Sample records for national laboratory based

  1. Secondary standards laboratories for ionizing radiation calibrations: The national laboratory interests

    NASA Astrophysics Data System (ADS)

    Roberson, P. I.; Campbell, G. W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary.

  2. 2018 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, Stacy R.

    The 2018 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base has been prepared in accordance with the “Letter of Agreement Between Department of Energy, National Nuclear Security Administration, Sandia Field Office (DOE/NNSA/SFO) and 377th Air Base Wing (ABW), Kirtland Air Force Base (KAFB) for Terrestrial Sampling” (signed January 2017), Sandia National Laboratories, New Mexico (SNL/NM). The Letter of Agreement requires submittal of an annual terrestrial sampling plan.

  3. 2017 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, Stacy R.

    The 2017 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base has been prepared in accordance with the “Letter of Agreement Between Department of Energy, National Nuclear Security Administration, Sandia Field Office (DOE/NNSA/SFO) and 377th Air Base Wing (ABW), Kirtland Air Force Base (KAFB) for Terrestrial Sampling” (signed January 2017), Sandia National Laboratories, New Mexico (SNL/NM). The Letter of Agreement requires submittal of an annual terrestrial sampling plan.

  4. Sandia National Laboratories analysis code data base

    NASA Astrophysics Data System (ADS)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  5. POPULATION-BASED EXPOSURE MODELING FOR AIR POLLUTANTS AT EPA'S NATIONAL EXPOSURE RESEARCH LABORATORY

    EPA Science Inventory

    The US EPA's National Exposure Research Laboratory (NERL) has been developing, applying, and evaluating population-based exposure models to improve our understanding of the variability in personal exposure to air pollutants. Estimates of population variability are needed for E...

  6. Safety | Argonne National Laboratory

    Science.gov Websites

    laboratory's ongoing effort to provide a safe and productive environment for employees, users, other site Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Environment Careers Education Community Diversity Directory Energy Environment National Security User Facilities

  7. Los Alamos National Laboratory Prepares for Fire Season

    ScienceCinema

    L’Esperance, Manny

    2018-01-16

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  8. Los Alamos National Laboratory Prepares for Fire Season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L’Esperance, Manny

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  9. About the Frederick National Laboratory for Cancer Research | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory is a Federally Funded Research and Development Center (FFRDC) sponsored by the National Cancer Institute (NCI) and currently operated by Leidos Biomedical Research, Inc. The laboratory addresses some of the most urge

  10. Insights: Future of the national laboratories. National Renewable Energy Laboratory. [The future of the National Renewable Energy (Sources) Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, D.

    Psychologists tell us that people are born with certain personality traits, such as shyness or boldness, which their environment can encourage, subdue, or even alter. National labs have somewhat similar characteristics. They were created for particular missions and staffed by people who built organizations in which those missions could be fulfilled. As a result, the Department of Energy's (DOE) national labs are among the world's finest repositories of technology and scientific talent, especially in the fields of defense, nuclear weapons, nuclear power, and basic energy. Sunderman, director of the National Renewable Energy Laboratory, discusses the history of the laboratory andmore » its place in the future, both in terms of technologies and nurturing.« less

  11. Frederick National Laboratory Collaboration Success Stories | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory, that helps fine-tune nano

  12. Contracting with the Frederick National Laboratory | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Our Acquisitions Directorate supports the national laboratory with high quality products and services to achieve its national mission. In addition to engaging large subcontractors, we are also committed to working with small businesses, minority- and

  13. Collaborations | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory has a range of contractual agreement options available which offer flexibility to facilitate the formation of partnerships. The appropriate business mechanism is considered based on the scope and objectives of the pa

  14. Facilities | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Research Facilities Advanced Powertrain Research Facility Center for Transportation Research Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Materials Engineering Research Facility

  15. Scientific Openness and National Security at the National Laboratories

    NASA Astrophysics Data System (ADS)

    McTague, John

    2000-04-01

    The possible loss to the People's Republic of China of important U.S. nuclear-weapons-related information has aroused concern about interactions of scientists employed by the national laboratories with foreign nationals. As a result, the National Academies assembled a committee to examine the roles of the national laboratories, the contribution of foreign interactions to the fulfillment of those roles, the risks and benefits of scientific openness in this context, and the merits and liabilities of the specific policies being implemented or proposed with respect to contacts with foreign nationals. The committee concluded that there are many aspects of the work at the laboratories that benefit from or even demand the opportunity for foreign interactions. The committee recommended five principles for guiding policy: (1) Maintain balance. Policy governing international dialogue by laboratory staff should seek to encourage international engagement in some areas, while tightly controlling it in others. (2) Educate staff. Security procedures should be clear, easy to follow, and serve an understandable purpose. (3) Streamline procedures. Good science is compatible with good security if there is intelligent line management both at the labs and in Washington, which applies effective tools for security in a sensible fashion. (4) Focus efforts. DOE should focus its efforts governing tightened security for information. The greatest attention should obviously be provided to the protection of classified information by appropriate physical and cybersecurity measures, and by personnel procedures and training. (5) Beware of prejudice against foreigners. Over the past half-century foreign-born individuals have contributed broadly and profoundly to national security through their work at the national laboratories.

  16. Oak Ridge National Laboratory Core Competencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, J.B.; Anderson, T.D.; Berven, B.A.

    1994-12-01

    A core competency is a distinguishing integration of capabilities which enables an organization to deliver mission results. Core competencies represent the collective learning of an organization and provide the capacity to perform present and future missions. Core competencies are distinguishing characteristics which offer comparative advantage and are difficult to reproduce. They exhibit customer focus, mission relevance, and vertical integration from research through applications. They are demonstrable by metrics such as level of investment, uniqueness of facilities and expertise, and national impact. The Oak Ridge National Laboratory (ORNL) has identified four core competencies which satisfy the above criteria. Each core competencymore » represents an annual investment of at least $100M and is characterized by an integration of Laboratory technical foundations in physical, chemical, and materials sciences; biological, environmental, and social sciences; engineering sciences; and computational sciences and informatics. The ability to integrate broad technical foundations to develop and sustain core competencies in support of national R&D goals is a distinguishing strength of the national laboratories. The ORNL core competencies are: 9 Energy Production and End-Use Technologies o Biological and Environmental Sciences and Technology o Advanced Materials Synthesis, Processing, and Characterization & Neutron-Based Science and Technology. The distinguishing characteristics of each ORNL core competency are described. In addition, written material is provided for two emerging competencies: Manufacturing Technologies and Computational Science and Advanced Computing. Distinguishing institutional competencies in the Development and Operation of National Research Facilities, R&D Integration and Partnerships, Technology Transfer, and Science Education are also described. Finally, financial data for the ORNL core competencies are summarized in the appendices.« less

  17. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  18. Practical recommendations for strengthening national and regional laboratory networks in Africa in the Global Health Security era.

    PubMed

    Best, Michele; Sakande, Jean

    2016-01-01

    The role of national health laboratories in support of public health response has expanded beyond laboratory testing to include a number of other core functions such as emergency response, training and outreach, communications, laboratory-based surveillance and data management. These functions can only be accomplished by an efficient and resilient national laboratory network that includes public health, reference, clinical and other laboratories. It is a primary responsibility of the national health laboratory in the Ministry of Health to develop and maintain the national laboratory network in the country. In this article, we present practical recommendations based on 17 years of network development experience for the development of effective national laboratory networks. These recommendations and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of resilient, integrated laboratory networks will enhance each state's public health system and is critical to the development of a robust national laboratory response network to meet global health security threats.

  19. Practical recommendations for strengthening national and regional laboratory networks in Africa in the Global Health Security era

    PubMed Central

    2016-01-01

    The role of national health laboratories in support of public health response has expanded beyond laboratory testing to include a number of other core functions such as emergency response, training and outreach, communications, laboratory-based surveillance and data management. These functions can only be accomplished by an efficient and resilient national laboratory network that includes public health, reference, clinical and other laboratories. It is a primary responsibility of the national health laboratory in the Ministry of Health to develop and maintain the national laboratory network in the country. In this article, we present practical recommendations based on 17 years of network development experience for the development of effective national laboratory networks. These recommendations and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of resilient, integrated laboratory networks will enhance each state’s public health system and is critical to the development of a robust national laboratory response network to meet global health security threats. PMID:28879137

  20. Establishment of National Laboratory Standards in Public and Private Hospital Laboratories

    PubMed Central

    ANJARANI, Soghra; SAFADEL, Nooshafarin; DAHIM, Parisa; AMINI, Rana; MAHDAVI, Saeed; MIRAB SAMIEE, Siamak

    2013-01-01

    In September 2007 national standard manual was finalized and officially announced as the minimal quality requirements for all medical laboratories in the country. Apart from auditing laboratories, Reference Health Laboratory has performed benchmarking auditing of medical laboratory network (surveys) in provinces. 12th benchmarks performed in Tehran and Alborz provinces, Iran in 2010 in three stages. We tried to compare different processes, their quality and accordance with national standard measures between public and private hospital laboratories. The assessment tool was a standardized checklist consists of 164 questions. Analyzing process show although in most cases implementing the standard requirements are more prominent in private laboratories, there is still a long way to complete fulfillment of requirements, and it takes a lot of effort. Differences between laboratories in public and private sectors especially in laboratory personnel and management process are significant. Probably lack of motivation, plays a key role in obtaining less desirable results in laboratories in public sectors. PMID:23514840

  1. Safeguards Knowledge Management & Retention at U.S. National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddal, Risa; Jones, Rebecca; Bersell, Bridget

    In 2017, four U.S. National Laboratories collaborated on behalf of DOE/NNSA to explore the safeguards knowledge retention problem, identify possible approaches, and develop a strategy to address it. The one-year effort consisted of four primary tasks. First, the project sought to identify critical safeguards information at risk of loss. Second, a survey and workshop were conducted to assess nine U.S. National Laboratories' efforts to determine current safeguards knowledge retention practices and challenges, and identify best practices. Third, specific tools were developed to identify and predict critical safeguards knowledge gaps and how best to recruit in order to fill those gaps.more » Finally, based on findings from the first three tasks and research on other organizational approaches to address similar issues, a strategy was developed on potential knowledge retention methods, customized HR policies, and best practices that could be implemented across the National Laboratory Complex.« less

  2. Sandia National Laboratories: National Security Missions: Nuclear Weapons:

    Science.gov Websites

    Safety & Security Sandia National Laboratories Exceptional service in the national interest & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Twitter YouTube Flickr RSS Top Nuclear Weapons About Nuclear Weapons at Sandia Safety & Security

  3. Frederick National Laboratory's Contribution to ATOM | Frederick National Laboratory for Cancer Research

    Cancer.gov

    As a founding member organization of ATOM, the Frederick National Laboratory will contribute scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive model

  4. Strengthening national health laboratories in sub-Saharan Africa: a decade of remarkable progress

    PubMed Central

    Alemnji, G. A.; Zeh, C.; Yao, K.; Fonjungo, P. N.

    2016-01-01

    OBJECTIVES Efforts to combat the HIV/AIDS pandemic have underscored the fragile and neglected nature of some national health laboratories in Africa. In response, national and international partners and various governments have worked collaboratively over the last several years to build sustainable laboratory capacities within the continent. Key accomplishments reflecting this successful partnership include the establishment of the African-based World Health Organization Regional Office for Africa (WHO-AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA); development of the Strengthening Laboratory Management Toward Accreditation (SLMTA) training programme; and launching of a Pan African-based institution, the African Society for Laboratory Medicine (ASLM). These platforms continue to serve as the foundations for national health laboratory infrastructure enhancement, capacity development and overall quality system improvement. Further targeted interventions should encourage countries to aim at integrated tiered referral networks, promote quality system improvement and accreditation, develop laboratory policies and strategic plans, enhance training and laboratory workforce development and a retention strategy, create career paths for laboratory professionals and establish public–private partnerships. Maintaining the gains and ensuring sustainability will require concerted action by all stakeholders with strong leadership and funding from African governments and from the African Union. PMID:24506521

  5. Biomedical engineering at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Zanner, Mary Ann

    1994-12-01

    The potential exists to reduce or control some aspects of the U.S. health care expenditure without compromising health care delivery by developing carefully selected technologies which impact favorably on the health care system. A focused effort to develop such technologies is underway at Sandia National Laboratories. As a DOE National Laboratory, Sandia possesses a wealth of engineering and scientific expertise that can be readily applied to this critical national need. Appropriate mechanisms currently exist to allow transfer of technology from the laboratory to the private sector. Sandia's Biomedical Engineering Initiative addresses the development of properly evaluated, cost-effective medical technologies through team collaborations with the medical community. Technology development is subjected to certain criteria including wide applicability, earlier diagnoses, increased efficiency, cost-effectiveness and dual-use. Examples of Sandia's medical technologies include a noninvasive blood glucose sensor, computer aided mammographic screening, noninvasive fetal oximetry and blood gas measurement, burn diagnostics and laser debridement, telerobotics and ultrasonic scanning for prosthetic devices. Sandia National Laboratories has the potential to aid in directing medical technology development efforts which emphasize health care needs, earlier diagnosis, cost containment and improvement of the quality of life.

  6. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, S.

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure successmore » in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.« less

  7. Idaho National Laboratory Research & Development Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stricker, Nicole

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and governmentmore » agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.« less

  8. National Exposure Research Laboratory

    EPA Pesticide Factsheets

    The Ecosystems Research Division of EPA’s National Exposure Research Laboratory, conducts research on organic and inorganic chemicals, greenhouse gas biogeochemical cycles, and land use perturbations that create stressor exposures and potentia risk

  9. LDRD Highlights at the National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alayat, R. A.

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then,more » this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.« less

  10. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAlpine, Bradley

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclearmore » capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.« less

  11. Community | Argonne National Laboratory

    Science.gov Websites

    occupies 1,500 wooded acres 25 miles southwest of Chicago in DuPage County, Ill. Our highly collaborative Experience at Argonne National Laboratory Chicago Tribune New UChicago Program Teaches Data Science for

  12. BROOKHAVEN NATIONAL LABORATORY WILDLIFE MANAGEMENT PLAN.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NAIDU,J.R.

    2002-10-22

    The purpose of the Wildlife Management Plan (WMP) is to promote stewardship of the natural resources found at the Brookhaven National Laboratory (BNL), and to integrate their protection with pursuit of the Laboratory's mission.

  13. Power source evaluation capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  14. Hood College, Frederick National Laboratory Will Renew Popular Scientific Symposium | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Hood College and the Frederick National Laboratory for Cancer Research have partnered to cohost an annual scientific symposium in the tradition of the landmark Oncogene Meeting, a national fixture in Frederick for more than 20 year

  15. Strengthening national health laboratories in sub-Saharan Africa: a decade of remarkable progress.

    PubMed

    Alemnji, G A; Zeh, C; Yao, K; Fonjungo, P N

    2014-04-01

    Efforts to combat the HIV/AIDS pandemic have underscored the fragile and neglected nature of some national health laboratories in Africa. In response, national and international partners and various governments have worked collaboratively over the last several years to build sustainable laboratory capacities within the continent. Key accomplishments reflecting this successful partnership include the establishment of the African-based World Health Organization Regional Office for Africa (WHO-AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA); development of the Strengthening Laboratory Management Toward Accreditation (SLMTA) training programme; and launching of a Pan African-based institution, the African Society for Laboratory Medicine (ASLM). These platforms continue to serve as the foundations for national health laboratory infrastructure enhancement, capacity development and overall quality system improvement. Further targeted interventions should encourage countries to aim at integrated tiered referral networks, promote quality system improvement and accreditation, develop laboratory policies and strategic plans, enhance training and laboratory workforce development and a retention strategy, create career paths for laboratory professionals and establish public-private partnerships. Maintaining the gains and ensuring sustainability will require concerted action by all stakeholders with strong leadership and funding from African governments and from the African Union. Published 2014. This article is a U.S. Government work and is in the public domain in the U.S.A.

  16. Privacy Policy | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The privacy of our users is of utmost importance to Frederick National Laboratory. The policy outlined below establishes how Frederick National Laboratory will use the information we gather about you from your visit to our website. We may coll

  17. News | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Home Learning solvers Home Learning Center Undergraduates Graduates Faculty Partners News & Events News & Events -4114 Contact Us Argonne Educational Programs is committed to providing a learning environment that

  18. National Water Quality Laboratory - A Profile

    USGS Publications Warehouse

    Raese, Jon W.

    2001-01-01

    The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) is a full-service laboratory that specializes in environmental analytical chemistry. The NWQL's primary mission is to support USGS programs requiring environmental analyses that provide consistent methodology for national assessment and trends analysis. The NWQL provides the following: high-quality chemical data; consistent, published, state-of-the-art methodology; extremely low-detection levels; high-volume capability; biological unit for identifying benthic invertebrates; quality assurance for determining long-term water-quality trends; and a professional staff.

  19. Biosafety Practices and Emergency Response at the Idaho National Laboratory and Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank F. Roberto; Dina M. Matz

    2008-03-01

    Strict federal regulations govern the possession, use, and transfer of pathogens and toxins with potential to cause harm to the public, either through accidental or deliberate means. Laboratories registered through either the Centers for Disease Control and Prevention (CDC), the U.S. Dept. of Agriculture (USDA), or both, must prepare biosafety, security, and incident response plans, conduct drills or exercises on an annual basis, and update plans accordingly. At the Idaho National Laboratory (INL), biosafety, laboratory, and emergency management staff have been working together for 2 years to satisfy federal and DOE/NNSA requirements. This has been done through the establishment ofmore » plans, training, tabletop and walk-through exercises and drills, and coordination with local and regional emergency response personnel. Responding to the release of infectious agents or toxins is challenging, but through familiarization with the nature of the hazardous biological substances or organisms, and integration with laboratory-wide emergency response procedures, credible scenarios are being used to evaluate our ability to protect workers, the public, and the environment from agents we must work with to provide for national biodefense.« less

  20. Airbags to Martian Landers: Analyses at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwinn, K.W.

    1994-03-01

    A new direction for the national laboratories is to assist US business with research and development, primarily through cooperative research and development agreements (CRADAs). Technology transfer to the private sector has been very successful as over 200 CRADAs are in place at Sandia. Because of these cooperative efforts, technology has evolved into some new areas not commonly associated with the former mission of the national laboratories. An example of this is the analysis of fabric structures. Explicit analyses and expertise in constructing parachutes led to the development of a next generation automobile airbag; which led to the construction, testing, andmore » analysis of the Jet Propulsion Laboratory Mars Environmental Survey Lander; and finally led to the development of CAD based custom garment designs using 3D scanned images of the human body. The structural analysis of these fabric structures is described as well as a more traditional example Sandia with the test/analysis correlation of the impact of a weapon container.« less

  1. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigali, Mark J.; Miller, James E.; Altman, Susan J.

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documentsmore » Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.« less

  2. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    PubMed

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  3. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas

    PubMed Central

    Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community. PMID:27559843

  4. [Information system of the national network of public health laboratories in Peru (Netlab)].

    PubMed

    Vargas-Herrera, Javier; Segovia-Juarez, José; Garro Nuñez, Gladys María

    2015-01-01

    Clinical laboratory information systems produce improvements in the quality of information, reduce service costs, and diminish wait times for results, among other things. In the construction process of this information system, the National Institute of Health (NIH) of Peru has developed and implemented a web-based application to communicate to health personnel (laboratory workers, epidemiologists, health strategy managers, physicians, etc.) the results of laboratory tests performed at the Peruvian NIH or in the laboratories of the National Network of Public Health Laboratories which is called NETLAB. This article presents the experience of implementing NETLAB, its current situation, perspectives of its use, and its contribution to the prevention and control of diseases in Peru.

  5. New Webpage Brings Increased Visibility to Frederick National Laboratory Subcontracting Opportunities | Frederick National Laboratory for Cancer Research

    Cancer.gov

    A new webpage will now make it easier for small businesses and others to find and apply for Frederick National Laboratory for Cancer Research business opportunities. The new solicitations page, which launched on the Frederick National Lab website Aug

  6. Frederick National Laboratory, National Cancer Institute of Mexico to Offer Training Fellowships | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- The Frederick National Laboratory for Cancer Research will extend its scientific mentoring across international borders for the first time by offering postdoctoral research fellowships to scientists under an agreement with the Nati

  7. Los Alamos National Laboratory Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neu, Mary

    Mary Neu, Associate Director for Chemistry, Life and Earth Sciences at Los Alamos National Laboratory, delivers opening remarks at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  8. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  9. National Water Quality Laboratory Profile

    USGS Publications Warehouse

    Raese, Jon W.

    1994-01-01

    The National Water Quality Laboratory determines organic and inorganic constituents in samples of surface and ground water, river and lake sediment, aquatic plant and animal material, and precipitation collected throughout the United States and its territories by the U.S. Geological Survey. In water year 1994, the Laboratory produced more than 900,000 analytical results for about 65,000 samples. The Laboratory also coordinates an extensive network of contract laboratories for the determination of radiochemical and stable isotopes and work for the U.S. Department of Defense Environmental Contamination Hydrology Program. Heightened concerns about water quality and about the possible effects of toxic chemicals at trace and ultratrace levels have contributed to an increased demand for impartial, objective, and independent data.

  10. Lawrence Livermore National Laboratory Environmental Report 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Henry E.; Armstrong, Dave; Blake, Rick G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  11. Lawrence Livermore National Laboratory Environmental Report 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  12. Cost evaluation of clinical laboratory in Taiwan's National Health System by using activity-based costing.

    PubMed

    Su, Bin-Guang; Chen, Shao-Fen; Yeh, Shu-Hsing; Shih, Po-Wen; Lin, Ching-Chiang

    2016-11-01

    To cope with the government's policies to reduce medical costs, Taiwan's healthcare service providers are striving to survive by pursuing profit maximization through cost control. This article aimed to present the results of cost evaluation using activity-based costing performed in the laboratory in order to throw light on the differences between costs and the payment system of National Health Insurance (NHI). This study analyzed the data of costs and income of the clinical laboratory. Direct costs belong to their respective sections of the department. The department's shared costs, including public expenses and administrative assigned costs, were allocated to the department's respective sections. A simple regression equation was created to predict profit and loss, and evaluate the department's break-even point, fixed cost, and contribution margin ratio. In clinical chemistry and seroimmunology sections, the cost per test was lower than the NHI payment and their major laboratory tests had revenues with the profitability ratio of 8.7%, while the other sections had a higher cost per test than the NHI payment and their major tests were in deficit. The study found a simple linear regression model as follows: "Balance=-84,995+0.543×income (R2=0.544)". In order to avoid deficit, laboratories are suggested to increase test volumes, enhance laboratory test specialization, and become marginal scale. A hospital could integrate with regional medical institutions through alliances or OEM methods to increase volumes to reach marginal scale and reduce laboratory costs, enhancing the level and quality of laboratory medicine.

  13. Undergraduates | Argonne National Laboratory

    Science.gov Websites

    Directory Argonne National Laboratory Educational Programs Connecting today's world-class research to which you can use to change the world." -Nelson Mandela Undergrads are just beginning their journey into the world of science and engineering. Here at Argonne, we work to make the world a better place

  14. Visiting Scholars Program | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Visiting Scholars Program (VSP) provides a unique opportunity for scientists to collaborate with the Frederick National Laboratory for Cancer Research (FNLCR), the only federal national laboratory in the United States devoted exclusively to b

  15. Saving Water at Los Alamos National Laboratory

    ScienceCinema

    Erickson, Andy

    2018-01-16

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility that supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.

  16. Graduates | Argonne National Laboratory

    Science.gov Websites

    Staff Directory Argonne National Laboratory Educational Programs Connecting today's world-class research , Argonne is the place to be if you are a graduate student. With access to world-class facilities and world -reknowned researchers, graduate students at Argonne can taste the best of the research and development world

  17. Technology | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory develops and applies advanced, next-generation technologies to solve basic and applied problems in the biomedical sciences, and serves as a national resource of shared high-tech facilities.

  18. Inverter testing at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Ginn, Jerry W.; Bonn, Russell H.; Sittler, Greg

    1997-02-01

    Inverters are key building blocks of photovoltaic (PV) systems that produce ac power. The balance of systems (BOS) portion of a PV system can account for up to 50% of the system cost, and its reliable operation is essential for a successful PV system. As part of its BOS program, Sandia National Laboratories (SNL) maintains a laboratory wherein accurate electrical measurements of power systems can be made under a variety of conditions. This paper outlines the work that is done in that laboratory.

  19. Laboratory-based Salmonella surveillance in Fiji, 2004-2005.

    PubMed

    Dunn, John; Pryor, Jan; Saketa, Salanieta; Delai, Wasale; Buadromo, Eka; Kishore, Kamal; Naidu, Shakila; Greene, Sharon; Varma, Jay; Chiller, Tom

    2005-09-01

    Although foodborne diseases are an important public health problem worldwide, the burden of foodborne illness is not well described in most Pacific Island Countries and Territories. Laboratory-based surveillance programs can detect trends and outbreaks, estimate burden of illness, and allow subtyping of enteric pathogens (e.g. Salmonella serotyping), which is critical for linking illness to food vehicles and animal reservoirs. To enhance public health capacity in Fiji for foodborne disease surveillance, we developed the Salmonella Surveillance Project (SSP), a collaboration to pilot laboratory-based surveillance for Salmonella. A network of national and international partners was formed including epidemiologists, microbiologists, and environmental health personnel. Ministry of Health personnel were trained in foodborne disease surveillance and outbreak investigation. Three clinical microbiology laboratories from different parts of the country functioned as sentinel sites, reporting all laboratory-confirmed Salmonella infections using a standardized case report form. Non-Typhi Salmonella isolates were collected for serotyping. In 2004-2005, 86 non-Typhi Salmonella and 275 S. Typhi laboratory-confirmed infections were reported. Salmonella enterica serotype I 3,10: r:- and Salmonella enterica serotype Weltevreden were the most commonly isolated non-Typhi serotypes. In Fiji, the SSP utilized international partnerships to facilitate training, and to enhance laboratory capacity and surveillance for salmonellosis. Incorporating laboratory-based foodborne disease reporting into national disease surveillance will enable public health officials to describe the burden of foodborne illness, identify outbreaks, conduct analytic epidemiology studies, and improve food safety.

  20. A Performance-Based Training Qualification Guide/Checklist Developed for Reactor Operators at the High Flux Beam Reactor at Brookhaven National Laboratory.

    ERIC Educational Resources Information Center

    McNair, Robert C.

    A Performance-Based Training (PBT) Qualification Guide/Checklist was developed that would enable a trainee to attain the skills, knowledge, and attitude required to operate the High Flux Beam Reactor at Brookhaven National Laboratory. Design of this guide/checklist was based on the Instructional System Design Model. The needs analysis identified…

  1. Implementation of a National Reference Laboratory for Buruli Ulcer Disease in Togo

    PubMed Central

    Badziklou, Kossi; Halatoko, Wemboo Afiwa; Maman, Issaka; Vogel, Felix; Bidjada, Bawimodom; Awoussi, Koffi Somenou; Piten, Ebekalisai; Helfrich, Kerstin; Mengele, Carolin; Nitschke, Jörg; Amekuse, Komi; Wiedemann, Franz Xaver; Diefenhardt, Adolf; Kobara, Basile; Herbinger, Karl–Heinz; Kere, Abiba Banla; Prince-David, Mireille; Löscher, Thomas; Bretzel, Gisela

    2013-01-01

    Background In a previous study PCR analysis of clinical samples from suspected cases of Buruli ulcer disease (BUD) from Togo and external quality assurance (EQA) for local microscopy were conducted at an external reference laboratory in Germany. The relatively poor performance of local microscopy as well as effort and time associated with shipment of PCR samples necessitated the implementation of stringent EQA measures and availability of local laboratory capacity. This study describes the approach to implementation of a national BUD reference laboratory in Togo. Methodology Large scale outreach activities accompanied by regular training programs for health care professionals were conducted in the regions “Maritime” and “Central,” standard operating procedures defined all processes in participating laboratories (regional, national and external reference laboratories) as well as the interaction between laboratories and partners in the field. Microscopy was conducted at regional level and slides were subjected to EQA at national and external reference laboratories. For PCR analysis, sample pairs were collected and subjected to a dry-reagent-based IS2404-PCR (DRB-PCR) at national level and standard IS2404 PCR followed by IS2404 qPCR analysis of negative samples at the external reference laboratory. Principal Findings The inter-laboratory concordance rates for microscopy ranged from 89% to 94%; overall, microscopy confirmed 50% of all suspected BUD cases. The inter-laboratory concordance rate for PCR was 96% with an overall PCR case confirmation rate of 78%. Compared to a previous study, the rate of BUD patients with non-ulcerative lesions increased from 37% to 50%, the mean duration of disease before clinical diagnosis decreased significantly from 182.6 to 82.1 days among patients with ulcerative lesions, and the percentage of category III lesions decreased from 30.3% to 19.2%. Conclusions High inter-laboratory concordance rates as well as case confirmation

  2. Implementation of a national reference laboratory for Buruli ulcer disease in Togo.

    PubMed

    Beissner, Marcus; Huber, Kristina Lydia; Badziklou, Kossi; Halatoko, Wemboo Afiwa; Maman, Issaka; Vogel, Felix; Bidjada, Bawimodom; Awoussi, Koffi Somenou; Piten, Ebekalisai; Helfrich, Kerstin; Mengele, Carolin; Nitschke, Jörg; Amekuse, Komi; Wiedemann, Franz Xaver; Diefenhardt, Adolf; Kobara, Basile; Herbinger, Karl-Heinz; Kere, Abiba Banla; Prince-David, Mireille; Löscher, Thomas; Bretzel, Gisela

    2013-01-01

    In a previous study PCR analysis of clinical samples from suspected cases of Buruli ulcer disease (BUD) from Togo and external quality assurance (EQA) for local microscopy were conducted at an external reference laboratory in Germany. The relatively poor performance of local microscopy as well as effort and time associated with shipment of PCR samples necessitated the implementation of stringent EQA measures and availability of local laboratory capacity. This study describes the approach to implementation of a national BUD reference laboratory in Togo. Large scale outreach activities accompanied by regular training programs for health care professionals were conducted in the regions "Maritime" and "Central," standard operating procedures defined all processes in participating laboratories (regional, national and external reference laboratories) as well as the interaction between laboratories and partners in the field. Microscopy was conducted at regional level and slides were subjected to EQA at national and external reference laboratories. For PCR analysis, sample pairs were collected and subjected to a dry-reagent-based IS2404-PCR (DRB-PCR) at national level and standard IS2404 PCR followed by IS2404 qPCR analysis of negative samples at the external reference laboratory. The inter-laboratory concordance rates for microscopy ranged from 89% to 94%; overall, microscopy confirmed 50% of all suspected BUD cases. The inter-laboratory concordance rate for PCR was 96% with an overall PCR case confirmation rate of 78%. Compared to a previous study, the rate of BUD patients with non-ulcerative lesions increased from 37% to 50%, the mean duration of disease before clinical diagnosis decreased significantly from 182.6 to 82.1 days among patients with ulcerative lesions, and the percentage of category III lesions decreased from 30.3% to 19.2%. High inter-laboratory concordance rates as well as case confirmation rates of 50% (microscopy), 71% (PCR at national level), and 78

  3. Partnering at the National Laboratories: Catalysis as a Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JACKSON,NANCY B.

    1999-09-14

    The role of the national laboratories, particularly the defense program laboratories, since the end of the cold war, has been a topic of continuing debate. The relationship of national laboratories to industry spurred debate which ranged from designating the labs as instrumental to maintaining U.S. economic competitiveness to concern over the perception of corporate welfare to questions regarding the industrial globalization and the possibility of U.S. taxpayer dollars supporting foreign entities. Less debated, but equally important, has been the national laboratories' potential competition with academia for federal research dollars and discussions detailing the role of each in the national researchmore » enterprise.« less

  4. 2020 Foresight Forging the Future of Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzanowski, P.

    2000-01-01

    The Lawrence Livermore National Laboratory (LLNL) of 2020 will look much different from the LLNL of today and vastly different from how it looked twenty years ago. We, the members of the Long-Range Strategy Project, envision a Laboratory not defined by one program--nuclear weapons research--but by several core programs related to or synergistic with LLNL's national security mission. We expect the Laboratory to be fully engaged with sponsors and the local community and closely partnering with other research and development (R&D) organizations and academia. Unclassified work will be a vital part of the Laboratory of 2020 and will visibly demonstratemore » LLNL's international science and technology strengths. We firmly believe that there will be a critical and continuing role for the Laboratory. As a dynamic and versatile multipurpose laboratory with a national security focus, LLNL will be applying its capabilities in science and technology to meet the needs of the nation in the 21st century. With strategic investments in science, outstanding technical capabilities, and effective relationships, the Laboratory will, we believe, continue to play a key role in securing the nation's future.« less

  5. BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and themore » nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.« less

  6. HEP Division Argonne National Laboratory

    Science.gov Websites

    Argonne National Laboratory Environmental Safety & Health DOE Logo Home Division ES&H ... Search Argonne Home >High Energy Physics> Environmental Safety & Health Environmental Safety & Health New Employee Training */ ?> Office Safety: Checklist (Submitted Checklists) Submitted

  7. Final Report National Laboratory Professional Development Workshop for Underrepresented Participants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Valerie

    The 2013 CMD-IT National Laboratories Professional Development Workshop for Underrepresented Participants (CMD-IT NLPDev 2013) was held at the Oak Ridge National Laboratory campus in Oak Ridge, TN. from June 13 - 14, 2013. Sponsored by the Department of Energy (DOE) Advanced Scientific Computing Research Program, the primary goal of these workshops is to provide information about career opportunities in computational science at the various national laboratories and to mentor the underrepresented participants through community building and expert presentations focused on career success. This second annual workshop offered sessions to facilitate career advancement and, in particular, the strategies and resources neededmore » to be successful at the national laboratories.« less

  8. A Software Laboratory Environment for Computer-Based Problem Solving.

    ERIC Educational Resources Information Center

    Kurtz, Barry L.; O'Neal, Micheal B.

    This paper describes a National Science Foundation-sponsored project at Louisiana Technological University to develop computer-based laboratories for "hands-on" introductions to major topics of computer science. The underlying strategy is to develop structured laboratory environments that present abstract concepts through the use of…

  9. 60 Years of Great Science (Oak Ridge National Laboratory)

    DOE R&D Accomplishments Database

    2003-01-01

    This issue of Oak Ridge National Laboratory Review (vol. 36, issue 1) highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  10. Sandia National Laboratories: Contact Us

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New )* Non-mail deliveries: 1515 Eubank SE Albuquerque, NM 87123 Sandia National Laboratories, California P.O

  11. Increase Workshop | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Home Learning solvers Home Learning Center Undergraduates Graduates Faculty Partners News & Events Faculty Visiting Us Argonne Educational Programs is committed to providing a learning environment that emphasizes the

  12. Saving Water at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Andy

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility thatmore » supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.« less

  13. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, T.; Cox, W.; Hwang, H.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories` operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had nomore » discernible impact on the general public or on the environment.« less

  14. Internship Opportunities | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Home Learning -class research to tomorrow's STEM problem solvers Home Learning Center Undergraduates Graduates Faculty ) 252-4114 Contact Us Argonne Educational Programs is committed to providing a learning environment that

  15. Idaho National Laboratory Cultural Resource Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie Braun Williams

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Officemore » will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  16. ORNL (Oak Ridge National Laboratory) 89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, T.D.; Appleton, B.R.; Jefferson, J.W.

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory.

  17. [On the way to national reference system of laboratory medicine].

    PubMed

    Muravskaia, N P; Men'shikov, V V

    2014-10-01

    The application of standard samples and reference techniques of implementation of measurements is needed for a valid support of reliability of analyses applied in clinical diagnostic laboratories. They play role of landmarks under metrologic monitoring, calibration of devices and control of quality of results. The article presents analysis of shortcomings interfering with formation of national reference system in Russia harmonized with possibilities provided by international organizations. Among them are the joint Committee on metrologic monitoring in laboratory medicine under the auspices of the International Bureau of Weights and Measures, the International Federation of clinical chemistry and laboratory medicine, etc. The results of the recent development of national normative documents, standard samples and techniques assisted by the authors of article are considered. They are the first steps to organization of national reference system which would comprise all range of modern analytical technologies of laboratory medicine. The national and international measures are proposed to enhance the promptest resolving of task of organization of national reference system for laboratory medicine in the interests of increasing of effectiveness of medical care to citizen of Russia.

