sampling station located 91 m away from the underground air exhaust point and 81.4 μBq/m(3) of (241)Am and 5.8 μBq/m(3) of (239+240)Pu at a monitoring station located approximately one kilometer northwest of the WIPP facility. CEMRC's recent monitoring data show that the concentration levels of these radionuclides have returned to normal background levels and in many instances, are not even detectable, demonstrating no long-term environmental impacts of the recent radiation release event at the WIPP. This article presents an evaluation of almost one year of environmental monitoring data that informed the public that the levels of radiation that got out to the environment were very low and did not, and will not harm anyone or have any long-term environmental consequence. In terms of radiological risk at or in the vicinity of the

  16. International Collaboration Activities in Different Geologic Disposal Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkholzer, Jens

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s Internationalmore » Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.« less

  17. Geologic map of the eastern part of the Challis National Forest and vicinity, Idaho

    USGS Publications Warehouse

    Wilson, A.B.; Skipp, B.A.

    1994-01-01

    The paper version of the Geologic Map of the eastern part of the Challis National Forest and vicinity, Idaho was compiled by Anna Wilson and Betty Skipp in 1994. The geology was compiled on a 1:250,000 scale topographic base map. TechniGraphic System, Inc. of Fort Collins Colorado digitized this map under contract for N.Shock. G.Green edited and prepared the digital version for publication as a GIS database. The digital geologic map database can be queried in many ways to produce a variety of geologic maps.

  18. A geologic guide to Wrangell-Saint Elias National Park and Preserve, Alaska; a tectonic collage of northbound terranes

    USGS Publications Warehouse

    Winkler, Gary R.; with contributions by MacKevett, E. M.; Plafker, George; Richter, D.H.; Rosenkrans, D.S.; Schmoll, H.R.

    2000-01-01

    Wrangell-Saint Elias National Park and Preserve, the largest unit in the U.S. National Park System, encompasses near 13.2 million acres of geological wonderments. This geologic guide presents history of exploration and Earth-science investigation; describes the complex geologic makeup; characterizes the vast college of accretion geologic terranes in this area of Alaska's continental margin; recapitulates the effects of earthquakes, volcanoes, and glaciers; characterizes the copper and gold resources of the parklands; and describes outstanding locales within the park and preserve area. A glossary of geologic terms and a categorized list of additional sources of information complete this report.

  19. Preliminary geologic framework developed for a proposed environmental monitoring study of a deep, unconventional Marcellus Shale drill site, Washington County, Pennsylvania

    USGS Publications Warehouse

    Stamm, Robert G.

    2018-06-08

    BackgroundIn the fall of 2011, the U.S. Geological Survey (USGS) was afforded an opportunity to participate in an environmental monitoring study of the potential impacts of a deep, unconventional Marcellus Shale hydraulic fracturing site. The drill site of the prospective case study is the “Range Resources MCC Partners L.P. Units 1-5H” location (also referred to as the “RR–MCC” drill site), located in Washington County, southwestern Pennsylvania. Specifically, the USGS was approached to provide a geologic framework that would (1) provide geologic parameters for the proposed area of a localized groundwater circulation model, and (2) provide potential information for the siting of both shallow and deep groundwater monitoring wells located near the drill pad and the deviated drill legs.The lead organization of the prospective case study of the RR–MCC drill site was the Groundwater and Ecosystems Restoration Division (GWERD) of the U.S. Environmental Protection Agency. Aside from the USGS, additional partners/participants were to include the Department of Energy, the Pennsylvania Geological Survey, the Pennsylvania Department of Environmental Protection, and the developer Range Resources LLC. During the initial cooperative phase, GWERD, with input from the participating agencies, drafted a Quality Assurance Project Plan (QAPP) that proposed much of the objectives, tasks, sampling and analytical procedures, and documentation of results.Later in 2012, the proposed cooperative agreement between the aforementioned partners and the associated land owners for a monitoring program at the drill site was not executed. Therefore, the prospective case study of the RR–MCC site was terminated and no installation of groundwater monitoring wells nor the collection of nearby soil, stream sediment, and surface-water samples were made.Prior to the completion of the QAPP and termination of the perspective case study the geologic framework was rapidly conducted and nearly

  20. The Geologic Story of Arches National Park

    USGS Publications Warehouse

    Lohman, Stanley William

    1975-01-01

    According to former Superintendent Bates Wilson (1956), Prof. Lawrence M. Gould, of the University of Michigan, was the first to recognize the geologic and scenic values of the Arches area in eastern Utah and to urge its creation as a national monument. Mrs. Faun McConkie Tanner told me that Professor Gould, who had done a thesis problem in the nearby La Sal Mountains, was first taken through the area by Marv Turnbow, third owner of Wolfe cabin. (See p. 12.) When Professor Gould went into ecstasy over the beautiful scenery, Turnbow replied, 'I didn't know there was anything unusual about it.'

  1. Geologic map of the Great Smoky Mountains National Park region, Tennessee and North Carolina

    USGS Publications Warehouse

    Southworth, Scott; Schultz, Art; Denenny, Danielle

    2005-01-01

    The geology of the Great Smoky Mountain National Park (GSMNP) region of Tennessee and North Carolina was studied from 1993 to 2003 as part of a cooperative investigation with the National Park Service (NPS). This work has been compiled as a 1:100,000-scale map derived from mapping done at 1:24,000 and 1:62,500 scale. The geologic data are intended to support cooperative investigations with NPS, the development of a new soil map by the Natural Resources Conservation Service, and the All Taxa Biodiversity Inventory (http://www.discoverlifeinamerica.org/). At the request of NPS, we mapped areas previously not visited, revised the geology where stratigraphic and structural problems existed, and developed a map database for use in interdisciplinary research, land management, and interpretive programs for park visitors.

  2. National coal resource investigations of the United States Geological Survey

    USGS Publications Warehouse

    Wood, Gordon H.

    1977-01-01

    The objective of this report is to provide a record of some of the goals and accomplishments of the coal resource investigations of the U. S. Geological Survey for 1977. Successful completion of these goals will aid the Nation in the years ahead because proper usage of coal resource data may lessen economic displacements resulting from the energy shortage.This report is concerned only with one mineral fuel -- coal -- and only with coal resource investigations in the Geologic Division of the U. S. Geological Survey. Other divisions involved with coal or coal-related work are the Conservation, Water Resources, and Topographic Divisions. It is one of a series of reports on the energy resource studies conducted by the Geological Survey that provide a public record of the objectives, activities, and accomplishments of these programs. Similar reports have been prepared on oil and gas, oil shale, uranium, thorium, and energy-related industrial minerals.This report includes descriptions of the program, each sub-element of the program, individual projects, and a selected list of program publications from 1970-76. It also describes how the program is responsive to Presidential pronouncements and Congressional mandates. The program is cooperative with several Federal bureaus, many state agencies, universities, and industry. This coordination assures that the program supplements the work of these interested groups and is not duplicative.A scientific program such as the coal resource investigations is difficult for the non-involved person to understand solely from the existing reports on various studies made in the program. This report provides an explanation that the scientist, decision maker, personnel of other government agencies, and the layman can use to relate various activities and to gain a better understanding of the relation of coal to the Nation's requirements for energy and of the importance of a carefully planned program on this energy resource.

  3. Database of the Geology and Thermal Activity of Norris Geyser Basin, Yellowstone National Park

    USGS Publications Warehouse

    Flynn, Kathryn; Graham Wall, Brita; White, Donald E.; Hutchinson, Roderick A.; Keith, Terry E.C.; Clor, Laura; Robinson, Joel E.

    2008-01-01

    This dataset contains contacts, geologic units and map boundaries from Plate 1 of USGS Professional Paper 1456, 'The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming.' The features are contained in the Annotation, basins_poly, contours, geology_arc, geology_poly, point_features, and stream_arc feature classes as well as a table of geologic units and their descriptions. This dataset was constructed to produce a digital geologic map as a basis for studying hydrothermal processes in Norris Geyser Basin. The original map does not contain registration tic marks. To create the geodatabase, the original scanned map was georegistered to USGS aerial photographs of the Norris Junction quadrangle collected in 1994. Manmade objects, i.e. roads, parking lots, and the visitor center, along with stream junctions and other hydrographic features, were used for registration.

  4. The National Center of the U.S. Geological Survey

    USGS Publications Warehouse

    ,

    1974-01-01

    In August of 1973, the U. S. Geological Survey moved its first group of employees into the John Wesley Powell Federal Building of its newly constructed National Center at Reston, Virginia. The move signaled the fruition of more than a decade of planning and work to consolidate the agency's widespread activities into one location which could truly serve as a National Center. The Survey's leadership in the natural resources field has been materially strengthened through the availability of the Center's outstanding research and engineering facilities. Also the Center affords important professional and administrative advantages by bringing together the 2,200 Survey employees in the Washington, D.C, metropolitan area.

  5. USGS national surveys and analysis projects: Preliminary compilation of integrated geological datasets for the United States

    USGS Publications Warehouse

    Nicholson, Suzanne W.; Stoeser, Douglas B.; Wilson, Frederic H.; Dicken, Connie L.; Ludington, Steve

    2007-01-01

    The growth in the use of Geographic nformation Systems (GS) has highlighted the need for regional and national digital geologic maps attributed with age and rock type information. Such spatial data can be conveniently used to generate derivative maps for purposes that include mineral-resource assessment, metallogenic studies, tectonic studies, human health and environmental research. n 1997, the United States Geological Survey’s Mineral Resources Program initiated an effort to develop national digital databases for use in mineral resource and environmental assessments. One primary activity of this effort was to compile a national digital geologic map database, utilizing state geologic maps, to support mineral resource studies in the range of 1:250,000- to 1:1,000,000-scale. Over the course of the past decade, state databases were prepared using a common standard for the database structure, fields, attributes, and data dictionaries. As of late 2006, standardized geological map databases for all conterminous (CONUS) states have been available on-line as USGS Open-File Reports. For Alaska and Hawaii, new state maps are being prepared, and the preliminary work for Alaska is being released as a series of 1:500,000-scale regional compilations. See below for a list of all published databases.

  6. 3D numerical modelling of the thermal state of deep geological nuclear waste repositories

    NASA Astrophysics Data System (ADS)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, Yu. N.

    2017-09-01

    One of the important aspects of the high-level radioactive waste (HLW) disposal in deep geological repositories is ensuring the integrity of the engineered barriers which is, among other phenomena, considerably influenced by the thermal loads. As the HLW produce significant amount of heat, the design of the repository should maintain the balance between the cost-effectiveness of the construction and the sufficiency of the safety margins, including those imposed on the thermal conditions of the barriers. The 3D finite-element computer code FENIA was developed as a tool for simulation of thermal processes in deep geological repositories. Further the models for mechanical phenomena and groundwater hydraulics will be added resulting in a fully coupled thermo-hydro-mechanical (THM) solution. The long-term simulations of the thermal state were performed for two possible layouts of the repository. One was based on the proposed project of Russian repository, and another features larger HLW amount within the same space. The obtained results describe the spatial and temporal evolution of the temperature filed inside the repository and in the surrounding rock for 3500 years. These results show that practically all generated heat was ultimately absorbed by the host rock without any significant temperature increase. Still in the short time span even in case of smaller amount of the HLW the temperature maximum exceeds 100 °C, and for larger amount of the HLW the local temperature remains above 100 °C for considerable time. Thus, the substantiation of the long-term stability of the repository would require an extensive study of the materials properties and behaviour in order to remove the excessive conservatism from the simulations and to reduce the uncertainty of the input data.

  7. Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Warwick, Peter D.; Corum, Margo D.

    2012-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2) and to consult with other Federal and State agencies to locate the pertinent geological data needed for the assessment. The geologic sequestration of CO2 is one possible way to mitigate its effects on climate change. The methodology used for the national CO2 assessment (Open-File Report 2010-1127; http://pubs.usgs.gov/of/2010/1127/) is based on previous USGS probabilistic oil and gas assessment methodologies. The methodology is non-economic and intended to be used at regional to subbasinal scales. The operational unit of the assessment is a storage assessment unit (SAU), composed of a porous storage formation with fluid flow and an overlying sealing unit with low permeability. Assessments are conducted at the SAU level and are aggregated to basinal and regional results. This report identifies and contains geologic descriptions of SAUs in separate packages of sedimentary rocks within the assessed basin and focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included here will be employed, as specified in the methodology, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage

  8. Geology of the National Capital Region: field trip guidebook

    USGS Publications Warehouse

    Burton, William; Southworth, Scott

    2004-01-01

    The 2004 Joint Northeast-Southeast Section Meeting of the Geological Society of America is the fourth such meeting and the third to be held in or near Washington, D.C. This guidebook and the field trips presented herein are intended to provide meeting participants, as well as other interested readers, a means to understand and enjoy the rich geological and historical legacy of the National Capital Region. The field trips cover all of the major physiographic and geologic provinces of the central Appalachians in the Mid-Atlantic region. Trip 1 outlines the tectonic history of northern Virginia along an east-to-west transect from the Coastal Plain province to the Blue Ridge province, whereas the other field trips each focus on a specific province. From west to east, these excursions investigate the paleoclimate controls on the stratigraphy of the Paleozoic rocks of the Allegheny Plateau and Valley and Ridge province in West Virginia, Pennsylvania, and Maryland (Trip 3); Eocene volcanic rocks that intrude Paleozoic rocks in the westernmost Valley and Ridge province in Virginia and West Virginia (Trip 4); age, petrology, and structure of Mesoproterozoic gneisses and granitoids located in the Blue Ridge province within and near Shenandoah National Park, Virginia (Trip 2); the use of argon data to unravel the complex structural and thermal history of the metamorphic rocks of the eastern Piedmont province in Maryland and Virginia (Trip 5); the use of cosmogenic isotopes to understand the timing of bedrock incision and formation of terraces along the Potomac River in the eastern Piedmont province near Great Falls, Virginia and Maryland (Trip 6); the nature of the boundary between rocks of the Goochland and Chopawamsic terranes in the eastern Piedmont of Virginia (Trip 7); the role of bluffs and fluvial terraces of the Coastal Plain in the Civil War Battle of Fredericksburg, Virginia (Trip 8); and the Tertiary lithology and paleontology of Coastal Plain strata around the

  9. Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conca, James; Wright, Judith

    2012-07-01

    .e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not

  10. A. V. Peyve — the founder of the concept of deep faults

    NASA Astrophysics Data System (ADS)

    Sherman, S. I.

    2009-03-01

    The further development of Peyve’s concept of deep faults in the Earth’s crust and brittle part of the lithosphere is discussed. Three aspects are accentuated in this paper: (1) the modern definition of the term deep fault; (2) the parameters of deep faults as ruptures of the geological medium and three-dimensional, often boundary, geological bodies; and (3) reactivation of deep faults, including the development of this process in real time. Peyve’s idea of deep faults readily fitted into the concept of new global tectonics (plate tectonics). This was facilitated, first of all, by the extensive efforts made to elaborate Peyve’s ideas by a large group of researchers at the Geological Institute of the Russian Academy of Sciences (GIN RAS) and other scientists. At present, the term deep fault has been extended and transformed to cover three-dimensional geological bodies; the geological and geophysical properties and parameters of these bodies, as well as their reactivation (recurrent activation) in real time, have been studied.

  11. Geologic map of the Chisos Mountains, Big Bend National Park, Texas

    USGS Publications Warehouse

    Bohannon, Robert G.

    2011-01-01

    The Chisos Mountains form some of the highest ground in Texas, second only to Guadalupe Peak near the New Mexico border. The northern half of the range is mostly above 5,500 feet with Emory Peak the high point at 7,825 feet. The mountains are centrally located in Big Bend National Park between Panther Junction and Punta de la Sierra. Big Bend National Park lies near the diffuse border between the Great Plains Province to the northeast and the Sonoran section of the Basin-and-Range structural province to the west and southwest. These geologically unique regions are distinguished from one another by large differences in their landscape and by the amount and style of internal structural deformation. The Great Plains Province is characterized by flat-lying or gently dipping sedimentary strata, low topographic relief, shallow stream valleys, and by a general lack of faulting. Very little active deposition is occurring on the plains, except in the bottoms of active stream valleys. In southwestern Texas the plains stand at average elevations of 2,000 to 3,300 feet and slope gently east toward the Mississippi River and the Gulf of Mexico. The Great Plains have remained relatively unchanged for the last 65 million years, except that they have been uplifted to their present height from lower elevations probably in the last 5 million years. The Basin-and-Range province is characterized by linear parallel mountain ranges, deep sediment-filled valleys, and high structural and topographic relief. The eastern part of the province is at a slightly higher average elevation than the plains. The province is known for its complex patterns of Cenozoic faulting. Today it bears little resemblance to the way it was during the Paleocene when the entire Trans-Pecos region was a simple lowland that was near or slightly below sea level.

  12. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.

    PubMed

    White, Curt M; Strazisar, Brian R; Granite, Evan J; Hoffman, James S; Pennline, Henry W

    2003-06-01

    The topic of global warming as a result of increased atmospheric CO2 concentration is arguably the most important environmental issue that the world faces today. It is a global problem that will need to be solved on a global level. The link between anthropogenic emissions of CO2 with increased atmospheric CO2 levels and, in turn, with increased global temperatures has been well established and accepted by the world. International organizations such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) have been formed to address this issue. Three options are being explored to stabilize atmospheric levels of greenhouse gases (GHGs) and global temperatures without severely and negatively impacting standard of living: (1) increasing energy efficiency, (2) switching to less carbon-intensive sources of energy, and (3) carbon sequestration. To be successful, all three options must be used in concert. The third option is the subject of this review. Specifically, this review will cover the capture and geologic sequestration of CO2 generated from large point sources, namely fossil-fuel-fired power gasification plants. Sequestration of CO2 in geological formations is necessary to meet the President's Global Climate Change Initiative target of an 18% reduction in GHG intensity by 2012. Further, the best strategy to stabilize the atmospheric concentration of CO2 results from a multifaceted approach where sequestration of CO2 into geological formations is combined with increased efficiency in electric power generation and utilization, increased conservation, increased use of lower carbon-intensity fuels, and increased use of nuclear energy and renewables. This review covers the separation and capture of CO2 from both flue gas and fuel gas using wet scrubbing technologies, dry regenerable sorbents, membranes, cryogenics, pressure and temperature swing adsorption, and other advanced concepts. Existing

  13. Geologic framework for the national assessment of carbon dioxide storage resources: Permian and Palo Duro Basins and Bend Arch-Fort Worth Basin: Chapter K in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Merrill, Matthew D.; Slucher, Ernie R.; Roberts-Ashby, Tina L.; Warwick, Peter D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2015-01-01

    The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resource in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report is the geologic framework document for the Permian and Palo Duro Basins, the combined Bend arch-Fort Worth Basin area, and subbasins therein of Texas, New Mexico, and Oklahoma. In addition to a summarization of the geology and petroleum resources of studied basins, the individual storage assessment units (SAUs) within the basins are described and explanations for their selection are presented. Though appendixes in the national assessment publications include the input values used to calculate the available storage resource, this framework document provides only the context and source of inputs selected by the assessment geologists. Spatial files of boundaries for the SAUs herein, as well as maps of the density of known well bores that penetrate the SAU seal, are available for download with the release of this report.

  14. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-07-01

    This paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [1-]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria) in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic. In order to evaluate seismicity and to assess the impact of seismic effects at depths of hypothetical deep geological repository for the next time period, the neo-deterministic method was selected as an extension of the probabilistic method. Each one out of the seven survey areas were assessed by the neo-deterministic evaluation of the seismic wave-field excited by selected individual events and determining the maximum loading. Results of seismological databases studies and neo-deterministic analysis of Čihadlo locality are presented.

  15. Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer

    PubMed Central

    Suzuki, Yohey; Mukai, Hiroki; Ishimura, Toyoho; Yokoyama, Takaomi D.; Sakata, Shuhei; Hirata, Takafumi; Iwatsuki, Teruki; Mizuno, Takashi

    2016-01-01

    The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles are mobile and susceptible to oxidative dissolution after the termination of nutrient injection, in situ bioremediation remains to be impractical. Here we show that U(IV) nanoparticles of coffinite (U(SiO4)1−x(OH)4x) formed in fracture-filling calcium carbonate in a granitic aquifer. In situ U-Pb isotope dating demonstrates that U(IV) nanoparticles have been sequestered in the calcium carbonate for at least 1 million years. As the microbiologically induced precipitation of calcium carbonate in aquifer systems worldwide is extremely common, we anticipate simultaneous stimulation of microbial activities for precipitation reactions of calcium carbonate and U(IV) nanoparticles, which leads to long-term sequestration of uranium and other radionuclides in contaminated aquifers and deep geological repositories. PMID:26948389

  16. Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer.

    PubMed

    Suzuki, Yohey; Mukai, Hiroki; Ishimura, Toyoho; Yokoyama, Takaomi D; Sakata, Shuhei; Hirata, Takafumi; Iwatsuki, Teruki; Mizuno, Takashi

    2016-03-07

    The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles are mobile and susceptible to oxidative dissolution after the termination of nutrient injection, in situ bioremediation remains to be impractical. Here we show that U(IV) nanoparticles of coffinite (U(SiO4)1-x(OH)4x) formed in fracture-filling calcium carbonate in a granitic aquifer. In situ U-Pb isotope dating demonstrates that U(IV) nanoparticles have been sequestered in the calcium carbonate for at least 1 million years. As the microbiologically induced precipitation of calcium carbonate in aquifer systems worldwide is extremely common, we anticipate simultaneous stimulation of microbial activities for precipitation reactions of calcium carbonate and U(IV) nanoparticles, which leads to long-term sequestration of uranium and other radionuclides in contaminated aquifers and deep geological repositories.

  17. U.S. Geological Survey National Computer Technology Meeting; Program and abstracts, May 7-11, 1990

    USGS Publications Warehouse

    Balthrop, B. H.; Baker, E.G.

    1990-01-01

    Computer-related information from all Divisions of the U.S. Geological Survey are discussed in this compilation of abstracts. Some of the topics addressed are system administration; distributed information systems and data bases, both current (1990) and proposed; hydrologic applications; national water information systems; geographic information systems applications and techniques. The report contains some of the abstracts that were presented at the National Computer Technology Meeting that was held in May 1990. The meeting was sponsored by the Water Resources Division and was attended by more than 200 technical and managerial personnel representing all the Divisions of the U.S. Geological Survey. (USGS)

  18. Deep seismic sounding in northern Eurasia

    USGS Publications Warehouse

    Benz, H.M.; Unger, J.D.; Leith, W.S.; Mooney, W.D.; Solodilov, L.; Egorkin, A.V.; Ryaboy, V.Z.

    1992-01-01

    For nearly 40 years, the former Soviet Union has carried out an extensive program of seismic studies of the Earth's crust and upper mantle, known as “Deep Seismic Sounding” or DSS [Piwinskii, 1979; Zverev and Kosminskaya, 1980; Egorkin and Pavlenkova, 1981; Egorkin and Chernyshov, 1983; Scheimer and Borg, 1985]. Beginning in 1939–1940 with a series of small-scale seismic experiments near Moscow, DSS profiling has broadened into a national multiinstitutional exploration effort that has completed almost 150,000 km of profiles covering all major geological provinces of northern Eurasia [Ryaboy, 1989].

  19. U.S. Geological Survey national computer technology meeting; program and abstracts, New Orleans, Louisiana, April 10-15, 1994

    USGS Publications Warehouse

    Balthrop, B. H.; Baker, E.G.

    1994-01-01

    This report contains some of the abstracts of papers that were presented at the National Computer Technology Meeting that was held in April 1994. This meeting was sponsored by the Water Resources Division of the U.S. Geological Survey, and was attended by more than 200 technical and managerial personnel representing all the Divisions of the U.S. Geological Survey. Computer-related information from all Divisions of the U.S. Geological Survey are discussed in this compilation of abstracts. Some of the topics addressed are data transfer, data-base management, hydrologic applications, national water information systems, and geographic information systems applications and techniques.

  20. State Geological Survey Contributions to the National Geothermal Data System- Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, M. Lee; Richard, Stephen M.

    The State Geological Survey Contributions to the National Geothermal Data System project is built on the work of the project managed by Boise State University to design and build the National Geothermal Data System, by deploying it nationwide and populating it with data principally from State Geological Surveys through collaboration with the Association of American State Geologists (AASG). This project subsequently incorporated the results of the design-build and other DOE-funded projects in support of the NGDS. The NGDS (www.geothermaldata.org) provides free open access to millions of data records, images, maps, and reports, sharing relevant geoscience, production, and land use datamore » in 30+ categories to propel geothermal development and production in the U.S. NGDS currently serves information gathered from hundreds of the U.S. Department of Energy sponsored development and research projects and geologic data feeds from 60+ data providers throughout all 50 states. These data are relevant to geothermal energy exploration and development, but also have broad applicability in other areas including natural resources (e.g., energy, minerals, water), natural hazards, and land use and management.« less

  1. Engineering-Geological Data Model - The First Step to Build National Polish Standard for Multilevel Information Management

    NASA Astrophysics Data System (ADS)

    Ryżyński, Grzegorz; Nałęcz, Tomasz

    2016-10-01

    The efficient geological data management in Poland is necessary to support multilevel decision processes for government and local authorities in case of spatial planning, mineral resources and groundwater supply and the rational use of subsurface. Vast amount of geological information gathered in the digital archives and databases of Polish Geological Survey (PGS) is a basic resource for multi-scale national subsurface management. Data integration is the key factor to allow development of GIS and web tools for decision makers, however the main barrier for efficient geological information management is the heterogeneity of data in the resources of the Polish Geological Survey. Engineering-geological database is the first PGS thematic domain applied in the whole data integration plan. The solutions developed within this area will facilitate creation of procedures and standards for multilevel data management in PGS. Twenty years of experience in delivering digital engineering-geological mapping in 1:10 000 scale and archival geotechnical reports acquisition and digitisation allowed gathering of more than 300 thousands engineering-geological boreholes database as well as set of 10 thematic spatial layers (including foundation conditions map, depth to the first groundwater level, bedrock level, geohazards). Historically, the desktop approach was the source form of the geological-engineering data storage, resulting in multiple non-correlated interbase datasets. The need for creation of domain data model emerged and an object-oriented modelling (UML) scheme has been developed. The aim of the aforementioned development was to merge all datasets in one centralised Oracle server and prepare the unified spatial data structure for efficient web presentation and applications development. The presented approach will be the milestone toward creation of the Polish national standard for engineering-geological information management. The paper presents the approach and methodology

  2. The National Deep-Sea Coral and Sponge Database: A Comprehensive Resource for United States Deep-Sea Coral and Sponge Records

    NASA Astrophysics Data System (ADS)

    Dornback, M.; Hourigan, T.; Etnoyer, P.; McGuinn, R.; Cross, S. L.

    2014-12-01

    Research on deep-sea corals has expanded rapidly over the last two decades, as scientists began to realize their value as long-lived structural components of high biodiversity habitats and archives of environmental information. The NOAA Deep Sea Coral Research and Technology Program's National Database for Deep-Sea Corals and Sponges is a comprehensive resource for georeferenced data on these organisms in U.S. waters. The National Database currently includes more than 220,000 deep-sea coral records representing approximately 880 unique species. Database records from museum archives, commercial and scientific bycatch, and from journal publications provide baseline information with relatively coarse spatial resolution dating back as far as 1842. These data are complemented by modern, in-situ submersible observations with high spatial resolution, from surveys conducted by NOAA and NOAA partners. Management of high volumes of modern high-resolution observational data can be challenging. NOAA is working with our data partners to incorporate this occurrence data into the National Database, along with images and associated information related to geoposition, time, biology, taxonomy, environment, provenance, and accuracy. NOAA is also working to link associated datasets collected by our program's research, to properly archive them to the NOAA National Data Centers, to build a robust metadata record, and to establish a standard protocol to simplify the process. Access to the National Database is provided through an online mapping portal. The map displays point based records from the database. Records can be refined by taxon, region, time, and depth. The queries and extent used to view the map can also be used to download subsets of the database. The database, map, and website is already in use by NOAA, regional fishery management councils, and regional ocean planning bodies, but we envision it as a model that can expand to accommodate data on a global scale.

  3. Deep Borehole Field Test Research Activities at LBNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy

    The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterizedmore » by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.« less

  4. Geologic framework for the national assessment of carbon dioxide storage resources: Hanna, Laramie, and Shirley Basins, Wyoming: Chapter C in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Merrill, Matthew D.; Covault, Jacob A.; Craddock, William H.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven M.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2012-01-01

    The 2007 Energy Independence and Security Act (Public Law 110-140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used for the national CO2 assessment is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of twelve storage assessment units (SAUs) in six separate packages of sedimentary rock within the Hanna, Laramie, and Shirley Basins of Wyoming. It focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included herein will be employed, as specified in the methodology, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data in a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.

  5. National Research Program of the Water Resources Division, U.S. Geological Survey, fiscal year 1987

    USGS Publications Warehouse

    Friedman, Linda C.; Donato, Christine N.

    1988-01-01

    The National Research Program (NRP) of the U.S. Geological Survey's Water Resources Division (WRD) had its beginnings in the late 1950's when "core research" was added as a line item to the Congressional budget. Since that time, the NRP has grown to encompass a broad spectrum of scientific investigations. The sciences of hydrology, mathematics, chemistry, physics, biology, geology, and engineering are used to gain a fundamental understanding of the processes that affect the availability, movement, and quality of the Nation's water resources. The knowledge gained and methods developed have great value to WRD's operational program. Results of the investigations conducted by the NRP are applicable not only to the solution of current water problems, but also to future issues, anticipated or unanticipated, that may affect the Nation's water resources.

  6. National Research Program of the Water Resources Division, U. S. Geological Survey, Fiscal Year 1989

    USGS Publications Warehouse

    Eggers, JoAnn; Friedman, Linda C.

    1989-01-01

    The National Research Program (NRP) of the U.S. Geological Survey's Water Resources Division (WRD) had its beginnings in the late 1950's when "core research" was added as a line item to the Congressional budget. Since that time, the NRP has grown to encompass a broad spectrum of scientific investigations. The sciences of hydrology, mathematics, chemistry, physics, ecology, biology, geology, and engineering are used to gain a fundamental understanding of the processes that affect the availability, movement, and quality of the Nation's water resources. The knowledge gained and methods developed have great value to WRD's operational program. Results of the investigations conducted by the NRP are applicable not only to the solution of current water problems but also to future issues, anticipated or unanticipated, that may affect the Nation's water resources.

  7. Geomicrobiology and Metagenomics of Terrestrial Deep Subsurface Microbiomes.

    PubMed

    Itävaara, M; Salavirta, H; Marjamaa, K; Ruskeeniemi, T

    2016-01-01

    Fractures in the deep subsurface of Earth's crust are inhabited by diverse microbial communities that participate in biogeochemical cycles of the Earth. Life on Earth, which arose c. 3.5-4.0 billion years ago, reaches down at least 5 km in the crust. Deep mines, caves, and boreholes have provided scientists with opportunities to sample deep subsurface microbiomes and to obtain information on the species diversity and functions. A wide variety of bacteria, archaea, eukaryotes, and viruses are now known to reside in the crust, but their functions are still largely unknown. The crust at different depths has varying geological composition and hosts endemic microbiomes accordingly. The diversity is driven by geological formations and gases evolving from deeper depths. Cooperation among different species is still mostly unexplored, but viruses are known to restrict density of bacterial and archaeal populations. Due to the complex growth requirements of the deep subsurface microbiomes, the new knowledge about their diversity and functions is mostly obtained by molecular methods, eg, meta'omics'. Geomicrobiology is a multidisciplinary research area combining disciplines from geology, mineralogy, geochemistry, and microbiology. Geomicrobiology is concerned with the interaction of microorganisms and geological processes. At the surface of mineralogical or rock surfaces, geomicrobial processes occur mainly under aerobic conditions. In the deep subsurface, however, the environmental conditions are reducing and anaerobic. The present chapter describes the world of microbiomes in deep terrestrial geological environments as well as metagenomic and metatranscriptomic methods suitable for studies of these enigmatic communities. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Geologic map of the national parks in the National Capital region, Washington, D.C., Virginia, Maryland, and West Virginia

    USGS Publications Warehouse

    Southworth, Scott; Denenny, Danielle

    2006-01-01

    More than 51,000 acres within the National Capital Region (NCR) are administered by the National Park Service (NPS). These parks consist of parkways, trails, statues, monuments, memorials, historic sites, scenic areas, theatres, parks for performing arts, and Civil War battlefields. Although largely established for historical and cultural resources, each park is situated on a landscape that is influenced by bedrock and surficial geology of the central Appalachian mid-Atlantic region. Geologic mapping and field studies conducted for over 130 years are summarized here to provide the earliest history of the parklands. The age, type, names, and the interpreted origin of the rocks, as well as the processes active in the formation of surficial deposits and the landscape are discussed. These data are intended for educational and interpretative programs for visitors as well as the management of natural resources.

  9. 77 FR 19032 - Geological Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... DEPARTMENT OF THE INTERIOR Geological Survey Announcement of National Geospatial Advisory Committee Meeting AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. SUMMARY: The National.... Geological Survey (703-648-6283, [email protected] ). Registrations are due by April 13, 2012. While the...

  10. Excess plutonium disposition: The deep borehole option

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, K.L.

    1994-08-09

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues relatedmore » to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.« less

  11. A Methodology for Characterizing Potential Uranium Transport in Deep Geological Disposal Sites

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Reimus, P. W.

    2013-12-01

    In order to make safe and reasonable decisions about radioactive waste disposal in deep geologic sites, it is important to understand the fate and potential transport of long half-life transuranic radionuclides over a wide range of time and distance scales. The objective of this study was to evaluate and demonstrate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments involving uranium, as well as other actinides, have already been conducted. Working on this system provides a unique opportunity to compare lab experimental results with field-scale observations. Drilled rock cores and weathered fracture fill material (FFM) from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption/desorption and column breakthrough experiments. Uranium solutions were made by adding uranium to a synthetic Grimsel groundwater that matched the natural water chemistry found in the GTS groundwater. Batch and breakthrough experiments were conducted using solutions between pH 6.9 and 9.0. All column experiments were conducted using syringe pumps at low flow rate (<0.3 ml h-1) in small columns containing 5 g of material with pore volumes of 2-3 ml. These small columns allow rapid and economical evaluation of sorption/desorption behavior under flowing conditions (and in duplicate or triplicate). Solutions were switched to uranium-free synthetic Grimsel groundwater after equilibration in batch experiments or after near-steady uranium breakthrough occurred in column experiments. The measurement of uranium concentrations as a function of time under these conditions allowed interrogation of desorption rates which we believe control uranium fate and transport over long time and distance scales. Uranium transport

  12. OneGeology: Making the World’s Geological Map Data Accessible Online

    NASA Astrophysics Data System (ADS)

    Broome, H.; Jackson, I.; Robida, F.; Thorleifson, H.

    2009-12-01

    OneGeology (http://onegeology.org) is a successful international initiative of the geological surveys of the world and the flagship project of the ‘International Year of Planet Earth’. Its aim is to provide dynamic web access to geological map data covering the world, creating a focus for accessing geological information for everyone. Thanks to the enthusiasm and support of participating nations the initiative has progressed rapidly and geological surveys and the many users of their data are excited about this ground-breaking project. Currently 10 international geoscience organizations have endorsed the initiative and more than 109 countries have agreed to participate. OneGeology works with whatever digital format is available in each country. The target scale is 1:1 million, but the project is pragmatic and accepts a range of scales and the best available data. The initiative recognizes that different nations have differing abilities to participate and transfer of know-how to those who need it is a key aspect of the approach. A key contributor to the success of OneGeology has been its utilization of the latest new web technology and an emerging data exchange standard for geological map data called GeoSciML. GeoSciML (GeoScience Markup Language) is a schema written in GML (Geography Markup Language) for geological data. GeoSciML has the ability to represent both the geography (geometries e.g. polygons, lines and points) and geological attribution in a clear and structured format. OneGeology was launched March 2007 at the inaugural workshop in Brighton England. At that workshop the 43 participating nations developed a declaration of a common objective and principles called the “Brighton Accord” (http://onegeology.org/what_is/accord.html) . Work was initiated immediately and the resulting OneGeology Portal was launched at the International Geological Congress in Oslo in August 2008 by Simon Winchester, author of “The Map that Changed the World”. Since the

  13. [Deep continuous palliative sedation in the Opinion adopted by the Italian National Bioethics Committee (Deep palliative sedation)].

    PubMed

    Cembrani, Fabio

    2016-01-01

    The Author examines the recent opinion delivered by the Italian National Committee for Bioethics on deep palliative sedation. In particular, it examines its strengths and ample shade that show its ideology, once again, in contrast with the right of every human being to die with dignity.

  14. Mapping Applications Center, National Mapping Division, U.S. Geological Survey

    USGS Publications Warehouse

    ,

    1996-01-01

    The Mapping Applications Center (MAC), National Mapping Division (NMD), is the eastern regional center for coordinating the production, distribution, and sale of maps and digital products of the U.S. Geological Survey (USGS). It is located in the John Wesley Powell Federal Building in Reston, Va. The MAC's major functions are to (1) establish and manage cooperative mapping programs with State and Federal agencies; (2) perform new research in preparing and applying geospatial information; (3) prepare digital cartographic data, special purpose maps, and standard maps from traditional and classified source materials; (4) maintain the domestic names program of the United States; (5) manage the National Aerial Photography Program (NAPP); (6) coordinate the NMD's publications and outreach programs; and (7) direct the USGS mapprinting operations.

  15. Use of Groundwater Lifetime Expectancy for the Performance Assessment of Deep Geologic Radioactive Waste Repositories.

    NASA Astrophysics Data System (ADS)

    Cornaton, F.; Park, Y.; Normani, S.; Sudicky, E.; Sykes, J.

    2005-12-01

    Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, the safety of the host repository depends on two main barriers: the engineered barrier and the natural geological barrier. If radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from the repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. In a second step, the risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The proposed methodology is applied in the context of a typical Canadian Shield environment. Based on a statistically-generated three-dimension network of fracture zones embedded in the granitic host rock, the sensitivity and the uncertainty of lifetime expectancy to the hydraulic and dispersive properties of the fracture network, including the impact of conditioning via their surface expressions, is computed in order to demonstrate the utility of the methodology.

  16. Teleseismic constraints on the geological environment of deep episodic slow earthquakes in subduction zone forearcs: A review

    NASA Astrophysics Data System (ADS)

    Audet, Pascal; Kim, YoungHee

    2016-02-01

    More than a decade after the discovery of deep episodic slow slip and tremor, or slow earthquakes, at subduction zones, much research has been carried out to investigate the structural and seismic properties of the environment in which they occur. Slow earthquakes generally occur on the megathrust fault some distance downdip of the great earthquake seismogenic zone in the vicinity of the mantle wedge corner, where three major structural elements are in contact: the subducting oceanic crust, the overriding forearc crust and the continental mantle. In this region, thermo-petrological models predict significant fluid production from the dehydrating oceanic crust and mantle due to prograde metamorphic reactions, and their consumption by hydrating the mantle wedge. These fluids are expected to affect the dynamic stability of the megathrust fault and enable slow slip by increasing pore-fluid pressure and/or reducing friction in fault gouges. Resolving the fine-scale structure of the deep megathrust fault and the in situ distribution of fluids where slow earthquakes occur is challenging, and most advances have been made using teleseismic scattering techniques (e.g., receiver functions). In this paper we review the teleseismic structure of six well-studied subduction zones (three hot, i.e., Cascadia, southwest Japan, central Mexico, and three cool, i.e., Costa Rica, Alaska, and Hikurangi) that exhibit slow earthquake processes and discuss the evidence of structural and geological controls on the slow earthquake behavior. We conclude that changes in the mechanical properties of geological materials downdip of the seismogenic zone play a dominant role in controlling slow earthquake behavior, and that near-lithostatic pore-fluid pressures near the megathrust fault may be a necessary but insufficient condition for their occurrence.

  17. 78 FR 57877 - National Cooperative Geologic Mapping Program (NCGMP) and National Geological and Geophysical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ... AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of annual meeting: audio conference. SUMMARY: Pursuant to Public Law 106-148, the NCGMP and NGGDPP Advisory Committee will hold an audio conference call...

  18. 77 FR 38318 - National Cooperative Geologic Mapping Program (NCGMP) and National Geological and Geophysical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of annual meeting: Audio Conference. SUMMARY: Pursuant to Public Law 106-148, the NCGMP and NGGDPP Advisory Committee will hold an audio conference call...

  19. U.S. Geological Survey Science Support Strategy for Biscayne National Park and Surrounding Areas in Southeastern Florida

    USGS Publications Warehouse

    Wolfert-Lohmann, Melinda A.; Langevin, Christian D.; Jones, Sonya A.; Reich, Chris D.; Wingard, Georgina L.; Kuffner, Ilsa B.; Cunningham, Kevin J.

    2008-01-01

    The U.S. Geological Survey conducts a wide range of research in and around the Biscayne National Park region of southern Florida. This research encompasses the biologic, ecologic, meteorologic, geologic, and hydrologic components of the system, including water-quality analyses, ground-water modeling, hydrogeologic-data collection, ecologic-habitat evaluations, wetlands characterizations, biogeochemistry of ecosystems, and paleo-ecologic analyses. Relevant information is provided herein for researchers and managers interested in the Biscayne Bay area and about current U.S. Geological Survey efforts that address important resource protection and management issues. Specifically, managers and scientists are provided with information on current and recently completed U.S. Geological Survey projects and a sample listing of potential U.S. Geological Survey research projects addressing relevant issues that face the study area.

  20. Aniakchak National Monument and Preserve: Geologic resources inventory report

    USGS Publications Warehouse

    Hults, Chad P.; Neal, Christina

    2015-01-01

    This GRI report is a companion document to previously completed GRI digital geologic map data. It was written for resource managers to support science-informed decision making. It may also be useful for interpretation. The report was prepared using available geologic information, and the NPS Geologic Resources Division conducted no new fieldwork in association with its preparation. Sections of the report discuss distinctive geologic features and processes within the park, highlight geologic issues facing resource managers, describe the geologic history leading to the present-day landscape, and provide information about the GRI geologic map data. A poster illustrates these data. The Map Unit Properties Table summarizes report content for each geologic map unit.

  1. 77 FR 6580 - National Cooperative Geologic Mapping Program (NCGMP) and National Geological and Geophysical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of Audio Conference. SUMMARY: Pursuant to Public Law 106-148, the NCGMP and NGGDPP Advisory Committee will hold an audio conference call on February 29...

  2. National Assessment of Geologic Carbon Dioxide Storage Resources -- Trends and Interpretations

    NASA Astrophysics Data System (ADS)

    Buursink, M. L.; Blondes, M. S.; Brennan, S.; Drake, R., II; Merrill, M. D.; Roberts-Ashby, T. L.; Slucher, E. R.; Warwick, P.

    2013-12-01

    In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resource (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins or study areas were defined on the basis of geologic and hydrologic characteristics outlined in the USGS assessment methodology. The mean national TASR is approximately 3,000 metric gigatons. To augment the release of the assessment, this study reviews input estimates and output results as a part of the resource calculation. Included in this study are a collection of both cross-plots and maps to demonstrate our trends and interpretations. Alongside the assessment, the input estimates were examined for consistency between SAUs and cross-plotted to verify expected trends, such as decreasing storage formation porosity with increasing SAU depth, for instance, and to show a positive correlation between storage formation porosity and permeability estimates. Following the assessment, the output results were examined for correlation with selected input estimates. For example, there exists a positive correlation between CO2 density and the TASR, and between storage formation porosity and the TASR, as expected. These correlations, in part, serve to verify our estimates for the geologic variables. The USGS assessment concluded that the Coastal Plains Region of the eastern and southeastern United States contains the largest storage resource. Within the Coastal Plains Region, the storage resources from the U.S. Gulf Coast study area represent 59 percent of the national CO2 storage capacity

  3. International Approaches for Nuclear Waste Disposal in Geological Formations: Geological Challenges in Radioactive Waste Isolation—Fifth Worldwide Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris; Birkholzer, Jens; Sassani, David

    The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included inmore » the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.« less

  4. Geologic applications of thermal-inertia mapping from satellite. [Powder River, Wyoming; Cubeza Prieta, Arizona, and Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Offield, T. W. (Principal Investigator); Watson, K.; Hummer-Miller, S.

    1981-01-01

    In the Powder River Basin, Wyo., narrow geologic units having thermal inertias which contrast with their surroundings can be discriminated in optimal images. A few subtle thermal inertia anomalies coincide with areas of helium leakage believed to be associated with deep oil and gas concentrations. The most important results involved delineation of tectonic framework elements some of which were not previously recognized. Thermal and thermal inertia images also permit mapping of geomorphic textural domains. A thermal lineament appears to reveal a basement discontinuity which involves the Homestake Mine in the Black Hill, a zone of Tertiary igneous activity and facies control in oil producing horizons. Applications of these data to the Cabeza Prieta, Ariz., area illustrate their potential for igneous rock type discrimination. Extension to Yellowstone National Park resulted in the detection of additional structural information but surface hydrothermal features could not be distinguished with any confidence. A thermal inertia mapping algorithm, a fast and accurate image registration technique, and an efficient topographic slope and elevation correction method were developed.

  5. [Geognosy versus Geology: National Modes of Thought and Cultural Practices Concerning Space and Time in Competition].

    PubMed

    Klemun, Marianne

    2015-09-01

    Natural science investigators at the end of the eighteenth century made use of conflicting labels to position their respective preferred fields of activity in the Earth sciences. This mania for labelling marked their break with natural science and the umbrella term 'mineralogy'. In this conflict situation of specialist classifications and explanations, two terms in particular were established: geognosy and geology, which covered the very promising project of research in the areas of the 'origin of the Earth' and the 'formation of the Earth'. These and the associated research goals were subsequently accorded a dazzling career. Proceeding from the conceptual core-meaning in the formation of terms und its semantic spectrum and conceptual shifts in a time of change, my study will look at the identity and heterogeneity functions of geology and geognosy. For whereas in French and English speaking countries the term geology came to be used exclusively (geology, géologie), this was avoided in German, particularly because the term geognosy was preferred. These national differences may be explained with reference to the different cultural and national styles of science: for example the social embedding of geology in the culture of the English gentleman or the French museum culture, and the close connection of 'German' geognosy to mining. A further starting point in the analysis of the double use of both geology and geognosy in German speaking countries until 1840 is provided by the different references to temporalization and spatialization of the two terms. And we should also include the practical implications and the epistemic requirements that were bound up with the defence of geognosy in the German speaking world.

  6. Engineering Geology

    ERIC Educational Resources Information Center

    Hatheway, Allen W.

    1978-01-01

    Engineering geology remains a potpourri of applied classical geology, and 1977 witnessed an upswing in demand for these services. Traditional foundation-related work was slight, but construction related to national needs increased briskly. Major cities turned to concerns of transit waste-water treatment and solid-waste disposal. (Author/MA)

  7. Geology of the Great Smoky Mountains National Park, Tennessee and North Carolina

    USGS Publications Warehouse

    King, Philip Burke; Neuman, Robert B.; Hadley, Jarvis B.

    1968-01-01

    Every year, thousands of our fellow Americans visit Great Smoky Mountains National Park, in the heart of the southern Appalachian highlands. All visitors find refreshment in this mountain wilderness, some of them are also inspired by its deeper meanings - by observing the varied forests and other living things of the mountains, and by contemplating the long ages of the past during which the mountains and their living things must have evolved. These past ages can be deciphered by geologic study, which interprets first of all how the land has been shaped into its present form, and more remotely, the nature and history of the rocks from which the land has been carved. The account which follows deals primarily with this more remote part of the geologic story - the rocks which compose the mountains. How the present mountains came into being is a later chapter of the story, interesting in itself, which deserves its own presentation in another place. The present account summarizes the results of a long investigation of the rocks of the Great Smoky Mountains (1946-55) by geologists of the staff of the U.S. Geological Survey, in collaboration with those of the Tennessee Division of Geology. The technical details of this investigation have already been set forth at length in professional papers of the U.S. Geological Survey. The present account contains the gist of these findings about the rocks of the mountains, and is accompanied by a map and structure sections in which the surface and underground extent of the rocks are displayed. This summary, by cutting through the many technical problems involved, will be useful to students interested in geology and the other natural sciences, and to a wider audience as well. Even so, to portray adequately the rocks of the mountains and their history involves at least some recourse to geologic terminology, so that all the assertions made herein may not be comprehensible to the general reader. As an aid to the reader, a glossary of the

  8. Opportunities and challenges in studies of deep life (Invited)

    NASA Astrophysics Data System (ADS)

    Edwards, K. J.

    2010-12-01

    Over the past two decades, there has been an increasing awareness within the geological, microbiological, and oceanographic communities of the potentially vast microbial biosphere that is harbored beneath the surface of the Earth. With this awareness has come a mounting effort to study this potential biome - to better quantify biomass abundance, activity, and biogeochemical activity. In the Earth system, the largest deep subsurface biome is also the least accessible - the deep ocean subsurface biosphere. The oceanic deep biosphere also has greatest potential for influencing global scale biogeochemical processes -the carbon and energy cycles for example, and other elemental cycles. To address these topics and mount interdisciplinary efforts to study the deep subsurface marine biosphere, we have recently formed a center in support integrative, collaborative investigations. The national science foundation Center for Dark Biosphere Investigations (C-DEBI), has been initiated for the explicit purpose of resolving the extent, function, dynamics and implications of the subseafloor biosphere. This talk will discuss C-DEBI science, with focus on some of the opportunities and challenges in the study of deep life in the ocean, and the role that C-DEBI will play in meeting them

  9. The Handling of Hazard Data on a National Scale: A Case Study from the British Geological Survey

    NASA Astrophysics Data System (ADS)

    Royse, Katherine R.

    2011-11-01

    This paper reviews how hazard data and geological map data have been combined by the British Geological Survey (BGS) to produce a set of GIS-based national-scale hazard susceptibility maps for the UK. This work has been carried out over the last 9 years and as such reflects the combined outputs of a large number of researchers at BGS. The paper details the inception of these datasets from the development of the seamless digital geological map in 2001 through to the deterministic 2D hazard models produced today. These datasets currently include landslides, shrink-swell, soluble rocks, compressible and collapsible deposits, groundwater flooding, geological indicators of flooding, radon potential and potentially harmful elements in soil. These models have been created using a combination of expert knowledge (from both within BGS and from outside bodies such as the Health Protection Agency), national databases (which contain data collected over the past 175 years), multi-criteria analysis within geographical information systems and a flexible rule-based approach for each individual geohazard. By using GIS in this way, it has been possible to model the distribution and degree of geohazards across the whole of Britain.

  10. State geological surveys: Their growing national role in policy

    USGS Publications Warehouse

    Gerhard, L.C.

    2000-01-01

    State geological surveys vary in organizational structure, but are political powers in the field of geology by virtue of their intimate knowledge of and involvement in legislative and political processes. Origins of state geological surveys lie in the recognition of society that settlement and prosperity depended on access to a variety of natural resources, resources that are most familiar to geologists. As the surveys adapt to modern societal pressures, making geology serve the public has become the new mission for many state geological surveys. Geologic mapping was the foundation of most early surveys, and the state surveys have brought mapping back into the public realm to meet today's challenges of growing population density, living environment desires, and resource access.

  11. Geological science needs studied

    NASA Astrophysics Data System (ADS)

    The Geological Sciences Board of the National Academy of Science is conducting a study of the trends, needs, and priorities of the geological sciences for the 1980s. Many organizations and individuals already have been contacted regarding this task; however, in order to ensure that the forthcoming report is based broadly on ideas from the scientific community, the Geological Sciences Board solicits the thoughts of AGU members about the substance of the study. Please send your questions and comments by early this fall to William Dickinson, chairman of the Geological Sciences Board, National Academy of Sciences, Room 69, 2101 Constitution Ave., N.W., Washington, D.C. 20418. A draft report is expected in January 1983.

  12. Use of groundwater lifetime expectancy for the performance assessment of a deep geologic radioactive waste repository: 2. Application to a Canadian Shield environment

    NASA Astrophysics Data System (ADS)

    Park, Y.-J.; Cornaton, F. J.; Normani, S. D.; Sykes, J. F.; Sudicky, E. A.

    2008-04-01

    F. J. Cornaton et al. (2008) introduced the concept of lifetime expectancy as a performance measure of the safety of subsurface repositories, on the basis of the travel time for contaminants released at a certain point in the subsurface to reach the biosphere or compliance area. The methodologies are applied to a hypothetical but realistic Canadian Shield crystalline rock environment, which is considered to be one of the most geologically stable areas on Earth. In an approximately 10 × 10 × 1.5 km3 hypothetical study area, up to 1000 major and intermediate fracture zones are generated from surface lineament analyses and subsurface surveys. In the study area, mean and probability density of lifetime expectancy are analyzed with realistic geologic and hydrologic shield settings in order to demonstrate the applicability of the theory and the numerical model for optimally locating a deep subsurface repository for the safe storage of spent nuclear fuel. The results demonstrate that, in general, groundwater lifetime expectancy increases with depth and it is greatest inside major matrix blocks. Various sources and aspects of uncertainty are considered, specifically geometric and hydraulic parameters of permeable fracture zones. Sensitivity analyses indicate that the existence and location of permeable fracture zones and the relationship between fracture zone permeability and depth from ground surface are the most significant factors for lifetime expectancy distribution in such a crystalline rock environment. As a consequence, it is successfully demonstrated that the concept of lifetime expectancy can be applied to siting and performance assessment studies for deep geologic repositories in crystalline fractured rock settings.

  13. Geologic map of southwestern Sequoia National Park and vicinity, Tulare County, California, including the Mineral King metamorphic pendant

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Moore, J. G.

    2012-12-01

    From the late 1940s to the early 1990s, scientists of the U.S. Geological Survey (USGS) mapped the geology of most of Sequoia and Kings Canyon National Parks, California, and published the results as a series of 15-minute (1:62,500 scale) Geologic Quadrangles. The southwest corner of Sequoia National Park, encompassing the Mineral King and eastern edge of the Kaweah 15-minute topographic quadrangles, however, remained unfinished. At the request of the National Park Service's Geologic Resources Division (NPS-GRD), the USGS has mapped the geology of that area using 7.5-minute (1:24,000 scale) topographic bases and high-resolution ortho-imagery. With partial support from NPS-GRD, the major plutons in the map area were dated by the U-Pb zircon method with the Stanford-USGS SHRIMP-RG ion microprobe. Highlights include: (1) Identification of the Early Cretaceous volcano-plutonic suite of Mineral King (informally named), consisting of three deformed granodiorite plutons and the major metarhyolite tuffs of the Mineral King metamorphic pendant. Members of the suite erupted or intruded at 130-140 Ma (pluton ages: this study; rhyolite ages: lower-intercept concordia from zircon results of Busby-Spera, 1983, Princeton Ph.D. thesis, and from Klemetti et al., 2011, AGU abstract) during the pause of igneous activity between emplacement of the Jurassic and Cretaceous Sierran batholiths. (2) Some of the deformation of the Mineral King metamorphic pendant is demonstrably Cretaceous, with evidence including map-scale folding of Early Cretaceous metarhyolite tuff, and an isoclinally folded aplite dike dated at 98 Ma, concurrent with the large 98-Ma granodiorite of Castle Creek that intruded the Mineral King pendant on the west. (3) A 21-km-long magmatic synform within the 99-100 Ma granite of Coyote Pass that is defined both by inward-dipping mafic inclusions (enclaves) and by sporadic, cm-thick, sharply defined mineral layering. The west margin of the granite of Coyote Pass overlies

  14. Geologic Map and Digital Data Base of the Almo Quadrangle and City of Rocks National Reserve, Cassia County, Idaho

    USGS Publications Warehouse

    Miller, David M.; Armstrong, Richard L.; Bedford, David R.; Davis, Marsha

    2008-01-01

    This geologic map describes the geology of the City of Rocks National Reserve and environs, located in the Albion Mountains of south-central Idaho. The most prominent geologic features of the Reserve are the spectacular rock spires that attracted visitors, beginning with commentary in the journals of travelers to California during the Gold Rush of 1849. The tectonic history is outlined, and descriptions of landscape processes, a newly discovered Quaternary fault, and features of the pinnacles are presented.

  15. Deep-sea genetic resources: New frontiers for science and stewardship in areas beyond national jurisdiction

    NASA Astrophysics Data System (ADS)

    Harden-Davies, Harriet

    2017-03-01

    The deep-sea is a large source of marine genetic resources (MGR), which have many potential uses and are a growing area of research. Much of the deep-sea lies in areas beyond national jurisdiction (ABNJ), including 65% of the global ocean. MGR in ABNJ occupy a significant gap in the international legal framework. Access and benefit sharing of MGR is a key issue in the development of a new international legally-binding instrument under the United Nations Convention on the Law of the Sea (UNCLOS) for the conservation and sustainable use of marine biological diversity in ABNJ. This paper examines how this is relevant to deep-sea scientific research and identifies emerging challenges and opportunities. There is no internationally agreed definition of MGR, however, deep-sea genetic resources could incorporate any biological material including genes, proteins and natural products. Deep-sea scientific research is the key actor accessing MGR in ABNJ and sharing benefits such as data, samples and knowledge. UNCLOS provides the international legal framework for marine scientific research, international science cooperation, capacity building and marine technology transfer. Enhanced implementation could support access and benefit sharing of MGR in ABNJ. Deep-sea scientific researchers could play an important role in informing practical new governance solutions for access and benefit sharing of MGR that promote scientific research in ABNJ and support deep-sea stewardship. Advancing knowledge of deep-sea biodiversity in ABNJ, enhancing open-access to data and samples, standardisation and international marine science cooperation are significant potential opportunity areas.

  16. New developments in measurements technology relevant to the studies of deep geological repositories in bedded salt

    NASA Astrophysics Data System (ADS)

    Mao, N. H.; Ramirez, A. L.

    1980-10-01

    Developments in measurement technology are presented which are relevant to the studies of deep geological repositories for nuclear waste disposal during all phases of development, i.e., site selection, site characterization, construction, operation, and decommission. Emphasis was placed on geophysics and geotechnics with special attention to those techniques applicable to bedded salt. The techniques are grouped into sections as follows: tectonic environment, state of stress, subsurface structures, fractures, stress changes, deformation, thermal properties, fluid transport properties, and other approaches. Several areas that merit further research and developments are identified. These areas are: in situ thermal measurement techniques, fracture detection and characterization, in situ stress measurements, and creep behavior. The available instrumentations should generally be improved to have better resolution and accuracy, enhanced instrument survivability, and reliability for extended time periods in a hostile environment.

  17. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 STORAGE

    EPA Science Inventory

    The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...

  18. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION

    EPA Science Inventory

    The chapter discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of t...

  19. The deep structure of the Sichuan basin and adjacent orogenic zones revealed by the aggregated deep seismic profiling datum

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Gao, R.; Li, Q.; Wang, H.

    2012-12-01

    The sedimentary basin and the orogenic belt are the basic two tectonic units of the continental lithosphere, and form the basin-mountain coupling system, The research of which is the key element to the oil and gas exploration, the global tectonic theory and models and the development of the geological theory. The Sichuan basin and adjacent orogenic belts is one of the most ideal sites to research the issues above, in particular by the recent deep seismic profiling datum. From the 1980s to now, there are 11 deep seismic sounding profiles and 6 deep seismic reflection profiles and massive seismic broadband observation stations deployed around and crossed the Sichuan basin, which provide us a big opportunity to research the deep structure and other forward issues in this region. Supported by the National Natural Science Foundation of China (Grant No. 41104056) and the Fundamental Research Funds of the Institute of Geological Sciences, CAGS (No. J1119), we sampled the Moho depth and low-velocity zone depth and the Pn velocity of these datum, then formed the contour map of the Moho depth and Pn velocity by the interpolation of the sampled datum. The result shows the Moho depth beneath Sichuan basin ranges from 40 to 44 km, the sharp Moho offset appears in the western margin of the Sichuan basin, and there is a subtle Moho depression in the central southern part of the Sichuan basin; the P wave velocity can be 6.0 km/s at ca. 10 km deep, and increases gradually deeper, the average P wave velocity in this region is ca. 6.3 km/s; the Pn velocity is ca. 8.0-8.02 km/s in Sichuan basin, and 7.70-7.76 km/s in Chuan-Dian region; the low velocity zone appears in the western margin of the Sichuan basin, which maybe cause the cause of the earthquake.

  20. National Geothermal Data System: State Geological Survey Contributions to Date

    NASA Astrophysics Data System (ADS)

    Patten, K.; Allison, M. L.; Richard, S. M.; Clark, R.; Love, D.; Coleman, C.; Caudill, C.; Matti, J.; Musil, L.; Day, J.; Chen, G.

    2012-12-01

    In collaboration with the Association of American State Geologists the Arizona Geological Survey is leading the effort to bring legacy geothermal data to the U.S. Department of Energy's National Geothermal Data System (NGDS). NGDS is a national, sustainable, distributed, interoperable network of data and service (application) providers entering its final stages of development. Once completed the geothermal industry, the public, and policy makers will have access to consistent and reliable data, which in turn, reduces the amount of staff time devoted to finding, retrieving, integrating, and verifying information. With easier access to information, the high cost and risk of geothermal power projects (especially exploration drilling) is reduced. This presentation focuses on the scientific and data integration methodology as well as State Geological Survey contributions to date. The NGDS is built using the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community and with other emerging data integration and networking efforts. Core to the USGIN concept is that of data provenance; by allowing data providers to maintain and house their data. After concluding the second year of the project, we have nearly 800 datasets representing over 2 million data points from the state geological surveys. A new AASG specific search catalog based on popular internet search formats enables end users to more easily find and identify geothermal resources in a specific region. Sixteen states, including a consortium of Great Basin states, have initiated new field data collection for submission to the NGDS. The new field data includes data from at least 21 newly drilled thermal gradient holes in previously unexplored areas. Most of the datasets provided to the NGDS are being portrayed as Open Geospatial Consortium (OGC) Web Map Services (WMS) and Web Feature Services (WFS), meaning that the data is compatible with a

  1. U.S. Geological Survey coastal and marine geology research; recent highlights and achievements

    USGS Publications Warehouse

    Williams, S. Jeffress; Barnes, Peter W.; Prager, Ellen J.

    2000-01-01

    The USGS Coastal and Marine Geology Program has large-scale national and regional research projects that focus on environmental quality, geologic hazards, natural resources, and information transfer. This Circular highlights recent scientific findings of the program, which play a vital role in the USGS endeavor to understand human interactions with the natural environment and to determine how the fundamental geologic processes controlling the Earth work. The scientific knowledge acquired through USGS research and monitoring is critically needed by planners, government agencies, and the public. Effective communication of the results of this research will enable the USGS Coastal and Marine Geology Program to play an integral part in assisting the Nation in responding the pressing Earth science challenges of the 21st century.

  2. Use of Bedrock and Geomorphic Mapping Compilations in Assessing Geologic Hazards at Recreation Sites on National Forests in NW California

    NASA Astrophysics Data System (ADS)

    de La Fuente, J. A.; Bell, A.; Elder, D.; Mowery, R.; Mikulovsky, R.; Klingel, H.; Stevens, M.

    2010-12-01

    Geologic hazards on US Forest Service lands have a long history of producing catastrophic events. In 1890 (prior to the establishment of the Forest Service), the China Mine landslide buried a miner’s camp along the Trinity River in NW California, killing a number of miners. An earthquake in southwestern Montana triggered a massive landslide which killed 28 people in a US Forest Service campground in 1959. In 1980, Mount St. Helens erupted in Oregon, killing 57 people. Debris flows from a winter storm in 2003 on the burned hillslopes of the San Bernardino National Forest in California killed 14 people at the St. Sophia youth Camp. A rockfall in the summer of 2009 in Lassen National Park killed a 9 year old boy. The most recent catastrophe occurred on June 11, 2010 when 20 people died in a flash flood at the Albert Pike Campground on the Ouachita National Forest. These and other disasters point out the need for geologic hazard mapping and assessments on the National Forests. The US Forest Service (USFS) is currently assessing geologic hazards in the Northern Province of USFS Region 5 (Pacific Southwest Region), which includes the Klamath, Mendocino, Shasta-Trinity, and Six Rivers National Forests. The most common geologic hazards (relatively short return intervals) in this area include landslides, rock falls, debris flows, flooding, temporary dam failures (landslide or woody debris), naturally occurring hazardous materials, (asbestos radon, etc), and rarely, karst subsidence. Seismic and volcanic hazards are also important at longer return intervals. This assessment will be conducted in three phases, and is patterned after a process developed by Region 8 of the US Forest Service. The first phase is a reconnaissance level assessment based on existing information such as spatial databases, aerial photos, Digital Elevation Models, State of California Alquist-Priolo Earthquake Fault Zone maps, previous investigations and anecdotal accounts of past events. The bedrock

  3. Characterization Efforts in a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Sassani, D.; Freeze, G. A.; Hardin, E. L.; Brady, P. V.

    2016-12-01

    The US Department of Energy Office of Nuclear Energy is embarking on a Deep Borehole Field Test to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages, including incremental construction and loading and the enhanced natural barriers provided by deep continental crystalline basement. Site characterization activities will include geomechanical (i.e., hydrofracture stress measurements), geological (i.e., core and mud logging), hydrological (i.e., packer-based pulse and pumping tests), and chemical (i.e., fluids sampled in situ from packer intervals and extracted from cores) tests. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth and interpretation of material and system parameters relevant to numerical site simulation. We explore the effects fluid density and geothermal temperature gradients (i.e., thermohaline convection) have on characterization goals in light of expected downhole conditions, including a disturbed rock zone surrounding the borehole. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. U.S. Geological Survey yearbook, fiscal year 1993: At work across the Nation

    USGS Publications Warehouse

    ,

    1994-01-01

    The need for earth science has never been more paramount. The devastating flooding of the Mississippi River this past year, strikingly portrayed on the cover and discussed in detail in this report (p. 37-42), was a sobering reminder of nature's elemental power. As a Nation, we face many environmental and economic challenges, such as natural hazards, that can be addressed effectively only through science. Water quality, resource assessments, climate change, and toxic wastes are all critical issues that can best be dealt with when approached from a sound scientific base. The goal of the U.S. Geological Survey is to provide hydrologic, geologic, and topographic information and understanding that contribute to the wise management of the Nation's natural resources and that promote the health, safety, and well-being of all Americans. FY1993 has proven to be a particularly challenging one for the USGS. We entered into a time of transition from the long-term leadership of Director Dallas Peck and Associate Director Doyle Frederick to the appointment of a new director. We thank Dallas and Doyle for their many years of service and for their support during the transition.

  5. PyGPlates - a GPlates Python library for data analysis through space and deep geological time

    NASA Astrophysics Data System (ADS)

    Williams, Simon; Cannon, John; Qin, Xiaodong; Müller, Dietmar

    2017-04-01

    A fundamental consideration for studying the Earth through deep time is that the configurations of the continents, tectonic plates, and plate boundaries are continuously changing. Within a diverse range of fields including geodynamics, paleoclimate, and paleobiology, the importance of considering geodata in their reconstructed context across previous cycles of supercontinent aggregation, dispersal and ocean basin evolution is widely recognised. Open-source software tools such as GPlates provide paleo-geographic information systems for geoscientists to combine a wide variety of geodata and examine them within tectonic reconstructions through time. The availability of such powerful tools also brings new challenges - we want to learn something about the key associations between reconstructed plate motions and the geological record, but the high-dimensional parameter space is difficult for a human being to visually comprehend and quantify these associations. To achieve true spatio-temporal data-mining, new tools are needed. Here, we present a further development of the GPlates ecosystem - a Python-based tool for geotectonic analysis. In contrast to existing GPlates tools that are built around a graphical user interface (GUI) and interactive visualisation, pyGPlates offers a programming interface for the automation of quantitative plate tectonic analysis or arbitrary complexity. The vast array of open-source Python-based tools for data-mining, statistics and machine learning can now be linked to pyGPlates, allowing spatial data to be seamlessly analysed in space and geological "deep time", and with the ability to spread large computations across multiple processors. The presentation will illustrate a range of example applications, both simple and advanced. Basic examples include data querying, filtering, and reconstruction, and file-format conversions. For the innovative study of plate kinematics, pyGPlates has been used to explore the relationships between absolute

  6. Apparatus investigates geological aspects of gas hydrates

    USGS Publications Warehouse

    Booth, J.S.; Winters, W.J.; Dillon, William P.

    1999-01-01

    The US Geological Survey (USGS), in response to potential geohazards, energy resource potential, and climate issues associated with marine gas hydrates, has developed a laboratory research system that permits hydrate genesis and dissociation under deep-sea conditions, employing user-selected sediment types and pore fluids.The apparatus, GHASTI (gas hydrate and sediment test laboratory instrument), provides a means to link field studies and theory and serves as a tool to improve gas hydrate recognition and assessment, using remote sensing techniques.GHASTLI's use was proven in an exploration well project led by the Geological Survey of Canada and the Japanese National Oil Corp., collaborating with Japan Petroleum Exploration Co. and the USGS. The site was in the Mackenzie Delta region of the Northwest Territories (Mallik 2L-38 drillsite).From tests on natural methane hydrate-bearing sand recovered at about 1,000 m subsurface, the in situ quantity of hydrate was estimated from acoustic properties, and a substantial increase in shear strength due to the presence of the hydrate was measured.1 2GHASTI can mimic a wide range of geologic settings and processes. Initial goals involve improved recognition and mapping of gas hydrate-bearing sediments, understanding factors that control the occurrence and concentration of gas hydrates, knowledge of hydrate's significance to slope failure and foundation problems, and analysis of gas hydrate's potential use as an energy resource.

  7. Microbiological monitoring for the US Geological Survey National Water-Quality Assessment Program

    USGS Publications Warehouse

    Francy, Donna S.; Myers, Donna N.; Helsel, Dennis R.

    2000-01-01

    Data to characterize the microbiological quality of the Nation?s fresh, marine, and estuarine waters are usually collected for local purposes, most often to judge compliance with standards for protection of public health in swimmable or drinkable waters. Methods and procedures vary with the objectives and practices of the parties collecting data and are continuously being developed or modified. Therefore, it is difficult to provide a nationally consistent picture of the microbial quality of the Nation?s waters. Study objectives and guidelines for a national microbiological monitoring program are outlined in this report, using the framework of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program. A national program is designed to provide long-term data on the presence of microbiological pathogens and indicators in ground water and surface water to support effective water policy and management. Three major groups of waterborne pathogens affect the public health acceptability of waters in the United States?bacteria, protozoa, and viruses. Microbiological monitoring in NAWQA would be designed to assess the occurrence, distribution, and trends of pathogenic organisms and indicators in surface waters and ground waters; relate the patterns discerned to factors that help explain them; and improve our understanding of the processes that control microbiological water quality.

  8. New insights on shallow and deep crustal geological structures of BABEL line 7 marine reflection seismic data revealed from reprocessing

    NASA Astrophysics Data System (ADS)

    Shahrokhi, H.; Malehmir, A.; Sopher, D.

    2012-04-01

    The BABEL project (Baltic And Bothnian Echoes from the Lithosphere) was a collaboration among British, Danish, Finnish, German and Swedish geoscientists to collect deep-crustal reflection and wide-angle refraction profiles in Baltic Shield and Gulf of Bothnia. The acquisition of 2,268km of deep marine reflection seismic data was carried out in 1989. The BABEL line 7 runs in E-W direction in the Bothnian Sea, north of the Åland islands and east of the city of Gävle. Several authors presented the seismic results but with a main focus of imaging and interpreting deep crustal geological structures and the nature and the depth of Moho discontinuity along line 7. Based on this seismic data, several publications about velocity distributions within the crust, the depth and texture of Moho discontinuity and seismic reflectivity patterns in the crust were presented. Some evidence from the reflection seismic data was also presented to suggest Early Proterozoic plate tectonics in the Baltic Shield. Previous seismic images of the BABEL line 7 reflection data show a dramatic change in the reflectivity pattern from weakly reflective lower crust in the west to a more reflective lower crust in the east, which was attributed to a change from a rigid crust to a plastic crust from the west to the east. The BABEL line 7 reflection data were acquired with a total profile length of 174km, a set of 48 airguns towed at 7.5m depth, and 3000m long streamer with 60 channels spaced with 50m intervals and towed at 15m depth. Seismic data were recorded for 25s using 4ms sampling interval and 75m shot interval. Seismic data is characterized by strong source-generated noise at shallow travel times and strong but randomly distributed spurious spikes at later arrival times. In this study, we have recovered and reprocessed the seismic data along BABEL line 7. Using modern processing and imaging techniques, which were not available at the time, and with a focus on the shallow parts of the seismic

  9. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage

    NASA Astrophysics Data System (ADS)

    Blackford, Jerry; Stahl, Henrik; Bull, Jonathan M.; Bergès, Benoît J. P.; Cevatoglu, Melis; Lichtschlag, Anna; Connelly, Douglas; James, Rachael H.; Kita, Jun; Long, Dave; Naylor, Mark; Shitashima, Kiminori; Smith, Dave; Taylor, Peter; Wright, Ian; Akhurst, Maxine; Chen, Baixin; Gernon, Tom M.; Hauton, Chris; Hayashi, Masatoshi; Kaieda, Hideshi; Leighton, Timothy G.; Sato, Toru; Sayer, Martin D. J.; Suzumura, Masahiro; Tait, Karen; Vardy, Mark E.; White, Paul R.; Widdicombe, Steve

    2014-11-01

    Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate, yet many economies will remain reliant on these technologies for several decades. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system. In many regions storage reservoirs are located offshore, over a kilometre or more below societally important shelf seas. Therefore, concerns about the possibility of leakage and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d-1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.

  10. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION (PRESENTATION)

    EPA Science Inventory

    The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...

  11. Geologic framework for the national assessment of carbon dioxide storage resources: Greater Green River Basin, Wyoming, Colorado, and Utah, and Wyoming-Idaho-Utah Thrust Belt: Chapter E in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Buursink, Marc L.; Slucher, Ernie R.; Brennan, Sean T.; Doolan, Colin A.; Drake II, Ronald M.; Merrill, Matthew D.; Warwick, Peter D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows up on previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of 14 storage assessment units (SAUs) in Ordovician to Upper Cretaceous sedimentary rocks within the Greater Green River Basin (GGRB) of Wyoming, Colorado, and Utah, and eight SAUs in Ordovician to Upper Cretaceous sedimentary rocks within the Wyoming-Idaho-Utah Thrust Belt (WIUTB). The GGRB and WIUTB are contiguous with nearly identical geologic units; however, the GGRB is larger in size, whereas the WIUTB is more structurally complex. This report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries, as well as their sealing and reservoir units, are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are typically provided to illustrate geologic factors critical to the assessment. This geologic information was employed, as specified in the USGS methodology, to calculate a probabilistic distribution of potential storage resources in each SAU. Figures in this report show SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one square mile and are derived from interpretations of variably attributed well data and a digital compilation that is known not to include all drilling.

  12. Geologic framework for the national assessment of carbon dioxide storage resources: Arkoma Basin, Kansas Basins, and Midcontinent Rift Basin study areas: Chapter F in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Buursink, Marc L.; Craddock, William H.; Blondes, Madalyn S.; Freeman, Phillip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2013-01-01

    2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. This methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of three storage assessment units (SAUs) in Upper Cambrian to Mississippian sedimentary rocks within the Arkoma Basin study area, and two SAUs in Upper Cambrian to Mississippian sedimentary rocks within the Kansas Basins study area. The Arkoma Basin and Kansas Basins are adjacent with very similar geologic units; although the Kansas Basins area is larger, the Arkoma Basin is more structurally complex. The report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are usually provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information herein was employed, as specified in the USGS methodology, to calculate a probabilistic distribution of potential storage resources in each SAU. The Midcontinent Rift Basin study area was not assessed, because no suitable storage formations meeting our size, depth, reservoir quality, and regional seal guidelines were found. Figures in this report show study area boundaries along with the SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one-square mile and are

  13. Postcolonial partnerships: deep sea research, media coverage and (inter)national narratives on the Galathea Deep Sea Expedition from 1950 to 1952.

    PubMed

    Nielsen, Kristian Hvidtfelt

    2010-03-01

    The Danish Galathea Deep Sea Expedition between 1950 and 1952 combined scientific and official objectives with the production of national and international narratives distributed through the daily press and other media. Dispatched by the Danish government on a newly acquired naval ship, the expedition undertook groundbreaking deep sea research while also devoting efforts to showing the flag, public communication of science, and international cooperation. The expedition was conceived after the war as a way in which to rehabilitate Denmark's reputation internationally and to rebuild national pride. To this end, the expedition included an onboard press section reporting the expedition to the Danish public and to an international audience. The press section mediated the favourable, post-war and postcolonial image of Denmark as an internationalist, scientific, modernizing and civilizing nation for which the expedition planners and many others were hoping. The expedition, therefore, was highly relevant to, indeed fed on, the emerging internationalist agenda in Denmark's foreign policy. Bringing out these aspects of the historical context of the expedition, this paper adds important perspectives to our knowledge about the expedition in particular and, more generally, about scientific exploration in the immediate post-war and postcolonial period.

  14. Field Test to Evaluate Deep Borehole Disposal.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest; Brady, Patrick Vane.; Clark, Andrew Jordan

    The U.S. Department of Energy (DOE) has embarked on the Deep Borehole Field Test (DBFT), which will investigate whether conditions suitable for disposal of radioactive waste can be found at a depth of up to 5 km in the earth’s crust. As planned, the DBFT will demonstrate drilling and construction of two boreholes, one for initial scientific characterization, and the other at a larger diameter such as could be appropriate for waste disposal (the DBFT will not involve radioactive waste). A wide range of geoscience activities is planned for the Characterization Borehole, and an engineering demonstration of test package emplacementmore » and retrieval is planned for the larger Field Test Borehole. Characterization activities will focus on measurements and samples that are important for evaluating the long-term isolation capability of the Deep Borehole Disposal (DBD) concept. Engineering demonstration activities will focus on providing data to evaluate the concept’s operational safety and practicality. Procurement of a scientifically acceptable DBFT site and a site management contractor is now underway. The concept of deep borehole disposal (DBD) for radioactive wastes is not new. It was considered by the National Academy of Science (NAS 1957) for liquid waste, studied in the 1980’s in the U.S. (Woodward–Clyde 1983), and has been evaluated by European waste disposal R&D programs in the past few decades (for example, Grundfelt and Crawford 2014; Grundfelt 2010). Deep injection of wastewater including hazardous wastes is ongoing in the U.S. and regulated by the Environmental Protection Agency (EPA 2001). The DBFT is being conducted with a view to use the DBD concept for future disposal of smaller-quantity, DOE-managed wastes from nuclear weapons production (i.e., Cs/Sr capsules and granular solid wastes). However, the concept may also have broader applicability for nations that have a need to dispose of limited amounts of spent fuel from nuclear power reactors

  15. NGH: A Dynamic Factor in Deep Water Sediments & the Geological Record

    NASA Astrophysics Data System (ADS)

    Max, M. D.; Johnson, A. H.

    2012-12-01

    Prior to identification of natural gas hydrate (NGH) in marine sediments, gravity and tectonic forces were the recognized dynamic forces that could cause disruption in deep marine sediments. NGH introduces a new dynamic factor into continental slope and rise sediments as well as sediments in the deeper parts of some continental shelves. Two critical elements interplay to provide for a slow acting, long-term NGH-dynamic cyclical system. First, NGH forms spontaneously from dissolved natural gas generally in a passive manner without causing any other than very subtle alterations to the megascopic sediment structure. When NGH forms in either dispersed form in muddy sediments or in concentrated form in veins or nodules or in porosity in sandy sediments, it increases overall mechanical strength. Second, when it dissociates, mechanical strength weakens to the point where shear strengths can approach zero. Because the chemical reaction of NGH is highly reversible, changes in sea level that affect pressure, and changes in seafloor temperature can alter rapidly the tendency of NGH to either crystallize or dissociate, with consequent structural and morphological effects. The cyclicity of the Earth's climate introduces a mechanism for periodically injecting overpressured gas into marine sediments as the gas hydrate stability zones (GHSZ) undergoes changes to its thickness and depth. Natural climate change has the potential to produce overpressured natural gas converted from NGH in marine sediments periodically. In-place disruption would consist of disrupted sandy beds, chaotic textures on all scales, intrusion effects, limited mass flow features, dramatic sediment mixing not related to large scale movement and sediment redeposition from fluidized beds. Mobilization would involve larger scale sediment mass flow effects that would be indistinguishable from olistostromic melanges postulated to be initiated by tectonic or gravitational forces. The earliest interpretation of this

  16. Generalized geologic map of bedrock lithologies and surficial deposits in the Great Smoky Mountains National Park region, Tennessee and North Carolina

    USGS Publications Warehouse

    Southworth, Scott; Schultz, Art; Denenny, Danielle

    2005-01-01

    The geology of the Great Smoky Mountain National Park (GSMNP) region of Tennessee and North Carolina was studied from 1993 to 2003 as part of a cooperative investigation with the National Park Service (NPS). This work has been compiled as a 1:100,000-scale map derived from mapping done at 1:24,000 and 1:62,500 scale. The geologic data are intended to support cooperative investigations with NPS, the development of a new soil map by the Natural Resources Conservation Service, and the All Taxa Biodiversity Inventory (http://www.discoverlifeinamerica.org/). At the request of NPS, we mapped areas previously not visited, revised the geology where stratigraphic and structural problems existed, and developed a map database for use in interdisciplinary research, land management, and interpretive programs for park visitors.

  17. Geologic map of Great Sand Dunes National Park, Colorado

    USGS Publications Warehouse

    Madole, Richard F.; VanSistine, D. Paco; Romig, Joseph H.

    2016-10-20

    Geologic mapping was begun after a range fire swept the area of what is now the Great Sand Dunes National Park in April 2000. The park spans an area of 437 square kilometers (or about 169 square miles), of which 98 percent is blanketed by sediment of Quaternary age, the Holocene and Pleistocene Epochs; hence, this geologic map of the Great Sand Dunes National Park is essentially a surficial geologic map. These surficial deposits are diverse and include sediment of eolian (windblown), alluvial (stream and sheetwash), palustrine (wetlands and marshes), lacustrine (lake), and mass-wasting (landslides) origin. Sediment of middle and late Holocene age, from about 8,000 years ago to the present, covers about 80 percent of the park.Fluctuations in groundwater level during Holocene time caused wetlands on the nearby lowland that bounds the park on the west to alternately expand and contract. These fluctuations controlled the stability or instability of eolian sand deposits on the downwind (eastern) side of the lowland. When groundwater level rose, playas became lakes, and wet or marshy areas formed in many places. When the water table rose, spring-fed streams filled their channels and valley floors with sediment. Conversely, when groundwater level fell, spring-fed streams incised their valley floors, and lakes, ponds, and marshes dried up and became sources of windblown sand.Discharge in streams draining the west flank of the Sangre de Cristo Range is controlled primarily by snowmelt and flow is perennial until it reaches the mountain front, beyond which streams begin losing water at a high rate as the water soaks into the creek beds. Even streams originating in the larger drainage basins, such as Sand and Medano Creeks, generally do not extend much more than 4 km (about 2.5 miles) beyond where they exit the mountains.The Great Sand Dunes contain the tallest dunes (maximum height about 750 feet, or 230 m) in North America. These dunes cover an area of 72 square kilometers

  18. Deep cultural ancestry and human development indicators across nation states

    PubMed Central

    Sookias, Roland B.; Passmore, Samuel

    2018-01-01

    How historical connections, events and cultural proximity can influence human development is being increasingly recognized. One aspect of history that has only recently begun to be examined is deep cultural ancestry, i.e. the vertical relationships of descent between cultures, which can be represented by a phylogenetic tree of descent. Here, we test whether deep cultural ancestry predicts the United Nations Human Development Index (HDI) for 44 Eurasian countries, using language ancestry as a proxy for cultural relatedness and controlling for three additional factors—geographical proximity, religion and former communism. While cultural ancestry alone predicts HDI and its subcomponents (income, health and education indices), when geographical proximity is included only income and health indices remain significant and the effect is small. When communism and religion variables are included, cultural ancestry is no longer a significant predictor; communism significantly negatively predicts HDI, income and health indices, and Muslim percentage of the population significantly negatively predicts education index, although the latter result may not be robust. These findings indicate that geographical proximity and recent cultural history—especially communism—are more important than deep cultural factors in current human development and suggest the efficacy of modern policy initiatives is not tightly constrained by cultural ancestry. PMID:29765628

  19. Deep cultural ancestry and human development indicators across nation states.

    PubMed

    Sookias, Roland B; Passmore, Samuel; Atkinson, Quentin D

    2018-04-01

    How historical connections, events and cultural proximity can influence human development is being increasingly recognized. One aspect of history that has only recently begun to be examined is deep cultural ancestry, i.e. the vertical relationships of descent between cultures, which can be represented by a phylogenetic tree of descent. Here, we test whether deep cultural ancestry predicts the United Nations Human Development Index (HDI) for 44 Eurasian countries, using language ancestry as a proxy for cultural relatedness and controlling for three additional factors-geographical proximity, religion and former communism. While cultural ancestry alone predicts HDI and its subcomponents (income, health and education indices), when geographical proximity is included only income and health indices remain significant and the effect is small. When communism and religion variables are included, cultural ancestry is no longer a significant predictor; communism significantly negatively predicts HDI, income and health indices, and Muslim percentage of the population significantly negatively predicts education index, although the latter result may not be robust. These findings indicate that geographical proximity and recent cultural history-especially communism-are more important than deep cultural factors in current human development and suggest the efficacy of modern policy initiatives is not tightly constrained by cultural ancestry.

  20. National Research Program of the Water Resources Division, U.S. Geological Survey: Fiscal Year 1988

    USGS Publications Warehouse

    Friedman, Linda C.; Donato, Christine N.

    1989-01-01

    The National Research Program (NRP) of the US Geological Survey 's Water Resources Division (WRD) had its beginnings in the late 1950 's when ' core research ' was added as a line item to the Congressional budget. Since that time, the NRP has grown to encompass a broad spectrum of scientific investigations. The sciences of hydrology, mathematics, chemistry, physics, ecology, biology, geology, and engineering are used to gain a fundamental understanding of the processes that affect the availability, movement, and quality of the Nation 's water resources. The NRP is located principally in Reston, VA, Denver, CO, and Menlo Park , CA. The NRP is subdivided into six disciplines as follows: (1) Ecology; (2) Geomorphology and Sediment Transport; (3) Groundwater Chemistry; (4) Groundwater Hydrology; (5) Surface Water Chemistry; and (6) Surface Water Hydrology. The report provides current information about the NRP on an annual basis. Organized by the six research disciplines, the volume contains a summary of the problem, objective, approach, and progress for each project that was active during fiscal year 1988.

  1. Geology and biology of North Pacific cold seep communities

    NASA Astrophysics Data System (ADS)

    Robison, Bruce H.; Greene, H. Gary

    Because of crushing pressure, low temperature, and stygian darkness, the floor of the deep sea is one of the most hostile habitats on Earth. Until recently it was widely believed that the base of the food chain for all deep-sea communities was plant life in the ocean's sunlit upper layer. With the discovery of hydrothermal vent and cold-seep communities, which are based on chemical rather than solar energy, those beliefs were overturned. New studies focused on the animals that inhabit cold seep regions have begun to throw light on the geological basis of chemosynthetic communities. The initial results suggest a strong relationship between geologically determined fluid flux, and the diversity and abundance of animals at the seeps.

  2. Uranium resource assessment by the Geological Survey; methodology and plan to update the national resource base

    USGS Publications Warehouse

    Finch, Warren Irvin; McCammon, Richard B.

    1987-01-01

    Based on the Memorandum of Understanding {MOU) of September 20, 1984, between the U.S. Geological Survey of the U.S. Department of Interior and the Energy Information Administration {EIA) of the U.S. Department of Energy {DOE), the U.S. Geological Survey began to make estimates of the undiscovered uranium endowment of selected areas of the United States in 1985. A modified NURE {National Uranium Resource Evaluation) method will be used in place of the standard NURE method of the DOE that was used for the national assessment reported in October 1980. The modified method, here named the 'deposit-size-frequency' {DSF) method, is presented for the first time, and calculations by the two methods are compared using an illustrative example based on preliminary estimates for the first area to be evaluated under the MOU. The results demonstrate that the estimate of the endowment using the DSF method is significantly larger and more uncertain than the estimate obtained by the NURE method. We believe that the DSF method produces a more realistic estimate because the principal factor estimated in the endowment equation is disaggregated into more parts and is more closely tied to specific geologic knowledge than by the NURE method. The DSF method consists of modifying the standard NURE estimation equation, U=AxFxTxG, by replacing the factors FxT by a single factor that represents the tonnage for the total number of deposits in all size classes. Use of the DSF method requires that the size frequency of deposits in a known or control area has been established and that the relation of the size-frequency distribution of deposits to probable controlling geologic factors has been determined. Using these relations, the principal scientist {PS) first estimates the number and range of size classes and then, for each size class, estimates the lower limit, most likely value, and upper limit of the numbers of deposits in the favorable area. Once these probable estimates have been refined

  3. The Suitable Geological Formations for Spent Fuel Disposal in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marunteanu, C.; Ionita, G.; Durdun, I.

    2007-07-01

    Using the experience in the field of advanced countries and formerly Romanian program data, ANDRAD, the agency responsible for the disposal of radioactive wastes, started the program for spent fuel disposal in deep geological formations with a documentary analysis at the national scale. The potential geological formations properly characterized elsewhere in the world: salt, clay, volcanic tuff, granite and crystalline rocks,. are all present in Romania. Using general or specific selection criteria, we presently consider the following two areas for candidate geological formations: 1. Clay formations in two areas in the western part of Romania: (1) The Pannonian basin Socodormore » - Zarand, where the clay formation is 3000 m thick, with many bentonitic strata and undisturbed structure, and (2) The Eocene Red Clay on the Somes River, extending 1200 m below the surface. They both need a large investigation program in order to establish and select the required homogeneous, dry and undisturbed zones at a suitable depth. 2. Old platform green schist formations, low metamorphosed, quartz and feldspar rich rocks, in the Central Dobrogea structural unit, not far from Cernavoda NPP (30 km average distance), 3000 m thick and including many homogeneous, fine granular, undisturbed, up to 300 m thick layers. (authors)« less

  4. Geologic Map Database of Texas

    USGS Publications Warehouse

    Stoeser, Douglas B.; Shock, Nancy; Green, Gregory N.; Dumonceaux, Gayle M.; Heran, William D.

    2005-01-01

    The purpose of this report is to release a digital geologic map database for the State of Texas. This database was compiled for the U.S. Geological Survey (USGS) Minerals Program, National Surveys and Analysis Project, whose goal is a nationwide assemblage of geologic, geochemical, geophysical, and other data. This release makes the geologic data from the Geologic Map of Texas available in digital format. Original clear film positives provided by the Texas Bureau of Economic Geology were photographically enlarged onto Mylar film. These films were scanned, georeferenced, digitized, and attributed by Geologic Data Systems (GDS), Inc., Denver, Colorado. Project oversight and quality control was the responsibility of the U.S. Geological Survey. ESRI ArcInfo coverages, AMLs, and shapefiles are provided.

  5. Imagining Deep Time (Invited)

    NASA Astrophysics Data System (ADS)

    Talasek, J.

    2013-12-01

    Imagining Deep Time '...the mind seemed to grow giddy by looking so far into the abyss of time.' John Playfair (1748 -1819), scientist and mathematician "Man cannot afford to conceive of nature and exclude himself." Emmit Gowin, photographer 'A person would have to take themselves out of the human context to begin to think in terms of geologic time. They would have to think like a rock.' Terry Falke, photographer The term Deep Time refers to the vastness of the geological time scale. First conceived in the 18th century, the development of this perspective on time has been pieced together like a jigsaw puzzle of information and observations drawn from the study of the earth's structure and discovered fossilized flora and fauna. Deep time may possibly be the greatest contribution made by the discipline of geology forever impacting our perception of earth and our relationship to it. How do we grasp such vast concepts as deep time which relates to the origins of the earth or cosmic time which relates to the origins of the universe - concepts that exist far beyond the realm of human experience? Further more how do we communicate this? The ability to visualize is a powerful tool of discovery and communication for the scientist and it is part and parcel of the work of visual artists. The scientific process provides evidence yet it is imagination on the part of the scientists and artists alike that is needed to interpret that information. This exhibition represents an area where both rational and intuitive thinking come together to explore this question of how we relate to the vastness of time. The answer suggested by the combination of art work assembled here suggests that we do so through a combination of visual metaphors (cycles, circles, arrows, trajectories) and visual evidence (rock formations, strata, fossils of fauna and flora) while being mediated through various technologies. One provides factual and empirical evidence while the other provides a way of grasping

  6. Participation in Performance-Evaluation Studies by U.S. Geological Survey National Water Quality Laboratory

    USGS Publications Warehouse

    Glodt, Stephen R.; Pirkey, Kimberly D.

    1998-01-01

    Performance-evaluation studies provide customers of the U.S. Geological Survey National Water Quality Laboratory (NWQL) with data needed to evaluate performance and to compare of select laboratories for analytical work. The NWQL participates in national and international performance-evaluation (PE) studies that consist of samples of water, sediment, and aquatic biological materials for the analysis of inorganic constituents, organic compounds, and radionuclides. This Fact Sheet provides a summary of PE study results from January 1993 through April 1997. It should be of particular interest to USGS customers and potential customers of the NWQL, water-quality specialists, cooperators, and agencies of the Federal Government.

  7. United States Geological Survey Yearbook, fiscal year 1986

    USGS Publications Warehouse

    ,

    1987-01-01

    This volume of the U.S. Geological Survey Yearbook is special, the first we have ever dedicated to an individual.  While we were preparing that repost, Vincent E. McKelvey, eminent scientist and former Director of the Geological Survey died.  Because of his deep devotion not only to his science but also to the agency and to the public that he served, we dedicate the 1986 Yearbook to Vince's memory.

  8. Geologic history of the Black Hills caves, South Dakota

    USGS Publications Warehouse

    Palmer, Arthur N.; Palmer, Margaret; Paces, James B.

    2016-01-01

    The caves reveal four phases of calcite deposition: eogenetic ferroan calcite (Mississippian replacement of sulfates); white scalenohedra in paleovoids deposited during deep post-Mississippian burial; palisade crusts formed during blockage of springs by Oligocene–Miocene continental sediments; and laminated crusts from late Pleistocene water-table fluctuations. The caves reveal more than 300 m.y. of geologic history and a close relationship to regional geologic events.

  9. A Safety Case Approach for Deep Geologic Disposal of DOE HLW and DOE SNF in Bedded Salt - 13350

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevougian, S. David; MacKinnon, Robert J.; Leigh, Christi D.

    2013-07-01

    The primary objective of this study is to investigate the feasibility and utility of developing a defensible safety case for disposal of United States Department of Energy (U.S. DOE) high-level waste (HLW) and DOE spent nuclear fuel (SNF) in a conceptual deep geologic repository that is assumed to be located in a bedded salt formation of the Delaware Basin [1]. A safety case is a formal compilation of evidence, analyses, and arguments that substantiate and demonstrate the safety of a proposed or conceptual repository. We conclude that a strong initial safety case for potential licensing can be readily compiled bymore » capitalizing on the extensive technical basis that exists from prior work on the Waste Isolation Pilot Plant (WIPP), other U.S. repository development programs, and the work published through international efforts in salt repository programs such as in Germany. The potential benefits of developing a safety case include leveraging previous investments in WIPP to reduce future new repository costs, enhancing the ability to effectively plan for a repository and its licensing, and possibly expediting a schedule for a repository. A safety case will provide the necessary structure for organizing and synthesizing existing salt repository science and identifying any issues and gaps pertaining to safe disposal of DOE HLW and DOE SNF in bedded salt. The safety case synthesis will help DOE to plan its future R and D activities for investigating salt disposal using a risk-informed approach that prioritizes test activities that include laboratory, field, and underground investigations. It should be emphasized that the DOE has not made any decisions regarding the disposition of DOE HLW and DOE SNF. Furthermore, the safety case discussed herein is not intended to either site a repository in the Delaware Basin or preclude siting in other media at other locations. Rather, this study simply presents an approach for accelerated development of a safety case for a

  10. Public perceptions of geology

    NASA Astrophysics Data System (ADS)

    Gibson, Hazel; Stewart, Iain; Anderson, Mark; Pahl, Sabine; Stokes, Alison

    2014-05-01

    Geological issues are increasingly intruding on the everyday lives of ordinary people. Whether it be onshore exploration and extraction of oil and gas, deep injection of water for geothermal power or underground storage of carbon dioxide and radioactive waste, many communities across Europe are being faced with potentially contested geological activity under their backyard. As well as being able to communicate the technical aspects of such work, geoscience professionals also need to appreciate that for most people the subsurface is an unfamiliar realm. In order to engage communities and individuals in effective dialogue about geological activities, an appreciation of what 'the public' already know and what they want to know is needed, but this is a subject that is in its infancy. In an attempt to provide insight into these key issues, this study examines the concerns the public have, relating to geology, by constructing 'Mental Models' of people's perceptions of the subsurface. General recommendations for public engagement strategies will be presented based on the results of selected case studies; specifically expert and non-expert mental models for communities in the south-west of England.

  11. The national coal-resources data system of the U.S. geological survey

    USGS Publications Warehouse

    Carter, M.D.

    1976-01-01

    The National Coal Resources Data System (NCRDS) was designed by the U.S. Geological Survey (USGS) to meet the increasing demands for rapid retrieval of information on coal location, quantity, quality, and accessibility. An interactive conversational query system devised by the USGS retrieves information from the data bank through a standard computer terminal. The system is being developed in two phases. Phase I, which currently is available on a limited basis, contains published areal resource and chemical data. The primary objective of this phase is to retrieve, calculate, and tabulate coal-resource data by area on a local, regional, or national scale. Factors available for retrieval include: state, county, quadrangle, township, coal field, coal bed, formation, geologic age, source and reliability of data, and coal-bed rank, thickness, overburden, and tonnage, or any combinations of variables. In addition, the chemical data items include individual values for proximate and ultimate analyses, BTU value, and several other physical and chemical tests. Information will be validated and deleted or updated as needed. Phase II is being developed to store, retrieve, and manipulate basic point source coal data (e.g., field observations, drill-hole logs), including geodetic location; bed thickness; depth of burial; moisture; ash; sulfur; major-, minor-, and trace-element content; heat value; and characteristics of overburden, roof rocks, and floor rocks. The computer system may be used to generate interactively structure-contour or isoline maps of the physical and chemical characteristics of a coal bed or to calculate coal resources. ?? 1976.

  12. Engineering geology studies in the National Petroleum Reserve, Alaska

    USGS Publications Warehouse

    Kachadoorian, Reuben; Crory, F.E.

    1984-01-01

    Engineering geology studies were conducted in direct support of the exploration program in the National Petroleum Reserve, Alaska. The studies included laboratory and field tests and observations to address design and construction problems of airfields, roads, drill pads and foundations, and to evaluate their actual performance. Permafrost containing large amounts of near surface ground ice as wedges, masses, and intergranular ice, required that all construction activity not disturb the thermal regime of the ground surface, which could lead to thaw of permafrost and ground subsidence. Summer activity, therefore was not allowable, yet the winter climate was so harsh that winter work was slow and inefficient. To allow summer operations at well sites planned for all year activity, it was necessary to adapt existing techniques for arctic construction and to devise new ones. The design and construction of facilities at the deep exploration wells at Inigok, Tunalik, and Lisburne posed the greatest challenge. These sites, requiring a year or more to drill, could only be attempted if continuous access to drilling and logistic supplies could be assured throughout the year, including the possibility of bringing in another drill rig, in the event of a blowout. Thus all-seasons airstrips were required at these wells. Sufficient quantities of local gravel were not readily available at the Inigok and Tunalik sites to construct the airstrips with the required 6 feet or more of gravel to prevent the underlying permafrost from thawing. Therefore, insulation was used to maintain the subbase of local sands in a continuously frozen state, which in turn was overlain by 15 inches of gravel or sandy gravel. Tests at the U.S. Army Waterways Experimental Station defined the minimum thickness of gravel required above the insulation to provide the desired bearing capacity for the C-130 type aircraft without crushing the insulation. Field testing also included the evaluation of another design

  13. Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network

    NASA Astrophysics Data System (ADS)

    Laloy, Eric; Hérault, Romain; Lee, John; Jacques, Diederik; Linde, Niklas

    2017-12-01

    Efficient and high-fidelity prior sampling and inversion for complex geological media is still a largely unsolved challenge. Here, we use a deep neural network of the variational autoencoder type to construct a parametric low-dimensional base model parameterization of complex binary geological media. For inversion purposes, it has the attractive feature that random draws from an uncorrelated standard normal distribution yield model realizations with spatial characteristics that are in agreement with the training set. In comparison with the most commonly used parametric representations in probabilistic inversion, we find that our dimensionality reduction (DR) approach outperforms principle component analysis (PCA), optimization-PCA (OPCA) and discrete cosine transform (DCT) DR techniques for unconditional geostatistical simulation of a channelized prior model. For the considered examples, important compression ratios (200-500) are achieved. Given that the construction of our parameterization requires a training set of several tens of thousands of prior model realizations, our DR approach is more suited for probabilistic (or deterministic) inversion than for unconditional (or point-conditioned) geostatistical simulation. Probabilistic inversions of 2D steady-state and 3D transient hydraulic tomography data are used to demonstrate the DR-based inversion. For the 2D case study, the performance is superior compared to current state-of-the-art multiple-point statistics inversion by sequential geostatistical resampling (SGR). Inversion results for the 3D application are also encouraging.

  14. A summary of the U.S. Geological Survey National Water-Quality Assessment program

    USGS Publications Warehouse

    Hirsch, R.M.; Alley, W.M.; Wilber, W.G.

    1988-01-01

    Beginning in 1986, the Congress appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water Quality Assessment Program. At present, the program is in a pilot phase with field studies occurring in seven areas around the Nation. In 1990, a committee of the National Academy of Sciences will complete an evaluation of the design and potential utility of the program. A decision about moving to full-scale implementation will be made upon completion of this evaluation. The program is intended to address a wide range of national water quality issues that include chemical contamination, acidification, eutrophication, salinity, sedimentation, and sanitary quality. The goals of the program are to: (1) provide nationally consistent descriptions of current water quality conditions for a large part of the Nation 's water resources; (2) define long-term trends (or lack of trends) in water quality; and (3) identify and describe the relations of both current conditions and trends in water quality to natural and human factors. This information will be provided to water managers, policy makers, and the public to provide an improved scientific basis for evaluating the effectiveness of water quality management programs and for predicting the likely effects of contemplated changes in land- and water-management practices. (USGS)

  15. U.S. Geological Survey external quality-assurance project report to the National Atmospheric Deposition Program / National Trends Network and Mercury Deposition Network, 2007-08

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Latysh, Natalie E.; Chesney, Tanya A.

    2010-01-01

    The U.S. Geological Survey (USGS) used six distinct programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program / National Trends Network (NTN) and Mercury Deposition Network (MDN) during 2007-08. The field-audit program assessed the effects of onsite exposure, sample handling, and shipping on the chemistry of NTN samples, and a system-blank program assessed the same effects for MDN. Two interlaboratory-comparison programs assessed the bias and variability of the chemical analysis data from the Central Analytical Laboratory (CAL), Mercury (Hg) Analytical Laboratory (HAL), and 12 other participating laboratories. A blind-audit program was also implemented for the MDN to evaluate analytical bias in HAL total Hg concentration data. A co-located-sampler program was used to identify and quantify potential shifts in NADP data resulting from replacement of original network instrumentation with new electronic recording rain gages (E-gages) and prototype precipitation collectors. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends of chemical constituents in wet deposition across the U.S. NADP data-quality objectives continued to be achieved during 2007-08. Results also indicate that retrofit of the NADP networks with the new E-gages is not likely to create step-function type shifts in NADP precipitation-depth records, except for sites where annual precipitation depth is dominated by snow because the E-gages tend to catch more snow than the original NADP rain gages. Evaluation of prototype precipitation collectors revealed no difference in sample volumes and analyte concentrations between the original NADP collectors and modified, deep-bucket collectors, but the Yankee Environmental Systems, Inc. (YES) collector obtained samples of significantly higher volumes and analyte concentrations than the standard NADP collector.

  16. Integrating 3D geological information with a national physically-based hydrological modelling system

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE < 0.5) are located in the chalk in the south east of England. As such, the British Geological Survey 3D geology model for Great Britain (GB3D) has been incorporated, for the first time in any hydrological model, to pave the way for improvements to be made to simulations of catchments with important groundwater regimes. This coupling has involved

  17. Deep canyon and subalpine riparian and wetland plant associations of the Malheur, Umatilla, and Wallowa-Whitman National Forests.

    Treesearch

    Aaron F. Wells

    2006-01-01

    This guide presents a classification of the deep canyon and subalpine riparian and wetland vegetation types of the Malheur, Umatilla, and Wallowa-Whitman National Forests. A primary goal of the deep canyon and subalpine riparian and wetland classification was a seamless linkage with the midmontane northeastern Oregon riparian and wetland classification provided by...

  18. Digital geologic map data for the Ozark National Scenic Riverways and adjacent areas along the Current River and Jacks Fork, Missouri

    USGS Publications Warehouse

    Weary, David J.; Orndorff, Randall C.; Harrison, Richard W.; Weems, Robert E.

    2016-09-23

    The geology of the Ozark National Scenic Riverways (ONSR) in southern Missouri has been mapped at 1:24,000 scale. This endeavor was achieved through the combined efforts of U.S. Geological Survey and Missouri Geological Survey individual quadrangle mapping and additional fieldwork by the authors of this report. Geologic data covering the area of the ONSR and a 1-mile (1.6-kilometer) buffer zone surrounding the park, as well as geologic data from a few key adjoining areas, have been compiled into a single, seamless geographic information system database. The intent is to provide base geologic information for natural science research and land management in the park and surrounding areas. The data are served online at ScienceBase (https://www.sciencebase.gov/catalog/), where they are provided in Environmental Systems Research Institute (ESRI) file geodatabase format, and are accompanied by metadata files. These data can be accessed at: http://dx.doi.org/10.5066/F7CJ8BKB. Additional detailed geologic information about the ONSR and surrounding areas is available in the separate 1:24,000-scale quadrangle maps and in a 1:100,000-scale map and report on the regional geology.

  19. USGS EDMAP Program-Training the Next Generation of Geologic Mappers

    USGS Publications Warehouse

    ,

    2010-01-01

    EDMAP is an interactive and meaningful program for university students to gain experience and knowledge in geologic mapping while contributing to national efforts to map the geology of the United States. It is a matching-funds grant program with universities and is one of the three components of the congressionally mandated U.S. Geological Survey (USGS) National Cooperative Geologic Mapping Program. Geology professors whose specialty is geologic mapping request EDMAP funding to support upper-level undergraduate and graduate students at their colleges or universities in a 1-year mentor-guided geologic mapping project that focuses on a specific geographic area. Every Federal dollar that is awarded is matched with university funds.

  20. Biology as an integrated component of the U.S. Geological Survey's National Water-Quality Assessment Program

    USGS Publications Warehouse

    Meador, Michael R.; Gurtz, Martin E.

    1994-01-01

    The U.S. Geological Survey?s (USGS) National Water-Quality Assessment (NAWQA) Program is designed to integrate chemical, physical, and biological data to assess the status of and trends in the Nation?s water quality at local, regional, and national levels. The Program consists of 60 study units (major river basins and large parts of aquifers) located throughout the Nation (fig. 1). Data are collected at stream, river, and ground-water sites that represent the Nation?s mix of major natural and human factors that influence water quality. Biological data are collected from streams and rivers, and include (1) fish and other aquatic organisms whose tissues are analyzed for a wide array of chemical contaminants; (2) characterizations of algal, benthic invertebrate, and fish communities; and (3) characterizations of vegetation growing in streams and along streambanks. These biological data are collected in conjunction with physical (streamflow, characterizations of instream, bank, and flood-plain habitats) and chemical data.