  18. Visitor's Guide | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research headquarters are located at the Advanced Technology and Research Facility (ATRF), located at 8560 Progress Drive, Frederick Maryland. Additional offices and laboratories are locatedon the NC

  19. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SAmore » examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.« less

  20. Annual Report on the State of the DOE National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-01-01

    This first Annual Report to Congress on the State of the DOE National Laboratories provides a comprehensive overview of the Lab system, covering S&T programs, management and strategic planning. The Department committed to prepare this report in response to recommendations from the Congressionally mandated Commission to Review the Effectiveness of the National Energy Laboratories (CRENEL) that the Department should better communicate the value that the Laboratories provide to the Nation. We expect that future annual reports will be much more compact, building on the extensive description of the Laboratories and of the governance structures that are part of this firstmore » report.« less

  1. Frederick National Laboratory and Georgetown University Launch Research and Education Collaboration | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- A new collaboration established between Georgetown University and the Frederick National Laboratory for Cancer Research aims to expand both institutions’ research and training missions in the biomedical sciences. Representatives f

  2. Frederick National Laboratory Rallies to Meet Demand for Zika Vaccine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research is producing another round of Zika vaccine for ongoing studies to determine the best delivery method and dosage. This will lay the groundwork for additional tests to see if the vaccine prevents i

  3. Technology Innovation at the National Renewable Energy Laboratory (Text

    Science.gov Websites

    market, new processes out in the fields, and to make an impact." A photo montage of six different Version) | NREL Technology Innovation at the National Renewable Energy Laboratory (Text Version ) Technology Innovation at the National Renewable Energy Laboratory (Text Version) This is the text version for

  4. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartock, Mike; Hansen, Todd

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategicmore » management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.« less

  5. Sandia National Laboratories: Fabrication, Testing and Validation

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas safe, secure, reliable, and can fully support the Nation's deterrence policy. Employing only the most support of this mission, Sandia National Laboratories has a significant role in advancing the "state

  6. Laboratory-based versus non-laboratory-based method for assessment of cardiovascular disease risk: the NHANES I Follow-up Study cohort

    PubMed Central

    Gaziano, Thomas A; Young, Cynthia R; Fitzmaurice, Garrett; Atwood, Sidney; Gaziano, J Michael

    2008-01-01

    Summary Background Around 80% of all cardiovascular deaths occur in developing countries. Assessment of those patients at high risk is an important strategy for prevention. Since developing countries have limited resources for prevention strategies that require laboratory testing, we assessed if a risk prediction method that did not require any laboratory tests could be as accurate as one requiring laboratory information. Methods The National Health and Nutrition Examination Survey (NHANES) was a prospective cohort study of 14 407 US participants aged between 25–74 years at the time they were first examined (between 1971 and 1975). Our follow-up study population included participants with complete information on these surveys who did not report a history of cardiovascular disease (myocardial infarction, heart failure, stroke, angina) or cancer, yielding an analysis dataset N=6186. We compared how well either method could predict first-time fatal and non-fatal cardiovascular disease events in this cohort. For the laboratory-based model, which required blood testing, we used standard risk factors to assess risk of cardiovascular disease: age, systolic blood pressure, smoking status, total cholesterol, reported diabetes status, and current treatment for hypertension. For the non-laboratory-based model, we substituted body-mass index for cholesterol. Findings In the cohort of 6186, there were 1529 first-time cardiovascular events and 578 (38%) deaths due to cardiovascular disease over 21 years. In women, the laboratory-based model was useful for predicting events, with a c statistic of 0·829. The c statistic of the non-laboratory-based model was 0·831. In men, the results were similar (0·784 for the laboratory-based model and 0·783 for the non-laboratory-based model). Results were similar between the laboratory-based and non-laboratory-based models in both men and women when restricted to fatal events only. Interpretation A method that uses non-laboratory-based

  7. The International Space Station: A National Laboratory

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2012-01-01

    After more than a decade of assembly missions and the end of the space shuttle program, the International Space Station (ISS) has reached assembly completion. With other visiting spacecraft now docking with the ISS on a regular basis, the orbiting outpost now serves as a National Laboratory to scientists back on Earth. The ISS has the ability to strengthen relationships between NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. The ISS National Laboratory also opens new paths for the exploration and economic development of space. In this presentation we will explore the operation of the ISS and the realm of scientific research onboard that includes: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science.

  8. Critical Infrastructure Protection- Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bofman, Ryan K.

    Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.

  9. Global Impact | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Through its direct support of clinical research, Frederick National Laboratory activities are not limited to national programs. The labis actively involved in more than 400 domestic and international studies related to cancer; influenza, HIV, E

  10. Sandia National Laboratories focus issue: introduction.

    PubMed

    Boye, Robert

    2014-08-20

    For more than six decades, Sandia has provided the critical science and technology to address the nation's most challenging issues. Our original nuclear weapons mission has been complemented with work in defense systems, energy and climate, as well as international and homeland security. Our vision is to be a premier science and engineering laboratory for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.

  11. IBBR and Frederick National Laboratory Collaborate to Study Vaccine-Boosting Compounds | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory and the University of Maryland’s Institute for Bioscience and Biotechnology Research (IBBR) will work under a formal collaboration to evaluate the effectiveness of new compounds that might be used to enhance the im

  12. Frederick National Laboratory Scientists to Present Advanced Technologies in Cancer Research | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Hundreds of science and business professionals are expected to attend the second annual Technology Showcase at the Frederick National Laboratory for Cancer Research, scheduled for June 13.  The event will feature technologies bei

  13. Idaho National Laboratory Cultural Resource Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrey, Diana Lee

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Officemore » will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  14. Idaho National Laboratory Cultural Resource Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Officemore » will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  15. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Todd Randall; Wright, Virginia Latta

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  16. The National Superconducting Cyclotron Laboratory

    NASA Astrophysics Data System (ADS)

    Gelbke, C. Korad; Morrissey, D. J.; York, R. C.

    1996-10-01

    The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University has constructed and operates two superconducting cyclotrons for research in nuclear science, accelerator and instrumental physics. The K500, the world's first superconducting cyclotron, was commissioned in 1982 and the K1200, the world's most powerful cyclotron, was commissioned in 1988. Heavy-ion beams across the entire periodic table produced in a pair of ECR ion sources and accelerated to energies on the order of 100 MeV/A are delivered to a modern and versatile complement of experimental apparatus, including the new S800 high-resolution superconducting magnetic spectrograph now undergoing initial testing. The diverse variety of beams are used for studies of the quantum-statistical properties of hot nuclei, the liquid-gas phase transition in nuclear matter, and for nuclear structure research, particularly with radioactive ion beams from the A1200 fragment separator. The NSCL provides radioactive nuclear beams out to the limits of stability on both the neutron-rich and the proton-rich sides of the valley of stability. The laboratory is also used for multi-disciplinary research in astrophysics, condensed matter physics, geophysics, medicine, and biology. The NSCL has recently proposed a major upgrade of its facility based on coupled operation of the two cyclotrons. The upgrade will provide large increases in beam intensities for radioactive beam production and increased energies of the heaviest beams.

  17. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-11-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  18. Pacific Northwest National Laboratory institutional plan FY 1997--2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research fundamental knowledge is created of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. Legacy environmental problems are solved by delivering technologies that remedy existing environmental hazards, today`s environmental needs are addressed with technologies that prevent pollution and minimize waste, and the technical foundation is being laid for tomorrow`s inherently clean energy and industrial processes. Pacific Northwest National Laboratory also applies its capabilities to meet selected nationalmore » security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. Brief summaries are given of the various tasks being carried out under these broad categories.« less

  19. The USDA Forest Service National Seed Laboratory

    Treesearch

    Robert P. Karrfalt

    2006-01-01

    The USDA Forest Service National Seed Laboratory has provided seed technology services to the forest and conservation seed and nursery industry for more than 50 years. This paper briefly traces the lab’s evolution from a regional facility concerned principally with southern pines to its newest mission as a national facility working with all native U.S. plants and...

  20. 75 FR 82004 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Laboratory AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory...--Radioactive Waste Management. Public Participation: The EM SSAB, Idaho National Laboratory, welcomes the...

  1. 78 FR 12747 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... Laboratory AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... Management System Public Participation: The EM SSAB, Idaho National Laboratory, welcomes the attendance of...

  2. Internships and Fellowships | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory hasmany exciting opportunities for scientists and biotechnology professionalsthrough numerous post-doctoral and pre-doctoral fellowship positions sponsored by the National Cancer Institute (NCI) at Freder

  3. Charter of the Sandia National Laboratories Sandia Postdoctoral Development (SPD) Association.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, Amber Alane Fisher; Rodgers, Theron; Dong, Wen

    The SNL SPD Association represents all personnel that are classified as Postdoctoral Appointees at Sandia National Laboratories. The purpose of the SNL SPD Association is to address the needs and concerns of Postdoctoral Appointees within Sandia National Laboratories.

  4. Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments

    DOE R&D Accomplishments Database

    2002-01-01

    For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

  5. The International Space Station: A National Science Laboratory

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2011-01-01

    After more than a decade of assembly missions and on the heels of the final voyage of Space Shuttle Discovery, the International Space Station (ISS) has reached assembly completion. With visiting spacecraft now docking with the ISS on a regular basis, the Station now serves as a National Laboratory to scientists back on Earth. ISS strengthens relationships among NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. In this lecture we will explore the various areas of research onboard ISS to promote this advancement: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science. The ISS National Laboratory will also open new paths for the exploration and economic development of space.

  6. Modeling, simulation, and analysis at Sandia National Laboratories for health care systems

    NASA Astrophysics Data System (ADS)

    Polito, Joseph

    1994-12-01

    Modeling, Simulation, and Analysis are special competencies of the Department of Energy (DOE) National Laboratories which have been developed and refined through years of national defense work. Today, many of these skills are being applied to the problem of understanding the performance of medical devices and treatments. At Sandia National Laboratories we are developing models at all three levels of health care delivery: (1) phenomenology models for Observation and Test, (2) model-based outcomes simulations for Diagnosis and Prescription, and (3) model-based design and control simulations for the Administration of Treatment. A sampling of specific applications include non-invasive sensors for blood glucose, ultrasonic scanning for development of prosthetics, automated breast cancer diagnosis, laser burn debridement, surgical staple deformation, minimally invasive control for administration of a photodynamic drug, and human-friendly decision support aids for computer-aided diagnosis. These and other projects are being performed at Sandia with support from the DOE and in cooperation with medical research centers and private companies. Our objective is to leverage government engineering, modeling, and simulation skills with the biotechnical expertise of the health care community to create a more knowledge-rich environment for decision making and treatment.

  7. 75 Breakthroughs by the U.S. Department of Energy's National Laboratories; Breakthroughs 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Born at a time when the world faced a dire threat, the National Laboratory System protects America through science and technology. For more than 75 years, the Department of Energy’s national laboratories have solved important problems in science, energy and national security. Partnering with industry and academia, the laboratories also drive innovation to advance economic competitiveness and ensure our nation’s future prosperity. Over the years, America's National Laboratories have been changing and improving the lives of millions of people and this expertise continues to keep our nation at the forefront of science and technology in a rapidly changing world. Thismore » network of Department of Energy Laboratories has grown into 17 facilities across the country. As this list of breakthroughs attests, Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination and helped to reveal the secrets of the universe.« less

  8. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  9. Location | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  10. Sandia National Laboratories: About Sandia: Environmental Responsibility:

    Science.gov Websites

    Environmental Management: Sandia Sandia National Laboratories Exceptional service in the Environmental Responsibility Environmental Management System Pollution Prevention History 60 impacts Diversity ; Verification Research Research Foundations Bioscience Computing & Information Science Electromagnetics

  11. National Storage Laboratory: a collaborative research project

    NASA Astrophysics Data System (ADS)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  12. What We Do | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory is the only U.S. national lab wholly focused on research, technology, and collaboration in the biomedical sciences- working to discover, to innovate, and to improve human health. We accelerate progress against can

  13. Mobile robotics research at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morse, W.D.

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  14. Mozambique's journey toward accreditation of the National Tuberculosis Reference Laboratory.

    PubMed

    Viegas, Sofia O; Azam, Khalide; Madeira, Carla; Aguiar, Carmen; Dolores, Carolina; Mandlaze, Ana P; Chongo, Patrina; Masamha, Jessina; Cirillo, Daniela M; Jani, Ilesh V; Gudo, Eduardo S

    2017-01-01

    Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL) in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL's process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique to achieve ISO 15189 accreditation. From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan.

  15. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W.

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example ofmore » a risk-based decision technique. This document contains the Appendices for the report.« less

  16. Accessibility | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is making every effort to ensure that the information available on our website is accessible to all. If you use special adaptive equipment to access the web and encounter problems when usin

  17. NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM (NELAP) SUPPORT

    EPA Science Inventory

    The nation has long suffered from the inefficiencies and inconsistencies of the current multiple environmental laboratory accreditation programs. In the 1970's, EPA set minimum standards for a drinking water certification program. The drinking water program was adopted by the s...

  18. [Tuberculosis Laboratory Surveillance Network (TuLSA) study group. The first step for national tuberculosis laboratory surveillance: Ankara, 2011].

    PubMed

    Sezen, Figen; Albayrak, Nurhan; Özkara, Şeref; Karagöz, Alper; Alp, Alpaslan; Duyar Ağca, Filiz; İnan Süer, Asiye; Müderris, Tuba; Ceyhan, İsmail; Durmaz, Rıza; Ertek, Mustafa

    2015-04-01

    The most effective method for monitoring country-level drug resistance frequency and to implement the necessary control measures is the establishment of a laboratory-based surveillance system. The aim of this study was to summarize the follow up trend of the drug-resistant tuberculosis (TB) cases, determine the load of resistance and evaluate the capacities of laboratories depending on laboratory quality assurance system for the installation work of National Tuberculosis Laboratory Surveillance Network (TuLSA) which has started in Ankara in 2011. TuLSA studies was carried out under the coordination of National Tuberculosis Reference Laboratory (NRL) with the participation of TB laboratories and dispensaries. Specimens of TB patients, reported from health institutions, were followed in TB laboratories, and the epidemiological information was collected from the dispensaries. One isolate per patient with the drug susceptibility test (DST) results were sent to NRL from TB laboratories and in NRL the isolates were rechecked with the genotypical (MTBDRplus, Hain Lifescience, Germany) and phenotypical (MGIT 960, BD, USA) DST methods. Molecular epidemiological analysis were also performed by spoligotyping and MIRU/VNTR. Second-line DST was applied to the isolates resistant to rifampin. A total of 1276 patients were reported between January 1st to December 31th 2011, and 335 cases were defined as "pulmonary TB from Ankara province". The mean age of those patients was 43.4 ± 20 years, and 67.5% were male. Three hundred seventeen (94.6%) patients were identified as new cases. The average sample number obtained from pulmonary TB cases was 3.26 ± 2.88, and 229 (68.3%) of them was culture positive. DST was applied to all culture positive isolates; 90.4% (207/229) of cases were susceptible to the five drugs tested (ethambutol, isoniazid, pyrazinamide, rifampicin, streptomycin). Eight (3.5%) of the isolates were multidrug-resistant (MDR-TB), while no extensively drug

  19. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of The Director)

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selectedmore » from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.« less

  20. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less

  1. International Space Station: National Laboratory Education Concept Development Report

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The International Space Station (ISS) program has brought together 16 spacefaring nations in an effort to build a permanent base for human explorers in low-Earth orbit, the first stop past Earth in humanity's path into space. The ISS is a remarkably capable spacecraft, by significant margins the largest and most complex space vehicle ever built. Planned for completion in 2010, the ISS will provide a home for laboratories equipped with a wide array of resources to develop and test the technologies needed for future generations of space exploration. The resources of the only permanent base in space clearly have the potential to find application in areas beyond the research required to enable future exploration missions. In response to Congressional direction in the 2005 National Aeronautics and Space Administration (NASA) Authorization Act, NASA has begun to examine the value of these unique capabilities to other national priorities, particularly education. In early 2006, NASA invited education experts from other Federal agencies to participate in a Task Force charged with developing concepts for using the ISS for educational purposes. Senior representatives from the education offices of the Department of Defense, Department of Education, Department of Energy, National Institutes of Health, and National Science Foundation agreed to take part in the Task Force and have graciously contributed their time and energy to produce a plan that lays out a conceptual framework for potential utilization of the ISS for educational activities sponsored by Federal agencies as well as other future users.

  2. Sandia National Laboratories: Research: Research Foundations: Radiation

    Science.gov Websites

    Effects and High Energy Density Science Sandia National Laboratories Exceptional service in the Engineering Science Geoscience Materials Science Nanodevices & Microsystems Radiation Effects & High Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy

  3. History | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research was established as the Frederick Cancer Research and Development Center in 1972 when about 70 acres and 67 buildings of the U.S. Army were transferred to the U.S. Department of Health and Huma

  4. Development and analysis of a meteorological database, Argonne National Laboratory, Illinois

    USGS Publications Warehouse

    Over, Thomas M.; Price, Thomas H.; Ishii, Audrey L.

    2010-01-01

    A database of hourly values of air temperature, dewpoint temperature, wind speed, and solar radiation from January 1, 1948, to September 30, 2003, primarily using data collected at the Argonne National Laboratory station, was developed for use in continuous-time hydrologic modeling in northeastern Illinois. Missing and apparently erroneous data values were replaced with adjusted values from nearby stations used as 'backup'. Temporal variations in the statistical properties of the data resulting from changes in measurement and data-storage methodologies were adjusted to match the statistical properties resulting from the data-collection procedures that have been in place since January 1, 1989. The adjustments were computed based on the regressions between the primary data series from Argonne National Laboratory and the backup series using data obtained during common periods; the statistical properties of the regressions were used to assign estimated standard errors to values that were adjusted or filled from other series. Each hourly value was assigned a corresponding data-source flag that indicates the source of the value and its transformations. An analysis of the data-source flags indicates that all the series in the database except dewpoint have a similar fraction of Argonne National Laboratory data, with about 89 percent for the entire period, about 86 percent from 1949 through 1988, and about 98 percent from 1989 through 2003. The dewpoint series, for which observations at Argonne National Laboratory did not begin until 1958, has only about 71 percent Argonne National Laboratory data for the entire period, about 63 percent from 1948 through 1988, and about 93 percent from 1989 through 2003, indicating a lower reliability of the dewpoint sensor. A basic statistical analysis of the filled and adjusted data series in the database, and a series of potential evapotranspiration computed from them using the computer program LXPET (Lamoreux Potential

  5. 76 FR 17367 - National Voluntary Laboratory Accreditation Program; Operating Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology 15 CFR Part 285 [Docket No: 110125063-1062-02] RIN 0693-AB61 National Voluntary Laboratory Accreditation Program; Operating Procedures AGENCY: National Institute of Standards and Technology (NIST), Commerce. ACTION: Notice of proposed...

  6. Geochemical study of groundwater at Sandia National Laboratories/New Mexico and Kirtland Air Force Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) and its contractor, Rust Geotech, support the Kirtland Area Office by assisting Sandia National Laboratories/New Mexico (Sandia/NM) with remedial action, remedial design, and technical support of its Environmental Restoration Program. To aid in determining groundwater origins and flow paths, the GJPO was tasked to provide interpretation of groundwater geochemical data. The purpose of this investigation was to describe and analyze the groundwater geochemistry of the Sandia/NM Kirtland Air Force Base (KAFB). Interpretations of groundwater origins are made by using these data and the results of {open_quotes}mass balance{close_quotes} and {open_quotes}reactionmore » path{close_quote} modeling. Additional maps and plots were compiled to more fully comprehend the geochemical distributions. A more complete set of these data representations are provided in the appendices. Previous interpretations of groundwater-flow paths that were based on well-head, geologic, and geochemical data are presented in various reports and were used as the basis for developing the models presented in this investigation.« less

  7. NREL and Sandia National Laboratories to Sharpen Wind Farm Turbine Controls

    Science.gov Websites

    | News | NREL NREL and Sandia National Laboratories to Sharpen Wind Farm Turbine Controls NREL and Sandia National Laboratories to Sharpen Wind Farm Turbine Controls April 1, 2016 Researchers at wind turbine modeling. The NREL controls team have been evaluating their control theory in simulations

  8. The role of laboratory testing in detection and classification of chronic kidney disease: national recommendations

    PubMed Central

    Biljak, Vanja Radišić; Honović, Lorena; Matica, Jasminka; Krešić, Branka; Vojak, Sanela Šimić

    2017-01-01

    Chronic kidney disease (CKD) is a common clinical condition with significant adverse consequences for the patient and it is recognized as a significant public health problem. The role of laboratory medicine in diagnosis and management of CKD is of great importance: the diagnosis and staging are based on estimation of glomerular filtration rate (eGFR) and assessment of albuminuria (or proteinuria). Therefore, the joint working group of the Croatian society of medical biochemistry and laboratory medicine and Croatian chamber of medical biochemists for laboratory diagnostics in CKD issued this national recommendation regarding laboratory diagnostics of CKD.
Key factors for laboratories implementing the national guidelines for the diagnosis and management of CKD are:
1. Ensure good communication between laboratory professionals and clinicians, such as nephrologists or specialists in general/family medicine,
2. Ensure all patients are provided with the same availability of laboratory diagnostics,
3. Ensure creatinine assays are traceable to isotope dilution mass spectrometry (IDMS) method and have minimal bias and acceptable imprecision,
4. Select the appropriate GFR estimating formula. Recommended equation is the 2009 Chronic Kidney Disease Epidemiology Collaboration (CKD – EPI) equation,
5. In reporting the key laboratory tests (creatinine, eGFR, urine albumin-to-creatinine ratio, urine protein-to-creatinine ratio) use the appropriate reporting units,
6. Provide adequate information on limitations of creatinine measurement.
The manuscript has been organized to identify critical points in laboratory tests used in basic laboratory diagnostics of CKD and is based on the Kidney Disease: Improving Global Outcomes (KDIGO) 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. PMID:28392738

  9. Los Alamos National Laboratory considers the use of biodiesel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlin, M. K.

    2002-01-01

    A new EPA-approved alternative fuel, called biodiesel, may soon be used at Los Alamos National Laboratory in everything from diesel trucks to laboratory equipment. Biodiesel transforms vegetable oils into a renewable, cleaner energy source that can be used in any machinery that uses diesel fuel. For the past couple years, the Laboratory has been exploring the possibility of switching over to soybean-based biodiesel. This change could lead to many health and environmental benefits, as well as help reduce the nation's dependence on foreign oil. Biodiesel is a clean, renewable diesel fuel substitute made from soybean and other vegetable oil crops,more » as well as from recycled cooking oils. A chemical process breaks down the vegetable oil into a usable form. Vegetable oil has a chain of about 18 carbons and ordinary diesel has about 12 or 13 carbons. The process breaks the carbon chains of the vegetable oil and separates out the glycerin (a fatty substance used in creams and soaps). The co-product of glycerin can be used by pharmaceutical and cosmetic companies, as well as many other markets. Once the chains are shortened and the glycerin is removed from the oil, the remaining liquid is similar to petroleum diesel fuel. It can be burned in pure form or in a blend of any proportion with petroleum diesel. To be considered an alternative fuel source by the EPA, the blend must be at least 20 percent biodiesel (B20). According to the U.S. Department of Energy (DOE), biodiesel is America's fastest growing alternative fuel.« less

  10. Precision and manufacturing at the Lawrence Livermore National Laboratory

    NASA Technical Reports Server (NTRS)

    Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.

    1994-01-01

    Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  11. Precision and manufacturing at the Lawrence Livermore National Laboratory

    NASA Astrophysics Data System (ADS)

    Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.

    1994-02-01

    Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  12. Battery testing at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1993-03-01

    Argonne National Laboratory's Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies: Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid. These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

  13. Smoking patterns among Los Alamos National Laboratory employees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, M.C.; Wilkinson, G.S.

    Smoking patterns among 5507 employees at Los Alamos National Laboratory were investigated for those who underwent physical examinations by occupational physicians from 1978 to 1983. More male than female employees smoked, although differences in smoking rates between the sexes were not as large as differences observed for national smoking rates. Employees over 40 were more likely to smoke than younger employees, males consumed more cigarettes than did females, and Anglo employees smoked more cigarettes than did Hispanic employees. Highly educated employees smoked less than did less-educated workers, and staff members exhibited the lowest rates of smoking. Smoking cessation programs formore » Laboratory employees should be directed toward those subpopulations with the highest rates of smoking. 31 refs., 8 figs., 1 tab.« less

  14. Historic Context and Building Assessments for the Lawrence Livermore National Laboratory Built Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullrich, R. A.; Sullivan, M. A.

    2007-09-14

    This document was prepared to support u.s. Department of Energy / National Nuclear Security Agency (DOE/NNSA) compliance with Sections 106 and 110 of the National Historic Preservation Act (NHPA). Lawrence Livermore National Laboratory (LLNL) is a DOE/NNSA laboratory and is engaged in determining the historic status of its properties at both its main site in Livermore, California, and Site 300, its test site located eleven miles from the main site. LLNL contracted with the authors via Sandia National Laboratories (SNL) to prepare a historic context statement for properties at both sites and to provide assessments of those properties of potentialmore » historic interest. The report contains an extensive historic context statement and the assessments of individual properties and groups of properties determined, via criteria established in the context statement, to be of potential interest. The historic context statement addresses the four contexts within which LLNL falls: Local History, World War II History (WWII), Cold War History, and Post-Cold War History. Appropriate historic preservation themes relevant to LLNL's history are delineated within each context. In addition, thresholds are identified for historic significance within each of the contexts based on the explication and understanding of the Secretary of the Interior's Guidelines for determining eligibility for the National Register of Historic Places. The report identifies specific research areas and events in LLNL's history that are of interest and the portions of the built environment in which they occurred. Based on that discussion, properties of potential interest are identified and assessments of them are provided. Twenty individual buildings and three areas of potential historic interest were assessed. The final recommendation is that, of these, LLNL has five individual historic buildings, two sets of historic objects, and two historic districts eligible for the National Register. All are eligible

  15. Oak Ridge National Laboratory`s (ORNL) ecological and physical science study center: A hands-on science program for K-12 students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, S.P.

    1994-12-31

    In our tenth year of educational service and outreach, Oak Ridge National Laboratory`s Ecological and Physical Science Study Center (EPSSC) provides hands-on, inquiry-based science activities for area students and teachers. Established in 1984, the EPSSC now hosts over 20,000 student visits. Designed to foster a positive attitude towards science, each unit includes activities which reinforce the science concept being explored. Outdoor science units provide field experience at the Department of Energy`s Oak Ridge National Environmental Research Park and outreach programs are offered on-site in area schools. Other programs are offered as extensions of the EPSSC core programs, including on-site studentmore » science camps, all-girl programs, outreach science camps, student competitions, teacher in-service presentations and teacher workshops.« less

  16. Collaboration Agreement | Frederick National Laboratory for Cancer Research

    Cancer.gov

    A Collaboration Agreement is appropriate for research collaboration involving intellectual and material contributions by the Frederick National Laboratory and external partner(s). It is useful for proof-of-concept studies. Includes brief re

  17. Frontiers: Research highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  18. Frontiers: Research Highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    DOE R&D Accomplishments Database

    1996-01-01

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  19. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It alsomore » summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.« less

  20. 1990 National Water Quality Laboratory Services Catalog

    USGS Publications Warehouse

    Pritt, Jeffrey; Jones, Berwyn E.

    1989-01-01

    PREFACE This catalog provides information about analytical services available from the National Water Quality Laboratory (NWQL) to support programs of the Water Resources Division of the U.S. Geological Survey. To assist personnel in the selection of analytical services, the catalog lists cost, sample volume, applicable concentration range, detection level, precision of analysis, and preservation techniques for samples to be submitted for analysis. Prices for services reflect operationa1 costs, the complexity of each analytical procedure, and the costs to ensure analytical quality control. The catalog consists of five parts. Part 1 is a glossary of terminology; Part 2 lists the bottles, containers, solutions, and other materials that are available through the NWQL; Part 3 describes the field processing of samples to be submitted for analysis; Part 4 describes analytical services that are available; and Part 5 contains indices of analytical methodology and Chemical Abstract Services (CAS) numbers. Nomenclature used in the catalog is consistent with WATSTORE and STORET. The user is provided with laboratory codes and schedules that consist of groupings of parameters which are measured together in the NWQL. In cases where more than one analytical range is offered for a single element or compound, different laboratory codes are given. Book 5 of the series 'Techniques of Water Resources Investigations of the U.S. Geological Survey' should be consulted for more information about the analytical procedures included in the tabulations. This catalog supersedes U.S. Geological Survey Open-File Report 86-232 '1986-87-88 National Water Quality Laboratory Services Catalog', October 1985.

  1. Anthropometric measures in cardiovascular disease prediction: comparison of laboratory-based versus non-laboratory-based model.

    PubMed

    Dhana, Klodian; Ikram, M Arfan; Hofman, Albert; Franco, Oscar H; Kavousi, Maryam

    2015-03-01

    Body mass index (BMI) has been used to simplify cardiovascular risk prediction models by substituting total cholesterol and high-density lipoprotein cholesterol. In the elderly, the ability of BMI as a predictor of cardiovascular disease (CVD) declines. We aimed to find the most predictive anthropometric measure for CVD risk to construct a non-laboratory-based model and to compare it with the model including laboratory measurements. The study included 2675 women and 1902 men aged 55-79 years from the prospective population-based Rotterdam Study. We used Cox proportional hazard regression analysis to evaluate the association of BMI, waist circumference, waist-to-hip ratio and a body shape index (ABSI) with CVD, including coronary heart disease and stroke. The performance of the laboratory-based and non-laboratory-based models was evaluated by studying the discrimination, calibration, correlation and risk agreement. Among men, ABSI was the most informative measure associated with CVD, therefore ABSI was used to construct the non-laboratory-based model. Discrimination of the non-laboratory-based model was not different than laboratory-based model (c-statistic: 0.680-vs-0.683, p=0.71); both models were well calibrated (15.3% observed CVD risk vs 16.9% and 17.0% predicted CVD risks by the non-laboratory-based and laboratory-based models, respectively) and Spearman rank correlation and the agreement between non-laboratory-based and laboratory-based models were 0.89 and 91.7%, respectively. Among women, none of the anthropometric measures were independently associated with CVD. Among middle-aged and elderly where the ability of BMI to predict CVD declines, the non-laboratory-based model, based on ABSI, could predict CVD risk as accurately as the laboratory-based model among men. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Contact Us | Frederick National Laboratory for Cancer Research

    Cancer.gov

    E-mail:fnlwebsite@nih.gov Phone:(301) 846-1000 Postal Mail: Frederick National Laboratory for Cancer Research P.O. Box B Frederick, MD 21702-1201 Human Resources Office of Recruitment (301) 846-5362 Jim

  3. Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Brian K.

    2014-08-01

    This technology evaluation was performed by Pacific Northwest National Laboratory and Oak Ridge National Laboratory on behalf of the Federal Energy Management Program. The objective was to quantify the benefits side stream filtration provides to a cooling tower system. The evaluation assessed the performance of an existing side stream filtration system at a cooling tower system at Oak Ridge National Laboratory’s Spallation Neutron Source research facility. This location was selected because it offered the opportunity for a side-by-side comparison of a system featuring side stream filtration and an unfiltered system.

  4. Kathleen Igo | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Directorate: Clinical Research Program Department or lab: Clinical Monitoring Research Program (CMRP) How many years have you worked at the Frederick National Laboratory? I am in my 7th year of employment.

  5. Locations Accessible | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland.Operations and Technical Support contractor Leidos Biomedical Resea

  6. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruski, Marek; Sadow, Aaron; Slowing, Igor

    Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/ molecular catalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through trans-formative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to attack scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appoint-ments at a university and a National Laboratory.« less

  7. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.

    Catalysis research at the U.S. Department of Energy’s (DOE’s) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to tackle scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appointments at a university and a National Laboratory.« less

  8. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basques, Eric O.

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of programmore » promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.« less

  9. Informal Physics Education: Outreach from a National Laboratory

    NASA Astrophysics Data System (ADS)

    Sanchez, Jose; Dixon, Patricia; Hughes, Roxanne

    2012-02-01

    This presentation highlights strategies for K-20 teaching and learning about materials research in informal settings. The National High Magnetic Field Laboratory's Center for Integrating Research & Learning is in a unique position to conduct programs that reach K-20 students and teachers. As part of a national laboratory the Center provides the infrastructure around which informal education programs are implemented, including the nationally-recognized programming as well as facilitating scientists' educational outreach in the community. Research Experiences for Undergraduates, focuses on encouraging women and other underrepresented groups to pursue STEM careers reaching approximately 200 students many of whom have pursued careers in research as well as academia. The Research Experiences for Teachers program has provided internships for over 150 teachers; the Center also reaches over 10,000 students each year through school and community outreach. Success of informal education programs relies heavily on establishing strong mentoring relationships between scientists and K-20 students and teachers. The Center's success at maintaining diverse programming that transforms how materials education is presented beyond the traditional classroom is the focus for this presentation.

  10. Battery testing at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY-92 on both single cells and multi-cell modules that encompass six battery technologies (Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  11. Mozambique’s journey toward accreditation of the National Tuberculosis Reference Laboratory

    PubMed Central

    Madeira, Carla; Aguiar, Carmen; Dolores, Carolina; Mandlaze, Ana P.; Chongo, Patrina; Masamha, Jessina

    2017-01-01

    Background Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL) in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. Methods The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL’s process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Results Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique to achieve ISO 15189 accreditation. Conclusions From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan. PMID:28879162

  12. Batteries and Energy Storage | Argonne National Laboratory

    Science.gov Websites

    -energy density lithium-ion batteries, while using our fundamental science capabilities to develop storage ), headquartered at Argonne National Laboratory, seeks to develop new technologies that move beyond lithium-ion Transportation SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans

  13. Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory

    NASA Astrophysics Data System (ADS)

    Friedman, Alex

    2007-07-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.

  14. Beverly Hayes | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Employee name: Bev Hayes Directorate: Management Operations Department or lab: Contracts and Acquisitions How many years have you worked at the Frederick National Laboratory? Four months going on one year! Job responsibilities: With the C&A manageme

  15. Pacific Northwest National Laboratory Annual Site Environmental Report for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Joanne P.; Sackschewsky, Michael R.; Tilden, Harold T.

    2014-09-30

    Pacific Northwest National Laboratory (PNNL), one of the U.S. Department of Energy (DOE) Office of Science’s 10 national laboratories, provides innovative science and technology development in the areas of energy and the environment, fundamental and computational science, and national security. DOE’s Pacific Northwest Site Office (PNSO) is responsible for oversight of PNNL at its Campus in Richland, Washington, as well as its facilities in Sequim, Seattle, and North Bonneville, Washington, and Corvallis and Portland, Oregon.

  16. Salaries and compensation practices in public health, environmental, and agricultural laboratories: findings from a 2010 national survey.

    PubMed

    DeBoy, John M; Boulton, Matthew L; Carpenter, David F

    2013-01-01

    The public health, environmental, and agricultural laboratory (PHEAL) workforce is a key component of the public health infrastructure. The national laboratory workforce faces an ongoing challenge of recruitment and retention of workers often related to pay and other compensation issues. To collect information on laboratory salaries and laboratory compensation practices using a national compensation survey targeting the PHEAL workforce. Seventy-three of 109 (67%) PHEAL directors in the 50 states and District of Columbia collectively employ 3723/4830 (77%) PHEAL employees in the United States. A standardized survey was developed and administered in 2010. Compensation data were compiled by job classification, geographic region, laboratory gross operating budget size, laboratory staff size, and laboratory type. Laboratory staff size ranged from 3 to 327 individuals (mean = 74 and median = 51). Median base salaries were lowest in the Southwest and South and highest in the Mountain and Pacific regions. Mean and median laboratory gross operating budgets for all participating PHEALs were $8 609 238 and $5 671 500, respectively. Extra cash compensation, used by 8 of 60 (13.3%) PHEALs, was more likely to go to a scientist-manager or scientist-supervisor. In 2010, a standardized national compensation survey of technical and scientific public health employees working in 73 PHEALs was effective in collecting previously unavailable data about laboratory salaries, laboratory budgets, and payroll practices. Laboratory salaries varied by geographic region and there was an uneven distribution of extra cash compensation among job classifications. The compensation data collected may be useful in characterizing and improving laboratory salary structures and practices to better support workforce recruitment and retention.

  17. NASA Glenn's Acoustical Testing Laboratory Awarded Accreditation by the National Voluntary Laboratory Accreditation Program

    NASA Technical Reports Server (NTRS)

    Akers, James C.; Cooper, Beth A.

    2004-01-01

    NASA Glenn Research Center's Acoustical Testing Laboratory (ATL) provides a comprehensive array of acoustical testing services, including sound pressure level, sound intensity level, and sound-power-level testing per International Standards Organization (ISO)1 3744. Since its establishment in September 2000, the ATL has provided acoustic emission testing and noise control services for a variety of customers, particularly microgravity space flight hardware that must meet International Space Station acoustic emission requirements. The ATL consists of a 23- by 27- by 20-ft (height) convertible hemi/anechoic test chamber and a separate sound-attenuating test support enclosure. The ATL employs a personal-computer-based data acquisition system that provides up to 26 channels of simultaneous data acquisition with real-time analysis (ref. 4). Specialized diagnostic tools, including a scanning sound-intensity system, allow the ATL's technical staff to support its clients' aggressive low-noise design efforts to meet the space station's acoustic emission requirement. From its inception, the ATL has pursued the goal of developing a comprehensive ISO 17025-compliant quality program that would incorporate Glenn's existing ISO 9000 quality system policies as well as ATL-specific technical policies and procedures. In March 2003, the ATL quality program was awarded accreditation by the National Voluntary Laboratory Accreditation Program (NVLAP) for sound-power-level testing in accordance with ISO 3744. The NVLAP program is administered by the National Institutes of Standards and Technology (NIST) of the U.S. Department of Commerce and provides third-party accreditation for testing and calibration laboratories. There are currently 24 NVLAP-accredited acoustical testing laboratories in the United States. NVLAP accreditation covering one or more specific testing procedures conducted in accordance with established test standards is awarded upon successful completion of an intensive

  18. 2016 Annual Site Environmental Report Sandia National Laboratories/New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salas, Angela Maria; Griffith, Stacy R.

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at SNL, New Mexico. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/NM during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and ecological surveillance, waste management, pollution prevention, environmentalmore » restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.« less

  19. 78 FR 66964 - International Space Station National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-129)] International Space Station National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal of the charter of the International Space Station National...

  20. Introduction to the National Information Display Laboratory

    NASA Technical Reports Server (NTRS)

    Carlson, Curtis R.

    1992-01-01

    The goals of the National Information Display Laboratory (NIDL) are described in viewgraph form. The NIDL is a Center of Excellence in softcopy technology with the overall goal to develop new ways to satisfy government information needs through aggressive user support and the development of advanced technology. Government/industry/academia participation, standards development, and various display technologies are addressed.

  1. WUFI (Wärme and Feuchte Instationär)-Oak Ridge National Laboratory (ORNL)/Fraunhofer IBP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manfred Kehrer, ORNL

    2014-05-20

    WUFI - Oak Ridge National Laboratory (ORNL)/Fraunhofer IBP is a menu-driven PC program which allows realistic calculation of the transient coupled one-dimensional heat and moisture transport in multi-layer building components exposed to natural weather. It is based on the newest findings regarding vapor diffusion and liquid transport in building materials and has been validated by detailed comparison with measurements obtained in the laboratory and on outdoor testing fields. Together with Oak Ridge National Laboratory (ORNL) Fraunhofer IBP has developed a special version of WUFI ® for North America. WUFI® ORNL is a functionally limited free version of WUFI® Pro formore » non-commercial purposes. It contains climate data for 62 cities in the USA and Canada which are all available in the free version. http://web.ornl.gov/sci/ees/etsd/btric/wufi/ http://www.WUFI.com/ORNL« less

  2. The laboratory efficiencies initiative: partnership for building a sustainable national public health laboratory system.

    PubMed

    Ridderhof, John C; Moulton, Anthony D; Ned, Renée M; Nicholson, Janet K A; Chu, May C; Becker, Scott J; Blank, Eric C; Breckenridge, Karen J; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners.

  3. The Laboratory Efficiencies Initiative: Partnership for Building a Sustainable National Public Health Laboratory System

    PubMed Central

    Moulton, Anthony D.; Ned, Renée M.; Nicholson, Janet K.A.; Chu, May C.; Becker, Scott J.; Blank, Eric C.; Breckenridge, Karen J.; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners. PMID:23997300

  4. The National Sedimentation Laboratory: 50 years of soil and water research in a changing environment

    USDA-ARS?s Scientific Manuscript database

    The papers in this issue are based on selected presentations made at a symposium convened to celebrate the 50th anniversary of the founding of the National Sedimentation Laboratory (NSL) of the US Department of Agriculture (USDA), Agricultural Research Service (ARS), located in Oxford, Mississippi. ...

  5. Frederick National Laboratory Celebrates 40 Years | Poster

    Cancer.gov

    By Ashley DeVine, Staff Writer Forty years ago, what we now call the Frederick National Laboratory for Cancer Research was born. Here are some highlights in the facility’s history. October 19, 1971 – President Richard Nixon announced that Fort Detrick would be converted from a biological warfare facility to a cancer research center (Covert, Norman M., Cutting Edge: A History

  6. 76 FR 4133 - National Environmental Policy Act; Mars Science Laboratory (MSL) Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-008)] National Environmental Policy Act; Mars Science Laboratory (MSL) Mission AGENCY: National Aeronautics and Space Administration (NASA...). SUMMARY: Pursuant to the National Environmental Policy Act, as amended, (NEPA) (42 U.S.C. 4321 et seq...

  7. NATIONAL LABORATORIES: Better Performance Reporting Could Aid Oversight of Laboratory-Directed R&D Program

    DTIC Science & Technology

    2001-09-01

    Development ( LDRD ) program, which formalized a long-standing policy of allowing its multi-program national laboratories discretion to conduct self...initiated, independent research and development (R&D). DOE requires that LDRD work must focus on the advanced study of scientific or technical problems...

  8. NRMRL SCIENCE PUBLICATIONS (NATIONAL RISK MANAGEMENT RESEARCH LABORATORY, EPA, CINCINNATI, OH)

    EPA Science Inventory

    The National Risk Management Research Laboratory (NRMRL)is the U.S.EPA's center for investigating technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory's research progra...

  9. NATIONAL RISK MANAGEMENT RESEARCH LABORATORY - PROVIDING SOLUTIONS FOR A BETTER TOMORROW

    EPA Science Inventory

    As part of the U.S. Environmental Protection Agency's Office of Research and Development, the National Risk Management Research Laboratory (NRMRL) conducts research into ways to prevent and reduce pollution risks that threaten human health and the environment. The laboratory inve...

  10. Beta-Testing Agreement | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Beta-Testing Agreements are appropriate forlimited term evaluation and applications development of new software, technology, or equipment platforms by the Frederick National Laboratory in collaboration with an external commercial partner. It ma

  11. Technology Innovation for the CTBT, the National Laboratory Contribution

    NASA Astrophysics Data System (ADS)

    Goldstein, W. H.

    2016-12-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) and its Protocol are the result of a long history of scientific engagement and international technical collaboration. The U.S. Department of Energy National Laboratories have been conducting nuclear explosive test-ban research for over 50 years and have made significant contributions to this legacy. Recent examples include the RSTT (regional seismic travel time) computer code and the Smart Sampler—both of these products are the result of collaborations among Livermore, Sandia, Los Alamos, and Pacific Northwest National Laboratories. The RSTT code enables fast and accurate seismic event locations using regional data. This code solves the long-standing problem of using teleseismic and regional seismic data together to locate events. The Smart Sampler is designed for use in On-site Inspections to sample soil gases to look for noble gas fission products from a potential underground nuclear explosive test. The Smart Sampler solves the long-standing problem of collecting soil gases without contaminating the sample with gases from the atmosphere by operating only during atmospheric low-pressure events. Both these products are being evaluated by the Preparatory Commission for the CTBT Organization and the international community. In addition to R&D, the National Laboratories provide experts to support U.S. policy makers in ongoing discussions such as CTBT Working Group B, which sets policy for the development of the CTBT monitoring and verification regime.

  12. Internship at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunham, Ryan Q.

    2012-07-11

    Los Alamos National Laboratory (LANL) is located in Los Alamos, New Mexico. It provides support for our country's nuclear weapon stockpile as well as many other scientific research projects. I am an Undergraduate Student Intern in the Systems Design and Analysis group within the Nuclear Nonproliferation division of the Global Security directorate at LANL. I have been tasked with data analysis and modeling of particles in a fluidized bed system for the capture of carbon dioxide from power plant flue gas.

  13. National laboratory policies and plans in sub-Saharan African countries: gaps and opportunities

    PubMed Central

    van der Broek, Ankie; Jansen, Christel; de Bruijn, Hilde; Schultsz, Constance

    2017-01-01

    Background The 2008 Maputo Declaration calls for the development of dedicated national laboratory policies and strategic plans supporting the enhancement of laboratory services in response to the long-lasting relegation of medical laboratory systems in sub-Saharan Africa. Objectives This study describes the extent to which laboratories are addressed in the national health policies and plans created directly following the 2008 momentum for laboratory strengthening. Method National health policies and plans from 39 sub-Saharan African countries, valid throughout and beyond 31 December 2010 were collected in March 2012 and analysed during 2013. Results Laboratories were addressed by all countries. Human resources were the most addressed topic (38/39) and finances and budget were the least addressed (< 5/39). Countries lagging behind in national laboratory strategic planning at the end of 2013 (17/39) were more likely to be francophone countries located in West-Central Africa (13/17) and have historically low HIV prevalence. The most common gaps anticipated to compromise the implementation of the policies and plans were the disconnect between policies and plans, under-developed finance sections and monitoring and evaluating frameworks, absence of points of reference to define gaps and shortages, and inappropriate governance structure. Conclusion The availability of laboratory policy and plan implementation can be improved by strictly applying a more standardised methodology for policy development, using harmonised norms to set targets for improvement and intensifying the establishment of directorates of laboratory services directly under the authority of Ministries of Health. Horizontal programmes such as the Global Health Security Agenda could provide the necessary impulse to take the least advanced countries on board. PMID:28879152

  14. Customer satisfaction assessment at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DN Anderson; ML Sours

    2000-03-23

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. This report presents the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of two major sections: Strategic Value and Project Performance. Both sections contain a set of questions that can be answered with a 5-point Likert scale response. The strategic value section consists of five questions that are designed to determine if a project directly contributes to critical future national needs. The project Performance section consists ofmore » nine questions designed to determine PNNL performance in meeting customer expectations. A statistical model for customer survey data is developed and this report discusses how to analyze the data with this model. The properties of the statistical model can be used to establish a gold standard or performance expectation for the laboratory, and then to assess progress. The gold standard is defined using laboratory management input--answers to four questions, in terms of the information obtained from the customer survey: (1) What should the average Strategic Value be for the laboratory project portfolio? (2) What Strategic Value interval should include most of the projects in the laboratory portfolio? (3) What should average Project Performance be for projects with a Strategic Value of about 2? (4) What should average Project Performance be for projects with a Strategic Value of about 4? To be able to provide meaningful answers to these questions, the PNNL customer survey will need to be fully implemented for several years, thus providing a link between management perceptions of laboratory performance and customer survey data.« less

  15. Lawrence Livermore National Laboratory Environmental Report 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  16. Lawrence Livermore National Laboratory Environmental Report 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosene, C. A.; Jones, H. E.

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  17. What We Offer | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Opportunities We recognize that employee benefit programs are an important part of the total compensation package, and are committed to providing you with comprehensive benefit options. The Frederick National Laboratory's prime contractor, Leidos

  18. Testing activities at the National Battery Test Laboratory

    NASA Astrophysics Data System (ADS)

    Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.

    The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.

  19. Nanotechnology Laboratory Collaborates with Army to Develop Botulism Vaccine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Nanotechnology Characterization Laboratory (NCL) is collaborating with the Army to develop a candidate vaccine against botulism. Under a collaboration agreement between the National Cancer Institute and the U.S. Army Medical Research Institute of

  20. Transient dynamics capability at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Attaway, Steven W.; Biffle, Johnny H.; Sjaardema, G. D.; Heinstein, M. W.; Schoof, L. A.

    1993-01-01

    A brief overview of the transient dynamics capabilities at Sandia National Laboratories, with an emphasis on recent new developments and current research is presented. In addition, the Sandia National Laboratories (SNL) Engineering Analysis Code Access System (SEACAS), which is a collection of structural and thermal codes and utilities used by analysts at SNL, is described. The SEACAS system includes pre- and post-processing codes, analysis codes, database translation codes, support libraries, Unix shell scripts for execution, and an installation system. SEACAS is used at SNL on a daily basis as a production, research, and development system for the engineering analysts and code developers. Over the past year, approximately 190 days of CPU time were used by SEACAS codes on jobs running from a few seconds up to two and one-half days of CPU time. SEACAS is running on several different systems at SNL including Cray Unicos, Hewlett Packard PH-UX, Digital Equipment Ultrix, and Sun SunOS. An overview of SEACAS, including a short description of the codes in the system, are presented. Abstracts and references for the codes are listed at the end of the report.

  1. The Role of the National Laboratory in Improving Secondary Science Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White,K.; Morris, M.; Stegman, M.

    While the role of science, technology, engineering, and mathematics (STEM) teachers in our education system is obvious, their role in our economic and national security system is less so. Our nation relies upon innovation and creativity applied in a way that generates new technologies for industry, health care, and the protection of our national assets and citizens. Often, it is our science teachers who generate the excitement that leads students to pursue science careers. While academia provides these teachers with the tools to educate, the rigors of a science and technology curriculum, coupled with the requisite teaching courses, often limitmore » teacher exposure to an authentic research environment. As the single largest funding agency for the physical sciences, the US Department of Energy's (DOE) Office of Science plays an important role in filling this void. For STEM teachers, the DOE Academies Creating Teacher Scientists program (ACTS) bridges the worlds of research and education. The ACTS program at Brookhaven National Laboratory (BNL), one of several across the country, exemplifies the value of this program for participating teachers. Outcomes of the work at BNL as evidenced by the balance of this report, include the following: (1) Teachers have developed long-term relationships with the Laboratory through participation in ongoing research, and this experience has both built enthusiasm for and enriched the content knowledge of the participants. (2) Teachers have modified the way they teach and are more likely to engage students in authentic research and include more inquiry-based activities. (3) Teachers have reported their students are more interested in becoming involved in science through classes, extra-curricular clubs, and community involvement. (4) Teachers have established leadership roles within their peer groups, both in their own districts and in the broader teaching community. National laboratories are making an important contribution to the

  2. The pressing energy innovation challenge of the US National Laboratories

    NASA Astrophysics Data System (ADS)

    Anadon, Laura Diaz; Chan, Gabriel; Bin-Nun, Amitai Y.; Narayanamurti, Venkatesh

    2016-10-01

    Accelerating the development and deployment of energy technologies is a pressing challenge. Doing so will require policy reform that improves the efficacy of public research organizations and strengthens the links between public and private innovators. With their US$14 billion annual budget and unique mandates, the US National Laboratories have the potential to critically advance energy innovation, yet reviews of their performance find several areas of weak organizational design. Here, we discuss the challenges the National Laboratories face in engaging the private sector, increasing their contributions to transformative research, and developing culture and management practices to better support innovation. We also offer recommendations for how policymakers can address these challenges.

  3. Conceptual design of new metrology laboratories for the National Physical Laboratory, United Kingdom

    NASA Astrophysics Data System (ADS)

    Manning, Christopher J.

    1994-10-01

    The National Physical Laboratory is planning to house the Division of Mechanical and Optical Metrology and the Division of Material Metrology in a new purpose built laboratory building on its site at Teddington, London, England. The scientific staff were involved in identifying and agreeing the vibration performance requirements of the conceptual design. This was complemented by an extensive surgery of vibration levels within the existing facilities and ambient vibration studies at the proposed site. At one end of the site there is significant vibration input from road traffic. Some of the test equipment is also in itself a source of vibration input. These factors, together with normal occupancy inputs, footfalls and door slams, and a highly serviced building led to vibration being dominant in influencing the structural form. The resulting structural concept comprises three separate structural elements for vibration and geotechnical reasons. The laboratories most sensitive to disturbance by vibration are located at the end of the site farthest from local roads on a massive ground bearing slab. Less sensitive laboratories and those containing vibration sources are located on a massive slab in deep, piled foundations. A common central plant area is located alongside on its own massive slab. Medium sensitivity laboratories and offices are located at first floor level on a reinforced concrete suspended floor of maximum stiffness per unit mass. The whole design has been such as to permit upgrading of areas, eg office to laboratory; laboratory to `high sensitivity' laboratory, to cater for changes in future use of the building.

  4. Laboratory Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  5. PulseNet China, a model for future laboratory-based bacterial infectious disease surveillance in China.

    PubMed

    Li, Wei; Lu, Shan; Cui, Zhigang; Cui, Jinghua; Zhou, Haijian; Wang, Yiqing; Shao, Zhujun; Ye, Changyun; Kan, Biao; Xu, Jianguo

    2012-12-01

    Surveillance is critical for the prevention and control of infectious disease. China's real-time web-based infectious disease reporting system is a distinguished achievement. However, many aspects of the current China Infectious Disease Surveillance System do not yet meet the demand for timely outbreak detection and identification of emerging infectious disease. PulseNet, the national molecular typing network for foodborne disease surveillance was first established by the Centers for Disease Control and Prevention of the United States in 1995 and has proven valuable in the early detection of outbreaks and tracing the pathogen source. Since 2001, the China CDC laboratory for bacterial pathogen analysis has been a member of the PulseNet International family; and has been adapting the idea and methodology of PulseNet to develop a model for a future national laboratory-based surveillance system for all bacterial infectious disease.We summarized the development progress for the PulseNet China system and discussed it as a model for the future of China's national laboratory-based surveillance system.

  6. [Laboratory management fee in national health insurance; what is required from clinical laboratory physicians? --message from Chairpersons].

    PubMed

    Kimura, Satoshi; Koshiba, Masahiro

    2013-06-01

    The laboratory management fee (LMF) in national health insurance ("Kentai-Kensa-Kanri-Kasan" in Japanese) has had a major impact on Japanese clinical laboratories, especially in recent years. In 2012, the fee was raised to approximately 5,000 yen per admitted patient. In order to address this national support, clinical pathologists are required to increase their knowledge and skills. On the other hand, there are insufficient clinical pathologists in Japan. In order to solve this problem, the Japanese Society of Laboratory Medicine (JSLM) approved a new license for Qualified Clinical Laboratory Managing Physicians (CLMPs), in addition to Certified Clinical Laboratory Physicians (CCLPs). The requirements to become a CLMP are less strict than for CCLP. There are approximately 500 CLMPs and 600 CCLPs in this country. The aim of this symposium was to offer opportunities to increase attendees' clinical skills, especially CLMPs and young clinical pathologists. Four CCLPs were chosen as speakers from a university hospital, a major city hospital, a medium-sized acute care hospital, and a university hospital anatomical pathologist, together with a chief medical technologist from a university hospital. All the speakers presented their ideal role models of clinical pathologists matching LMF requirements. JSLM together with the Japanese Association of Clinical Laboratory Physicians (JACLaP) sponsored this symposium. It was a successful meeting with more than two hundred attendees.

  7. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmentalmore » Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less

  8. The Role of a National Biocontainment Laboratory in Emergencies.

    PubMed

    Le Duc, James W; Ksiazek, Thomas G

    2015-01-01

    Over a decade ago, the National Institutes of Health awarded partial support for the construction and operation of 2 National Biocontainment Laboratories, with the condition that they would be available to assist in the event of public health emergencies-although how a biocontainment facility located on an academic campus might contribute was not defined. Here we offer examples of how one of these laboratories has contributed to a coordinated response to 2 recent international public health emergencies. Essential assets for success include highly trained and experienced staff, access to reference pathogens and reagents, cutting-edge knowledge of the field, appropriate biocontainment facilities, robust biosafety and biosecurity programs, and availability of modern instrumentation. The ability to marry the strengths of academia in basic and applied research with access to appropriate biocontainment facilities while drawing on a highly skilled cadre of experienced experts has proven extremely valuable in the response to recent national emergencies and will continue to do so in the future. Areas where additional planning and preparation are needed have also been identified through these experiences.

  9. 76 FR 65752 - International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-104)] International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space... International and Interagency Relations, (202) 358-0550, National Aeronautics and Space Administration...

  10. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  11. Abstract - Cooperative Research and Development Agreement between Ames National Laboratory and National Energy Technology Laboratory AGMT-0609

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryden, Mark; Tucker, David A.

    The goal of this project is to develop a merged environment for simulation and analysis (MESA) at the National Energy Technology Laboratory’s (NETL) Hybrid Performance (Hyper) project laboratory. The MESA sensor lab developed as a component of this research will provide a development platform for investigating: 1) advanced control strategies, 2) testing and development of sensor hardware, 3) various modeling in-the-loop algorithms and 4) other advanced computational algorithms for improved plant performance using sensors, real-time models, and complex systems tools.

  12. The evaluation of hospital laboratory information management systems based on the standards of the American National Standard Institute

    PubMed Central

    Isfahani, Sakineh Saghaeiannejad; Khajouei, Reza; Jahanbakhsh, Maryan; Mirmohamadi, Mahboubeh

    2014-01-01

    Introduction: Nowadays, modern laboratories are faced with a huge volume of information. One of the goals of the Laboratory Information Management System (LIMS) is to assist in the management of the information generated in the laboratory. This study intends to evaluate the LIMS based on the standards of the American National Standard Institute (ANSI). Materials and Methods: This research is a descriptive–analytical study, which had been conducted in 2011, on the LIMSs in use, in the teaching and private hospitals in Isfahan. The data collecting instrument was a checklist, which was made by evaluating three groups of information components namely: ‘System capabilities’, ‘work list functions,’ and ‘reporting’ based on LIS8-A. Data were analyzed using the SPSS 20. Data were analyzed using (relative) frequency, percentage. To compare the data the following statistical tests were used: Leven test, t-test, and Analysis of Variance (ANOVA). Results: The results of the study indicated that the LIMS had a low conformity (30%) with LIS8-A (P = 0.001), with no difference between teaching and private hospitals (P = 0.806). The ANOVA revealed that in terms of conformity with the LIS8-A standard, there was a significant difference between the systems produced by different vendors (P = 0.023). According to the results, a Kowsar system with more than %57 conformity in the three groups of information components had a better conformity to the standard, compared to the other systems. Conclusions: This study indicated that none of the LIMSs had a good conformity to the standard. It seems that system providers did not pay sufficient attention to many of the information components required by the standards when designing and developing their systems. It was suggested that standards from certified organizations and institutions be followed in the design and development process of health information systems. PMID:25077154

  13. The evaluation of hospital laboratory information management systems based on the standards of the American National Standard Institute.

    PubMed

    Isfahani, Sakineh Saghaeiannejad; Khajouei, Reza; Jahanbakhsh, Maryan; Mirmohamadi, Mahboubeh

    2014-01-01

    Nowadays, modern laboratories are faced with a huge volume of information. One of the goals of the Laboratory Information Management System (LIMS) is to assist in the management of the information generated in the laboratory. This study intends to evaluate the LIMS based on the standards of the American National Standard Institute (ANSI). This research is a descriptive-analytical study, which had been conducted in 2011, on the LIMSs in use, in the teaching and private hospitals in Isfahan. The data collecting instrument was a checklist, which was made by evaluating three groups of information components namely: 'System capabilities', 'work list functions,' and 'reporting' based on LIS8-A. Data were analyzed using the SPSS 20. Data were analyzed using (relative) frequency, percentage. To compare the data the following statistical tests were used: Leven test, t-test, and Analysis of Variance (ANOVA). The results of the study indicated that the LIMS had a low conformity (30%) with LIS8-A (P = 0.001), with no difference between teaching and private hospitals (P = 0.806). The ANOVA revealed that in terms of conformity with the LIS8-A standard, there was a significant difference between the systems produced by different vendors (P = 0.023). According to the results, a Kowsar system with more than %57 conformity in the three groups of information components had a better conformity to the standard, compared to the other systems. This study indicated that none of the LIMSs had a good conformity to the standard. It seems that system providers did not pay sufficient attention to many of the information components required by the standards when designing and developing their systems. It was suggested that standards from certified organizations and institutions be followed in the design and development process of health information systems.

  14. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; English, Charles Joe

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, whichmore » is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less

  15. Who We Are | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory is addressing some of the most urgent problems in the biomedical sciences – in cancer and AIDS, drug development and first-in-human clinical trials, applications of nanotechnology in medicine, and rapid response to

  16. National Water Quality Laboratory, 1995 services catalog

    USGS Publications Warehouse

    Timme, P.J.

    1995-01-01

    This Services Catalog contains information about field supplies and analytical services available from the National Water Quality Laboratory in Denver, Colo., and field supplies available from the Quality Water Service Unit in Ocala, Fla., to members of the U.S. Geological Survey. To assist personnel in the selection of analytical services, this catalog lists sample volume, required containers, applicable concentration range, detection level, precision of analysis, and preservation requirements for samples.

  17. The status of soil mapping for the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, G.L.; Lee, R.D.; Jeppesen, D.J.

    This report discusses the production of a revised version of the general soil map of the 2304-km{sup 2} (890-mi{sup 2}) Idaho National Engineering Laboratory (INEL) site in southeastern Idaho and the production of a geographic information system (GIS) soil map and supporting database. The revised general soil map replaces an INEL soil map produced in 1978 and incorporates the most current information on INEL soils. The general soil map delineates large soil associations based on National Resources Conservation Services [formerly the Soil Conservation Service (SCS)] principles of soil mapping. The GIS map incorporates detailed information that could not be presentedmore » on the general soil map and is linked to a database that contains the soil map unit descriptions, surficial geology codes, and other pertinent information.« less

  18. Customer Satisfaction Assessment at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Dale N.; Sours, Mardell L.

    2000-03-20

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. We present the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of 2 major sections, Strategic Value and Project Performance. The Strategic Value section of the questionnaire consists of 5 questions that can be answered with a 5 point Likert scale response. These questions are designed to determine if a project is directly contributing to critical future national needs. The Project Performance section of the questionnaire consistsmore » of 9 questions that can be answered with a 5 point Likert scale response. These questions determine PNNL performance in meeting customer expectations. Many approaches could be used to analyze customer survey data. We present a statistical model that can accurately capture the random behavior of customer survey data. The properties of this statistical model can be used to establish a "gold standard'' or performance expectation for the laboratory, and then assess progress. The gold standard is defined from input from laboratory management --- answers to 4 simple questions, in terms of the information obtained from the CSAP customer survey, define the standard: *What should the average Strategic Value be for the laboratory project portfolio? *What Strategic Value interval should include most of the projects in the laboratory portfolio? *What should average Project Performance be for projects with a Strategic Value of about 2? *What should average Project Performance be for projects with a Strategic Value of about 4? We discuss how to analyze CSAP customer survey data with this model. Our discussion will include "lessons learned" and issues that can invalidate this type of assessment.« less

  19. Energy Secretary Rick Perry Visits Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Energy Secretary Rick Perry visited Oak Ridge National Laboratory on May 22, 2017. During his visit, the secretary not only toured the lab's premier research facilities, but also had some fun with two of its 3D-printed vehicles.

  20. Lab Plays Central Role in Groundbreaking National Clinical Trial in Precision Medicine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Molecular Characterization Laboratory at the Frederick National Laboratory for Cancer Research lies at the heart of an ambitious new approach for testing cancer drugs that will use the newest tools of precision medicine to select the best treatme

  1. A remote laboratory for USRP-based software defined radio

    NASA Astrophysics Data System (ADS)

    Gandhinagar Ekanthappa, Rudresh; Escobar, Rodrigo; Matevossian, Achot; Akopian, David

    2014-02-01

    Electrical and computer engineering graduates need practical working skills with real-world electronic devices, which are addressed to some extent by hands-on laboratories. Deployment capacity of hands-on laboratories is typically constrained due to insufficient equipment availability, facility shortages, and lack of human resources for in-class support and maintenance. At the same time, at many sites, existing experimental systems are usually underutilized due to class scheduling bottlenecks. Nowadays, online education gains popularity and remote laboratories have been suggested to broaden access to experimentation resources. Remote laboratories resolve many problems as various costs can be shared, and student access to instrumentation is facilitated in terms of access time and locations. Labs are converted to homeworks that can be done without physical presence in laboratories. Even though they are not providing full sense of hands-on experimentation, remote labs are a viable alternatives for underserved educational sites. This paper studies remote modality of USRP-based radio-communication labs offered by National Instruments (NI). The labs are offered to graduate and undergraduate students and tentative assessments support feasibility of remote deployments.

  2. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energymore » Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition

  3. Driving R&D for the Next Generation Work Truck; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melendez, M.

    2015-03-04

    Improvements in medium- and heavy-duty work truck energy efficiency can dramatically reduce the use of petroleum-based fuels and the emissions of greenhouse gases. The National Renewable Energy Laboratory (NREL) is working with industry partners to develop fuel-saving, high-performance vehicle technologies, while examining fleet operational practices that can simulateneously improve fuel economy, decrease emissions, and support bottom-line goals.

  4. Sandia National Laboratories Institutional Plan FY1994--1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defensemore » imperatives.« less

  5. Frederick National Laboratory Celebrates 40 Years | Poster

    Cancer.gov

    By Ashley DeVine, Staff Writer Forty years ago, what we now call the Frederick National Laboratory for Cancer Research was born. Here are some highlights in the facility’s history. October 19, 1971 – President Richard Nixon announced that Fort Detrick would be converted from a biological warfare facility to a cancer research center (Covert, Norman M., Cutting Edge: A History of Fort Detrick, Maryland, 1943–1993, pp. 85–87).

  6. National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands.

    PubMed

    Altorf-van der Kuil, Wieke; Schoffelen, Annelot F; de Greeff, Sabine C; Thijsen, Steven Ft; Alblas, H Jeroen; Notermans, Daan W; Vlek, Anne Lm; van der Sande, Marianne Ab; Leenstra, Tjalling

    2017-11-01

    An important cornerstone in the control of antimicrobial resistance (AMR) is a well-designed quantitative system for the surveillance of spread and temporal trends in AMR. Since 2008, the Dutch national AMR surveillance system, based on routine data from medical microbiological laboratories (MMLs), has developed into a successful tool to support the control of AMR in the Netherlands. It provides background information for policy making in public health and healthcare services, supports development of empirical antibiotic therapy guidelines and facilitates in-depth research. In addition, participation of the MMLs in the national AMR surveillance network has contributed to sharing of knowledge and quality improvement. A future improvement will be the implementation of a new semantic standard together with standardised data transfer, which will reduce errors in data handling and enable a more real-time surveillance. Furthermore, the scientific impact and the possibility of detecting outbreaks may be amplified by merging the AMR surveillance database with databases from selected pathogen-based surveillance programmes containing patient data and genotypic typing data.

  7. National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands

    PubMed Central

    Altorf-van der Kuil, Wieke; Schoffelen, Annelot F; de Greeff, Sabine C; Thijsen, Steven FT; Alblas, H Jeroen; Notermans, Daan W; Vlek, Anne LM; van der Sande, Marianne AB; Leenstra, Tjalling

    2017-01-01

    An important cornerstone in the control of antimicrobial resistance (AMR) is a well-designed quantitative system for the surveillance of spread and temporal trends in AMR. Since 2008, the Dutch national AMR surveillance system, based on routine data from medical microbiological laboratories (MMLs), has developed into a successful tool to support the control of AMR in the Netherlands. It provides background information for policy making in public health and healthcare services, supports development of empirical antibiotic therapy guidelines and facilitates in-depth research. In addition, participation of the MMLs in the national AMR surveillance network has contributed to sharing of knowledge and quality improvement. A future improvement will be the implementation of a new semantic standard together with standardised data transfer, which will reduce errors in data handling and enable a more real-time surveillance. Furthermore, the scientific impact and the possibility of detecting outbreaks may be amplified by merging the AMR surveillance database with databases from selected pathogen-based surveillance programmes containing patient data and genotypic typing data. PMID:29162208

  8. 78 FR 24154 - Notice of Availability of a National Animal Health Laboratory Network Reorganization Concept Paper

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ...] Notice of Availability of a National Animal Health Laboratory Network Reorganization Concept Paper AGENCY... Network (NAHLN) for public review and comment. The NAHLN is a nationally coordinated network and... Coordinator, National Animal Health Laboratory Network, Veterinary Services, APHIS, 2140 Centre Avenue...

  9. Sandia National Laboratories, California Environmental Management System program manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a setmore » of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  10. Nuclear energy related capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickering, Susan Y.

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing themore » nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.« less

  11. Web-Based Evaluation System for a Problem-Based Laboratory

    ERIC Educational Resources Information Center

    Azli, Naziha Ahmadi; Othman, Mohd Shahizan

    2008-01-01

    The Faculty of Electrical Engineering, University Technology Malaysia is currently moving towards a Problem-Based Laboratory implementation rather than the conventional instructional-based laboratory for final year students. The laboratory has commenced session with about 500 students' registration in the 2007/08/1. The Problem-Based Laboratory…

  12. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less

  13. Gran Sasso National Laboratory: Outreach and communication activities

    NASA Astrophysics Data System (ADS)

    Antolini, R.; Di Giovanni, A.; Galeota, M.; Sebastiani, S.

    2010-01-01

    Due to its fascinating structures, the Gran Sasso National Laboratory (LNGS) offers huge opportunities for communication and outreach activities conceived for students and general public. A great effort is devoted to the organisation of the "OPEN DAY", in which the scientific staff of Gran Sasso introduces non expert people to the main relevant research topics of the laboratory through interactive demonstrations and particle detectors. In particular, a portable cosmic rays telescope has been realized: the detector is used by LNGS team in pubblic events as well as to promote the scientific activities of the Laboratory. In order to point out the importance of the scientific culture for young people, LNGS is involved in the organisation of several training courses for students and teachers focused on the improvement of the knowledge on modern physics topics. Since May 2008 is operating in Teramo the "Galileium", an interactive museum for physics and astrophysics.

  14. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael F. Simpson

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  15. Material Transfer Agreement (MTA) | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  16. Integration of National Laboratory and Low-Activity Waste Pre-Treatment System Technology Service Providers - 16435

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Karthik H.; Thien, Michael G.; Wellman, Dawn M.

    The National Laboratories are a critical partner and provide expertise in numerous aspects of the successful execution of the Direct-Feed Low Activity Waste Program. The National Laboratories are maturing the technologies of the Low-Activity Waste Pre-Treatment System (LAWPS) consistent with DOE Order 413.3B “Program and Project Management for the Acquisition of Capital Assets” expectations. The National Laboratories continue to mature waste forms, i.e. glass and secondary waste grout, for formulations and predictions of long-term performance as inputs to performance assessments. The working processes with the National Laboratories have been developed in procurements, communications, and reporting to support the necessary delivery-basedmore » technology support. The relationship continues to evolve from planning and technology development to support of ongoing operations and integration of multiple highly coordinated facilities.« less

  17. Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory for Cancer Research, that helps fine-tune nanomedicine formulations and overcomes a key hurdle on the pat

  18. Estimating retention in HIV care accounting for patient transfers: A national laboratory cohort study in South Africa.

    PubMed

    Fox, Matthew P; Bor, Jacob; Brennan, Alana T; MacLeod, William B; Maskew, Mhairi; Stevens, Wendy S; Carmona, Sergio

    2018-06-01

    Systematic reviews have described high rates of attrition in patients with HIV receiving antiretroviral therapy (ART). However, migration and clinical transfer may lead to an overestimation of attrition (death and loss to follow-up). Using a newly linked national laboratory database in South Africa, we assessed national retention in South Africa's national HIV program. Patients receiving care in South Africa's national HIV program are monitored through regular CD4 count and viral load testing. South Africa's National Health Laboratory Service has maintained a database of all public-sector CD4 count and viral load results since 2004. We linked individual laboratory results to patients using probabilistic matching techniques, creating a national HIV cohort. Validation of our approach in comparison to a manually matched dataset showed 9.0% undermatching and 9.5% overmatching. We analyzed data on patients initiating ART in the public sector from April 1, 2004, to December 31, 2006, when ART initiation could be determined based on first viral load among those whose treatment followed guidelines. Attrition occurred on the date of a patient's last observed laboratory measure, allowing patients to exit and reenter care prior to that date. All patients had 6 potential years of follow-up, with an additional 2 years to have a final laboratory measurement to be retained at 6 years. Data were censored at December 31, 2012. We assessed (a) national retention including all laboratory tests regardless of testing facility and (b) initiating facility retention, where laboratory tests at other facilities were ignored. We followed 55,836 patients initiating ART between 2004 and 2006. At ART initiation, median age was 36 years (IQR: 30-43), median CD4 count was 150 cells/mm3 (IQR: 81-230), and 66.7% were female. Six-year initiating clinic retention was 29.1% (95% CI: 28.7%-29.5%). After allowing for transfers, national 6-year retention was 63.3% (95% CI: 62.9%-63.7%). Results differed

  19. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S COMPREHENSIVE HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from nine U.S. studies related to human activities into one comprehensive data system that can be accessed via the world-wide web. The data system is called CHAD-Consolidated Human Activity Database-and it is ...

  20. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finstad, Casey Charles

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  1. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S CONSOLIDATED HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from 12 U.S. studies related to human activities into one comprehensive data system that can be accessed via the Internet. The data system is called the Consolidated Human Activity Database (CHAD), and it is ...

  2. ELECTRONICS UPGRADE TO THE SAVANNAH RIVER NATIONAL LABORATORY COULOMETER FOR PLUTONIUM AND NEPTUNIUM ASSAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordaro, J.; Holland, M.; Reeves, G.

    The Savannah River Site (SRS) has the analytical measurement capability to perform high-precision plutonium concentration measurements by controlled-potential coulometry. State-of-the-art controlled-potential coulometers were designed and fabricated by the Savannah River National Laboratory and installed in the Analytical Laboratories process control laboratory. The Analytical Laboratories uses coulometry for routine accountability measurements of and for verification of standard preparations used to calibrate other plutonium measurement systems routinely applied to process control, nuclear safety, and other accountability applications. The SRNL Coulometer has a demonstrated measurement reliability of {approx}0.05% for 10 mg samples. The system has also been applied to the characterization of neptuniummore » standard solutions with a comparable reliability. The SRNL coulometer features: a patented current integration system; continuous electrical calibration versus Faraday's Constants and Ohm's Law; the control-potential adjustment technique for enhanced application of the Nernst Equation; a wide operating room temperature range; and a fully automated instrument control and data acquisition capability. Systems have been supplied to the International Atomic Energy Agency (IAEA), Russia, Japanese Atomic Energy Agency (JAEA) and the New Brunswick Laboratory (NBL). The most recent vintage of electronics was based on early 1990's integrated circuits. Many of the components are no longer available. At the request of the IAEA and the Department of State, SRNL has completed an electronics upgrade of their controlled-potential coulometer design. Three systems have built with the new design, one for the IAEA which was installed at SAL in May 2011, one system for Los Alamos National Laboratory, (LANL) and one for the SRS Analytical Laboratory. The LANL and SRS systems are undergoing startup testing with installation scheduled for this summer.« less

  3. EPA/ORD NATIONAL EXPOSURE RESEARCH LABORATORY MEASUREMENT SCIENCE SUPPORT FOR HOMELAND SECURITY

    EPA Science Inventory

    This product describes the National Exposure Research Laboratory research and development support for homeland security through the proposed National Exposure Measurements Center (NEMC). Key NEMC functional areas depicted in this poster are: standardized analytical method develo...