  1. Geologic framework for the national assessment of carbon dioxide storage resources: Columbia Basin of Oregon, Washington, and Idaho, and the Western Oregon-Washington basins: Chapter D in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Covault, Jacob A.; Blondes, Madalyn S.; Cahan, Steven M.; DeVera, Christina A.; Freeman, P.A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2013-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of three storage assessment units (SAUs) in Eocene and Oligocene sedimentary rocks within the Columbia, Puget, Willapa, Astoria, Nehalem, and Willamette Basins of Oregon, Washington, and Idaho, and focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are provided to illustrate geologic factors critical to the assessment. The designated sealing unit in the Columbia Basin is tentatively chosen to be the ubiquitous and thick Miocene Columbia River Basalt Group. As a result of uncertainties regarding the seal integrity of the Columbia River Basalt Group, the SAUs were not quantitatively assessed. Figures in this report show SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data, a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on the cell maps.

  2. Answers from deep inside the Earth; Continental Scientific Drilling at Cajon Pass, California

    USGS Publications Warehouse

    Russ, D.P.

    1989-01-01

    Drilling of a 12,000-foot-deep scientific well has been completed at Cajon Pass in southern California to measure crustal properties, to determine crustal structure, and to better understanding the generation of earthquakes along the San Andreas fault. A joint effort of the National Science Foundation (NFS) and the U.S Geological Survey (USGS), the well was begun in November 1986, and is one of the first projects to be undertaken in the new national Continental Scientific Drilling Program. This program aims to enchance our knowledge of the compostiion, sturcture, dynamics, and evolution of the continental crust and of how these factors affect the origin and distribution of mineral and energy resources and natural phenomena such as volcanic eruptions and earthquakes. 

  3. Surficial geology mapping of the Arctic Ocean: using subbottom profiling and multibeam echosounding data sets to constrain the subsea north of 64° as a layer for the IBCAO

    NASA Astrophysics Data System (ADS)

    Mosher, D. C.; Baldwin, K.; Gebhardt, C.

    2016-12-01

    Barriers to data collection such as perennial ice cover, climate, and remoteness have contributed to a paucity of geologic data in the Arctic. The last decade, however, has seen a multi-national push to increase the quantity and extent of data available at high latitudes. With increased availability of geophysical and geological data holdings, we expand on previous mapping initiatives by creating a comprehensive surficial geology map as a layer to the International Bathymetric Chart of the Arctic Ocean (IBCAO), providing a way to collectively analyze physiography, morphology and geology. Acoustic facies derived from subbottom profiles, combined with morphology illuminated from IBCAO and multibeam bathymetric datasets, and ground truth data compiled from cores and samples are used to map surficial geology units. We identified over 25 seismo-acoustic facies leading to interpretation of 12 distinct geologic units for the Arctic Ocean. The largest variety of seismic facies occurs on the shelves, which demonstrate the complex ice-margin history (e.g. chaotic bottom echoes with amorphous subbottom reflections that imply ice scouring processes). Shelf-crossing troughs generally lead to trough mouth fans on the continental margin with characteristic glaciogenic debris flow deposits (acoustically transparent units) comprising the bulk of the sedimentary succession. Other areas of continental slopes show a variety of facies suggesting sediment mass failure and turbidite deposition. Vast areas of the deep water portion of the Arctic are dominated by parallel reflections, indicative of hemi-pelagic and turbidity current deposition. Some deep water parts of the basin, however, show evidence of current reworking (sigmoidal reflections within bedforms), and contain deep sea channels with thalwegs (bright reflections within channels) and levee deposits (reflection pinch-out). These results delineated in the surficial geology map provide a comprehensive database of regional

  4. Use of groundwater lifetime expectancy for the performance assessment of a deep geologic waste repository: 1. Theory, illustrations, and implications

    NASA Astrophysics Data System (ADS)

    Cornaton, F. J.; Park, Y.-J.; Normani, S. D.; Sudicky, E. A.; Sykes, J. F.

    2008-04-01

    Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, if radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from a repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time that radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport adjoint equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. The risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The utility of the method is illustrated by means of analytical and numerical examples, which focus on the effect of fracture networks on the uncertainty of evaluated lifetime expectancy.

  5. Geological Assessment of Cores from the Great Bay National Wildlife Refuge, New Hampshire

    USGS Publications Warehouse

    Foley, Nora K.; Ayuso, Robert A.; Ayotte, Joseph D.; Montgomery, Denise L.; Robinson, Gilpin R.

    2007-01-01

    Geological sources of metals (especially arsenic and zinc) in aquifer bedrock were evaluated for their potential to contribute elevated values of metals to ground and surface waters in and around Rockingham County, New Hampshire. Ayotte and others (1999, 2003) had proposed that arsenic concentrations in ground water flowing through bedrock aquifers in eastern New England were elevated as a result of interaction with rocks. Specifically in southeastern New Hampshire, Montgomery and others (2003) established that nearly one-fifth of private bedrock wells had arsenic concentrations that exceed the U.S. Environmental Protection Agency (EPA) maximum contamination level for public water supplies. Two wells drilled in coastal New Hampshire were sited to intersect metasedimentary and metavolcanic rocks in the Great Bay National Wildlife Refuge. Bulk chemistry, mineralogy, and mineral chemistry data were obtained on representative samples of cores extracted from the two boreholes in the Kittery and Eliot Formations. The results of this study have established that the primary geologic source of arsenic in ground waters sampled from the two well sites was iron-sulfide minerals, predominantly arsenic-bearing pyrite and lesser amounts of base-metal-sulfide and sulfosalt minerals that contain appreciable arsenic, including arsenopyrite, tetrahedrite, and cobaltite. Secondary minerals containing arsenic are apparently limited to iron-oxyhydroxide minerals. The geologic source of zinc was sphalerite, typically cadmium-bearing, which occurs with pyrite in core samples. Zinc also occurred as a secondary mineral in carbonate form. Oxidation of sulfides leading to the liberation of acid, iron, arsenic, zinc, and other metals was most prevalent in open fractures and vuggy zones in core intervals containing zones of high transmissivity in the two units. The presence of significant calcite and lesser amounts of other acid-neutralizing carbonate and silicate minerals, acting as a natural

  6. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    NASA Astrophysics Data System (ADS)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    metamorphic character. For high resolution maps physical properties, bedding characteristics and weathering also need to be added. Furthermore, Geological data held by national geological surveys is generally described in national language of the country. The project has to deal with the multilingual issue, an important requirement of the INSPIRE directive. The project provides a list of harmonized vocabularies, a set of web services to deal with them, and a web site for helping the geoscientists while mapping the terms used into the national datasets into these vocabularies. The web services provided by each data provider, with the particular component that allows them to deliver the harmonised data model and to handle the multilingualism, are the first part of the architecture. The project also implements a web portal that provides several functionalities. Thanks to the common data model implemented by each web service delivering a part of the geological map, and using OGC SLD standards, the client offers the following option. A user can request for a sub-selection of the map, for instance searching on a particular attribute such as "age is quaternary", and display only the parts of the map according to the filter. Using the web services on the common vocabularies, the data displayed are translated. The project started September 2008 for two years, with 29 partners from 20 countries (20 partners are Geological Surveys). The budget is 3.25 M€, with a European Commission contribution of 2.6 M€. The paper will describe the technical solutions to implement OneGeology-Europe components: the profile of the common data model to exchange geological data, the web services to view and access geological data; and a geoportal to provide the user with a user-friendly way to discover, view and access geological data.

  7. Updating the Framework Geology of Padre Island National Seashore: Validation of Geophysical Surveys through Sediment Cores

    NASA Astrophysics Data System (ADS)

    Tuttle, L. F., II; Wernette, P. A.; Houser, C.

    2016-12-01

    Framework geology has been demonstrated to influence the geomorphology and affect the response of barrier islands to extreme storm events. Therefore, it is vital that we understand the framework geology before we can accurately assess the vulnerability and resiliency of the coast. Geophysical surveys consisting of ground-penetrating radar (GPR) and electromagnetic inductance (EMI) were collected along the length of Padre Island National Seashore (PAIS) to map subsurface infilled paleochannels identified in previous research. The most extensive published survey of PAIS framework geology was conducted in the 1950s as part of dredging the Intracoastal Waterway through Laguna Madre. Using cores and seismic surveys the previous study identified a series of relict infilled paleochannels in dissecting PAIS. The sediment cores presented in our poster were collected in Fall 2016 with a Geoprobe 6712DT. Cores were stored and processed using an X-ray fluorescence (XRF) scanner at the International Ocean Discovery Program repository in College Station, Texas. The XRF data was used to examine mineralogical differences that provide valuable insight into the evolutionary history of the island. This poster presents results from sediment cores collected to validate the geophysical survey data. The broader purpose of this research is to validate the subsurface framework geology features (i.e. infilled paleochannels) in order to more accurately predict future changes to the environmental and economic longevity of PAIS.

  8. Deep drilling in the Chesapeake Bay impact structure - An overview

    USGS Publications Warehouse

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.

    2009-01-01

    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a

  9. Geology and deposits of the lunar Nectaris basin

    NASA Technical Reports Server (NTRS)

    Spudis, P. D.; Hawke, B. R.; Lucey, P. G.

    1989-01-01

    The geology and composition of Nectaris basin deposits have been investigated in order to provide information on the lunar basin-forming process and the regional geologic setting of the Apollo 16 landing site. Several outcrops of nearly pure anorthosite were noted in locations such as the walls of Kant crater, an inner ring of the basin, and the crater Bohnenberger F. The results suggest that the impact can be modeled as a proportional-growth crater, and that the Nectaris excavation cavity was about 470 km in diameter and as deep as 55 km.

  10. Geology and deposits of the lunar Nectaris basin

    NASA Astrophysics Data System (ADS)

    Spudis, P. D.; Hawke, B. R.; Lucey, P. G.

    The geology and composition of Nectaris basin deposits have been investigated in order to provide information on the lunar basin-forming process and the regional geologic setting of the Apollo 16 landing site. Several outcrops of nearly pure anorthosite were noted in locations such as the walls of Kant crater, an inner ring of the basin, and the crater Bohnenberger F. The results suggest that the impact can be modeled as a proportional-growth crater, and that the Nectaris excavation cavity was about 470 km in diameter and as deep as 55 km.

  11. U.S. Geological Survey National Center, Reston, Virginia

    USGS Publications Warehouse

    ,

    1972-01-01

    In 1917 the Geological Survey moved into the newly built Interior Building near the White House in Washington, D. C. Twenty years later a larger building was constructed nearby to house the expanding U. S. Department of the Interior. Height restrictions reduced the planned size of the new building, and the Geological Survey was compelled to remain in the older Interior Building now identified as the General Services Administration Building. Expansion of the Survey's programs, and particularly the overall government need for additional office space in downtown Washington, has resulted in the Survey's activities being presently housed in 30 different buildings, at 17 widely scattered locations throughout the Washington Metropolitan Area.

  12. The Geology of Comet 19/P Borrelly

    NASA Technical Reports Server (NTRS)

    Britt, D. T.; Boice, D. C; Buratti, B. J.; Hicks, M. D.; Nelson, R. M.; Oberst, J.; Sandel, B. R.; Soderblom, L. A.; Stern, S. A.; Thomas, N.

    2002-01-01

    The Deep Space One spacecraft flew by Comet 19P/Borrelly on September 22, 2001 and returned a rich array of imagery with resolutions of up to 48 m/pixel. These images provide a window into the surface structure, processes, and geological history of a comet. Additional information is contained in the original extended abstract.

  13. STEPPE: Supporting collaborative research and education on Earth's deep-time sedimentary crust.

    NASA Astrophysics Data System (ADS)

    Smith, D. M.

    2014-12-01

    STEPPE—Sedimentary geology, Time, Environment, Paleontology, Paleoclimate, and Energy—is a National Science Foundation supported consortium whose mission is to promote multidisciplinary research and education on Earth's deep-time sedimentary crust. Deep-time sedimentary crust research includes many specialty areas—biology, geography, ecology, paleontology, sedimentary geology, stratigraphy, geochronology, paleoclimatology, sedimentary geochemistry, and more. In fact, the diversity of disciplines and size of the community (roughly one-third of Earth-science faculty in US universities) itself has been a barrier to the formation of collaborative, multidisciplinary teams in the past. STEPPE has been working to support new research synergies and the development of infrastructure that will encourage the community to think about the big problems that need to be solved and facilitate the formation of collaborative research teams to tackle these problems. Toward this end, STEPPE is providing opportunities for workshops, working groups and professional development training sessions, web-hosting and database services and an online collaboration platform that facilitates interaction among participants, the sharing of documentation and workflows and an ability to push news and reports to group participants and beyond using social media tools. As such, STEPPE is working to provide an interactive space that will serve as both a gathering place and clearinghouse for information, allowing for broader integration of research and education across all STEPPE-related sub disciplines.

  14. Geodesy- and geology-based slip-rate models for the Western United States (excluding California) national seismic hazard maps

    USGS Publications Warehouse

    Petersen, Mark D.; Zeng, Yuehua; Haller, Kathleen M.; McCaffrey, Robert; Hammond, William C.; Bird, Peter; Moschetti, Morgan; Shen, Zhengkang; Bormann, Jayne; Thatcher, Wayne

    2014-01-01

    The 2014 National Seismic Hazard Maps for the conterminous United States incorporate additional uncertainty in fault slip-rate parameter that controls the earthquake-activity rates than was applied in previous versions of the hazard maps. This additional uncertainty is accounted for by new geodesy- and geology-based slip-rate models for the Western United States. Models that were considered include an updated geologic model based on expert opinion and four combined inversion models informed by both geologic and geodetic input. The two block models considered indicate significantly higher slip rates than the expert opinion and the two fault-based combined inversion models. For the hazard maps, we apply 20 percent weight with equal weighting for the two fault-based models. Off-fault geodetic-based models were not considered in this version of the maps. Resulting changes to the hazard maps are generally less than 0.05 g (acceleration of gravity). Future research will improve the maps and interpret differences between the new models.

  15. Geologic Map of the Katmai Volcanic Cluster, Katmai National Park, Alaska

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy

    2002-01-01

    This digital publication contains all the geologic map information used to publish U.S. Geological Survey Geologic Investigations Map Series I-2778 (Hildreth and Fierstein, 2003). This is a geologic map of the Katmai volcanic cluster on the Alaska Peninsula (including Mount Katmai, Trident Volcano, Mount Mageik, Mount Martin, Mount Griggs, Snowy Mountain, Alagogshak volcano, and Novarupta volcano), and shows the distribution of ejecta from the great eruption of June, 1912 at Novarupta. Widely scattered erosional remnants of volcanic rocks, unrelated to but in the vicinity of the Katmai cluster, are also mapped. Distribution of glacial deposits, large landslides, debris avalanches, and surficial deposits are a snapshot of an ever-changing landscape.

  16. Anaglyph Image Technology As a Visualization Tool for Teaching Geology of National Parks

    NASA Astrophysics Data System (ADS)

    Stoffer, P. W.; Phillips, E.; Messina, P.

    2003-12-01

    Anaglyphic stereo viewing technology emerged in the mid 1800's. Anaglyphs use offset images in contrasting colors (typically red and cyan) that when viewed through color filters produce a three-dimensional (3-D) image. Modern anaglyph image technology has become increasingly easy to use and relatively inexpensive using digital cameras, scanners, color printing, and common image manipulation software. Perhaps the primary drawbacks of anaglyph images include visualization problems with primary colors (such as flowers, bright clothing, or blue sky) and distortion factors in large depth-of-field images. However, anaglyphs are more versatile than polarization techniques since they can be printed, displayed on computer screens (such as on websites), or projected with a single projector (as slides or digital images), and red and cyan viewing glasses cost less than polarization glasses and other 3-D viewing alternatives. Anaglyph images are especially well suited for most natural landscapes, such as views dominated by natural earth tones (grays, browns, greens), and they work well for sepia and black and white images (making the conversion of historic stereo photography into anaglyphs easy). We used a simple stereo camera setup incorporating two digital cameras with a rigid base to photograph landscape features in national parks (including arches, caverns, cactus, forests, and coastlines). We also scanned historic stereographic images. Using common digital image manipulation software we created websites featuring anaglyphs of geologic features from national parks. We used the same images for popular 3-D poster displays at the U.S. Geological Survey Open House 2003 in Menlo Park, CA. Anaglyph photography could easily be used in combined educational outdoor activities and laboratory exercises.

  17. Modelling of processes occurring in deep geological repository - Development of new modules in the GoldSim environment

    NASA Astrophysics Data System (ADS)

    Vopálka, D.; Lukin, D.; Vokál, A.

    2006-01-01

    Three new modules modelling the processes that occur in a deep geological repository have been prepared in the GoldSim computer code environment (using its Transport Module). These modules help to understand the role of selected parameters in the near-field region of the final repository and to prepare an own complex model of the repository behaviour. The source term module includes radioactive decay and ingrowth in the canister, first order degradation of fuel matrix, solubility limitation of the concentration of the studied nuclides, and diffusive migration through the surrounding bentonite layer controlled by the output boundary condition formulated with respect to the rate of water flow in the rock. The corrosion module describes corrosion of canisters made of carbon steel and transport of corrosion products in the near-field region. This module computes balance equations between dissolving species and species transported by diffusion and/or advection from the surface of a solid material. The diffusion module that includes also non-linear form of the interaction isotherm can be used for an evaluation of small-scale diffusion experiments.

  18. > Exploring the Scandinavian Mountain Belt by Deep Drilling (COSC)

    NASA Astrophysics Data System (ADS)

    Juhlin, C.; Gee, D. G.; Lorenz, H.; Pascal, C.; Pedersen, K.; Tsang, C.-F.

    2012-04-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) project proposes to drill two fully cored scientific boreholes, both to c. 2.5 km depth, in the Swedish Caledonides, one near the town of Åre (COSC 1) and the other further east (COSC 2). Together they will provide a c. 5 km deep high-resolution mid-crustal section through this major mid-Palaeozoic orogen. Main project objectives include (i) improved understanding of mountain building processes (orogeny), (ii) investigation of the geothermal gradient and its response to palaeoclimatic influences, (iii) the hydrogeological-hydrochemical state of the mountain belt, (iv) the deep biosphere in the metamorphic rocks and crystalline basement, and (v) calibration of surface geophysics and geology. The Caledonide Orogen is comparable in size and many other respects to today's Himalayan mountain belt. Silurian collision with underthrusting of the paleo-continent Baltica below Laurentia resulted in widespread formation of eclogite. Major allochthons were transported many hundreds of kilometers onto the Baltoscandian Platform, including high-grade metamorphic rocks and migmatites which were generated during continental margin subduction and emplaced ductilely at mid-crustal levels. COSC will provide detailed insight into mid-Palaeozoic mountain building processes and further our understanding of past, present and future orogen dynamics. Located in a key-area for Caledonian geology, it is close to a major geophysical transect across the mountain belt which has been complemented recently with high-resolution reflection seismics and aerogeophysics for site-selection. The COSC research program is being developed by five working groups, geology, geophysics, geothermics, hydrogeology and microbiology. It has direct relevance for society by improving our understanding of mountain building processes, hydrological-hydrochemical regimes in mountain areas and Precambrian shields, deep subsurface conditions for underground

  19. US Geological Survey National Computer Technology Meeting; Proceedings, Phoenix, Arizona, November 14-18, 1988

    USGS Publications Warehouse

    Balthrop, Barbara H.; Terry, J.E.

    1991-01-01

    The U.S. Geological Survey National Computer Technology Meetings (NCTM) are sponsored by the Water Resources Division and provide a forum for the presentation of technical papers and the sharing of ideas or experiences related to computer technology. This report serves as a proceedings of the meeting held in November, 1988 at the Crescent Hotel in Phoenix, Arizona. The meeting was attended by more than 200 technical and managerial people representing all Divisions of the U.S. Geological Survey.Scientists in every Division of the U.S. Geological Survey rely heavily upon state-of-the-art computer technology (both hardware and sofnuare). Today the goals of each Division are pursued in an environment where high speed computers, distributed communications, distributed data bases, high technology input/output devices, and very sophisticated simulation tools are used regularly. Therefore, information transfer and the sharing of advances in technology are very important issues that must be addressed regularly.This report contains complete papers and abstracts of papers that were presented at the 1988 NCTM. The report is divided into topical sections that reflect common areas of interest and application. In each section, papers are presented first followed by abstracts. For these proceedings, the publication of a complete paper or only an abstract was at the discretion of the author, although complete papers were encouraged.Some papers presented at the 1988 NCTM are not published in these proceedings.

  20. Delivering Climate Science for the Nation's Fish, Wildlife, and Ecosystems: The U.S. Geological Survey National Climate Change and Wildlife Science Center

    USGS Publications Warehouse

    Beard, T. Douglas

    2011-01-01

    Changes to the Earth's climate-temperature, precipitation, and other important aspects of climate-pose significant challenges to our Nation's natural resources now and will continue to do so. Managers of land, water, and living resources need to understand the impacts of climate change-which will exacerbate ongoing stresses such as habitat fragmentation and invasive species-so they can design effective response strategies. In 2008 Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS); this center was formed to address challenges resulting from climate change and to empower natural resource managers with rigorous scientific information and effective tools for decision-making. Located at the USGS National Headquarters in Reston, Virginia, the NCCWSC has invested over $20M in cutting-edge climate change research and is now leading the effort to establish eight regional Department of the Interior (DOI) Climate Science Centers (CSCs).

  1. 75 FR 12253 - National Cooperative Geologic Mapping Program (NCGMP) Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ..., 2010, in Room 1200 of the California Geological Survey Headquarters Building, 801 K Street, Sacramento..., academic institutions, and private companies, shall advise the Director of the U.S. Geological Survey on...

  2. Computational Modeling of the Geologic Sequestration of Carbon Dioxide

    EPA Science Inventory

    Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...

  3. Potential for Natural Gas Storage in Deep Basalt Formations at Canoe Ridge, Washington State: A Hydrogeologic Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

    2005-09-24

    Between 1999 and 2002, Pacific Gas Transmission Company (PGT) (now TransCanada Pipeline Company) and AVISTA Corporation, together with technical support provided by the Pacific Northwest National Laboratory and the U.S. Department of Energy (DOE) examined the feasibility of developing a subsurface, natural gas-storage facility in deep, underlying Columbia River basalt in south-central Washington state. As part of this project, the 100 Circles #1 well was drilled and characterized in addition to surface studies. This report provides data and interpretations of the geology and hydrology collected specific to the Canoe Ridge site as part of the U.S. DOE funding to themore » Pacific Northwest National Laboratory in support of this project.« less

  4. Quaternary geology and geologic hazards of the West Desert Hazardous Industry Area, Tooele County, Utah

    USGS Publications Warehouse

    Solomon, Barry J.; Black, Bill D.; ,

    1990-01-01

    The study of Quaternary geology provides information to evaluate geologic conditions and identify geologic constraints on construction in the West Desert Hazardous Industry Area (WDHIA). The WDHIA includes portions of the Great Salt Lake Desert to the west, underlain by several thousand feet of sediments capped by saline mudflats, and Ripple Valley to the east, separated from the Desert by the Grayback Hills and underlain by several hundred feet of sediments in the Cedar Mountains piedmont zone. Quaternary surficial units include marginal, shore-zone, and deep-water lacustrine sediments deposited in Pleistocene Lake Bonneville; eolian deposits; and alluvial sediments. The level of Lake Bonneville underwent major oscillations resulting in the creation of four basin-wide shorelines, three of which are recognized in the WDHIA. Geologic hazards in the WDHIA include the possible contamination of ground water in basin-fill aquifers, debris flows and flash floods in the piedmont zone, and earthquakes and related hazards. Numerous factors contribute to unsafe foundation conditions. Silty and sandy sediments may be subject to liquefaction or hydrocompaction, clayey sediments and mud flats of the Great Salt Lake Desert may be subject to shrinking or swelling, and gypsiferous dunes and salt flats are subject to subsidence due to dissolution.

  5. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States

    USGS Publications Warehouse

    Horton, John D.; San Juan, Carma A.; Stoeser, Douglas B.

    2017-06-30

    The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (https://doi. org/10.5066/F7WH2N65) represents a seamless, spatial database of 48 State geologic maps that range from 1:50,000 to 1:1,000,000 scale. A national digital geologic map database is essential in interpreting other datasets that support numerous types of national-scale studies and assessments, such as those that provide geochemistry, remote sensing, or geophysical data. The SGMC is a compilation of the individual U.S. Geological Survey releases of the Preliminary Integrated Geologic Map Databases for the United States. The SGMC geodatabase also contains updated data for seven States and seven entirely new State geologic maps that have been added since the preliminary databases were published. Numerous errors have been corrected and enhancements added to the preliminary datasets using thorough quality assurance/quality control procedures. The SGMC is not a truly integrated geologic map database because geologic units have not been reconciled across State boundaries. However, the geologic data contained in each State geologic map have been standardized to allow spatial analyses of lithology, age, and stratigraphy at a national scale.

  6. OneGeology-Europe - The Challenges and progress of implementing a basic geological infrastructure for Europe

    NASA Astrophysics Data System (ADS)

    Asch, Kristine; Tellez-Arenas, Agnes

    2010-05-01

    OneGeology-Europe is making geological spatial data held by the geological surveys of Europe more easily discoverable and accessible via the internet. This will provide a fundamental scientific layer to the European Plate Observation System Rich geological data assets exist in the geological survey of each individual EC Member State, but they are difficult to discover and are not interoperable. For those outside the geological surveys they are not easy to obtain, to understand or to use. Geological spatial data is essential to the prediction and mitigation of landslides, subsidence, earthquakes, flooding and pollution. These issues are global in nature and their profile has also been raised by the OneGeology global initiative for the International Year of Planet Earth 2008. Geology is also a key dataset in the EC INSPIRE Directive, where it is also fundamental to the themes of natural risk zones, energy and mineral resources. The OneGeology-Europe project is delivering a web-accessible, interoperable geological spatial dataset for the whole of Europe at the 1:1 million scale based on existing data held by the European geological surveys. Proof of concept will be applied to key areas at a higher resolution and some geological surveys will deliver their data at high resolution. An important role is developing a European specification for basic geological map data and making significant progress towards harmonising the dataset (an essential first step to addressing harmonisation at higher data resolutions). It is accelerating the development and deployment of a nascent international interchange standard for geological data - GeoSciML, which will enable the sharing and exchange of the data within and beyond the geological community within Europe and globally. The geological dataset for the whole of Europe is not a centralized database but a distributed system. Each geological survey implements and hosts an interoperable web service, delivering their national harmonized

  7. Site Characterization for a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Hardin, E. L.; Freeze, G. A.; Sassani, D.; Brady, P. V.

    2015-12-01

    The US Department of Energy Office of Nuclear Energy is at the beginning of 5-year Deep Borehole Field Test (DBFT) to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages over mined repositories, including incremental construction and loading, the enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Site characterization efforts need to determine an eligible site that does not have the following disqualifying characteristics: greater than 2 km to crystalline basement, upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection to the shallow subsurface, and significant probability of future seismic or volcanic activity. Site characterization activities for the DBFT will include geomechanical (i.e., rock in situ stress state, and fluid pressure), geological (i.e., rock and fracture infill lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), and geochemical (i.e., rock-water interaction and natural tracers) aspects. Both direct (i.e., sampling and in situ testing) and indirect (i.e., borehole geophysical) methods are planned for efficient and effective characterization of these site aspects and physical processes. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth, and interpretation of material and system parameters relevant to numerical site simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  8. A statistical summary of data from the U.S. Geological Survey's national water quality networks

    USGS Publications Warehouse

    Smith, R.A.; Alexander, R.B.

    1983-01-01

    The U.S. Geological Survey Operates two nationwide networks to monitor water quality, the National Hydrologic Bench-Mark Network and the National Stream Quality Accounting Network (NASQAN). The Bench-Mark network is composed of 51 stations in small drainage basins which are as close as possible to their natural state, with no human influence and little likelihood of future development. Stations in the NASQAN program are located to monitor flow from accounting units (subregional drainage basins) which collectively encompass the entire land surface of the nation. Data collected at both networks include streamflow, concentrations of major inorganic constituents, nutrients, and trace metals. The goals of the two water quality sampling programs include the determination of mean constituent concentrations and transport rates as well as the analysis of long-term trends in those variables. This report presents a station-by-station statistical summary of data from the two networks for the period 1974 through 1981. (Author 's abstract)

  9. Open hydrology courseware using the United States Geological Survey’s National Water Census Data Portal

    USGS Publications Warehouse

    Nelson, Jake; Ames, Daniel P.; Blodgett, David L.

    2018-01-01

    The U.S. Geological Survey (USGS) is the primary U.S. Government agency for water data collection and dissemination. In this role, the USGS has recently created and deployed a National Water Census Data Portal (NWC-DP) which provides access to streamflow, evapotransporation, precipitation, aquatic biology and other data at the national level. Recognizing the value of these data sets for hydrologic science education, this paper presents an effort to bridge the gap between pencil–and-paper-based hydrology curriculum and the USGS NWC-DP resource. Specifically, we have developed an R package, National Water Census Education (NWCEd), and five associated laboratory exercises that integrate R- and web-services-based access to the NWC-DP data sets. Using custom functions built into the NWCEd, students are able to access unprecedented amounts of hydrologic data from the NWC-DP, which can be applied to current hydrology curriculum and analyzed using NWCEd and a number of other open-source R tools.

  10. National Assessment of Oil and Gas Project: Petroleum Systems and Geologic Assessment of Undiscovered Oil and Gas, Hanna, Laramie, and Shirley Basins Province, Wyoming

    USGS Publications Warehouse

    U.S. Geological Survey Hanna, Laramie

    2007-01-01

    INTRODUCTION The purpose of the U.S. Geological Survey?s (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the Hanna, Laramie, and Shirley Basins Province in Wyoming and northeastern Colorado. The assessment is based on the geologic elements of each total petroleum system (TPS) defined in the province, including hydrocarbon source rocks (source-rock maturation, hydrocarbon generation, and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). Using this geologic framework, the USGS defined three TPSs and seven assessment units (AUs) within them; undiscovered resources for three of the seven AUs were quantitatively assessed.

  11. Digital geologic map and database of the Chesapeake and Ohio Canal National Historical Park and Potomac River corridor, District of Columbia, Virginia, Maryland, and West Virginia

    USGS Publications Warehouse

    Southworth, C. Scott; Brezinski, David K.; Orndorff, Randall C.; Chirico, Peter G.; Lagueux, Kerry M.

    2001-01-01

    The Chesapeake and Ohio (CO) Canal National Historical Park is unique in that it is the only land within the National Park system that crosses 5 physiographic provinces along a major river. From Georgetown, District of Columbia (D.C.) to Cumberland, Maryland (Md.), the CO Canal provides an opportunity to examine the geologic history of the central Appalachian region and how the canal contributed to the development of this area. The geologic map data covers the 184.5-mile long park in a 2-mile wide corridor centered on the Potomac River

  12. In Service to the Nation: The Geology Scientist Emeritus Program

    USGS Publications Warehouse

    Adrian, B.M.; Bybell, L.M.; Brady, S.R.

    2008-01-01

    The Geology Scientist Emeritus Program of the U.S. Geological Survey was established in 1986 as part of the Bureau's Volunteer for Science Program. The purpose of the Scientist Emeritus (SE) Program is to help support retired USGS senior scientists as they volunteer their expertise, intellect, and creativity in efforts that allow them to remain active in the geoscience community, enhance the program activities of the Geology Discipline, and serve the public. The SE Program is open to all scientists and technical experts who have demonstrated leadership qualities and contributed to the goals of the USGS during a productive career. As long as the individual applying has been a scientist or technical expert, he or she may be considered for the SE Program, regardless of their previous position with the USGS.

  13. A Prototype Performance Assessment Model for Generic Deep Borehole Repository for High-Level Nuclear Waste - 12132

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joon H.; Arnold, Bill W.; Swift, Peter N.

    2012-07-01

    A deep borehole repository is one of the four geologic disposal system options currently under study by the U.S. DOE to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic deep borehole repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a deep borehole. A prototype performance assessment model for a generic deep borehole repository has been developed using themore » approach for a mined geological repository. The preliminary results from the simplified deep borehole generic repository performance assessment indicate that soluble, non-sorbing (or weakly sorbing) fission product radionuclides, such as I-129, Se-79 and Cl-36, are the likely major dose contributors, and that the annual radiation doses to hypothetical future humans associated with those releases may be extremely small. While much work needs to be done to validate the model assumptions and parameters, these preliminary results highlight the importance of a robust seal design in assuring long-term isolation, and suggest that deep boreholes may be a viable alternative to mined repositories for disposal of both HLW and UNF. (authors)« less

  14. Oculina Bank: Sidescan sonar and sediment data from a deep-water coral reef habitat off east-central Florida

    USGS Publications Warehouse

    Scanlon, Kathryn M.; Briere, Peter R.; Koenig, Christopher C.

    1999-01-01

    The Experimental Oculina Research Reserve (EORR) is located along the shelf edge off east-central Florida in water depths of about 60 to 100 meters. It is about 7.5 km wide and 43 km long and encompasses numerous high-relief rocky pinnacles where Oculina varicosa, a fragile deep-water coral, grows. These coral reefs have historically been the sites of prolific grouper spawning aggregations and have supported a large variety of other reef fish (Gilmore and Jones, 1992). Serious decline of the fishery in the area prompted the establishment of the EORR.The data presented in this open-file report were collected as part of a cooperative project between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program and the National Marine Fisheries Service (NMFS) of the National Oceanographic and Atmospheric Administration (NOAA). The project’s goal was to provide reconnaissance geologic maps of the Experimental Oculina Research Reserve and an unprotected control area north of the reserve to support the NMFS studies of grouper spawning aggregations. To accomplish this, we collected sidescan sonar data and sediment samples throughout both study areas and used video and observations from a manned submersible at selected sites. This report includes digital mosaics of the sidescan sonar data, tabulated sediment data, and interpretative maps of the seafloor geology. The video and submersible observations are not included in this report, but were used in the interpretation of the sidescan data.

  15. Survey report of NOAA Ship McArthur II cruises AR-04-04, AR-05-05 and AR-06-03: habitat classification of side scan sonar imagery in support of deep-sea coral/sponge explorations at the Olympic Coast National Marine Sanctuary

    USGS Publications Warehouse

    Intelmann, Steven S.; Cochrane, Guy R.; Bowlby, C. Edward; Brancato, Mary Sue; Hyland, Jeffrey

    2007-01-01

    Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral-sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises, Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed.

  16. Geologic studies in Alaska by the U.S. Geological Survey, 1997

    USGS Publications Warehouse

    Kelley, Karen D.

    1999-01-01

    Geologic Framework studies provide background information that is the scientific basis for present and future studies of the environment, mineral and energy resources, paleoclimate, and hazards in Alaska. One paper presents the results of sedimentologic and paleontologic comparisons of lower Paleozoic, deep-water-facies rock units in central Alaska (Dumoulin and others). The authors show which of these units are likely to correlate with one another, suggest likely source regions, and provide a structural restoration of units that have been fragmented by large fault motions. A second framework paper provides a map, rock descriptions, and chemical compositions of volcanic rocks in a newly recognized, geologically young volcanic center in the Aleutian volcanic arc (Hildreth and others). A third paper presents an interesting summary of gravity changes that occurred in south-central Alaska during the great earthquake of 1964 and for the following 25 years (Barnes). Gravity changes correlate with land-elevation changes in some cases, but not in others, which means that different processes are responsible for the gravity changes.

  17. How do geological sampling biases affect studies of morphological evolution in deep time? A case study of pterosaur (Reptilia: Archosauria) disparity.

    PubMed

    Butler, Richard J; Brusatte, Stephen L; Andres, Brian; Benson, Roger B J

    2012-01-01

    A fundamental contribution of paleobiology to macroevolutionary theory has been the illumination of deep time patterns of diversification. However, recent work has suggested that taxonomic diversity counts taken from the fossil record may be strongly biased by uneven spatiotemporal sampling. Although morphological diversity (disparity) is also frequently used to examine evolutionary radiations, no empirical work has yet addressed how disparity might be affected by uneven fossil record sampling. Here, we use pterosaurs (Mesozoic flying reptiles) as an exemplar group to address this problem. We calculate multiple disparity metrics based upon a comprehensive anatomical dataset including a novel phylogenetic correction for missing data, statistically compare these metrics to four geological sampling proxies, and use multiple regression modeling to assess the importance of uneven sampling and exceptional fossil deposits (Lagerstätten). We find that range-based disparity metrics are strongly affected by uneven fossil record sampling, and should therefore be interpreted cautiously. The robustness of variance-based metrics to sample size and geological sampling suggests that they can be more confidently interpreted as reflecting true biological signals. In addition, our results highlight the problem of high levels of missing data for disparity analyses, indicating a pressing need for more theoretical and empirical work. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.

  18. Finite Element Stress Analysis of Spent Nuclear Fuel Disposal Canister in a Deep Geological Repository

    NASA Astrophysics Data System (ADS)

    Kwon, Young Joo; Choi, Jong Won

    This paper presents the finite element stress analysis of a spent nuclear fuel disposal canister to provide basic information for dimensioning the canister and configuration of canister components and consequently to suggest the structural analysis methodology for the disposal canister in a deep geological repository which is nowadays very important in the environmental waste treatment technology. Because of big differences in the pressurized water reactor (PWR) and the Canadian deuterium and uranium reactor (CANDU) fuel properties, two types of canisters are conceived. For manufacturing, operational reasons and standardization, however, both canisters have the same outer diameter and length. The construction type of canisters introduced here is a solid structure with a cast insert and a corrosion resistant overpack. The structural stress analysis is carried out using a finite element analysis code, NISA, and focused on the structural strength of the canister against the expected external pressures due to the swelling of the bentonite buffer and the hydrostatic head. The canister must withstand these large pressure loads. Consequently, canisters presented here contain 4 PWR fuel assemblies and 33×9 CANDU fuel bundles. The outside diameter of the canister for both fuels is 122cm and the cast insert diameter is 112cm. The total length of the canister is 483cm with the lid/bottom and the outer shell of 5cm.

  19. Hot, deep origin of petroleum: deep basin evidence and application

    USGS Publications Warehouse

    Price, Leigh C.

    1978-01-01

    Use of the model of a hot deep origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the deep basin is cut by or directly updip from faults dipping into the basin deep. Generally the greater the fault throw the greater the reserves. Fault-block highs next to deep sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to deep sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the deep basin associated with major faulting, production over the basin deep, and regional stratigraphic trapping updip from established production along major fault zones.

  20. Semantic mediation in the national geologic map database (US)

    USGS Publications Warehouse

    Percy, D.; Richard, S.; Soller, D.

    2008-01-01

    Controlled language is the primary challenge in merging heterogeneous databases of geologic information. Each agency or organization produces databases with different schema, and different terminology for describing the objects within. In order to make some progress toward merging these databases using current technology, we have developed software and a workflow that allows for the "manual semantic mediation" of these geologic map databases. Enthusiastic support from many state agencies (stakeholders and data stewards) has shown that the community supports this approach. Future implementations will move toward a more Artificial Intelligence-based approach, using expert-systems or knowledge-bases to process data based on the training sets we have developed manually.

  1. Toward digital geologic map standards: a progress report

    USGS Publications Warehouse

    Ulrech, George E.; Reynolds, Mitchell W.; Taylor, Richard B.

    1992-01-01

    Establishing modern scientific and technical standards for geologic maps and their derivative map products is vital to both producers and users of such maps as we move into an age of digital cartography. Application of earth-science data in complex geographic information systems, acceleration of geologic map production, and reduction of population costs require that national standards be developed for digital geologic cartography and computer analysis. Since December 1988, under commission of the Chief Geologic of the U.S. Geological Survey and the mandate of the National Geologic Mapping Program (with added representation from the Association of American State Geologists), a committee has been designing a comprehensive set of scientific map standards. Three primary issues were: (1) selecting scientific symbology and its digital representation; (2) creating an appropriate digital coding system that characterizes geologic features with respect to their physical properties, stratigraphic and structural relations, spatial orientation, and interpreted mode of origin; and (3) developing mechanisms for reporting levels of certainty for descriptive as well as measured properties. Approximately 650 symbols for geoscience maps, including present usage of the U.S Geological Survey, state geological surveys, industry, and academia have been identified and tentatively adopted. A proposed coding system comprises four-character groupings of major and minor codes that can identify all attributes of a geologic feature. Such a coding system allows unique identification of as many as 105 geologic names and values on a given map. The new standard will track closely the latest developments of the Proposed Standard for Digital Cartographic Data soon to be submitted to the National Institute of Standards and Technology by the Federal Interagency Coordinating Committee on Digital Cartography. This standard will adhere generally to the accepted definitions and specifications for spatial

  2. Multi-dimensional transport modelling of corrosive agents through a bentonite buffer in a Canadian deep geological repository.

    PubMed

    Briggs, Scott; McKelvie, Jennifer; Sleep, Brent; Krol, Magdalena

    2017-12-01

    The use of a deep geological repository (DGR) for the long-term disposal of used nuclear fuel is an approach currently being investigated by several agencies worldwide, including Canada's Nuclear Waste Management Organization (NWMO). Within the DGR, used nuclear fuel will be placed in copper-coated steel containers and surrounded by a bentonite clay buffer. While copper is generally thermodynamically stable, corrosion can occur due to the presence of sulphide under anaerobic conditions. As such, understanding transport of sulphide through the engineered barrier system to the used fuel container is an important consideration in DGR design. In this study, a three-dimensional (3D) model of sulphide transport in a DGR was developed. The numerical model is implemented using COMSOL Multiphysics, a commercial finite element software package. Previous sulphide transport models of the NWMO repository used a simplified one-dimensional system. This work illustrates the importance of 3D modelling to capture non-uniform effects, as results showed locations of maximum sulphide flux are 1.7 times higher than the average flux to the used fuel container. Copyright © 2017. Published by Elsevier B.V.

  3. Apollo 15 crewmen riding lunar roving vehicle simulator during geology trip

    NASA Image and Video Library

    1970-11-02

    S70-53300 (2-3 Nov. 1970) --- Two Apollo 15 crew members, riding a Lunar Roving Vehicle (LRV) simulator, participate in geology training at the Cinder Lake crater field in Arizona. Astronaut David R. Scott, Apollo 15 commander, seated on the left; and to Scott's right is astronaut James B. Irwin, lunar module pilot. They have stopped at the rim of a 30-feet deep crater to look over the terrain. The simulator, called "Grover", was built by the United States Geological Survey.

  4. USGS Western Coastal and Marine Geology Team

    USGS Publications Warehouse

    Johnson, Sam; Gibbons, Helen

    2007-01-01

    The Western Coastal and Marine Geology Team of the U.S. Geological Survey (USGS) studies the coasts of the western United States, including Alaska and Hawai‘i. Team scientists conduct research, monitor processes, and develop information about coastal and marine geologic hazards, environmental conditions, habitats, and energy and mineral resources. This information helps managers at all levels of government and in the private sector make informed decisions about the use and protection of national coastal and marine resources.

  5. Geology of Point Reyes National Seashore and vicinity, California: a digital database

    USGS Publications Warehouse

    Clark, Jospeh C.; Brabb, Earl E.

    1997-01-01

    This Open-File report is a digital geologic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. The report does include, however, a PostScript plot file containing an image of the geologic map sheet with explanation, as well as the accompanying text describing the geology of the area. For those interested in a paper plot of information contained in the database or in obtaining the PostScript plot files, please see the section entitled 'For Those Who Aren't Familiar With Digital Geologic Map Databases' below. This digital map database, compiled from previously published and unpublished data and new mapping by the authors, represents the general distribution of surficial deposits and rock units in Point Reyes and surrounding areas. Together with the accompanying text file (pr-geo.txt or pr-geo.ps), it provides current information on the stratigraphy and structural geology of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:48,000 or smaller.

  6. Geologic map of the Winona Quadrangle, Shannon County, Missouri

    USGS Publications Warehouse

    Orndorff, R.C.; Harrison, R.W.

    2001-01-01

    The bedrock exposed in the Winona Quadrangle, Missouri, comprises Mesoproterozoic aged volcanic rocks overlain by Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they drape around knobs of the volcanic rocks or where they are adjacent to faults. The carbonates are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A National Park in this region (Ozark National Scenic Riverways, Missouri ) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the Parks to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for Park management. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html

  7. Ganymede and Callisto: Beauty is only skin deep

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1985-01-01

    Ganymede and Callisto, the two giant icy satellites of Jupiter, have very nearly the same size, composition, and location in the solar system, yet their surfaces are profoundly different. A new scenario of their geologic histories indicates that the differences may be only skin deep.

  8. Aqueous alteration of VHTR fuels particles under simulated geological conditions

    NASA Astrophysics Data System (ADS)

    Ait Chaou, Abdelouahed; Abdelouas, Abdesselam; Karakurt, Gökhan; Grambow, Bernd

    2014-05-01

    Very High Temperature Reactor (VHTR) fuels consist of the bistructural-isotropic (BISO) or tristructural-isotropic (TRISO)-coated particles embedded in a graphite matrix. Management of the spent fuel generated during VHTR operation would most likely be through deep geological disposal. In this framework we investigated the alteration of BISO (with pyrolytic carbon) and TRISO (with SiC) particles under geological conditions simulated by temperatures of 50 and 90 °C and in the presence of synthetic groundwater. Solid state (scanning electron microscopy (SEM), micro-Raman spectroscopy, electron probe microanalyses (EPMA) and X-ray photoelectron spectroscopy (XPS)) and solution analyses (ICP-MS, ionique chromatography (IC)) showed oxidation of both pyrolytic carbon and SiC at 90 °C. Under air this led to the formation of SiO2 and a clay-like Mg-silicate, while under reducing conditions (H2/N2 atmosphere) SiC and pyrolytic carbon were highly stable after a few months of alteration. At 50 °C, in the presence and absence of air, the alteration of the coatings was minor. In conclusion, due to their high stability in reducing conditions, HTR fuel disposal in reducing deep geological environments may constitute a viable solution for their long-term management.

  9. National Assessment of Oil and Gas Project: Geologic Assessment of Undiscovered Oil and Gas Resources of the Eastern Great Basin Province, Nevada, Utah, Idaho, and Arizona

    USGS Publications Warehouse

    ,

    2007-01-01

    Introduction The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the Eastern Great Basin Province of eastern Nevada, western Utah, southeastern Idaho, and northwestern Arizona. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and three assessment units. All three assessment units were quantitatively assessed for undiscovered oil and gas resources.

  10. Putting the Deep Biosphere on the Map for Oceanography Courses: Gas Hydrates As a Case Study for the Deep Biosphere

    NASA Astrophysics Data System (ADS)

    Sikorski, J. J.; Briggs, B. R.

    2014-12-01

    The ocean is essential for life on our planet. It covers 71% of the Earth's surface, is the source of the water we drink, the air we breathe, and the food we eat. Yet, the exponential growth in human population is putting the ocean and thus life on our planet at risk. However, based on student evaluations from our introductory oceanography course it is clear that our students have deficiencies in ocean literacy that impact their ability to recognize that the ocean and humans are inextricably connected. Furthermore, life present in deep subsurface marine environments is also interconnected to the study of the ocean, yet the deep biosphere is not typically covered in undergraduate oceanography courses. In an effort to improve student ocean literacy we developed an instructional module on the deep biosphere focused on gas hydrate deposits. Specifically, our module utilizes Google Earth and cutting edge research about microbial life in the ocean to support three inquiry-based activities that each explore different facets of gas hydrates (i.e. environmental controls, biologic controls, and societal implications). The relevant nature of the proposed module also makes it possible for instructors of introductory geology courses to modify module components to discuss related topics, such as climate, energy, and geologic hazards. This work, which will be available online as a free download, is a solid contribution toward increasing the available teaching resources focused on the deep biosphere for geoscience educators.

  11. Geologic Map of the Big Spring Quadrangle, Carter County, Missouri

    USGS Publications Warehouse

    Weary, David J.; McDowell, Robert C.

    2006-01-01

    The bedrock exposed in the Big Spring quadrangle of Missouri comprises Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat lying except where they are adjacent to faults. The carbonate rocks are karstified, and the area contains numerous sinkholes, springs, caves, and losing streams. This map is one of several being produced under the U.S. Geological Survey (USGS) National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A national park in this region (Ozark National Scenic Riverways, Missouri) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the park to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for park management. For more information, see: http://geology.er.usgs.gov/eespteam/Karst/index.html

  12. Geologic map of Gunnison Gorge National Conservation Area, Delta and Montrose Counties, Colorado

    USGS Publications Warehouse

    Kellogg, Karl; Hansen, Wallace R.; Tucker, Karen S.; VanSistine, D. Paco

    2004-01-01

    This publication consists of a geologic map database and printed map sheet. The map sheet has a geologic map as the center piece, and accompanying text describes (1) the various geological units, (2) the uplift history of the region and how it relates to canyon downcutting, (3) the ecology of the gorge, and (4) human history. The map is intended to be used by the general public as well as scientists and goes hand-in-hand with a separate geological guide to Gunnison Gorge.

  13. The US Geological Survey's National Mapping Division programs, products, and services that can support wetlands mapping

    USGS Publications Warehouse

    Baxter, F.S.

    1990-01-01

    The US Geological Survey (USGS) programs can play an important role in support of President Bush's policy of no net loss of wetlands. A principal goal of USGS is to provide cartographic information that contributes to the wise management of the Nation's natural resources. This information consists of maps, cartographic data bases (graphic and digital), remotely sensed imagery, and information services. These products are used by Federal, State, and local governments, the private sector, and individual citizens in making decisions on the existence and use of land and water resources. I discuss the programs, products, and information services of the National Mapping Division, the tools available to determine where wetlands exist, and the capability of periodic measurement of wetlands to help in assessing compliance with the concept of no net loss of wetlands. -from Author

  14. Subsurface site conditions and geology in the San Fernando earthquake area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, C.M.; Johnson, J.A.; Kharraz, Y.

    1971-12-01

    The report presents the progress to date in establishing the facts about dynamic subsurface properties and geological features in the area affected by the San Fernando earthquake of February 9, 1971. Special emphasis is given to the locations of accelerographs, seismoscopes and Seismological Field Survey aftershock instruments. Thirty shallow geophysical surveys were made for determination of S and P velocities, with damping measured at some sites. Deep velocity data were obtained from geophysical surveys by others. Soil Mechanics and water well borings by others were utilized. Published and ongoing geological studies were applied. Results are presented in the form ofmore » five geological cross-sections, nine subsurface exploration models extending through basement complex to depths of 14,000 feet, a general geologic map, the shallow geophysical surveys, and selected data on damping.« less

  15. Geomechanical Response of Jointed Caprock During CO2 Geological Sequestration

    NASA Astrophysics Data System (ADS)

    Newell, P.; Martinez, M. J.; Bishop, J. E.

    2014-12-01

    Geological sequestration of CO2 refers to the injection of supercritical CO2 into deep reservoirs trapped beneath a low-permeability caprock formation. Maintaining caprock integrity during the injection process is the most important factor for a successful injection. In this work we evaluate the potential for jointed caprock during injection scenarios using coupled three-dimensional multiphase flow and geomechanics modeling. Evaluation of jointed/fractured caprock systems is of particular concern to CO2 sequestration because creation or reactivation of joints (mechanical damage) can lead to enhanced pathways for leakage. In this work, we use an equivalent continuum approach to account for the joints within the caprock. Joint's aperture and non-linear stiffness of the caprock will be updated dynamically based on the effective normal stress. Effective permeability field will be updated based on the joints' aperture creating an anisotropic permeability field throughout the caprock. This feature would add another coupling between the solid and fluid in addition to basic Terzaghi's effective stress concept. In this study, we evaluate the impact of the joint's orientation and geometry of caprock and reservoir layers on geomechanical response of the CO2 geological systems. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. U.S. Geological Survey programs in Texas

    USGS Publications Warehouse

    ,

    1996-01-01

    The USGS also continues to monitor geologic conditions in Texas associated with rare but potentially dangerous earthquakes. Recently, the Nation Biological Service (now the Biological Resources Division) joined the USGS to continue their appraisal of the nation's biological resources.

  17. Delivering climate science about the Nation's fish, wildlife, and ecosystems: the U.S. Geological Survey National Climate Change and Wildlife Science Center

    USGS Publications Warehouse

    Varela-Acevedo, Elda

    2014-01-01

    Changes to the Earth’s climate—temperature, precipitation, and other climate variables—pose significant challenges to our Nation’s natural resources. Managers of land, water, and living resources require an understanding of the impacts of climate change—which exacerbate ongoing stresses such as habitat alteration and invasive species—in order to design effective response strategies. In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to address environmental challenges resulting from climate and land-use change and to provide natural resource managers with rigorous scientific information and effective tools for decision making. Located at the USGS National Headquarters in Reston, Virginia, the NCCWSC has established eight regional Department of the Interior (DOI) Climate Science Centers (CSCs) and has invested over $93 million (through fiscal year 2013) in cutting-edge climate change research.

  18. The Water-Quality Partnership for National Parks—U.S. Geological Survey and National Park Service, 1998–2016

    USGS Publications Warehouse

    Nilles, Mark A.; Penoyer, Pete E; Ludtke, Amy S.; Ellsworth, Alan C.