  4. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth A.

    2013-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  5. The Fiftieth Anniversary of Brookhaven National Laboratory: A Turbulent Time

    NASA Astrophysics Data System (ADS)

    Bond, Peter D.

    2018-03-01

    The fiftieth anniversary year of Brookhaven National Laboratory was momentous, but for reasons other than celebrating its scientific accomplishments. Legacy environmental contamination, community unrest, politics, and internal Department of Energy issues dominated the year. It was the early days of perhaps the most turbulent time in the lab's history. The consequences resulted in significant changes at the lab, but in addition they brought a change to contracts to manage the Department of Energy laboratories.

  6. The Fiftieth Anniversary of Brookhaven National Laboratory: A Turbulent Time

    NASA Astrophysics Data System (ADS)

    Bond, Peter D.

    2018-06-01

    The fiftieth anniversary year of Brookhaven National Laboratory was momentous, but for reasons other than celebrating its scientific accomplishments. Legacy environmental contamination, community unrest, politics, and internal Department of Energy issues dominated the year. It was the early days of perhaps the most turbulent time in the lab's history. The consequences resulted in significant changes at the lab, but in addition they brought a change to contracts to manage the Department of Energy laboratories.

  7. New Visiting Scholars Program at Frederick National Laboratory | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research is now accepting Expressions of Interest to its new Visiting Scholars Program (VSP). VSP is a unique opportunity for researchers to work on important cancer and AIDS projects with teams of scientists at the only federal national laboratory in the United States devoted exclusively to biomedical research.

  8. Technical Service Agreement (TSA) | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Frederick National Laboratory for Cancer Research (FNLCR) scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than 200 collaborations with more than 80 partners. The Frederi

  9. Site environmental report for 2009 : Sandia National Laboratories, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into tenmore » chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.« less

  10. Site Environmental Report for 2010 Sandia National Laboratories, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chaptermore » 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.« less

  11. Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

    ScienceCinema

    Carpenter, John

    2018-02-14

    Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.

  12. 77 FR 65374 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... management in the areas of environmental restoration, waste management, and related activities. Tentative...

  13. Public health microbiology in Germany: 20 years of national reference centers and consultant laboratories.

    PubMed

    Beermann, Sandra; Allerberger, Franz; Wirtz, Angela; Burger, Reinhard; Hamouda, Osamah

    2015-10-01

    In 1995, in agreement with the German Federal Ministry of Health, the Robert Koch Institute established a public health microbiology system consisting of national reference centers (NRCs) and consultant laboratories (CLs). The goal was to improve the efficiency of infection protection by advising the authorities on possible measures and to supplement infectious disease surveillance by monitoring selected pathogens that have high public health relevance. Currently, there are 19 NRCs and 40 CLs, each appointed for three years. In 2009, an additional system of national networks of NRCs and CLs was set up in order to enhance effectiveness and cooperation within the national reference laboratory system. The aim of these networks was to advance exchange in diagnostic methods and prevention concepts among reference laboratories and to develop geographic coverage of services. In the last two decades, the German public health laboratory reference system coped with all major infectious disease challenges. The European Union and the European Centre for Disease Prevention and Control (ECDC) are considering implementing a European public health microbiology reference laboratory system. The German reference laboratory system should be well prepared to participate actively in this upcoming endeavor. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Epidemiology of laboratory confirmed measles virus cases in the southern nations of Ethiopia, 2007-2014.

    PubMed

    Getahun, Mekonen; Beyene, Berhane; Ademe, Ayesheshem; Teshome, Birke; Tefera, Mesfin; Afework, Aklog; HaileMariam, Yoseph; Assefa, Esete; Hailegiorgis, Yonas; Asha, Anjelo

    2017-01-19

    In Ethiopia, measles case-based surveillance was introduced in 2004 as one strategy for measles control by laboratory confirmation of suspected cases. In this article, epidemiological distribution of laboratory-confirmed measles cases were reported from the Southern Nation Nationalities and Peoples Region (SNNPR) of Ethiopia between 2007 and 2014, as the region is one of the highly measles affected areas in Ethiopia. A serum sample was collected from all measles suspected cases, and patient information was captured by case reporting format (CRF). Samples were transported to the National Measles Laboratory for Measles IgM testing by ELISA technique. Data entry and analysis were done using Epi-Info 3.5.4 software. A total of 4810 samples were tested for measles IgM using ELISA technique and 1507 (31.3%) were found positive during 2007-2014 in SNNPR of Ethiopia. Patients with age 1-4 years were the most affected regardless of sex. The incidence of measles confirmed cases increased from 15 in 2007 to 180 in 2013 per million population. The highest percentage of laboratory-confirmed cases were found in 2014. Measles was found distributed throughout the regional state. Measles was found a public health important disease in SNNPR of Ethiopia, mostly affecting children 1-4 years. The incidence of measles cases is increasing from time to time. Additional research to determine the genotype of circulating measles virus, knowledge, attitude and practice of professionals and the population for measles vaccination and infection in the region is important. A wide age group measles vaccination campaign is highly recommended.

  15. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program provesmore » its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.« less

  16. AmeriFlux US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matamala, Roser

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site). Site Description - Two eddy correlation systems are installed at Fermi National Accelerator Laboratory: one on a restored prairie (established October 2004) and one on a corn/soybean rotation agricultural field (established in July 2005). The prairie site had been farmed for more than 100 years, but was converted to prairie in 1989. April annual to bi-annual prescribed burns have taken place from 1994 - 2007.

  17. 76 FR 68179 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... November 14, 2011, of the Environmental Management Site-Specific Advisory Board, Idaho National Laboratory...: Robert L. Pence, Federal Coordinator, Department of Energy, Idaho Operations Office, 1955 Fremont Avenue...

  18. Surface water data at Los Alamos National Laboratory: 2009 water year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, David; McCullough, Betsy

    2010-05-01

    The principal investigators collected and computed surface water discharge data from 73 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  19. Surface water data at Los Alamos National Laboratory: 2008 water year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  20. Frederick National Laboratory Advisory Committee Welcomes New FNL, NCI Leaders | Poster

    Cancer.gov

    The Frederick National Laboratory Advisory Committee recently met to discuss the future of several high-profile Frederick National Lab initiatives in a meeting that included a chance to meet the new NCI and FNLCR leaders. Here is a look at a few of the highlights from the last of the 2017 FNLAC meetings.

  1. Space Science at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  2. NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION CONFERENCE (NELAC): CONSTITUTION, BYLAWS, AND STANDARDS

    EPA Science Inventory

    The principles and operating procedures for the National Environmental Laboratory Accreditation Conference (NELAC) are contained in the NELAC Constitution and Bylaws. The major portion of this document (standards) contains detailed requirements for accrediting environmental labo...

  3. Establishment of Traceability of Reference Grade Hydrometers at National Physical Laboratory, India (npli)

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Kumar, Harish; Mandal, Goutam; Das, M. B.; Sharma, D. C.

    The present paper discusses the establishment of traceability of reference grade hydrometers at National Physical Laboratory, India (NPLI). The reference grade hydrometers are calibrated and traceable to the primary solid density standard. The calibration has been done according to standard procedure based on Cuckow's Method and the reference grade hydrometers calibrated covers a wide range. The uncertainty of the reference grade hydrometers has been computed and corrections are also calculated for the scale readings, at which observations are taken.

  4. Natural Gas Storage Research at Savannah River National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, Don; Sulic, Martin; Tamburello, David A.

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  5. Four Argonne National Laboratory scientists receive Early Career Research

    Science.gov Websites

    Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Writing Internship Four Argonne National Laboratory scientists receive Early Career Research Program economic impact of cascading shortages. He will also seek to enable scaling on high-performance computing

  6. 75 FR 24685 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... prior to the meeting. ADDRESSES: Hilton Garden Inn, 700 Lindsay Boulevard, Idaho Falls, Idaho 83402. FOR...

  7. 76 FR 39080 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  8. Sandia National Laboratories: Sandia National Laboratories: News: Events

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  9. Laboratory- and Field-Based Assessment of Maximal Aerobic Power of Elite Stand-Up Paddle-Board Athletes.

    PubMed

    Schram, Ben; Hing, Wayne; Climstein, Mike

    2016-01-01

    Stand-up paddle boarding (SUP) is a rapidly growing sport and recreational activity for which only anecdotal evidence exists on its proposed health, fitness, and injury-rehabilitation benefits. 10 internationally and nationally ranked elite SUP athletes. Participants were assessed for their maximal aerobic power on an ergometer in a laboratory and compared with other water-based athletes. Field-based assessments were subsequently performed using a portable gas-analysis system, and a correlation between the 2 measures was performed. Maximal aerobic power (relative) was significantly higher (P = .037) when measured in the field with a portable gas-analysis system (45.48 ± 6.96 mL · kg(-1) · min(-1)) than with laboratory-based metabolic-cart measurements (43.20 ± 6.67 mL · kg(-1) · min(-1)). There was a strong, positive correlation (r = .907) between laboratory and field maximal aerobic power results. Significantly higher (P = .000) measures of SUP paddling speed were found in the field than with the laboratory ergometer (+42.39%). There were no significant differences in maximal heart rate between the laboratory and field settings (P = .576). The results demonstrate the maximal aerobic power representative of internationally and nationally ranked SUP athletes and show that SUP athletes can be assessed for maximal aerobic power in the laboratory with high correlation to field-based measures. The field-based portable gas-analysis unit has a tendency to consistently measure higher oxygen consumption. Elite SUP athletes display aerobic power outputs similar to those of other upper-limb-dominant elite water-based athletes (surfing, dragon-boat racing, and canoeing).

  10. Intra-building telecommunications cabling standards for Sandia National Laboratories, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, R.L.

    1993-08-01

    This document establishes a working standard for all telecommunications cable installations at Sandia National Laboratories, New Mexico. It is based on recent national commercial cabling standards. The topics addressed are Secure and Open/Restricted Access telecommunications environments and both twisted-pair and optical-fiber components of communications media. Some of the state-of-the-art technologies that will be supported by the intrabuilding cable infrastructure are Circuit and Packet Switched Networks (PBX/5ESS Voice and Low-Speed Data), Local Area Networks (Ethernet, Token Ring, Fiber and Copper Distributed Data Interface), and Wide Area Networks (Asynchronous Transfer Mode). These technologies can be delivered to every desk and can transportmore » data at rates sufficient to support all existing applications (such as Voice, Text and graphics, Still Images, Full-motion Video), as well as applications to be defined in the future.« less

  11. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable formore » nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).« less

  12. 75 FR 56527 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... prior to the meeting. ADDRESSES: Coeur d'Alene Resort, 115 South Second Street, Coeur d'Alene, Idaho...

  13. NWTC Helps Guide U.S. Offshore R&D; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-07-01

    The National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is helping guide our nation's research-and-development effort in offshore renewable energy, which includes: Design, modeling, and analysis tools; Device and component testing; Resource characterization; Economic modeling and analysis; Grid integration.

  14. A new matrix for scoring the functionality of national laboratory networks in Africa: introducing the LABNET scorecard.

    PubMed

    Ondoa, Pascale; Datema, Tjeerd; Keita-Sow, Mah-Sere; Ndihokubwayo, Jean-Bosco; Isadore, Jocelyn; Oskam, Linda; Nkengasong, John; Lewis, Kim

    2016-01-01

    Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and current interventions to enhance laboratory capacity in resource-limited-settings. We have developed a matrix for the assessment of national laboratory network functionality and progress thereof, with support from the African Society of Laboratory Medicine and the Association of Public Health Laboratories. The laboratory network (LABNET) scorecard was designed to: (1) Measure the status of nine overarching core capabilities of laboratory network required to achieve global health security targets, as recommended by the main normative standards; (2) Complement the World Health Organization joint external evaluation tool for the assessment of health system preparedness to International Health Regulations (2005) by providing detailed information on laboratory systems; and (3) Serve as a clear roadmap to guide the stepwise implementation of laboratory capability to prevent, detect and act upon infectious threats. The application of the LABNET scorecard under the coordination of the African Society of Laboratory Medicine and the Association of Public Health Laboratories could contribute to the design, monitoring and evaluation of upcoming Global Health Security Agenda-supported laboratory capacity building programmes in sub Saharan-Africa and other resource-limited settings, and inform the development of national laboratory policies and strategic plans. Endorsement by the World Health Organization Regional Office for Africa is foreseen.

  15. Natural Gas Storage Research at Savannah River National Laboratory

    ScienceCinema

    Anton, Don; Sulic, Martin; Tamburello, David A.

    2018-01-16

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  16. National Media Laboratory media testing results

    NASA Technical Reports Server (NTRS)

    Mularie, William

    1993-01-01

    The government faces a crisis in data storage, analysis, archive, and communication. The sheer quantity of data being poured into the government systems on a daily basis is overwhelming systems ability to capture, analyze, disseminate, and store critical information. Future systems requirements are even more formidable: with single government platforms having data rate of over 1 Gbit/sec, greater than Terabyte/day storage requirements, and with expected data archive lifetimes of over 10 years. The charter of the National Media Laboratory (NML) is to focus the resources of industry, government, and academia on government needs in the evaluation, development, and field support of advanced recording systems.

  17. Change in argonne national laboratory: a case study.

    PubMed

    Mozley, A

    1971-10-01

    , William B. Cannon, who is vice president of programs and projects of the University of Chicago, and a small selection of staff members believe that the Laboratory is going through a natural and inevitable process of change consonant with altered missions and objectives in an atomic energy laboratory. The general mood, however, demonstrates the Jeffersonian insight, as relevant in science as in politics, that only democratic governance provides salutary checks and balances when things go wrong. The point deserves close scrutiny when Argonne's tripartite contract comes up for renegotiation in October 1971. Fundamentally Argonne's relations with its sponsoring agency remain at the center of its progress and future plans. Despite administrative and management changes, there is little doubt that he who pays the piper calls the tune. In common with other federal contract research and development adjuncts, Argonne has undoubtedly undergone tightening and winnowing away of flexibility in the past 6 years. In the nuclear reactor program the consequences have been strongly felt, and stringent national budgets have widened the tendency in the research domain. The impact of these changes and of AEC's attitude to basic research raise large questions for the future of the national laboratories. Few doubt that these "major national assets," with their outstanding scientific and technical personnel and equipment, fulfill a unique function and are here to stay, though their missions may undergo some change; the question of their most effective direction and handling, however, remains crucial for those concerned with priorities and decision-making for science. A recent review of 40 national federal adjuncts (30,31) has indicated that the primary sponsoring agency obtains better performance from a center that has a relatively high degree of independence than from one that is tightly controlled. The point is confirmed at Argonne where the present tendency (particularly on the nuclear reactor

  18. Surface Water Data at Los Alamos National Laboratory: 2002 Water Year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.A. Shaull; D. Ortiz; M.R. Alexander

    2003-03-03

    The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.

  19. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  20. Energy and Water Conservation Assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Stephanie R.; Koehler, Theresa M.; Boyd, Brian K.

    2014-05-31

    This report summarizes the results of an energy and water conservation assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory (PNNL). The assessment was performed in October 2013 by engineers from the PNNL Building Performance Team with the support of the dedicated RPL staff and several Facilities and Operations (F&O) department engineers. The assessment was completed for the Facilities and Operations (F&O) department at PNNL in support of the requirements within Section 432 of the Energy Independence and Security Act (EISA) of 2007.

  1. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  2. 75 FR 11872 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... Site- Specific Advisory Board, Idaho National Laboratory to be held on March 16, 2010 75 FR 9590. In that notice, the meeting address was Hilton Garden Inn, 700 Lindsay Boulevard, Idaho Falls, Idaho 83402...

  3. Strategic Plan for the ORD National Exposure Research Laboratory (NERL)

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) has a valued reputation for supporting the Agency’s mission of protecting human health and the environment with multidisciplinary expertise that brings cutting-edge research and technology to address critical exposure questions and...

  4. A new matrix for scoring the functionality of national laboratory networks in Africa: introducing the LABNET scorecard

    PubMed Central

    Datema, Tjeerd; Keita-Sow, Mah-Sere; Ndihokubwayo, Jean-Bosco; Isadore, Jocelyn; Oskam, Linda; Nkengasong, John; Lewis, Kim

    2016-01-01

    Background Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and current interventions to enhance laboratory capacity in resource-limited-settings. Scorecard for laboratory networks We have developed a matrix for the assessment of national laboratory network functionality and progress thereof, with support from the African Society of Laboratory Medicine and the Association of Public Health Laboratories. The laboratory network (LABNET) scorecard was designed to: (1) Measure the status of nine overarching core capabilities of laboratory network required to achieve global health security targets, as recommended by the main normative standards; (2) Complement the World Health Organization joint external evaluation tool for the assessment of health system preparedness to International Health Regulations (2005) by providing detailed information on laboratory systems; and (3) Serve as a clear roadmap to guide the stepwise implementation of laboratory capability to prevent, detect and act upon infectious threats. Conclusions The application of the LABNET scorecard under the coordination of the African Society of Laboratory Medicine and the Association of Public Health Laboratories could contribute to the design, monitoring and evaluation of upcoming Global Health Security Agenda-supported laboratory capacity building programmes in sub Saharan-Africa and other resource-limited settings, and inform the development of national laboratory policies and strategic plans. Endorsement by the World Health Organization Regional Office for Africa is foreseen. PMID:28879141

  5. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.

    PubMed

    Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J

    2009-06-01

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  6. National Risk Management Research Laboratory Strategic plan and Implementation - Overview

    EPA Science Inventory

    This publication provides an overview of the strategic plan recently developed by the National Risk Management Research Laboratory (NRMRL). It includes a description of NRMRL's mission and goals and their alignment with Agency goals. Additionally, the overview contains a brief se...

  7. International Safeguards and the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Khris B.; Smith, Leon E.; Frazar, Sarah L.

    Established in 1965, Pacific Northwest National Laboratory’s (PNNL) strong technical ties and shared heritage with the nearby U.S. Department of Energy Hanford Site were central to the early development of expertise in nuclear fuel cycle signatures, separations chemistry, plutonium chemistry, environmental monitoring, modeling and analysis of reactor systems, and nuclear material safeguards and security. From these Hanford origins, PNNL has grown into a multi-program science and engineering enterprise that utilizes this diversity to strengthen the international safeguards regime. Today, PNNL supports the International Atomic Energy Agency (IAEA) in its mission to provide assurances to the international community that nations domore » not use nuclear materials and equipment outside of peaceful uses. PNNL also serves in the IAEA’s Network of Analytical Laboratories (NWAL) by providing analysis of environmental samples gathered around the world. PNNL is involved in safeguards research and development activities in support of many U.S. Government programs such as the National Nuclear Security Administration’s (NNSA) Office of Research and Development, NNSA Office of Nonproliferation and Arms Control, and the U.S. Support Program to IAEA Safeguards. In addition to these programs, PNNL invests internal resources including safeguards-specific training opportunities for staff, and laboratory-directed research and development funding to further ideas that may grow into new capabilities. This paper and accompanying presentation highlight some of PNNL’s contributions in technology development, implementation concepts and approaches, policy, capacity building, and human capital development, in the field of international safeguards.« less

  8. Compliance program data management system for The Idaho National Engineering Laboratory/Environmental Protection Agency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzler, C.L.; Poloski, J.P.; Bates, R.A.

    1988-01-01

    The Compliance Program Data Management System (DMS) developed at the Idaho National Engineering Laboratory (INEL) validates and maintains the integrity of data collected to support the Consent Order and Compliance Agreement (COCA) between the INEL and the Environmental Protection Agency (EPA). The system uses dBase III Plus programs and dBase III Plus in an interactive mode to enter, store, validate, manage, and retrieve analytical information provided on EPA Contract Laboratory Program (CLP) forms and CLP forms modified to accommodate 40 CFR 264 Appendix IX constituent analyses. Data analysis and presentation is performed utilizing SAS, a statistical analysis software program. Archivingmore » of data and results is performed at appropriate stages of data management. The DMS is useful for sampling and analysis programs where adherence to EPA CLP protocol, along with maintenance and retrieval of waste site investigation sampling results is desired or requested. 3 refs.« less

  9. Sandia National Laboratories/New Mexico Environmental Information Document - Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAYLISS, LINDA S.; GUERRERO, JOSEPH V.; JOHNS, WILLIAM H.

    This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, themore » EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.« less

  10. Croatian Society of Medical Biochemistry and Laboratory Medicine: national recommendations for venous blood sampling

    PubMed Central

    Nikolac, Nora; Šupak-Smolčić, Vesna; Šimundić, Ana-Maria; Ćelap, Ivana

    2013-01-01

    Phlebotomy is one of the most complex medical procedures in the diagnosis, management and treatment of patients in healthcare. Since laboratory test results are the basis for a large proportion (60–80%) of medical decisions, any error in the phlebotomy process could have serious consequences. In order to minimize the possibility of errors, phlebotomy procedures should be standardised, well-documented and written instructions should be available at every workstation. Croatia is one of the few European countries that have national guidelines for phlebotomy, besides the universally used CLSI (Clinical Laboratory Standards Institute) H3-A6 Procedures for the Collection of Diagnostic Blood Specimens by Venipuncture; approved Standard-Sixth Edition (CLSI, 2007) and WHO (World Health Organization) guidelines on drawing blood: best practices in phlebotomy (WHO, 2010). However, the growing body of evidence in importance of preanalytical phase management resulted in a need for evidence based revision and expansion of existing recommendations. The Croatian Society for Medical Biochemistry and Laboratory Medicine, Working Group for the Preanalytical Phase issued this recommendation. This document is based on the CLSI guideline H3-A6, with significant differences and additional information. PMID:24266294

  11. Croatian Society of Medical Biochemistry and Laboratory Medicine: national recommendations for venous blood sampling.

    PubMed

    Nikolac, Nora; Supak-Smolcić, Vesna; Simundić, Ana-Maria; Celap, Ivana

    2013-01-01

    Phlebotomy is one of the most complex medical procedures in the diagnosis, management and treatment of patients in healthcare. Since laboratory test results are the basis for a large proportion (60-80%) of medical decisions, any error in the phlebotomy process could have serious consequences. In order to minimize the possibility of errors, phlebotomy procedures should be standardised, well-documented and written instructions should be available at every workstation. Croatia is one of the few European countries that have national guidelines for phlebotomy, besides the universally used CLSI (Clinical Laboratory Standards Institute) H3-A6 Procedures for the Collection of Diagnostic Blood Specimens by Venipuncture; approved Standard-Sixth Edition (CLSI, 2007) and WHO (World Health Organization) guidelines on drawing blood: best practices in phlebotomy (WHO, 2010). However, the growing body of evidence in importance of preanalytical phase management resulted in a need for evidence based revision and expansion of existing recommendations. The Croatian Society for Medical Biochemistry and Laboratory Medicine, Working Group for the Preanalytical Phase issued this recommendation. This document is based on the CLSI guideline H3-A6, with significant differences and additional information.

  12. U.S. Department of Energy, Sandia National Laboratories: Printing Case Study

    EPA Pesticide Factsheets

    The U.S. Department of Energy, Sandia National Laboratories (SNL), New Mexico quantified the costs associated with individual desktop printing devices, for comparison with costs associated with using networked copiers as printers

  13. Building and Rebuilding: The National Public Health Laboratory Systems and Services Before and After the Earthquake and Cholera Epidemic, Haiti, 2009-2015.

    PubMed

    Jean Louis, Frantz; Buteau, Josiane; Boncy, Jacques; Anselme, Renette; Stanislas, Magalie; Nagel, Mary C; Juin, Stanley; Charles, Macarthur; Burris, Robert; Antoine, Eva; Yang, Chunfu; Kalou, Mireille; Vertefeuille, John; Marston, Barbara J; Lowrance, David W; Deyde, Varough

    2017-10-01

    Before the 2010 devastating earthquake and cholera outbreak, Haiti's public health laboratory systems were weak and services were limited. There was no national laboratory strategic plan and only minimal coordination across the laboratory network. Laboratory capacity was further weakened by the destruction of over 25 laboratories and testing sites at the departmental and peripheral levels and the loss of life among the laboratory health-care workers. However, since 2010, tremendous progress has been made in building stronger laboratory infrastructure and training a qualified public health laboratory workforce across the country, allowing for decentralization of access to quality-assured services. Major achievements include development and implementation of a national laboratory strategic plan with a formalized and strengthened laboratory network; introduction of automation of testing to ensure better quality of results and diversify the menu of tests to effectively respond to outbreaks; expansion of molecular testing for tuberculosis, human immunodeficiency virus, malaria, diarrheal and respiratory diseases; establishment of laboratory-based surveillance of epidemic-prone diseases; and improvement of the overall quality of testing. Nonetheless, the progress and gains made remain fragile and require the full ownership and continuous investment from the Haitian government to sustain these successes and achievements.

  14. Complications Associated with Long-Term Disposition of Newly-Generated Transuranic Waste: A National Laboratory Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.J. Orchard; L.A. Harvego; T.L. Carlson

    The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nation’s expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answersmore » to national infrastructure needs. As a result of the Laboratory’s NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INL’s contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INL’s TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not

  15. Virtual special issue on catalysis at the U.S. Department of Energy's National Laboratories

    DOE PAGES

    Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.; ...

    2016-04-21

    Here the catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE's mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions.

  16. Using the H Index to Assess Impact of DOE National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, Everett P.

    The most readily accessible elements of the Emerald Matrix by quantitative measures are the knowledge and economy related measures. In this paper, the H Index for an institution will be used to assess STE impact, which is in the knowledge generation element. The H Index was developed by Hirsch (2005) as a measure of an individual’s scientific impact. The H Index is defined as the number of publications that have been cited h or more times for a given author. It has been generalized to organizations. Doing so leads to a complication in that H index scales with the numbermore » of publications. Although this may not be problematic when comparing individual researchers, it systematically favors larger institutions. Molinari and Molinari (2008) proposed an alternative index (hm) designed to assess organizational impact. It transforms the H Index for an organization into an impact index by removing a factor dependent on the number of publications. The hm provides another approach to compare institutions provided that differences in the citation patterns associated with fields of study are addressed. Kinney (2007) used the Molinari and Molinari (2008) approach to compare various scientific institutions in nonbiomedical research areas. Kinney (2007) used the Thomson Reuters Web of Science (WoS) as the source and used publications in nonbiomedical research areas, which is very important because the research areas of universities are much broader than say a DOE national laboratory. Also there are differences in citation rates for the various research fields that make comparisons between individuals or organizations difficult. The results from Kinney (2007) are given in Table 1 and indicate that the DOE national laboratories compare favorably with the selected universities in terms of impact (hm) in the research areas used in Kinney’s analysis. This report will compare hm for DOE national laboratories using an approach similar to Kinney (2007) providing a measure of

  17. Sandia National Laboratories site-wide hydrogeologic characterization project calendar year 1992 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowson, D.; Gibson, J.D.; Haase, C.S.

    1993-10-01

    The Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Hydrogeologic Characterization (SWHC) project has been implemented as part of the SNL/NM Environmental Restoration (ER) Program to develop the regional hydrogeologic framework and baseline for the approximately 100 mi of Kirtland Air Force Base (KAFB) and adjacent withdrawn public lands upon which SNL/NM has performed research and development activities. Additionally, the SWHC project will investigate and characterize generic hydrogeologic issues associated with the 172 ER sites owned by SNL/NM across its facilities on KAFB. As called for in the Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Actmore » (RCRA) Part B permit agreement between the U.S. Environmental Protection Agency (EPA) as the permitter and the U.S. Department of Energy (DOE) and SNL/NM as the permittees, an annual report is to be prepared by the SWHC project team. This document serves two primary purposes: (1) to identify and describe the conceptual framework for the hydrogeologic system underlying SNL/NM and (2) to describe characterization activities undertaken in the preceding year that add to our understanding (reduce our uncertainties) regarding the conceptual and quantitative hydrogeologic framework. This SWHC project annual report focuses primarily on purpose 1, providing a summary description of the current {open_quotes}state of knowledge{close_quotes} of the Sandia National Laboratories/Kirtland Air Force Base (SNL/KAFB) hydrogeologic setting.« less

  18. National survey on intra-laboratory turnaround time for some most common routine and stat laboratory analyses in 479 laboratories in China.

    PubMed

    Fei, Yang; Zeng, Rong; Wang, Wei; He, Falin; Zhong, Kun; Wang, Zhiguo

    2015-01-01

    To investigate the state of the art of intra-laboratory turnaround time (intra-TAT), provide suggestions and find out whether laboratories accredited by International Organization for Standardization (ISO) 15189 or College of American Pathologists (CAP) will show better performance on intra-TAT than non-accredited ones. 479 Chinese clinical laboratories participating in the external quality assessment programs of chemistry, blood gas, and haematology tests organized by the National Centre for Clinical Laboratories in China were included in our study. General information and the median of intra-TAT of routine and stat tests in last one week were asked in the questionnaires. The response rate of clinical biochemistry, blood gas, and haematology testing were 36% (479/1307), 38% (228/598), and 36% (449/1250), respectively. More than 50% of laboratories indicated that they had set up intra-TAT median goals and almost 60% of laboratories declared they had monitored intra-TAT generally for every analyte they performed. Among all analytes we investigated, the intra-TAT of haematology analytes was shorter than biochemistry while the intra-TAT of blood gas analytes was the shortest. There were significant differences between median intra-TAT on different days of the week for routine tests. However, there were no significant differences in median intra-TAT reported by accredited laboratories and non-accredited laboratories. Many laboratories in China are aware of intra-TAT control and are making effort to reach the target. There is still space for improvement. Accredited laboratories have better status on intra-TAT monitoring and target setting than the non-accredited, but there are no significant differences in median intra-TAT reported by them.

  19. National survey on intra-laboratory turnaround time for some most common routine and stat laboratory analyses in 479 laboratories in China

    PubMed Central

    Fei, Yang; Zeng, Rong; Wang, Wei; He, Falin; Zhong, Kun

    2015-01-01

    Introduction To investigate the state of the art of intra-laboratory turnaround time (intra-TAT), provide suggestions and find out whether laboratories accredited by International Organization for Standardization (ISO) 15189 or College of American Pathologists (CAP) will show better performance on intra-TAT than non-accredited ones. Materials and methods 479 Chinese clinical laboratories participating in the external quality assessment programs of chemistry, blood gas, and haematology tests organized by the National Centre for Clinical Laboratories in China were included in our study. General information and the median of intra-TAT of routine and stat tests in last one week were asked in the questionnaires. Results The response rate of clinical biochemistry, blood gas, and haematology testing were 36% (479 / 1307), 38% (228 / 598), and 36% (449 / 1250), respectively. More than 50% of laboratories indicated that they had set up intra-TAT median goals and almost 60% of laboratories declared they had monitored intra-TAT generally for every analyte they performed. Among all analytes we investigated, the intra-TAT of haematology analytes was shorter than biochemistry while the intra-TAT of blood gas analytes was the shortest. There were significant differences between median intra-TAT on different days of the week for routine tests. However, there were no significant differences in median intra-TAT reported by accredited laboratories and non-accredited laboratories. Conclusions Many laboratories in China are aware of intra-TAT control and are making effort to reach the target. There is still space for improvement. Accredited laboratories have better status on intra-TAT monitoring and target setting than the non-accredited, but there are no significant differences in median intra-TAT reported by them. PMID:26110033

  20. NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY - ACCOMPLISHMENTS FOR FY 2001

    EPA Science Inventory

    This Annual Report showcases some of the scientific activities of the National Health and Environmental Effects Research Laboratory (NHEERL) in various health and environmental effects research areas. Where appropriate, the contributions of other collaborating research organizat...

  1. Inaugural Technology Showcase Draws Hundreds | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Before a crowded auditorium of science and business professionals at the Frederick National Laboratory for Cancer Research’s Advanced Technology Research Facility (ATRF), Joost Oppenheim, M.D., had just finished his presentation about a compound th

  2. Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, Bethany M

    2012-04-02

    The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrialmore » safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.« less

  3. Technical Capabilities of the National Vehicle and Fuel Emissions Laboratory (NVFEL)

    EPA Pesticide Factsheets

    National Vehicle and Fuel Emissions Laboratory (NVFEL) is a state-of-the-art test facility that conducts a wide range of emissions testing and analysis for EPA’s motor vehicle, heavy-duty engine, and nonroad engine programs.

  4. Site Environmental Report for 2016 Sandia National Laboratories California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    Sandia National Laboratories, California (SNL/CA) is a Department of Energy (DOE) facility. The management and operations of the facility are under a contract with the DOE’s National Nuclear Security Administration (NNSA). On May 1, 2017, the name of the management and operating contractor changed from Sandia Corporation to National Technology and Engineering Solutions of Sandia, LLC (NTESS). The DOE, NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2016 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2012). The report provides a summary ofmore » environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2016, unless noted otherwise. General site and environmental program information is also included.« less

  5. Bradbury science museum: your window to Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deck, Linda Theresa

    The Bradbury Science Museum is the public's window to Los Alamos National Laboratory and supports the Community Program Office's mission to develop community support to accomplish LANL's national security and science mission. It does this by stimulating interest in and increasing basic knowledge of science and technology in northern New Mexico audiences, and increasing public understanding and appreciation of how LANL science and technology solve our global problems. In performing these prime functions, the Museum also preserves the history of scientific accomplishment at the Lab by collecting and preserving artifacts of scientific and historical importance.

  6. NATIONAL RISK MANAGEMENT RESEARCH LABORATORY: PROVIDING SOLUTIONS FOR A BETTER TOMORROW

    EPA Science Inventory

    This small, two-fold flyer contains general information introducing EPA's National Risk Management Research Laboratory and its research program. The key overarching areas of research described are: Protection of drinking water; control of air pollution; pollution prevention and e...

  7. ECOSYSTEM RESTORATION RESEARCH THROUGH THE NATIONAL RISK MANAGEMENT RESEARCH LABORATORY (NRMRL)

    EPA Science Inventory

    The Ecosystem Restoration Research Program underway through ORD's National Risk Management Research Laboratory (NRMRL) has the long-term goal of providing watershed managers with "..state-of-the-science field-evaluated tools, technical guidance, and decision-support systems for s...

  8. Evaluation of aircraft crash hazard at Los Alamos National Laboratory facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvage, R.D.

    This report selects a method for use in calculating the frequency of an aircraft crash occurring at selected facilities at the Los Alamos National Laboratory (the Laboratory). The Solomon method was chosen to determine these probabilities. Each variable in the Solomon method is defined and a value for each variable is selected for fourteen facilities at the Laboratory. These values and calculated probabilities are to be used in all safety analysis reports and hazards analyses for the facilities addressed in this report. This report also gives detailed directions to perform aircraft-crash frequency calculations for other facilities. This will ensure thatmore » future aircraft-crash frequency calculations are consistent with calculations in this report.« less

  9. Accelerator-based techniques for the support of senior-level undergraduate physics laboratories

    NASA Astrophysics Data System (ADS)

    Williams, J. R.; Clark, J. C.; Isaacs-Smith, T.

    2001-07-01

    Approximately three years ago, Auburn University replaced its aging Dynamitron accelerator with a new 2MV tandem machine (Pelletron) manufactured by the National Electrostatics Corporation (NEC). This new machine is maintained and operated for the University by Physics Department personnel, and the accelerator supports a wide variety of materials modification/analysis studies. Computer software is available that allows the NEC Pelletron to be operated from a remote location, and an Internet link has been established between the Accelerator Laboratory and the Upper-Level Undergraduate Teaching Laboratory in the Physics Department. Additional software supplied by Canberra Industries has also been used to create a second Internet link that allows live-time data acquisition in the Teaching Laboratory. Our senior-level undergraduates and first-year graduate students perform a number of experiments related to radiation detection and measurement as well as several standard accelerator-based experiments that have been added recently. These laboratory exercises will be described, and the procedures used to establish the Internet links between our Teaching Laboratory and the Accelerator Laboratory will be discussed.

  10. National Bio-fuel Energy Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jezierski, Kelly

    2010-12-27

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEM’s. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D andmore » performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy – a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering

  11. Insects of the Idaho National Laboratory: A compilation and review

    Treesearch

    Nancy Hampton

    2005-01-01

    Large tracts of important sagebrush (Artemisia L.) habitat in southeastern Idaho, including thousands of acres at the Idaho National Laboratory (INL), continue to be lost and degraded through wildland fire and other disturbances. The roles of most insects in sagebrush ecosystems are not well understood, and the effects of habitat loss and alteration...

  12. THE EPA NATIONAL EXPOSURE RESEARCH LABORATORY CHILDREN'S PESTICIDE EXPOSURE MEASUREMENT PROGRAM

    EPA Science Inventory

    The U.S. EPA's National Exposure Research Laboratory (NERL) conducts research in support of the Food Quality Protection Act (FQPA) of 1996. FQPA requires that children's risks to pesticide exposures be considered during the tolerance-setting process. The Act requires exposure...

  13. GROUNDWATER PLUME CONTROL WITH PHYTOTECHNOLOGIES AT THE ARGONNE NATIONAL LABORATORY-EAST

    EPA Science Inventory

    In 1999 Argonne National Laboratory-East (ANL-E) designed and installed a series of engineered plantings consisting of a vegetative cover system and approximately 800 hybrid poplars and willows rooting at various predetermined depths. The plants were installed using various meth...