    2016-07-13

    The U.S. Geological Survey (USGS) and the National Park Service (NPS) work together through the USGS–NPS Water-Quality Partnership to support a broad range of policy and management needs related to high-priority water-quality issues in national parks. The program was initiated in 1998 as part of the Clean Water Action Plan, a Presidential initiative to commemorate the 25th anniversary of the Clean Water Act. Partnership projects are developed jointly by the USGS and the NPS. Studies are conducted by the USGS and findings are used by the NPS to guide policy and management actions aimed at protecting and improving water quality.The National Park Service manages many of our Nation’s most highly valued aquatic systems across the country, including portions of the Great Lakes, ocean and coastal zones, historic canals, reservoirs, large rivers, high-elevation lakes and streams, geysers, springs, and wetlands. So far, the Water-Quality Partnership has undertaken 217 projects in 119 national parks. In each project, USGS studies and assessments (http://water.usgs.gov/nps_partnership/pubs.php) have supported science-based management by the NPS to protect and improve water quality in parks. Some of the current projects are highlighted in the NPS Call to Action Centennial initiative, Crystal Clear, which celebrates national park water-resource efforts to ensure clean water for the next century of park management (http://www.nature.nps.gov/water/crystalclear/).New projects are proposed each year by USGS scientists working in collaboration with NPS staff in specific parks. Project selection is highly competitive, with an average of only eight new projects funded each year out of approximately 75 proposals that are submitted. Since the beginning of the Partnership in 1998, 189 publications detailing project findings have been completed. The 217 studies have been conducted in 119 NPS-administered lands, extending from Denali National Park and Preserve in Alaska to Everglades

  19. Response to memorandum by Rowley and Dixon regarding U.S. Geological Survey report titled "Characterization of Surface-Water Resources in the Great Basin National Park Area and Their Susceptibility to Ground-Water Withdrawals in Adjacent Valleys, White Pine County, Nevada"

    USGS Publications Warehouse

    Prudic, David E.

    2006-01-01

    Applications pending for permanent permits to pump large quantities of ground water in Spring and Snake Valleys adjacent to Great Basin National Park (the Park) prompted the National Park Service to request a study by the U.S. Geological Survey to evaluate the susceptibility of the Park's surface-water resources to pumping. The result of this study was published as U.S. Geological Survey Scientific Investigations Report 2006-5099 'Characterization of Surface-Water Resources in the Great Basin National Park Area and Their Susceptibility to Ground-Water Withdrawals in Adjacent Valleys, White Pine County, Nevada,' by P.E. Elliott, D.A. Beck, and D.E. Prudic. That report identified areas within the Park where surface-water resources are susceptible to ground-water pumping; results from the study showed that three streams and several springs near the eastern edge of the Park were susceptible. However, most of the Park's surface-water resources likely would not be affected by pumping because of either low-permeability rocks or because ground water is sufficiently deep as to not be directly in contact with the streambeds. A memorandum sent by Peter D. Rowley and Gary L. Dixon, Consulting Geologists, to the Southern Nevada Water Authority (SNWA) on June 29, 2006 was critical of the report. The memorandum by Rowley and Dixon was made available to the National Park Service, the U.S. Geological Survey, and the public during the Nevada State Engineer's 'Evidentiary Exchange' process for the recent hearing on applications for ground-water permits by SNWA in Spring Valley adjacent to Great Basin National Park. The U.S. Geological Survey was asked by the National Park Service to assess the validity of the concerns and comments contained in the Rowley and Dixon memorandum. An Administrative Letter Report responding to Rowley and Dixon's concerns and comments was released to the National Park Service on October 30, 2006. The National Park Service subsequently requested that the

  20. Deep Venous Procedures Performed in the National Health Service in England between 2005 and 2015.

    PubMed

    Lim, C S; Shalhoub, J; Davies, A H

    2017-10-01

    Recent advances in imaging technology and endovenous interventions have revolutionised the management of specific groups of patients with deep venous pathology. This study aimed to examine data published by Hospital Episode Statistics (HES) to assess trends in the number of endovascular and open surgical deep venous procedures performed in National Health Service (NHS) hospitals in England between 2005 and 2015. The main diagnosis of deep venous thrombosis (DVT), and total number of primary open and percutaneous procedures for deep venous pathology for patients admitted to the NHS hospitals in England from 2005 to 2015 were retrieved from the HES database and analysed. An overall declining trend in the annual number of admissions for a primary diagnosis of DVT was observed (linear regression r 2  = 0.9, p < .0001). The number of open surgical procedures for removal of thrombus remained largely unchanged (range 26-70); the frequency of percutaneous procedures increased steadily over the study period (range 0-311). The number of open surgical procedures relating to the vena cava fell between 2005 and 2009, and remained around 50 per year thereafter. Annual numbers of cases of deep venous bypass (range 17-33) and venous valve surgery (range 8-47) remained similar in trend over this period. The number of vena cava stent (range 0-405), other venous stent (range 0-316), and percutaneous venoplasty (range 0-972) procedures increased over the first 5 years of the study period. There is an increasing trend in relation to endovenous procedures but not open surgery, being carried out for deep venous pathology in the last decade in NHS hospitals in England. Despite a number of limitations with HES, the increase in the number of endovenous procedures shown is likely to have significant implications for the provision of care and healthcare resources for patients with deep venous pathology. Copyright © 2017 European Society for Vascular Surgery. Published by Elsevier Ltd. All

  1. New activities at the U.S. Geological Survey

    USGS Publications Warehouse

    McKelvey, Vincent E.

    1974-01-01

    As the Nation's principal source of information about the configuration of the land surface, the composition and structure of the rocks at and beneath the surface, the distribution and character of its energy, mineral, and water resources, and the nature of natural geologic processes, the U. S. Geological Survey focuses its work on some of the Nation's most critical problems. As the Survey tackles new problems with new techniques, it is fully aware of the resource needs and environmental pressures of an expanding economy and growing population.

  2. Geologic map of the Cameron 30' x 60' quadrangle, Coconino County, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Priest, Susan S.; Felger, Tracey J.

    2007-01-01

    This geologic map is the result of a cooperative effort of the U.S. Geological Survey and the National Park Service in collaboration with the Navajo Nation and the Hopi Tribe to provide regional geologic information for resource management officials of the National Park Service, U.S. Forest Service, Navajo Indian Reservation (herein the Navajo Nation), the Hopi Tribe, and for visitor information services at Grand Canyon National Park, Arizona as well as private enterprises that have lands within the area. The Cameron 30’ x 60’ quadrangle encompasses approximately 5,018 km2 (1,960 mi2) within Coconino County, northern Arizona and is bounded by longitude 111° to 112° W., and latitude 35°30’ to 36° N. The map area is within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The map area is locally subdivided into six physiographic areas: the Grand Canyon (including the Little Colorado River Gorge), Coconino Plateau, Marble Plateau, Little Colorado River Valley, Moenkopi Plateau, and the San Francisco Volcanic Field as defined by Billingsley and others, 1997 (fig. 1). Elevations range from about 2,274 m (7,460 ft) at the south rim of Grand Canyon along State Highway 64 to about 994 m (3,260 ft) in the Grand Canyon, northeast quarter of the map area.The Cameron quadrangle is one of the few remaining areas near the Grand Canyon where uniform geologic mapping was needed for geologic connectivity of the regional geologic framework that will be useful to federal, state, and private land resource managers who direct environmental and land management programs such as range management, biological studies, flood control, and water resource investigations. The geologic information presented will support future and ongoing local geologic investigations and associated scientific studies of all disciplines within the Cameron quadrangle area.

  3. Preserving Geological Samples and Metadata from Polar Regions

    NASA Astrophysics Data System (ADS)

    Grunow, A.; Sjunneskog, C. M.

    2011-12-01

    The Office of Polar Programs at the National Science Foundation (NSF-OPP) has long recognized the value of preserving earth science collections due to the inherent logistical challenges and financial costs of collecting geological samples from Polar Regions. NSF-OPP established two national facilities to make Antarctic geological samples and drill cores openly and freely available for research. The Antarctic Marine Geology Research Facility (AMGRF) at Florida State University was established in 1963 and archives Antarctic marine sediment cores, dredge samples and smear slides along with ship logs. The United States Polar Rock Repository (USPRR) at Ohio State University was established in 2003 and archives polar rock samples, marine dredges, unconsolidated materials and terrestrial cores, along with associated materials such as field notes, maps, raw analytical data, paleomagnetic cores, thin sections, microfossil mounts, microslides and residues. The existence of the AMGRF and USPRR helps to minimize redundant sample collecting, lessen the environmental impact of doing polar field work, facilitates field logistics planning and complies with the data sharing requirement of the Antarctic Treaty. USPRR acquires collections through donations from institutions and scientists and then makes these samples available as no-cost loans for research, education and museum exhibits. The AMGRF acquires sediment cores from US based and international collaboration drilling projects in Antarctica. Destructive research techniques are allowed on the loaned samples and loan requests are accepted from any accredited scientific institution in the world. Currently, the USPRR has more than 22,000 cataloged rock samples available to scientists from around the world. All cataloged samples are relabeled with a USPRR number, weighed, photographed and measured for magnetic susceptibility. Many aspects of the sample metadata are included in the database, e.g. geographical location, sample

  4. Seabed maps showing topography, ruggedness, backscatter intensity, sediment mobility, and the distribution of geologic substrates in Quadrangle 6 of the Stellwagen Bank National Marine Sanctuary Region offshore of Boston, Massachusetts

    USGS Publications Warehouse

    Valentine, Page C.; Gallea, Leslie B.

    2015-11-10

    The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The area is approximately 3,700 square kilometers (km2) and is subdivided into 18 quadrangles. Seven maps, at a scale of 1:25,000, of quadrangle 6 (211 km2) depict seabed topography, backscatter, ruggedness, geology, substrate mobility, mud content, and areas dominated by fine-grained or coarse-grained sand. Interpretations of bathymetric and seabed backscatter imagery, photographs, video, and grain-size analyses were used to create the geology-based maps. In all, data from 420 stations were analyzed, including sediment samples from 325 locations. The seabed geology map shows the distribution of 10 substrate types ranging from boulder ridges to immobile, muddy sand to mobile, rippled sand. Mapped substrate types are defined on the basis of sediment grain-size composition, surface morphology, sediment layering, the mobility or immobility of substrate surfaces, and water depth range. This map series is intended to portray the major geological elements (substrates, topographic features, processes) of environments within quadrangle 6. Additionally, these maps will be the basis for the study of the ecological requirements of invertebrate and vertebrate species that utilize these substrates and guide seabed management in the region.

  5. Data from selected U.S. Geological Survey National Stream Water Quality Monitoring Networks

    USGS Publications Warehouse

    Alexander, Richard B.; Slack, James R.; Ludtke, Amy S.; Fitzgerald, Kathleen K.; Schertz, Terry L.

    1998-01-01

    A nationally consistent and well-documented collection of water quality and quantity data compiled during the past 30 years for streams and rivers in the United States is now available on CD-ROM and accessible over the World Wide Web. The data include measurements from two U.S. Geological Survey (USGS) national networks for 122 physical, chemical, and biological properties of water collected at 680 monitoring stations from 1962 to 1995, quality assurance information that describes the sample collection agencies, laboratories, analytical methods, and estimates of laboratory measurement error (bias and variance), and information on selected cultural and natural characteristics of the station watersheds. The data are easily accessed via user-supplied software including Web browser, spreadsheet, and word processor, or may be queried and printed according to user-specified criteria using the supplied retrieval software on CD-ROM. The water quality data serve a variety of scientific uses including research and educational applications related to trend detection, flux estimation, investigations of the effects of the natural environment and cultural sources on water quality, and the development of statistical methods for designing efficient monitoring networks and interpreting water resources data.

  6. U.S. Geological Survey Geologic Carbon Sequestration Assessment

    NASA Astrophysics Data System (ADS)

    Warwick, P. D.; Blondes, M. S.; Brennan, S.; Corum, M.; Merrill, M. D.

    2012-12-01

    The Energy Independence and Security Act of 2007 authorized the U.S. Geological Survey (USGS) to conduct a national assessment of potential geological storage resources for carbon dioxide (CO2) in consultation with the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and State geological surveys. To conduct the assessment, the USGS developed a probability-based assessment methodology that was extensively reviewed by experts from industry, government and university organizations (Brennan et al., 2010, http://pubs.usgs.gov/of/2010/1127). The methodology is intended to be used at regional to sub-basinal scales and it identifies storage assessment units (SAUs) that are based on two depth categories below the surface (1) 3,000 to 13,000 ft (914 to 3,962 m), and (2) 13,000 ft (3,962 m) and greater. In the first category, the 3,000 ft (914 m) minimum depth of the storage reservoir ensures that CO2 is in a supercritical state to minimize the storage volume. The depth of 13,000 ft (3,962 m) represents maximum depths that are accessible with average injection pressures. The second category represents areas where a reservoir formation has potential storage at depths below 13,000 ft (3,962 m), although they are not accessible with average injection pressures; these are assessed as a separate SAU. SAUs are restricted to formation intervals that contain saline waters (total dissolved solids greater than 10,000 parts per million) to prevent contamination of protected ground water. Carbon dioxide sequestration capacity is estimated for buoyant and residual storage traps within the basins. For buoyant traps, CO2 is held in place in porous formations by top and lateral seals. For residual traps, CO2 is contained in porous formations as individual droplets held within pores by capillary forces. Preliminary geologic models have been developed to estimate CO2 storage capacity in approximately 40 major sedimentary basins within the United States. More than

  7. Geology of the American Southwest

    NASA Astrophysics Data System (ADS)

    Baldridge, W. Scott

    2004-06-01

    Scott Baldridge presents a concise guide to the geology of the Southwestern U.S. Two billion years of Earth history are represented in the rocks and landscape of the Southwest U.S., creating natural wonders such as the Grand Canyon, Monument Valley, and Death Valley. This region is considered a geologist's "dream", attracting a large number of undergraduate field classes and amateur geologists. The volume will prove invaluable to students and will also appeal to anyone interested in the geology and landscape of the region's National Parks.

  8. Diffusion Dominant Solute Transport Modelling In Deep Repository Under The Effect of Emplacement Media Degradation - 13285

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, S.; Jivkov, A.P.

    2013-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is being actively considered and pursued in many countries, where low permeability geological formations are used to provide long term waste contaminant with minimum impact to the environment and risk to the biosphere. A multi-barrier approach that makes use of both engineered and natural barriers (i.e. geological formations) is often used to further enhance the containment performance of the repository. As the deep repository system subjects to a variety of thermo-hydro-chemo-mechanical (THCM) effects over its long 'operational' lifespan (e.g. 0.1 to 1.0 million years, the integrity of the barrier systemmore » will decrease over time (e.g. fracturing in rock or clay)). This is broadly referred as media degradation in the present study. This modelling study examines the effects of media degradation on diffusion dominant solute transport in fractured media that are typical of deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes, while the effects of degradation is studied using a pore network model that considers the media diffusivity and network changes. Model results are presented to demonstrate the use of a 3D pore-network model, using a novel architecture, to calculate macroscopic properties of the medium such as diffusivity, subject to pore space changes as the media degrade. Results from a reactive transport model of a representative geological waste disposal package are also presented to demonstrate the effect of media property change on the solute migration behaviour, illustrating the complex interplay between kinetic biogeochemical processes and diffusion dominant transport. The initial modelling results demonstrate the feasibility of a coupled modelling approach (using pore-network model and

  9. Muon Tomography for Geological Repositories.

    NASA Astrophysics Data System (ADS)

    Woodward, D.; Kudryavtsev, V.; Gluyas, J.; Clark, S. J.; Thompson, L. F.; Klinger, J.; Spooner, N. J.; Blackwell, T. B.; Pal, S.; Lincoln, D. L.; Paling, S. M.; Mitchell, C. N.; Benton, C.; Coleman, M. L.; Telfer, S.; Cole, A.; Nolan, S.; Chadwick, P.

    2015-12-01

    Cosmic-ray muons are subatomic particles produced in the upper atmosphere in collisions of primary cosmic rays with atoms in air. Due to their high penetrating power these muons can be used to image the content (primarily density) of matter they pass through. They have already been used to image the structure of pyramids, volcanoes and other objects. Their applications can be extended to investigating the structure of, and monitoring changes in geological formations and repositories, in particular deep subsurface sites with stored CO2. Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to operate. Our simulations based on simplified models have previously shown that muon tomography could be used to continuously monitor CO2 injection and migration and complement existing technologies. Here we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon tomography. The stratigraphy in the vicinity of the reservoir is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m2 is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO2 injection leads to changes in the column density of about 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. The attached figure show a map of CO2 plume in angular coordinates as reconstructed from observed muons. In parallel with simulation efforts, a small prototype muon detector has been designed, built and tested in a deep subsurface laboratory. Initial calibrations of the detector have shown that it can reach the required angular resolution for muon detection. Stable operation in a small borehole within a few months has been demonstrated.

  10. Pre-cementation of deep shaft

    NASA Astrophysics Data System (ADS)

    Heinz, W. F.

    1988-12-01

    Pre-cementation or pre-grouting of deep shafts in South Africa is an established technique to improve safety and reduce water ingress during shaft sinking. The recent completion of several pre-cementation projects for shafts deeper than 1000m has once again highlighted the effectiveness of pre-grouting of shafts utilizing deep slimline boreholes and incorporating wireline technique for drilling and conventional deep borehole grouting techniques for pre-cementation. Pre-cementation of deep shaft will: (i) Increase the safety of shaft sinking operation (ii) Minimize water and gas inflow during shaft sinking (iii) Minimize the time lost due to additional grouting operations during sinking of the shaft and hence minimize costly delays and standing time of shaft sinking crews and equipment. (iv) Provide detailed information of the geology of the proposed shaft site. Informations on anomalies, dykes, faults as well as reef (gold bearing conglomerates) intersections can be obtained from the evaluation of cores of the pre-cementation boreholes. (v) Provide improved rock strength for excavations in the immediate vicinity of the shaft area. The paper describes pre-cementation techniques recently applied successfully from surface and some conclusions drawn for further considerations.

  11. Geologic map of the Van Buren South quadrangle, Carter County, Missouri

    USGS Publications Warehouse

    Weary, D.J.; Schindler, J.S.

    2004-01-01

    The bedrock exposed in the Van Buren South quadrangle, Missouri, comprises Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they are adjacent to faults. The carbonate rocks are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A National Park in this region (Ozark National Scenic Riverways, Missouri ) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the Parks to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for Park management. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html

  12. Geologic framework for the national assessment of carbon dioxide storage resources─South Florida Basin: Chapter L in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Roberts-Ashby, Tina L.; Brennan, Sean T.; Merrill, Matthew D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2015-08-26

    This report presents five storage assessment units (SAUs) that have been identified as potentially suitable for geologic carbon dioxide sequestration within a 35,075-square-mile area that includes the entire onshore and State-water portions of the South Florida Basin. Platform-wide, thick successions of laterally extensive carbonates and evaporites deposited in highly cyclic depositional environments in the South Florida Basin provide several massive, porous carbonate reservoirs that are separated by evaporite seals. For each storage assessment unit identified within the basin, the areal distribution of the reservoir-seal couplet identified as suitable for geologic Carbon dioxide sequestration is presented, along with a description of the geologic characteristics that influence the potential carbon dioxide storage volume and reservoir performance. On a case-by-case basis, strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are also discussed. Geologic information presented in this report has been employed to calculate potential storage capacities for carbon dioxide sequestration in the storage assessment units assessed herein, although complete assessment results are not contained in this report.

  13. Large-scale Thermo-Hydro-Mechanical Simulations in Complex Geological Environments

    NASA Astrophysics Data System (ADS)

    Therrien, R.; Lemieux, J.

    2011-12-01

    The study of a potential deep repository for radioative waste disposal in Canada context requires simulation capabilities for thermo-hydro-mechanical processes. It is expected that the host rock for the deep repository will be subjected to a variety of stresses during its lifetime such as in situ stresses in the rock, stressed caused by excavation of the repository and thermo-mechanical stresses. Another stress of concern for future Canadian climates will results from various episodes of glaciation. In that case, it can be expected that over 3 km of ice may be present over the land mass, which will create a glacial load that will be transmitted to the underlying geological materials and therefore impact their mechanical and hydraulic responses. Glacial loading will affect pore fluid pressures in the subsurface, which will in turn affect groundwater velocities and the potential migration of radionuclides from the repository. In addition, permafrost formation and thawing resulting from glacial advance and retreat will modify the bulk hydraulic of the geological materials and will have a potentially large impact on groundwater flow patterns, especially groundwater recharge. In the context of a deep geological repository for spent nuclear fuel, the performance of the repository to contain the spent nuclear fuel must be evaluated for periods that span several hundred thousand years. The time-frame for thermo-hydro-mechanical simulations is therefore extremely long and efficient numerical techniques must be developed. Other challenges are the representation of geological formations that have potentially complex geometries and physical properties and may contain fractures. The spatial extent of the simulation domain is also very large and can potentially reach the size of a sedimentary basin. Mass transport must also be considered because the fluid salinity in a sedimentary basin can be highly variable and the effect of fluid density on groundwater flow must be accounted

  14. Inventory of Information Resources; A Comparison of the American Geological Institute (AGI) Pilot Project with the National Referral Center (NRC) Inventory.

    ERIC Educational Resources Information Center

    Price, John F.

    The National Referral Center (NRC) and its many services to the scientific and technical community are discussed in some detail as a preamble to a proposal of a cooperative arrangement between NRC and the American Geological Institute (AGI), its supporting societies, and all geoscientists in a combined effort to enlarge and maintain a…

  15. 50 CFR 37.45 - Exploration by the U.S. Geological Survey.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Exploration by the U.S. Geological Survey... INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE....S. Geological Survey. Notwithstanding the requirement found in § 37.21(b) on when exploration plans...

  16. Methods for computing water-quality loads at sites in the U.S. Geological Survey National Water Quality Network

    USGS Publications Warehouse

    Lee, Casey J.; Murphy, Jennifer C.; Crawford, Charles G.; Deacon, Jeffrey R.

    2017-10-24

    The U.S. Geological Survey publishes information on concentrations and loads of water-quality constituents at 111 sites across the United States as part of the U.S. Geological Survey National Water Quality Network (NWQN). This report details historical and updated methods for computing water-quality loads at NWQN sites. The primary updates to historical load estimation methods include (1) an adaptation to methods for computing loads to the Gulf of Mexico; (2) the inclusion of loads computed using the Weighted Regressions on Time, Discharge, and Season (WRTDS) method; and (3) the inclusion of loads computed using continuous water-quality data. Loads computed using WRTDS and continuous water-quality data are provided along with those computed using historical methods. Various aspects of method updates are evaluated in this report to help users of water-quality loading data determine which estimation methods best suit their particular application.

  17. Understanding the Geological Structures of North China By Analyzing Regional Gravity and Magnetic Data

    NASA Astrophysics Data System (ADS)

    Shi, L.; Guo, L.; Meng, X.; Yao, C.

    2010-12-01

    North China is one of the most tectonically important regions in the world to study important continent geodynamics issues such as intraplate earthquakes, volcanism and continent-continent collision. The North China Craton, covering most of North China, bounded by complicated fault systems and orogenic belts, is one of the oldest cratons on the Earth, and is unique in its tectonic reactivation in the Late Mesozoic and Cenozoic. In the past few decades, a variety of geophysical methods were conducted to study geological tectonics and evolution of North China. We analyzed the regional gravity and magnetic data of this region using new data enhancement techniques to understand the regional geological structures. The satellite-derived free-air gravity anomalies with a resolution of 1 arc-minute were assembled from the Scripps Institution of Oceanography, and were then reduced to obtain Complete Bouguer Gravity Anomalies (CBGA). The Magnetic Anomalies (MA) with a resolution of 2 arc-minutes were assembled from the World Digital Magnetic Anomaly Map. The CBGA and the MA were then gridded on a regular grid, the MA were subsequently reduced to the magnetic pole. Then the data were processed with standard techniques to attenuate the high-frequency noise and analyze the regional and residual anomalies. Specially, we calculated the tilt-angle derivatives of the data. We then calculated the directional horizontal derivatives of the tilt-angle derivatives along different directions. This special processing derived clearer geological structures with more details. From the results of the preliminary processing, we analyzed the main deep faults and tectonic units distributed in this region. In the future, the interpretation of the CBGA and the MA with constraints of other geophysical methods will be performed for better understanding the deep structure of this region. Acknowledgment: We acknowledge the financial support of SinoProbe-01-05, the Fundamental Research Funds for the

  18. Geologic field trip guide to Mount Mazama and Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Wright, Heather M.

    2017-08-08

    Crater Lake partly fills one of the most spectacular calderas of the world—an 8 by 10 kilometer (km) basin more than 1 km deep formed by collapse of the Mount Mazama volcano during a rapid series of explosive eruptions ~7,700 years ago. Having a maximum depth of 594 meters (m), Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 square kilometers (km2) of pristine forested and alpine terrain, including the lake itself, and virtually all of Mount Mazama. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama’s climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest United States, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. In addition, many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama provide information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive processes revealed by

  19. Geologic database for digital geology of California, Nevada, and Utah: an application of the North American Data Model

    USGS Publications Warehouse

    Bedford, David R.; Ludington, Steve; Nutt, Constance M.; Stone, Paul A.; Miller, David M.; Miller, Robert J.; Wagner, David L.; Saucedo, George J.

    2003-01-01

    The USGS is creating an integrated national database for digital state geologic maps that includes stratigraphic, age, and lithologic information. The majority of the conterminous 48 states have digital geologic base maps available, often at scales of 1:500,000. This product is a prototype, and is intended to demonstrate the types of derivative maps that will be possible with the national integrated database. This database permits the creation of a number of types of maps via simple or sophisticated queries, maps that may be useful in a number of areas, including mineral-resource assessment, environmental assessment, and regional tectonic evolution. This database is distributed with three main parts: a Microsoft Access 2000 database containing geologic map attribute data, an Arc/Info (Environmental Systems Research Institute, Redlands, California) Export format file containing points representing designation of stratigraphic regions for the Geologic Map of Utah, and an ArcView 3.2 (Environmental Systems Research Institute, Redlands, California) project containing scripts and dialogs for performing a series of generalization and mineral resource queries. IMPORTANT NOTE: Spatial data for the respective stage geologic maps is not distributed with this report. The digital state geologic maps for the states involved in this report are separate products, and two of them are produced by individual state agencies, which may be legally and/or financially responsible for this data. However, the spatial datasets for maps discussed in this report are available to the public. Questions regarding the distribution, sale, and use of individual state geologic maps should be sent to the respective state agency. We do provide suggestions for obtaining and formatting the spatial data to make it compatible with data in this report. See section ‘Obtaining and Formatting Spatial Data’ in the PDF version of the report.

  20. National Assessment of Oil and Gas Project: geologic assessment of undiscovered gas hydrate resources on the North Slope, Alaska

    USGS Publications Warehouse

    USGS AK Gas Hydrate Assessment Team: Collett, Timothy S.; Agena, Warren F.; Lee, Myung Woong; Lewis, Kristen A.; Zyrianova, Margarita V.; Bird, Kenneth J.; Charpentier, Ronald R.; Cook, Troy A.; Houseknecht, David W.; Klett, Timothy R.; Pollastro, Richard M.

    2014-01-01

    Scientists with the U.S. Geological Survey have completed the first assessment of the undiscovered, technically recoverable gas hydrate resources beneath the North Slope of Alaska. This assessment indicates the existence of technically recoverable gas hydrate resources—that is, resources that can be discovered, developed, and produced using current technology. The approach used in this assessment followed standard geology-based USGS methodologies developed to assess conventional oil and gas resources. In order to use the USGS conventional assessment approach on gas hydrate resources, three-dimensional industry-acquired seismic data were analyzed. The analyses indicated that the gas hydrates on the North Slope occupy limited, discrete volumes of rock bounded by faults and downdip water contacts. This assessment approach also assumes that the resource can be produced by existing conventional technology, on the basis of limited field testing and numerical production models of gas hydrate-bearing reservoirs. The area assessed in northern Alaska extends from the National Petroleum Reserve in Alaska on the west through the Arctic National Wildlife Refuge on the east and from the Brooks Range northward to the State-Federal offshore boundary (located 3 miles north of the coastline). This area consists mostly of Federal, State, and Native lands covering 55,894 square miles. Using the standard geology-based assessment methodology, the USGS estimated that the total undiscovered technically recoverable natural-gas resources in gas hydrates in northern Alaska range between 25.2 and 157.8 trillion cubic feet, representing 95 percent and 5 percent probabilities of greater than these amounts, respectively, with a mean estimate of 85.4 trillion cubic feet.

  1. Obtaining maps and data from the U.S. Geological Survey*

    USGS Publications Warehouse

    Hallam, C.A.

    1982-01-01

    The U.S. Geological Survey produces a variety of resource information for the United States. This includes many data bases of particular interest to planners such as land use and terrain information prepared by the National Mapping Division, water quantity and quality data collected by Water Resources Division, and coal resource information gathered by the Geologic Division. These data are stored in various forms, and information on their availability can be obtained from appropriate offices in the U.S. Geological Survey as well as from USGS Circular 777. These data have been used for the management, development, and monitoring of our Nation's resources by Federal, State, and local agencies. ?? 1982.

  2. A brief geologic history of Volusia County, Florida

    USGS Publications Warehouse

    German, Edward R.

    2009-01-01

    Volusia County is in a unique and beautiful setting. This Florida landscape is characterized by low coastal plains bordered by upland areas of sandy ridges and many lakes. Beautiful streams and springs abound within the vicinity. Underneath the land surface is a deep layer of limestone rocks that stores fresh, clean water used to serve drinking and other needs. However, the landscape and the subsurface rocks have not always been as they appear today. These features are the result of environmental forces and processes that began millions of years ago and are still ongoing. This fact sheet provides a brief geologic history of the Earth, Florida, and Volusia County, with an emphasis on explaining why the Volusia County landscape and geologic structure exists as it does today.

  3. Predicted deep-sea coral habitat suitability for the U.S. West coast.

    PubMed

    Guinotte, John M; Davies, Andrew J

    2014-01-01

    Regional scale habitat suitability models provide finer scale resolution and more focused predictions of where organisms may occur. Previous modelling approaches have focused primarily on local and/or global scales, while regional scale models have been relatively few. In this study, regional scale predictive habitat models are presented for deep-sea corals for the U.S. West Coast (California, Oregon and Washington). Model results are intended to aid in future research or mapping efforts and to assess potential coral habitat suitability both within and outside existing bottom trawl closures (i.e. Essential Fish Habitat (EFH)) and identify suitable habitat within U.S. National Marine Sanctuaries (NMS). Deep-sea coral habitat suitability was modelled at 500 m×500 m spatial resolution using a range of physical, chemical and environmental variables known or thought to influence the distribution of deep-sea corals. Using a spatial partitioning cross-validation approach, maximum entropy models identified slope, temperature, salinity and depth as important predictors for most deep-sea coral taxa. Large areas of highly suitable deep-sea coral habitat were predicted both within and outside of existing bottom trawl closures and NMS boundaries. Predicted habitat suitability over regional scales are not currently able to identify coral areas with pin point accuracy and probably overpredict actual coral distribution due to model limitations and unincorporated variables (i.e. data on distribution of hard substrate) that are known to limit their distribution. Predicted habitat results should be used in conjunction with multibeam bathymetry, geological mapping and other tools to guide future research efforts to areas with the highest probability of harboring deep-sea corals. Field validation of predicted habitat is needed to quantify model accuracy, particularly in areas that have not been sampled.

  4. Predicted Deep-Sea Coral Habitat Suitability for the U.S. West Coast

    PubMed Central

    Guinotte, John M.; Davies, Andrew J.

    2014-01-01

    Regional scale habitat suitability models provide finer scale resolution and more focused predictions of where organisms may occur. Previous modelling approaches have focused primarily on local and/or global scales, while regional scale models have been relatively few. In this study, regional scale predictive habitat models are presented for deep-sea corals for the U.S. West Coast (California, Oregon and Washington). Model results are intended to aid in future research or mapping efforts and to assess potential coral habitat suitability both within and outside existing bottom trawl closures (i.e. Essential Fish Habitat (EFH)) and identify suitable habitat within U.S. National Marine Sanctuaries (NMS). Deep-sea coral habitat suitability was modelled at 500 m×500 m spatial resolution using a range of physical, chemical and environmental variables known or thought to influence the distribution of deep-sea corals. Using a spatial partitioning cross-validation approach, maximum entropy models identified slope, temperature, salinity and depth as important predictors for most deep-sea coral taxa. Large areas of highly suitable deep-sea coral habitat were predicted both within and outside of existing bottom trawl closures and NMS boundaries. Predicted habitat suitability over regional scales are not currently able to identify coral areas with pin point accuracy and probably overpredict actual coral distribution due to model limitations and unincorporated variables (i.e. data on distribution of hard substrate) that are known to limit their distribution. Predicted habitat results should be used in conjunction with multibeam bathymetry, geological mapping and other tools to guide future research efforts to areas with the highest probability of harboring deep-sea corals. Field validation of predicted habitat is needed to quantify model accuracy, particularly in areas that have not been sampled. PMID:24759613

  5. REGULATING THE ULTIMATE SINK: MANAGING THE RISKS OF GEOLOGIC CO2 STORAGE

    EPA Science Inventory

    The paper addresses the issue of geologic storage (GS) of carbon dioxide (CO2) and discusses the risks and regulatory history of deep underground waste injection on the U.S. mainland and surrounding continental shelf. The treatment focuses on the technical and regulatory aspects ...

  6. Understanding wetland sub-surface hydrology using geologic and isotopic signatures

    NASA Astrophysics Data System (ADS)

    Sikdar, P. K.; Sahu, P.

    2009-07-01

    This paper attempts to utilize hydrogeology and isotope composition of groundwater to understand the present hydrological processes prevalent in a freshwater wetland, source of wetland groundwater, surface water/groundwater interaction and mixing of groundwater of various depth zones in the aquifer. This study considers East Calcutta Wetlands (ECW) - a freshwater peri-urban inland wetland ecosystem located at the lower part of the deltaic alluvial plain of South Bengal Basin and east of Kolkata city. This wetland is well known over the world for its resource recovery systems, developed by local people through ages, using wastewater of the city. Geological investigations reveal that the sub-surface geology is completely blanketed by the Quaternary sediments comprising a succession of silty clay, sand of various grades and sand mixed with occasional gravels and thin intercalations of silty clay. At few places the top silty clay layer is absent due to scouring action of past channels. In these areas sand is present throughout the geological column and the areas are vulnerable to groundwater pollution. Groundwater mainly flows from east to west and is being over-extracted to the tune of 65×103 m3/day. δ18O and δD values of shallow and deep groundwater are similar indicating resemblance in hydrostratigraphy and climate of the recharge areas. Groundwater originates mainly from monsoonal rain with some evaporation prior to or during infiltration and partly from bottom of ponds, canals and infiltration of groundwater withdrawn for irrigation. Relatively high tritium content of the shallow groundwater indicates local recharge, while the deep groundwater with very low tritium is recharged mainly from distant areas. At places the deep aquifer has relatively high tritium, indicating mixing of groundwater of shallow and deep aquifers. Metals such as copper, lead, arsenic, cadmium, aluminium, nickel and chromium are also present in groundwater of various depths. Therefore

  7. Geologic Map of the Wilderness and Handy Quadrangles, Oregon, Carter, and Ripley Counties, Missouri

    USGS Publications Warehouse

    Harrison, Richard W.; McDowell, Robert C.

    2003-01-01

    The bedrock exposed in the Wilderness and Handy Quadrangles, Missouri, comprises Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they are adjacent to faults. The carbonate rocks are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. These quadrangles contain significant areas of the Mark Twain National Forest, including part of the Eleven Point National Scenic Riverway and the Irish Wilderness Roadless Area. A National Park in this region (Ozark National Scenic Riverways, Missouri ) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html

  8. Low frequency amplification in deep alluvial basins: an example in the Po Plain (Northern Italy) and consequences for site specific SHA

    NASA Astrophysics Data System (ADS)

    Mascandola, Claudia; Massa, Marco; Barani, Simone; Lovati, Sara; Santulin, Marco

    2016-04-01

    This work deals with the problem of long period seismic site amplification that potentially might involve large and deep alluvial basins in case of strong earthquakes. In particular, it is here presented a case study in the Po Plain (Northern Italy), one of the most extended and deep sedimentary basin worldwide. Even if the studied area shows a low annul seismicity rate with rare strong events (Mw>6.0) and it is characterized by low to medium seismic hazard conditions, the seismic risk is significant for the high density of civil and strategic infrastructures (i.e. high degree of exposition) and the unfavourable geological conditions. The aim of this work is to provide general considerations about the seismic site response of the Po Plain, with particular attention on deep discontinuities (i.e. geological bedrock), in terms of potential low frequency amplification and their incidence on the PSHA. The current results were obtained through active and passive geophysical investigations performed near Castelleone, a site where a seismic station, which is part of the INGV (National Institute for Geophysics and Volcanology) Seismic National Network, is installed from 2009. In particular, the active analyses consisted in a MASW and a refraction survey, whereas the passive ones consisted in seismic ambient noise acquisitions with single stations and arrays of increasing aperture. The results in terms of noise HVSR indicate two main peaks, the first around 0.17 Hz and the second, as already stated in the recent literature, around 0.7 Hz. In order to correlate the amplified frequencies with the geological discontinuities, the array acquisitions were processed to obtain a shear waves velocity profile, computed with a joint inversion, considering the experimental dispersion curves and the HVSR results. The obtained velocity profile shows two main discontinuities: the shallower at ~165 m of depth, which can be correlated to the seismic bedrock (i.e. Vs > 800 m/) and the deeper

  9. Evolution of a National Position Paper on Geological Education

    ERIC Educational Resources Information Center

    Paull, Richard A.

    1978-01-01

    Presents a preliminary position paper for future submission to the American Geological Institute (AGI). Addresses the problems of educating the decision-makers and lay public, improving earth science education in secondary schools, educating professional geoscientists, and continuing education and retraining of professional geologists. (MA)

  10. Digital data and geologic map of the Powder Mill Ferry Quadrangle, Shannon and Reynolds counties, Missouri

    USGS Publications Warehouse

    McDowell, Robert C.; Harrison, Richard W.; Lagueux, Kerry M.

    2000-01-01

    The geology of the Powder Mill Ferry 7 1/2-minute quadrangle , Shannon and Reynolds Counties, Missouri was mapped from 1997 through 1998 as part of the Midcontinent Karst Systems and Geologic Mapping Project, Eastern Earth Surface Processes Team. The map supports the production of a geologic framework that will be used in hydrogeologic investigations related to potential lead and zinc mining in the Mark Twain National Forest adjacent to the Ozark National Scenic Riverways (National Park Service). Digital geologic coverages will be used by other federal and state agencies in hydrogeologic analyses of the Ozark karst system and in ecological models.

  11. Activities of the United States Geological Survey in Pennsylvania

    USGS Publications Warehouse

    Wood, Charles R.

    1997-01-01

    Since the late 1800's, when the U.S. Geological Survey first established a presence in Pennsylvania, the focus of our work has changed from general hydrologic and geologic appraisals to issue-oriented investigations; from predominantly data collection to a balanced program of data collection, interpretation, and research; and from traditional, hand-drawn mapping to digitally produced coverages with specialized themes. Yet our basic mission has not changed. It is as relevant to the resource issues of today as it was when our geologists first arrived in western Pennsylvania in 1884. Continuing in this proud heritage and tradition, the U.S. Geological Survey is moving confidently toward the next century, evolving organizationally and technologically to better meet the needs of our many constituencies. One major organizational change is the recent accession of employees from the former National Biological Service, who now form the Survey's fourth program division, the Biological Resources Division. These employees join forces with colleagues in our other three divisions: Water Resources, Geologic, and National Mapping. More than any other change in decades, the addition of this biological expertise creates new and exciting opportunities for scientific research and public service. This report provides an overview of recent activities in Pennsylvania conducted by the four program divisions and is intended to inform those interested in U.S. Geological Survey products and services. Additional information is available on our home page (at http://wwwpah2o.er.usgs.gov/). Together with numerous Federal, State, and local agencies and organizations who are our customers and partners, we at the U.S. Geological Survey look forward to providing continued scientific contributions and public service to Pennsylvania and the Nation.

  12. Geologic map of the Fremont quadrangle, Shannon, Carter, and Oregon Counties, Missouri

    USGS Publications Warehouse

    Orndorff, Randall C.

    2003-01-01

    The bedrock exposed in the Fremont Quadrangle, Missouri, comprises Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they are adjacent to faults. The carbonate rocks are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. National Park in this region (Ozark National Scenic Riverways, Missouri) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the Parks to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for Park management. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html

  13. Geologic map of the Low Wassie Quadrangle, Oregon and Shannon counties, Missouri

    USGS Publications Warehouse

    Weems, Robert E.

    2002-01-01

    The bedrock exposed in the Low Wassie Quadrangle, Missouri, comprises Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they are adjacent to faults. The carbonates are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A National Park in this region (Ozark National Scenic Riverways, Missouri ) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the Parks to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for Park management. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html.

  14. Analyzing legacy U.S. Geological Survey geochemical databases using GIS: applications for a national mineral resource assessment

    USGS Publications Warehouse

    Yager, Douglas B.; Hofstra, Albert H.; Granitto, Matthew

    2012-01-01

    This report emphasizes geographic information system analysis and the display of data stored in the legacy U.S. Geological Survey National Geochemical Database for use in mineral resource investigations. Geochemical analyses of soils, stream sediments, and rocks that are archived in the National Geochemical Database provide an extensive data source for investigating geochemical anomalies. A study area in the Egan Range of east-central Nevada was used to develop a geographic information system analysis methodology for two different geochemical datasets involving detailed (Bureau of Land Management Wilderness) and reconnaissance-scale (National Uranium Resource Evaluation) investigations. ArcGIS was used to analyze and thematically map geochemical information at point locations. Watershed-boundary datasets served as a geographic reference to relate potentially anomalous sample sites with hydrologic unit codes at varying scales. The National Hydrography Dataset was analyzed with Hydrography Event Management and ArcGIS Utility Network Analyst tools to delineate potential sediment-sample provenance along a stream network. These tools can be used to track potential upstream-sediment-contributing areas to a sample site. This methodology identifies geochemically anomalous sample sites, watersheds, and streams that could help focus mineral resource investigations in the field.

  15. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  16. The 16th International Geological Congress, Washington, 1933

    USGS Publications Warehouse

    Nelson, C.M.

    2009-01-01

    In 1933, the International Geological Congress (IGC) returned to the United States of America (USA) for its sixteenth meeting, forty-two years after the 5th IGC convened in Washington. The Geological Society of America and the U.S. Geological Survey (USGS) supplied the major part of the required extra-registration funding after the effects of the Great Depression influenced the 72th U.S. Congress not to do so. A reported 1, 182 persons or organizations, representing fifty-four countries, registered for the 16 th IGC and thirty-four countries sent 141 official delegates. Of the total number of registrants, 665 actually attended the meeting; 500 came from the USA; and fifteen had participated in the 5th IGC. The 16 th Meeting convened in the U.S. Chamber of Commerce Building from 22 to 29 July. The eighteen half-day scientific sections-orogenesis (four), major divisions of the Paleozoic (three), miscellaneous (three), batholiths and related intrusives (two), arid-region geomorphic processes and products (one), fossil man and contemporary faunas (one), geology of copper and other ore deposits (one), geology of petroleum (one), measuring geologic time (one), and zonal relations of metalliferous deposits (one)-included 166 papers, of which fifty (including several of the key contributions) appeared only by title. The Geological Society of Washington, the National Academy of Sciences, and the U.S. Bureau of Mines hosted or contributed to evening presentations or receptions. Twenty-eight of the 16th IGC's thirty new guidebooks and one new USGS Bulletin aided eight pre-meeting, seven during-meeting, and four post-meeting field trips of local, regional, or national scope. The remaining two new guidebooks outlined the USA's structural geology and its stratigraphic nomenclature. The 16th IGC published a two-volume monograph on the world's copper resources (1935) and a two-volume report of its proceedings (1936).

  17. Managing Geological Profiles in Databases for 3D Visualisation

    NASA Astrophysics Data System (ADS)

    Jarna, A.; Grøtan, B. O.; Henderson, I. H. C.; Iversen, S.; Khloussy, E.; Nordahl, B.; Rindstad, B. I.

    2016-10-01

    Geology and all geological structures are three-dimensional in space. GIS and databases are common tools used by geologists to interpret and communicate geological data. The NGU (Geological Survey of Norway) is the national institution for the study of bedrock, mineral resources, surficial deposits and groundwater and marine geology. 3D geology is usually described by geological profiles, or vertical sections through a map, where you can look at the rock structure below the surface. The goal is to gradually expand the usability of existing and new geological profiles to make them more available in the retail applications as well as build easier entry and registration of profiles. The project target is to develop the methodology for acquisition of data, modification and use of data and its further presentation on the web by creating a user-interface directly linked to NGU's webpage. This will allow users to visualise profiles in a 3D model.

  18. Near-bottom Multibeam Survey Capabilities in the US National Deep Submergence Facility (Invited)

    NASA Astrophysics Data System (ADS)

    Yoerger, D. R.; McCue, S. J.; Jason; Sentry Operations Groups

    2010-12-01

    The US National Deep Submergence Facility (NDSF) provides near-bottom multibeam mapping capabilities from the autonomous underwater vehicle Sentry and the remotely operated vehicle Jason. These vehicles can be used to depths of 4500 and 6500m respectively. Both vehicles are equipped with Reson 7125 400khz multibeam sonars as well as compatible navigation equipment (inertial navigation systems, doppler velocity logs, and acoustic navigation systems). These vehicles have produced maps of rugged Mid-Ocean Ridge terrain in the Galapagos Rift, natural oil and gas seeps off the coast of Southern California, deep coral sites in the Gulf of Mexico, and sites for the Ocean Observing Initiative off the coast of Oregon. Multibeam surveys are conducted from heights between 20 and 80 meters, allowing the scientific user to select the tradeoff between resolution and coverage rate. In addition to conventional bathymetric mapping, the systems have used to image methane bubble plumes from natural seeps. This talk will provide summaries of these mapping efforts and describe the data processing pipeline used to produce maps shortly after each dive. Development efforts to reduce navigational errors and reconcile discrepancies between adjacent swaths will also be described.

  19. Geologic distributions of US oil and gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-31

    This publication presents nonproprietary field size distributions that encompass most domestic oil and gas fields at year-end 1989. These data are organized by geologic provinces as defined by the American Association of Petroleum Geologists` Committee on Statistics of Drilling (AAPG/CSD), by regional geographic aggregates of the AAPG/CSD provinces, and Nationally. The report also provides partial volumetric distributions of petroleum liquid and natural gas ultimate recoveries for three macro-geologic variables: principal lithology of the reservoir rock, principal trapping condition and geologic age of the reservoir rock, The former two variables are presented Nationally and by geographic region, in more detail thanmore » has heretofore been available. The latter variable is provided Nationally at the same level of detail previously available. Eighteen tables and 66 figures present original data on domestic oil and gas occurrence. Unfortunately, volumetric data inadequacy dictated exclusion of Appalachian region oil and gas fields from the study. All other areas of the United States known to be productive of crude oil or natural gas through year-end 1989, onshore and offshore, were included. It should be noted that none of the results and conclusions would be expected to substantively differ had data for the Appalachian region been available for inclusion in the study.« less

  20. Geologic distributions of US oil and gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-31

    This publication presents nonproprietary field size distributions that encompass most domestic oil and gas fields at year-end 1989. These data are organized by geologic provinces as defined by the American Association of Petroleum Geologists' Committee on Statistics of Drilling (AAPG/CSD), by regional geographic aggregates of the AAPG/CSD provinces, and Nationally. The report also provides partial volumetric distributions of petroleum liquid and natural gas ultimate recoveries for three macro-geologic variables: principal lithology of the reservoir rock, principal trapping condition and geologic age of the reservoir rock, The former two variables are presented Nationally and by geographic region, in more detail thanmore » has heretofore been available. The latter variable is provided Nationally at the same level of detail previously available. Eighteen tables and 66 figures present original data on domestic oil and gas occurrence. Unfortunately, volumetric data inadequacy dictated exclusion of Appalachian region oil and gas fields from the study. All other areas of the United States known to be productive of crude oil or natural gas through year-end 1989, onshore and offshore, were included. It should be noted that none of the results and conclusions would be expected to substantively differ had data for the Appalachian region been available for inclusion in the study.« less

  1. Fire Island National Seashore

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Patterson, Matt; Nayagandhi, Amar; Patterson, Judd

    2007-01-01

    These lidar-derived topographic maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, the National Park Service (NPS), Northeast Coastal and Barrier Network, Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. The aims of the partnership that created this product are to develop advanced survey techniques for mapping barrier island geomorphology and habitats, and to enable the monitoring of ecological and geological change within National Seashores. This product is based on data from an innovative airborne lidar instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Advanced Airborne Research Lidar (EAARL).

  2. 1. Deep Creek Road, picnic pavilion Great Smoky Mountains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Deep Creek Road, picnic pavilion - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  3. Standard procedures and quality-control practices for the U.S. Geological Survey National Field Quality Assurance Program from 1982 through 1993

    USGS Publications Warehouse

    Stanley, D.L.

    1995-01-01

    The U.S. Geological Survey operates the National Field Quality Assurance Program to provide quality- assurance reference samples to field personnel who make water-quality field measurements. The program monitors the accuracy and precision of pH, specific conductance, and alkalinity field measurements. This report documents the operational procedures and quality-control techniques used in operating the quality-assurance program.

  4. An interpretation model of GPR point data in tunnel geological prediction

    NASA Astrophysics Data System (ADS)

    He, Yu-yao; Li, Bao-qi; Guo, Yuan-shu; Wang, Teng-na; Zhu, Ya

    2017-02-01

    GPR (Ground Penetrating Radar) point data plays an absolutely necessary role in the tunnel geological prediction. However, the research work on the GPR point data is very little and the results does not meet the actual requirements of the project. In this paper, a GPR point data interpretation model which is based on WD (Wigner distribution) and deep CNN (convolutional neural network) is proposed. Firstly, the GPR point data is transformed by WD to get the map of time-frequency joint distribution; Secondly, the joint distribution maps are classified by deep CNN. The approximate location of geological target is determined by observing the time frequency map in parallel; Finally, the GPR point data is interpreted according to the classification results and position information from the map. The simulation results show that classification accuracy of the test dataset (include 1200 GPR point data) is 91.83% at the 200 iteration. Our model has the advantages of high accuracy and fast training speed, and can provide a scientific basis for the development of tunnel construction and excavation plan.

  5. Land-cover change research at the U.S. Geological Survey-assessing our nation's dynamic land surface

    USGS Publications Warehouse

    Wilson, Tamara S.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed an unprecedented, 27-year assessment of land-use and land-cover change for the conterminous United States. For the period 1973 to 2000, scientists generated estimates of change in major types of land use and land cover, such as development, mining, agriculture, forest, grasslands, and wetlands. To help provide the insight that our Nation will need to make land-use decisions in coming decades, the historical trends data is now being used by the USGS to help model potential future land use/land cover under different scenarios, including climate, environmental, economic, population, public policy, and technological change.

  6. Geological events in submerged areas: attributes and standards in the EMODnet Geology Project

    NASA Astrophysics Data System (ADS)

    Fiorentino, A.; Battaglini, L.; D'Angelo, S.

    2017-12-01

    EMODnet Geology is a European Project which promotes the collection and harmonization of marine geological data mapped by various national and regional mapping projects and recovered in the literature, in order to make them freely available through a web portal. Among the several features considered within the Project, "Geological events and probabilities" include submarine landslides, earthquakes, volcanic centers, tsunamis, fluid emissions and Quaternary faults in European Seas. Due to the different geological settings of European sea areas it was necessary to elaborate a comprehensive and detailed pattern of Attributes for the different features in order to represent the diverse characteristics of each occurrence. Datasets consist of shapefiles representing each event at 1:250,000 scale. The elaboration of guidelines to compile the shapefiles and attribute tables was aimed at identifying parameters that should be used to characterize events and any additional relevant information. Particular attention has been devoted to the definition of the Attribute table in order to achieve the best degree of harmonization and standardization according to the European INSPIRE Directive. One of the main objectives is the interoperability of data, in order to offer more complete, error-free and reliable information and to facilitate exchange and re-use of data even between non-homogeneous systems. Metadata and available information collected during the Project is displayed on the Portal (http://www.emodnet-geology.eu/) as polygons, lines and points layers according to their geometry. By combining all these data it might be possible to elaborate additional thematic maps which could support further research as well as land planning and management. A possible application is being experimented by the Geological Survey of Italy - ISPRA which, in cooperation with other Italian institutions contributing to EMODnet Geology, is working at the production of an update for submerged areas

  7. The U.S. Geological Survey Federal-State cooperative water-resources program

    USGS Publications Warehouse

    Gilbert, Bruce K.; Buchanan, Thomas J.

    1981-01-01

    The U.S. Geological Survey Federal-State Cooperative Water Resources Program is a partnership between the Geological Survey and State and local agencies for the collection of the hydrologic information needed for the continuing determination and evaluation of the quantity, quality, and use of the Nation 's water resources. The Cooperative Program has served the Nation for more than 80 years, and in 1981 more than 800 State and local agencies have cooperative programs with the Geological Survey with total funding over $80 million. The process of project selection in the Cooperative Water Resources Program is a mutual effort in which Geological Survey represents national interests, including the needs of other Federal agencies, and the cooperator represents State and local interests. The result is a balanced program that involves careful evaluation of needs, priorities, and resources. The cost sharing ratio of 50-50 is examined and determined to be the best ratio to effectively assess the Nation 's water resources. The Cooperative Program is and has been relevant to the problems of the day. Much of the current technology in ground-water management, ground-water quality, and flood-plain management--to name a few--was developed as part of the Cooperative Program. (USGS)

  8. Geologic Map of the Atlin Quadrangle, Southeastern Alaska

    USGS Publications Warehouse

    Brew, David A.; Himmelberg, Glen R.; Ford, Arthur B.

    2009-01-01

    This map presents the results of U.S. Geological Survey (USGS) geologic bedrock mapping studies in the mostly glacier covered Atlin 1:250,000-scale quadrangle, northern southeastern Alaska. These studies are part of a long-term systematic effort by the USGS to provide bedrock geologic and mineral-resource information for all of southeastern Alaska, covering all of the Tongass National Forest (including Wilderness Areas) and Glacier Bay National Park and Preserve. Some contributions to this effort are those concerned with southwesternmost part of the region, the Craig and Dixon Entrance quadrangles (Brew, 1994; 1996) and with the Wrangell-Petersburg area (Brew, 1997a-m; Brew and Grybeck, 1997; Brew and Koch, 1997). As shown on the index map (fig. 1), the study area is almost entirely in the northern Coast Mountains adjacent to British Columbia, Canada. No previous geologic map has been published for the area, although Brew and Ford (1985) included a small part of it in a preliminary compilation of the adjoining Juneau quadrangle; and Brew and others (1991a) showed the geology at 1:500,000 scale. Areas mapped nearby in British Columbia and the United States are also shown on figure 1. All of the map area is in the Coast Mountains Complex as defined by Brew and others (1995a). A comprehensive bibliography is available for this and adjacent areas (Brew, 1997n).