  14. Guidance for Human Subjects Research in the National Exposure Research Laboratory

    EPA Science Inventory

    This document provides guidance to investigators and managers associated with the U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD)’s National Exposure Research Laboratory (NERL) on the ethical conduct, regulatory review, and approval of all huma...

  15. THE EPA NATIONAL EXPOSURE RESEARCH LABORATORY CHILDREN'S PESTICIDE EXPOSURE MEASUREMENT PROGRAM

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) National Exposure Research Laboratory (NERL) is performing research in support of the Food Quality Protection Act (FQPA) of 1996. This act requires that pesticide exposure assessments to be conducted for all potential sources, rou...

  16. Sitewide Environmental Assessment for the National Renewable Energy Laboratory, Golden, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-04

    The Solar Energy Research, Development, and Demonstration Act of 1974 authorized a federal program to develop solar energy as a viable source of the nation`s future energy needs. Under this authority, the National Renewable Energy Laboratory (NREL) was created as a laboratory of the Department of Energy (DOE) to research a number of renewable energy possibilities. The laboratory conducts its operations both in government-owned facilities on the NREL South Table Mountain (STM) Site near Golden, Colorado, and in a number of leased facilities, particularly the Denver West Office Park. NREL operations include research in energy technologies, and other areas ofmore » national environmental and energy technology interest. Examples of these technologies include electricity from sunlight with solar cells (photovoltaics); energy from wind (windmills or wind turbines); conversion of plants and plant products (biomass) into liquid fuels (ethanol and methanol); heat from the sun (solar thermal) in place of wood, oil, gas, coal and other forms of heating; and solar buildings. NREL proposes to continue and expand the present R&D efforts in C&R energy by making infrastructure improvements and constructing facilities to eventually consolidate the R&D and associated support activities at its STM Site. In addition, it is proposed that operations continue in current leased space at the present levels of activity until site development is complete. The construction schedule proposed is designed to develop the site as rapidly as possible, dependent on Congressional funding, to accommodate not only the existing R&D that is being conducted in leased facilities off-site but to also allow for the 20-year projected growth. Impacts from operations currently conducted off-site are quantified and added to the cumulative impacts of the STM site. This environmental assessment provides information to determine the severity of impacts on the environment from the proposed action.« less

  17. A comprehensive Laboratory Services Survey of State Public Health Laboratories.

    PubMed

    Inhorn, Stanley L; Wilcke, Burton W; Downes, Frances Pouch; Adjanor, Oluwatosin Omolade; Cada, Ronald; Ford, James R

    2006-01-01

    In November 2004, the Association of Public Health Laboratories (APHL) conducted a Comprehensive Laboratory Services Survey of State Public Health Laboratories (SPHLs) in order to establish the baseline data necessary for Healthy People 2010 Objective 23-13. This objective aims to measure the increase in the proportion of health agencies that provide or assure access to comprehensive laboratory services to support essential public health services. This assessment addressed only SPHLs and served as a baseline to periodically evaluate the level of improvement in the provision of laboratory services over the decade ending 2010. The 2004 survey used selected questions that were identified as key indicators of provision of comprehensive laboratory services. The survey was developed in consultation with the Centers for Disease Control and Prevention National Center for Health Statistics, based on newly developed data sources. Forty-seven states and one territory responded to the survey. The survey was based on the 11 core functions of SPHLs as previously defined by APHL. The range of performance among individual laboratories for the 11 core functions (subobjectives) reflects the challenging issues that have confronted SPHLs in the first half of this decade. APHL is now working on a coordinated effort with other stakeholders to create seamless state and national systems for the provision of laboratory services in support of public health programs. These services are necessary to help face the threats raised by the specter of terrorism, emerging infections, and natural disasters.

  18. [Building and implementation of management system in laboratories of the National Institute of Hygiene].

    PubMed

    Rozbicka, Beata; Brulińska-Ostrowska, Elzbieta

    2008-01-01

    The rules of good laboratory practice have always been observed in the laboratories of National Institute of Hygiene (NIH) and the reliability of the results has been carefully cared after when performing tests for clients. In 2003 the laboratories performing analyses related to food safety were designated as the national reference laboratories. This, added to the necessity of compliance with work standards and requirements of EU legislation and to the need of confirmation of competence by an independent organisation, led to a decision to seek accreditation of Polish Centre of Accreditation (PCA). The following stages of building and implementation of management system were presented: training, modifications of Institute's organisational structure, elaboration of management system's documentation, renovation and refurbishment of laboratory facilities, implementation of measuring and test equipment's supervision, internal audits and management review. The importance of earlier experiences and achievements with regard to validation of analytical methods and guarding of the quality of the results through organisation and participation in proficiency tests was highlighted. Current status of accreditation of testing procedures used in NIH laboratories that perform analyses in the field of chemistry, microbiology, radiobiology and medical diagnostic tests was presented.

  19. Global and national laboratory networks support high quality surveillance for measles and rubella.

    PubMed

    Xu, Wenbo; Zhang, Yan; Wang, Huiling; Zhu, Zhen; Mao, Naiying; Mulders, Mick N; Rota, Paul A

    2017-05-01

    Laboratory networks are an essential component of disease surveillance systems because they provide accurate and timely confirmation of infection. WHO coordinates global laboratory surveillance of vaccine preventable diseases, including measles and rubella. The more than 700 laboratories within the WHO Global Measles and Rubella Laboratory Network (GMRLN) supports surveillance for measles, rubella and congenial rubella syndrome in 191 counties. This paper describes the overall structure and function of the GMRLN and highlights the largest of the national laboratory networks, the China Measles and Rubella Laboratory Network. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Idaho National Laboratory Quarterly Performance Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INLmore » from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.« less

  1. Idaho National Laboratory Quarterly Occurrence Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth Ann

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 85 reportable events (18 from the 4th Qtr FY-15 and 67 from the prior three reporting quarters), as well as 25 other issue reports (including events found to be not reportable and Significant Category A and B conditions)more » identified at INL during the past 12 months (8 from this quarter and 17 from the prior three quarters).« less

  2. Audit Report, "Fire Protection Deficiencies at Los Alamos National Laboratory"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-06-01

    The Department of Energy's Los Alamos National Laboratory (Los Alamos) maintains some of the Nation's most important national security assets, including nuclear materials. Many of Los Alamos' facilities are located in close proximity to one another, are occupied by large numbers of contract and Federal employees, and support activities ranging from nuclear weapons design to science-related activities. Safeguarding against fires, regardless of origin, is essential to protecting employees, surrounding communities, and national security assets. On June 1, 2006, Los Alamos National Security, LLC (LANS), became the managing and operating contractor for Los Alamos, under contract with the Department's National Nuclearmore » Security Administration (NNSA). In preparation for assuming its management responsibilities at Los Alamos, LANS conducted walk-downs of the Laboratory's facilities to identify pre-existing deficiencies that could give rise to liability, obligation, loss or damage. The walk-downs, which identified 812 pre-existing fire protection deficiencies, were conducted by subject matter professionals, including fire protection experts. While the Los Alamos Site Office has overall responsibility for the effectiveness of the fire protection program, LANS, as the Laboratory's operating contractor, has a major, day-to-day role in minimizing fire-related risks. The issue of fire protection at Los Alamos is more than theoretical. In May 2000, the 'Cerro Grande' fire burned about 43,000 acres, including 7,700 acres of Laboratory property. Due to the risk posed by fire to the Laboratory's facilities, workforce, and surrounding communities, we initiated this audit to determine whether pre-existing fire protection deficiencies had been addressed. Our review disclosed that LANS had not resolved many of the fire protection deficiencies that had been identified in early 2006: (1) Of the 296 pre-existing deficiencies we selected for audit, 174 (59 percent) had not been

  3. Translating a National Laboratory Strategic Plan into action through SLMTA in a district hospital laboratory in Botswana.

    PubMed

    Ntshambiwa, Keoratile; Ntabe-Jagwer, Winnie; Kefilwe, Chandapiwa; Samuel, Fredrick; Moyo, Sikhulile

    2014-01-01

    The Ministry of Health (MOH) of Botswana adopted Strengthening Laboratory Management Toward Accreditation (SLMTA), a structured quality improvement programme, as a key tool for the implementation of quality management systems in its public health laboratories. Coupled with focused mentorship, this programme aimed to help MOH achieve the goals of the National Laboratory Strategic Plan to provide quality and timely clinical diagnoses. This article describes the impact of implementing SLMTA in Sekgoma Memorial Hospital Laboratory (SMHL) in Serowe, Botswana. SLMTA implementation in SMHL included trainings, improvement projects, site visits and focused mentorship. To measure progress, audits using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist were conducted at baseline and exit of the programme, with scores corresponding to a zero- to five-star scale. Turnaround times, customer satisfaction, and several other health service indicators were tracked. The laboratory scored 53% (zero stars) at the baseline audit and 80% (three stars) at exit. Nearly three years later, the laboratory scored 85% (four stars) in an official audit conducted by the African Society for Laboratory Medicine. Turnaround times became shorter after SLMTA implementation, with reductions ranging 19% to 52%; overall patient satisfaction increased from 56% to 73%; and clinician satisfaction increased from 41% to 72%. Improvements in inventory management led to decreases in discarded reagents, reducing losses from US $18 000 in 2011 to $40 in 2013. The SLMTA programme contributed to enhanced performance of the laboratory, which in turn yielded potential positive impacts for patient care at the hospital.

  4. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours formore » the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.« less

  5. Real-time laboratory exercises to test contingency plans for classical swine fever: experiences from two national laboratories.

    PubMed

    Koenen, F; Uttenthal, A; Meindl-Böhmer, A

    2007-12-01

    In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning contingency plans. These plans should ensure that in the event of an outbreak access to facilities, equipment, resources, trained personnel, and all other facilities needed for the rapid and efficient eradication of the outbreak is guaranteed, and that the procedures to follow are well rehearsed. It is essential that these plans are established during 'peace-time' and are reviewed regularly. This paper provides suggestions on how to perform laboratory exercises to test preparedness and describes the experiences of two national reference laboratories for CSF. The major lesson learnt was the importance of a well-documented laboratory contingency plan. The major pitfalls encountered were shortage of space, difficulties in guaranteeing biosecurity and sufficient supplies of sterile equipment and consumables. The need for a standardised laboratory information management system, that is used by all those involved in order to reduce the administrative load, is also discussed.

  6. Environmental testing philosophy for a Sandia National Laboratories small satellite project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cap, J.S.; Rackley, N.G.

    1996-03-01

    Sandia National Laboratories is the system integrator on a small satellite project. Following the intent of the NASA GEVS document, an integrated test philosophy was formulated to certify the satellite for flight. The purpose of this paper is to present that philosophy.

  7. Feasibility study of medical isotope production at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, C.D.; Miller, D.L.; Carson, S.D.

    1995-12-01

    In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for {sup 99}Mo, the parent of {sup 99m}Tc, in the event of an interruption in themore » current Canadian supply. {sup 99m}Tc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for {sup 99}Mo and to identify and examine all issues with potential for environmental impact.« less

  8. [The National Reference Centres and Reference Laboratories. Importance and tasks].

    PubMed

    Laude, G; Ammon, A

    2005-09-01

    Since 1995, the German Federal Ministry for Health and Social Security funds National Reference Centres (NRC) for the laboratory surveillance of important pathogens and syndromes. Which pathogens or syndromes are selected to be covered by a NRC depends on their epidemiological relevance, the special diagnostic tools, problems with antimicrobial resistance and necessary infection control measures. Currently, there are 15 NRC, which are appointed for a period of 3 years (currently from January 2005 through December 2007). Towards the end of their appointment all NRC are evaluated by a group of specialists. The assessment of their achievements is guided by a catalogue of tasks for the NRC. In addition to the NRC, a total of 50 laboratories are appointed which provide specialist expertise for additional pathogens in order to have a broad range of pathogens for which specialist laboratories are available. Their predominant task is to give advice and support for special diagnostic problems. Both NRC and the specialist laboratories are important parts of the network for infectious disease epidemiology.

  9. The Legnaro National Laboratories and the SPES facility: nuclear structure and reactions today and tomorrow

    NASA Astrophysics Data System (ADS)

    de Angelis, Giacomo; Fiorentini, Gianni

    2016-11-01

    There is a very long tradition of studying nuclear structure and reactions at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (Italian Institute of Nuclear Physics). The wide expertise acquired in building and running large germanium arrays has made the laboratories one of the most advanced research centers in γ-ray spectroscopy. The ’gamma group’ has been deeply involved in all the national and international developments of the last 20 years and is currently one of the major contributors to the AGATA project, the first (together with its American counterpart GRETINA) γ-detector array based on γ-ray tracking. This line of research is expected to be strongly boosted by the coming into operation of the SPES radioactive ion beam project, currently under construction at LNL. In this report, written on the occasion of the 40th anniversary of the Nobel prize awarded to Aage Bohr, Ben R Mottelson and Leo Rainwater and particularly focused on the physics of nuclear structure, we intend to summarize the different lines of research that have guided nuclear structure and reaction research at LNL in the last decades. The results achieved have paved the way for the present SPES facility, a new laboratories infrastructure producing and accelerating radioactive ion beams of fission fragments and other isotopes.

  10. Dual benefit robotics programs at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A.T.

    Sandia National Laboratories has one of the largest integrated robotics laboratories in the United States. Projects include research, development, and application of one-of-a-kind systems, primarily for the Department of Energy (DOE) complex. This work has been underway for more than 10 years. It began with on-site activities that required remote operation, such as reactor and nuclear waste handling. Special purpose robot systems were developed using existing commercial manipulators and fixtures and programs designed in-house. These systems were used in applications such as servicing the Sandia pulsed reactor and inspecting remote roof bolts in an underground radioactive waste disposal facility. Inmore » the beginning, robotics was a small effort, but with increasing attention to the use of robots for hazardous operations, efforts now involve a staff of more than 100 people working in a broad robotics research, development, and applications program that has access to more than 30 robotics systems.« less

  11. Flow Induced Vibration Program at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  12. The Laboratory-Based Economics Curriculum.

    ERIC Educational Resources Information Center

    King, Paul G.; LaRoe, Ross M.

    1991-01-01

    Describes the liberal arts, computer laboratory-based economics program at Denison University (Ohio). Includes as goals helping students to (1) understand deductive arguments, (2) learn to apply theory in real-world situations, and (3) test and modify theory when necessary. Notes that the program combines computer laboratory experiments for…

  13. The total laboratory solution: a new laboratory E-business model based on a vertical laboratory meta-network.

    PubMed

    Friedman, B A

    2001-08-01

    Major forces are now reshaping all businesses on a global basis, including the healthcare and clinical laboratory industries. One of the major forces at work is information technology (IT), which now provides the opportunity to create a new economic and business model for the clinical laboratory industry based on the creation of an integrated vertical meta-network, referred to here as the "total laboratory solution" (TLS). Participants at the most basic level of such a network would include a hospital-based laboratory, a reference laboratory, a laboratory information system/application service provider/laboratory portal vendor, an in vitro diagnostic manufacturer, and a pharmaceutical/biotechnology manufacturer. It is suggested that each of these participants would add value to the network primarily in its area of core competency. Subvariants of such a network have evolved over recent years, but a TLS comprising all or most of these participants does not exist at this time. Although the TLS, enabled by IT and closely akin to the various e-businesses that are now taking shape, offers many advantages from a theoretical perspective over the current laboratory business model, its success will depend largely on (a) market forces, (b) how the collaborative networks are organized and managed, and (c) whether the network can offer healthcare organizations higher quality testing services at lower cost. If the concept is successful, new demands will be placed on hospital-based laboratory professionals to shift the range of professional services that they offer toward clinical consulting, integration of laboratory information from multiple sources, and laboratory information management. These information management and integration tasks can only increase in complexity in the future as new genomic and proteomics testing modalities are developed and come on-line in clinical laboratories.

  14. [National Laboratory on Early Childhood Education Program; Program Plans and Budget Request, Fiscal 1970 - Program Project Resumes 1969-70.

    ERIC Educational Resources Information Center

    1969

    This volume explains the purposes and programs of the National Laboratory on Early Childhood Education. Its overriding objective is to broaden the base of knowledge concerning educational intervention and to develop comprehensive early childhood educational models. A brief discussion deals with the problems, strategies, and capacities of the…

  15. Sandia National Laboratories environmental fluid dynamics code. Marine Hydrokinetic Module User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Scott Carlton; Roberts, Jesse D.

    2014-03-01

    This document describes the marine hydrokinetic (MHK) input file and subroutines for the Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC), which is a combined hydrodynamic, sediment transport, and water quality model based on the Environmental Fluid Dynamics Code (EFDC) developed by John Hamrick [1], formerly sponsored by the U.S. Environmental Protection Agency, and now maintained by Tetra Tech, Inc. SNL-EFDC has been previously enhanced with the incorporation of the SEDZLJ sediment dynamics model developed by Ziegler, Lick, and Jones [2-4]. SNL-EFDC has also been upgraded to more accurately simulate algae growth with specific application to optimizing biomass in anmore » open-channel raceway for biofuels production [5]. A detailed description of the input file containing data describing the MHK device/array is provided, along with a description of the MHK FORTRAN routine. Both a theoretical description of the MHK dynamics as incorporated into SNL-EFDC and an explanation of the source code are provided. This user manual is meant to be used in conjunction with the original EFDC [6] and sediment dynamics SNL-EFDC manuals [7]. Through this document, the authors provide information for users who wish to model the effects of an MHK device (or array of devices) on a flow system with EFDC and who also seek a clear understanding of the source code, which is available from staff in the Water Power Technologies Department at Sandia National Laboratories, Albuquerque, New Mexico.« less

  16. Biological Assessment of the Continued Operation of Los Alamos National Laboratory on Federally Listed Threatened and Endangered Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Leslie A.

    2006-09-19

    This biological assessment considers the effects of continuing to operate Los Alamos National Laboratory on Federally listed threatened or endangered species, based on current and future operations identified in the 2006 Site-wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (SWEIS; DOE In Prep.). We reviewed 40 projects analyzed in the SWEIS as well as two aspects on ongoing operations to determine if these actions had the potential to affect Federally listed species. Eighteen projects that had not already received U.S. Fish and Wildlife Service (USFWS) consultation and concurrence, as well as the two aspects ofmore » ongoing operations, ecological risk from legacy contaminants and the Outfall Reduction Project, were determined to have the potential to affect threatened or endangered species. Cumulative impacts were also analyzed.« less

  17. Los Alamos National Laboratory Economic Analysis Capability Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boero, Riccardo; Edwards, Brian Keith; Pasqualini, Donatella

    Los Alamos National Laboratory has developed two types of models to compute the economic impact of infrastructure disruptions. FastEcon is a fast running model that estimates first-­order economic impacts of large scale events such as hurricanes and floods and can be used to identify the amount of economic activity that occurs in a specific area. LANL’s Computable General Equilibrium (CGE) model estimates more comprehensive static and dynamic economic impacts of a broader array of events and captures the interactions between sectors and industries when estimating economic impacts.

  18. 77 FR 3257 - Transfer of Land Tracts Located at Los Alamos National Laboratory, New Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... DEPARTMENT OF ENERGY Transfer of Land Tracts Located at Los Alamos National Laboratory, New Mexico AGENCY: National Nuclear Security Administration, U.S. Department of Energy. ACTION: Amended Record of Decision. SUMMARY: The U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is...

  19. Building and Rebuilding: The National Public Health Laboratory Systems and Services Before and After the Earthquake and Cholera Epidemic, Haiti, 2009–2015

    PubMed Central

    Jean Louis, Frantz; Buteau, Josiane; Boncy, Jacques; Anselme, Renette; Stanislas, Magalie; Nagel, Mary C.; Juin, Stanley; Charles, Macarthur; Burris, Robert; Antoine, Eva; Yang, Chunfu; Kalou, Mireille; Vertefeuille, John; Marston, Barbara J.; Lowrance, David W.; Deyde, Varough

    2017-01-01

    Abstract. Before the 2010 devastating earthquake and cholera outbreak, Haiti’s public health laboratory systems were weak and services were limited. There was no national laboratory strategic plan and only minimal coordination across the laboratory network. Laboratory capacity was further weakened by the destruction of over 25 laboratories and testing sites at the departmental and peripheral levels and the loss of life among the laboratory health-care workers. However, since 2010, tremendous progress has been made in building stronger laboratory infrastructure and training a qualified public health laboratory workforce across the country, allowing for decentralization of access to quality-assured services. Major achievements include development and implementation of a national laboratory strategic plan with a formalized and strengthened laboratory network; introduction of automation of testing to ensure better quality of results and diversify the menu of tests to effectively respond to outbreaks; expansion of molecular testing for tuberculosis, human immunodeficiency virus, malaria, diarrheal and respiratory diseases; establishment of laboratory-based surveillance of epidemic-prone diseases; and improvement of the overall quality of testing. Nonetheless, the progress and gains made remain fragile and require the full ownership and continuous investment from the Haitian government to sustain these successes and achievements. PMID:29064354

  20. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Robert K.

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the naturemore » of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.« less

  1. Implementing a lessons learned process at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fosshage, Erik D.; Drewien, Celeste A.; Eras, Kenneth

    2016-01-01

    The Lessons Learned Process Improvement Team was tasked to gain an understanding of the existing lessons learned environment within the major programs at Sandia National Laboratories, identify opportunities for improvement in that environment as compared to desired attributes, propose alternative implementations to address existing inefficiencies, perform qualitative evaluations of alternative implementations, and recommend one or more near-term activities for prototyping and/or implementation. This report documents the work and findings of the team.

  2. Compilation of Earthquakes from 1850-2007 within 200 miles of the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Seth Carpenter

    2010-07-01

    An updated earthquake compilation was created for the years 1850 through 2007 within 200 miles of the Idaho National Laboratory. To generate this compilation, earthquake catalogs were collected from several contributing sources and searched for redundant events using the search criteria established for this effort. For all sets of duplicate events, a preferred event was selected, largely based on epicenter-network proximity. All unique magnitude information for each event was added to the preferred event records and these records were used to create the compilation referred to as “INL1850-2007”.

  3. 75 FR 48939 - National Superconducting Cyclotron Laboratory of Michigan State University; Notice of Decision on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... DEPARTMENT OF COMMERCE International Trade Administration National Superconducting Cyclotron Laboratory of Michigan State University; Notice of Decision on Applications for Duty-Free Entry of Scientific... Cyclotron Laboratory of Michigan State University. Instrument: Radio Frequency Quadropole Accelerator (RFQ...

  4. Master--slave manipulators and remote maintenance at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenness, R.G.; Wicker, C.D.

    1975-01-01

    The volume of master-slave manipulator maintenance at Oak Ridge National Laboratory has necessitated the establishment of a repair facility and the organization of a specially trained group of craftsmen. Emphasis on cell containment requires the use of manipulator boots and the development of precise procedures for accomplishing the maintenance of 283 installed units. To provide the most economical type of preventive maintenance, a very satisfactory computer- programmed maintenance system has been established at the Laboratory. (auth)

  5. Investigation of laboratory test procedures for assessing the structural capacity of geogrid-reinforced aggregate base materials.

    DOT National Transportation Integrated Search

    2015-04-01

    The objective of this research was to identify a laboratory test method that can be used to quantify improvements in structural capacity of aggregate base materials reinforced with geogrid. For this research, National Cooperative Highway Research Pro...

  6. Mixed waste landfill corrective measures study final report Sandia National Laboratories, Albuquerque, New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peace, Gerald; Goering, Timothy James

    2004-03-01

    The Mixed Waste Landfill occupies 2.6 acres in the north-central portion of Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico. The landfill accepted low-level radioactive and mixed waste from March 1959 to December 1988. This report represents the Corrective Measures Study that has been conducted for the Mixed Waste Landfill. The purpose of the study was to identify, develop, and evaluate corrective measures alternatives and recommend the corrective measure(s) to be taken at the site. Based upon detailed evaluation and risk assessment using guidance provided by the U.S. Environmental Protection Agency and the New Mexico Environment Department, themore » U.S. Department of Energy and Sandia National Laboratories recommend that a vegetative soil cover be deployed as the preferred corrective measure for the Mixed Waste Landfill. The cover would be of sufficient thickness to store precipitation, minimize infiltration and deep percolation, support a healthy vegetative community, and perform with minimal maintenance by emulating the natural analogue ecosystem. There would be no intrusive remedial activities at the site and therefore no potential for exposure to the waste. This alternative poses minimal risk to site workers implementing institutional controls associated with long-term environmental monitoring as well as routine maintenance and surveillance of the site.« less

  7. Establishing a national biological laboratory safety and security monitoring program.

    PubMed

    Blaine, James W

    2012-12-01

    The growing concern over the potential use of biological agents as weapons and the continuing work of the Biological Weapons Convention has promoted an interest in establishing national biological laboratory biosafety and biosecurity monitoring programs. The challenges and issues that should be considered by governments, or organizations, embarking on the creation of a biological laboratory biosafety and biosecurity monitoring program are discussed in this article. The discussion focuses on the following questions: Is there critical infrastructure support available? What should be the program focus? Who should be monitored? Who should do the monitoring? How extensive should the monitoring be? What standards and requirements should be used? What are the consequences if a laboratory does not meet the requirements or is not willing to comply? Would the program achieve the results intended? What are the program costs? The success of a monitoring program can depend on how the government, or organization, responds to these questions.

  8. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  9. National survey on the pre-analytical variability in a representative cohort of Italian laboratories.

    PubMed

    Lippi, Giuseppe; Montagnana, Martina; Giavarina, Davide

    2006-01-01

    Owing to remarkable advances in automation, laboratory technology and informatics, the pre-analytical phase has become the major source of variability in laboratory testing. The present survey investigated the development of several pre-analytical processes within a representative cohort of Italian clinical laboratories. A seven-point questionnaire was designed to investigate the following issues: 1a) the mean outpatient waiting time before check-in and 1b) the mean time from check-in to sample collection; 2) the mean time from sample collection to analysis; 3) the type of specimen collected for clinical chemistry testing; 4) the degree of pre-analytical automation; 5a) the number of samples shipped to other laboratories and 5b) the availability of standardised protocols for transportation; 6) the conditions for specimen storage; and 7) the availability and type of guidelines for management of unsuitable specimens. The questionnaire was administered to 150 laboratory specialists attending the SIMEL (Italian Society of Laboratory Medicine) National Meeting in June 2006. 107 questionnaires (71.3%) were returned. Data analysis revealed a high degree of variability among laboratories for the time required for check-in, outpatient sampling, sample transportation to the referral laboratory and analysis upon the arrival. Only 31% of laboratories have automated some pre-analytical steps. Of the 87% of laboratories that ship specimens to other facilities without sample preparation, 19% have no standardised protocol for transportation. For conventional clinical chemistry testing, 74% of the laboratories use serum evacuated tubes (59% with and 15% without serum separator), whereas the remaining 26% use lithium-heparin evacuated tubes (11% with and 15% without plasma separator). The storage period and conditions for rerun/retest vary widely. Only 63% of laboratories have a codified procedure for the management of unsuitable specimens, which are recognised by visual inspection

  10. Calendar Year 2013 Annual Site Environmental Report for Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, Stacy

    2014-09-01

    Sandia National Laboratories, New Mexico is a government-owned/contractor-operated facility. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s sustainability, environmental protection, and monitoring programs through December 31, 2013. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of themore » National Environmental Policy Act. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).« less

  11. HUMAN HEALTH RESEARCH IMPLEMENTATION PLAN, NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY

    EPA Science Inventory

    The National Health and Environmental Effects Research Laboratory (NHEERL), as part of the Environmental Protection Agency's (EPA's) Office of Research and Development (ORD), is responsible for conducting research to improve the risk assessment of chemicals for potential effects ...

  12. Brookhaven National Laboratory

    MedlinePlus

    ... Sciences Center for Functional Nanomaterials Chemistry Condensed Matter Physics & Materials Science National Synchrotron Light Source II Sustainable ... and Technology Nonproliferation and National Security Nuclear & Particle ... Magnet RIKEN BNL ...

  13. SANDIA NATIONAL LABORATORIES IN SITU ELECTROKINETIC EXTRACTION TECHNOLOGY; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    As a part of the Superfund Innovative Technology Evaluation (SITE) Program, the U.S. Environmental Protection Agency evaluated the In-Situ Electrokinetic Extraction (ISEE) system at Sandia National Laboratories, Albuquerque, New Mexico.

    The SITE demonstration results show ...

  14. Tiger Team Assessment of the Fermi National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    This draft report documents the Tiger Team Assessment of the Fermi National Accelerator Laboratory (Fermilab) located in Batavia, Illinois. Fermilab is a program-dedicated national laboratory managed by the Universities Research Association, Inc. (URA) for the US Department of Energy (DOE). The Tiger Team Assessment was conducted from May 11 to June 8, 1992, under the auspices of DOE's Office of Special Projects (OSP) under the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety and health (ES H), and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations.more » Compliance with applicable Federal , State of Illinois, and local regulations; applicable DOE Orders; best management practices; and internal Fermilab requirements was addressed. In addition, an evaluation of the effectiveness of DOE and Fermilab management of the ES H/QA and self-assessment programs was conducted. The Fermilab Tiger Team Assessment is part a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary of Energy with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.« less

  15. Tiger Team Assessment of the Fermi National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    This draft report documents the Tiger Team Assessment of the Fermi National Accelerator Laboratory (Fermilab) located in Batavia, Illinois. Fermilab is a program-dedicated national laboratory managed by the Universities Research Association, Inc. (URA) for the US Department of Energy (DOE). The Tiger Team Assessment was conducted from May 11 to June 8, 1992, under the auspices of DOE`s Office of Special Projects (OSP) under the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety and health (ES&H), and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliancemore » with applicable Federal , State of Illinois, and local regulations; applicable DOE Orders; best management practices; and internal Fermilab requirements was addressed. In addition, an evaluation of the effectiveness of DOE and Fermilab management of the ES&H/QA and self-assessment programs was conducted. The Fermilab Tiger Team Assessment is part a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary of Energy with information on the compliance status of DOE facilities with regard to ES&H requirements, root causes for noncompliance, adequacy of DOE and contractor ES&H management programs, response actions to address the identified problem areas, and DOE-wide ES&H compliance trends and root causes.« less

  16. NATURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GREEN,T.ET AL.

    2003-12-31

    Brookhaven National Laboratory (BNL) is located near the geographic center of Long Island, New York. The Laboratory is situated on 5,265 acres of land composed of Pine Barrens habitat with a central area developed for Laboratory work. In the mid-1990s BNL began developing a wildlife management program. This program was guided by the Wildlife Management Plan (WMP), which was reviewed and approved by various state and federal agencies in September 1999. The WMP primarily addressed concerns with the protection of New York State threatened, endangered, or species of concern, as well as deer populations, invasive species management, and the revegetationmore » of the area surrounding the Relativistic Heavy Ion Collider (RHIC). The WMP provided a strong and sound basis for wildlife management and established a basis for forward motion and the development of this document, the Natural Resource Management Plan (NRMP), which will guide the natural resource management program for BNL. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B respectively), lists of actions in tabular format (Appendix C), and regulatory drivers for the Natural Resource Program (Appendix D). The purpose of the Natural Resource Management Plan is to provide management guidance, promote stewardship of the natural resources found at BNL, and to integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, adaptive ecosystem management, compliance, integration with other plans and requirements, and incorporation of community involvement, where applicable.« less

  17. Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico, Calendar year 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agogino, Karen; Sanchez, Rebecca

    2008-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor-operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2007. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention,more » and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).« less

  18. Astronomy Applications of Adaptive Optics at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, B J; Gavel, D T

    2003-04-23

    Astronomical applications of adaptive optics at Lawrence Livermore National Laboratory (LLNL) has a history that extends from 1984. The program started with the Lick Observatory Adaptive Optics system and has progressed through the years to lever-larger telescopes: Keck, and now the proposed CELT (California Extremely Large Telescope) 30m telescope. LLNL AO continues to be at the forefront of AO development and science.

  19. Lawrence Berkeley National Laboratory 2015 Annual Financial Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kim, P

    FY2015 financial results reflect a year of significant scientific, operational and financial achievement for Lawrence Berkeley National Laboratory. Complementing many scientific accomplishments, Berkeley Lab completed construction of four new research facilities: the General Purpose Laboratory, Chu Hall, Wang Hall and the Flexlab Building Efficiency Testbed. These state-of-the-art facilities allow for program growth and enhanced collaboration, in part by enabling programs to return to the Lab’s Hill Campus from offsite locations. Detailed planning began for the new Integrative Genomics Building (IGB) that will house another major program currently located offsite. Existing site infrastructure was another key focus area. The Lab prioritizedmore » and increased investments in deferred maintenance in alignment with the Berkeley Lab Infrastructure Plan, which was developed under the leadership of the DOE Office of Science. With the expiration of American Recovery and Reinvestment Act (ARRA) funds, we completed the close-out of all of our 134 ARRA projects, recording total costs of $331M over the FY2009-2015 period. Download the report to read more.« less

  20. About the Director of EPA's National Health and Environmental Effects Research Laboratory (NHEERL)

    EPA Pesticide Factsheets

    Dr. Wayne Cascio serves as Acting Director for the National Health and Environmental Effects Research Laboratory (NHEERL) within the U.S. Environmental Protection Agency's Office of Research and Development (ORD).

  1. A case-control study of malignant melanoma among Lawrence Livermore National Laboratory employees: A critical evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupper, L.L.; Setzer, R.W.; Schwartzbaum, J.

    1987-07-01

    This document reports on a reevaluation of data obtained in a previous report on occupational factors associated with the development of malignant melanomas at Lawrence Livermore National Laboratory. The current report reduces the number of these factors from five to three based on a rigorous statistical analysis of the original data. Recommendations include restructuring the original questionnaire and trying to contact more individuals that worked with volatile photographic chemicals. 17 refs., 7 figs., 22 tabs. (TEM)

  2. National Survey on Internal Quality Control Practice for Lipid Parameters in Laboratories of China from 2014 to 2016.

    PubMed

    Ye, Yuanyuan; Wang, Wei; Zhao, Haijian; He, Falin; Zhong, Kun; Yuan, Shuai; Wang, Zhiguo

    2017-09-01

    To investigate the situation of Internal Quality Control (IQC) practice for total cholesterol, triglycerides, HDL-cholesterol and LDL-cholesterol from 2014 to 2016 in laboratories in China and provide improvement measurements. A web-based External Quality Assessment (EQA) system was used to collect IQC data of lipid parameters in laboratories which continuously participated in the national EQA programs in China from 2014 to 2016. Pass rate of the coefficients of variation (CVs) of two level quality controls in four lipid parameters were calculated according to six quality specifications for precision to evaluate the current status of precision level of the four lipid parameters and their change over time in China. 533, 512, 504, and 466 laboratories continuously reported the data of level one for total cholesterol, triglyceride, HDL-cholesterol and LDL-cholesterol, and 212, 210, 208 and 198 laboratories reported the level two, respectively. The percentage of laboratories meeting the quality specification varied based on different criteria. Non-significant change can be found in the pass rate of CVs over time. The number of laboratories using a closed system increased over time, but still only accounted for a small proportion. There is no significant difference in the pass rate of CVs between closed and open systems. Triglycerides currently have a fairly good performance in China. While the performance of laboratories on total cholesterol, HDL-cholesterol and LDL-cholesterol has yet to be improved.

  3. Sandia National Laboratories/New Mexico Environmental Baseline update--Revision 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This report provides a baseline update to provide the background information necessary for personnel to prepare clear and consise NEPA documentation. The environment of the Sandia National Laboratories is described in this document, including the ecology, meteorology, climatology, seismology, emissions, cultural resources and land use, visual resources, noise pollution, transportation, and socioeconomics.

  4. Participation in Performance-Evaluation Studies by U.S. Geological Survey National Water Quality Laboratory

    USGS Publications Warehouse

    Glodt, Stephen R.; Pirkey, Kimberly D.

    1998-01-01

    Performance-evaluation studies provide customers of the U.S. Geological Survey National Water Quality Laboratory (NWQL) with data needed to evaluate performance and to compare of select laboratories for analytical work. The NWQL participates in national and international performance-evaluation (PE) studies that consist of samples of water, sediment, and aquatic biological materials for the analysis of inorganic constituents, organic compounds, and radionuclides. This Fact Sheet provides a summary of PE study results from January 1993 through April 1997. It should be of particular interest to USGS customers and potential customers of the NWQL, water-quality specialists, cooperators, and agencies of the Federal Government.

  5. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, N.M.; Vanta, E.B.

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more thanmore » 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.« less

  6. Los Alamos National Laboratory Meteorology Monitoring Program: 2016 Data Completeness/ Quality Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruggeman, David Alan

    This report summarizes data completeness by tower and by instrument for 2016 and compares that data with the Los Alamos National Laboratory (LANL) and American National Standards Institute (ANSI) 2015 standards. This report is designed to make data users aware of data completeness and any data quality issues. LANL meteorology monitoring goals include 95% completeness for all measurements. The ANSI 2015 standard requires 90% completeness for all measurements. This report documents instrument/tower issues as they impact data completeness.

  7. Audit of clinical-laboratory practices in haematology and blood transfusion at Muhimbili National Hospital in Tanzania.