  9. Planetary science and exploration in the deep subsurface: results from the MINAR Program, Boulby Mine, UK

    NASA Astrophysics Data System (ADS)

    Payler, Samuel J.; Biddle, Jennifer F.; Coates, Andrew J.; Cousins, Claire R.; Cross, Rachel E.; Cullen, David C.; Downs, Michael T.; Direito, Susana O. L.; Edwards, Thomas; Gray, Amber L.; Genis, Jac; Gunn, Matthew; Hansford, Graeme M.; Harkness, Patrick; Holt, John; Josset, Jean-Luc; Li, Xuan; Lees, David S.; Lim, Darlene S. S.; McHugh, Melissa; McLuckie, David; Meehan, Emma; Paling, Sean M.; Souchon, Audrey; Yeoman, Louise; Cockell, Charles S.

    2017-04-01

    The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research - MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining.

  10. INFOMAR, Ireland's National Seabed Mapping Programme; Sharing Valuable Insights.

    NASA Astrophysics Data System (ADS)

    Judge, M. T.; McGrath, F.; Cullen, S.; Verbruggen, K.

    2017-12-01

    Following the successful high-resolution deep-sea mapping carried out as part of the Irish National Seabed Survey (INSS), a strategic, long term programme was established: INtegrated mapping FOr the sustainable development of Ireland MArine Resources (INFOMAR). Funded by Ireland's Department of Communication, Climate Action and Environment, INFOMAR comprises a multi-platform approach to completing Ireland's marine mapping, and is a key action in the integrated marine plan, Harnessing Our Ocean Wealth. Co-managed by Geological Survey Ireland and the Marine Institute, the programme has three work strands: Data Acquisition; Data Exchange and Integration; Value Added Exploitation.The Data Acquisition strand includes collection of geological, hydrographic, oceanographic, habitat and heritage datasets that underpin sustainable development and management of Ireland's marine resources. INFOMAR operates a free data policy; data and outputs are delivered online through the Data Exchange and Integration strand. Uses of data and outputs are wide-ranging and multipurpose. In order to address the evolution and diversification of user requirements, further data product development is facilitated through the Value Added Exploitation strand.Ninety percent of Ireland's territory lies offshore. Therefore, strategic national seabed mapping continues to provide critical, high-resolution baseline datasets for numerous economic sectors and societal needs. From these we can glean important geodynamic knowledge of Ireland's vast maritime territory. INFOMAR remains aligned with national and European policies and directives. Exemplified by our commitment to EMODnet, a European Commission funded project that supports the collection, standardisation and sharing of available marine information, data and data products across all European Seas. As EMODnet Geology Minerals leaders we have developed a framework for mapping marine minerals. Furthermore, collaboration with the international research

  11. 2. Deep Creek Road, old bridge at campground entrance. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Deep Creek Road, old bridge at campground entrance. - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  12. International Project - Atlas of Geological Maps of Central Asia and Adjacent Territories 1:2 500 000 Scale - the Status and the Development Prospects

    NASA Astrophysics Data System (ADS)

    Leonov, Y.; Petrov, O. V.; Dong, S.; Morozov, A.; Shokalsky, S.; Pospelov, I.; Erinchek, Y.; Milshteyn, E.

    2011-12-01

    This project is launched by geological surveys of Russia, China, Mongolia, Kazakhstan and the Republic of Korea with participation of National Academies of Sciences under the aegis of the Commission for the Geological Map of the World since 2004. The project goal is the compilation and subsequent monitoring of the set of digital geological maps for the large part of the Asian continent (20 million km2). Each country finances its own part of the project while all the issues concerning methods and technologies are discussed collectively during annual meetings and joint filed excursions. At the 33d IGC, were shown 4 digital maps of the Atlas at 1: 2,5M - geological, tectonic, metallogenic and energy resources. Geological and energy resources maps were compiled and published by the Chinese part while tectonic and metallogenic maps by Russian side (VSEGEI, Saint-Petersburg). The geological map was also used as the base for the compilation of the other maps of the Atlas. On the tectonic map colours indicate several stages of the continental crust consolidation within fold belts, their tectonic reworking and rifting. The map also shows rock complexes-indicators of geodynamic settings. In the platform areas, the colour reflects the time of beginning of the sedimentary cover formation while its shades reflect the thickness of the sediments. The metallogenic map of the Atlas depicts 1380 objects of metallogenic zoning (from super-provinces to ore clusters) and is accompanied with a database (more than 5000 ore deposits). The map of energy resources with the database contains information on the of coal- and oil-and-gas-bearing basins and main coal and hydrocarbon deposits. In 2009 the study area was extended to the North, East and South in order to embrace bigger territory with ore-bearing Mesozoic-Cenozoic volcanic belts of the Asian continent's Pacific margin. According to nearest plans, discussed with the head of Rosnedra Dr. Anatoliy Ledovskikh and the director of the

  13. Geothermal implications of a refined composition-age geologic map for the volcanic terrains of southeast Oregon, northeast California, and southwest Idaho, USA

    USGS Publications Warehouse

    Burns, Erick; Gannett, Marshall W.; Sherrod, David R.; Keith, Mackenzie K.; Curtis, Jennifer A.; Bartolino, James R.; Engott, John A.; Scandella, Benjamin P.; Stern, Michelle A.; Flint, Alan L.

    2017-01-01

    Sufficient temperatures to generate steam likely exist under most of the dominantly volcanic terrains of southeast Oregon, northeast California, and southeast Idaho, USA, but finding sufficient permeability to allow efficient advective heat exchange is an outstanding challenge. A new thematic interpretation of existing state-level geologic maps provides an updated and refined distribution of the composition and age of geologic units for the purposes of assessing the implications for measurement and development of geothermal resources. This interpretation has been developed to better understand geothermal and hydrologic resources of the region. Comparison of the new geologic categories with available hydrologic data shows that younger volcanogenic terrains tend to have higher primary permeability than older terrains. Decrease in primary permeability with age is attributable to weathering and hydrothermal alteration of volcanogenic deposits to pore-filling clays and deposition of secondary deposits (e.g., zeolites). Spring density as a function of geology and precipitation can be used to infer groundwater flow path length within the upper aquifers. Beneath the upper aquifers, we postulate that, due to accelerated hydrothermal alteration at temperatures ~>30 °C, primary permeability at depths of geothermal interest will be limited, and that secondary permeability is a more viable target for hydrothermal fluid withdrawal. Because open fractures resulting from tensile stresses will affect all geologic layers, regions with a significant amount of groundwater flow through shallow, structurally controlled secondary permeability may overlay zones of deep secondary permeability. Regardless of whether the shallow permeability is connected with the deep permeability, shallow groundwater flow can mask the presence of deep hydrothermal flow, resulting in blind geothermal systems. Ideally, hydraulic connectivity between shallow and deep secondary permeability is limited, so that

  14. Visible Geology - Interactive online geologic block modelling

    NASA Astrophysics Data System (ADS)

    Cockett, R.

    2012-12-01

    Geology is a highly visual science, and many disciplines require spatial awareness and manipulation. For example, interpreting cross-sections, geologic maps, or plotting data on a stereonet all require various levels of spatial abilities. These skills are often not focused on in undergraduate geoscience curricula and many students struggle with spatial relations, manipulations, and penetrative abilities (e.g. Titus & Horsman, 2009). A newly developed program, Visible Geology, allows for students to be introduced to many geologic concepts and spatial skills in a virtual environment. Visible Geology is a web-based, three-dimensional environment where students can create and interrogate their own geologic block models. The program begins with a blank model, users then add geologic beds (with custom thickness and color) and can add geologic deformation events like tilting, folding, and faulting. Additionally, simple intrusive dikes can be modelled, as well as unconformities. Students can also explore the interaction of geology with topography by drawing elevation contours to produce their own topographic models. Students can not only spatially manipulate their model, but can create cross-sections and boreholes to practice their visual penetrative abilities. Visible Geology is easy to access and use, with no downloads required, so it can be incorporated into current, paper-based, lab activities. Sample learning activities are being developed that target introductory and structural geology curricula with learning objectives such as relative geologic history, fault characterization, apparent dip and thickness, interference folding, and stereonet interpretation. Visible Geology provides a richly interactive, and immersive environment for students to explore geologic concepts and practice their spatial skills.; Screenshot of Visible Geology showing folding and faulting interactions on a ridge topography.

  15. Microbial ecology of deep-water mid-Atlantic canyons

    USGS Publications Warehouse

    Kellogg, Christina A.

    2011-01-01

    The research described in this fact sheet will be conducted from 2012 to 2014 as part of the U.S. Geological Survey's DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) Program. This integrated, multidisciplinary effort will be investigating a variety of topics related to unique and fragile deep-sea ecosystems from the microscopic level to the ecosystem level. One goal is to improve understanding, at the microbiological scale, of the benthic communities (including corals) that reside in and around mid-Atlantic canyon habitats and their associated environments. Specific objectives include identifying and characterizing the microbial associates of deep-sea corals, characterizing the microbial biofilms on hard substrates to better determine their role in engineering the ecosystem, and adding a microbial dimension to benthic community structure and function assessments by characterizing micro-eukaryotes, bacteria, and archaea in deep-sea sediments.

  16. US GEOLOGICAL SURVEY'S NATIONAL SYSTEM FOR PROCESSING AND DISTRIBUTION OF NEAR REAL-TIME HYDROLOGICAL DATA.

    USGS Publications Warehouse

    Shope, William G.; ,

    1987-01-01

    The US Geological Survey is utilizing a national network of more than 1000 satellite data-collection stations, four satellite-relay direct-readout ground stations, and more than 50 computers linked together in a private telecommunications network to acquire, process, and distribute hydrological data in near real-time. The four Survey offices operating a satellite direct-readout ground station provide near real-time hydrological data to computers located in other Survey offices through the Survey's Distributed Information System. The computerized distribution system permits automated data processing and distribution to be carried out in a timely manner under the control and operation of the Survey office responsible for the data-collection stations and for the dissemination of hydrological information to the water-data users.

  17. Geology of the Western Part of Los Alamos National Laboratory (TA-3 to TA-16), Rio Grande Rift, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.J.Lewis; A.Lavine; S.L.Reneau

    2002-12-01

    We present data that elucidate the stratigraphy, geomorphology, and structure in the western part of Los Alamos National Laboratory between Technical Areas 3 and 16 (TA-3 and TA-16). Data include those gathered by geologic mapping of surficial, post-Bandelier Tuff strata, conventional and high-precision geologic mapping and geochemical analysis of cooling units within the Bandelier Tuff, logging of boreholes and a gas pipeline trench, and structural analysis using profiles, cross sections, structure contour maps, and stereographic projections. This work contributes to an improved understanding of the paleoseismic and geomorphic history of the area, which will aid in future seismic hazard evaluationsmore » and other investigations. The study area lies at the base of the main, 120-m (400-ft) high escarpment formed by the Pajarito fault, an active fault of the Rio Grande rift that bounds Los Alamos National Laboratory on the west. Subsidiary fracturing, faulting, and folding associated with the Pajarito fault zone extends at least 1,500 m (5,000 ft) to the east of the main Pajarito fault escarpment. Stratigraphic units in the study area include upper units of the Tshirege Member of the early Pleistocene Bandelier Tuff, early Pleistocene alluvial fan deposits that predate incision of canyons on this part of the Pajarito Plateau, and younger Pleistocene and Holocene alluvium and colluvium that postdate drainage incision. We discriminate four sets of structures in the area between TA-3 and TA-16: (a) north-striking faults and folds that mark the main zone of deformation, including a graben in the central part of the study area; (b) north-northwest-striking fractures and rare faults that bound the eastern side of the principal zone of deformation and may be the surface expression of deep-seated faulting; (c) rare northeast-striking structures near the northern limit of the area associated with the southern end of the Rendija Canyon fault; and (d) several small east

  18. Geology for a changing world 2010-2020-Implementing the U.S. Geological Survey science strategy

    USGS Publications Warehouse

    Gundersen, Linda C.S.; Belnap, Jayne; Goldhaber, Martin; Goldstein, Arthur; Haeussler, Peter J.; Ingebritsen, S.E.; Jones, John W.; Plumlee, Geoffrey S.; Thieler, E. Robert; Thompson, Robert S.; Back, Judith M.

    2011-01-01

    This report describes a science strategy for the geologic activities of the U.S. Geological Survey (USGS) for the years 2010-2020. It presents six goals with accompanying strategic actions and products that implement the science directions of USGS Circular 1309, 'Facing Tomorrow's Challenges-U.S. Geological Survey Science in the Decade 2007-2017.' These six goals focus on providing the geologic underpinning needed to wisely use our natural resources, understand and mitigate hazards and environmental change, and understand the relationship between humans and the environment. The goals emphasize the critical role of the USGS in providing long-term research, monitoring, and assessments for the Nation and the world. Further, they describe measures that must be undertaken to ensure geologic expertise and knowledge for the future. The natural science issues facing today's world are complex and cut across many scientific disciplines. The Earth is a system in which atmosphere, oceans, land, and life are all connected. Rocks and soils contain the answers to important questions about the origin of energy and mineral resources, the evolution of life, climate change, natural hazards, ecosystem structures and functions, and the movements of nutrients and toxicants. The science of geology has the power to help us understand the processes that link the physical and biological world so that we can model and forecast changes in the system. Ensuring the success of this strategy will require integration of geological knowledge with the other natural sciences and extensive collaboration across USGS science centers and with partners in Federal, State, and local agencies, academia, industry, nongovernmental organizations and, most importantly, the American public. The first four goals of this report describe the scientific issues facing society in the next 10 years and the actions and products needed to respond to these issues. The final two goals focus on the expertise and

  19. Geologic framework for the national assessment of carbon dioxide storage resources: U.S. Gulf Coast: Chapter H in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Roberts-Ashby, Tina L.; Brennan, Sean T.; Buursink, Marc L.; Covault, Jacob A.; Craddock, William H.; Drake II, Ronald M.; Merrill, Matthew D.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2014-01-01

    This report presents 27 storage assessment units (SAUs) within the United States (U.S.) Gulf Coast. The U.S. Gulf Coast contains a regionally extensive, thick succession of clastics, carbonates, salts, and other evaporites that were deposited in a highly cyclic depositional environment that was subjected to a fluctuating siliciclastic sediment supply and transgressive and regressive sea levels. At least nine major depositional packages contain porous strata that are potentially suitable for geologic carbon dioxide (CO2) sequestration within the region. For each SAU identified within these packages, the areal distribution of porous rock that is suitable for geologic CO2 sequestration is discussed, along with a description of the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net-porous thickness, porosity, permeability, and groundwater salinity. Additionally, a characterization of the overlying regional seal for each SAU is presented. On a case-by-case basis, strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are also presented. Geologic information presented in this report has been employed to calculate potential storage capacities for CO2 sequestration in the SAUs that are assessed herein, although complete assessment results are not contained in this report.

  20. International Approaches for Nuclear Waste Disposal in Geological Formations: Report on Fifth Worldwide Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris; Birkholzer, Jens; Persoff, Peter

    2016-09-01

    The goal of the Fifth Worldwide Review is to document evolution in the state-of-the-art of approaches for nuclear waste disposal in geological formations since the Fourth Worldwide Review that was released in 2006. The last ten years since the previous Worldwide Review has seen major developments in a number of nations throughout the world pursuing geological disposal programs, both in preparing and reviewing safety cases for the operational and long-term safety of proposed and operating repositories. The countries that are approaching implementation of geological disposal will increasingly focus on the feasibility of safely constructing and operating their repositories in short-more » and long terms on the basis existing regulations. The WWR-5 will also address a number of specific technical issues in safety case development along with the interplay among stakeholder concerns, technical feasibility, engineering design issues, and operational and post-closure safety. Preparation and publication of the Fifth Worldwide Review on nuclear waste disposal facilitates assessing the lessons learned and developing future cooperation between the countries. The Report provides scientific and technical experiences on preparing for and developing scientific and technical bases for nuclear waste disposal in deep geologic repositories in terms of requirements, societal expectations and the adequacy of cases for long-term repository safety. The Chapters include potential issues that may arise as repository programs mature, and identify techniques that demonstrate the safety cases and aid in promoting and gaining societal confidence. The report will also be used to exchange experience with other fields of industry and technology, in which concepts similar to the design and safety cases are applied, as well to facilitate the public perception and understanding of the safety of the disposal approaches relative to risks that may increase over long times frames in the absence of a

  1. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  2. Geology and Nonfuel Mineral Deposits of Africa and the Middle East

    USGS Publications Warehouse

    Taylor, Cliff D.; Schulz, Klaus J.; Doebrich, Jeff L.; Orris, Greta; Denning, Paul; Kirschbaum, Michael J.

    2009-01-01

    A nation's endowment of nonfuel mineral resources, relative to the world's endowment, is a fundamental consideration in decisions related to a nation's economic and environmental well being and security. Knowledge of the worldwide abundance, distribution, and general geologic setting of mineral commodities provides a framework within which a nation can make decisions about economic development of its own resources, and the economic and environmental consequences of those decisions, in a global perspective. The information in this report is part of a U.S. Geological Survey (USGS) endeavor to evaluate the global endowment of both identified and undiscovered nonfuel mineral resources. The results will delineate areas of the world that are geologically permissive for the occurrence of undiscovered selected nonfuel mineral resources together with estimates of the quantity and quality of the resources. The results will be published as a series of regional reports; this one provides basic data on the identified resources and geologic setting, together with a brief appraisal of the potential for undiscovered mineral resources in Africa and the Middle East. Additional information, such as production statistics, economic factors that affect the mineral industries of the region, and historical information, is available in U.S. Geological Survey publications such as the Minerals Yearbook and the annual Mineral Commodity Summaries (available at http://minerals.usgs.gov/minerals).

  3. Maps for America: cartographic products of the U.S. Geological Survey and others

    USGS Publications Warehouse

    Thompson, Morris M.

    1988-01-01

    "Maps for America" was originally published in 1979 as a Centennial Volume commemorating the Geological Survey's hundred years of service (1879 - 1979) in the earth sciences. It was an eminently fitting Centennial Year publication, for, since its establishment, the Geological Survey has continuously carried on an extensive program of mapping to provide knowledge of the topography, geology, hydrology, and natural resources of our nation.This volume contains an organized presentation of information about the map produced by the Geological Survey and other American organizations, public and private. Such maps are important tools for those in government and in private endeavors who are working to assure the wisest choices in managing the Nation's resources. They are particularly supportive of the Department of the Interior's role as the Nation's principal conservation agency.The third edition of "Maps for America," like the second edition, is intended primarily to replenish the supply of copies of the book, but it also contains a number of changes to correct or update the text.

  4. Ocean acidification in the Meso- vs. Cenozoic: lessons from modeling about the geological expression of paleo-ocean acidification

    NASA Astrophysics Data System (ADS)

    Greene, S. E.; Ridgwell, A.; Kirtland Turner, S.

    2015-12-01

    Rapid climatic and biotic events putatively associated with ocean acidification are scattered throughout the Meso-Cenozoic. Many of these rapid perturbations, variably referred to as hyperthermals (Paleogene) and oceanic anoxic events or mass extinction events (Mesozoic), share a number of characteristic features, including some combination of negative carbon isotopic excursion, global warming, and a rise in atmospheric CO2 concentration. Comparisons between ocean acidification events over the last ~250 Ma are, however, problematic because the types of marine geological archives and carbon reservoirs that can be interrogated are fundamentally different for early Mesozoic vs. late Mesozoic-Cenozoic events. Many Mesozoic events are known primarily or exclusively from geological outcrops of relatively shallow water deposits, whereas the more recent Paleogene hyperthermal events have been chiefly identified from deep sea records. In addition, these earlier events are superimposed on an ocean with a fundamentally different carbonate buffering capacity, as calcifying plankton (which created the deep-sea carbonate sink) originate in the mid-Mesozoic. Here, we use both Earth system modeling and reaction transport sediment modeling to explore the ways in which comparable ocean acidification-inducing climate perturbations might manifest in the Mesozoic vs. the Cenozoic geological record. We examine the role of the deep-sea carbonate sink in the expression of ocean acidification, as well as the spatial heterogeneity of surface ocean pH and carbonate saturation state. These results critically inform interpretations of ocean acidification prior to the mid-Mesozoic advent of calcifying plankton and expectations about the recording of these events in geological outcrop.

  5. Geological Sequestration of CO2 A Brief Overview and Potential for Application for Oklahoma

    EPA Science Inventory

    Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...

  6. The US Geological Survey's national coal resource assessment: The results

    USGS Publications Warehouse

    Ruppert, Leslie F.; Kirschbaum, Mark A.; Warwick, Peter D.; Flores, Romeo M.; Affolter, Ronald H.; Hatch, Joseph R.

    2002-01-01

    The US Geological Survey and the State geological surveys of many coal-bearing States recently completed a new assessment of the top producing coal beds and coal zones in five major producing coal regions—the Appalachian Basin, Gulf Coast, Illinois Basin, Colorado Plateau, and Northern Rocky Mountains and Great Plains. The assessments, which focused on both coal quality and quantity, utilized geographic information system technology and large databases. Over 1,600,000 million short tons of coal remain in over 60 coal beds and coal zones that were assessed. Given current economic, environmental, and technological restrictions, the majority of US coal production will occur in that portion of the assessed coal resource that is lowest in sulfur content. These resources are concentrated in parts of the central Appalachian Basin, Colorado Plateau, and the Northern Rocky Mountains.

  7. Introduction to the U.S. Geological Survey National Water-Quality Assessment (NAWQA) of ground-water quality trends and comparison to other national programs

    USGS Publications Warehouse

    Rosen, Michael R.; Lapham, W.W.

    2008-01-01

    Assessment of temporal trends in national ground-water quality networks are rarely published in scientific journals. This is partly due to the fact that long-term data from these types of networks are uncommon and because many national monitoring networks are not driven by hypotheses that can be easily incorporated into scientific research. The U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) since 1991 has to date (2006) concentrated on occurrence of contaminants because sufficient data for trend analysis is only just becoming available. This paper introduces the first set of trend assessments from NAWQA and provides an assessment of the success of the program. On a national scale, nitrate concentrations in ground water have generally increased from 1988 to 2004, but trends in pesticide concentrations are less apparent. Regionally, the studies showed high nitrate concentrations and frequent pesticide detections are linked to agricultural use of fertilizers and pesticides. Most of these areas showed increases in nitrate concentration within the last decade, and these increases are associated with oxic-geochemical conditions and well-drained soils. The current NAWQA plan for collecting data to define trends needs to be constantly reevaluated to determine if the approach fulfills the expected outcome. To assist this evaluation, a comparison of NAWQA to other national ground-water quality programs was undertaken. The design and spatial extent of each national program depend on many factors, including current and long-term budgets, purpose of the program, size of the country, and diversity of aquifer types. Comparison of NAWQA to nine other national programs shows a great diversity in program designs, but indicates that different approaches can achieve similar and equally important goals. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  8. Monitoring Climate Variability and Change in Northern Alaska: Updates to the U.S. Geological Survey (USGS) Climate and Permafrost Monitoring Network

    NASA Astrophysics Data System (ADS)

    Urban, F. E.; Clow, G. D.; Meares, D. C.

    2004-12-01

    Observations of long-term climate and surficial geological processes are sparse in most of the Arctic, despite the fact that this region is highly sensitive to climate change. Instrumental networks that monitor the interplay of climatic variability and geological/cryospheric processes are a necessity for documenting and understanding climate change. Improvements to the spatial coverage and temporal scale of Arctic climate data are in progress. The USGS, in collaboration with The Bureau of Land Management (BLM) and The Fish and Wildlife Service (FWS) currently maintains two types of monitoring networks in northern Alaska: (1) A 15 site network of continuously operating active-layer and climate monitoring stations, and (2) a 21 element array of deep bore-holes in which the thermal state of deep permafrost is monitored. Here, we focus on the USGS Alaska Active Layer and Climate Monitoring Network (AK-CLIM). These 15 stations are deployed in longitudinal transects that span Alaska north of the Brooks Range, (11 in The National Petroleum Reserve Alaska, (NPRA), and 4 in The Arctic National Wildlife Refuge (ANWR)). An informative overview and update of the USGS AK-CLIM network is presented, including insight to current data, processing and analysis software, and plans for data telemetry. Data collection began in 1998 and parameters currently measured include air temperature, soil temperatures (5-120 cm), snow depth, incoming and reflected short-wave radiation, soil moisture (15 cm), wind speed and direction. Custom processing and analysis software has been written that calculates additional parameters such as active layer thaw depth, thawing-degree-days, albedo, cloudiness, and duration of seasonal snow cover. Data from selected AK-CLIM stations are now temporally sufficient to begin identifying trends, anomalies, and inter-annual variability in the climate of northern Alaska.

  9. Deep-Earth reactor: Nuclear fission, helium, and the geomagnetic field

    PubMed Central

    Hollenbach, D. F.; Herndon, J. M.

    2001-01-01

    Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having 3He/4He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power. PMID:11562483

  10. Deep-Earth reactor: nuclear fission, helium, and the geomagnetic field.

    PubMed

    Hollenbach, D F; Herndon, J M

    2001-09-25

    Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having (3)He/(4)He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power.

  11. Yucca Mountain, Nevada - A proposed geologic repository for high-level radioactive waste

    USGS Publications Warehouse

    Levich, R.A.; Stuckless, J.S.

    2006-01-01

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation. ?? 2007 Geological Society of America. All rights reserved.

  12. Putting the Deep Biosphere and Gas Hydrates on the Map

    ERIC Educational Resources Information Center

    Sikorski, Janelle J.; Briggs, Brandon R.

    2016-01-01

    Microbial processes in the deep biosphere affect marine sediments, such as the formation of gas hydrate deposits. Gas hydrate deposits offer a large source of natural gas with the potential to augment energy reserves and affect climate and seafloor stability. Despite the significant interdependence between life and geology in the ocean, coverage…

  13. How Old? Tested and Trouble-Free Ways to Convey Geologic Time

    ERIC Educational Resources Information Center

    Clary, Renee

    2009-01-01

    Geologic time, or the time frame of our planet's history, is several orders of magnitude greater than general human understanding of "time." When students hear that our planet has a 4.6-billion-year history, they do not necessarily comprehend the magnitude of deep time, the huge expanse of time that has passed from the origin of Earth through the…

  14. Geologic map of the west-central Buffalo National River region, northern Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Turner, Kenzie J.

    2014-01-01

    This report provides a geologic map database of the map area that improves understanding of the regional geologic framework and its influence on the regional groundwater flow system. Furthermore, additional edits were made to the Ponca and Jasper quadrangles in the following ways: new control points on important contacts were obtained using modern GPS; recent higher resolution elevation data allowed further control on placement of contacts; some new contacts were added, in particular the contact separating the upper and lower Everton Formation.

  15. Geologic map of the eastern quarter of the Flagstaff 30’ x 60’ quadrangle, Coconino County, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Block, Debra L.; Hiza-Redsteer, Margaret

    2014-01-01

    The eastern quarter of the Flagstaff 30′ x 60′ quadrangle includes eight USGS 1:24,000-scale quadrangles in Coconino County, northern Arizona (fig. 1, map sheet): Anderson Canyon, Babbitt Wash, Canyon Diablo, Grand Falls, Grand Falls SE, Grand Falls SW, Grand Falls NE, and Meteor Crater. The map is bounded by lat 35° to 35°30′ N. and long 111° to 111°15′ W. and is on the southern part of the Colorado Plateaus geologic province (herein Colorado Plateau). Elevations range from 4,320 ft (1,317 m) at the Little Colorado River in the northwest corner of the map area to about 6,832 ft (2,082 m) at the southwest corner of the map. This geologic map provides an updated geologic framework for the eastern quarter of the Flagstaff 30′ x 60′ quadrangle and is adjacent to two other recent geologic maps, the Cameron and Winslow 30′ x 60′ quadrangles (Billingsley and others, 2007, 2013). This geologic map is the product of a cooperative effort between the U.S. Geological Survey (USGS) and the Navajo Nation. It provides geologic information for resource management officials of the U.S. Forest Service, the Arizona Game and Fish Department, and the Navajo Nation Reservation (herein the Navajo Nation). Funding for the map was provided by the USGS geologic mapping program, Reston, Virginia. Field work on the Navajo Nation was conducted under a permit from the Navajo Nation Minerals Department. Any persons wishing to conduct geologic investigations on the Navajo Nation must first apply for, and receive, a permit from the Navajo Nation Minerals Department, P.O. Box 1910, Window Rock, Arizona 86515, telephone (928) 871-6587.

  16. Neogene and Quaternary geology of a stratigraphic test hole on Horn Island, Mississippi Sound

    USGS Publications Warehouse

    Gohn, Gregory S.; Brewster-Wingard, G. Lynn; Cronin, Thomas M.; Edwards, Lucy E.; Gibson, Thomas G.; Rubin, Meyer; Willard, Debra A.

    1996-01-01

    During April and May, 1991, the U.S. Geological Survey (USGS) drilled a 510-ft-deep, continuously cored, stratigraphic test hole on Horn Island, Mississippi Sound, as part of a field study of the Neogene and Quaternary geology of the Mississippi coastal area. The USGS drilled two new holes at the Horn Island site. The first hole was continuously cored to a depth of 510 ft; coring stopped at this depth due to mechanical problems. To facilitate geophysical logging, an unsampled second hole was drilled to a depth of 519 ft at the same location.

  17. Geologic and operational summary, COST No. 1 well, Georges Bank area, North Atlantic OCS

    USGS Publications Warehouse

    Amato, Roger V.; Bebout, John W.

    1980-01-01

    The first Continental Offshore Stratigraphic Test (COST) well on the U.S. North Atlantic Outer Continental Shelf (OCS) was drilled by Ocean Production Company between April 6 and July 26, 1976, and designated the COST No. G-l. Geological and engineering data obtained from this deep well in the Georges Bank Basin were used by the 31 participating companies and the U.S. Geological Survey (USGS) for evaluating the petroleum potential and possible drilling problems in the U.S. North Atlantic OCS area in preparation for Lease Sale 42 held on December 18, 1979.

  18. Geology of McLaughlin Crater, Mars: A Unique Lacustrine Setting with Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Michalski, J. R.; Niles, P. B.; Rogers, A. D.; Johnson, S. S.; Ashley, J. W.; Golombek, M. P.

    2016-01-01

    McLaughlin crater is a 92-kmdiameter Martian impact crater that contained an ancient carbonate- and clay mineral-bearing lake in the Late Noachian. Detailed analysis of the geology within this crater reveals a complex history with important implications for astrobiology [1]. The basin contains evidence for, among other deposits, hydrothermally altered rocks, delta deposits, deep water (>400 m) sediments, and potentially turbidites. The geology of this basin stands in stark contrast to that of some ancient basins that contain evidence for transient aqueous processes and airfall sediments (e.g. Gale Crater [2-3]).

  19. The U.S. Geological Survey Energy Resources Program

    USGS Publications Warehouse

    ,

    2006-01-01

    The United States uses tremendous amounts of geologic energy resources. In 2004 alone, the United States consumed more than 7.4 billion barrels of oil, 21.9 trillion cubic feet of natural gas, and 1.1 billion short tons of coal. Forecasts indicate the Nation's need for energy resources will continue to grow, raising several questions: How much domestic and foreign petroleum resources are available to meet the growing energy demands of the Nation and world? Does the United States have coal deposits of sufficient quantity and quality to meet demand over the next century? What other geologic energy resources can be added to the U.S. energy mix? How do the occurrence and use of energy resources affect environmental quality and human health? Unbiased information from robust scientific studies is needed for sound energy policy and resource management decisions addressing these issues. The U.S. Geological Survey Energy Resources Program provides impartial, scientifically robust information to advance the understanding of geologically based energy resources including: petroleum (oil, natural gas, natural gas liquids), coal, gas hydrates, geothermal resources, oil shale, oil sands, uranium, and heavy oil and natural bitumen. This information can be used to contribute to plans for a secure energy future and to facilitate evaluation and responsible use of resources.

  20. Spatial geologic data model for the Gunnison, Grand Mesa, Uncompahgre National Forests mineral assessment area, southwestern Colorado and digital data for the Leadville, Montrose, Durango, and Colorado parts of the Grand Junction, Moab, and Cortez 1 degree x 2 degrees geologic maps

    USGS Publications Warehouse

    Day, W.C.; Green, G.N.; Knepper, D.H.; Phillips, R.C.

    1999-01-01

    The digital geologic and geographic information system (GIS) data presented here were prepared to aid in Grand Mesa, Uncompahgre, Gunnison National Forest (GMUG) mineral resource assessment Project studies by the U.S. Geological Survey Mineral Resource Program. The goals of the GMUG Project is to provide mineral resource data and an assessment for undiscovered mineral resources in U.S. Forest Service (USFS) and Bureau of Land Management (BLM) lands in southwestern Colorado. The Project area covers a large region in southwestern Colorado that is bounded by latitudes 37o 45’ to 39o 30’ north and longitudes 106o to 109o west. The study area is covered by all or parts of six 1o x2o topographic and quadrangle geologic maps, which include geologic maps for the Leadville (Tweto and others, 1978), Montrose (Tweto and others, 1976), Durango (Steven and others, 1974), Grand Junction (Cashion, 1973), Moab (Williams, 1976), and Cortez (Haynes and others, 1972) quadrangles. These geologic maps were used inasmuch as a complete remapping and compilation effort for this study area was beyond the scope of the Project.

  1. Deep Borehole Disposal Safety Analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Stein, Emily; Price, Laura L.

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept.more » It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.« less

  2. Advances in Geologic Disposal System Modeling and Shale Reference Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.

    The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance formore » nuclear waste in geologic media (e.g., salt, granite, shale, and deep borehole disposal).« less

  3. Geologic Map of the Carlton Quadrangle, Yamhill County, Oregon

    USGS Publications Warehouse

    Wheeler, Karen L.; Wells, Ray E.; Minervini, Joseph M.; Block, Jessica L.

    2009-01-01

    The Carlton, Oregon, 7.5-minute quadrangle is located in northwestern Oregon, about 35 miles (57 km) southwest of Portland. It encompasses the towns of Yamhill and Carlton in the northwestern Willamette Valley and extends into the eastern flank of the Oregon Coast Range. The Carlton quadrangle is one of several dozen quadrangles being mapped by the U.S. Geological Survey (USGS) and the Oregon Department of Geology and Mineral Industries (DOGAMI) to provide a framework for earthquake- hazard assessments in the greater Portland, Oregon, metropolitan area. The focus of USGS mapping is on the structural setting of the northern Willamette Valley and its relation to the Coast Range uplift. Mapping was done in collaboration with soil scientists from the National Resource Conservation Service, and the distribution of geologic units is refined over earlier regional mapping (Schlicker and Deacon, 1967). Geologic mapping was done on 7.5-minute topographic base maps and digitized in ArcGIS to produce ArcGIS geodatabases and PDFs of the map and text. The geologic contacts are based on numerous observations and samples collected in 2002 and 2003, National Resource Conservation Service soils maps, and interpretations of 7.5-minute topography. The map was completed before new, high-resolution laser terrain mapping was flown for parts of the northern Willamette Valley in 2008.

  4. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garland, P.A.; Thomas, J.M.; Brock, M.L.

    1980-06-01

    A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, andmore » (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.« less

  5. Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak

    PubMed Central

    Vilarrasa, Victor; Carrera, Jesus

    2015-01-01

    Zoback and Gorelick [(2012) Proc Natl Acad Sci USA 109(26):10164–10168] have claimed that geologic carbon storage in deep saline formations is very likely to trigger large induced seismicity, which may damage the caprock and ruin the objective of keeping CO2 stored deep underground. We argue that felt induced earthquakes due to geologic CO2 storage are unlikely because (i) sedimentary formations, which are softer than the crystalline basement, are rarely critically stressed; (ii) the least stable situation occurs at the beginning of injection, which makes it easy to control; (iii) CO2 dissolution into brine may help in reducing overpressure; and (iv) CO2 will not flow across the caprock because of capillarity, but brine will, which will reduce overpressure further. The latter two mechanisms ensure that overpressures caused by CO2 injection will dissipate in a moderate time after injection stops, hindering the occurrence of postinjection induced seismicity. Furthermore, even if microseismicity were induced, CO2 leakage through fault reactivation would be unlikely because the high clay content of caprocks ensures a reduced permeability and increased entry pressure along the localized deformation zone. For these reasons, we contend that properly sited and managed geologic carbon storage in deep saline formations remains a safe option to mitigate anthropogenic climate change. PMID:25902501

  6. Analysis of the geological structure and tectonic evolution of Xingning-Jinghai sag in deep water area, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Han, Xiaoying; Ren, Jianye; Lin, Zi; Yang, Linlong

    2015-04-01

    Recent years, oil and gas exploration of the Pearl River Mouth Basin in the northern margin of South China Sea continuously achieved historic breakthroughs. The Xingning-Jinghai sag, which is located in southeast of the Pearl River Mouth Basin, is a deep-water sag with a great exploration potential. Its tectonic evolution is extremely complex. It experienced Mesozoic subduction to Cenozoic intra-continental rifting background, and finally evolved into a deep-water sag of the northern continental margin of South China Sea. The geological characteristics and the tectonic evolution of Xingning-Jinghai sag was closely related to the process of formation and evolution of the passive continental margin of the northern South China Sea. It is confirmed by many geophysical data that compared with adjacent Chaoshan depression, the crustal thickness of Xingning-Jinghai sag was rapidly thinning, and it developed detachment faults with later magmatic intrusion. The development of detachment faults have dynamic significance for the spreading of the South China Sea. Based on the seismic geological interpretation of 2D seismic data in the study area, the characteristics of detachment fault and supra-detachment basin have been proposed in this study. The characteristics of the detachment fault are low angle and high ratio between heave and throw. The geometry of the detachment fault is a typical lisric shape, with the dip of fault decreasing generally from the seismic profile. The detachment basin where sediments are not deposited over a tilting hanging-wall block but onto a tectonically exhumed footwall which is different from the typical half graben basin. Seismic profiles indicate two different structural styles in the east and west part of Xingning-Jinghai sag. In the west of the sag, there developed two large detachment faults, which control their detachment basin systems and the typical H block, and the two detachment faults are dipping landward and seaward, respectively. In

  7. Geologic map of the Peach Springs 30' x 60' quadrangle, Mohave and Coconino counties, northwestern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Block, Debra L.; Dyer, Helen C.

    2006-01-01

    This map is a product of a cooperative project of the U.S. Geological Survey, the U.S. National Park Service, and the Bureau of Land Management to provide geologic map coverage and regional geologic information for visitor services and resource management of Grand Canyon National Park, Lake Mead National Recreation Area, Grand Canyon-Parashant-National Monument, and adjacent lands in northwestern Arizona. This map is a synthesis of previous and new geologic mapping that encompasses the Peach Springs 30' x 60' quadrangle, Arizona. The geologic data will support future geologic, biologic, hydrologic, and other science resource studies of this area conducted by the National Park Service, the Hualapai Indian Tribe, the Bureau of Land Management, the State of Arizona, and private organizations. The Colorado River and its tributaries have dissected the southwestern Colorado Plateau into what is now the southwestern part of Grand Canyon. The erosion of Grand Canyon has exposed about 426 m (1,400 ft) of Proterozoic crystalline metamorphic rocks and granite, about 1,450 m (4,760 ft) of Paleozoic strata, and about 300 m (1,000 ft) of Tertiary sedimentary rocks. Outcrops of Proterozoic crystalline rocks are exposed at the bottom of Grand Canyon at Granite Park from Colorado River Mile 207 to 209, at Mile 212, and in the Lower Granite Gorge from Colorado River Mile 216 to 262, and along the Grand Wash Cliffs in the southwest corner of the map area.

  8. Preliminary geologic map of the Wadi As Sirhan Quadrangle, sheet 30C, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Meissner, C.R.; Griffin, M.B.; Riddler, G.P.; Van Eck, Marcel; Aspinall, N.C.; Farasani, A.M.; Dini, S.M.

    1990-01-01

    Several deep drill holes in the Wadi as Sirhan depression have penetrated thick sequences of marine rocks that are potential sources of oil and gas. Geological and geophysical conditions are favorable for the accumulation of hydrocarbons, and additional exploration is recommended.

  9. 77 FR 51557 - Agency Information Collection Activity; National Cooperative Geologic Mapping Program (EDMAP and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... line. FOR FURTHER INFORMATION CONTACT: Douglas A. Howard, Associate Program Coordinator NCGMP (STATEMAP... welfare of individual States. The NCGMP EDMAP program allocates funds to colleges and universities in the... dollar that is awarded is matched with university funds. Geology professors who are skilled in geologic...

  10. Geologic map of the Lazy Y Point Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, G.I.; Bryant, W.A.

    1999-01-01

    The Lazy Y Point quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Lazy Y Point quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Skull Creek quadrangle, which is adjacent to the Lazy Y Point quadrangle on the east, is also available (Geologic Investigations Series I-2647). This companian map shows similar geologic features, including the eastern half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Lazy Y Point quadrangle includes parts of the Willow and Skull Creek Wilderness Study Areas, which were assessed for their mineral resource potential.

  11. Geologic constraints on clandestine nuclear testing in South Asia

    PubMed Central

    Davis, Dan M.; Sykes, Lynn R.

    1999-01-01

    Cavity decoupling in salt is the most plausible means by which a nation could conduct clandestine testing of militarily significant nuclear weapons. The conditions under which solution-mined salt can be used for this purpose are quite restrictive. The salt must be thick and reasonably pure. Containment of explosions sets a shallow limit on depth, and cavity stability sets a deep limit. These constraints are met in considerably <1% of the total land area of India and Pakistan. Most of that area is too dry for cavity construction by solution mining; disposal of brine in rivers can be detected easily. Salt domes, the most favorable structures for constructing large cavities, are not present in India and Pakistan. Confidence that they are adhering to the Comprehensive Test Ban Treaty (CTBT) is enhanced by their geological conditions, which are quite favorable to verification, not evasion. Thus, their participation in the CTBT is constrained overwhelmingly by political, not scientific, issues. Confidence in the verification of the CTBT could be enhanced if India and Pakistan permitted stations of the various monitoring technologies that are now widely deployed elsewhere to be operated on their territories. PMID:10500134

  12. The U.S. Geological Survey Astrogeology Science Center

    USGS Publications Warehouse

    Kestay, Laszlo P.; Vaughan, R. Greg; Gaddis, Lisa R.; Herkenhoff, Kenneth E.; Hagerty, Justin J.

    2017-07-17

    In 1960, Eugene Shoemaker and a small team of other scientists founded the field of astrogeology to develop tools and methods for astronauts studying the geology of the Moon and other planetary bodies. Subsequently, in 1962, the U.S. Geological Survey Branch of Astrogeology was established in Menlo Park, California. In 1963, the Branch moved to Flagstaff, Arizona, to be closer to the young lava flows of the San Francisco Volcanic Field and Meteor Crater, the best preserved impact crater in the world. These geologic features of northern Arizona were considered good analogs for the Moon and other planetary bodies and valuable for geologic studies and astronaut field training. From its Flagstaff campus, the USGS has supported the National Aeronautics and Space Administration (NASA) space program with scientific and cartographic expertise for more than 50 years.

  13. Leonardo da Vinci's Geology: The Authenticity of The Virgin of the Rocks

    NASA Astrophysics Data System (ADS)

    Pizzorusso, Ann

    2017-04-01

    Viewed from a geological perspective, all of Leonardo's paintings and drawings reveal a remarkable fidelity to nature. The Virgin of the Rocks in the National Gallery in London (1495-1508), attributed to him, displays no such fidelity. If we compare it to the Virgin of the Rocks in the Louvre in Paris (1483-86) whose geological accuracy is astounding, we cannot help questioning whether Leonardo painted the background in the National Gallery work. Over the centuries, various arguments have called into question the attribution of the National Gallery painting to Leonardo. Scholars have analyzed the brush strokes, undertaken document searches and tried to prove definitively that Leonardo produced the National Gallery version. However, there have always been doubts, naysayers and many unanswered questions concerning its authenticity. The fact that attribution of the work has been the subject of such controversy throughout history suggests that new diagnostic means of determining authenticity is in order. A comparison of the representations of geological formations in the two paintings offers such means. It seems unlikely that the same person could have portrayed rock formations so accurately in the Louvre work and so incongruously in the National Gallery painting.

  14. Geologic map of Colorado National Monument and adjacent areas, Mesa County, Colorado

    USGS Publications Warehouse

    Scott, Robert B.; Harding, Anne E.; Hood, William C.; Cole, Rex D.; Livaccari, Richard F.; Johnson, James B.; Shroba, Ralph R.; Dickerson, Robert P.

    2001-01-01

    New 1:24,000-scale geologic mapping in the Colorado National Monument Quadrangle and adjacent areas, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of and data for the stratigraphy, structure, geologic hazards in the area from the Colorado River in Grand Valley onto the Uncompahgre Plateau. The plateau drops abruptly along northwest-trending structures toward the northeast 800 m to the Redlands area and the Colorado River in Grand Valley. In addition to common alluvial and colluvial deposits, surficial deposits include Holocene and late Pleistocene charcoal-bearing valley-fill deposits, late to middle Pleistocene river-gravel terrace deposits, Holocene to middle Pleistocene younger, intermediate, and old fan-alluvium deposits, late to middle Pleistocene local gravel deposits, Holocene to late Pleistocene rock-fall deposits, Holocene to middle Pleistocene young and old landslide deposits, Holocene to late Pleistocene sheetwash deposits and eolian deposits, and Holocene Cienga-type deposits. Only the lowest part of the Upper Cretaceous Mancos Shale is exposed in the map area near the Colorado River. The Upper and Lower? Cretaceous Dakota Formation and the Lower Cretaceous Burro Canyon Formation form resistant dipslopes in the Grand Valley and a prominent ridge on the plateau. Less resistant strata of the Upper Jurassic Morrison Formation consisting of the Brushy Basin, Salt Wash, and Tidwell Members form slopes on the plateau and low areas below the mountain front of the plateau. The Middle Jurassic Wanakah Formation nomenclature replaces the previously used Summerville Formation. Because an upper part of the Middle Jurassic Entrada Formation is not obviously correlated with strata found elsewhere, it is therefore not formally named; however, the lower rounded cliff former Slickrock Member is clearly present. The Lower Jurassic silica-cemented Kayenta Formation forms the cap rock for the Lower

  15. Maps for America: cartographic products of the U.S. Geological Survey and others

    USGS Publications Warehouse

    Thompson, Morris M.

    1981-01-01

    "Maps for America" was originally published in 1979 as a Centennial Volume commemorating the Geological Survey's hundred years of service (1879-1979) in the earth sciences. It was an eminently fitting Centennial Year publication, for, since its establishment, the Geological Survey has continuously carried on an extensive program of mapping to provide knowledge of the topography, geology, hydrology, and natural resources of our Nation. This volume contains an organized presentation of information about the maps produced by the Geological Survey and other American organizations, public and private. Such maps are important tools for those in government and in private endeavors who are working to assure the wisest choices in managing the Nation's resources. They are particularly supportive of the Department of the Interior's role as the Nation's principal conservation agency. The second edition of "Maps for America" is intended primarily to replenish the dwindling supply of copies of the book, but it also contains a number of changes to correct or update the text and to provide more suitable illustrations in certain instances.

  16. Bibliography of Regional Aquifer-System Analysis Program of the US Geological Survey, 1978-96

    USGS Publications Warehouse

    Sun, Ren Jen; Weeks, John B.; Grubb, Hayes F.

    1997-01-01

    The Regional Aquifer-System Analysis (RASA) Program of the U.S. Geological Survey was initiated in 1978 and was completed in 1995. The purpose of this program was to define the regional geohydrology and establish a framework of background information on geology, hydrology, and geochemistry of the Nation's important aquifer systems. This information is critically needed to develop an understanding of the Nation's major ground-water flow systems and to support better management of ground-water resources. Twenty-five of the Nation's major aquifer systems were studied under this program. Starting in 1988, the program devoted part of its resources to compilation of a National Ground Water Atlas that presets a comprehensive summary of the Nation's major ground-water resources. The atlas, which is designed in a graphical format supported by descriptive text, serves as a basic reference for the location, geography, geology, and hydrologic characteristics of the major aquifers in the Nation. This bibliography lists 1,105 reports that result from various studies of the program. The list of reports for each study follows a brief description of that study.

  17. U.S. Geological Survey water resources Internet tools

    USGS Publications Warehouse

    Shaffer, Kimberly H.

    2013-11-07

    The U.S. Geological Fact Sheet (USGS) provides a wealth of information on hydrologic data, maps, graphs, and other resources for your State.Sources of water resources information are listed below.WaterWatchWaterQualityWatchGroundwater WatchWaterNowWaterAlertUSGS Flood Inundation MapperNational Water Information System (NWIS)StreamStatsNational Water Quality Assessment (NAWOA)

  18. The use of U.S. Geological Survey CD-ROM-based petroleum assessments in undergraduate geology laboratories

    USGS Publications Warehouse

    Eves, R.L.; Davis, L.E.; Dyman, T.S.; Takahashi, K.I.

    2002-01-01

    Domestic oil production is declining and United States reliance on imported oil is increasing. America will be faced with difficult decisions that address the strategic, economic, and political consequences of its energy resources shortage. The geologically literate under-graduate student needs to be aware of current and future United States energy issues. The U.S. Geological Survey periodically provides energy assessment data via digitally-formatted CD-ROM publications. These publications are free to the public, and are well suited for use in undergraduate geology curricula. The U.S. Geological Survey (USGS) 1995 National Assessment of United States Oil and Gas Resources (Digital Data Series or DDS-30) (Gautier and others, 1996) is an excellent resource for introducing students to the strategies of hydrocarbon exploration and for developing skills in problem-solving and evaluating real data. This paper introduces the reader to DDS-30, summarizes the essential terminology and methodology of hydrocarbon assessment, and offers examples of exercises or questions that might be used in the introductory classroom. The USGS contact point for obtaining DDS-30 and other digital assessment volumes is also provided. Completing the sample exercises in this report requires a copy of DDS-30.

  19. Risk of nitrate in groundwaters of the United States - A national perspective

    USGS Publications Warehouse

    Nolan, B.T.; Ruddy, B.C.; Hitt, K.J.; Helsel, D.R.

    1997-01-01

    Nitrate contamination of groundwater occurs in predictable patterns, based on findings of the U.S. Geological Survey's (USGS) National Water Quality Assessment (NAWQA) Program. The NAWQA Program was begun in 1991 to describe the quality of the Nation's water resources, using nationally consistent methods. Variables affecting nitrate concentration in groundwater were grouped as 'input' factors (population density end the amount of nitrogen contributed by fertilizer, manure, and atmospheric sources) and 'aquifer vulnerability' factors (soil drainage characteristic and the ratio of woodland acres to cropland acres in agricultural areas) and compiled in a national map that shows patterns of risk for nitrate contamination of groundwater. Areas with high nitrogen input, well-drained soils, and low woodland to cropland ratio have the highest potential for contamination of shallow groundwater by nitrate. Groundwater nitrate data collected through 1992 from wells less than 100 ft deep generally verified the risk patterns shown on the national map. Median nitrate concentration was 0.2 mg/L in wells representing the low-risk group, and the maximum contaminant level (MCL) was exceeded in 3% of the wells. In contrast, median nitrate concentration was 4.8 mg/L in wells representing the high-risk group, and the MCL was exceeded in 25% of the wells.Nitrate contamination of groundwater occurs in predictable patterns, based on findings of the U.S. Geological Survey's (USGS) National Water Quality Assessment (NAWQA) Program. The NAWQA Program was begun in 1991 to describe the quality of the Nation's water resources, using nationally consistent methods. Variables affecting nitrate concentration in groundwater were grouped as `input' factors (population density and the amount of nitrogen contributed by fertilizer, manure, and atmospheric sources) and `aquifer vulnerability' factors (soil drainage characteristic and the ratio of woodland acres to cropland acres in agricultural areas

  20. Deep Structure of the Zone of Tolbachik Fissure Eruptions (Kamchatka, Klyuchevskoy Volcano Group): Evidence from a Complex of Geological and Geophysical Data

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yu. A.; Saltykov, V. A.; Gorvatikov, A. V.; Stepanova, M. Yu.

    2018-05-01

    With the use of the method of low-frequency microseismic sounding, the configuration of the magmatic feeding system of the Tolbachinsky Dol—a regional zone of areal basaltic volcanism in the southern part of the Klyuchevskoy volcano group in Kamchatka—is studied. The initial data are obtained by a stepby-step recording of the background microseismic noise in 2010-2015 within a thoroughly marked-out survey area covering the zones of fissure eruptions in 1975-1976 and 2012-2013 and, partly, the edifice of the Ploskii (flat) Tolbachik volcano. The depth sections reflecting the distributions of the relative velocities of seismic waves in the Earth's crust are constructed. For a more reliable interpretation of the revealed deep anomalies, the results of independent geological and geophysical studies are used. The ascertained low-velocity structures are closely correlated to the manifestations of present-day volcanism. It is shown that the feeding structure of the Tolbachinsky Dol is spatially heterogeneous, incorporating subvertical and lateral pipeshaped magma conduits, closely spaced magma feeding channels, and shallow magma reservoirs. A longlived local transcrustal magma conducting zone is revealed, and regularities in the deep structure of the feeding systems of fissure eruptions are identified. The configuration of the established subvertical magma conduits permits basalts moving to rise to the surface by different paths, which, inter alia, explains the contrasting magma compositions observed during a single eruption. Thus, based on the instrumental data, it is shown that the magmatic feeding structure of the Tolbachinsky Dol has a number of specific peculiarities and is significantly more complicated than has been previously thought about the areal volcanic fields.

  1. Bathymetry, acoustic backscatter, and seafloor character of Farallon Escarpment and Rittenburg Bank, northern California

    USGS Publications Warehouse

    Dartnell, Peter; Cochrane, Guy R.; Finlayson, David P.

    2014-01-01

    In 2011, scientists from the U.S. Geological Survey’s Coastal and Marine Geology Program acquired bathymetry and acoustic-backscatter data along the upper slope of the Farallon Escarpment and Rittenburg Bank within the Gulf of the Farallones National Marine Sanctuary offshore of the San Francisco Bay area. The surveys were funded by the National Oceanic and Atmospheric Administration’s Deep Sea Coral Research and Technology Program to identify potential deep sea coral habitat prior to planned sampling efforts. Bathymetry and acoustic-backscatter data can be used to map seafloor geology (rock, sand, mud), and slope of the sea floor, both of which are useful for the prediction of deep sea coral habitat. The data also can be used for the prediction of sediment and contaminant budgets and transport, and for the assessment of earthquake and tsunami hazards. The surveys were conducted aboard National Oceanic and Atmospheric Administration’s National Marine Sanctuary Program’s 67-foot-long research vessel Fulmar outfitted with a U.S. Geological Survey 100-kHz Reson 7111 multibeam-echosounder system. This report provides the bathymetry and backscatter data acquired during these surveys, interpretive seafloor character maps in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee metadata.

  2. U.S. Geological Survey geohydrologic studies and monitoring at the Idaho National Laboratory, southeastern Idaho

    USGS Publications Warehouse

    Bartholomay, Roy C.

    2017-09-14

    BackgroundThe U.S. Geological Survey (USGS) geohydrologic studies and monitoring at the Idaho National Laboratory (INL) is an ongoing, long-term program. This program, which began in 1949, includes hydrologic monitoring networks and investigative studies that describe the effects of waste disposal on water contained in the eastern Snake River Plain (ESRP) aquifer and the availability of water for long-term consumptive and industrial use. Interpretive reports documenting study findings are available to the U.S. Department of Energy (DOE) and its contractors; other Federal, State, and local agencies; private firms; and the public at https://id.water.usgs.gov/INL/Pubs/index.html. Information contained within these reports is crucial to the management and use of the aquifer by the INL and the State of Idaho. USGS geohydrologic studies and monitoring are done in cooperation with the DOE Idaho Operations Office.

  3. Updating of the geological and geothermal research on Milos island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fytikas, M.

    1989-01-01

    The oldest geologic formations outcropping in Milos are an Alpine age crystalline basement and a transgressive marine Neogene sequence. The island is mainly volcanic. It belongs to the Aegean Active Arc, within which the Milos archipelago shows the most important volcanism in terms of quantity, variety of products and duration of activity (3.5-0.8 M.a.). There are no large central volcanic edifices but different, frequently coeval eruption centres. The initial and intermediate phases of activity were mainly pyroclastic and submarine, whereas the last one (0.1 M.a.) was subaerial and formed tuff rings, surge deposits and lava flows, all of homogenous rhyoliticmore » composition. Recent detailed studies have addressed the mechanism of feeding and the type of magmatic chambers beneath Milos. Distention tectonics have two main phases: an earlier one (Pliocene) with NE-SW direction and a much more intense recent (Quaternary) one, trending NW-SE. The geological, tectonic and magmatic activity favoured the formation of a high enthalpy geothermal field. Many fossil and active thermal manifestations exist: hot springs, fumaroles, hot grounds, phreatic explosion craters. The hydrothermal alteration of the volcanites produced, by self sealing, a perfect cover for the geothermal fluids. Geothermometry of the surface fluids indicated high values for the source temperatures and very high geothermal gradients in central and eastern Milos. Geothermally anomalous zones, defined by two different methods, together with superficial geological and tectonic information, permitted the location of sites for deep drilling. Five exploratory wells 1000-1400m deep gave satisfactory results of flow rate (40-120 t/h), temperature (300-320{sup 0}C) and enthalpy.« less

  4. The Indian Ocean: The geology of its bordering lands and the configuration of its floor

    USGS Publications Warehouse

    Pepper, James F.; Everhart, Gail M.

    1963-01-01

    The ocean realm, which covers more than 70 percent of the earth's surface, contains vast areas that have scarcely been touched by exploration. The best known parts of the sea floor lie close to the borders of the continents, where numerous soundings have been charted as an aid to navigation. Yet, within this part of the sea floor, which constitutes a border zone between the toast and the ocean deeps, much more detailed information is needed about the character of the topography and geology. At many places, stratigraphic and structural features on the coast extend offshore, but their relationships to the rocks of the shelf and slope are unknown, and the geology of the coast must be projected seaward across the continental shelf and slope.The Indian Ocean, the third largest ocean of the world, has been selected for intensive study by an international group using all modern techniques to determine its physical characteristics. This report, with accompanying illustrations, has been prepared as a very generalized account of some aspects of the geology of the vast coastal areas of the northern Indian Ocean in relation to the bordering shelves and ocean deeps. Its general purpose is to serve as background reading.

  5. Atlantic deep water circulation during the last interglacial.

    PubMed

    Luo, Yiming; Tjiputra, Jerry; Guo, Chuncheng; Zhang, Zhongshi; Lippold, Jörg

    2018-03-13

    Understanding how the Atlantic Meridional Overturning Circulation (AMOC) evolved during crucial past geological periods is important in order to decipher the interplay between ocean dynamics and global climate change. Previous research, based on geological proxies, has provided invaluable insights into past AMOC changes. However, the causes of the changes in water mass distributions in the Atlantic during different periods remain mostly elusive. Using a state-of-the-art Earth system model, we show that the bulk of NCW in the deep South Atlantic Ocean below 4000 m migrated from the western basins at 125 ka to the eastern basins at 115 ka, though the AMOC strength is only slightly reduced. These changes are consistent with proxy records, and it is mainly due to more penetration of the AABW at depth at 115 ka, as a result of a larger density of AABW formed at 115 ka. Our results show that depth changes in regional deep water pathways can result in large local changes, while the overall AMOC structure hardly changes. Future research should thus be careful when interpreting single proxy records in terms of large-scale AMOC changes, and considering variability of water-mass distributions on sub-basin scale would give more comprehensive interpretations of sediment records.

  6. Geologic map of the Western Grove quadrangle, northwestern Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Turner, Kenzie J.; Repetski, John E.

    2006-01-01

    This map summarizes the geology of the Western Grove 7.5-minute quadrangle in northern Arkansas that is located on the southern flank of the Ozark dome, a late Paleozoic regional uplift. The exposed bedrock of this map area comprises approximately 1,000 ft of Ordovician and Mississippian carbonate and clastic sedimentary rocks that have been mildly folded and broken by faults. A segment of the Buffalo River loops through the southern part of the quadrangle, and the river and adjacent lands form part of Buffalo National River, a park administered by the U.S. National Park Service. This geologic map provides information to better understand the natural resources of the Buffalo River watershed, particularly its karst hydrogeologic framework.

  7. OneGeology - a geoscience exemplar for worldwide cyberinfrastructure capacity-building and scientific innovation

    NASA Astrophysics Data System (ADS)

    van Daalen, T.; Allison, M. L.

    2012-12-01

    OneGeology is a trail-blazing global initiative that has helped propel the geosciences into the forefront of cyberinfrastructure development with potentially transformative impacts on scientific and technical innovation across broad areas of society. In the five years since its launch, 117 nations, through their Geological Surveys have signed the OneGeology protocols and nearly half are serving up national geological maps as Web services at varying scales, with the remainder developing those capabilities. In federal systems, states and provinces are increasingly adding higher resolution spatial data to the national contributions to the global system. The OneGeology concept of a distributed, open-source, Web-service based network has become the archetype for transforming data into knowledge and innovation. This is not only revolutionizing the geosciences but offering opportunities for governments to use these cutting-edge capabilities for broad innovation and capacity building. Across the globe, communities are facing the same four challenges: put simply, how do we best make data discoverable, shareable, viewable and downloadable, so that the user also has access to consistent data at a national and continental level? The principle of managing scientific and societal data and knowledge where they are generated and are best understood is well established in the geoscience community and can be scaled up and transferred to other domains and sectors of society. The distributed nature of most data sources means the complementary delivery mechanism of Web map services has become equally prevalent in the spatial data community. Together these factors are driving a world-wide revolution in the way spatial information is being disseminated to its users. Industry, academia, and governments are quickly adopting and adapting to this new paradigm and discovering that very modest investments in this emerging field are reaping tremendous returns in national capacity and triggering

  8. Numerical Analysis on Seepage in the deep overburden CFRD

    NASA Astrophysics Data System (ADS)

    Zeyu, GUO; Junrui, CHAI; Yuan, QIN

    2017-12-01

    There are many problems in the construction of hydraulic structures on deep overburden because of its complex foundation structure and poor geological condition. Seepage failure is one of the main problems. The Combination of the seepage control system of the face rockfill dam and the deep overburden can effectively control the seepage of construction of the concrete face rockfill dam on the deep overburden. Widely used anti-seepage measures are horizontal blanket, waterproof wall, curtain grouting and so on, but the method, technique and its effect of seepage control still have many problems thus need further study. Due to the above considerations, Three-dimensional seepage field numerical analysis based on practical engineering case is conducted to study the seepage prevention effect under different seepage prevention methods, which is of great significance to the development of dam technology and the development of hydropower resources in China.

  9. The USGS role in mapping the nation's submerged lands

    USGS Publications Warehouse

    Schwab, Bill; Haines, John

    2004-01-01

    The seabed provides habitat for a diverse marine life having commercial, recreational, and intrinsic value. The habitat value of the seabed is largely a function of the geological structure and related geological, biological, oceanologic, and geochemical processes. Of equal importance, the nation's submerged lands contain energy and mineral resources and are utilized for the siting of offshore infrastructure and waste disposal. Seabed character and processes influence the safety and viability of offshore operations. Seabed and subseabed characterization is a prerequisite for the assessment, protection, and utilization of both living and non-living marine resources. A comprehensive program to characterize and understand the nation's submerged lands requires scientific expertise in the fields of geology, biology, hydrography, and oceanography. The U.S. Geological Survey (USGS) has long experience as the Federal agency charged with conducting geologic research and mapping in both coastal and offshore regions. The USGS Coastal and Marine Geology Program (CMGP) leads the nation in expertise related to characterization of seabed and subseabed geology, geological processes, seabed dynamics, and (in collaboration with the National Oceanic and Atmospheric Administration (NOAA) and international partners) habitat geoscience. Numerous USGS studies show that sea-floor geology and processes determine the character and distribution of biological habitats, control coastal evolution, influence the coastal response to storm events and human alterations, and determine the occurrence and concentration of natural resources.

  10. The deep ocean under climate change

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Le Bris, Nadine

    2015-11-01

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

  11. Exploring deep sea habitats for baseline characterization using NOAA Ship Okeanos Explorer

    NASA Astrophysics Data System (ADS)

    McKenna, L.; Cantwell, K. L.; Kennedy, B. R.; Lobecker, E.; Sowers, D.; Elliott, K.

    2015-12-01

    In 2015, NOAA Ship Okeanos Explorer, the only US federal ship dedicated to ocean exploration, systematically explored previously unknown deep sea ecosystems in the Caribbean and remote regions in the vicinity of the Hawaiian Islands. Initial characterization of these areas is essential in order to establish a baseline against which to assess potential future changes due to climate and anthropogenic change. In the Caribbean, over 37,500 sq km of previously unmapped seafloor were mapped with a high resolution multibeam revealing rugged canyons along shelf breaks, intricate incised channels, and complex tectonic features. 12 ROV dives, in the 300-6,000 m depth range, visually explored seamounts, escarpments, submarine canyons, and the water column revealing diverse ecosystems and habitats. Discoveries include large assemblages of deep sea corals, range extensions, and observations of several rare and potentially new organisms - including a seastar that had not been documented since its holotype specimen. In the Pacific, over 50,000 sq km of seafloor were mapped in high-resolution, revealing long linear ridge and tectonic fracture zone features, both peaked and flat-topped seamounts, and numerous features that appear to be volcanic in origin. To better understand ecosystem dynamics in depths greater than 2,000 m, the deepest ever ROV surveys and sampling were conducted in remote Pacific island marine sanctuaries and monuments. Novel observations include range extensions and exploration of dense deep sea coral and sponge habitat. Baseline habitat characterization was also conducted on seamounts within the Prime Crust Zone (PCZ), an area with the highest expected concentration of deep-sea minerals in the Pacific. The Hawaiian operations marked the first ever ROV sampling effort conducted onboard Okeanos, and several geological and biological samples are now available at museums and sample repositories in addition to all digital data available through the National

  12. Surficial geologic map of the Gates of the Arctic National Park and Preserve, Alaska

    USGS Publications Warehouse

    Hamilton, Thomas D.; Labay, Keith A.

    2011-01-01

    The surfical geologic map incorporates parts of ten surficial geologic maps previously published at 1:250,000 scale. In addition, a small part of the buffer zone mapped in the southwest corner of the map area was compiled from unpublished surficial geologic mapping of the Shungnak 1:250,000-scale quadrangle. Each of those individual maps was developed from (1) aerial and surface observations of morphology and composition of unconsolidated deposits, (2) tracing the distribution and interrelation of terraces, abandoned meltwater channels, moraines, abandoned lake beds, and other landforms, (3) stratigraphic study of exposures along lake shores and river bluffs, (4) examination of sediments and soil profiles in auger borings and test pits, and exposed in roadcuts and placer workings, and (5) analysis of previously published geologic maps and reports. The map units used for those maps and employed in the present compilation are defined on the basis of their physical character, genesis, and age. Relative and absolute ages of the map units were determined from their geographic locations and from their stratigraphic positions and radiocarbon ages.

  13. Metropolitan Spokane Region Water Resources Study. Appendix B. Geology and Groundwater

    DTIC Science & Technology

    1976-01-01

    to develop and confirm map data. Engineering Geology. Large-scale (1:24,000) mapping of near- surface soil classification and drainage characteristics...of the great lava field. By the beginning of the Pleistocene Ice Age, a broad valley had developed at about 1600 feet altitude. This pre-glacial...has developed on re level basalt surfaces. In the southern and eastern portions of the study area, chemical alteration has caused deep decomposition

  14. Environmental aspects of engineering geological mapping in the United States

    USGS Publications Warehouse

    Radbruch-Hall, Dorothy H.

    1979-01-01

    Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.

  15. Conflation and integration of archived geologic maps and associated uncertainties

    USGS Publications Warehouse

    Shoberg, Thomas G.

    2016-01-01

    Old, archived geologic maps are often available with little or no associated metadata. This creates special problems in terms of extracting their data to use with a modern database. This research focuses on some problems and uncertainties associated with conflating older geologic maps in regions where modern geologic maps are, as yet, non-existent as well as vertically integrating the conflated maps with layers of modern GIS data (in this case, The National Map of the U.S. Geological Survey). Ste. Genevieve County, Missouri was chosen as the test area. It is covered by six archived geologic maps constructed in the years between 1928 and 1994. Conflating these maps results in a map that is internally consistent with these six maps, is digitally integrated with hydrography, elevation and orthoimagery data, and has a 95% confidence interval useful for further data set integration.

  16. Research and Teaching About the Deep Earth

    NASA Astrophysics Data System (ADS)

    Williams, Michael L.; Mogk, David W.; McDaris, John

    2010-08-01

    Understanding the Deep Earth: Slabs, Drips, Plumes and More; Virtual Workshop, 17-19 February and 24-26 February 2010; Images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring new excitement about deep-Earth processes and connections between Earth's internal systems and plate tectonics. The new results and the steady progress of Earthscope's USArray across the country are also providing a special opportunity to reach students and the general public. The pace of discoveries about the deep Earth is accelerating due to advances in experimental, modeling, and sensing technologies; new data processing capabilities; and installation of new networks, especially the EarthScope facility. EarthScope is an interdisciplinary program that combines geology and geophysics to study the structure and evolution of the North American continent. To explore the current state of deep-Earth science and ways in which it can be brought into the undergraduate classroom, 40 professors attended a virtual workshop given by On the Cutting Edge, a program that strives to improve undergraduate geoscience education through an integrated cooperative series of workshops and Web-based resources. The 6-day two-part workshop consisted of plenary talks, large and small group discussions, and development and review of new classroom and laboratory activities.

  17. EAARL topography: Fire Island National Seashore

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Patterson, Matt; Nayagandhi, Amar; Patterson, Judd

    2007-01-01

    This Web site contains 31 LIDAR-derived first return topography maps and GIS files for Fire Island National Seashore. These lidar-derived topographic maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, the National Park Service (NPS), Northeast Coastal and Barrier Network, Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. The aims of the partnership that created this product are to develop advanced survey techniques for mapping barrier island geomorphology and habitats, and to enable the monitoring of ecological and geological change within National Seashores. This product is based on data from an innovative airborne lidar instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Advanced Airborne Research Lidar (EAARL).

  18. Internet-based information system of digital geological data providing

    NASA Astrophysics Data System (ADS)

    Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill

    2015-04-01

    is the web-service, which realizes the interaction of all parts of the system and controls whole the way of the request from the user to the database and back, adopted to the GeoSciML and EarthResourceML view. The experience of creation the Internet-based information system of digital geological data providing, and also previous works, including the developing of web-service of NGKIS-system, allows to tell, that technological realization of presenting Russian geological-cartographical data with using of international standards is possible. While realizing, it could be some difficulties, associated with geological material depth. Russian informational geological model is more deep and wide, than foreign. This means the main problem of using international standards and formats: Russian geological data presentation is possible only with decreasing the data detalisation. But, such a problem becomes not very important, if the service publishes also Russian vocabularies, not associated with international vocabularies. In this case, the international format could be the interchange format to change data between Russian users. The integration into the international projects reaches developing of the correlation schemes between Russian and foreign classificators and vocabularies.

  19. History of the Fort Collins Science Center, U.S. Geological Survey

    USGS Publications Warehouse

    O'Shea, Thomas J. (compiler)

    2006-01-01

    At various times during the period when it was part of the National Biological Service (1993–96), the Center served as the administrative and programmatic home base for a wide number of science activities in numerous Western states (table 1). This reflected the previous fragmentation of biological and related science efforts across resource management agencies in the U.S. Department of the Interior. The organization of the 2 Center within the National Biological Service was a manifestation of the desire of the Secretary of the Interior to consolidate its biological science activities in administratively independent entities that would ensure that the science retained its objectivity. Congress later recognized the need to maintain a hierarchical independence between biological science and resource management in the Department. However, Congress also saw that the U.S. Geological Survey, with its long history of objective science support to the nation in geology, water resources, geography, and remote sensing, was a suitable alternative home for these biological science functions. Thus, in 1996 Congress transferred the biological resources functions of the National Biological Service to the U.S. Geological Survey. Detailed overviews and opinions about the history and policy issues surrounding the formation and subsequent fate of the National Biological Service can be found elsewhere (for example Cohn, 1993, 2005; Kaufman, 1993; Kreeger, 1994; Pulliam, 1995, 1998a,b; Reichhardt, 1994; Wagner, 1999)

  20. Benthic habitat and geologic mapping of the outer continental shelf of north-central California

    USGS Publications Warehouse

    Anima, Roberto J.; Chin, John L.; Conrad, James E.; Golden, Nadine E.

    2006-01-01

    The Fanny Shoal area is located between North Farallon Island and Cordell Bank approximately 40 miles west of San Francisco, California. The area lies within the Gulf of the Farallones National Marine Sanctuary (GFNMS) which is located just a few miles from San Francisco. The waters within the GFNMS are part of a nationally significant marine ecosystem encompassing a diversity of highly productive marine habitats. Protection of the living and cultural resources at the sites are administered by the National Oceanic and Atmospheric Administration (NOAA). The U.S. Geological Survey (USGS) in cooperation with the Golden Gate National Recreation Area (GGNRA) and NOAA, including the GFNMS, and Monterey Bay National Marine Sanctuary (MBNMS), collected side-scanning sonar, and underwater video data over three cruises in July of 2003, and April of 2004. The data are consolidated into a geographic information system (GIS) to produce benthic habitat and geologic maps that provide researchers and those involved in decision making with crucial, georeferenced geologic information that will aid in preserving the area's environment.

  1. The national land use data program of the US Geological Survey

    NASA Technical Reports Server (NTRS)

    Anderson, J. R.; Witmer, R. E.

    1975-01-01

    The Land Use Data and Analysis (LUDA) Program which provides a systematic and comprehensive collection and analysis of land use and land cover data on a nationwide basis is described. Maps are compiled at about 1:125,000 scale showing present land use/cover at Level II of a land use/cover classification system developed by the U.S. Geological Survey in conjunction with other Federal and state agencies and other users. For each of the land use/cover maps produced at 1:125,000 scale, overlays are also compiled showing Federal land ownership, river basins and subbasins, counties, and census county subdivisions. The program utilizes the advanced technology of the Special Mapping Center of the U.S. Geological Survey, high altitude NASA photographs, aerial photographs acquired for the USGS Topographic Division's mapping program, and LANDSAT data in complementary ways.

  2. United States Geological Survey Yearbook, fiscal year 1978

    USGS Publications Warehouse

    ,

    1979-01-01

    Fiscal year 1978 saw the U.S. Geological Survey continuing to perform its basic historical missions of collecting, analyzing, and disseminating information about the Earth, its processes, and its water and mineral resources. Classifying Federal lands and supervising lessee mineral extraction operations on those lands were also major Survey concerns during the year. In addition, substantial progress was made in the exploration and assessment of the petroleum potential of the National Petroleum Reserve in Alaska, a recently assigned mission. These basic missions found expression in a wide range of program activities and interests as diverse as the sands of Mars and the volcanoes of Hawaii. Programs included assessment of numerous potential energy and mineral resources, study of earthquakes and other geologic hazards, appraisal of the magnitude and quality of the Nation's water resources, and supervision of lease operations on Federal lands. The Survey also was involved in developing data on land use and producing topographic, geologic, and hydrologic maps for public and private use. In cooperation with other Federal agencies, the Survey participated in studies under the U.S. Climate Program and continued its analysis of data received from the two Viking landers on the surface of Mars. On April 3, 1978, Dr. H. William Menard became the 10th Director of the U.S. Geological Survey. Dr. Menard, who, until his appointment, was Professor of Geology at the Scripps Institution of Oceanography, San Diego, Calif., brings to the Director's post the experience gained in a long and successful career as a marine geologist and oceanographer. He succeeds Dr. Vincent E. McKelvey, who continues with the Survey as a senior research scientist.

  3. Archaeology of Archaea: geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment.

    PubMed

    Inagaki, F; Takai, K; Komatsu, T; Kanamatsu, T; Fujioka, K; Horikoshi, K

    2001-12-01

    A record of the history of the Earth is hidden in the Earth's crust, like the annual rings of an old tree. From very limited records retrieved from deep underground, one can infer the geographical, geological, and biological events that occurred throughout Earth's history. Here we report the discovery of vertically shifted community structures of Archaea in a typical oceanic subseafloor core sample (1410 cm long) recovered from the West Philippine Basin at a depth of 5719 m. Beneath a surface community of ubiquitous deep-sea archaea (marine crenarchaeotic group I; MGI), an unusual archaeal community consisting of extremophilic archaea, such as extreme halophiles and hyperthermophiles, was present. These organisms could not be cultivated, and may be microbial relicts more than 2 million years old. Our discovery of archaeal rDNA in this core sample, probably associated with the past terrestrial volcanic and submarine hydrothermal activities surrounding the West Philippine Basin, serves as potential geomicrobiological evidence reflecting novel records of geologic thermal events in the Pleistocene period concealed in the deep-sea subseafloor.

  4. Geologic map of the Stephens City quadrangle, Clark, Frederick, and Warren Counties, Virginia

    USGS Publications Warehouse

    Weary, D.J.; Orndorff, R.C.; Aleman-Gonzalez, W.

    2006-01-01

    The Stephens City 1:24,000-scale quadrangle is one of several quadrangles in Frederick County, Virginia being mapped by geologists from the U.S. Geological Survey in Reston, VA with funding from the National Cooperative Geologic Mapping Program. This work is part of a project being lead by the U.S. Geological Survey Water Resources Discipline, Virginia District, to investigate the geologic framework and groundwater resources of Frederick County as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia.

  5. Ecohydrology of Deep Fractured Rocks at Homestake DUSEL

    NASA Astrophysics Data System (ADS)

    Kieft, T. L.; Boutt, D. F.; Murdoch, L. C.; Wang, H. F.

    2009-12-01

    The Deep Underground Science and Engineering Laboratory (DUSEL) at Homestake in SD will provide an unprecedented opportunity to study the terrestrial subsurface. Such a study could fundamentally change the way we view the origin and early evolution of life on Earth, the search for novel materials, and the generation of energy. Knowledge of subsurface life has come from only a few boreholes and deep mines. DUSEL will enable the first detailed study of a deep ecosystem in the context of the hydrology, geochemistry, and rock system state that sustain it. We are guided by the over-arching question: What controls the distribution and evolution of subsurface life? Our hypothesis is that these controls are dominated by processes related to geology, geochemistry, geomechanics, and hydrology. Themes of scaling and the development of facies, or zones of similar characteristics cut across all the processes. The ecohydrologic setting of DUSEL Homestake is characterized by a vast expanse of fractured metamorphic rock cut by 100s of km of tunnels and boreholes. Many km3 of the region have been highly affected by mining activities; adjacent regions are partially desaturated; and more distal regions are pristine and presumed to harbor indigenous microbial ecosystems. Simulations along with descriptions of the mine suggest division into zones, or ecohydrologic facies, where essential characteristics related to the requirements for life are expected to be similar. These ecohydrologic facies are a primary organizing principle for our investigation. The Deep EcoHydrology Experiment will consist of field studies supported by numerical simulations. The experimental activities include a particularly exciting opportunity to probe the lower limits of the biosphere using deep drilling technology deployed from the lowest reaches of the facility (2440 m below the surface). The use of the flooding/dewatering event as a tracer combined with hydrologic and mechanical stressors form a theme that

  6. Sea-floor geology in northeastern Block Island Sound, Rhode Island

    USGS Publications Warehouse

    McMullen, Kate Y.; Poppe, Lawrence J.; Ackerman, Seth D.; Blackwood, Dann S.; Lewit, P.G.; Parker, Castle E.

    2013-01-01

    Multibeam-echosounder and sidescan-sonar data collected by the National Oceanic and Atmospheric Administration in northeastern Block Island Sound, combined with sediment samples and bottom photography collected by the U.S. Geological Survey, are used to interpret sea-floor features and sedimentary environments in this 52-square-kilometer-area offshore Rhode Island. Boulders, which are often overgrown with sessile fauna and flora, are mostly in water depths shallower than 20 meters. They are probably part of the southern flank of the Harbor Hill-Roanoke Point-Charlestown-Buzzards Bay moraine, deposited about 18,000 years ago. Scour depressions, areas of the sea floor with a coarser grained, rippled surface lying about 0.5 meter below the finer grained, surrounding sea floor, along with erosional outliers within the depressions are in a band near shore and also offshore in deep parts of the study area. Textural and bathymetric differences between areas of scour depressions and the surrounding sea floor or erosional outliers stand out in the sidescan-sonar imagery with sharp tonal contrasts. Also visible in the sidescan-sonar imagery are broad, low-profile bedforms with coarser grained troughs and finer grained crests.

  7. 3D subsurface geological modeling using GIS, remote sensing, and boreholes data

    NASA Astrophysics Data System (ADS)

    Kavoura, Katerina; Konstantopoulou, Maria; Kyriou, Aggeliki; Nikolakopoulos, Konstantinos G.; Sabatakakis, Nikolaos; Depountis, Nikolaos

    2016-08-01

    The current paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes and the 1:5000 engineering geological maps were digitized and implemented in a GIS platform for a three - dimensional subsurface model evaluation. The study is located at the North part of Peloponnese along the new national road.

  8. Discussion on the 3D visualizing of 1:200 000 geological map

    NASA Astrophysics Data System (ADS)

    Wang, Xiaopeng

    2018-01-01

    Using United States National Aeronautics and Space Administration Shuttle Radar Topography Mission (SRTM) terrain data as digital elevation model (DEM), overlap scanned 1:200 000 scale geological map, program using Direct 3D of Microsoft with C# computer language, the author realized the three-dimensional visualization of the standard division geological map. User can inspect the regional geology content with arbitrary angle, rotating, roaming, and can examining the strata synthetical histogram, map section and legend at any moment. This will provide an intuitionistic analyzing tool for the geological practitioner to do structural analysis with the assistant of landform, dispose field exploration route etc.

  9. Geologic interpretation of space shuttle radar images of Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabing, F.F.

    1983-11-01

    The National Aeronautics and Space Administration (NASA) space shuttle mission in November 1981 acquired images of parts of the earth with a synthetic aperture radar system at a wavelength of 23.5 cm (9.3 in.) and spatial resolution of 38 m (125 ft). This report describes the geologic interpretation of 1:250,000-scale images of Irian Jaya and eastern Kalimantan, Indonesia, where the all-weather capability of radar penetrates the persistent cloud cover. The inclined look direction of radar enhances subtle topographic features that may be the expression of geologic structures. On the Indonesian images, the following terrain categories are recognizable for geologic mapping:more » carbonate, clastic, volcanic, alluvial and coastal, melange, and metamorphic, as well as undifferentiated bedrock. Regional and local geologic structures are well expressed on the images.« less

  10. Geologic framework for the national assessment of carbon dioxide storage resources: Denver Basin, Colorado, Wyoming, and Nebraska: Chapter G in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Drake II, Ronald M.; Brennan, Sean T.; Covault, Jacob A.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    This is a report about the geologic characteristics of five storage assessment units (SAUs) within the Denver Basin of Colorado, Wyoming, and Nebraska. These SAUs are Cretaceous in age and include (1) the Plainview and Lytle Formations, (2) the Muddy Sandstone, (3) the Greenhorn Limestone, (4) the Niobrara Formation and Codell Sandstone, and (5) the Terry and Hygiene Sandstone Members. The described characteristics, as specified in the methodology, affect the potential carbon dioxide storage resource in the SAUs. The specific geologic and petrophysical properties of interest include depth to the top of the storage formation, average thickness, net-porous thickness, porosity, permeability, groundwater quality, and the area of structural reservoir traps. Descriptions of the SAU boundaries and the overlying sealing units are also included. Assessment results are not contained in this report; however, the geologic information included here will be used to calculate a statistical Monte Carlo-based distribution of potential storage volume in the SAUs.

  11. The deep ocean under climate change.

    PubMed

    Levin, Lisa A; Le Bris, Nadine

    2015-11-13

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems. Copyright © 2015, American Association for the Advancement of Science.

  12. Atlantic Ocean Circulation and Climate: The Current View From the Geological Record

    NASA Astrophysics Data System (ADS)

    Curry, W.

    2006-12-01

    Several recent advances in our understanding of past ocean circulation come from geological reconstructions using deep sea sediment proxies of water mass structure and flow. Put together, the observations suggest that the Atlantic Ocean during the last glacial period (21,000 years ago) was very different from today. Geochemical tracers document a shoaling of North Atlantic Deep Water and a much greater volume of deep waters with an Antarctic origin. Sedimentary pore water profiles have detected a reversal in the salinity gradient between northern and southern deep water sources. Uranium-series decay products in North Atlantic sediments indicate that the southward transport of North Atlantic Deep Water was as much as 30-40% reduced from today's transport. Ocean-margin density reconstructions are consistent with a one third reduction in transport through the Florida Straits. A reversed cross-basin density gradient in the South Atlantic calls for a different intermediate water circulation in the South Atlantic. The glacial Atlantic circulation appears to be best explained by a reduced influence of North Atlantic deep water sources and much greater influence of Antarctic deep water sources. More recent changes in Atlantic circulation have been much more modest. During the Little Ice Age (LIA - a much smaller cooling event about 200 to 600 years ago), transport of the Florida Current was reduced by about 10%, significant but a much smaller reduction than observed during the glacial period. There is little evidence for a change in the distribution or geochemistry of the water masses during the LIA. For both climate events (the glacial and the LIA) reduced Florida Current transport was accompanied by increased salinity of its surface waters, linking changes in ocean circulation to large scale changes in surface water hydrology. A feedback between the circulation of the Atlantic Ocean and the climate of the tropics has been proposed before and also seen in some coupled

  13. Isostatic gravity map with simplified geology of the Los Angeles 30 x 60 minute quadrangle

    USGS Publications Warehouse

    Wooley, R.J.; Yerkes, R.F.; Langenheim, V.E.; Chuang, F.C.

    2003-01-01

    This isostatic residual gravity map is part of the Southern California Areal Mapping Project (SCAMP) and is intended to promote further understanding of the geology in the Los Angeles 30 x 60 minute quadrangle, California, by serving as a basis for geophysical interpretations and by supporting both geological mapping and topical (especially earthquake) studies. Local spatial variations in the Earth's gravity field (after various corrections for elevation, terrain, and deep crustal structure explained below) reflect the lateral variation in density in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. The map shows contours of isostatic gravity overlain on a simplified geology including faults and rock types. The map is draped over shaded-relief topography to show landforms.

  14. Sediment Transport Capacity of Turbidity Currents: from Microscale to Geological Scale.

    NASA Astrophysics Data System (ADS)

    Eggenhuisen, J. T.; Tilston, M.; Cartigny, M.; Pohl, F.; de Leeuw, J.; van der Grind, G. J.

    2016-12-01

    A big question in sedimentology concerns the magnitude of fluxes of sediment particles, solute matter and dissolved gasses from shallow marine waters to deep basins by turbidity current flow. Here we establish sediment transport capacity of turbidity current flow on three levels. The most elementary level is set by the maximum amount of sediment that can be contained at the base of turbidity currents without causing complete extinction of boundary layer turbulence. The second level concerns the capacity in a vertical column within turbidity currents. The third level involves the amount of sediment that can be transported in turbidite systems on geological timescales. The capacity parameter Γ compares turbulent forces near the boundary of a turbulent suspension to gravity and buoyancy forces acting on suspended particles. The condition of Γ>1 coincides with complete suppression of coherent boundary layer turbulence in Direct Numerical Simulations of sediment-laden turbulent flow. Γ=1 coincides with the upper limit of observed suspended particle concentrations in flume and field measurements. Γ is grainsize independent, yet capacity of the full vertical structure of turbidity currents becomes grainsize dependent. This is due to the appearance of grainsize dependent vertical motions within turbulence as a primary control on the shape of the vertical concentration profile. We illustrate this dependence with experiments and theory and conclude that capacity depends on the competence of prevailing turbulence to suspend particle sizes. The concepts of capacity and competence are thus tangled. Finally, the capacity of turbidity current flow structure is coupled to geological constraints on recurrence times, channel and lobe life cycles, and allogenic forcing on system activity to arrive at system scale sediment transport capacity. We demonstrate a simple model that uses the fundamental process insight described above to estimate geological sediment budgets from

  15. Probing Metabolic Activity of Deep Subseafloor Life with NanoSIMS

    NASA Astrophysics Data System (ADS)

    Morono, Y.; Terada, T.; Itoh, M.; Inagaki, F.

    2014-12-01

    There are very few natural environments where life is absent in the Earth's surface biosphere. However, uninhabitable region is expected to be exist in the deep subsurface biosphere, of which extent and constraining factor(s) have still remained largly unknown. Scientific ocean drilling have revealed that microbial communities in sediments are generally phylogenetically distinct from known spieces isolated from the Earth's surface biosphere, and hence metabolic functions of the deep subseafloor life remain unknown. In addition, activity of subseafloor microbial cells are thought to be extraordinally slow, as indicated by limited supply of neutrient and energy substrates. To understand the limits of the Earth's subseafloor biosphere and metabolic functions of microbial populations, detection and quantification of the deeply buried microbial cells in geological habitats are fundamentary important. Using newly developed cell separation techniques as well as an discriminative cell detection system, the current quantification limit of sedimentary microbial cells approaches to 102 cells/cm3. These techniques allow not only to assess very small microbial population close to the subsurface biotic fringe, but also to separate and sort the target cells using flow cytometric cell sorter. Once the deep subseafloor microbial cells are detached from mineral grains and sorted, it opens new windows to subsequent molecular ecological and element/isotopic analyses. With a combined use of nano-scale secondary ion masspectrometry (NanoSIMS) and stable isotope-probing techniques, it is possible to detect and measure activity of substrate incorporation into biomass, even for extremely slow metabolic processes such as uncharacteriszed deep subseafloor life. For example, it was evidenced by NanoSIMS that at least over 80% of microbial cells at ~200 meters-deep, 460,000-year-old sedimentary habitat are indeed live, which substrate incooporation was found to be low (10-15 gC/cell/day) even

  16. A Standard-Driven Data Dictionary for Data Harmonization of Heterogeneous Datasets in Urban Geological Information Systems

    NASA Astrophysics Data System (ADS)

    Liu, G.; Wu, C.; Li, X.; Song, P.

    2013-12-01

    The 3D urban geological information system has been a major part of the national urban geological survey project of China Geological Survey in recent years. Large amount of multi-source and multi-subject data are to be stored in the urban geological databases. There are various models and vocabularies drafted and applied by industrial companies in urban geological data. The issues such as duplicate and ambiguous definition of terms and different coding structure increase the difficulty of information sharing and data integration. To solve this problem, we proposed a national standard-driven information classification and coding method to effectively store and integrate urban geological data, and we applied the data dictionary technology to achieve structural and standard data storage. The overall purpose of this work is to set up a common data platform to provide information sharing service. Research progresses are as follows: (1) A unified classification and coding method for multi-source data based on national standards. Underlying national standards include GB 9649-88 for geology and GB/T 13923-2006 for geography. Current industrial models are compared with national standards to build a mapping table. The attributes of various urban geological data entity models are reduced to several categories according to their application phases and domains. Then a logical data model is set up as a standard format to design data file structures for a relational database. (2) A multi-level data dictionary for data standardization constraint. Three levels of data dictionary are designed: model data dictionary is used to manage system database files and enhance maintenance of the whole database system; attribute dictionary organizes fields used in database tables; term and code dictionary is applied to provide a standard for urban information system by adopting appropriate classification and coding methods; comprehensive data dictionary manages system operation and security. (3

  17. Unique deep-water ecosystems off the southeastern United States

    USGS Publications Warehouse

    Ross, Steve W.

    2007-01-01

    If nothing else, research in deep-sea environments teaches us how little we know about such important and productive habitats. The relatively recent discovery of hydrothermal-vent and cold-seep ecosystems illustrates this paucity of knowledge, and the subsequent explosion of research on these systems is a good example of the impact such concentrated efforts can have on marine sciences (see the March 2007 special issue of Oceanography on InterRidge, and Levin et al., 2007). The recent surge of interest in deep-sea corals is another example of how focused research on a particular subject can result in new perspectives on continental slope biotopes. Although deep-sea corals have been known for over 200 years, they were viewed as somewhat of a novelty, and research on them was sporadic, typically geologic, and usually only documented their occurrences (e.g., Stetson et al., 1962; Neumann et al., 1977; Paull et al., 2000).

  18. JAMSTEC E-library of Deep-sea Images (J-EDI) Realizes a Virtual Journey to the Earth's Unexplored Deep Ocean

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Azuma, S.; Matsuda, S.; Nagayama, A.; Ogido, M.; Saito, H.; Hanafusa, Y.

    2016-12-01

    The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) archives a large amount of deep-sea research videos and photos obtained by JAMSTEC's research submersibles and vehicles with cameras. The web site "JAMSTEC E-library of Deep-sea Images : J-EDI" (http://www.godac.jamstec.go.jp/jedi/e/) has made videos and photos available to the public via the Internet since 2011. Users can search for target videos and photos by keywords, easy-to-understand icons, and dive information at J-EDI because operating staffs classify videos and photos as to contents, e.g. living organism and geological environment, and add comments to them.Dive survey data including videos and photos are not only valiant academically but also helpful for education and outreach activities. With the aim of the improvement of visibility for broader communities, we added new functions of 3-dimensional display synchronized various dive survey data with videos in this year.New Functions Users can search for dive survey data by 3D maps with plotted dive points using the WebGL virtual map engine "Cesium". By selecting a dive point, users can watch deep-sea videos and photos and associated environmental data, e.g. water temperature, salinity, rock and biological sample photos, obtained by the dive survey. Users can browse a dive track visualized in 3D virtual spaces using the WebGL JavaScript library. By synchronizing this virtual dive track with videos, users can watch deep-sea videos recorded at a point on a dive track. Users can play an animation which a submersible-shaped polygon automatically traces a 3D virtual dive track and displays of dive survey data are synchronized with tracing a dive track. Users can directly refer to additional information of other JAMSTEC data sites such as marine biodiversity database, marine biological sample database, rock sample database, and cruise and dive information database, on each page which a 3D virtual dive track is displayed. A 3D visualization of a dive

  19. Statistical porcess control in Deep Space Network operation

    NASA Technical Reports Server (NTRS)

    Hodder, J. A.

    2002-01-01

    This report describes how the Deep Space Mission System (DSMS) Operations Program Office at the Jet Propulsion Laboratory's (EL) uses Statistical Process Control (SPC) to monitor performance and evaluate initiatives for improving processes on the National Aeronautics and Space Administration's (NASA) Deep Space Network (DSN).

  20. Decompression syndrome and the evolution of deep diving physiology in the Cetacea

    NASA Astrophysics Data System (ADS)

    Beatty, Brian Lee; Rothschild, Bruce M.

    2008-09-01

    Whales repetitively dive deep to feed and should be susceptible to decompression syndrome, though they are not known to suffer the associated pathologies. Avascular osteonecrosis has been recognized as an indicator of diving habits of extinct marine amniotes. Vertebrae of 331 individual modern and 996 fossil whales were subjected to macroscopic and radiographic examination. Avascular osteonecrosis was found in the Oligocene basal odontocetes (Xenorophoidea) and in geologically younger mysticetes, such as Aglaocetus [a sister taxon to Balaenopteridae + (Balaenidae + Eschrichtiidae) clade]. These are considered as early “experiments” in repetitive deep diving, indicating that they independently converged on their similar specialized diving physiologies.

  1. Decompression syndrome and the evolution of deep diving physiology in the Cetacea.

    PubMed

    Beatty, Brian Lee; Rothschild, Bruce M

    2008-09-01

    Whales repetitively dive deep to feed and should be susceptible to decompression syndrome, though they are not known to suffer the associated pathologies. Avascular osteonecrosis has been recognized as an indicator of diving habits of extinct marine amniotes. Vertebrae of 331 individual modern and 996 fossil whales were subjected to macroscopic and radiographic examination. Avascular osteonecrosis was found in the Oligocene basal odontocetes (Xenorophoidea) and in geologically younger mysticetes, such as Aglaocetus [a sister taxon to Balaenopteridae + (Balaenidae + Eschrichtiidae) clade]. These are considered as early "experiments" in repetitive deep diving, indicating that they independently converged on their similar specialized diving physiologies.

  2. Gulf of Mexico Deep-Sea Coral Ecosystem Studies, 2008-2011

    USGS Publications Warehouse

    Kellogg, Christina A.

    2009-01-01

    Most people are familiar with tropical coral reefs, located in warm, well-illuminated, shallow waters. However, corals also exist hundreds and even thousands of meters below the ocean surface, where it is cold and completely dark. These deep-sea corals, also known as cold-water corals, have become a topic of interest due to conservation concerns over the impacts of trawling, exploration for oil and gas, and climate change. Although the existence of these corals has been known since the 1800s, our understanding of their distribution, ecology, and biology is limited due to the technical difficulties of conducting deep-sea research. DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) is a new U.S. Geological Survey (USGS) program focused on deep-water coral ecosystems in the Gulf of Mexico. This integrated, multidisciplinary, international effort investigates a variety of topics related to unique and fragile deep-sea coral ecosystems from the microscopic level to the ecosystem level, including components of microbiology, population genetics, paleoecology, food webs, taxonomy, community ecology, physical oceanography, and mapping.

  3. National Geothermal Data System Hub Deployment Timeline (Appendix E-1-d)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caudill, Christy

    Excel spreadsheet describing activity, spending, and development for the four data hubs (Arizona Geoloical Survey, Kentucky Geological Survey, Illinois Geological Survey, and Nevada Bureau of Mines and Geology) serving data for the National Geothermal Data System under the State Contributions to the National Geothermal Data System Project.

  4. Creation of the Teton landscape: A geologic chronicle of Jackson Hole and The Teton Range

    USGS Publications Warehouse

    Reed, John Calvin; Love, David; Pierce, Kenneth

    2003-01-01

    Geology is the science of the Earth-the study of the forces, processes, and past life that not only shape our land but influence our daily lives and our Nation's welfare. This booklet, prepared by two members of the U.S. Geological Survey, discusses how geologic phenomena are responsible for the magnificent scenery of the Teton region

  5. Geologic Map of the House Rock Valley Area, Coconino County, Northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Priest, Susan S.

    2010-01-01

    This geologic map is a cooperative effort of the U.S. Geological Survey (USGS), the Bureau of Land Management, the National Park Service, and the U.S. Forest Service to provide a geologic database for resource management officials and visitor information services. This map was produced in response to information needs related to a proposed withdrawal of three segregated land areas near Grand Canyon National Park, Arizona, from new hard rock mining activity. House Rock Valley was designated as the east parcel of the segregated lands near the Grand Canyon. This map was needed to provide connectivity for the geologic framework of the Grand Canyon segregated land areas. This geologic map of the House Rock Valley area encompasses approximately 280 mi2 (85.4 km2) within Coconino County, northern Arizona, and is bounded by longitude 111 degrees 37'30' to 112 degrees 05' W. and latitude 36 degrees 30' to 36 degrees 50' N. The map area is in the eastern part of the Arizona Strip, which lies within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The Arizona Strip is the part of Arizona lying north of the Colorado River. The map is bound on the east by the Colorado River in Marble Canyon within Grand Canyon National Park and Glen Canyon National Recreation Area, on the south and west by the Kaibab National Forest and Grand Canyon National Game Preserve, and on the north by the Vermilion Cliffs Natural Area, the Paria Canyon Vermilion Cliffs Wilderness Area, and the Vermilion Cliffs National Monument. House Rock State Buffalo Ranch also bounds the southern edge of the map area. The Bureau of Land Management Arizona Field Office in St. George, Utah, manages public lands of the Vermilion Cliffs Natural Area, Paria Canyon - Vermilion Cliffs Wilderness and Vermilion Cliffs National Monument. The North Kaibab Ranger District in Fredonia, Arizona, manages U.S. Forest Service land along the west edge of the map area and House Rock State Buffalo Ranch

  6. Deep Time Framework: A Preliminary Study of U.K. Primary Teachers' Conceptions of Geological Time and Perceptions of Geoscience.

    ERIC Educational Resources Information Center

    Trend, Roger David

    2001-01-01

    Studies (n=51) inservice school teachers with regard to their orientations toward geoscience phenomena in general and deep time in particular. Aims to identify the nature of idiosyncratic conceptions of deep time and propose a curricular Deep Time Framework for teacher education. (Contains 29 references.) (Author/YDS)

  7. The United States Geological Survey: 1879-1989

    USGS Publications Warehouse

    Rabbitt, Mary C.

    1989-01-01

    The United States Geological Survey was established on March 3, 1879, just a few hours before the mandatory close of the final session of the 45th Congress, when President Rutherford B. Hayes signed the bill appropriating money for sundry civil expenses of the Federal Government for the fiscal year beginning July 1, 1879. The sundry civil expenses bill included a brief section establishing a new agency, the United States Geological Survey, placing it in the Department of the Interior, and charging it with a unique combination of responsibilities: 'classification of the public lands, and examination of the geological structure, mineral resources, and products of the national domain.' The legislation stemmed from a report of the National Academy of Sciences, which in June 1878 had been asked by Congress to provide a plan for surveying the Territories of the United States that would secure the best possible results at the least possible cost. Its roots, however, went far back into the Nation's history. The first duty enjoined upon the Geological Survey by the Congress, the classification of the public lands, originated in the Land Ordinance of 1785. The original public lands were the lands west of the Allegheny Mountains claimed by some of the colonies, which became a source of contention in writing the Articles of Confederation until 1781 when the States agreed to cede their western lands to Congress. The extent of the public lands was enormously increased by the Louisiana Purchase in 1803 and later territorial acquisitions. At the beginning of Confederation, the decision was made not to hold the public lands as a capital asset, but to dispose of them for revenue and to encourage settlement. The Land Ordinance of 1785 provided the method of surveying and a plan for disposal of the lands, but also reserved 'one-third part of all gold, silver, lead, and copper mines to be sold or otherwise disposed of, as Congress shall thereafter direct,' thus implicitly requiring

  8. Geologic map of the Middletown quadrangle, Frederick, Shenandoah, and Warren Counties, Virginia

    USGS Publications Warehouse

    Orndorff, Randall C.; Epstein, Jack Burton; McDowell, Robert C.

    1999-01-01

    The Middletown 1:24,000-scale quadrangle is one of several quadrangles in Frederick County, Virginia mapped or being mapped by geologists from the U.S. Geological Survey in Reston, VA with funding from the National Cooperative Geologic Mapping Program. This map was originally published as a paper product in 1999. It has been converted to GIS-based digital form. This work is part of a project being lead by the U.S. Geological Survey Water Resources Discipline, Virginia District, to investigate the geologic framework and groundwater resources of Frederick County as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia. For more information about the Project see: http://geology.er.usgs.gov/eespteam/Karst/index.html for Geologic Discipline efforts and http://va.water.usgs.gov/va134/index.htm for Water Resources Discipline efforts.

  9. Mitigating the consequences of future earthquakes in historical centres: what perspectives from the joined use of past information and geological-geophysical surveys?

    NASA Astrophysics Data System (ADS)

    Terenzio Gizzi, Fabrizio; Moscatelli, Massimiliano; Potenza, Maria Rosaria; Zotta, Cinzia; Simionato, Maurizio; Pileggi, Domenico; Castenetto, Sergio

    2015-04-01

    To mitigate the damage effects of earthquakes in urban areas and particularly in historical centres prone to high seismic hazard is an important task to be pursued. As a matter of fact, seismic history throughout the world informs us that earthquakes have caused deep changes in the ancient urban conglomerations due to their high building vulnerability. Furthermore, some quarters can be exposed to an increase of seismic actions if compared with adjacent areas due to the geological and/or topographical features of the site on which the historical centres lie. Usually, the strategies aimed to estimate the local seismic hazard make only use of the geological-geophysical surveys. Thorough this approach we do not draw any lesson from what happened as a consequences of past earthquakes. With this in mind, we present the results of a joined use of historical data and traditional geological-geophysical approach to analyse the effects of possible future earthquakes in historical centres. The research activity discussed here is arranged into a joint collaboration between the Department of Civil Protection of the Presidency of Council of Ministers, the Institute of Environmental Geology and Geoengineering and the Institute of Archaeological and Monumental Heritage of the National (Italian) Research Council. In order to show the results, we discuss the preliminary achievements of the integrated study carried out on two historical towns located in Southern Apennines, a portion of the Italian peninsula exposed to high seismic hazard. Taking advantage from these two test sites, we also discuss some methodological implications that could be taken as a reference in the seismic microzonation studies.

  10. A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors

    PubMed Central

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467

  11. A theoretical model to predict both horizontal displacement and vertical displacement for electromagnetic induction-based deep displacement sensors.

    PubMed

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.

  12. Regional Geology Web Map Application Development: Javascript v2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Glenn

    This is a milestone report for the FY2017 continuation of the Spent Fuel, Storage, and Waste, Technology (SFSWT) program (formerly Used Fuel Disposal (UFD) program) development of the Regional Geology Web Mapping Application by the Idaho National Laboratory Geospatial Science and Engineering group. This application was developed for general public use and is an interactive web-based application built in Javascript to visualize, reference, and analyze US pertinent geological features of the SFSWT program. This tool is a version upgrade from Adobe FLEX technology. It is designed to facilitate informed decision making of the geology of continental US relevant to themore » SFSWT program.« less

  13. Geologic Assessment of Undiscovered Gas Resources of the Eastern Oregon and Washington Province

    USGS Publications Warehouse

    U.S. Geological Survey Eastern Oregon and Washington Province Assessment Team, (compiler)

    2008-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geology-based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States, focusing on the distribution, quantity, and availability of oil and natural gas resources. The USGS has completed an assessment of the undiscovered oil and gas potential of the Eastern Oregon and Washington Province of Oregon and Washington (USGS Province 5005). The province is a priority Energy Policy and Conservation Act (EPCA) province for the National Assessment because of its potential for oil and gas resources. The assessment of this province is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (stratigraphy, sedimentology, petrophysical properties), and hydrocarbon traps (trap formation and timing). In the Eastern Oregon and Washington Province, the USGS used this geologic framework to define one total petroleum system and two assessment units within the total petroleum system, and quantitatively estimated the undiscovered gas resources within each assessment unit.

  14. User's manual for the national water information system of the U.S. Geological Survey: Ground-water site-inventory system

    USGS Publications Warehouse

    ,

    2004-01-01

    The Ground-Water Site-Inventory (GWSI) System is a ground-water data storage and retrieval system that is part of the National Water Information System (NWIS) developed by the U.S. Geological Survey (USGS). The NWIS is a distributed water database in which data can be processed over a network of workstations and file servers at USGS offices throughout the United States. This system comprises the GWSI, the Automated Data Processing System (ADAPS), the Water-Quality System (QWDATA), and the Site-Specific Water-Use Data System (SWUDS). The GWSI System provides for entering new sites and updating existing sites within the local database. In addition, the GWSI provides for retrieving and displaying ground-water and sitefile data stored in the local database. Finally, the GWSI provides for routine maintenance of the local and national data records. This manual contains instructions for users of the GWSI and discusses the general operating procedures for the programs found within the GWSI Main Menu.