    PubMed

    Makubi, Abel N; Meda, Collins; Magesa, Alex; Minja, Peter; Mlalasi, Juliana; Salum, Zubeda; Kweka, Rumisha E; Rwehabura, James; Quaresh, Amrana; Magesa, Pius M; Robert, David; Makani, Julie; Kaaya, Ephata

    2012-10-01

    In Tanzania, there is paucity of data for monitoring laboratory medicine including haematology. This therefore calls for audits of practices in haematology and blood transfusion in order to provide appraise practice and devise strategies that would result in improved quality of health care services. This descriptive cross-sectional study which audited laboratory practice in haematology and blood transfusion at Muhimbili National Hospital (MNH) aimed at assessing the pre-analytical stage of laboratory investigations including laboratory request forms and handling specimen processing in the haematology laboratory and assessing the chain from donor selection, blood component processing to administration of blood during transfusion. A national standard checklist was used to audit the laboratory request forms (LRF), phlebotomists' practices on handling and assessing the from donor selection to administration 6f blood during transfusion. Both interview and observations were used. A total of 195 LRF were audited and 100% of had incomplete information such as patients' identification numbers, time sample ordered, reason for request, summary of clinical assessment and differential diagnoses. The labelling of specimens was poorly done by phlebotomists/clinicians in 82% of the specimens. Also 65% (132/202) of the blood samples delivered in the haematology laboratory did not contain the recommended volume of blood. There was no laboratory request form specific for ordering blood and there were no guidelines for indication of blood transfusion in the wards/ clinics. The blood transfusion laboratory section was not participating in external quality assessment and the hospital transfusion committee was not in operation. It is recommended that a referral hospital like MNH should have a transfusion committee to provide an active forum to facilitate communication between those involved with transfusion, monitor, coordinate and audit blood transfusion practices as per national

  8. Services of the CDRH X-ray calibration laboratory and their traceability to National Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerra, F.; Heaton, H.T.

    The X-ray Calibration Laboratory (XCL) of the Center for Devices and Radiological Health (CDRH) provides calibration services for the Food and Drug Administration (FDA). The instruments calibrated are used by FDA and contract state inspectors to verify compliance with federal x-ray performance standards and for national surveys of x-ray trends. In order to provide traceability of measurements, the CDRH XCL is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for reference, diagnostic, and x-ray survey instrument calibrations. In addition to these accredited services, the CDRH XCL also calibrates non-invasive kVp meters in single- and three-phase x-ray beams, and thermoluminescentmore » dosimeter (TLD) chips used to measure CT beam profiles. The poster illustrates these services and shows the traceability links back to the National Standards.« less

  9. RH-TRU Waste Characterization by Acceptable Knowledge at the Idaho National Engineering and Environmental Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, C.; Givens, C.; Bhatt, R.

    2003-02-24

    Idaho National Engineering and Environmental Laboratory (INEEL) is conducting an effort to characterize approximately 620 drums of remote-handled (RH-) transuranic (TRU) waste currently in its inventory that were generated at the Argonne National Laboratory-East (ANL-E) Alpha Gamma Hot Cell Facility (AGHCF) between 1971 and 1995. The waste was generated at the AGHCF during the destructive examination of irradiated and unirradiated fuel pins, targets, and other materials from reactor programs at ANL-West (ANL-W) and other Department of Energy (DOE) reactors. In support of this effort, Shaw Environmental and Infrastructure (formerly IT Corporation) developed an acceptable knowledge (AK) collection and management programmore » based on existing contact-handled (CH)-TRU waste program requirements and proposed RH-TRU waste program requirements in effect in July 2001. Consistent with Attachments B-B6 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) and th e proposed Class 3 permit modification (Attachment R [RH-WAP] of this permit), the draft AK Summary Report prepared under the AK procedure describes the waste generating process and includes determinations in the following areas based on AK: physical form (currently identified at the Waste Matrix Code level); waste stream delineation; applicability of hazardous waste numbers for hazardous waste constituents; and prohibited items. In addition, the procedure requires and the draft summary report contains information supporting determinations in the areas of defense relationship and radiological characterization.« less

  10. 1988 environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millard, G.; Yeager, G.; Phelan, J.

    1989-05-01

    Sandia National Laboratories (SNL), Albuquerque is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides are potentially released in small quantities from its research activities, SNL, Albuquerque has a continuing environmental monitoring program which analyzes for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. A total of 5.23 curies of argon-41 were released as a result of SNL, Albuquerque operations in 1988. The albuquerque population received an estimated 0.04 person-rem from airborne radioactive releases, whereas it received greater than 44,500 person-rem from naturally occurring radionuclides. A nonradioactive effluent monitoring program at SNL,more » Albuquerque includes groundwater, stormwater and sewage monitoring. Results indicate that the groundwater has not been impacted by the chemical waste landfill. Preliminary testing of stormwater showed that no pollutants were above minimum detectable levels. A program to investigate potential remedial action sites has been started. 47 refs., 12 figs., 19 tabs.« less

  11. NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION CONFERENCE: CONSTITUTION, BYLAWS AND STANDARDS; APPROVED JUNE 2000

    EPA Science Inventory

    As Director of the Environmental Protection Agency's National Environmental
    Laboratory Accreditation Program (NELAP), I offer my sincere appreciation to the many individuals who worked on the 2000 revision of the NELAC standards. I would like to give special recognition to th...

  12. 78 FR 58294 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  13. 78 FR 30910 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  14. 77 FR 53192 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ...This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal Register.

  15. A layered approach to technology transfer of AVIRIS between Earth Search Sciences, Inc. and the Idaho National Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Ferguson, James S.; Ferguson, Joanne E.; Peel, John, III; Vance, Larry

    1995-01-01

    Since initial contact between Earth Search Sciences, Inc. (ESSI) and the Idaho National Engineering Laboratory (INEL) in February, 1994, at least seven proposals have been submitted in response to a variety of solicitations to commercialize and improve the AVIRIS instrument. These proposals, matching ESSI's unique position with respect to agreements with the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) to utilize, miniaturize, and commercialize the AVIRIS instrument and platform, are combined with the applied engineering of the INEL. Teaming ESSI, NASA/JPL, and INEL with diverse industrial partners has strengthened the respective proposals. These efforts carefully structure the overall project plans to ensure the development, demonstration, and deployment of this concept to the national and international arenas. The objectives of these efforts include: (1) developing a miniaturized commercial, real-time, cost effective version of the AVIRIS instrument; (2) identifying multiple users for AVIRIS; (3) integrating the AVIRIS technology with other technologies; (4) gaining the confidence/acceptance of other government agencies and private industry in AVIRIS; and (5) increasing the technology base of U.S. industry.

  16. 1989 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, S.; Chavez, G.; Phelan, J.

    1990-05-01

    This 1989 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 8.8 {times} 10{sup {minus}4} mrem. The total Albuquerque population received a collective dose of 0.097 person-rem during 1989 from SNL, Albuquerque, operations. As in the previous year, SNL, Albuquerque, operations in 1989 had no adverse impact on the general public or on themore » environment. 46 refs., 20 figs., 31 tabs.« less

  17. Biologic surveys for the Sandia National Laboratories, Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, R.M.; Knight, P.J.

    This report provides results of a comprehensive biologic survey performed in Coyote Canyon Test Complex (CCTC), Sandia National Laboratories (SNL), Bernalillo County, New Mexico, which was conducted during the spring and summer of 1992 and 1993. CCTC is sited on land owned by the Department of Energy (DOE) and Kirtland Air Force Base and managed by SNL. The survey covered 3,760 acres of land, most of which is rarely disturbed by CCTC operations. Absence of grazing by livestock and possibly native ungulates, and relative to the general condition of private range lands throughout New Mexico, and relative to other grazingmore » lands in central New Mexico. Widely dispersed, low intensity use by SNL as well as prohibition of grazing has probably contributed to abundance of special status species such as grama grass cactus within the CCTC area. This report evaluates threatened and endangered species found in the area, as well as comprehensive assessment of biologic habitats. Included are analyses of potential impacts and mitigative measures designed to reduce or eliminate potential impacts. Included is a summary of CCTC program and testing activities.« less

  18. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandon, Lav; Kuhn, Kevin J; Drake, Lawrence R

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguardsmore » Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.« less

  19. [Capability of national reference laboratories in Latin America to detect emerging resistance mechanisms].

    PubMed

    Corso, Alejandra; Guerriero, Leonor; Pasterán, Fernando; Ceriana, Paola; Callejo, Raquel; Prieto, Mónica; Tuduri, Ezequiel; Lopardo, Horacio; Vay, Carlos; Smayevsky, Jorgelina; Tokumoto, Marta; Alvarez, Jorge Matheu; Pardo, Pilar Ramón; Galas, Marcelo

    2011-12-01

    To evaluate the capability of 17 national reference laboratories participating in the Latin American Quality Control Program in Bacteriology and Antibiotic Resistance (LA-EQAS) to detect emerging resistance mechanisms- namely: resistance of enterobacteria to carbapenems due to the presence of Klebsiella pneumoniae carbapenemase (KPC) and metallo-beta-lactamase (MBL) type IMP, and intermediate resistance of Staphylococcus aureus isolates to vancomycin (vancomycin-intermediate resistant S. aureus-VISA). The following three isolates were sent to the 17 participating LA-EQAS laboratories: KPC -producing Klebsiella pneumoniae PAHO-161, IMP-producing Enterobacter cloacae PAHO-166, and S. aureus PAHO-165 with intermediate resistance to vancomycin. Performance of each of the following operations was evaluated: interpretation of sensitivity tests, detection of the resistance mechanism, and assessment of either inhibition halo size (disk diffusion method) or minimum inhibitory concentration (MIC). Concordance in the detection of resistance mechanisms was 76.4%, 73.3%, and 66.7% for the K. pneumoniae PAHO-161, E. cloacae PAHO-166, and S. aureus PAHO-165 strains, respectively. Concordance between the inhibition areas observed by the participating laboratories and the ranges established by the coordinating laboratory was acceptable for all three isolates, at 90.8%, 92.8%, and 88.9%, respectively. Overall concordance in on the detection of KPC, MBL, and VISA resistance mechanisms was 72.1%. We consider the national reference laboratories in Latin America capable of recognizing these emerging resistance mechanisms and expect that maximum levels of concordance will be reached in the future.

  20. Screening Program Reduced Melanoma Mortality at the Lawrence Livermore National Laboratory, 1984-1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, MD, J S; II, PhD, D; MD, PhD, M

    Worldwide incidence of cutaneous malignant melanoma has increased substantially, and no screening program has yet demonstrated reduction in mortality. We evaluated the education, self examination and targeted screening campaign at the Lawrence Livermore National Laboratory (LLNL) from its beginning in July 1984 through 1996. The thickness and crude incidence of melanoma from the years before the campaign were compared to those obtained during the 13 years of screening. Melanoma mortality during the 13-year period was based on a National Death Index search. Expected yearly deaths from melanoma among LLNL employees were calculated by using California mortality data matched by age,more » sex, and race/ethnicity and adjusted to exclude deaths from melanoma diagnosed before the program began or before employment at LLNL. After the program began, crude incidence of melanoma thicker than 0.75 mm decreased from 18 to 4 cases per 100,000 person-years (p = 0.02), while melanoma less than 0.75mm remained stable and in situ melanoma increased substantially. No eligible melanoma deaths occurred among LLNL employees during the screening period compared with a calculated 3.39 expected deaths (p = 0.034). Education, self examination and selective screening for melanoma at LLNL significantly decreased incidence of melanoma thicker than 0.75 mm and reduced the melanoma-related mortality rate to zero. This significant decrease in mortality rate persisted for at least 3 yr after employees retired or otherwise left the laboratory.« less

  1. Sandia National Laboratories:

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  2. Idaho National Laboratory Directed Research and Development FY-2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefitmore » each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are

  3. New HPV Serology Laboratory Aims to Standardize Assays and Contribute to Vaccine Implementation and Access | Frederick National Laboratory for Cancer Research

    Cancer.gov

    A new international initiative, led by scientists at the Frederick National Laboratory for Cancer Research and several other institutions, is being launched to provide expertise and leadership on the development, validation, and standardization of hu

  4. Laboratory Based Case Studies: Closer to the Real World

    ERIC Educational Resources Information Center

    Dinan, Frank J.

    2005-01-01

    Case-based laboratories offer students the chance to approximate real science. Based on interesting stories that pose problems requiring experimental solutions, they avoid the cookbook approach characteristic of traditional undergraduate laboratory instruction. Instead, case-based laboratories challenge students to develop, as much as possible,…

  5. Simplifying Complexity: Miriam Blake--Los Alamos National Laboratory Research Library, NM

    ERIC Educational Resources Information Center

    Library Journal, 2004

    2004-01-01

    The holy grail for many research librarians is one-stop searching: seamless access to all the library's resources on a topic, regardless of the source. Miriam Blake, Library Without Walls Project Leader at Los Alamos National laboratory (LANL), is making this vision a reality. Blake is part of a growing cadre of experts: a techie who is becoming a…

  6. Annual report: Purchasing and Materials Management Organization, Sandia National Laboratories, fiscal year 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaeh, R.A.

    1993-04-01

    This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1992. Activities for both the New Mexico and California locations are included. Topics covered in this report include highlights for fiscal year 1992, personnel, procurements (small business procurements, disadvantaged business procurements, woman-owned business procurements, New Mexico commercial business procurements, Bay area commercial business procurements), commitments by states and foreign countries, and transportation activities. Also listed are the twenty-five commercial contractors receiving the largest dollar commitments, commercial contractors receiving commitments of $1,000 or more, integrated contractor and federal agency commitments of $1,000 ormore » more from Sandia National Laboratories/New Mexico and California, and transportation commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California.« less

  7. Research on the Use of Robotics in Hazardous Environments at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwok, Kwan S.

    Many hazardous material handling needs exist in remote unstructured environments. Currently these operations are accomplished using personnel in direct contact with the hazards. A safe and cost effective alternative to this approach is the use of intelligent robotic systems for safe handling, packaging, transport, and even excavation of hazardous materials. The Intelligent Systems and Robotics Center of Sandia National Laboratories has developed and deployed robotic technologies for use in hazardous environments, three of which have been deployed in DOE production facilities for handling of special nuclear materials. Other systems are currently under development for packaging special nuclear materials. This papermore » presents an overview of the research activities, including five delivered systems, at %ndia National Laboratories on the use of robotics in hazardous environments.« less

  8. Environmental Survey preliminary report, Brookhaven National Laboratory, Upton, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-06-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Brookhaven National Laboratory (BNL) conducted April 6 through 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with BNL. The Survey covers all environmental media and all areas of environmental regulation. Itmore » is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at BNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Oak Ridge National Laboratory. When completed, the results will be incorporated into the BNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the BNL Survey. 80 refs., 24 figs., 48 tabs.« less

  9. ISS National Laboratory Education Project: Enhancing and Innovating the ISS as an Educational Venue

    NASA Technical Reports Server (NTRS)

    Melvin, Leland D.

    2011-01-01

    The vision is to develop the ISS National Laboratory Education Project (ISS NLE) as a national resource for Science, Technology, Engineering and Mathematics (STEM) education, utilizing the unique educational venue of the International Space Station per the NASA Congressional Authorization Act of 2005. The ISS NLE will serve as an educational resource which enables educational activities onboard the ISS and in the classroom. The ISS NLE will be accessible to educators and students from kindergarten to post-doctoral studies, at primary and secondary schools, colleges and universities. Additionally, the ISS NLE will provide ISS-related STEM education opportunities and resources for learners of all ages via informal educational institutions and venues Though U.S. Congressional direction emphasized the involvement of U.S. students, many ISS-based educational activities have international student and educator participation Over 31 million students around the world have participated in several ISS-related education activities.

  10. NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION CONFERENCE; CONSTITUTION, BYLAWS AND STANDARDS: APPROVED MAY 25, 2001

    EPA Science Inventory

    The principles and operating procedures for the National Environmental Laboratory Accreditation Conference (NELAC) are contained in the NELAC Constitution and Bylaws. The major portion of this document (standards) contains detailed requirements for accrediting environmental labo...

  11. Common ground: An environmental ethic for Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menlove, F.L.

    1991-01-01

    Three predominant philosophies have characterized American business ethical thinking over the past several decades. The first phase is the ethics of self-interest'' which argues that maximizing self-interest coincidentally maximizes the common good. The second phase is legality ethics.'' Proponents argue that what is important is knowing the rules and following them scrupulously. The third phase might be called stake-holder ethics.'' A central tenant is that everyone affected by a decision has a moral hold on the decision maker. This paper will discuss one recent initiative of the Los Alamos National Laboratory to move beyond rules and regulations toward an environmentalmore » ethic that integrates the values of stakeholder ethics'' into the Laboratory's historical culture and value systems. These Common Ground Principles are described. 11 refs.« less

  12. Test Results From The Idaho National Laboratory Of The NASA Bi-Supported Cell Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C Stoots; J O'Brien; T Cable

    The Idaho National Laboratory has been researching the application of solid-oxide fuel cell technology for large-scale hydrogen production. As a result, the Idaho National Laboratory has been testing various cell designs to characterize electrolytic performance. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This paper presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising designmore » for both high power-to-weight fuel cell and electrolyzer applications.« less

  13. Overview of Materials R&D at Oak Ridge National Laboratory

    DTIC Science & Technology

    2010-08-23

    Titanium - 6Al - 4V 970 1.5 Boron Carbide (B4C) 350-550 (Flexural) 3.0+ Longstanding Achievements in Ceramic Science and Development 23 Baseline...Powders Front and back of V50-tested vacuum- hot-pressed Ti- 6Al - 4V • Oak Ridge National Laboratory Is Collaborating with Industry to Develop...Present and future growth areas – Lightweight materials ( titanium , magnesium, aluminum, carbon fibers and composites) with superior properties

  14. Tiger Team Assessment of the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  15. Prairie restoration at the National Wildlife Health Laboratory (Wisconsin)

    USGS Publications Warehouse

    Windingstad, R.M.

    1986-01-01

    The National Wildlife Health Laboratory (NWHL), U.S. Fish and Wildlife Service in Madison are in the process of a 7-ha prairie restoration project on their lands to create a microcosmic representation of presettlement Wisconsin. Visiting scientists, personnel from local schools and universities, and neighboring public will eventually be able to use this land for its educational and esthetic value while becoming more familiar with the goals and objectives of the Fish and Wildlife Service and the NWHL. Self-guiding nature trails and a kiosk will facilitate public use after the project is completed.

  16. Development, Implementation, and Analysis of a National Survey of Faculty Goals for Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bruck, Aaron D.; Towns, Marcy

    2013-01-01

    This work reports the development of a survey for laboratory goals in undergraduate chemistry, the analysis of reliable and valid data collected from a national survey of college chemistry faculty, and a synthesis of the findings. The study used a sequential exploratory mixed-methods design. Faculty goals for laboratory emerged across seven…

  17. Crush Testing at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, Matthew R

    2011-01-01

    The dynamic crush test is required in the certification testing of some small Type B transportation packages. International Atomic Energy Agency regulations state that the test article must be 'subjected to a dynamic crush test by positioning the specimen on the target so as to suffer maximum damage.' Oak Ridge National Laboratory (ORNL) Transportation Technologies Group performs testing of Type B transportation packages, including the crush test, at the National Transportation Research Center in Knoxville, Tennessee (United States). This paper documents ORNL's experiences performing crush tests on several different Type B packages. ORNL has crush tested five different drum-type packagemore » designs, continuing its 60 year history of RAM package testing. A total of 26 crush tests have been performed in a wide variety of package orientations and crush plate CG alignments. In all cases, the deformation of the outer drum created by the crush test was significantly greater than the deformation damage caused by the 9 m drop test. The crush test is a highly effective means for testing structural soundness of smaller nondense Type B shipping package designs. Further regulatory guidance could alleviate the need to perform the crush test in a wide range of orientations and crush plate CG alignments.« less

  18. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-06-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual student contributions to collaborative group/teamwork throughout the processes of experimental design, data analysis, display and communication of their outcomes in relation to their research question(s). Traditional assessments in the form of laboratory notebooks or experimental reports provide limited insight into the processes of collaborative inquiry-based activities. A wiki environment offers a collaborative domain that can potentially support collaborative laboratory processes and scientific record keeping. In this study, the effectiveness of the wiki in supporting laboratory learning and assessment has been evaluated through analysis of the content and histories for three consenting, participating groups of students. The conversational framework has been applied to map the relationships between the instructor, tutor, students and laboratory activities. Analytics that have been applied to the wiki platform include: character counts, page views, edits, timelines and the extent and nature of the contribution by each student to the wiki. Student perceptions of both the role and the impact of the wiki on their experiences and processes have also been collected. Evidence has emerged from this study that the wiki environment has enhanced co-construction of understanding of both the experimental process and subsequent communication of outcomes and data. A number of features are identified to support success in the use of the wiki platform for laboratory notebooks.

  19. 77 FR 68752 - Notice of Intent To Grant Exclusive License Between National Energy Technology Laboratory and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... Technology Laboratory and Corrosion Solutions AGENCY: National Energy Technology Laboratory, Department of... diffusion coating to a metallic alloy,'' to Corrosion Solutions having its principal place of business in... for filing written objections. Corrosion Solutions, a new small business, has applied for an exclusive...

  20. Experimental MERS Treatment Deemed Safe in Phase I Clinical Trial | Frederick National Laboratory for Cancer Research

    Cancer.gov

    A small clinical study overseen by the National Institute of Allergy and Infectious Diseases (NIAID) with support from the Frederick National Laboratory for Cancer Research has found that an experimental treatment for Middle East Respiratory Syndrome

  1. Overview of the Neutron Radiography and Computed Tomography at the Oak Ridge National Laboratory and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilheux, Hassina Z; Bilheux, Jean-Christophe; Tremsin, Anton S

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) Neutron Sciences Directorate (NScD) has installed a neutron imaging (NI) beam line at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beam line produces cold neutrons for a broad range of user research spanning from engineering to material research, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. Recent efforts have focused on increasing flux and spatial resolution. A series of selected engineering applications is presented here. Historically and for more than four decades, neutron imaging (NI) facilities have been installed exclusively at continuous (i.e. reactor-based) neutron sources rather than atmore » pulsed sources. This is mainly due to (1) the limited number of accelerator-based facilities and therefore the fierce competition for beam lines with neutron scattering instruments, (2) the limited flux available at accelerator-based neutron sources and finally, (3) the lack of high efficiency imaging detector technology capable of time-stamping pulsed neutrons with sufficient time resolution. Recently completed high flux pulsed proton-driven neutron sources such as the ORNL Spallation Neutron Source (SNS) at ORNL and the Japanese Spallation Neutron Source (JSNS) of the Japan Proton Accelerator Research Complex (J-PARC) in Japan produce high neutron fluxes that offer new and unique opportunities for NI techniques. Pulsed-based neutron imaging facilities RADEN and IMAT are currently being built at J-PARC and the Rutherford National Laboratory in the U.K., respectively. ORNL is building a pulsed neutron imaging beam line called VENUS to respond to the U.S. based scientific community. A team composed of engineers, scientists and designers has developed a conceptual design of the future VENUS imaging instrument at the SNS.« less

  2. Sodium-sulfur technology evaluation at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Mulcahey, T. P.; Tummillo, A. F.; Hogrefe, R. L.; Christianson, C. C.; Biwer, R.; Webster, C. E.; Lee, J.; Miller, J. F.; Marr, J. J.; Smaga, J. A.

    The Analysis and Diagnostics Laboratory (ADL) at Argonne National Laboratory has completed evaluation of the Ford Aerospace and Communication Corp. (FACC) technology in the form of four load-levelling (LL) cells, five electric vehicle (EV) cells, and a sub-battery of 89 series connected EV cells. The ADL also has initiated evaluation of the Chloride Silent Power Limited (CSPL) sodium-sulfur (PB) battery technology in the form of 8 individual cells. The evaluation of the FACC-LL cells consisted of an abbreviated performance characterization followed by life-cycle tests on two individual cells and life-cycle tests only on the two other individual cells. The evaluation indicated that the technology was improving, but long-term (life) reliability was not yet adequate for utility applications. The cells exhibited individual cycle lives ranging from 659 to over 1366 cycles, which is equivalent to 2 1/2 to 5 1/2 years in utility use. It was also found that full-cell capacity could only be maintained by applying a special charge regime, regularly or periodically, that consisted of a constant-current followed by a constant-voltage.

  3. 1991 Environmental monitoring report Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, T.; Cox, W.; Hwang, S.

    1992-11-01

    This 1991 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration (ER), and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 1.3 {times} 10{sup {minus}3} mrem. The total population within a 50-mile radius of SNL, Albuquerque, received a collective dose of 0.53 person-rem during 1991 from SNL, Albuquerque, operations. As in the previous year, the 1991 operations at SNL, Albuquerque, had nomore » discernible impact on the general public or on the environment.« less

  4. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs.

  5. Hybrid magnet program at the Francis Bitter National Magnet Laboratory MIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leupold, M.J.; Weggel, R.J.

    1992-01-01

    Resistive water-cooled magnets can generate field according to how much power is available. The authors have developed the hybrid concept for generating fields beyond a power limit, up to 45 T. Along the way the authors have progressed through five successively more adventurous designs. This paper chronicles the evolution of hybrid magnets built at the Francis Bitter National Magnet Laboratory.

  6. Mortality among workers at Oak Ridge National Laboratory.

    PubMed

    Richardson, David B; Wing, Steve; Keil, Alexander; Wolf, Susanne

    2013-07-01

    Workers employed at the Oak Ridge National Laboratory (ORNL) were potentially exposed to a range of chemical and physical hazards, many of which are poorly characterized. We compared the observed deaths among workers to expectations based upon US mortality rates. The cohort included 22,831 workers hired between January 1, 1943 and December 31, 1984. Vital status and cause of death information were ascertained through December 31, 2008. Standardized mortality ratios (SMRs) were computed separately for males and females using US and Tennessee mortality rates; SMRs for men were tabulated separately for monthly-, weekly-, and hourly-paid workers. Hourly-paid males had more deaths due to cancer of the pleura (SMR = 12.09, 95% CI: 4.44, 26.32), cancer of the bladder (SMR = 1.89, 95% CI: 1.26, 2.71), and leukemia (SMR = 1.33, 95% CI: 0.87, 1.93) than expected based on US mortality rates. Female workers also had more deaths than expected from cancer of the bladder (SMR = 2.20, 95% CI: 1.20, 3.69) and leukemia (SMR = 1.64, 95% CI: 1.09, 2.36). The pleural cancer excess has only appeared since the 1980s, approximately 40 years after the start of operations. The bladder cancer excess was larger among workers who also had worked at other Oak Ridge nuclear weapons facilities, while the leukemia excess was among people who had not worked at other DOE facilities. Occupational hazards including asbestos and ionizing radiation may contribute to these excesses. Copyright © 2013 Wiley Periodicals, Inc.

  7. Design and implementation of a hospital-based usability laboratory: insights from a Department of Veterans Affairs laboratory for health information technology.

    PubMed

    Russ, Alissa L; Weiner, Michael; Russell, Scott A; Baker, Darrell A; Fahner, W Jeffrey; Saleem, Jason J

    2012-12-01

    Although the potential benefits of more usable health information technologies (HIT) are substantial-reduced HIT support costs, increased work efficiency, and improved patient safety--human factors methods to improve usability are rarely employed. The US Department of Veterans Affairs (VA) has emerged as an early leader in establishing usability laboratories to inform the design of HIT, including its electronic health record. Experience with a usability laboratory at a VA Medical Center provides insights on how to design, implement, and leverage usability laboratories in the health care setting. The VA Health Services Research and Development Service Human-Computer Interaction & Simulation Laboratory emerged as one of the first VA usability laboratories and was intended to provide research-based findings about HIT designs. This laboratory supports rapid prototyping, formal usability testing, and analysis tools to assess existing technologies, alternative designs, and potential future technologies. RESULTS OF IMPLEMENTATION: Although the laboratory has maintained a research focus, it has become increasingly integrated with VA operations, both within the medical center and on a national VA level. With this resource, data-driven recommendations have been provided for the design of HIT applications before and after implementation. The demand for usability testing of HIT is increasing, and information on how to develop usability laboratories for the health care setting is often needed. This article may assist other health care organizations that want to invest in usability resources to improve HIT. The establishment and utilization of usability laboratories in the health care setting may improve HIT designs and promote safe, high-quality care for patients.

  8. 2014 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 23)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This 2014 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 23) provides water use information for production and potable water wells at the Idaho National Laboratory for Calendar Year 2014. It also provides detailed information for new, modified, and decommissioned wells and holes. One new well was drilled and completed in Calendar Year 2014. No modifications were performed on any wells. No wells were decommissioned in Calendar Year 2014. Detailed construction information and a location map for the new well is provided. This report is being submitted in accordance with the Water Rights Agreement between the Statemore » of Idaho and the United States, for the United States Department of Energy (dated 1990), the subsequent Partial Decree for Water Right 34-10901 issued June 20, 2003, and the Final Unified Decree issued August 26, 2014.« less

  9. Innovative Commercialization Efforts Underway at the National Renewable Energy Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheesbrough, Kate; Bader, Meghan

    New clean energy and energy efficiency technology solutions hold the promise of significant reductions in energy consumption. However, proven barriers for these technologies, including the technological and commercialization valleys of death, result in promising technologies falling to the wayside. To address these gaps, NREL's Innovation & Entrepreneurship Center designs and manages advanced programs aimed at supporting the development and commercialization of early stage clean energy technologies with the goal of accelerating new technologies to market. These include: Innovation Incubator (IN2) in partnership with Wells Fargo: this technology incubator supports energy efficiency building-related startups to overcome market gaps by providing accessmore » to technical support at NREL; Small Business Voucher Pilot: this program offers paid vouchers for applicants to access a unique skill, capability, or facility at any of the 17 DOE National Laboratories to bring next-generation clean energy technologies to market; Energy Innovation Portal: NREL designed and developed the Energy Innovation Portal, providing access to EERE focused intellectual property available for licensing from all of the DOE National Laboratories; Lab-Corps: Lab-Corps aims to better train and empower national lab researchers to understand market drivers and successfully transition their discoveries into high-impact, real world technologies in the private sector; Incubatenergy Network: the Network provides nationwide coordination of clean energy business incubators, share best practices, support clean energy entrepreneurs, and help facilitate a smoother transition to a more sustainable clean energy economy; Industry Growth Forum: the Forum is the perfect venue for clean energy innovators to maximize their exposure to receptive capital and strategic partners. Since 2003, presenting companies have collectively raised more than $5 billion in growth financing.« less

  10. Laboratory-acquired brucellosis: a Spanish national survey.

    PubMed

    Bouza, E; Sánchez-Carrillo, C; Hernangómez, S; González, M José

    2005-09-01

    A retrospective postal survey was carried out among 1240 clinical microbiology laboratory workers in Spain. Overall, 75 (43 microbiologists and 32 technicians) had suffered from laboratory-acquired brucellosis (LAB). Considering the total number of replies (N=628), the rate of LAB was 11.9%. The risk of suffering from LAB was clearly related to the number of isolates of Brucella spp. per year. A major break in biosafety measures was recognized in 60 cases (80%). In nine cases, processing was considered to be secure, and in six cases, the source of infection was unknown. Diagnosis was based on serology in all cases. In 51 cases (68%), blood cultures confirmed diagnosis. A variety of regimens were used to treat the 75 LAB cases. The combination of tetracycline and streptomycin was the most commonly used regimen (in 35 patients), followed by the combination of tetracycline and rifampicin (in 19 cases). Only 10 patients (13.3%) suffered from complications. No differences in resolution were observed according to the antimicrobial regimen. Microbiological laboratory workers are still at risk of developing LAB. Improvements in safety seem to be the best means of

  11. Renewable energy technology development at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Klimas, P. C.

    1994-02-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing many of these technologies over the last two decades. This paper describes innovative solar, wind and geothermal energy systems and components that Sandia is helping to bring to the marketplace. A common but special aspect of all of these activities is that they are conducted in partnership with non-federal government entities. A number of these partners are from New Mexico.

  12. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  13. Using the Human Systems Simulation Laboratory at Idaho National Laboratory for Safety Focused Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe, Jeffrey .C; Boring, Ronald L.

    Under the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program, researchers at Idaho National Laboratory (INL) have been using the Human Systems Simulation Laboratory (HSSL) to conduct critical safety focused Human Factors research and development (R&D) for the nuclear industry. The LWRS program has the overall objective to develop the scientific basis to extend existing nuclear power plant (NPP) operating life beyond the current 60-year licensing period and to ensure their long-term reliability, productivity, safety, and security. One focus area for LWRS is the NPP main control room (MCR), because many of the instrumentation andmore » control (I&C) system technologies installed in the MCR, while highly reliable and safe, are now difficult to replace and are therefore limiting the operating life of the NPP. This paper describes how INL researchers use the HSSL to conduct Human Factors R&D on modernizing or upgrading these I&C systems in a step-wise manner, and how the HSSL has addressed a significant gap in how to upgrade systems and technologies that are built to last, and therefore require careful integration of analog and new advanced digital technologies.« less

  14. Adaptive Optics at Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavel, D T

    2003-03-10

    Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media andmore » must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.« less

  15. Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noakes, Mark W; Burgess, Thomas W; Rowe, John C

    2011-01-01

    Oak Ridge National Laboratory (ORNL) has a long history in the development of remote systems to support the nuclear environment. ORNL, working in conjunction with Central Research Laboratories, created what is believed to be the first microcomputer-based implementation of dual-arm master-slave remote manipulation. As part of the Consolidated Fuel Reprocessing Program, ORNL developed the dual-arm advanced servomanipulator focusing on remote maintainability for systems exposed to high radiation fields. ORNL also participated in almost all of the various technical areas of the U.S. Department of Energy s Robotics Technology Development Program, while leading the Decontamination and Decommissioning and Tank Waste Retrievalmore » categories. Over the course of this involvement, ORNL has developed a substantial base of working knowledge as to what works when and under what circumstances for many types of remote systems tasks as well as operator interface modes, control bandwidth, and sensing requirements to name a few. By using a select list of manipulator systems that is not meant to be exhaustive, this paper will discuss history and outcome of development, field-testing, deployment, and operations from a lessons learned perspective. The final outcome is a summary paper outlining ORNL experiences and guidelines for transition of developmental remote systems to real-world hazardous environments.« less

  16. Critical role of developing national strategic plans as a guide to strengthen laboratory health systems in resource-poor settings.

    PubMed

    Nkengasong, John N; Mesele, Tsehaynesh; Orloff, Sherry; Kebede, Yenew; Fonjungo, Peter N; Timperi, Ralph; Birx, Deborah

    2009-06-01

    Medical laboratory services are an essential, yet often neglected, component of health systems in developing countries. Their central role in public health, disease control and surveillance, and patient management is often poorly recognized by governments and donors. However, medical laboratory services in developing countries can be strengthened by leveraging funding from other sources of HIV/AIDS prevention, care, surveillance, and treatment programs. Strengthening these services will require coordinated efforts by national governments and partners and can be achieved by establishing and implementing national laboratory strategic plans and policies that integrate laboratory systems to combat major infectious diseases. These plans should take into account policy, legal, and regulatory frameworks; the administrative and technical management structure of the laboratories; human resources and retention strategies; laboratory quality management systems; monitoring and evaluation systems; procurement and maintenance of equipment; and laboratory infrastructure enhancement. Several countries have developed or are in the process of developing their laboratory plans, and others, such as Ethiopia, have implemented and evaluated their plan.

  17. Quality-assurance results for field pH and specific-conductance measurements, and for laboratory analysis, National Atmospheric Deposition Program and National Trends Network; January 1980-September 1984

    USGS Publications Warehouse

    Schroder, L.J.; Brooks, M.H.; Malo, B.A.; Willoughby, T.C.

    1986-01-01

    Five intersite comparison studies for the field determination of pH and specific conductance, using simulated-precipitation samples, were conducted by the U.S.G.S. for the National Atmospheric Deposition Program and National Trends Network. These comparisons were performed to estimate the precision of pH and specific conductance determinations made by sampling-site operators. Simulated-precipitation samples were prepared from nitric acid and deionized water. The estimated standard deviation for site-operator determination of pH was 0.25 for pH values ranging from 3.79 to 4.64; the estimated standard deviation for specific conductance was 4.6 microsiemens/cm at 25 C for specific-conductance values ranging from 10.4 to 59.0 microsiemens/cm at 25 C. Performance-audit samples with known analyte concentrations were prepared by the U.S.G.S.and distributed to the National Atmospheric Deposition Program 's Central Analytical Laboratory. The differences between the National Atmospheric Deposition Program and national Trends Network-reported analyte concentrations and known analyte concentrations were calculated, and the bias and precision were determined. For 1983, concentrations of calcium, magnesium, sodium, and chloride were biased at the 99% confidence limit; concentrations of potassium and sulfate were unbiased at the 99% confidence limit. Four analytical laboratories routinely analyzing precipitation were evaluated in their analysis of identical natural- and simulated precipitation samples. Analyte bias for each laboratory was examined using analysis of variance coupled with Duncan 's multiple-range test on data produced by these laboratories, from the analysis of identical simulated-precipitation samples. Analyte precision for each laboratory has been estimated by calculating a pooled variance for each analyte. Interlaboratory comparability results may be used to normalize natural-precipitation chemistry data obtained from two or more of these laboratories. (Author

  18. Instructor qualification for radiation safety training at a national laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trinoskey, P.A.

    1994-10-01

    Prior to 1993, Health Physics Training (HPT) was conducted by the Lawrence Livermore National Laboratory (LLNL) health physics group. The job requirements specified a Masters Degree and experience. In fact, the majority of Health Physicists in the group were certified by the American Board of Health Physics. Under those circumstances, it was assumed that individuals in the group were technically qualified and the HPT instructor qualification stated that. In late 1993, the Health Physics Group at the LLNL was restructured and the training function was assigned to the training group. Additional requirements for training were mandated by the Department ofmore » Energy (DOE), which would necessitate increasing the existing training staff. With the need to hire, and the policy of reassignment of employees during downsizing, it was imperative that formal qualification standards be developed for technical knowledge. Qualification standards were in place for instructional capability. In drafting the new training qualifications for instructors, the requirements of a Certified Health Physicists had to be modified due to supply and demand. Additionally, for many of the performance-based training courses, registration by the National Registry of Radiation Protection Technologists is more desirable. Flexibility in qualification requirements has been incorporated to meet the reality of ongoing training and the compensation for desirable skills of individuals who may not meet all the criteria. The qualification requirements for an instructor rely on entry-level requirements and emphasis on goals (preferred) and continuing development of technical and instructional capabilities.« less

  19. Web-Based Virtual Laboratory for Food Analysis Course

    NASA Astrophysics Data System (ADS)

    Handayani, M. N.; Khoerunnisa, I.; Sugiarti, Y.

    2018-02-01

    Implementation of learning on food analysis course in Program Study of Agro-industrial Technology Education faced problems. These problems include the availability of space and tools in the laboratory that is not comparable with the number of students also lack of interactive learning tools. On the other hand, the information technology literacy of students is quite high as well the internet network is quite easily accessible on campus. This is a challenge as well as opportunities in the development of learning media that can help optimize learning in the laboratory. This study aims to develop web-based virtual laboratory as one of the alternative learning media in food analysis course. This research is R & D (research and development) which refers to Borg & Gall model. The results showed that assessment’s expert of web-based virtual labs developed, in terms of software engineering aspects; visual communication; material relevance; usefulness and language used, is feasible as learning media. The results of the scaled test and wide-scale test show that students strongly agree with the development of web based virtual laboratory. The response of student to this virtual laboratory was positive. Suggestions from students provided further opportunities for improvement web based virtual laboratory and should be considered for further research.

  20. 1990 Environmental Monitoring Report, Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, S.; Yeager, G.; Wolff, T.

    1991-05-01

    This 1990 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 2.0 {times} 10{sup {minus}3} mrem. The total 50-mile population received a collective dose of 0.82 person-rem during 1990 from SNL, Albuquerque, operations. As in the previous year, the 1990 SNL operations had no adverse impact on the general public or on themore » environment. This report is prepared for the US Department of Energy in compliance with DOE Order 5400.1. 97 refs., 30 figs., 137 tabs.« less

  1. Neutron Focusing Mirrors for Neutron Radiography of Irradiated Nuclear Fuel at Idaho National Laboratory

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh K.; Wu, Huarui; Abir, Muhammad; Giglio, Jeffrey; Khaykovich, Boris

    Post irradiation examination (PIE) of samples irradiated in nuclear reactors is a challenging but necessary task for the development on novel nuclear power reactors. Idaho National Laboratory (INL) has neutron radiography capabilities, which are especially useful for the PIE of irradiated nuclear fuel. These capabilities are limited due to the extremely high gamma-ray radiation from the irradiated fuel, which precludes the use of standard digital detectors, in turn limiting the ability to do tomography and driving the cost of the measurements. In addition, the small 250 kW Neutron Radiography Reactor (NRAD) provides a relatively weak neutron flux, which leads to low signal-to-noise ratio. In this work, we develop neutron focusing optics suitable for the installation at NRAD. The optics would separate the sample and the detector, potentially allowing for the use of digital radiography detectors, and would provide significant intensity enhancement as well. The optics consist of several coaxial nested Wolter mirrors and is suited for polychromatic thermal neutron radiation. Laboratory Directed Research and Development program of Idaho National Laboratory.

  2. Sandia National Laboratories: Research: Laboratory Directed Research &

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  3. Forest Products Laboratory : supporting the nation's armed forces with valuable wood research for 90 years

    Treesearch

    Christopher D. Risbrudt; Robert J. Ross; Julie J. Blankenburg; Charles A. Nelson

    2007-01-01

    Founded in 1910 by the U.S. Forest Service to serve as a centralized, national wood research laboratory, the USDA Forest Products Laboratory (FPL) has a long history of providing technical services to other government agencies, including those within the Defense (DoD). A recent search of FPL’s library and correspondence files revealed that approximately 10,000...

  4. European Proficiency testing of national reference laboratories for the confirmation of sulfonamide residues in muscle and milk.

    PubMed

    Juhel-Gaugain, Murielle; Fourmond, Marie-Pierre; Delepine, Bernard; Laurentie, Michel; Brigitte, Roudaut; Sanders, Pascal

    2005-03-01

    Two interlaboratory studies were organized in 2002-2003 in order to check the proficiency of laboratories in confirming the presence of sulfonamide residues in muscle and milk. These studies involved 25 EU National Reference Laboratories (NRLs) from 21 different European Countries in charge of statutory monitoring of antimicrobial residues in food of animal origin at a national level. The study was conducted according to international and national guidelines by the Community Reference Laboratory (CRL) in charge of antimicrobial substances. Four different test matrices of sheep muscle and four different test matrices of bovine milk containing different sulfonamide substances were prepared and sent to the participants. Each participant was asked to use his own routine confirmatory method and to analyse each sample in triplicate within a period of about six weeks during which the stability of the materials was checked by the organizer. The sulfonamide content of each material was determined by calculating the robust means of all the results and the deviation of the results from the assigned values was assessed by calculating Z-scores. Overall, results were satisfactory, particularly considering that it was the first proficiency test dealing with sulfonamides organised by the Community Reference Laboratory.

  5. [National External Quality Assessment for medical biology laboratories in Burkina Faso: an overview of three years of activity].

    PubMed

    Sakande, Jean; Nikièma, Abdoulaye; Kabré, Elie; Nacoulma, Eric; Sawadogo, Charles; Lingani, Virginie; Traoré, Lady Kady; Kouanda, Abdoulaye; Kientéga, Youssouf; Somda, Joseph; Kagambéga, Faustin; Sanou, Mahamoudou; Sangaré, Lassana; Traoré-Ouédraogo, Rasmata

    2010-01-01

    We report results of the National External Quality Assessment for (NEQA) laboratories in Burkina Faso, a country with limited resources located in West Africa whose epidemiology is dominated by infectious diseases. The national laboratory network consists of 160 laboratories including 40 private. The Government of Burkina Faso has adopted a national laboratory policy. One of the objectives of this policy is to improve the quality of laboratory results. One of the strategies to achieve this objective is the establishment of a NEQA. The NEQA is a panel testing also called proficiency testing. It is mandatory for all laboratories to participate to the NEQA. The NEQA is organized twice a year and covers all areas of laboratories (bacteriology-virology, biochemistry, hematology, parasitology and immunology). The review of three years of activity (2006-2008) shows the following results: (1) for microscopic examination of bacteria after Gram staining, the error rate decreased from 24.7% in 2006 to 13.1% in 2007 and 13% in 2008; (2) errors rate in reading slides for the microscopic diagnosis of malaria were 23.4%, 14.6% and 10.2% respectively in 2006, 2007 and 2008; (3) for biochemistry, the percentages of unsatisfactory results were respectively 12.5%, 14.8% and 13.8% in 2006, 2007 and 2008 for the overall parameters assessed. The analysis of the results generated by the laboratories during these three years shows a quality improvement. However, the NEQA should be strengthened through ongoing training and quality control of reagents and equipment.

  6. Utilization of Educationally Oriented Microcomputer Based Laboratories

    ERIC Educational Resources Information Center

    Fitzpatrick, Michael J.; Howard, James A.

    1977-01-01

    Describes one approach to supplying engineering and computer science educators with an economical portable digital systems laboratory centered around microprocessors. Expansion of the microcomputer based laboratory concept to include Learning Resource Aided Instruction (LRAI) systems is explored. (Author)

  7. Outreach and Education in the Life Sciences A Case Study of the U.S. Department of Energy National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weller, Richard E.; Burbank, Roberta L.; Mahy, Heidi A.

    This project was intended to assess the impact of the U.S. Department of Energy’s National Nuclear Security Agency (DOE/NNSA) -sponsored education and outreach activities on the Biological Weapons Convention (BWC) in DOE national laboratories. Key activities focused on a series of pilot education and outreach workshops conducted at ten national laboratories. These workshops were designed to increase awareness of the BWC, familiarize scientists with dual-use concerns related to biological research, and promote the concept of individual responsibility and accountability

  8. Oak Ridge National Laboratory [ORNL] Review, Vol. 25, Nos. 3 and 4, 1992 [The First Fifty Years

    DOE R&D Accomplishments Database

    Krause, C.(ed.)

    1992-01-01

    In observation of the 50th anniversary of Oak Ridge National Laboratory, this special double issue of the Review contains a history of the Laboratory, complete with photographs, drawings, and short accompanying articles. Table of contents include: Wartime Laboratory; High-flux Years; Accelerating Projects; Olympian Feats; Balancing Act; Responding to Social Needs; Energy Technologies; Diversity and Sharing; Global Outreach; Epilogue

  9. Upgrades and Enclosure of Building 15 at Technical Area 40: Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plimpton, Kathryn D; Garcia, Kari L. M; Brunette, Jeremy Christopher

    The U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office (Field Office) proposes to upgrade and enclose Building 15 at Technical Area (TA) 40, Los Alamos National Laboratory. Building TA-40-15, a Cold War-era firing site, was determined eligible for listing in the National Register of Historic Places (Register) in DX Division’s Facility Strategic Plan: Consolidation and Revitalization at Technical Areas 6, 8, 9, 14, 15, 22, 36, 39, 40, 60, and 69 (McGehee et al. 2005). Building TA-40-15 was constructed in 1950 to support detonator testing. The firing site will be enclosed by a steel building tomore » create a new indoor facility that will allow for year-round mission capability. Enclosing TA-40-15 will adversely affect the building by altering the characteristics that make it eligible for the Register. In compliance with Section 106 of the National Historic Preservation Act of 1966, as amended, the Field Office is initiating consultation for this proposed undertaking. The Field Office is also requesting concurrence with the use of standard practices to resolve adverse effects as defined in the Programmatic Agreement among the U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office, the New Mexico State Historic Preservation Office and the Advisory Council on Historic Preservation Concerning Management of the Historic Properties at Los Alamos National Laboratory, Los Alamos, New Mexico.« less

  10. Simple non-laboratory- and laboratory-based risk assessment algorithms and nomogram for detecting undiagnosed diabetes mellitus.

    PubMed

    Wong, Carlos K H; Siu, Shing-Chung; Wan, Eric Y F; Jiao, Fang-Fang; Yu, Esther Y T; Fung, Colman S C; Wong, Ka-Wai; Leung, Angela Y M; Lam, Cindy L K

    2016-05-01

    The aim of the present study was to develop a simple nomogram that can be used to predict the risk of diabetes mellitus (DM) in the asymptomatic non-diabetic subjects based on non-laboratory- and laboratory-based risk algorithms. Anthropometric data, plasma fasting glucose, full lipid profile, exercise habits, and family history of DM were collected from Chinese non-diabetic subjects aged 18-70 years. Logistic regression analysis was performed on a random sample of 2518 subjects to construct non-laboratory- and laboratory-based risk assessment algorithms for detection of undiagnosed DM; both algorithms were validated on data of the remaining sample (n = 839). The Hosmer-Lemeshow test and area under the receiver operating characteristic (ROC) curve (AUC) were used to assess the calibration and discrimination of the DM risk algorithms. Of 3357 subjects recruited, 271 (8.1%) had undiagnosed DM defined by fasting glucose ≥7.0 mmol/L or 2-h post-load plasma glucose ≥11.1 mmol/L after an oral glucose tolerance test. The non-laboratory-based risk algorithm, with scores ranging from 0 to 33, included age, body mass index, family history of DM, regular exercise, and uncontrolled blood pressure; the laboratory-based risk algorithm, with scores ranging from 0 to 37, added triglyceride level to the risk factors. Both algorithms demonstrated acceptable calibration (Hosmer-Lemeshow test: P = 0.229 and P = 0.483) and discrimination (AUC 0.709 and 0.711) for detection of undiagnosed DM. A simple-to-use nomogram for detecting undiagnosed DM has been developed using validated non-laboratory-based and laboratory-based risk algorithms. © 2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  11. Lawrence Livermore National Laboratories Perspective on Code Development and High Performance Computing Resources in Support of the National HED/ICF Effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clouse, C. J.; Edwards, M. J.; McCoy, M. G.

    2015-07-07

    Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.

  12. 1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, C.H.; Duncan, D.; Sanchez, R.

    1997-08-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES&H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL`s line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiologicalmore » effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection.« less

  13. Statistical analyses of the background distribution of groundwater solutes, Los Alamos National Laboratory, New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longmire, Patrick A.; Goff, Fraser; Counce, D. A.

    2004-01-01

    Background or baseline water chemistry data and information are required to distingu ish between contaminated and non-contaminated waters for environmental investigations conducted at Los Alamos National Laboratory (referred to as the Laboratory). The term 'background' refers to natural waters discharged by springs or penetrated by wells that have not been contaminated by LANL or other municipal or industrial activities, and that are representative of groundwater discharging from their respective aquifer material. These investigations are conducted as part of the Environmental Restoration (ER) Project, Groundwater Protection Program (GWPP), Laboratory Surveillance Program, the Hydrogeologic Workplan, and the Site-Wide Environmental Impact Statement (SWEIS).more » This poster provides a comprehensive, validated database of inorganic, organic, stable isotope, and radionuclide analyses of up to 136 groundwater samples collected from 15 baseline springs and wells located in and around Los Alamos National Laboratory, New Mexico. The region considered in this investigation extends from the western edge of the Jemez Mountains eastward to the Rio Grande and from Frijoles Canyon northward to Garcia Canyon. Figure 1 shows the fifteen stations sampled for this investigation. The sampling stations and associated aquifer types are summarized in Table 1.« less

  14. Environmental resource document for the Idaho National Engineering Laboratory. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irving, J.S.

    This document contains information related to the environmental characterization of the Idaho National Engineering Laboratory (INEL). The INEL is a major US Department of Energy facility in southeastern Idaho dedicated to nuclear research, waste management, environmental restoration, and other activities related to the development of technology. Environmental information covered in this document includes land, air, water, and ecological resources; socioeconomic characteristics and land use; and cultural, aesthetic, and scenic resources.

  15. Sandia National Laboratories California Waste Management Program Annual Report February 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brynildson, Mark E.

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  16. Derived concentration guideline levels for Argonne National Laboratory's building 310 area.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamboj, S., Dr.; Yu, C ., Dr.

    2011-08-12

    The derived concentration guideline level (DCGL) is the allowable residual radionuclide concentration that can remain in soil after remediation of the site without radiological restrictions on the use of the site. It is sometimes called the single radionuclide soil guideline or the soil cleanup criteria. This report documents the methodology, scenarios, and parameters used in the analysis to support establishing radionuclide DCGLs for Argonne National Laboratory's Building 310 area.

  17. Cryogenic distribution box for Fermi National Accelerator Laboratory

    NASA Astrophysics Data System (ADS)

    Svehla, M. R.; Bonnema, E. C.; Cunningham, E. K.

    2017-12-01

    Meyer Tool & Mfg., Inc (Meyer Tool) of Oak Lawn, Illinois is manufacturing a cryogenic distribution box for Fermi National Accelerator Laboratory (FNAL). The distribution box will be used for the Muon-to-electron conversion (Mu2e) experiment. The box includes twenty-seven cryogenic valves, two heat exchangers, a thermal shield, and an internal nitrogen separator vessel, all contained within a six-foot diameter ASME coded vacuum vessel. This paper discusses the design and manufacturing processes that were implemented to meet the unique fabrication requirements of this distribution box. Design and manufacturing features discussed include: 1) Thermal strap design and fabrication, 2) Evolution of piping connections to heat exchangers, 3) Nitrogen phase separator design, 4) ASME code design of vacuum vessel, and 5) Cryogenic valve installation.

  18. Compressed Natural Gas and Liquefied Petroleum Gas Conversions: The National Renewable Energy Laboratory's Experience

    DOT National Transportation Integrated Search

    1996-04-01

    The National Renewable Energy Laboratory (NREL) contracted with conversion : companies in six states to convert approximately 900 light-duty Federal fleet : vehicles to operate on compressed natural gas (CNG) or liquefied petroleum gas : (LPG). After...

  19. Supplement Analysis for the Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory -- Recovery and Storage of Strontium-90 Fueled Radioisotope Thermal Electric Generators at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2004-01-22

    This Supplement Analysis (SA) has been prepared to determine if the Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory (SWEIS) (DOE/EIS-0238) adequately addresses the environmental effects of recovery and storage for disposal of six strontium-90 (Sr-90) fueled radioisotope thermal electric generators (RTGs) at the Los Alamos National Laboratory (LANL) Technical Area (TA)-54, Area G, or if the SWEIS needs to be supplemented. DOE's National Nuclear Security Administration (NNSA) proposed to recover and store six Sr-90 RTGs from the commercial sector as part of its Offsite-Source Recovery Project (OSRP). The OSRP focuses on the proactive recovery andmore » storage of unwanted radioactive sealed sources exceeding the US Nuclear Regulatory Commission (NRC) limits for Class C low-level waste (also known as Greater than Class C waste, or GTCC). In response to the events of September 11, 2001, NRC conducted a risk-based evaluation of potential vulnerabilities to terrorist threats involving NRC-licensed nuclear facilities and materials. NRC's evaluation concluded that possession of unwanted radioactive sealed sources with no disposal outlet presents a potential vulnerability (NRC 2002). In a November 25, 2003 letter to the manager of the NNSA's Los Alamos Site Office, the NRC Office of Nuclear Security and Incident Response identified recovery of several Sr-90 RTGs as the highest priority and requested that DOE take whatever actions necessary to recovery these sources as soon as possible. This SA specifically compares key impact assessment parameters of this proposal to the offsite source recovery program evaluated in the SWEIS and a subsequent SA that evaluated a change to the approach of a portion of the recovery program. It also provides an explanation of any differences between the Proposed Action and activities described in the previous SWEIS and SA analyses.« less

  20. User Guide for the Plotting Software for the Los Alamos National Laboratory Nuclear Weapons Analysis Tools Version 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleland, Timothy James

    The Los Alamos National Laboratory Plotting Software for the Nuclear Weapons Analysis Tools is a Java™ application based upon the open source library JFreeChart. The software provides a capability for plotting data on graphs with a rich variety of display options while allowing the viewer interaction via graph manipulation and scaling to best view the data. The graph types include XY plots, Date XY plots, Bar plots and Histogram plots.

  1. Accomplishments of the Oak Ridge National Laboratory Seed Money program

    DOE R&D Accomplishments Database

    1986-09-01

    In 1974, a modest program for funding new, innovative research was initiated at ORNL. It was called the "Seed Money" program and has become part of a larger program, called Exploratory R and D, which is being carried out at all DOE national laboratories. This report highlights 12 accomplishments of the Seed Money Program: nickel aluminide, ion implantation, laser annealing, burn meter, Legionnaires' disease, whole-body radiation counter, the ANFLOW system, genetics and molecular biology, high-voltage equipment, microcalorimeter, positron probe, and atom science. (DLC)

  2. [Accreditation of medical laboratories].

    PubMed

    Horváth, Andrea Rita; Ring, Rózsa; Fehér, Miklós; Mikó, Tivadar

    2003-07-27

    In Hungary, the National Accreditation Body was established by government in 1995 as an independent, non-profit organization, and has exclusive rights to accredit, amongst others, medical laboratories. The National Accreditation Body has two Specialist Advisory Committees in the health care sector. One is the Health Care Specialist Advisory Committee that accredits certifying bodies, which deal with certification of hospitals. The other Specialist Advisory Committee for Medical Laboratories is directly involved in accrediting medical laboratory services of health care institutions. The Specialist Advisory Committee for Medical Laboratories is a multidisciplinary peer review group of experts from all disciplines of in vitro diagnostics, i.e. laboratory medicine, microbiology, histopathology and blood banking. At present, the only published International Standard applicable to laboratories is ISO/IEC 17025:1999. Work has been in progress on the official approval of the new ISO 15189 standard, specific to medical laboratories. Until the official approval of the International Standard ISO 15189, as accreditation standard, the Hungarian National Accreditation Body has decided to progress with accreditation by formulating explanatory notes to the ISO/IEC 17025:1999 document, using ISO/FDIS 15189:2000, the European EC4 criteria and CPA (UK) Ltd accreditation standards as guidelines. This harmonized guideline provides 'explanations' that facilitate the application of ISO/IEC 17025:1999 to medical laboratories, and can be used as a checklist for the verification of compliance during the onsite assessment of the laboratory. The harmonized guideline adapted the process model of ISO 9001:2000 to rearrange the main clauses of ISO/IEC 17025:1999. This rearrangement does not only make the guideline compliant with ISO 9001:2000 but also improves understanding for those working in medical laboratories, and facilitates the training and education of laboratory staff. With the

  3. FY 1999 Annual Self-Evaluation Report of the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randy R. LaBarge

    1999-11-05

    This is a report of the Pacific Northwest National Laboratory's (Pacific Northwest's) FY1999 Annual Self-Evaluation Report. This report summarizes our progress toward accomplishment of the critical outcomes, objectives, and performance indicators as delineated in the FY1999 Performance Evaluation & Fee Agreement. It also summarizes our analysis of the results of Pacific Northwest's Division and Directorate annual self-assessments, and the implementation of our key operational improvement initiatives. Together, these provide an indication of how well we have used our Integrated Assessment processes to identify and plan improvements for FY2000. As you review the report you will find areas of significantly positivemore » progress; you will also note areas where I believe the Laboratory could make improvements. Overall, however, I believe you will be quite pleased to note that we have maintained, or exceeded, the high standards of performance we have set for the Laboratory.« less

  4. Laboratory-based and office-based risk scores and charts to predict 10-year risk of cardiovascular disease in 182 countries: a pooled analysis of prospective cohorts and health surveys.

    PubMed

    Ueda, Peter; Woodward, Mark; Lu, Yuan; Hajifathalian, Kaveh; Al-Wotayan, Rihab; Aguilar-Salinas, Carlos A; Ahmadvand, Alireza; Azizi, Fereidoun; Bentham, James; Cifkova, Renata; Di Cesare, Mariachiara; Eriksen, Louise; Farzadfar, Farshad; Ferguson, Trevor S; Ikeda, Nayu; Khalili, Davood; Khang, Young-Ho; Lanska, Vera; León-Muñoz, Luz; Magliano, Dianna J; Margozzini, Paula; Msyamboza, Kelias P; Mutungi, Gerald; Oh, Kyungwon; Oum, Sophal; Rodríguez-Artalejo, Fernando; Rojas-Martinez, Rosalba; Valdivia, Gonzalo; Wilks, Rainford; Shaw, Jonathan E; Stevens, Gretchen A; Tolstrup, Janne S; Zhou, Bin; Salomon, Joshua A; Ezzati, Majid; Danaei, Goodarz

    2017-03-01

    Worldwide implementation of risk-based cardiovascular disease (CVD) prevention requires risk prediction tools that are contemporarily recalibrated for the target country and can be used where laboratory measurements are unavailable. We present two cardiovascular risk scores, with and without laboratory-based measurements, and the corresponding risk charts for 182 countries to predict 10-year risk of fatal and non-fatal CVD in adults aged 40-74 years. Based on our previous laboratory-based prediction model (Globorisk), we used data from eight prospective studies to estimate coefficients of the risk equations using proportional hazard regressions. The laboratory-based risk score included age, sex, smoking, blood pressure, diabetes, and total cholesterol; in the non-laboratory (office-based) risk score, we replaced diabetes and total cholesterol with BMI. We recalibrated risk scores for each sex and age group in each country using country-specific mean risk factor levels and CVD rates. We used recalibrated risk scores and data from national surveys (using data from adults aged 40-64 years) to estimate the proportion of the population at different levels of CVD risk for ten countries from different world regions as examples of the information the risk scores provide; we applied a risk threshold for high risk of at least 10% for high-income countries (HICs) and at least 20% for low-income and middle-income countries (LMICs) on the basis of national and international guidelines for CVD prevention. We estimated the proportion of men and women who were similarly categorised as high risk or low risk by the two risk scores. Predicted risks for the same risk factor profile were generally lower in HICs than in LMICs, with the highest risks in countries in central and southeast Asia and eastern Europe, including China and Russia. In HICs, the proportion of people aged 40-64 years at high risk of CVD ranged from 1% for South Korean women to 42% for Czech men (using a ≥10% risk

  5. The Pathology Laboratory Act 2007 explained.

    PubMed

    Looi, Lai-Meng

    2008-06-01

    The past century has seen tremendous changes in the scope and practice of pathology laboratories in tandem with the development of the medical services in Malaysia. Major progress was made in the areas of training and specialization of pathologists and laboratory technical staff. Today the pathology laboratory services have entered the International arena, and are propelled along the wave of globalization. Many new challenges have emerged as have new players in the field. Landmark developments over the past decade include the establishment of national quality assurance programmes, the mushrooming of private pathology laboratories, the establishment of a National Accreditation Standard for medical testing laboratories based on ISO 15189, and the passing of the Pathology Laboratory Act in Parliament in mid-2007. The Pathology Laboratory Act 2007 seeks to ensure that the pathology laboratory is accountable to the public, meets required standards of practice, participates in Quality Assurance programmes, is run by qualified staff, complies with safety requirements and is subject to continuous audit. The Act is applicable to all private laboratories (stand alone or hospital) and laboratories in statutory bodies (Universities, foundations). It is not applicable to public laboratories (established and operated by the government) and side-room laboratories established in clinics of registered medical or dental practitioners for their own patients (tests as in the First and Second Schedules respectively). Tests of the Third Schedule (home test blood glucose, urine glucose, urine pregnancy test) are also exempted. The Act has 13 Parts and provides for control of the pathology laboratory through approval (to establish and maintain) and licensing (to operate or provide). The approval or license may only be issued to a sole proprietor, partnership or body corporate, and then only if the entity includes a registered medical practitioner. Details of personnel qualifications and

  6. Linking daily stress processes and laboratory-based heart rate variability in a national sample of midlife and older adults

    PubMed Central

    Sin, Nancy L.; Sloan, Richard P.; McKinley, Paula S.; Almeida, David M.

    2015-01-01

    Objective This study evaluates the associations between people’s trait-like patterns of stress in daily life (stressor frequency, perceived stressor severity, affective reactivity to stressors, and negative affect) and laboratory-assessed heart rate variability (HRV). Methods Data were collected from 909 participants ages 35-85 in the Midlife in the United States Study. Participants reported negative affect and minor stressful events during telephone interviews on eight consecutive evenings. On a separate occasion, HRV was measured from electrocardiograph recordings taken at rest during a laboratory-based psychophysiology protocol. Regression models were used to evaluate the associations between daily stress processes and 3 log-transformed HRV indices: standard deviation of RR intervals (SDRR), root mean square of successive differences (RMSSD), and high-frequency power (HF-HRV). Analyses were adjusted for demographics, body mass index, comorbid conditions, medications, physical activity, and smoking. Results Stressor frequency was unrelated to HRV (r-values ranging from −0.04 to −0.01, p’s > 0.20). However, people with greater perceived stressor severity had lower resting SDRR (fully-adjusted B [SE] = −0.05 [0.02]), RMSSD (−0.08 [0.03]), and HF-HRV (−0.16 [0.07]). Individuals with more pronounced affective reactivity to stressors also had lower levels of all 3 HRV indices (SDRR: B [SE] = −0.28 [0.14]; RMSSD: −0.44 [0.19]; HF-HRV: −0.96 [0.37]). Furthermore, aggregated daily negative affect was linked to reduced RMSSD (B [SE] = −0.16 [0.08]) and HF-HRV (−0.35 [0.15]). Conclusions In a national sample, individual differences in daily negative affect and responses to daily stressors were more strongly related to cardiovascular autonomic regulation than the frequency of such stressors. PMID:26867082

  7. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deborah L. Layton; Kimberly Frerichs

    2011-12-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and themore » results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).« less

  8. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deborah L. Layton; Kimberly Frerichs

    2010-07-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and themore » results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).« less

  9. 1995 Annual epidemiologic surveillance report for Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    The US Department of Energy`s (DOE) conduct of epidemiologic surveillance provides an early warning system for health problems among workers. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. This report summarizes epidemiologic surveillance data collected from Brookhaven National Laboratory (BNL) from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at BNL and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures andmore » data analyses were carried out.« less

  10. Report: Results of Technical Network Vulnerability Assessment: EPA’s Radiation and Indoor Environments National Laboratory

    EPA Pesticide Factsheets

    Report #09-P-0053, December 9, 2008. Vulnerability testing of EPA’s Radiation and Indoor Environments National Laboratory (R&IEN) network identified Internet Protocol addresses with medium-risk vulnerabilities.

  11. A 13-Week Research-Based Biochemistry Laboratory Curriculum

    ERIC Educational Resources Information Center

    Lefurgy, Scott T.; Mundorff, Emily C.

    2017-01-01

    Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with…

  12. 2003 Sandia National Laboratories--Albuquerque Annual Illness and Injury Surveillance Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-05-23

    Annual Illness and Injury Surveillance Program report for 2003 for Sandia National Laboratories-Albuquerque. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  13. MIT Lincoln Laboratory Annual Report 2007: Technology in Support of National Security

    DTIC Science & Technology

    2007-01-01

    technical innovation and scientific discoveries. MISSION: TechnoLogy In SupporT of naTIonaL SecurITy 2007 Dr. Claude R. Canizares Vice president for...problems. The Lincoln Laboratory New Technology Initiatives Program is one of several internal technology innovation mechanisms. Technologies emerging...externships. LIFT2, an innovative professional learning program for science, technology , and math teachers, serves Massachusetts metro south/west region

  14. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  15. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    PubMed

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  16. Cultural resources regulatory analysis, area overview, and assessment of previous Department of Energy and Kirtland Air Force Base inventories for Sandia National Laboratories, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoagland, S.R.; Lord, K.J.

    The following regulatory analysis and literature review of archaeological and historic resources on the Sandia National Laboratory/New Mexico (SNL/NM) occupied properties was prepared by the Chambers Group Inc. in January 1992. Based upon compliance surveys of Technical Area I through V undertaken in 1990 and 1991 the report concludes that, although consultation with the Department of Energy and State Historic Preservation Officer will still be required for particular projects, cultural resources should not affect the overall planning and development of future SNL/NM projects. As SNL/NM buildings approach 50 years in age additional analysis and consultations may be required. In ordermore » to protect sensitive resources, the location coordinates and maps provided in the original report are not included here.« less

  17. ANAB, Certification and Scope of Accreditation (ISO/IEC 17025:2005) for the National Vehicle and Fuel Emissions Laboratory

    EPA Pesticide Factsheets

    This document certifies that the EPA National Vehicle and Fuel Emissions Laboratory has been assessed by the ANSI-ASQ National Accredation Board and accredited in meeting ISO-IEC 17025:2005 quality standards.

  18. A Web-Based Remote Access Laboratory Using SCADA

    ERIC Educational Resources Information Center

    Aydogmus, Z.; Aydogmus, O.

    2009-01-01

    The Internet provides an opportunity for students to access laboratories from outside the campus. This paper presents a Web-based remote access real-time laboratory using SCADA (supervisory control and data acquisition) control. The control of an induction motor is used as an example to demonstrate the effectiveness of this remote laboratory,…

  19. Airborne Laser Laboratory departure from Kirtland Air Force Base and a brief history of aero-optics

    NASA Astrophysics Data System (ADS)

    Kyrazis, Demos T.

    2013-07-01

    We discuss aspects of the development of the Airborne Laser Laboratory. Our discussion is historical in nature and consists of the text from a speech given on the occasion of the Airborne Laser Laboratory leaving Kirtland Air Force Base (AFB) to fly to Wright-Patterson AFB to become an exhibit at the National Museum of the United States Air Force. The last part of the discussion concerns the inception of the study of aero-optics as an area of research and some of the milestones in the understanding of the causes and prediction of aero-optical effects.

  20. Research accomplishments for wood transportation structures based on a national research needs assessment

    Treesearch

    M. A. Ritter; S. R. Duwadi

    1998-01-01

    In 1991, the USDA Forest Service, Forest Products Laboratory (FPL) and the Federal Highway Administration (FHWA) formed a joint cooperative research program for wood transportation structures. Development and execution of this program was based on a national assessment of research needs and priorities. In the 5 years since completion of the research needs assessment,...

  1. Comparative assessment of absolute cardiovascular disease risk characterization from non-laboratory-based risk assessment in South African populations

    PubMed Central

    2013-01-01

    Background All rigorous primary cardiovascular disease (CVD) prevention guidelines recommend absolute CVD risk scores to identify high- and low-risk patients, but laboratory testing can be impractical in low- and middle-income countries. The purpose of this study was to compare the ranking performance of a simple, non-laboratory-based risk score to laboratory-based scores in various South African populations. Methods We calculated and compared 10-year CVD (or coronary heart disease (CHD)) risk for 14,772 adults from thirteen cross-sectional South African populations (data collected from 1987 to 2009). Risk characterization performance for the non-laboratory-based score was assessed by comparing rankings of risk with six laboratory-based scores (three versions of Framingham risk, SCORE for high- and low-risk countries, and CUORE) using Spearman rank correlation and percent of population equivalently characterized as ‘high’ or ‘low’ risk. Total 10-year non-laboratory-based risk of CVD death was also calculated for a representative cross-section from the 1998 South African Demographic Health Survey (DHS, n = 9,379) to estimate the national burden of CVD mortality risk. Results Spearman correlation coefficients for the non-laboratory-based score with the laboratory-based scores ranged from 0.88 to 0.986. Using conventional thresholds for CVD risk (10% to 20% 10-year CVD risk), 90% to 92% of men and 94% to 97% of women were equivalently characterized as ‘high’ or ‘low’ risk using the non-laboratory-based and Framingham (2008) CVD risk score. These results were robust across the six risk scores evaluated and the thirteen cross-sectional datasets, with few exceptions (lower agreement between the non-laboratory-based and Framingham (1991) CHD risk scores). Approximately 18% of adults in the DHS population were characterized as ‘high CVD risk’ (10-year CVD death risk >20%) using the non-laboratory-based score. Conclusions We found a high level of

  2. Large-band seismic characterization of the INFN Gran Sasso National Laboratory

    NASA Astrophysics Data System (ADS)

    Acernese, F.; Canonico, R.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.

    2013-04-01

    In this paper we present the scientific data recorded by tunable mechanical monolithic horizontal seismometers located in the Gran Sasso National Laboratory of the INFN, within thermally insulating enclosures onto concrete slabs connected to the bedrock. The main goals of this long-term large-band measurements are for the seismic characterization of the site in the frequency band 10-6÷10Hz and the acquisition of all the relevant information for the optimization of the sensors.

  3. Use of a United States-based laboratory as a hematopathology reference center for a developing country: logistics and results.

    PubMed

    Deetz, C O; Scott, M G; Ladenson, J H; Seyoum, M; Hassan, A; Kreisel, F H; Nguyen, T T; Frater, J L

    2013-02-01

    With proper logistical support and sponsorship, a laboratory in an industrialized nation might be able to act as a reference laboratory for clinicians based in a developing country. We built on previous experience in the clinical laboratory to see whether a specialized histopathology service (hematopathology) could be provided to a developing country without the expertise or experience to do it in country. Over an 13-year period, 582 cases from 579 individuals were analyzed. Principal pathologic findings included acute leukemia in 84 cases (14%), dyspoiesis in one or more of the hematopoietic lineages in 65 cases (11%, including three cases with high-grade myelodysplasia), 23 cases (4%) with findings suspicious for a chronic myeloproliferative disorder, 35 cases (6%) with findings suspicious for a lymphoproliferative disorder, and infectious organisms (presumably Leishmania in most instances) in 9 (1%) of cases. Specimens from 45 cases (8%) were unsatisfactory owing to extreme hemodilution and/or specimen degeneration. With proper support, a medical laboratory in an industrialized nation may serve as a reference facility for a developing nation. The use of existing infrastructure may be remarkably effective to achieve optimal turnaround time. Although the lack of ancillary studies and follow-up biopsies limit the ability to achieve a definitive diagnosis in many cases, this must be viewed in the context of the limited ability to diagnose or manage hematopoietic neoplasia in developing nations. © 2012 Blackwell Publishing Ltd.

  4. Factors Affecting Participation in Traditional and Inquiry-based Laboratories.

    ERIC Educational Resources Information Center

    Russell, Connie P.; French, Donald P.

    2002-01-01

    Reports on a study of participation, achievement, and attitude in cookbook and inquiry-based introductory biology laboratories through observations, interviews, and attitude/knowledge surveys. Participation differences between men and women disappeared in the inquiry-based laboratory. (Author/MM)

  5. Extreme-Scale Computing Project Aims to Advance Precision Oncology | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Two government agencies and five national laboratories are collaborating to develop extremely high-performance computing capabilities that will analyze mountains of research and clinical data to improve scientific understanding of cancer, predict dru

  6. Radiological Laboratory Sample Analysis Guide for Incidents of National Significance – Radionuclides in Air

    EPA Science Inventory

    [The document describes the likely analytical decision paths that would be made by personnel at a radioanalytical laboratory following a radiological or nuclear incident, such as that caused by a terrorist attack. EPA’s responsibilities, as outlined in the National Response Frame...