  15. User's Manual for the National Water Information System of the U.S. Geological Survey: Ground-water site-inventory system

    USGS Publications Warehouse

    ,

    2005-01-01

    The Ground-Water Site-Inventory (GWSI) System is a ground-water data storage and retrieval system that is part of the National Water Information System (NWIS) developed by the U.S. Geological Survey (USGS). The NWIS is a distributed water database in which data can be processed over a network of workstations and file servers at USGS offices throughout the United States. This system comprises the GWSI, the Automated Data Processing System (ADAPS), the Water-Quality System (QWDATA), and the Site- Specific Water-Use Data System (SWUDS). The GWSI System provides for entering new sites and updating existing sites within the local database. In addition, the GWSI provides for retrieving and displaying groundwater and Sitefile data stored in the local database. Finally, the GWSI provides for routine maintenance of the local and national data records. This manual contains instructions for users of the GWSI and discusses the general operating procedures for the programs found within the GWSI Main Menu.

  16. Geology of kilauea volcano

    USGS Publications Warehouse

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  17. The biodiversity of the deep Southern Ocean benthos.

    PubMed

    Brandt, A; De Broyer, C; De Mesel, I; Ellingsen, K E; Gooday, A J; Hilbig, B; Linse, K; Thomson, M R A; Tyler, P A

    2007-01-29

    Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae.

  18. The biodiversity of the deep Southern Ocean benthos

    PubMed Central

    Brandt, A; De Broyer, C; De Mesel, I; Ellingsen, K.E; Gooday, A.J; Hilbig, B; Linse, K; Thomson, M.R.A; Tyler, P.A

    2006-01-01

    Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae. PMID:17405207

  19. U.S. Geological Survey offshore program of resource and geo-environmental studies and topical investigations, Pacific-Arctic region

    USGS Publications Warehouse

    Scholl, David William

    1978-01-01

    The Geological Survey 's marine geology investigations in the Pacific-Arctic area are presented in this report in the context of the underlying socio-economic problem of expanding the domestic production of oil and gas and other mineral and hard- and soft-rock resources while maintaining acceptable standards in the marine environment. The primary mission of the Survey 's Pacific-Arctic Branch of Marine Geology is to provide scientifically interpreted information about the (1) resource potential, (2) geo-environmental setting, and (3) overall geologic characteristics of the continental margins (that is, the continental shelf, slope and rise) and adjacent deeper water and shallower coastal areas off California, Oregon, Washington, Alaska and Hawaii and also, where it is of interest to the U.S. Government, more remote deep-sea areas of the Pacific-Arctic realm. (Sinha-OEIS)

  20. Quantifying Conditions for Fault Self-Sealing in Geologic Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    McPherson, B. J. O. L.; Patil, V.; Moore, J.; Trujillo, E. M.

    2015-12-01

    Injecting anthropogenic CO2 into a subsurface reservoir for sequestration will impact the reservoir significantly, including its geochemistry, porosity and permeability. If a fault or fracture penetrates the reservoir, CO2-laden brine may migrate into that fault, eventually sealing it via precipitation or opening it up via dissolution. The goal of this study was to identify and quantify such conditions of fault self-sealing or self-enhancing. We found that the dimensionless Damköhler number (Da), the ratio of reaction rate to advection rate, provides a meaningful framework for characterizing the propensity of (fault) systems to seal or open up. We developed our own framework wherein Damköhler numbers evolve spatiotemporally as opposed to the traditional single Da value approach. Our approach enables us to use the Damköhler for characterization of complex multiphase and multimineral reactive transport problems. We applied this framework to 1D fault models with eight conditions derived from four geologic compositions and two reservoir conditions. The four­ geologic compositions were chosen such that three out of them were representative of distinct geologic end-members (sandstone, mudstone and dolomitic limestone) and one was a mixed composition based on an average of three end-member compositions. The two sets of P-T conditions chosen included one set corresponding to CO2 in a gaseous phase ("shallow conditions") and the other corresponding to supercritical phase CO2 ("deep conditions"). Simulation results suggest that fault sealing via carbonate precipitation was a possibility for shallow conditions within limestone and mixed composition settings. The concentration of cations in the water was found to be an important control on the carbonate precipitation. The deep conditions models did not forecast self-sealing via carbonates. Sealing via clay precipitation is a likely possibility, but the 1000 year time-frame may be short for such. Model results indicated a

  1. Geologic framework of thermal springs, Black Canyon, Nevada and Arizona

    USGS Publications Warehouse

    Beard, L. Sue; Anderson, Zachary W.; Felger, Tracey J.; Seixas, Gustav B.

    2014-01-01

    Thermal springs in Black Canyon of the Colorado River, downstream of Hoover Dam, are important recreational, ecological, and scenic features of the Lake Mead National Recreation Area. This report presents the results from a U.S. Geological Survey study of the geologic framework of the springs. The study was conducted in cooperation with the National Park Service and funded by both the National Park Service and National Cooperative Geologic Mapping Program of the U.S. Geological Survey. The report has two parts: A, a 1:48,000-scale geologic map created from existing geologic maps and augmented by new geologic mapping and geochronology; and B, an interpretive report that presents results based on a collection of fault kinematic data near springs within Black Canyon and construction of 1:100,000-scale geologic cross sections that extend across the western Lake Mead region. Exposures in Black Canyon are mostly of Miocene volcanic rocks, underlain by crystalline basement composed of Miocene plutonic rocks or Proterozoic metamorphic rocks. The rocks are variably tilted and highly faulted. Faults strike northwest to northeast and include normal and strike-slip faults. Spring discharge occurs along faults intruded by dacite dikes and plugs; weeping walls and seeps extend away from the faults in highly fractured rock or relatively porous volcanic breccias, or both. Results of kinematic analysis of fault data collected along tributaries to the Colorado River indicate two episodes of deformation, consistent with earlier studies. The earlier episode formed during east-northeast-directed extension, and the later during east-southeast-directed extension. At the northern end of the study area, pre-existing fault blocks that formed during the first episode were rotated counterclockwise along the left-lateral Lake Mead Fault System. The resulting fault pattern forms a complex arrangement that provides both barriers and pathways for groundwater movement within and around Black

  2. Geology of the Stegall Mountain 7.5-minute quadrangle, Shannon and Carter Counties, south-central Missouri

    USGS Publications Warehouse

    Harrison, Richard W.; Orndorff, Randall C.; Weary, David J.

    2002-01-01

    The bedrock exposed in the Stegall Mountain Quadrangle, Missouri, comprises Mesoproterozoic aged volcanic rocks overlain by Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they drape around knobs of the volcanic rocks or where they are adjacent to faults. The carbonates are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A National Park in this region (Ozark National Scenic Riverways, Missouri ) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the Parks to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for Park management. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html

  3. Petroleum geology of Campos Basin, Brazil: A successful case history of deep water exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, M.R.; Lugon, H.A.F.; Beraldo, W.L.

    1990-05-01

    Campos Basin, the most prolific Brazilian basin, produces almost 400,000 bbl of oil per day and contains 70% of the national reserves. The basin is located on the southeastern coast of Brazil, covering a prospectable area of 100,000 km{sup 2} Campos is a passive continental margin basin originated by the breakup of Pangea and the rifting of the South American and African plates in the Early Cretaceous. The basin's sedimentary section encompasses three megasequences: nonmarine, transitional, and marine, ranging in age from Neocomian to Holocene. Hydrocarbon generation is related to nonmarine organic-rich shales and marls, and hydrocarbon entrapment assumes ascendentmore » migration along fault planes and through salt gaps toward reservoirs ranging in age from Neocomian to Tertiary (mainly turbiditic sandstones). The first onshore stratigraphic well was drilled based on gravity surveys in 1958. The acquisition of new geophysical data, mainly seismic reflection data, followed after 1968. The first offshore well was drilled in 1971, and in 1974, the first oil field, Garopua, was discovered. Giant hydrocarbon accumulations have been discovered in water depths ranging from 400 to 1,800 m since 1984. As of mid-1989, 35 offshore oil fields have been discovered, 760 million bbl of oil, and 490 bcf of gas have been produced. The basin oil and equivalent gas reserves are estimated in 6.0 billion bbl, 60% of which is located in the deep-water giant oil fields.« less

  4. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, C.S.

    1983-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory.

  5. Two innovative pore pressure calculation methods for shallow deep-water formations

    NASA Astrophysics Data System (ADS)

    Deng, Song; Fan, Honghai; Liu, Yuhan; He, Yanfeng; Zhang, Shifeng; Yang, Jing; Fu, Lipei

    2017-11-01

    There are many geological hazards in shallow formations associated with oil and gas exploration and development in deep-water settings. Abnormal pore pressure can lead to water flow and gas and gas hydrate accumulations, which may affect drilling safety. Therefore, it is of great importance to accurately predict pore pressure in shallow deep-water formations. Experience over previous decades has shown, however, that there are not appropriate pressure calculation methods for these shallow formations. Pore pressure change is reflected closely in log data, particularly for mudstone formations. In this paper, pore pressure calculations for shallow formations are highlighted, and two concrete methods using log data are presented. The first method is modified from an E. Philips test in which a linear-exponential overburden pressure model is used. The second method is a new pore pressure method based on P-wave velocity that accounts for the effect of shallow gas and shallow water flow. Afterwards, the two methods are validated using case studies from two wells in the Yingqiong basin. Calculated results are compared with those obtained by the Eaton method, which demonstrates that the multi-regression method is more suitable for quick prediction of geological hazards in shallow layers.

  6. Geology of the Payette National Forest and vicinity, west-central Idaho

    USGS Publications Warehouse

    Lund, Karen

    2005-01-01

    Before the Late Cretaceous, the eastern and western parts of the geologically complex Payette National Forest, as divided by the Salmon River suture, had fundamentally different geologic histories. The eastern part is underlain by Mesoproterozoic to Cambrian(?) rocks of the Laurentian (Precambrian North American) continent. Thick Mesopro-terozoic units, which are at least in part equivalent in age to the Belt Supergroup of northern Idaho and western Montana, underwent Mesoproterozoic metamorphic and deformational events, including intrusion of Mesoproterozoic plutons. Dur-ing the Neoproterozoic to early Paleozoic, the western edge of Laurentia was rifted. This event included magmatism and resulted in deposition of rift-related Neoproterozoic to Lower Cambrian(?) volcanic and sedimentary rocks above Mesopro-terozoic rocks. The western part of the forest is underlain by upper Paleozoic to lower Mesozoic island-arc volcanic and sedimentary rocks. These rocks comprise four recognized island-arc terranes that were amalgamated and intruded by intermediate-composition plutons, probably in the Late Juras-sic and Early Cretaceous, and then sutured to Laurentia along the Salmon River suture in the Late Cretaceous. The Salmon River suture formed as a right-lateral, transpressive fault. The metamorphic grade and structural complexity of the rocks increase toward the suture from both sides, and geochemical signatures in crosscutting plutonic rocks abruptly differ across the crustal boundary. Having been reactivated by younger structures, the Salmon River suture forms a north-trending topographic depression along Long Valley, through McCall, to the Goose Creek and French Creek drainages. During the last stages of metamorphism and deformation related to the suture event, voluminous plutons of the Idaho batholith were intruded east of the suture. An older plutonic series is intermediate in composition and preserved as elon-gated and deformed bodies near the suture and as parts of

  7. Spatial distribution of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems.

    PubMed

    Takai, Ken; Oida, Hanako; Suzuki, Yohey; Hirayama, Hisako; Nakagawa, Satoshi; Nunoura, Takuro; Inagaki, Fumio; Nealson, Kenneth H; Horikoshi, Koki

    2004-04-01

    Distribution profiles of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems were mapped with culture-independent molecular techniques. Planktonic samples were obtained from the waters surrounding two geographically and geologically distinct hydrothermal systems, and the abundance of marine crenarchaeota group I was examined by 16S ribosomal DNA clone analysis, quantitative PCR, and whole-cell fluorescence in situ hybridization. A much higher proportion of marine crenarchaeota group I within the microbial community was detected in deep-sea hydrothermal environments than in normal deep and surface seawaters. The highest proportion was always obtained from the ambient seawater adjacent to hydrothermal emissions and chimneys but not from the hydrothermal plumes. These profiles were markedly different from the profiles of epsilon-Proteobacteria, which are abundant in the low temperatures of deep-sea hydrothermal environments.

  8. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography. [474 references

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, J.M.; Garland, P.A.; White, M.B.

    This bibliography, a compilation of 474 references, is the fourth in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base was created for the Grand Junction Office of the Department of Energy's National Uranium Resource Evaluation Project by the Ecological Sciences Information Center, Oak Ridge National Laboratory. The references in the bibliography are arranged by subject category: (1) geochemistry, (2) exploration, (3) mineralogy, (4) genesis of deposits, (5) geology of deposits, (6) uranium industry, (7) geology of potential uranium-bearing areas, and (8) reserves and resources. The references are indexed by author, geographic location,more » quadrangle name, geoformational feature, and keyword.« less

  9. Boundary|Time|Surface: Art and Geology Meet in Gros Morne National Park, NL, Canada

    NASA Astrophysics Data System (ADS)

    Lancaster, Sydney; Waldron, John

    2015-04-01

    Environmental Art works range in scope from major permanent interventions in the landscape to less intrusive, more ephemeral site-specific installations constructed of materials from the local environment. Despite this range of intervention, however, these works all share in a tradition of art making that situates the artwork in direct response to the surrounding landscape. Andy Goldsworthy and Richard Long, for example, both favour methods that combine elements of both sculpture and performance in the creation of non-permanent interventions in the landscape, and both rely upon photographic, text-based, or video documentation as the only lasting indication of the works' existence. Similarly, Earth Scientists are responsible for interventions in the landscape, both physical and conceptual. For example, in Earth science, the periods of the geologic timescale - Cambrian, Ordovician, Silurian, etc. - were established by 19th century pioneers of geology at a time when they were believed to represent natural chapters in Earth history. Since the mid-20th century, stratigraphers have attempted to resolve ambiguities in the original definitions by defining stratotypes: sections of continuously deposited strata where a single horizon is chosen as a boundary. One such international stratotype, marking the Cambrian-Ordovician boundary, is defined at Green Point in Gros Morne National Park, Newfoundland. Boundary|Time|Surface was an ephemeral sculptural installation work constructed in June 2014. The main installation work was a fence of 52 vertical driftwood poles, 2-3 m tall, positioned precisely along the boundary stratotype horizon at Green Point in Newfoundland. The fence extended across a 150 m wave-cut platform from sea cliffs to the low-water mark, separating Ordovician from Cambrian strata. The installation was constructed by hand (with volunteer assistance) on June 22, as the wave-cut platform was exposed by the falling tide. During the remainder of the tidal cycle

  10. Water Challenges for Geologic Carbon Capture and Sequestration

    PubMed Central

    Friedmann, Samuel J.; Carroll, Susan A.

    2010-01-01

    Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utilization and the “capture penalty” for water use. At depth, brine displacement within formations, storage reservoir pressure increases resulting from injection, and leakage are potential concerns. Potential impacts range from increasing water demand for capture to contamination of groundwater through leakage or brine displacement. Understanding these potential impacts and the conditions under which they arise informs the design and implementation of appropriate monitoring and controls, important both for assurance of environmental safety and for accounting purposes. Potential benefits also exist, such as co-production and treatment of water to both offset reservoir pressure increase and to provide local water for beneficial use. PMID:20127328

  11. 75 FR 39272 - Call for Nominations to the National Geospatial Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... DEPARTMENT OF THE INTERIOR U.S. Geological Survey Call for Nominations to the National Geospatial Advisory Committee AGENCY: U.S. Geological Survey, Interior. ACTION: Call for Nominations, National... mail to John Mahoney, U.S. Geological Survey, U.S. Department of the Interior, 909 First Avenue, Suite...

  12. 76 FR 69761 - National Earthquake Prediction Evaluation Council (NEPEC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... DEPARTMENT OF THE INTERIOR U.S. Geological Survey National Earthquake Prediction Evaluation... 96-472, the National Earthquake Prediction Evaluation Council (NEPEC) will hold a 1\\1/2\\-day meeting.... Geological Survey on proposed earthquake predictions, on the completeness and scientific validity of the...

  13. New insight on the paleoproterozoic evolution of the São Francisco Craton: Reinterpretation of the geology, the suture zones and the thicknesses of the crustal blocks using geophysical and geological data

    NASA Astrophysics Data System (ADS)

    Sampaio, Edson E. S.; Barbosa, Johildo S. F.; Correa-Gomes, Luiz C.

    2017-07-01

    The Archean-Paleoproterozoic Jequié (JB) and Itabuna-Salvador-Curaçá (ISCB) blocks and their tectonic transition zone in the Valença region, Bahia, Brazil are potentially important for ore deposits, but the geological knowledge of the area is still meager. The paucity of geological information restricts the knowledge of the position and of the field characteristics of the tectonic suture zone between these two crustal segments JB and ISCB. Therefore, interpretation of geophysical data is necessary to supplement the regional structural and petrological knowledge of the area as well as to assist mining exploration programs. The analysis of the airborne radiometric and magnetic data of the region has established, respectively, five radiometric domains and five magnetic zones. Modeling of a gravity profile has defined the major density contrasts of the deep structures. The integrated interpretation of the geophysical data fitted to the known geological information substantially improved the suture zone (lower plate JB versus upper plate ISCB) delimitation, the geological map of the area and allowed to estimate the thicknesses of these two blocks, and raised key questions about the São Francisco Craton tectonic evolution.

  14. Studies by the U.S. Geological Survey in Alaska, 2007

    USGS Publications Warehouse

    Haeussler, Peter J.; Galloway, John P.

    2009-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of 'online only' versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  15. Studies by the U.S. Geological Survey in Alaska, 2004

    USGS Publications Warehouse

    Haeussler, Peter J.; Galloway, John P.

    2005-01-01

    The collection of six papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is the first 'online only' version of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  16. Studies by the U.S. Geological Survey in Alaska, 2011

    USGS Publications Warehouse

    Dumoulin, Julie A.; Dusel-Bacon, Cynthia

    2012-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of "online only" versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  17. A Geology Sampling System for Small Bodies

    NASA Technical Reports Server (NTRS)

    Hood, A. D.; Naids, A. J.; Graff, T.; Abell, P.

    2015-01-01

    Human exploration of Small Bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this Small Bodies category and some are being discussed as potential mission tar-gets. Obtaining geological samples for return to Earth will be a major objective for any mission to a Small Body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Furthermore, humans interacting with non-engineered surfaces in a microgravity environment poses unique challenges. In preparation for such missions, a team at the National Aeronautics and Space Administration (NASA) John-son Space Center (JSC) has been working to gain experience on how to safely obtain numerous sample types in such an environment. This abstract briefly summarizes the type of samples the science community is interested in, discusses an integrated geology sampling solution, and highlights some of the unique challenges associated with this type of exploration.

  18. Predictive modeling of terrestrial radiation exposure from geologic materials

    NASA Astrophysics Data System (ADS)

    Haber, Daniel A.

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials in an area by creating a model using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low spatial resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas, referred to as background radiation units, homogenous in terms of K, U, and Th are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by our partner National Security Technologies, LLC (NSTec), allowing for the refinement of the technique. High resolution radiation exposure rate models have been developed for two study areas in Southern Nevada that include the alluvium on the western shore of Lake Mohave, and Government Wash north of Lake Mead; both of these areas are arid with little soil moisture and vegetation. We determined that by using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide radiation background units of alluvium, regions of homogeneous geochemistry can be defined allowing for the exposure rate to be predicted. Soil and rock samples have been collected at Government Wash and Lake Mohave as well as a third site near Cameron, Arizona. K, U, and Th concentrations of these samples have been determined using inductively coupled mass spectrometry (ICP-MS) and laboratory counting using radiation detection equipment. In addition, many sample locations also have

  19. U.S. Geological Survey Water science strategy--observing, understanding, predicting, and delivering water science to the nation

    USGS Publications Warehouse

    Evenson, Eric J.; Orndorff, Randall C.; Blome, Charles D.; Böhlke, John Karl; Hershberger, Paul K.; Langenheim, V.E.; McCabe, Gregory J.; Morlock, Scott E.; Reeves, Howard W.; Verdin, James P.; Weyers, Holly S.; Wood, Tamara M.

    2013-01-01

    This report expands the Water Science Strategy that began with the USGS Science Strategy, “Facing Tomorrow’s Challenges—U.S. Geological Survey Science in the Decade 2007–2017” (U.S. Geological Survey, 2007). This report looks at the relevant issues facing society and develops a strategy built around observing, understanding, predicting, and delivering water science for the next 5 to 10 years by building new capabilities, tools, and delivery systems to meet the Nation’s water-resource needs. This report begins by presenting the vision of water science for the USGS and the societal issues that are influenced by, and in turn influence, the water resources of our Nation. The essence of the Water Science Strategy is built on the concept of “water availability,” defined as spatial and temporal distribution of water quantity and quality, as related to human and ecosystem needs, as affected by human and natural influences. The report also describes the core capabilities of the USGS in water science—the strengths, partnerships, and science integrity that the USGS has built over its 134-year history. Nine priority actions are presented in the report, which combine and elevate the numerous specific strategic actions listed throughout the report. Priority actions were developed as a means of providing the audience of this report with a list for focused attention, even if resources and time limit the ability of managers to address all of the strategic actions in the report.

  20. United States Geological Survey, programs in Nevada

    USGS Publications Warehouse

    ,

    1995-01-01

    The U.S. Geological Survey (USGS) has been collecting and interpreting natural-resources data in Nevada for more than 100 years. This long-term commitment enables planners to manage better the resources of a State noted for paradoxes. Although Nevada is one of the most sparsely populated States in the Nation, it has the fastest growing population (fig. 1). Although 90 percent of the land is rural, it is the fourth most urban State. Nevada is the most arid State and relies heavily on water resources. Historically, mining and agriculture have formed the basis of the economy; now tourism and urban development also have become important. The USGS works with more than 40 local, State, and other Federal agencies in Nevada to provide natural-resources information for immediate and long-term decisions.Subjects included in this fact sheet:Low-Level Radioactive-Waste DisposalMining and Water in the Humboldt BasinAquifer Systems in the Great BasinWater Allocation in Truckee and Carson BasinsNational Water-Quality Assessment ProgramMinerals Assessment for Land ManagementIrrigation DrainageGround-Water Movement at Nevada Test SiteOil and Gas ResourcesNational Mapping ProgramDigital Mapping and Aerial PhotographyCollection of Hydrologlc DataGeologic MappingEarthquake HazardsAssessing Mineral Resources of the SubsurfaceEarth Observation DataCooperative Programs

  1. U.S. Geological Survey Information Sources

    USGS Publications Warehouse

    ,

    2000-01-01

    As the nation's largest water, earth and biological science and civilian mapping agency, the U.S. Geological Survey (USGS) works in cooperation with more than 2000 organizations across the country to provide reliable, impartial, scientific information to resource managers, planners, and other customers. This information is gathered in every state by USGS scientists to minimize the loss of life and property from natural disasters, to contribute to the conservation and the sound economic and physical development of the nation's natural resources, and to enhance the quality of life by monitoring water, biological, energy and mineral resources.

  2. U.S. Geological Survey Information Sources

    USGS Publications Warehouse

    ,

    2001-01-01

    As the Nation's largest water, earth, and biological science and civilian mapping agency, the U.S. Geological Survey (USGS) works in cooperation with more than 2,000 organizations across the country to provide reliable, impartial scientific information to resource managers, planners, and other customers. This information is gathered in every State by USGS scientists to minimize the loss of life and property from natural disasters, to contribute to the conservation and the sound economic and physical development of the Nation's natural resources, and to enhance the quality of life by monitoring water, biological, energy, and mineral resources

  3. A Comprehensive Study of Cyanobacterial Morphological and Ecological Evolutionary Dynamics through Deep Geologic Time.

    PubMed

    Uyeda, Josef C; Harmon, Luke J; Blank, Carrine E

    2016-01-01

    Cyanobacteria have exerted a profound influence on the progressive oxygenation of Earth. As a complementary approach to examining the geologic record-phylogenomic and trait evolutionary analyses of extant species can lead to new insights. We constructed new phylogenomic trees and analyzed phenotypic trait data using novel phylogenetic comparative methods. We elucidated the dynamics of trait evolution in Cyanobacteria over billion-year timescales, and provide evidence that major geologic events in early Earth's history have shaped-and been shaped by-evolution in Cyanobacteria. We identify a robust core cyanobacterial phylogeny and a smaller set of taxa that exhibit long-branch attraction artifacts. We estimated the age of nodes and reconstruct the ancestral character states of 43 phenotypic characters. We find high levels of phylogenetic signal for nearly all traits, indicating the phylogeny carries substantial predictive power. The earliest cyanobacterial lineages likely lived in freshwater habitats, had small cell diameters, were benthic or sessile, and possibly epilithic/endolithic with a sheath. We jointly analyzed a subset of 25 binary traits to determine whether rates of trait evolution have shifted over time in conjunction with major geologic events. Phylogenetic comparative analysis reveal an overriding signal of decreasing rates of trait evolution through time. Furthermore, the data suggest two major rate shifts in trait evolution associated with bursts of evolutionary innovation. The first rate shift occurs in the aftermath of the Great Oxidation Event and "Snowball Earth" glaciations and is associated with decrease in the evolutionary rates around 1.8-1.6 Ga. This rate shift seems to indicate the end of a major diversification of cyanobacterial phenotypes-particularly related to traits associated with filamentous morphology, heterocysts and motility in freshwater ecosystems. Another burst appears around the time of the Neoproterozoic Oxidation Event in

  4. A Comprehensive Study of Cyanobacterial Morphological and Ecological Evolutionary Dynamics through Deep Geologic Time

    PubMed Central

    Harmon, Luke J.; Blank, Carrine E.

    2016-01-01

    Cyanobacteria have exerted a profound influence on the progressive oxygenation of Earth. As a complementary approach to examining the geologic record—phylogenomic and trait evolutionary analyses of extant species can lead to new insights. We constructed new phylogenomic trees and analyzed phenotypic trait data using novel phylogenetic comparative methods. We elucidated the dynamics of trait evolution in Cyanobacteria over billion-year timescales, and provide evidence that major geologic events in early Earth’s history have shaped—and been shaped by—evolution in Cyanobacteria. We identify a robust core cyanobacterial phylogeny and a smaller set of taxa that exhibit long-branch attraction artifacts. We estimated the age of nodes and reconstruct the ancestral character states of 43 phenotypic characters. We find high levels of phylogenetic signal for nearly all traits, indicating the phylogeny carries substantial predictive power. The earliest cyanobacterial lineages likely lived in freshwater habitats, had small cell diameters, were benthic or sessile, and possibly epilithic/endolithic with a sheath. We jointly analyzed a subset of 25 binary traits to determine whether rates of trait evolution have shifted over time in conjunction with major geologic events. Phylogenetic comparative analysis reveal an overriding signal of decreasing rates of trait evolution through time. Furthermore, the data suggest two major rate shifts in trait evolution associated with bursts of evolutionary innovation. The first rate shift occurs in the aftermath of the Great Oxidation Event and “Snowball Earth” glaciations and is associated with decrease in the evolutionary rates around 1.8–1.6 Ga. This rate shift seems to indicate the end of a major diversification of cyanobacterial phenotypes–particularly related to traits associated with filamentous morphology, heterocysts and motility in freshwater ecosystems. Another burst appears around the time of the Neoproterozoic

  5. James Hutton's Geological Tours of Scotland: Romanticism, Literary Strategies, and the Scientific Quest

    NASA Astrophysics Data System (ADS)

    Furniss, Tom

    2014-03-01

    Rather than focussing on the relationship between science and literature, this article attempts to read scientific writing as literature. It explores a somewhat neglected element of the story of the emergence of geology in the late eighteenth century—James Hutton's unpublished accounts of the tours of Scotland that he undertook in the years 1785-1788 in search of empirical evidence for his theory of the earth. Attention to Hutton's use of literary techniques and conventions highlights the ways these texts dramatise the journey of scientific discovery and allow Hutton's readers to imagine that they were virtual participants in the geological quest, conducted by a savant whose self-fashioning made him a reliable guide through Scotland's geomorphology and the landscapes of deep time.

  6. Synthetic geology - Exploring the "what if?" in geology

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  7. What are parasitologists doing in the United States Geological Survey?

    USGS Publications Warehouse

    Cole, Rebecca A.

    2002-01-01

    The United States Geological Survey (USGS) was formed in 1879 as the nation's primary natural science and information agency. The mission of the agency is to provide scientific information to a??describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life.a?? Prior to 1996, the USGS comprised 3 divisions or disciplines: geology, mapping, and water. Historically, the agency was most noted for cartographic products that were used widely by both government and private sector. With the inclusion of the National Biological Service into the USGS in 1996 as the Biological Resource Discipline (BRD), a living resources dimension was added to the earth sciences character of the USGS. With the addition of BRD, the bureau is able now to contribute both the physical and biological sciences to address the nation's resource management problems.

  8. Geology of Mount Rainier National Park, Washington

    USGS Publications Warehouse

    Fiske, Richard S.; Hopson, Clifford Andrae; Waters, Aaron Clement

    1963-01-01

    Mount Rainier National Park includes 378 square miles of rugged terrain on the west slope of the Cascade Mountains in central Washington. Its mast imposing topographic and geologic feature is glacier-clad Mount Rainier. This volcano, composed chiefly of flows of pyroxene andesite, was built upon alt earlier mountainous surface, carved from altered volcanic and sedimentary rocks invaded by plutonic and hypabyssal igneous rocks of great complexity. The oldest rocks in the park area are those that make up the Olmnapecosh Formation of late Eocene age. This formation is more than 10,000 feet thick, and consists almost entirely of volcanic debris. It includes some lensoid accumulations of lava and coarse mudflows, heaped around volcanic centers., but these are surrounded by vastly greater volumes of volcanic clastic rocks, in which beds of unstratified coarse tuff-breccia, about 30 feet in average thickness, alternate with thin-bedded breccias, sandstones, and siltstones composed entirely of volcanic debris. The coarser tuff-breccias were probably deposited from subaqueous volcanic mudflows generated when eruption clouds were discharged directly into water, or when subaerial ash flows and mudflows entered bodies of water. The less mobile mudflows and viscous lavas built islands surrounded by this sea of thinner bedded water-laid clastics. In compostion the lava flows and coarse lava fragments of the Ohanapecosh Formation are mostly andesite, but they include less abundant dacite, basalt, and rhyolite. The Ohanapecosh Formation was folded, regionally altered to minerals characteristic of the zeolite facies of metamorphism, uplifted, and deeply eroded before the overlying Stevens Ridge Formation of Oligocene or early Miocene age was deposited upon it. The Stevens Ridge rocks, which are about 3,000 feet in maximum total thickness, consist mainly of massive ash flows. These are now devitrified and altered, but they originally consisted of rhyodacite pumice lapilli and glass

  9. Records and history of the United States Geological Survey

    USGS Publications Warehouse

    Nelson, Clifford M.

    2000-01-01

    This publication contains two presentations in Portable Document Format (PDF). The first is Renee M. Jaussaud's inventory of the documents accessioned by the end of 1997 into Record Group 57 (Geological Survey) at the National Archives and Records Administration's (NARA) Archives II facility in College Park, Md., but not the materials in NARA's regional archives. The second is Mary C. Rabbitt's 'The United States Geological Survey 1879-1989,' which appeared in 1989 as USGS Circular 1050. Additionally, USGS Circular 1050 is also presented in Hyper Text Markup Language (HTML) format.

  10. User's manual for the National Water Information System of the U.S. Geological Survey: Automated Data Processing System (ADAPS)

    USGS Publications Warehouse

    ,

    2003-01-01

    The Automated Data Processing System (ADAPS) was developed for the processing, storage, and retrieval of water data, and is part of the National Water Information System (NWIS) developed by the U.S. Geological Survey. NWIS is a distributed water database in which data can be processed over a network of computers at U.S. Geological Survey offices throughout the United States. NWIS comprises four subsystems: ADAPS, the Ground-Water Site Inventory System (GWSI), the Water-Quality System (QWDATA), and the Site-Specific Water-Use Data System (SWUDS). This section of the NWIS User's Manual describes the automated data processing of continuously recorded water data, which primarily are surface-water data; however, the system also allows for the processing of water-quality and ground-water data. This manual describes various components and features of the ADAPS, and provides an overview of the data processing system and a description of the system framework. The components and features included are: (1) data collection and processing, (2) ADAPS menus and programs, (3) command line functions, (4) steps for processing station records, (5) postprocessor programs control files, (6) the standard format for transferring and entering unit and daily values, and (7) relational database (RDB) formats.

  11. Practical modeling approaches for geological storage of carbon dioxide.

    PubMed

    Celia, Michael A; Nordbotten, Jan M

    2009-01-01

    The relentless increase of anthropogenic carbon dioxide emissions and the associated concerns about climate change have motivated new ideas about carbon-constrained energy production. One technological approach to control carbon dioxide emissions is carbon capture and storage, or CCS. The underlying idea of CCS is to capture the carbon before it emitted to the atmosphere and store it somewhere other than the atmosphere. Currently, the most attractive option for large-scale storage is in deep geological formations, including deep saline aquifers. Many physical and chemical processes can affect the fate of the injected CO2, with the overall mathematical description of the complete system becoming very complex. Our approach to the problem has been to reduce complexity as much as possible, so that we can focus on the few truly important questions about the injected CO2, most of which involve leakage out of the injection formation. Toward this end, we have established a set of simplifying assumptions that allow us to derive simplified models, which can be solved numerically or, for the most simplified cases, analytically. These simplified models allow calculation of solutions to large-scale injection and leakage problems in ways that traditional multicomponent multiphase simulators cannot. Such simplified models provide important tools for system analysis, screening calculations, and overall risk-assessment calculations. We believe this is a practical and important approach to model geological storage of carbon dioxide. It also serves as an example of how complex systems can be simplified while retaining the essential physics of the problem.

  12. OneGeology - improving access to geoscience globally

    NASA Astrophysics Data System (ADS)

    Jackson, Ian; Asch, Kristine; Tellez-Arenas, Agnès.; Komac, Marko; Demicheli, Luca

    2010-05-01

    The OneGeology concept originated in early 2006. With the potential stimulus of the International Year of Planet Earth (IYPE) very much in mind, the challenge was: could we use IYPE to begin the creation of an interoperable digital geological dataset of the planet? Fourteen months later on the concept was unanimously endorsed by 83 representatives of the international geoscience community at a meeting in Brighton, UK, and goals were set to for a global launch at the 33rd IGC in Oslo in August 2008. The goals that the Brighton meeting agreed for OneGeology were deceptively simple. They were to: • improve the accessibility of geological map data • exchange know-how and skills so that all nations could participate • accelerate interoperability in the geosciences and the take up of a new "standard" (GeoSciML) At the time of writing (January 2010) there are 113 countries participating in OneGeology, more than 40 of which are serving data using a web map portal and protocols, registries and technology to "harvest" and serve data from around the world. An essential part of the development of OneGeology has been the exchange of know-how and provision of guidance and support so that any geological survey can participate and serve their data. The team have also moved forward and raised the profile of a crucial data model and interoperability standard - GeoSciML, which will allow geoscience data to be shared across the globe. OneGeology is coordinated through a two-part "hub" - a Secretariat based at the British Geological Survey (BGS), and the portal technology and servers provided by the French geological survey (BRGM). The "hub" is guided and supported by two international groups - the Operational Management Group (OMG) and the Technical Working Group (TWG). A Steering Group to provide strategic guidance for OneGeology and comprising geological survey directors representing the six continents was formed at the end of 2008. The Steering Group are now looking at

  13. 10 CFR 51.67 - Environmental information concerning geologic repositories.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Environmental information concerning geologic repositories. 51.67 Section 51.67 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND RELATED REGULATORY FUNCTIONS National Environmental Policy Act...

  14. First glimpse into Lower Jurassic deep-sea biodiversity: in situ diversification and resilience against extinction

    PubMed Central

    Thuy, Ben; Kiel, Steffen; Dulai, Alfréd; Gale, Andy S.; Kroh, Andreas; Lord, Alan R.; Numberger-Thuy, Lea D.; Stöhr, Sabine; Wisshak, Max

    2014-01-01

    Owing to the assumed lack of deep-sea macrofossils older than the Late Cretaceous, very little is known about the geological history of deep-sea communities, and most inference-based hypotheses argue for repeated recolonizations of the deep sea from shelf habitats following major palaeoceanographic perturbations. We present a fossil deep-sea assemblage of echinoderms, gastropods, brachiopods and ostracods, from the Early Jurassic of the Glasenbach Gorge, Austria, which includes the oldest known representatives of a number of extant deep-sea groups, and thus implies that in situ diversification, in contrast to immigration from shelf habitats, played a much greater role in shaping modern deep-sea biodiversity than previously thought. A comparison with coeval shelf assemblages reveals that, at least in some of the analysed groups, significantly more extant families/superfamilies have endured in the deep sea since the Early Jurassic than in the shelf seas, which suggests that deep-sea biota are more resilient against extinction than shallow-water ones. In addition, a number of extant deep-sea families/superfamilies found in the Glasenbach assemblage lack post-Jurassic shelf occurrences, implying that if there was a complete extinction of the deep-sea fauna followed by replacement from the shelf, it must have happened before the Late Jurassic. PMID:24850917

  15. Bibliography of Regional Aquifer-System Analysis Program of the US Geological Survey, 1978-91

    USGS Publications Warehouse

    Sun, Ren Jen; Weeks, John B.

    1991-01-01

    The Regional Aquifer-System Analysis (RASA) Program of the U.S. Geological Survey was initiated in 1978. The purpose of this program is to define the regional geohydrology and establish a framework of background information on geology, hydrology, and geochemistry of the Nation's important aquifer systems. This information is critically needed to develop an understanding of the Nation's major ground-water flow systems and to support better management of ground-water resources.As of May 1991, 28 of the Nation's major aquifer systems have been identified for study under this program. Of these, 17 regional aquifer-system studies have been completed, and 8 studies are ongoing. Starting in 1988, the program devoted part of its resources to compilation of a Nationwide ground-water atlas that presents a comprehensive summary of the Nation's major ground-water resources. The atlas, which is designed in a graphical format supported by descriptive text, will serve as a basic reference for the location, geography, geology, and hydrologic characteristics of the major aquifers in the Nation.This bibliography lists the published 876 reports resulting from various studies of the program, from 1978 through May 1991. The list of reports for each study is placed after a brief description of that study.

  16. Deep Crustal Melting and the Survival of Continental Crust

    NASA Astrophysics Data System (ADS)

    Whitney, D.; Teyssier, C. P.; Rey, P. F.; Korchinski, M.

    2017-12-01

    Plate convergence involving continental lithosphere leads to crustal melting, which ultimately stabilizes the crust because it drives rapid upward flow of hot deep crust, followed by rapid cooling at shallow levels. Collision drives partial melting during crustal thickening (at 40-75 km) and/or continental subduction (at 75-100 km). These depths are not typically exceeded by crustal rocks that are exhumed in each setting because partial melting significantly decreases viscosity, facilitating upward flow of deep crust. Results from numerical models and nature indicate that deep crust moves laterally and then vertically, crystallizing at depths as shallow as 2 km. Deep crust flows en masse, without significant segregation of melt into magmatic bodies, over 10s of kms of vertical transport. This is a major mechanism by which deep crust is exhumed and is therefore a significant process of heat and mass transfer in continental evolution. The result of vertical flow of deep, partially molten crust is a migmatite dome. When lithosphere is under extension or transtension, the deep crust is solicited by faulting of the brittle upper crust, and the flow of deep crust in migmatite domes traverses nearly the entire thickness of orogenic crust in <10 million years. This cycle of burial, partial melting, rapid ascent, and crystallization/cooling preserves the continents from being recycled into the mantle by convergent tectonic processes over geologic time. Migmatite domes commonly preserve a record of high-T - low-P metamorphism. Domes may also contain rocks or minerals that record high-T - high-P conditions, including high-P metamorphism broadly coeval with host migmatite, evidence for the deep crustal origin of migmatite. There exists a spectrum of domes, from entirely deep-sourced to mixtures of deep and shallow sources. Controlling factors in deep vs. shallow sources are relative densities of crustal layers and rate of extension: fast extension (cm/yr) promotes efficient

  17. Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Allen, C.C.; Oehler, D.Z.; Baker, D.M.

    2009-01-01

    Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes.

  18. Geologic resource evaluation of Pu‘ukoholā Heiau National Historic Site, Hawai‘i, part II: Benthic habitat mapping

    USGS Publications Warehouse

    Cochran, Susan A.; Gibbs, Ann E.; Logan, Joshua B.

    2006-01-01

    In cooperation with the U.S. National Park Service (NPS), the U.S. Geological Survey (USGS) has mapped the underwater environment in and adjacent to three parks along the Kona coast on the island of Hawai‘i. This report is the second of two produced for the NPS on the geologic resource evaluation of Pu‘ukoholā Heiau National Historic Site (PUHE) and presents benthic habitat mapping of the waters of Kawaihae Bay offshore of PUHE. See Part I (Richmond and others, 2006) for an overview of the regional geology, local volcanics, and a detailed description of coastal landforms in the park. PUHE boundaries do not officially extend into the marine environment; however, impacts downslope of any activity in the park are of concern to management. The area of Kawaihae Bay mapped for this report extends from the north edge of the U.S. Coast Guard Reservation north of Kawaihae Harbor approximately 3.5 km south to the north edge of the Mauna Kea Golf Course and Beach Resort at Waikoloa and from the shoreline to depths of approximately 40 m (130 ft), where the fore reef drops off to the sandy shelf. The waters of smaller Pelekane Bay directly offshore of the park, while not formally under NPS jurisdiction, are managed by the park under an agreement with the State. This embayment is described in greater detail because of its special resource status. PUHE lies within the Kawaihae watershed, which contributes ~75 percent of the drainage in the northern portion of the study area; the Waikoloa/Waiulaula watershed contributes ~25 percent in the southern portion of the study area. Drainages from these watersheds into the study area include Makahuna, Makeāhua, Pohaukole, Kukui, and Waikoloa/Waiulaula Gulches. The Waikoloa/Waiulaula Gulch is the only perennial stream with a year-round water flow. Only during periods of extreme rainfall will water flow in the Makeāhua and Pohaukole gulches, merge together in the park, and empty directly into Pelekane Bay. In the late 1950s the reef

  19. Identifying pathways for sanitary sewer pathogens to reach deep water supply wells in Madison, Wisconsin

    USDA-ARS?s Scientific Manuscript database

    Previous work conducted by the Wisconsin Geological and Natural History Survey indicated that human enteric viruses from leaking sewers are present in several municipal wells in Madison, WI. These wells are the drinking water source for the City of Madison, are typically 700 to 900 feet deep, and pe...

  20. Carbon dioxide (CO2) sequestration in deep saline aquifers and formations: Chapter 3

    USGS Publications Warehouse

    Rosenbauer, Robert J.; Thomas, Burt

    2010-01-01

    Carbon dioxide (CO2) capture and sequestration in geologic media is one among many emerging strategies to reduce atmospheric emissions of anthropogenic CO2. This chapter looks at the potential of deep saline aquifers – based on their capacity and close proximity to large point sources of CO2 – as repositories for the geologic sequestration of CO2. The petrochemical characteristics which impact on the suitability of saline aquifers for CO2 sequestration and the role of coupled geochemical transport models and numerical tools in evaluating site feasibility are also examined. The full-scale commercial CO2 sequestration project at Sleipner is described together with ongoing pilot and demonstration projects.

  1. Field/Lab Training Workshops in Planetary Geology and Astrobiology for Secondary School Teachers

    NASA Astrophysics Data System (ADS)

    Treiman, A.; Newsom, H.; Hoehler, T.; Tsairides, C.; Karlstrom, K.; Crossey, L.; Kiefer, W.; Kadel, S.; Garcia-Pichel, F.; Aubele, J.; Crumpler, L.

    2003-12-01

    Thematic field-lab-classroom workshops can be successful in training secondary teachers in planetary geology and astrobiology, from the LPI's 4 years experience. A typical workshop includes ˜4 days of field study and ˜3 days of related classroom/lab lectures and exercises. Up to 30 teachers have participated at once, and the staff averages 5 researchers and educators. The 2003 workshop, The Great Desert, focused on geology and life in the Colorado Plateau as analogs for Mars. Specific emphases were on geologic processes exemplified in the Grand Canyon, Sunset Crater and Meteor Crater, and on biotic communities in desert soils and hot springs. The classroom portion, hosted by UNM, included lectures, lab work, and teaching exercises keyed to the field experience and its extensions to Mars. Formal followups: non-directive exit questionnaires; email list-serves for participants; websites with images, presentations, and exercises from the workshop, and links to related materials (e.g., http://www.lpi.usra.edu/education/EPO/yellowstone2002/index.html); and interviews for six-month retrospective. Graduate and continuing education credit are available. Past workshops, all relevant to Mars, have targeted: geology and extremophiles of Yellowstone NP, geology of the Cascade volcanos; and giant floods and lava flows of central Washington. The greatest benefit of this workshop format is the teachers' intense, deep experience, emphasizing scientific content. They learn from field, classroom, and laboratory perspectives, and work with PhD level researchers who contribute their excitement, demonstrate and teach critical thought processes, and provide authoritative background and answers. The small group size permits personal interactions (among teachers and presenters) that complement each other's understanding and appreciation of the subject. They log ˜65 contact hours with the staff, in small groups or one-on-one. Teachers return to the classroom with personal experiences

  2. Geological Modeling and Fluid Flow Simulation of Acid Gas Storage, Nugget Sandstone, Moxa Arch, Wyoming

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, Y.; Zhang, X.; Du, C.

    2009-12-01

    The Moxa Arch Anticline is a regional-scale northwest-trending uplift in western Wyoming where geological storage of acid gases (CO2, CH4, N2, H2S, He) from ExxonMobile's Shute Creek Gas Plant is under consideration. The Nugget Sandstone, a deep saline aquifer at depths exceeding 17,170 ft, is a candidate formation for acid gas storage. As part of a larger goal of determining site suitability, this study builds three-dimensional local to regional scale geological and fluid flow models for the Nugget Sandstone, its caprock (Twin Creek Limestone), and an underlying aquifer (Ankareh Sandstone), or together, the ``Nugget Suite''. For an area of 3000 square miles, geological and engineering data were assembled, screened for accuracy, and digitized, covering an average formation thickness of ~1700 feet. The data include 900 public-domain well logs (SP, Gamma Ray, Neutron Porosity, Density, Sonic, shallow and deep Resistivity, Lithology, Deviated well logs), 784 feet of core measurements (porosity and permeability), 4 regional geological cross sections, and 3 isopach maps. Data were interpreted and correlated for geological formations and facies, the later categorized using both Neural Network and Gaussian Hierarchical Clustering algorithms. Well log porosities were calibrated with core measurements, those of permeability estimated using formation-specific porosity-permeability transforms. Using conditional geostatistical simulations (first indicator simulation of facies, then sequential Gaussian simulation of facies-specific porosity), data were integrated at the regional-scale to create a geological model from which a local-scale simulation model surrounding the Shute Creek injection site was extracted. Based on this model, full compositional multiphase flow simulations were conducted with which we explore (1) an appropriate grid resolution for accurate acid gas predictions (pressure, saturation, and mass balance); (2) sensitivity of key geological and engineering

  3. Federal Control of Geological Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reitze, Arnold W.

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-burning electric power plants in deep underground formations. This article explores the technical andmore » legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.« less

  4. Global pulses of organic carbon burial in deep-sea sediments during glacial maxima

    PubMed Central

    Cartapanis, Olivier; Bianchi, Daniele; Jaccard, Samuel L.; Galbraith, Eric D.

    2016-01-01

    The burial of organic carbon in marine sediments removes carbon dioxide from the ocean–atmosphere pool, provides energy to the deep biosphere, and on geological timescales drives the oxygenation of the atmosphere. Here we quantify natural variations in the burial of organic carbon in deep-sea sediments over the last glacial cycle. Using a new data compilation of hundreds of sediment cores, we show that the accumulation rate of organic carbon in the deep sea was consistently higher (50%) during glacial maxima than during interglacials. The spatial pattern and temporal progression of the changes suggest that enhanced nutrient supply to parts of the surface ocean contributed to the glacial burial pulses, with likely additional contributions from more efficient transfer of organic matter to the deep sea and better preservation of organic matter due to reduced oxygen exposure. These results demonstrate a pronounced climate sensitivity for this global carbon cycle sink. PMID:26923945

  5. Project DEEP STEAM

    NASA Astrophysics Data System (ADS)

    Aeschliman, D. P.; Clay, R. G.; Donaldson, A. B.; Eisenhawer, S. W.; Fox, R. L.; Johnson, D. R.; Mulac, A. J.

    1982-01-01

    The objective of Project DEEP STEAM is to develop the technology to economically produce heavy oils from deep reservoirs. The tasks included in this project are the development of thermally efficient delivery systems and downhole steam generation systems. During the period January 1-March 31, 1981, effort has continued on a low pressure combustion downhole generator (Rocketdyne), and on two high pressure designs (Foster-Miller Associates, Sandia National Laboratories). The Sandia design was prepared for deployment in the Wilmington Field at Long Beach, California. Progress continued on the Min-Stress II packer concept at L'Garde, Inc., and on the extruded metal packer at Foster-Miller. Initial bare string field data are reported on the insulated tubular test at Lloydminster, Saskatchewan, Canada.

  6. 77 FR 12245 - Deep Seabed Mining: Request for Extension of Exploration Licenses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Deep Seabed Mining: Request.... Department of Commerce. ACTION: Notice of receipt of application to extend Deep Seabed Mining Exploration... received an application for five-year extensions of Deep Seabed Mining Exploration Licenses USA-1 and USA-4...

  7. Multi-disciplinary study for the exploration of deep low enthalpy geothermal reservoirs, Neuchâtel, Switzerland

    NASA Astrophysics Data System (ADS)

    Mauri, G.; Abdelfettah, Y.; Negro, F.; Schill, E.; Vuataz, F.

    2011-12-01

    The authorities of the canton of Neuchâtel, in the Western part of Switzerland, are willing to develop geothermal energy for district heating in the two main cities of the canton: Neuchâtel, located along the Lake of Neuchâtel, and La Chaux-de-Fonds situated in a high valley of the Jura Massif. The geology of both areas is linked to the Jura Range and present complex structures, where the landscape is composed of anticlines associated with overthrust faults, which are overcut by strike-slip fault and secondary faulting events. The rock formations go from the Trias, which forms the detachment layer, up to the Quaternary rock. Bedrocks are mainly composed of limestones and marls, which can reach a thickness of several hundreds meters. The three main deep aquifers investigated in this area, from the shallowest (≤ 400 m below surface) to deepest (< 2000 m), are the Malm, the Dogger and the Muschelkalk. The estimated temperatures, based on previous studies, should range between 20 to 65 oC, which are function of depth, elevation and groundwater velocity. The expected low temperature is mainly due to the presence of karstic systems, which drains the heat towards the low elevation of the basin. The present study is based on gravimetry surveys, 3D geological models and 3D gravimetry models to best characterize the underground structures and to find areas where the rock properties would be favourable to geothermal exploitation. This means targets where permeability and porosity are high in the potential aquifers, allowing a significant flow at the future production wells. The results indicate that gravity anomalies are associated with both shallow and deep geological structures in the two exploration sites and that high resolution of dense grid gravity measurements combined with realistic 3D models of the geological structures allow to characterize interesting features for deep geothermal exploration. Gravity corrections were carried out with a computing code using

  8. The deep Earth may not be cooling down

    NASA Astrophysics Data System (ADS)

    Andrault, Denis; Monteux, Julien; Le Bars, Michael; Samuel, Henri

    2016-06-01

    The Earth is a thermal engine generating the fundamental processes of geomagnetic field, plate tectonics and volcanism. Large amounts of heat are permanently lost at the surface yielding the classic view of the deep Earth continuously cooling down. Contrary to this conventional depiction, we propose that the temperature profile in the deep Earth has remained almost constant for the last ∼4.3 billion years. The core-mantle boundary (CMB) has reached a temperature of ∼4400 K in probably less than 1 million years after the Moon-forming impact, regardless the initial core temperature. This temperature corresponds to an abrupt increase in mantle viscosity atop the CMB, when ∼60% of partial crystallization was achieved, accompanied with a major decrease in heat flow at the CMB. Then, the deep Earth underwent a very slow cooling until it reached ∼4100 K today. This temperature at, or just below, the mantle solidus is suggested by seismological evidence of ultra-low velocity zones in the D;-layer. Such a steady thermal state of the CMB temperature excludes thermal buoyancy from being the predominant mechanism to power the geodynamo over geological time. An alternative mechanism to sustain the geodynamo is mechanical forcing by tidal distortion and planetary precession. Motions in the outer core are generated by the conversion of gravitational and rotational energies of the Earth-Moon-Sun system. Mechanical forcing remains efficient to drive the geodynamo even for a sub-adiabatic temperature gradient in the outer core. Our thermal model of the deep Earth is compatible with an average CMB heat flow of 3.0 to 4.7 TW. Furthermore, the regime of core instabilities and/or secular changes in the astronomical forces could have supplied the lowermost mantle with a heat source of variable intensity through geological time. Episodic release of large amounts of heat could have remelted the lowermost mantle, thereby inducing the dramatic volcanic events that occurred during the

  9. Using an Artificial Rock Outcrop to Teach Geology

    ERIC Educational Resources Information Center

    Totten, Iris

    2005-01-01

    Teaching Earth science without exposure to rock outcrops limits students depth of understanding of Earth's processes, limits the concept of scale from their spatial visualization imaging, and distorts their perception of geologic time (Totten 2003). Through a grant funded by the National Science Foundation, an artificial rock outcrop was…

  10. U.S. Geological Survey natural hazards science strategy: promoting the safety, security, and economic well-being of the Nation

    USGS Publications Warehouse

    Holmes, Robert R.; Jones, Lucile M.; Eidenshink, Jeffery C.; Godt, Jonathan W.; Kirby, Stephen H.; Love, Jeffrey J.; Neal, Christina A.; Plant, Nathaniel G.; Plunkett, Michael L.; Weaver, Craig S.; Wein, Anne; Perry, Suzanne C.

    2013-01-01

    The mission of the U.S. Geological Survey (USGS) in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. USGS scientific research—founded on detailed observations and improved understanding of the responsible physical processes—can help to understand and reduce natural hazard risks and to make and effectively communicate reliable statements about hazard characteristics, such as frequency, magnitude, extent, onset, consequences, and where possible, the time of future events. To accomplish its broad hazard mission, the USGS maintains an expert workforce of scientists and technicians in the earth sciences, hydrology, biology, geography, social and behavioral sciences, and other fields, and engages cooperatively with numerous agencies, research institutions, and organizations in the public and private sectors, across the Nation and around the world. The scientific expertise required to accomplish the USGS mission in natural hazards includes a wide range of disciplines that this report refers to, in aggregate, as hazard science. In October 2010, the Natural Hazards Science Strategy Planning Team (H–SSPT) was charged with developing a long-term (10–year) Science Strategy for the USGS mission in natural hazards. This report fulfills that charge, with a document hereinafter referred to as the Strategy, to provide scientific observations, analyses, and research that are critical for the Nation to become more resilient to natural hazards. Science provides the information that decisionmakers need to determine whether risk management activities are worthwhile. Moreover, as the agency with the perspective of geologic time, the USGS is uniquely positioned to extend the collective experience of society to prepare for events outside current memory. The USGS has critical

  11. External quality-assurance programs managed by the U.S. Geological Survey in support of the National Atmospheric Deposition Program/National Trends Network

    USGS Publications Warehouse

    Latysh, Natalie E.; Wetherbee, Gregory A.

    2005-01-01

    The U.S. Geological Survey, Branch of Quality Systems, operates the external quality-assurance programs for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Beginning in 1978, six different programs have been implemented?the intersite-comparison program, the blind-audit program, the sample-handling evaluation program, the field-audit program, the interlaboratory-comparison program, and the collocated-sampler program. Each program was designed to measure error contributed by specific components in the data-collection process. The intersite-comparison program, which was discontinued in 2004, was designed to assess the accuracy and reliability of field pH and specific-conductance measurements made by site operators. The blind-audit and sample-handling evaluation programs, which also were discontinued in 2002 and 2004, respectively, assessed contamination that may result from sampling equipment and routine handling and processing of the wet-deposition samples. The field-audit program assesses the effects of sample handling, processing, and field exposure. The interlaboratory-comparison program evaluates bias and precision of analytical results produced by the contract laboratory for NADP, the Illinois State Water Survey, Central Analytical Laboratory, and compares its performance with the performance of international laboratories. The collocated-sampler program assesses the overall precision of wet-deposition data collected by NADP/NTN. This report documents historical operations and the operating procedures for each of these external quality-assurance programs. USGS quality-assurance information allows NADP/NTN data users to discern between actual environmental trends and inherent measurement variability.

  12. Geology of Kilauea volcano

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, R.B.; Trusdell, F.A.

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailedmore » geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.« less

  13. Deep Carbon Observatory investigates Carbon from Crust to Core: An Academic Record of the History of Deep Carbon Science

    NASA Astrophysics Data System (ADS)

    Mitton, S. A.

    2017-12-01

    Carbon plays an unparalleled role in our lives: as the element of life, as the basis of most of society's energy, as the backbone of most new materials, and as the central focus in efforts to understand Earth's variable and uncertain climate. Yet in spite of carbon's importance, scientists remain largely ignorant of the physical, chemical, and biological behavior of many of Earth's carbon-bearing systems. The Deep Carbon Observatory (DCO) is a global research program to transform our understanding of carbon in Earth. At its heart, DCO is a community of scientists, from biologists to physicists, geoscientists to chemists, and many others whose work crosses these disciplinary lines, forging a new, integrative field of deep carbon science. As a historian of science, I specialise in the history of planetary science and astronomy since 1900. This is directed toward understanding of the history of the steps on the road to discovering the internal dynamics of our planet. Within a framework that describes the historical background to the new field of Earth System Science, I present the first history of deep carbon science. This project will identifies the key discoveries of deep carbon science. It will assess the impact of new knowledge on geochemistry, geodynamics, and geobiology. The project will lead to publication, in book form in 2019, of an illuminating narrative that will highlight the engaging human stories of many remarkable scientists and natural philosophers from whom we have learned about the complexity of Earth's internal world. On this journey of discovery we will encounter not just the pioneering researchers of deep carbon science, but also their institutions, their instrumental inventiveness, and their passion for exploration. The book is organised thematically around the four communities of the Deep Carbon Observatory: Deep Life, Extreme Physics and Chemistry, Reservoirs and Fluxes, and Deep Energy. The presentation has a gallery and list of Deep Carbon

  14. DEEP: Database of Energy Efficiency Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon

    A database of energy efficiency performance (DEEP) is a presimulated database to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 10 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER [sic] prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones.more » DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air conditioning, plug loads, and domestic hot war. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center (NERSC) of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of the CEC PIER project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users' decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct costly

  15. Bathymetry and Geology of the Floor of Yellowstone Lake, Yellowstone National Park, Wyoming, Idaho, and Montana

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, Wayne C.; Lee, G.K.; Webring, M.W.

    2007-01-01

    High-resolution, multi-beam sonar mapping of Yellowstone Lake was conducted by the U.S. Geological Survey in conjunction with the National Park Service from 1999 to 2002. Yellowstone Lake is the largest high-altitude lake in North America, at an altitude of 2,357 m with a surface area of 341 km2. More than 140 rivers and streams flow into Yellowstone Lake. The Yellowstone River, which enters at the southern end of the lake into the Southeast Arm, dominates the inflow of water and sediment (Shanks and others, 2005). The only outlet from the lake is at Fishing Bridge where the Yellowstone River flows northward discharging 375 to 4,600 cubic feet per second. The multi-beam sonar mapping occurred over a four-year period beginning in 1999 with mapping of the northern basin, continued in 2000 in West Thumb basin, in 2001 in the central basin, and in 2002 in the southern part of the lake including the Flat Mountain, South, and Southeast Arms.

  16. Long-term viability of carbon sequestration in deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Teng, Y.; Zhang, D.

    2017-12-01

    Sequestration of carbon dioxide in deep-sea sediments has been proposed for the long-term storage of anthropogenic CO2, due to the negative buoyancy effect and hydrate formation under conditions of high pressure and low temperature. However, the multi-physics process of injection and post-injection fate of CO2 and the feasibility of sub-seabed disposal of CO2 under different geological and operational conditions have not been well studied. On the basis of a detailed study of the coupled processes, we investigate whether storing CO2 into deep-sea sediments is viable, efficient, and secure over the long term. Also studied are the evolution of the multiphase and multicomponent flow and the impact of hydrate formation on storage efficiency during the upward migration of the injected CO2. It is shown that low buoyancy and high viscosity slow down the ascending plume and the forming of the hydrate cap effectively reduces the permeability and finally becomes an impermeable seal, thus limiting the movement of CO2 towards the seafloor. Different flow patterns at varied time scales are identified through analyzing the mass distribution of CO2 in different phases over time. Observed is the formation of a fluid inclusion, which mainly consists of liquid CO2 and is encapsulated by an impermeable hydrate film in the diffusion-dominated stage. The trapped liquid CO2 and CO2 hydrate finally dissolve into the pore water through diffusion of the CO2 component. Sensitivity analyses are performed on storage efficiency under variable geological and operational conditions. It is found that under a deep-sea setting, CO2 sequestration in intact marine sediments is generally safe and permanent.

  17. Geology of the Yucca Mountain region

    USGS Publications Warehouse

    Stuckless, J.S.; O'Leary, Dennis W.

    2006-01-01

    Yucca Mountain has been proposed as the site for the nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began ca. 10 Ma and continued as recently as ca. 80 ka with the eruption of cones and flows at Lathrop Wells, ???10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain. ?? 2007 Geological Society of America. All rights reserved.

  18. Preservation Benefits Geoscientific Investigations Across the Nation

    NASA Astrophysics Data System (ADS)

    Powers, L. A.; Latysh, N.

    2017-12-01

    Since 2005, the National Geological and Geophysical Data Preservation Program (NGGDPP) of the U.S. Geological Survey (USGS) has distributed financial grants to state geological surveys to preserve, archive, and make available valuable geoscientific samples and data to researchers and the public. States have cataloged and preserved materials that include geophysical logs, geotechnical reports, fragile historical documents, maps, geologic samples, and legacy aerial and field-investigation photographs. Approximately 3 million metadata records describing preserved data and artifacts are cataloged in the National Digital Catalog, a component of the USGS ScienceBase data management infrastructure. Providing a centralized domain in the National Digital Catalog for uniformly described records has enabled discovery of important geoscientific assets across the Nation. Scientific investigations continue to be informed by preserved materials and data. Tennessee Geological Survey's preserved collection of historical documents describing coal mining activities in the State was used to identify vulnerable areas overlying abandoned underground coal mines, which caused surface collapses and sinkholes in populated areas. Missouri Geological Survey's preserved collection of legacy field notebooks was used to identify thousands of abandoned mines, many of which have significant soil or groundwater lead contamination and are located in areas that now have residential development. The information enabled the evaluation of risk to human health, environment, and infrastructure and identification of needed remedial actions. Information in the field notebooks also assisted the Missouri Department of Transportation responding to highway collapses and assessing collapse potential in abandoned coal mining lands. Digitization of natural gamma ray logs allowed Minnesota Geological Survey staff to directly access well data in the field, accelerating the ability to address geoscientific questions

  19. Geological modeling for methane hydrate reservoir characterization in the eastern Nankai Trough, offshore Japan

    NASA Astrophysics Data System (ADS)

    Tamaki, M.; Komatsu, Y.; Suzuki, K.; Takayama, T.; Fujii, T.

    2012-12-01

    The eastern Nankai trough, which is located offshore of central Japan, is considered as an attractive potential resource field of methane hydrates. Japan Oil, Gas and Metals National Corporation is planning to conduct a production test in early 2013 at the AT1 site in the north slope of Daini-Atsumi Knoll in the eastern Nankai Trough. The depositional environment of methane hydrate-bearing sediments around the production test site is a deep submarine-fan turbidite system, and it is considered that the reservoir properties should show lateral as well as vertical heterogeneity. Since the variations in the reservoir heterogeneity have an impact on the methane hydrate dissociation and gas production performance, precise geological models describing reservoir heterogeneity would be required for the evaluation of reservoir potentials. In preparation for the production test, 3 wells; two monitoring boreholes (AT1-MC and AT1-MT1) and a coring well (AT1-C), were newly acquired in 2012. In addition to a geotechnical hole drilling survey in 2011 (AT1-GT), totally log data from 2 wells and core data from 2 wells were obtained around the production test site. In this study, we conducted well correlations between AT1 and A1 wells drilled in 2003 and then, 3D geological models were updated including AT1 well data in order to refine hydrate reservoir characterization around the production test site. The results of the well correlations show that turbidite sand layers are characterized by good lateral continuity, and give significant information for the distribution morphology of sand-rich channel fills. We also reviewed previously conducted 3D geological models which consist of facies distributions and petrophysical properties distributions constructed from integration of 3D seismic data and a well data (A1 site) adopting a geostatistical approach. In order to test the practical validity of the previously generated models, cross-validation was conducted using AT1 well data. The

  20. Field Methods and Quality-Assurance Plan for Quality-of-Water Activities, U.S. Geological Survey, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Knobel, LeRoy L.; Tucker, Betty J.; Rousseau, Joseph P.

    2008-01-01

    Water-quality activities conducted by the staff of the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office coincide with the USGS mission of appraising the quantity and quality of the Nation's water resources. The activities are conducted in cooperation with the U.S. Department of Energy's (DOE) Idaho Operations Office. Results of the water-quality investigations are presented in various USGS publications or in refereed scientific journals. The results of the studies are highly regarded, and they are used with confidence by researchers, regulatory and managerial agencies, and interested civic groups. In its broadest sense, quality assurance refers to doing the job right the first time. It includes the functions of planning for products, review and acceptance of the products, and an audit designed to evaluate the system that produces the products. Quality control and quality assurance differ in that quality control ensures that things are done correctly given the 'state-of-the-art' technology, and quality assurance ensures that quality control is maintained within specified limits.

  1. The use of mapped geology as a predictor of radon potential in Norway.

    PubMed

    Watson, Robin J; Smethurst, Mark A; Ganerød, Guri V; Finne, Ingvild; Rudjord, Anne Liv

    2017-01-01

    Radon exposure is considered to cause several hundred fatalities from lung-cancer each year in Norway. A national map identifying areas which are likely to be exposed to elevated radon concentrations would be a useful tool for decision-making authorities, and would be particularly important in areas where only few indoor radon measurements exist. An earlier Norwegian study (Smethurst et al. 2008) produced radon hazard maps by examining the relationship between airborne gamma-ray spectrometry, bedrock and drift geology, and indoor radon. The study was limited to the Oslo region where substantial indoor radon and airborne equivalent uranium datasets were available, and did not attempt to test the statistical significance of relationships, or to quantify the confidence of its predictions. While it can be anticipated that airborne measurements may have useful predictive power for indoor radon, airborne measurement coverage in Norway is at present sparse; to provide national coverage of radon hazard estimates, a good understanding of the relationship between geology and indoor radon is therefore important. In this work we use a new enlarged (n = 34,563) form of the indoor radon dataset with national coverage, and we use it to examine the relationship between geology and indoor radon concentrations. We use this relationship to characterise geological classes by their radon potential, and we produce a national radon hazard map which includes confidence limits on the likelihood of areas having elevated radon concentrations, and which covers the whole of mainland Norway, even areas where little or no indoor radon data are available. We find that bedrock and drift geology classes can account for around 40% of the total observed variation in radon potential. We test geology-based predictions of RP (radon potential) against locally-derived estimates of RP, and produce classification matrices with kappa values in the range 0.37-0.56. Our classifier has high predictive value

  2. A Global Survey and Interactive Map Suite of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges: (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D)

    NASA Astrophysics Data System (ADS)

    Tynan, M. C.; Russell, G. P.; Perry, F.; Kelley, R.; Champenois, S. T.

    2017-12-01

    This global survey presents a synthesis of some notable geotechnical and engineering information reflected in four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies, sites, or disposal facilities; 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding deep underground "facilities", history, activities, and plans. In general, the interactive maps and database [http://gis.inl.gov/globalsites/] provide each facility's approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not all encompassing, it is a comprehensive review of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development as a communication tool applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  3. Publications - RI 2000-1D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in - Read me Keywords Arctic National Wildlife Refuge; Aufeis; Brooks Range; Coastal and River; Coastal and

  4. Computer Programs for Obtaining and Analyzing Daily Mean Steamflow Data from the U.S. Geological Survey National Water Information System Web Site

    USGS Publications Warehouse

    Granato, Gregory E.

    2009-01-01

    Streamflow information is important for many planning and design activities including water-supply analysis, habitat protection, bridge and culvert design, calibration of surface and ground-water models, and water-quality assessments. Streamflow information is especially critical for water-quality assessments (Warn and Brew, 1980; Di Toro, 1984; Driscoll and others, 1989; Driscoll and others, 1990, a,b). Calculation of streamflow statistics for receiving waters is necessary to estimate the potential effects of point sources such as wastewater-treatment plants and nonpoint sources such as highway and urban-runoff discharges on receiving water. Streamflow statistics indicate the amount of flow that may be available for dilution and transport of contaminants (U.S. Environmental Protection Agency, 1986; Driscoll and others, 1990, a,b). Streamflow statistics also may be used to indicate receiving-water quality because concentrations of water-quality constituents commonly vary naturally with streamflow. For example, concentrations of suspended sediment and sediment-associated constituents (such as nutrients, trace elements, and many organic compounds) commonly increase with increasing flows, and concentrations of many dissolved constituents commonly decrease with increasing flows in streams and rivers (O'Connor, 1976; Glysson, 1987; Vogel and others, 2003, 2005). Reliable, efficient and repeatable methods are needed to access and process streamflow information and data. For example, the Nation's highway infrastructure includes an innumerable number of stream crossings and stormwater-outfall points for which estimates of stream-discharge statistics may be needed. The U.S. Geological Survey (USGS) streamflow data-collection program is designed to provide streamflow data at gaged sites and to provide information that can be used to estimate streamflows at almost any point along any stream in the United States (Benson and Carter, 1973; Wahl and others, 1995; National

  5. National Field Manual for the Collection of Water-Quality Data. U.S. Geological Survey Techniques of Water-Resources Investigations, Book 9

    USGS Publications Warehouse

    2015-01-01

    The mission of the Water Resources Discipline of the U.S. Geological Survey (USGS) is to provide the information and understanding needed for wise management of the Nation's water resources. Inherent in this mission is the responsibility to collect data that accurately describe the physical, chemical, and biological attributes of water systems. These data are used for environmental and resource assessments by the USGS, other government agenices and scientific organizations, and the general public. Reliable and quality-assured data are essential to the credibility and impartiality of the water-resources appraisals carried out by the USGS. The development and use of a National Field Manual is necessary to achieve consistency in the scientific methods and procedures used, to document those methods and procedures, and to maintain technical expertise. USGS field personnel use this manual to ensure that the data collected are of the quality required to fulfill our mission.

  6. Recent Russian Geophysical and Geological Investigations on Siberian Continental Margin

    NASA Astrophysics Data System (ADS)

    P. v., A.; K. v., D.; B. v., V.

    2007-12-01

    In July-August, 2005 new geophysical and geological data were acquired in the Mendeleev Rise (MR) region during "Arctic-2005" cruise aboard M/V "Akademik Fedorov". The study was concentrated in the southern part of MR in the area of its junction with East Siberian shelf. On-ice deep seismic sounding investigations (with offsets up to 250 km) and helicopter-supported seismic reflection soundings were performed along 600 km-long sub- longitudinal profile. Seismic survey was accompanied by on-ice gravity observations and geological sampling. Air-borne magnetic and air gravity measurements at scale 1:1,000,000 were also performed within a 100 km- wide corridor along the central seismic profile. Processing and analysis of new evidence included the compilation of deep seismic section, 2D seismic-gravity modeling of the Earth crust, 3D modeling of basement and Moho relief, and estimation of sediment and earth crust thickness. The results were integrated with earlier data and used for advanced structural and tectonic interpretations. The following main conclusions were obtained: Thickness of sediment cover along seismic line varies from 12 km in the south (in the North-Chukchi Trough) to 3-4 km in the northern MR. Crust thickness beneath MR is on the order of 30-35 km with a maximum value of 38 km in its southern part. The thinnest crust (28 km) is observed in the North-Chukchi Trough. Potential fields indicate existence of several blocks differing in gravity and magnetic anomalies. In the southern MR these blocks appear separated by grabens and display distinct continental characteristics accentuated by thickness of the crust, its seismic velocities and potential field pattern. At some of the shallowest (possibly eroded?) bathymetric highs the results of bottom sampling seem to point to the possibility of local derivation of coarse bottom debris. The proposed tectonic model implies structural continuity between MR and the adjacent East Siberian shelf. Brief information

  7. The National Geospatial Technical Operations Center

    USGS Publications Warehouse

    Craun, Kari J.; Constance, Eric W.; Donnelly, Jay; Newell, Mark R.

    2009-01-01

    The United States Geological Survey (USGS) National Geospatial Technical Operations Center (NGTOC) provides geospatial technical expertise in support of the National Geospatial Program in its development of The National Map, National Atlas of the United States, and implementation of key components of the National Spatial Data Infrastructure (NSDI).

  8. Studies by the U.S. Geological Survey in Alaska, 2008-2009

    USGS Publications Warehouse

    Dumoulin, Julie A.; Galloway, John

    2010-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of 'online only' versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  9. Updated operational protocols for the U.S. Geological Survey Precipitation Chemistry Quality Assurance Project in support of the National Atmospheric Deposition Program

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Martin, RoseAnn

    2017-02-06

    The U.S. Geological Survey Branch of Quality Systems operates the Precipitation Chemistry Quality Assurance Project (PCQA) for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and National Atmospheric Deposition Program/Mercury Deposition Network (NADP/MDN). Since 1978, various programs have been implemented by the PCQA to estimate data variability and bias contributed by changing protocols, equipment, and sample submission schemes within NADP networks. These programs independently measure the field and laboratory components which contribute to the overall variability of NADP wet-deposition chemistry and precipitation depth measurements. The PCQA evaluates the quality of analyte-specific chemical analyses from the two, currently (2016) contracted NADP laboratories, Central Analytical Laboratory and Mercury Analytical Laboratory, by comparing laboratory performance among participating national and international laboratories. Sample contamination and stability are evaluated for NTN and MDN by using externally field-processed blank samples provided by the Branch of Quality Systems. A colocated sampler program evaluates the overall variability of NTN measurements and bias between dissimilar precipitation gages and sample collectors.This report documents historical PCQA operations and general procedures for each of the external quality-assurance programs from 2007 to 2016.

  10. Facilitating the exploitation of ERTS-1 imagery using snow enhancement techniques. [geological fault maps of Massachusetts and Connecticut

    NASA Technical Reports Server (NTRS)

    Wobber, F. J. (Principal Investigator); Martin, K. R.; Amato, R. V.; Leshendok, T.

    1973-01-01

    The author has identified the following significant results. The applications of ERTS-1 imagery for geological fracture mapping regardless of season has been repeatedly confirmed. The enhancement provided by a differential cover of snow increases the number and length of fracture-lineaments which can be detected with ERTS-1 data and accelerates the fracture mapping process for a variety of practical applications. The geological mapping benefits of the program will be realized in geographic areas where data are most needed - complex glaciated terrain and areas of deep residual soils. ERTS-1 derived fracture-lineament maps which provide detail well in excess of existing geological maps are not available in the Massachusetts-Connecticut area. The large quantity of new data provided by ERTS-1 may accelerate and improve field mapping now in progress in the area. Numerous other user groups have requested data on the techniques. This represents a major change in operating philosophy for groups who to data judged that snow obscured geological detail.

  11. Caprock Breach: A Threat to Secure Geologic Sequestration

    NASA Astrophysics Data System (ADS)

    Selvadurai, A. P.; Dong, W.

    2013-12-01

    The integrity of caprock in providing a reliable barrier is crucial to several environmental geosciences endeavours related to geologic sequestration of CO2, deep geologic disposal of hazardous wastes and contaminants. The integrity of geologic barriers can be compromised by several factors. The re-activation of dormant fractures and development of new fractures in the caprock during the injection process are regarded as effects that can pose a threat to storage security. Other poromechanical influences of pore structure collapse due to chemically induced erosion of the porous fabric resulting in worm-hole type features can also contribute to compromising storage security. The assessment of the rate of steady or transient seepage through defects in the caprock can allow geoscientists to make prudent evaluations of the effectiveness of a sequestration strategy. While complicated computational simulations can be used to calculate leakage through defects, it is useful to explore alternative analytical results that could be used in providing preliminary estimates of leakage rates through defects in the caprock in a storage setting. The relevance of such developments is underscored by the fact that the permeability characteristics of the storage formation, the fracture and the surficial rocks overlying the caprock can rarely be quantified with certainty. This paper presents the problem of a crack in a caprock that connects to a storage formation and an overburden rock or surficial soil formation. The geologic media are maintained at constant far-field flow potentials and leakage takes place at either steady or transient conditions. The paper develops an analytical result that can be used to estimate the steady seepage through the crack. The analytical result can also be used to estimate the leakage through hydraulically non-intersecting cracks and leakage from caprock-well casing interfaces. The analytical result is used to estimate the accuracy of a computational

  12. LiDAR Applications in Resource Geology and Benefits for Land Management

    NASA Astrophysics Data System (ADS)

    Mikulovsky, R. P.; De La Fuente, J. A.

    2013-12-01

    The US Forest Service (US Department of Agriculture) manages a broad range of geologic resources and hazards on National Forests and Grass Lands throughout the United States. Resources include rock and earth materials, groundwater, caves and paleontological resources, minerals, energy resources, and unique geologic areas. Hazards include landslides, floods, earthquakes, volcanic eruptions, and naturally hazardous materials (e.g., asbestos, radon). Forest Service Geologists who address these issues are Resource Geologists. They have been exploring LiDAR as a revolutionary tool to efficiently manage all of these hazards and resources. However, most LiDAR applications for management have focused on timber and fuels management, rather than landforms. This study shows the applications and preliminary results of using LiDAR for managing geologic resources and hazards on public lands. Applications shown include calculating sediment budgets, mapping and monitoring landslides, mapping and characterizing borrow pits or mines, determining landslide potential, mapping faults, and characterizing groundwater dependent ecosystems. LiDAR can be used to model potential locations of groundwater dependent ecosystems with threatened or endangered plant species such as Howellia aquatilis. This difficult to locate species typically exists on the Mendocino National Forest within sag ponds on landslide benches. LiDAR metrics of known sites are used to model potential habitat. Thus LiDAR can link the disciplines of geology, hydrology, botany, archaeology and others for enhanced land management. As LiDAR acquisition costs decrease and it becomes more accessible, land management organizations will find a wealth of applications with potential far-reaching benefits for managing geologic resources and hazards.

  13. Geological and Seismic Data Mining For The Development of An Interpretation System Within The Alptransit Project

    NASA Astrophysics Data System (ADS)

    Klose, C. D.; Giese, R.; Löw, S.; Borm, G.

    Especially for deep underground excavations, the prediction of the locations of small- scale hazardous geotechnical structures is nearly impossible when exploration is re- stricted to surface based methods. Hence, for the AlpTransit base tunnels, exploration ahead has become an essential component of the excavation plan. The project de- scribed in this talk aims at improving the technology for the geological interpretation of reflection seismic data. The discovered geological-seismic relations will be used to develop an interpretation system based on artificial intelligence to predict hazardous geotechnical structures of the advancing tunnel face. This talk gives, at first, an overview about the data mining of geological and seismic properties of metamorphic rocks within the Penninic gneiss zone in Southern Switzer- land. The data results from measurements of a specific geophysical prediction system developed by the GFZ Potsdam, Germany, along the 2600 m long and 1400 m deep Faido access tunnel. The goal is to find those seismic features (i.e. compression and shear wave velocities, velocity ratios and velocity gradients) which show a significant relation to geological properties (i.e. fracturing and fabric features). The seismic properties were acquired from different tomograms, whereas the geolog- ical features derive from tunnel face maps. The features are statistically compared with the seismic rock properties taking into account the different methods used for the tunnel excavation (TBM and Drill/Blast). Fracturing and the mica content stay in a positive relation to the velocity values. Both, P- and S-wave velocities near the tunnel surface describe the petrology better, whereas in the interior of the rock mass they correlate to natural micro- and macro-scopic fractures surrounding tectonites, i.e. cataclasites. The latter lie outside of the excavation damage zone and the tunnel loos- ening zone. The shear wave velocities are better indicators for rock

  14. Anomalies of rupture velocity in deep earthquakes

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Yagi, Y.

    2010-12-01

    Explaining deep seismicity is a long-standing challenge in earth science. Deeper than 300 km, the occurrence rate of earthquakes with depth remains at a low level until ~530 km depth, then rises until ~600 km, finally terminate near 700 km. Given the difficulty of estimating fracture properties and observing the stress field in the mantle transition zone (410-660 km), the seismic source processes of deep earthquakes are the most important information for understanding the distribution of deep seismicity. However, in a compilation of seismic source models of deep earthquakes, the source parameters for individual deep earthquakes are quite varied [Frohlich, 2006]. Rupture velocities for deep earthquakes estimated using seismic waveforms range from 0.3 to 0.9Vs, where Vs is the shear wave velocity, a considerably wider range than the velocities for shallow earthquakes. The uncertainty of seismic source models prevents us from determining the main characteristics of the rupture process and understanding the physical mechanisms of deep earthquakes. Recently, the back projection method has been used to derive a detailed and stable seismic source image from dense seismic network observations [e.g., Ishii et al., 2005; Walker et al., 2005]. Using this method, we can obtain an image of the seismic source process from the observed data without a priori constraints or discarding parameters. We applied the back projection method to teleseismic P-waveforms of 24 large, deep earthquakes (moment magnitude Mw ≥ 7.0, depth ≥ 300 km) recorded since 1994 by the Data Management Center of the Incorporated Research Institutions for Seismology (IRIS-DMC) and reported in the U.S. Geological Survey (USGS) catalog, and constructed seismic source models of deep earthquakes. By imaging the seismic rupture process for a set of recent deep earthquakes, we found that the rupture velocities are less than about 0.6Vs except in the depth range of 530 to 600 km. This is consistent with the depth

  15. Geologic framework for the national assessment of carbon dioxide storage resources: Bighorn Basin, Wyoming and Montana: Chapter A in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Covault, Jacob A.; Buursink, Mark L.; Craddock, William H.; Merrill, Matthew D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Warwick, Peter D.; Corum, Margo D.

    2012-01-01

    This report identifies and contains geologic descriptions of twelve storage assessment units (SAUs) in six separate packages of sedimentary rocks within the Bighorn Basin of Wyoming and Montana and focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included here will be employed, as specified in the methodology of earlier work, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Wells sharing the same well borehole are treated as a single penetration. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data, a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.

  16. Representative Bulk Composition of Oil Types for the 2002 U.S. Geological Survey Resource Assessment of National Petroleum Reserve in Alaska

    USGS Publications Warehouse

    Lillis, Paul G.

    2004-01-01

    Bulk oil composition is an important economic consideration of a petroleum resource assessment. Geological and geochemical interpretations from previous North Slope studies combined with recently acquired geochemical data are used to predict representative oil gravity (?API) and sulfur content (wt.% S) of the oil types for the 2002 U.S. Geological Survey resource assessment of the National Petroleum Reserve of Alaska (NPRA). The oil types are named after their respective source rock units and include Kuna-Lisburne, Shublik-Otuk, Kingak-Blankenship, and Pebble-GRZ-Torok. The composition of the oil (24?API, 1.6 wt.% S) in the South Barrow 12 well was selected as representative of Kuna-Lisburne oil. The average gravity and sulfur values (23?API and 1.6 wt.% S, respectively) of the Kuparuk field were selected to be representative of Shublik-Otuk oil type. The composition of the oil (39?API, 0.3 wt.% S) from the Alpine field discovery well (ARCO Bergschrund 1) was selected to be representative of Kingak-Blankenship oil. The oil composition (37?API, 0.1 wt.% S) of Tarn field was considered representative of the Pebble-GRZ-Torok oil type in NPRA.

  17. Water resources science of the U.S. Geological Survey in New York

    USGS Publications Warehouse

    Glover, Anna N.

    2018-04-10

    The U.S. Geological Survey studies the effects of weather, climate, and man-made influences on groundwater levels, streamflow, and reservoir and lake levels, as well as on the ecological health of rivers, lakes, reservoirs, watersheds, estuaries, aquifers, soils, beaches, and wildlife. From these studies, the USGS produces high-quality, timely, and unbiased scientific research and data that are widely accessible and relevant to all levels of government, Tribal Nations, academic institutions, nongovernmental organizations, the private sector, and the general public. In New York, the U.S. Geological Survey works with other Federal agencies, State and municipal government, Tribal Nations, and the private sector to develop products that inform decision makers, legislators, and the general public.

  18. Species-energy relationship in the deep sea: A test using the Quaternary fossil record

    USGS Publications Warehouse

    Hunt, G.; Cronin, T. M.; Roy, K.

    2005-01-01

    Little is known about the processes regulating species richness in deep-sea communities. Here we take advantage of natural experiments involving climate change to test whether predictions of the species-energy hypothesis hold in the deep sea. In addition, we test for the relationship between temperature and species richness predicted by a recent model based on biochemical kinetics of metabolism. Using the deep-sea fossil record of benthic foraminifera and statistical meta-analyses of temperature-richness and productivity-richness relationships in 10 deep-sea cores, we show that temperature but not productivity is a significant predictor of species richness over the past c. 130 000 years. Our results not only show that the temperature-richness relationship in the deep-sea is remarkably similar to that found in terrestrial and shallow marine habitats, but also that species richness tracks temperature change over geological time, at least on scales of c. 100 000 years. Thus, predicting biotic response to global climate change in the deep sea would require better understanding of how temperature regulates the occurrences and geographical ranges of species. ??2005 Blackwell Publishing Ltd/CNRS.

  19. Field estimates of groundwater circulation depths in two mountainous watersheds in the western U.S. and the effect of deep circulation on solute concentrations in streamflow

    NASA Astrophysics Data System (ADS)

    Frisbee, Marty D.; Tolley, Douglas G.; Wilson, John L.

    2017-04-01

    Estimates of groundwater circulation depths based on field data are lacking. These data are critical to inform and refine hydrogeologic models of mountainous watersheds, and to quantify depth and time dependencies of weathering processes in watersheds. Here we test two competing hypotheses on the role of geology and geologic setting in deep groundwater circulation and the role of deep groundwater in the geochemical evolution of streams and springs. We test these hypotheses in two mountainous watersheds that have distinctly different geologic settings (one crystalline, metamorphic bedrock and the other volcanic bedrock). Estimated circulation depths for springs in both watersheds range from 0.6 to 1.6 km and may be as great as 2.5 km. These estimated groundwater circulation depths are much deeper than commonly modeled depths suggesting that we may be forcing groundwater flow paths too shallow in models. In addition, the spatial relationships of groundwater circulation depths are different between the two watersheds. Groundwater circulation depths in the crystalline bedrock watershed increase with decreasing elevation indicative of topography-driven groundwater flow. This relationship is not present in the volcanic bedrock watershed suggesting that both the source of fracturing (tectonic versus volcanic) and increased primary porosity in the volcanic bedrock play a role in deep groundwater circulation. The results from the crystalline bedrock watershed also indicate that relatively deep groundwater circulation can occur at local scales in headwater drainages less than 9.0 km2 and at larger fractions than commonly perceived. Deep groundwater is a primary control on streamflow processes and solute concentrations in both watersheds.

  20. Association between mapped vegetation and Quaternary geology on Santa Rosa Island, California

    NASA Astrophysics Data System (ADS)

    Cronkite-Ratcliff, C.; Corbett, S.; Schmidt, K. M.

    2017-12-01

    Vegetation and surficial geology are closely connected through the interface generally referred to as the critical zone. Not only do they influence each other, but they also provide clues into the effects of climate, topography, and hydrology on the earth's surface. This presentation describes quantitative analyses of the association between the recently compiled, independently generated vegetation and geologic map units on Santa Rosa Island, part of the Channel Islands National Park in Southern California. Santa Rosa Island was heavily grazed by sheep and cattle ranching for over one hundred years prior to its acquisition by the National Park Service. During this period, the island experienced significant erosion and spatial reduction and diversity of native plant species. Understanding the relationship between geology and vegetation is necessary for monitoring the recovery of native plant species, enhancing the viability of restoration sites, and understanding hydrologic conditions favorable for plant growth. Differences in grain size distribution and soil depth between geologic units support different plant communities through their influence on soil moisture, while differences in unit age reflect different degrees of pedogenic maturity. We find that unsupervised machine learning methods provide more informative insight into vegetation-geology associations than traditional measures such as Cramer's V and Goodman and Kruskal's lambda. Correspondence analysis shows that unique vegetation-geology patterns associated with beach/dune, grassland, hillslope/colluvial, and fluvial/wetland environments can be discerned from the data. By combining geology and vegetation with topographic variables, mixture models can be used to partition the landscape into multiple representative types, which then be compared with conceptual models of plant growth and succession over different landforms. Using this collection of methods, we show various ways that that Quaternary geology

  1. Geological features of Subduction Transfer Edge Propagator (STEP) faults, examples from the Betics and Rif

    NASA Astrophysics Data System (ADS)

    Booth-Rea, Guillermo; Pérez-Peña, Vicente; Azañón, José Miguel; de Lis Mancilla, Flor; Morales, Jose; Stich, Daniel; Giaconia, Flavio

    2014-05-01

    Most of the geological features of the Betics and Rif have resulted from slab tearing, edge delamination and punctual slab breakoff events between offset STEP faults. New P-reciever function data of the deep structure under the Betics and Rif have helped to map the deep boundaries of slab tearing and rupture in the area. Linking surface geological features with the deep structure shows that STEP faulting under the Betics occurred along ENE-WSW segments offset towards the south, probably do to the westward narrowing of the Tethys slab. The surface expression of STEP faulting at the Betics consists of ENE-WSW dextral strike-slip fault segments like the Crevillente, Alpujarras or Torcal faults that are interrupted by basins and elongated extensional domes were exhumed HP middle crust occurs. Exhumation of deep crust erases the effects of strike-slip faulting in the overlying brittle crust. Slab tearing affected the eastern Betics during the Tortonian to Messinian, producing the Fortuna and Lorca basins, and later propagated westward generating the end-Messinian to Pleistocene Guadix-Baza basins and the Granada Pliocene-Pleistocene depocentre. At present slab tearing is occurring beneath the Málaga depression, where the Torcal dextral strike-slip fault ends in a region of active distributed shortening and where intermediate depth seismicity occurs. STEP fault migration has occurred at average rates between 2 and 4 cm/yr since the late Miocene, producing a wave of alternating uplift-subsidence pulses. These initiate with uplift related to slab flexure, subsidence related to slab-pull, followed by uplift after rupture and ending with thermal subsidence. This "yo-yo" type tectonic evolution leads to the generation of endorheic basins that later evolve to exhorheic when they are uplifted and captured above the region where asthenospheric upwelling occurs.

  2. Once in a Million Years: Teaching Geologic Time

    ERIC Educational Resources Information Center

    Lewis, Susan E.; Lampe, Kristen A.; Lloyd, Andrew J.

    2005-01-01

    The authors advocate that students frequently lack fundamental numerical literacy on the order of millions or billions, and that this comprehension is critical to grasping key evolutionary concepts related to the geologic time scale, the origin and diversification of life on earth, and other concepts such as the national debt, human population…

  3. Geological report on water conditions at Platt National Park, Oklahoma

    USGS Publications Warehouse

    Gould, Charles Newton; Schoff, Stuart Leeson

    1939-01-01

    Platt National Park, located in southern Oklahoma, containing 842 acres, was established by Acts of Congress in 1902, 1904, and 1906. The reason for the setting aside of this area was the presence in the area of some 30 'mineral' springs, the water from which contains sulphur, bromide, salt, and other minerals, which are believed to possess medicinal qualities. For many generations the sulphur springs of the Chickasaw Nation had been known for their reputed healing qualities. It had long been the custom for families to come from considerable distances on horseback and in wagons and camp near the springs, in order to drink the water. In course of time a primitive town, known as Sulphur Springs, grew up near a group of springs known since as Pavilion Springs at the mouth of Sulphur Creek, now known as Travertine Creek. This town was still in existence at the time of my first visit to the locality in July, 1901. At this time, in company with Joseph A. Taff, of the United States Geological Survey, I spent a week riding over the country making a preliminary survey looking toward the setting aside of the area for a National Park. After the establishment of the National Park, the old town of Sulphur Springs was abandoned, and when the present boundaries of the park had been established the present town of Sulphur, now county seat of Murray County, grew up. In July 1906, on request of Superintendent Joseph F. Swords, I visited the park and made an examination of the various springs and submitted a report, dated August 15, 1906, to Secretary of the Interior E.A. Hitchcock. Copies of this report are on file in the Regional Office and at Platt National Park. In this report I set forth the approximate amount of flow of the various springs, the character of the water in each, and the conditions of the springs as of that date. I also made certain recommendations regarding proposed improvements of each spring. In this report I say: 'In the town of Sulphur, four wells have been

  4. Geologic evolution of the Bering Sea Komandorksy deep basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanov, N.A.

    1986-07-01

    The deep-water Komandorsky basin is located in the southwestern part of the Bering Sea. On the east, it is separated from the Aleutian basin by the submerged Shirshov Ridge; on the west, it is bordered by structures of the north Kamchatka accretionary prism. The Komandorsky basin is characterized by strongly dissected relief of it acoustic basement, which is overlain by a 1.5 to 2.0-km thick sedimentary cover. The western part of the basin is occupied by a rift zone, which is characterized by modern seismicity and high heat flow. It is considered to be the axial zone of Miocene-Pleistocene spreading.more » On the north terrace of the Komandorsky island arc, traced active volcanos provide evidence that subduction is occurring under the arc from the north. The spreading rift zone is reflected on the continent in Miocene-Pleistocene volcanic rocks, characterized by typical oceanic tholeiitic composition. The Komandorsky basin formed as a result of spreading during the Maestrichtian. Spreading within the basin occurred during the early and middle Oligocene and the late Miocene. East and west of the spreading axis, accretionary prisms formed. The latter are observed along the western flank of the Shirshov Ridge and on the eastern sides of the Kamchatka Peninsula and Koraginsky Island.« less

  5. Soil science and geology: Connects, disconnects and new opportunities in geoscience education

    USGS Publications Warehouse

    Landa, E.R.

    2004-01-01

    Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late- twentieth century. The shift in recent decades within both disciplines to greater emphasis on environmental quality issues and a systems approach has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere, and lithosphere, introductory and advanced soil science classes are now being taught in a number of earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface-to-groundwater "critical zone" requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable earth science specialty area for graduate study. Summer internships such as those offered by the National Science Foundation-funded Integrative Graduate Education, Research, and Training (IGERT) programs offer geology undergraduates the opportunity to explore research and career opportunities in soil science.

  6. Origins and early years of the U.S. Geological Survey

    USGS Publications Warehouse

    1979-01-01

    The U.S. Geological Survey was established on March 3, 1879, in the closing hours of the final session of the 45th Congress. The bill appropriating the money for sundry civil expenses of the Government during fiscal year 1880 was signed by President Rutherford B. Hayes. Included in the bill was the provision for a new agency under the Department of the Interior; it was charged with responsibility for “classification of the public lands, and examination of the geological structure, mineral resources, and products of the national domain.”

  7. The Role of Geologic Mapping in NASA PDSI Planning

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Skinner, J. A.; Radebaugh, J.

    2017-12-01

    public awareness of the role and application of geologic map-information to the resolution of national issues relevant to planetary science and eventual off-planet resource assessments, 4) use topical science to drive mapping in areas likely to be determined vital to the welfare of endeavors related to planetary science and exploration.

  8. Advances in Geologic Disposal System Modeling and Application to Crystalline Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.

    The Used Fuel Disposition Campaign (UFDC) of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of used nuclear fuel (UNF) and high-level nuclear waste (HLW). Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling (DOE 2011). These priorities are directly addressed in the UFDC Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic mediamore » (e.g., salt, granite, clay, and deep borehole disposal). This report describes specific GDSA activities in fiscal year 2016 (FY 2016) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code and the Dakota uncertainty sampling and propagation code. Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.« less

  9. Application of the Coastal and Marine Ecological Classification Standard to ROV Video Data for Enhanced Analysis of Deep-Sea Habitats in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ruby, C.; Skarke, A. D.; Mesick, S.

    2016-02-01

    The Coastal and Marine Ecological Classification Standard (CMECS) is a network of common nomenclature that provides a comprehensive framework for organizing physical, biological, and chemical information about marine ecosystems. It was developed by the National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center, in collaboration with other feral agencies and academic institutions, as a means for scientists to more easily access, compare, and integrate marine environmental data from a wide range of sources and time frames. CMECS has been endorsed by the Federal Geographic Data Committee (FGDC) as a national metadata standard. The research presented here is focused on the application of CMECS to deep-sea video and environmental data collected by the NOAA ROV Deep Discoverer and the NOAA Ship Okeanos Explorer in the Gulf of Mexico in 2011-2014. Specifically, a spatiotemporal index of the physical, chemical, biological, and geological features observed in ROV video records was developed in order to allow scientist, otherwise unfamiliar with the specific content of existing video data, to rapidly determine the abundance and distribution of features of interest, and thus evaluate the applicability of those video data to their research. CMECS units (setting, component, or modifier) for seafloor images extracted from high-definition ROV video data were established based upon visual assessment as well as analysis of coincident environmental sensor (temperature, conductivity), navigation (ROV position, depth, attitude), and log (narrative dive summary) data. The resulting classification units were integrated into easily searchable textual and geo-databases as well as an interactive web map. The spatial distribution and associations of deep-sea habitats as indicated by CMECS classifications are described and optimized methodological approaches for application of CMECS to deep-sea video and environmental data are presented.

  10. Preliminary integrated geologic map databases for the United States: Digital data for the geology of southeast Alaska

    USGS Publications Warehouse

    Gehrels, George E.; Berg, Henry C.

    2006-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set of 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make derivative maps.

  11. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    NASA Astrophysics Data System (ADS)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  12. Health benefits of geologic materials and geologic processes

    USGS Publications Warehouse

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  13. Ultra-Deep Drilling Cost Reduction; Design and Fabrication of an Ultra-Deep Drilling Simulator (UDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindstrom, Jason

    2010-01-31

    Ultra-deep drilling, below about 20,000 ft (6,096 m), is extremely expensive and limits the recovery of hydrocarbons at these depths. Unfortunately, rock breakage and cuttings removal under these conditions is not understood. To better understand and thus reduce cost at these conditions an ultra-deep single cutter drilling simulator (UDS) capable of drill cutter and mud tests to sustained pressure and temperature of 30,000 psi (207 MPa) and 482 °F (250 °C), respectively, was designed and manufactured at TerraTek, a Schlumberger company, in cooperation with the Department of Energy’s National Energy Technology Laboratory. UDS testing under ultra-deep drilling conditions offers anmore » economical alternative to high day rates and can prove or disprove the viability of a particular drilling technique or fluid to provide opportunity for future domestic energy needs.« less

  14. Geological and Rock Mechanics Perspectives for Underground Coal Gasification in India

    NASA Astrophysics Data System (ADS)

    Singh, Ajay K.; Singh, Rajendra

    2017-07-01

    The geological resources of coal in India are more than 308 billion tonnes upto a depth of 1200 m, out of which proved reserve has been reported at around 130 billion tonnes. There is an increasing requirement to increase the energy extraction efficiency from coal as the developmental prospects of India increase. Underground coal gasification (UCG) is a potential mechanism which may be utilized for extraction of deep-seated coal reserves. Some previous studies suggest that lignites from Gujarat and Rajasthan, along with tertiary coals from northeastern India can be useful from the point of view of UCG. We discuss some geological literature available for these areas. Coming to the rock mechanics perspectives, during UCG the rock temperature is considerable high. At this temperature, most empirical models of rock mechanics may not be applied. In this situation, the challenges for numerical modelling of UCG sites increases manifold. We discuss some of the important modelling geomechanical issues related to UCG in India.

  15. U.S. Geological Survey research in Handcart Gulch, Colorado—An alpine watershed with natural acid-rock drainage

    USGS Publications Warehouse

    Manning, Andrew H.; Caine, Jonathan S.; Verplanck, Philip L.; Bove, Dana J.; Kahn, Katherine G.

    2009-01-01

    Handcart Gulch is an alpine watershed along the Continental Divide in the Colorado Rocky Mountain Front Range. It contains an unmined mineral deposit typical of many hydrothermal mineral deposits in the intermountain west, composed primarily of pyrite with trace metals including copper and molybdenum. Springs and the trunk stream have a natural pH value of 3 to 4. The U.S. Geological Survey began integrated research activities at the site in 2003 with the objective of better understanding geologic, geochemical, and hydrologic controls on naturally occurring acid-rock drainage in alpine watersheds. Characterizing the role of groundwater was of particular interest because mountain watersheds containing metallic mineral deposits are often underlain by complexly deformed crystalline rocks in which groundwater flow is poorly understood. Site infrastructure currently includes 4 deep monitoring wells high in the watershed (300– 1,200 ft deep), 4 bedrock (100–170 ft deep) and 5 shallow (10–30 ft deep) monitoring wells along the trunk stream, a stream gage, and a meteorological station. Work to date at the site includes: geologic mapping and structural analysis; surface sample and drill core mineralogic characterization; geophysical borehole logging; aquifer testing; monitoring of groundwater hydraulic heads and streamflows; a stream tracer dilution study; repeated sampling of surface and groundwater for geochemical analyses, including major and trace elements, several isotopes, and groundwater age dating; and construction of groundwater flow models. The unique dataset collected at Handcart Gulch has yielded several important findings about bedrock groundwater flow at the site. Most importantly, we find that bedrock bulk permeability is nontrivial and that bedrock groundwater apparently constitutes a substantial fraction of the hydrologic budget. This means that bedrock groundwater commonly may be an underappreciated component of the hydrologic system in studies of

  16. Geologic Mapping of Vesta

    NASA Technical Reports Server (NTRS)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; hide

    2014-01-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were

  17. Preliminary geologic map of Black Canyon and surrounding region, Nevada and Arizona

    USGS Publications Warehouse

    Felger, Tracey J.; Beard, L. Sue; Anderson, Zachary W.; Fleck, Robert J.; Wooden, Joseph L.; Seixas, Gustav B.

    2014-01-01

    Thermal springs in Black Canyon of the Colorado River, downstream of Hoover Dam, are important recreational, ecological, and scenic features of the Lake Mead National Recreation Area. This report presents the results from a U.S. Geological Survey study of the geologic framework of the springs. The study was conducted in cooperation with the National Park Service and funded by both the National Park Service and National Cooperative Geologic Mapping Program of the U.S. Geological Survey. The report has two parts: A, a 1:48,000-scale geologic map created from existing geologic maps and augmented by new geologic mapping and geochronology; and B, an interpretive report that presents results based on a collection of fault kinematic data near springs within Black Canyon and construction of 1:100,000-scale geologic cross sections that extend across the western Lake Mead region. Exposures in Black Canyon are mostly of Miocene volcanic rocks, underlain by crystalline basement composed of Miocene plutonic rocks or Proterozoic metamorphic rocks. The rocks are variably tilted and highly faulted. Faults strike northwest to northeast and include normal and strike-slip faults. Spring discharge occurs along faults intruded by dacite dikes and plugs; weeping walls and seeps extend away from the faults in highly fractured rock or relatively porous volcanic breccias, or both. Results of kinematic analysis of fault data collected along tributaries to the Colorado River indicate two episodes of deformation, consistent with earlier studies. The earlier episode formed during east-northeast-directed extension, and the later during east-southeast-directed extension. At the northern end of the study area, pre-existing fault blocks that formed during the first episode were rotated counterclockwise along the left-lateral Lake Mead Fault System. The resulting fault pattern forms a complex arrangement that provides both barriers and pathways for groundwater movement within and around Black

  18. Global Tsunami Database: Adding Geologic Deposits, Proxies, and Tools

    NASA Astrophysics Data System (ADS)

    Brocko, V. R.; Varner, J.

    2007-12-01

    A result of collaboration between NOAA's National Geophysical Data Center (NGDC) and the Cooperative Institute for Research in the Environmental Sciences (CIRES), the Global Tsunami Database includes instrumental records, human observations, and now, information inferred from the geologic record. Deep Ocean Assessment and Reporting of Tsunamis (DART) data, historical reports, and information gleaned from published tsunami deposit research build a multi-faceted view of tsunami hazards and their history around the world. Tsunami history provides clues to what might happen in the future, including frequency of occurrence and maximum wave heights. However, instrumental and written records commonly span too little time to reveal the full range of a region's tsunami hazard. The sedimentary deposits of tsunamis, identified with the aid of modern analogs, increasingly complement instrumental and human observations. By adding the component of tsunamis inferred from the geologic record, the Global Tsunami Database extends the record of tsunamis backward in time. Deposit locations, their estimated age and descriptions of the deposits themselves fill in the tsunami record. Tsunamis inferred from proxies, such as evidence for coseismic subsidence, are included to estimate recurrence intervals, but are flagged to highlight the absence of a physical deposit. Authors may submit their own descriptions and upload digital versions of publications. Users may sort by any populated field, including event, location, region, age of deposit, author, publication type (extract information from peer reviewed publications only, if you wish), grain size, composition, presence/absence of plant material. Users may find tsunami deposit references for a given location, event or author; search for particular properties of tsunami deposits; and even identify potential collaborators. Users may also download public-domain documents. Data and information may be viewed using tools designed to extract and

  19. Crustal-scale geological and thermal models of the Beaufort-Mackenzie Basin, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Sippel, Judith; Scheck-Wenderoth, Magdalena; Kröger, Karsten; Lewerenz, Björn

    2010-05-01

    The Beaufort-Mackenzie Basin is a petroliferous province in northwest Arctic Canada and one of the best-known segments of the Arctic Ocean margin due to decades of exploration. Our study is part of the programme MOM (Methane On the Move), which aims to quantify the methane contribution from natural petroleum systems to the atmosphere over geological times. Models reflecting the potential of a sedimentary basin to release methane require well-assessed boundary conditions such as the crustal structure and large-scale temperature variation. We focus on the crustal-scale thermal field of the Beaufort-Mackenzie Basin. This Basin has formed on a post-rift, continental margin which, during the Late Cretaceous and Tertiary, developed into the foreland of the North American Cordilleran foldbelt providing space for the accumulation of up to 16 km of foreland deposits. We present a 3D geological model which integrates the present topography, depth maps of Upper Cretaceous and Tertiary horizons (Kroeger et al., 2008, 2009), tops of formations derived from interpreted 2D reflection seismic lines and 284 boreholes (released by the National Energy Board of Canada), and the sequence stratigraphic framework established by previous studies (e.g. Dixon et al., 1996). To determine the position and geometry of the crust-mantle boundary, an isostatic calculation (Airýs model) is applied to the geological model. We present different crustal-scale models combining isostatic modelling, published deep reflection and refraction seismic lines (e.g. Stephenson et al., 1994; O'Leary et al., 1995), and calculations of the 3D conductive thermal field. References: Dixon, J., 1996. Geological Atlas of the Beaufort-Mackenzie Area, Geological Survey of Canada Miscellaneous Report, 59, Ottawa, 173 pp. Kroeger, K.F., Ondrak, R., di Primio, R. and Horsfield, B., 2008. A three-dimensional insight into the Mackenzie Basin (Canada): Implications for the thermal history and hydrocarbon generation potential

  20. The National Map Pilot Projects

    USGS Publications Warehouse

    ,

    2002-01-01

    The U.S. Geological Survey (USGS) is developing The National Map to be a seamless, continuously maintained, and nationally consistent set of online, public domain, geographic base information. The National Map will serve as a foundation for integrating, sharing, and using other government and private sector data easily and consistently.