  7. A survey of macromycete diversity at Los Alamos National Laboratory, Bandelier National Monument, and Los Alamos County; A preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarmie, N.; Rogers, F.J.

    The authors have completed a 5-year survey (1991--1995) of macromycetes found in Los Alamos County, Los Alamos National Laboratory, and Bandelier National Monument. The authors have compiled a database of 1,048 collections, their characteristics, and identifications. The database represents 123 (98%) genera and 175 (73%) species reliably identified. Issues of habitat loss, species extinction, and ecological relationships are addressed, and comparisons with other surveys are made. With this baseline information and modeling of this baseline data, one can begin to understand more about the fungal flora of the area.

  8. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators,more » hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and

  9. Sandia National Laboratories: News

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  10. Sandia National Laboratories: Locations

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  11. Sandia National Laboratories: Careers

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  12. Sandia National Laboratories: Mission

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  13. Sandia National Laboratories: Research

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  14. Sandia National Laboratories: Feedback

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  15. AudioGuides at a National Research Laboratory Supporting Visitors With Special Needs: Initial Lessons Learned

    NASA Astrophysics Data System (ADS)

    Munoz, R.; Foster, S. Q.; Johnson, R. M.; Carbone, L.; Lewis, H.; Abshire, W.; Mann, L.

    2003-12-01

    The National Center for Atmospheric Research (NCAR) Mesa Laboratory offers the public an opportunity to visit an internationally recognized research laboratory housed in an architectural landmark located in a dramatic geological setting. The Mesa Lab's exhibits are viewed by over 80,000 people each year. Exhibits provide information about NCAR's scientific mission, current research efforts, technology, and the societal benefits of weather and climate research. Nearly 13,000 of NCAR's visitors are served with staff-led guided tours, including 3,000 students in school groups. Frequently, these tours are tailored to address the interests, ages, nationality, and special needs of the visitors. In June 2003, an audioguide was unveiled in English and Spanish versions for both adults and children. Based on preliminary summer usage figures, the audioguides may reach an additional 7,000 visitors in the coming year, many of whom may have special needs. With this in mind, the University Corporation of Atmospheric Research (UCAR) Office of Education and Outreach (EO) contracted local experts as advisors on the needs of people with low-vision, hearing loss, and Spanish language accessibility as the audioguide was developed. The script was written with the help of scientists and an internationally recognized audioguide production firm. Since the installation of the audioguide in July, visitors of all ages appear to be enthusiastic about this service and better focused on their learning experiences while viewing the exhibits. Interviews are helping EO to learn more about how the audioguide is helpful or may be revised to more effectively serve visitors in general as well as visitors with special needs. The audioguide was made possible by grants from the National Science Foundation Geoscience Education Program and the Friends of UCAR Fund.

  16. National survey on critical values reporting in a cohort of Italian laboratories.

    PubMed

    Lippi, Giuseppe; Giavarina, Davide; Montagnana, Martina; Luca Salvagno, Gian; Cappelletti, Piero; Plebani, Mario; Guidi, Gian Cesare

    2007-01-01

    Critical values' reporting is an essential requisite for clinical laboratories. Local policies were investigated within an indicative cohort of Italian laboratories to monitor the situation and establish a performance benchmark. A five-point questionnaire was administered to 150 laboratory specialists attending the SIMEL (Italian Society of Laboratory Medicine) National Meeting in June 2006. A total of 107 questionnaires (71.3%) were returned with a 100% individual question response rate. Only 55% of the participants acknowledge critical values reporting as an essential practice, 80% admit that a comprehensive list of critical values is unavailable in the laboratory and 4% do not promptly communicate critical values. The list of critical values is variable among laboratories, ranging from none to 20 analytes included. The requesting physician or his/her office staff receives the great majority (97%) of notifications by telephone for outpatients. Critical values for inpatients are notified directly by telephone (81%) and in a minority of cases by either fax or computer (19%). In the inpatient setting, the information is notified to physicians (77%), nurses (15%) or other healthcare staff in the clinic (8%). It was found that 49% of the participants adopt a standard (digital or written) policy for routine recording of notifications; in 32% of the cases the registration is left to individual attitudes, whereas in 20% of the cases the notification is not recorded. No laboratory has yet adopted a read-back verification of the complete test result by the person receiving the information. The importance of critical value reporting is still poorly recognized in Italy and uniform or internationally accredited practices for communication and recording are not currently implemented.

  17. The Application of System Dynamics to the Integration of National Laboratory Research and K-12 Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, James Ignatius; Zounar Harbour, Elda D

    2001-08-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is dedicated to finding solutions to problems related to the environment, energy, economic competitiveness, and national security. In an effort to attract and retain the expertise needed to accomplish these challenges, the INEEL is developing a program of broad educational opportunities that makes continuing education readily available to all laboratory employees, beginning in the K–12 environment and progressing through post-graduate education and beyond. One of the most innovative educational approaches being implemented at the laboratory is the application of STELLA© dynamic learning environments, which facilitate captivating K–12 introductions to the complex energymore » and environmental challenges faced by global societies. These simulations are integrated into lesson plans developed by teachers in collaboration with INEEL scientists and engineers. This approach results in an enjoyable and involved learning experience, and an especially positive introduction to the application of science to emerging problems of great social and environmental consequence.« less

  18. Key results of battery performance and life tests at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1991-12-01

    Advanced battery technology evaluations are performed under simulated electric vehicle operating conditions at Argonne National Laboratory's & Diagnostic Laboratory (ADL). The ADL provide a common basis for both performance characterization and life evaluation with unbiased application of tests and analyses. This paper summarizes the performance characterizations and life evaluations conducted in 1991 on twelve single cells and eight 3- to 360-cell modules that encompass six battery technologies (Na/S, Li/MS, Ni/MH, Zn/Br, Ni/Fe, and Pb-Acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division. The results measure progress in battery R & D programs, compare battery technologies, and provide basic data for modeling and continuing R & D to battery users, developers, and program managers.

  19. New Partnership Seeks to Increase Availability of Lifesaving Transplants | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research has entered into a new partnership with Fred Hutchinson Cancer Research Center that if successful, could improve current methods of donor selection and thereby make lifesaving transplant procedure

  20. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    ERIC Educational Resources Information Center

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-01-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual…

  1. Idaho National Laboratory Quarterly Performance Analysis - 2nd Quarter FY2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisbeth A. Mitchell

    2014-06-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other deficiency reports (including not reportable events) identified at INL from January 2014 through March 2014.

  2. Assessment of patient safety culture in clinical laboratories in the Spanish National Health System.

    PubMed

    Giménez-Marín, Angeles; Rivas-Ruiz, Francisco; García-Raja, Ana M; Venta-Obaya, Rafael; Fusté-Ventosa, Margarita; Caballé-Martín, Inmaculada; Benítez-Estevez, Alfonso; Quinteiro-García, Ana I; Bedini, José Luis; León-Justel, Antonio; Torra-Puig, Montserrat

    2015-01-01

    There is increasing awareness of the importance of transforming organisational culture in order to raise safety standards. This paper describes the results obtained from an evaluation of patient safety culture in a sample of clinical laboratories in public hospitals in the Spanish National Health System. A descriptive cross-sectional study was conducted among health workers employed in the clinical laboratories of 27 public hospitals in 2012. The participants were recruited by the heads of service at each of the participating centers. Stratified analyses were performed to assess the mean score, standardized to a base of 100, of the six survey factors, together with the overall patient safety score. 740 completed questionnaires were received (88% of the 840 issued). The highest standardized scores were obtained in Area 1 (individual, social and cultural) with a mean value of 77 (95%CI: 76-78), and the lowest ones, in Area 3 (equipment and resources), with a mean value of 58 (95%CI: 57-59). In all areas, a greater perception of patient safety was reported by the heads of service than by other staff. We present the first multicentre study to evaluate the culture of clinical safety in public hospital laboratories in Spain. The results obtained evidence a culture in which high regard is paid to safety, probably due to the pattern of continuous quality improvement. Nevertheless, much remains to be done, as reflected by the weaknesses detected, which identify areas and strategies for improvement.

  3. Robotic Lunar Rover Technologies and SEI Supporting Technologies at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Klarer, Paul R.

    1992-01-01

    Existing robotic rover technologies at Sandia National Laboratories (SNL) can be applied toward the realization of a robotic lunar rover mission in the near term. Recent activities at the SNL-RVR have demonstrated the utility of existing rover technologies for performing remote field geology tasks similar to those envisioned on a robotic lunar rover mission. Specific technologies demonstrated include low-data-rate teleoperation, multivehicle control, remote site and sample inspection, standard bandwidth stereo vision, and autonomous path following based on both internal dead reckoning and an external position location update system. These activities serve to support the use of robotic rovers for an early return to the lunar surface by demonstrating capabilities that are attainable with off-the-shelf technology and existing control techniques. The breadth of technical activities at SNL provides many supporting technology areas for robotic rover development. These range from core competency areas and microsensor fabrication facilities, to actual space qualification of flight components that are designed and fabricated in-house.

  4. Idaho National Laboratory Emergency Readiness Assurance Plan - Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Carl J.

    Department of Energy Order 151.1C, Comprehensive Emergency Management System requires that each Department of Energy field element documents readiness assurance activities, addressing emergency response planning and preparedness. Battelle Energy Alliance, LLC, as prime contractor at the Idaho National Laboratory (INL), has compiled this Emergency Readiness Assurance Plan to provide this assurance to the Department of Energy Idaho Operations Office. Stated emergency capabilities at the INL are sufficient to implement emergency plans. Summary tables augment descriptive paragraphs to provide easy access to data. Additionally, the plan furnishes budgeting, personnel, and planning forecasts for the next 5 years.

  5. Metal hydride reasearch and development program at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.R.; Reilly, J.J.

    1978-01-01

    A progress report is presented covering work performed in the hydrogen materials development program at Brookhaven National Laboratory (BNL) for FY78 which encompasses the time period from October 1, 1977 through September 30, 1978. The subjects to be discussed here concern properties of importance in the utilization of metal hydrides as energy storage media. Most of the areas of research were initiated prior to FY78, however all of the results contained in this manuscript were obtained during the aforementioned period of time. The following subjects will be discussed: the properties of ferro-titanium and chrome-titanium alloy hydrides.

  6. Energy - Sandia National Laboratories

    Science.gov Websites

    ; Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical Reference for Hydrogen Combustion jbei Facilities Algae Testbed Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs

  7. Fire protection review revisit no. 2, Argonne National Laboratory, Argonne, Illinois

    NASA Astrophysics Data System (ADS)

    Dobson, P. H.; Earley, M. W.; Mattern, L. J.

    1985-05-01

    A fire protection survey was conducted at Argonne National Laboratory on April 1-5, 8-12, and April 29-May 2, 1985. The purpose was to review the facility fire protection program and to make recommendations or identify areas according to criteria established by the Department of Energy. There has been a substantial improvement in fire protection at this laboratory since the 1977 audit. Numerous areas which were previously provided with detection systems only have since been provided with automatic sprinkler protection. The following basic fire protection features are not properly controlled: (1) resealing wall and floor penetrations between fire areas after installation of services; (2) cutting and welding; and (3) housekeeping. The present Fire Department manpower level appears adequate to control a route fire. Their ability to adequately handle a high-challenge fire, or one involving injuries to personnel, or fire spread beyond the initial fire area is doubtful.

  8. The National Solar Radiation Data Base (NSRDB)

    DOE PAGES

    Sengupta, Manajit; Xie, Yu; Lopez, Anthony; ...

    2018-03-19

    The National Solar Radiation Data Base (NSRDB), consisting of solar radiation and meteorological data over the United States and regions of the surrounding countries, is a publicly open dataset that has been created and disseminated during the last 23 years. This paper briefly reviews the complete package of surface observations, models, and satellite data used for the latest version of the NSRDB as well as improvements in the measurement and modeling technologies deployed in the NSRDB over the years. The current NSRDB provides solar irradiance at a 4-km horizontal resolution for each 30-min interval from 1998 to 2016 computed bymore » the National Renewable Energy Laboratory's (NREL's) Physical Solar Model (PSM) and products from the National Oceanic and Atmospheric Administration's (NOAA's) Geostationary Operational Environmental Satellite (GOES), the National Ice Center's (NIC's) Interactive Multisensor Snow and Ice Mapping System (IMS), and the National Aeronautics and Space Administration's (NASA's) Moderate Resolution Imaging Spectroradiometer (MODIS) and Modern Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). The NSRDB irradiance data have been validated and shown to agree with surface observations with mean percentage biases within 5% and 10% for global horizontal irradiance (GHI) and direct normal irradiance (DNI), respectively. The data can be freely accessed via https://nsrdb.nrel.gov or through an application programming interface (API). During the last 23 years, the NSRDB has been widely used by an ever-growing group of researchers and industry both directly and through tools such as NREL's System Advisor Model.« less

  9. The National Solar Radiation Data Base (NSRDB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Xie, Yu; Lopez, Anthony

    The National Solar Radiation Data Base (NSRDB), consisting of solar radiation and meteorological data over the United States and regions of the surrounding countries, is a publicly open dataset that has been created and disseminated during the last 23 years. This paper briefly reviews the complete package of surface observations, models, and satellite data used for the latest version of the NSRDB as well as improvements in the measurement and modeling technologies deployed in the NSRDB over the years. The current NSRDB provides solar irradiance at a 4-km horizontal resolution for each 30-min interval from 1998 to 2016 computed bymore » the National Renewable Energy Laboratory's (NREL's) Physical Solar Model (PSM) and products from the National Oceanic and Atmospheric Administration's (NOAA's) Geostationary Operational Environmental Satellite (GOES), the National Ice Center's (NIC's) Interactive Multisensor Snow and Ice Mapping System (IMS), and the National Aeronautics and Space Administration's (NASA's) Moderate Resolution Imaging Spectroradiometer (MODIS) and Modern Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). The NSRDB irradiance data have been validated and shown to agree with surface observations with mean percentage biases within 5% and 10% for global horizontal irradiance (GHI) and direct normal irradiance (DNI), respectively. The data can be freely accessed via https://nsrdb.nrel.gov or through an application programming interface (API). During the last 23 years, the NSRDB has been widely used by an ever-growing group of researchers and industry both directly and through tools such as NREL's System Advisor Model.« less

  10. Summary of Adsorption Capacity and Adsorption Kinetics of Uranium and Other Elements on Amidoxime-based Adsorbents from Time Series Marine Testing at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.

    The Pacific Northwest National Laboratory (PNNL) has been conducting marine testing of uranium adsorbent materials for the Fuel Resources Program, Department of Energy, Office of Nuclear Energy (DOE-NE) beginning in FY 2012. The marine testing program is being conducted at PNNL’s Marine Sciences Laboratory (MSL), located at Sequim Bay, along the coast of Washington. One of the main efforts of the marine testing program is the determination of adsorption capacity and adsorption kinetics for uranium and selected other elements (e.g. vanadium, iron, copper, nickel, and zinc) for adsorbent materials provided primarily by Oak Ridge National Laboratory (ORNL), but also includesmore » other Fuel Resources Program participants. This report summarizes the major marine testing results that have been obtained to date using time series sampling for 42 to 56 days using either flow-through column or recirculating flume exposures. The major results are highlighted in this report, and the full data sets are appended as a series of Excel spreadsheet files. Over the four year period (2012-2016) that marine testing of amidoxime-based polymeric adsorbents was conducted at PNNL’s Marine Science Laboratory, there has been a steady progression of improvement in the 56-day adsorbent capacity from 3.30 g U/kg adsorbent for the ORNL 38H adsorbent to the current best performing adsorbent prepared by a collaboration between the University of Tennessee and ORNL to produce the adsorbent SB12-8, which has an adsorption capacity of 6.56 g U/kg adsorbent. This nearly doubling of the adsorption capacity in four years is a significant advancement in amidoxime-based adsorbent technology and a significant achievement for the Uranium from Seawater program. The achievements are evident when compared to the several decades of work conducted by the Japanese scientists beginning in the 1980’s (Kim et al., 2013). The best adsorbent capacity reported by the Japanese scientists was 3.2 g U

  11. Partnership to Explore New Drug Combination for Pancreatic Cancer | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Scientists at NCI and Frederick National Laboratory for Cancer Research (FNLCR) are partnering with the Lustgarten Foundation to test whether a vitamin D derivative will make a difference when combined with a conventional anticancer drug in treating

  12. EPA/OFFICE OF RESEARCH AND DEVELOPMENT'S NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY/WESTERN ECOLOGY DIVISION INTERNET SITE

    EPA Science Inventory

    The Western Ecology Division (WED) is one of four ecological effects divisions of the National Health and Environmental Effects Research Laboratory. The four divisions are distributed bio-geographically. WED's mission is 1) to provide EPA with national scientific leadership for t...

  13. Investigation of differences between field and laboratory pH measurements of national atmospheric deposition program/national trends network precipitation samples

    USGS Publications Warehouse

    Latysh, N.; Gordon, J.

    2004-01-01

    A study was undertaken to investigate differences between laboratory and field pH measurements for precipitation samples collected from 135 weekly precipitation-monitoring sites in the National Trends Network from 12/30/1986 to 12/28/1999. Differences in pH between field and laboratory measurements occurred for 96% of samples collected during this time period. Differences between the two measurements were evaluated for precipitation samples collected before and after January 1994, when modifications to sample-handling protocol and elimination of the contaminating bucket o-ring used in sample shipment occurred. Median hydrogen-ion and pH differences between field and laboratory measurements declined from 3.9 ??eq L-1 or 0.10 pH units before the 1994 protocol change to 1.4 ??eq L-1 or 0.04 pH units after the 1994 protocol change. Hydrogen-ion differences between field and laboratory measurements had a high correlation with the sample pH determined in the field. The largest pH differences between the two measurements occurred for high-pH samples (>5.6), typical of precipitation collected in Western United States; however low- pH samples (<5.0) displayed the highest variability in hydrogen-ion differences between field and laboratory analyses. Properly screened field pH measurements are a useful alternative to laboratory pH values for trend analysis, particularly before 1994 when laboratory pH values were influenced by sample-collection equipment.

  14. Developing laboratory networks: a practical guide and application.

    PubMed

    Kirk, Carol J; Shult, Peter A

    2010-01-01

    The role of the public health laboratory (PHL) in support of public health response has expanded beyond testing to include a number of other core functions, such as emergency response, training and outreach, communications, laboratory-based surveillance, and laboratory data management. These functions can only be accomplished by a network that includes public health and other agency laboratories and clinical laboratories. It is a primary responsibility of the PHL to develop and maintain such a network. In this article, we present practical recommendations-based on 17 years of network development experience-for the development of statewide laboratory networks. These recommendations, and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of laboratory networks will enhance each state's public health system and is critical to the development of a robust national Laboratory Response Network.

  15. The Role of the DOE Weapons Laboratories in a Changing National Security Environment: CNSS Papers No. 8, April 1988

    DOE R&D Accomplishments Database

    Hecker, S. S.

    1988-04-01

    The contributions of the Department of Energy (DOE) nuclear weapons laboratories to the nation's security are reviewed in testimony before the Subcommittee on Procurement and Military Nuclear Systems of the House Armed Services Committee. Also presented are contributions that technology will make in maintaining the strategic balance through deterrence, treaty verification, and a sound nuclear weapons complex as the nation prepares for significant arms control initiatives. The DOE nuclear weapons laboratories can contribute to the broader context of national security, one that recognizes that military strength can be maintained over the long term only if it is built upon the foundations of economic strength and energy security.

  16. Oak Ridge National Laboratory Office of International Nuclear Safeguards: Human Capital Development Activity in FY16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilligan, Kimberly V.; Gaudet, Rachel N.

    In 2007, the U.S. Department of Energy National Nuclear Security Administration (DOE NNSA) Office of Nonproliferation and Arms Control (NPAC) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. One of the report’s key recommendations was for DOE NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency (IAEA) General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: policy development and outreach, conceptsmore » and approaches, technology and analytical methodologies, human capital development (HCD), and infrastructure development. This report addresses the HCD component of NGSI. The goal of the HCD component as defined in the NNSA Program Plan is “to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.” The major objectives listed in the HCD goal include education and training, outreach to universities and professional societies, postdoctoral appointments, and summer internships at national laboratories.« less

  17. Brookhaven National Laboratory technology transfer report, fiscal year 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    The Brookhaven Office of Research and Technology Applications (ORTA) inaugurated two major initiatives. The effort by our ORTA in collaboration with the National Synchrotron Light Source (NSLS) has succeeded in alerting American industry to the potential of using a synchrotron x-ray source for high resolution lithography. We are undertaking a preconstruction study for the construction of a prototype commercial synchrotron and development of an advanced commercial cryogenic synchrotron (XLS). ORTA sponsored a technology transfer workshop where industry expressed its views on how to transfer accelerator technology during the construction of the prototype commercial machine. The Northeast Regional utility Initiative broughtmore » 14 utilities to a workshop at the Laboratory in November. One recommendation of this workshop was to create a Center at the Laboratory for research support on issues of interest to utilities in the region where BNL has unique capability. The ORTA has initiated discussions with the New York State Science and Technology Commission, Cornell University's world renowned Nannofabrication Center and the computer aided design capabilities at SUNY at Stony Brook to create, centered around the NSLS and the XLS, the leading edge semiconductor process technology development center when the XLS becomes operational in two and a half years. 1 fig.« less

  18. An overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Smith, T.H.; Chew, E.W.; Hedahl, T.G.; Mann, L.J.; Pointer, T.F.; Wiersma, G.B.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the U.S. Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological Environmental Sciences Laboratory (RESL), and the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG&G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities radiation is integrated with the overall INEL Site surveillance program. Air, warer, soil, biota, and environmental radiation are monitored or sampled routinely at INEL. Results to date indicate very small or no impacts from INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL.

  19. Scientific Computing Strategic Plan for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiting, Eric Todd

    Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory’s (INL’s) challenge and charge, and is central to INL’s ongoing success. Computing is an essential part of INL’s future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing numbermore » of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.« less

  20. Bringing Theory into Practice: A Study of Effective Leadership at Lawrence Livermore National Laboratory

    ERIC Educational Resources Information Center

    Khoury, Anne

    2006-01-01

    Leadership development, a component of HRD, is becoming an area of increasingly important practice for all organizations. When companies such as Lawrence Livermore National Laboratory rely on knowledge workers for success, leadership becomes even more important. This research paper tests the hypothesis that leadership credibility and the courage…

  1. FY 2009 National Renewable Energy Laboratory (NREL) Annual Report: A Year of Energy Transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2010-01-01

    This FY2009 Annual Report surveys the National Renewable Energy Laboratory's (NREL) accomplishments in renewable energy and energy efficiency research and development, commercialization and deployment of technologies, and strategic energy analysis. It offers NREL's vision and progress in building a clean, sustainable research campus and reports on community involvement.

  2. Clinical trials of boron neutron capture therapy [in humans] [at Beth Israel Deaconess Medical Center][at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Christine

    2001-05-29

    Assessment of research records of Boron Neutron Capture Therapy was conducted at Brookhaven National Laboratory and Beth Israel Deaconess Medical Center using the Code of Federal Regulations, FDA Regulations and Good Clinical Practice Guidelines. Clinical data were collected from subjects' research charts, and differences in conduct of studies at both centers were examined. Records maintained at Brookhaven National Laboratory were not in compliance with regulatory standards. Beth Israel's records followed federal regulations. Deficiencies discovered at both sites are discussed in the reports.

  3. Physics-Based GOES Product for Use in NREL's National Solar Radiation Database: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Habte, Aron; Gotseff, Peter

    The Global Solar Insolation Project (GSIP) is an operational physical model from the National Oceanic and Atmospheric Administration (NOAA) that computes global horizontal radiation (GHI) using the visible and infrared channel measurements from geostationary operational environmental satellites (GOES). GSIP uses a two-stage scheme that retrieves cloud properties and uses those properties in the Satellite Algorithm for Surface Radiation Budget (SASRAB) model to calculate surface radiation. The National Renewable Energy Laboratory, University of Wisconsin, and NOAA have recently collaborated to adapt GSIP to create a high-temporal and spatial resolution data set. The data sets are currently being incorporated into the widelymore » used National Solar Radiation Data Base.« less

  4. Laser ion source activities at Brookhaven National Laboratory

    DOE PAGES

    Kanesue, Takeshi; Okamura, Masahiro

    2015-07-31

    In Brookhaven National Laboratory (BNL), we have been developing laser ion sources for diverse accelerators. Tabletop Nd:YAG lasers with up to several Joules of energy are mainly used to create ablation plasmas for stable operations. The obtained charge states depend on laser power density and target species. Two types of ion extraction schemes, Direct Plasma Injection Scheme (DPIS) and conventional static extraction, are used depending on application. We optimized and select a suitable laser irradiation condition and a beam extraction scheme to meet the requirement of the following accelerator system. We have demonstrated to accelerate more than 5 x 10more » 10 of C 6+ ions using the DPIS. We successfully commissioned low charge ion beam provider to the user facilities in BNL. As a result, to achieve higher current, higher charge state and lower emittance, further studies will continue.« less

  5. Statement of Work Electrical Energy Storage System Installation at Sandia National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenkman, Benjamin L.

    2017-03-01

    Sandia is seeking to procure a 1 MWh energy storage system. It will be installed at the existing Energy Storage Test Pad, which is located at Sandia National Laboratories in Albuquerque, New Mexico. This energy storage system will be a daily operational system, but will also be used as a tool in our Research and development work. The system will be part of a showcase of Sandia distributed energy technologies viewed by many distinguished delegates.

  6. Performance indicators for quality in surgical and laboratory services at Muhimbili National Hospital (MNH) in Tanzania.

    PubMed

    Mbembati, Naboth A; Mwangu, Mugwira; Muhondwa, Eustace P Y; Leshabari, Melkizedek M

    2008-04-01

    Muhimbili National Hospital (MNH), a teaching and national referral hospital, is undergoing major reforms to improve the quality of health care. We performed a retrospective descriptive study using a set of performance indicators for the surgical and laboratory services of MNH in years 2001 and 2002, to help monitor and evaluate the impact of reforms on the quality of health care during and after the reform process. Hospital records were reviewed and information recorded for planned and postponed operations, laboratory equipment, reagents, laboratory tests and quality assurance programmes. In the year 2001 a total of 4332 non-emergency operations were planned, 3313 operations were performed and 1019 (23.5%) operations were postponed. In the year 2002, 4301 non-emergency operations were planned, 3046 were performed and 1255 (29%) were postponed. The most common reasons for operation postponement were "time-barred", interference by emergency operations, no show of patients and inoperable anaesthetic machines. Equipment problems and supply and staff shortages together accounted for one quarter of postponements. In the laboratory, a lack of equipment prevented some tests, but quality assurance was performed for most tests. Current surgical services at MNH are inadequate; operating theatres require modern, functioning equipment and adequate supplies of consumables to provide satisfactory care.

  7. Leveraging Cababilities of the National Laboratories and Academia to Understand the Properties of Warm Dense MgSiO3

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Townsend, Joshua P.; Shulenburger, Luke; Seagle, Christopher T.; Furnish, Michael D.; Fei, Yingwei

    2017-06-01

    For the past seven years, the Z Fundamental Science program has fostered collaboration between scientists at the national laboratories and academic research groups to utilize the Z-machine to explore properties of matter in extreme conditions. A recent example of this involves a collaboration between the Carnegie institution of Washington and Sandia to determine the properties of warm dense MgSiO3 by performing shock experiments using the Z-machine. To reach the higher densities desired, bridgmanite samples are being fabricated at Carnegie using multi-anvil presses. We will describe the preparations under way for these experiments, including pre-shot ab-initio calculations of the Hugoniot and the deployment of dual-layer flyer plates that allow for the measurement of sound velocities along the Hugoniot. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. About the Associate Director for Health of EPA's National Health and Environmental Effects Research Laboratory (NHEERL)

    EPA Pesticide Factsheets

    Dr. Ronald Hines serves as Associate Director for Health for the National Health and Environmental Effects Research Laboratory (NHEERL) within the U.S. Environmental Protection Agency's Office of Research and Development (ORD).

  9. National Laboratories and Universities: Building New Ways to Work Together--Report of a Workshop

    ERIC Educational Resources Information Center

    National Academies Press, 2005

    2005-01-01

    This volume is a report of a workshop held in 2003 to address best practices and remaining challenges with respect to national laboratory-university collaborations. The following are appended: (1) Committee Member Biographies; (2) Workshop Agenda; (3) Workshop Participants; (4) Glossary of Acronyms; and (5) Major Benefits and Challenges. [This…

  10. 75 FR 50987 - Privacy Act System of Records; National Animal Health Laboratory Network (NAHLN)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ...] Privacy Act System of Records; National Animal Health Laboratory Network (NAHLN) AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice of a proposed new system of records; request for comment. SUMMARY: The U.S. Department of Agriculture (USDA) proposes to add a new Privacy Act system of records to...

  11. Implementing Computer Based Laboratories

    NASA Astrophysics Data System (ADS)

    Peterson, David

    2001-11-01

    Physics students at Francis Marion University will complete several required laboratory exercises utilizing computer-based Vernier probes. The simple pendulum, the acceleration due to gravity, simple harmonic motion, radioactive half lives, and radiation inverse square law experiments will be incorporated into calculus-based and algebra-based physics courses. Assessment of student learning and faculty satisfaction will be carried out by surveys and test results. Cost effectiveness and time effectiveness assessments will be presented. Majors in Computational Physics, Health Physics, Engineering, Chemistry, Mathematics and Biology take these courses, and assessments will be categorized by major. To enhance the computer skills of students enrolled in the courses, MAPLE will be used for further analysis of the data acquired during the experiments. Assessment of these enhancement exercises will also be presented.

  12. Lawrence Livermore National Laboratory Environmental Report 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H E; Bertoldo, N A; Campbell, C G

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and ismore » available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special

  13. DNA-Based Methods in the Immunohematology Reference Laboratory

    PubMed Central

    Denomme, Gregory A

    2010-01-01

    Although hemagglutination serves the immunohematology reference laboratory well, when used alone, it has limited capability to resolve complex problems. This overview discusses how molecular approaches can be used in the immunohematology reference laboratory. In order to apply molecular approaches to immunohematology, knowledge of genes, DNA-based methods, and the molecular bases of blood groups are required. When applied correctly, DNA-based methods can predict blood groups to resolve ABO/Rh discrepancies, identify variant alleles, and screen donors for antigen-negative units. DNA-based testing in immunohematology is a valuable tool used to resolve blood group incompatibilities and to support patients in their transfusion needs. PMID:21257350

  14. ENVIRONMENTAL RADIOACTIVITY AT ARGONNE NATIONAL LABORATORY. Report for the Year 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlet, J.

    1959-08-01

    Data are tabulated on the radioactive content of samples of surface water, lake and stream bottom silt, soil, plants, and air filters from the environs of the Argonne National Laboratory. Results are compared with those for similar samples collected from the area from 1952 through 1958. Fission prcduct activity from nuclear detocations was found in most samples from all locations. Fall-out activity was greatest during the spring and fall, and was particularly noticeable in air, precipitation, and plant samples. (For preceding period see ANL-5934.) (C.H.)

  15. Waste certification program plan for Oak Ridge National Laboratory. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1997-09-01

    This document defines the waste certification program (WCP) developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the WCP is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements for mixed (both radioactive and hazardous) and hazardous [including polychlorinated biphenyls (PCB)] waste. Program activities will be conducted according to ORNL Level 1 document requirements.

  16. [Influenza surveillance in nine consecutive seasons, 2003-2012: results from National Influenza Reference Laboratory, Istanbul Faculty Of Medicine, Turkey].

    PubMed

    Akçay Ciblak, Meral; Kanturvardar Tütenyurd, Melis; Asar, Serkan; Tulunoğlu, Merve; Fındıkçı, Nurcihan; Badur, Selim

    2012-10-01

    Influenza is a public health problem that affects 5-20% of the world population annually causing high morbidity and mortality especially in risk groups. In addition to determining prevention and treatment strategies with vaccines and antivirals, surveillance data plays an important role in combat against influenza. Surveillance provides valuable data on characteristics of influenza activity, on types, sub-types, antigenic properties and antiviral resistance profile of circulating viruses in a given region. The first influenza surveillance was initiated as a pilot study in 2003 by now named National Influenza Reference Laboratory, Istanbul Faculty of Medicine. Surveillance was launched at national level by Ministry of Health in 2004 and two National Influenza Laboratories, one in Istanbul and the other in Ankara, have been conducting surveillance in Turkey. Surveillance data obtained for nine consecutive years, 2003-2012, by National Influenza Reference Laboratory in Istanbul Faculty of Medicine have been summarized in this report. During 2003-2012 influenza surveillance seasons, a total of 11.077 nasal swabs collected in viral transport medium were sent to the National Influenza Reference Laboratory, Istanbul for analysis. Immun-capture ELISA followed by MDCK cell culture was used for detection of influenza viruses before 2009 and real-time RT-PCR was used thereafter. Antigenic characterizations were done by hemagglutination inhibition assay with the reactives supplied by World Health Organization. Analysis of the results showed that influenza B viruses have entered the circulation in 2005-2006 seasons, and have contributed to the epidemics at increasing rates every year except in the 2009 pandemic season. Influenza B Victoria and Yamagata lineages were cocirculating for two seasons. For other seasons either lineage was in circulation. Antigenic characterization revealed that circulating B viruses matched the vaccine composition either partially or totally for only

  17. A checklist of plant and animal species at Los Alamos National Laboratory and surrounding areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinojosa, H.

    Past and current members of the Biology Team (BT) of the Ecology Group have completed biological assessments (BAs) for all of the land that comprises Los Alamos National Laboratory (LANL). Within these assessments are lists of plant and animal species with the potential to exist on LANL lands and the surrounding areas. To compile these lists, BT members examined earlier published and unpublished reports, surveys, and data bases that pertained to the biota of this area or to areas that are similar. The species lists that are contained herein are compilations of the lists from these BAs, other lists thatmore » were a part of the initial research for the performance of these BAs, and more recent surveys.« less

  18. Neutron Radiography and Computed Tomography at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raine, Dudley A. III; Hubbard, Camden R.; Whaley, Paul M.

    1997-12-31

    The capability to perform neutron radiography and computed tomography is being developed at Oak Ridge National Laboratory. The facility will be located at the High Flux Isotope Reactor (HFIR), which has the highest steady state neutron flux of any reactor in the world. The Monte Carlo N-Particle transport code (MCNP), versions 4A and 4B, has been used extensively in the design phase of the facility to predict and optimize the operating characteristics, and to ensure the safety of personnel working in and around the blockhouse. Neutrons are quite penetrating in most engineering materials and can be useful to detect internalmore » flaws and features. Hydrogen atoms, such as in a hydrocarbon fuel, lubricant or a metal hydride, are relatively opaque to neutron transmission. Thus, neutron based tomography or radiography is ideal to image their presence. The source flux also provides unparalleled flexibility for future upgrades, including real time radiography where dynamic processes can be observed. A novel tomography detector has been designed using optical fibers and digital technology to provide a large dynamic range for reconstructions. Film radiography is also available for high resolution imaging applications. This paper summarizes the results of the design phase of this facility and the potential benefits to science and industry.« less

  19. Cloud-Based Virtual Laboratory for Network Security Education

    ERIC Educational Resources Information Center

    Xu, Le; Huang, Dijiang; Tsai, Wei-Tek

    2014-01-01

    Hands-on experiments are essential for computer network security education. Existing laboratory solutions usually require significant effort to build, configure, and maintain and often do not support reconfigurability, flexibility, and scalability. This paper presents a cloud-based virtual laboratory education platform called V-Lab that provides a…

  20. Assessment of patient safety culture in clinical laboratories in the Spanish National Health System

    PubMed Central

    Giménez-Marín, Angeles; Rivas-Ruiz, Francisco; García-Raja, Ana M.; Venta-Obaya, Rafael; Fusté-Ventosa, Margarita; Caballé-Martín, Inmaculada; Benítez-Estevez, Alfonso; Quinteiro-García, Ana I.; Bedini, José Luis; León-Justel, Antonio; Torra-Puig, Montserrat

    2015-01-01

    Introduction There is increasing awareness of the importance of transforming organisational culture in order to raise safety standards. This paper describes the results obtained from an evaluation of patient safety culture in a sample of clinical laboratories in public hospitals in the Spanish National Health System. Material and methods A descriptive cross-sectional study was conducted among health workers employed in the clinical laboratories of 27 public hospitals in 2012. The participants were recruited by the heads of service at each of the participating centers. Stratified analyses were performed to assess the mean score, standardized to a base of 100, of the six survey factors, together with the overall patient safety score. Results 740 completed questionnaires were received (88% of the 840 issued). The highest standardized scores were obtained in Area 1 (individual, social and cultural) with a mean value of 77 (95%CI: 76-78), and the lowest ones, in Area 3 (equipment and resources), with a mean value of 58 (95%CI: 57-59). In all areas, a greater perception of patient safety was reported by the heads of service than by other staff. Conclusions We present the first multicentre study to evaluate the culture of clinical safety in public hospital laboratories in Spain. The results obtained evidence a culture in which high regard is paid to safety, probably due to the pattern of continuous quality improvement. Nevertheless, much remains to be done, as reflected by the weaknesses detected, which identify areas and strategies for improvement. PMID:26525595