Sample records for national laboratory deployed

  1. A report on IPv6 deployment activities and issues at Sandia National Laboratories:FY2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolendino, Lawrence F.; Eldridge, John M.; Hu, Tan Chang

    2007-06-01

    Internet Protocol version 4 (IPv4) has been a mainstay of the both the Internet and corporate networks for delivering network packets to the desired destination. However, rapid proliferation of network appliances, evolution of corporate networks, and the expanding Internet has begun to stress the limitations of the protocol. Internet Protocol version 6 (IPv6) is the replacement protocol that overcomes the constraints of IPv4. As the emerging Internet network protocol, SNL needs to prepare for its eventual deployment in international, national, customer, and local networks. Additionally, the United States Office of Management and Budget has mandated that IPv6 deployment in governmentmore » network backbones occurs by 2008. This paper explores the readiness of the Sandia National Laboratories network backbone to support IPv6, the issues that must be addressed before a deployment begins, and recommends the next steps to take to comply with government mandates. The paper describes a joint work effort of the Sandia National Laboratories ASC WAN project team and members of the System Analysis & Trouble Resolution, the Communication & Network Systems, and Network System Design & Implementation Departments.« less

  2. ROBOTICS IN HAZARDOUS ENVIRONMENTS - REAL DEPLOYMENTS BY THE SAVANNAH RIVER NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriikku, E.; Tibrea, S.; Nance, T.

    The Research & Development Engineering (R&DE) section in the Savannah River National Laboratory (SRNL) engineers, integrates, tests, and supports deployment of custom robotics, systems, and tools for use in radioactive, hazardous, or inaccessible environments. Mechanical and electrical engineers, computer control professionals, specialists, machinists, welders, electricians, and mechanics adapt and integrate commercially available technology with in-house designs, to meet the needs of Savannah River Site (SRS), Department of Energy (DOE), and other governmental agency customers. This paper discusses five R&DE robotic and remote system projects.

  3. A report on FY06 IPv6 deployment activities and issues at Sandia National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolendino, Lawrence F.; Eldridge, John M.; Hu, Tan Chang

    2006-06-01

    Internet Protocol version 4 (IPv4) has been a mainstay of the both the Internet and corporate networks for delivering network packets to the desired destination. However, rapid proliferation of network appliances, evolution of corporate networks, and the expanding Internet has begun to stress the limitations of the protocol. Internet Protocol version 6 (IPv6) is the replacement protocol that overcomes the constraints of IPv4. IPv6 deployment in government network backbones has been mandated to occur by 2008. This paper explores the readiness of the Sandia National Laboratories' network backbone to support IPv6, the issues that must be addressed before a deploymentmore » begins, and recommends the next steps to take to comply with government mandates. The paper describes a joint, work effort of the Sandia National Laboratories ASC WAN project team and members of the System Analysis & Trouble Resolution and Network System Design & Implementation Departments.« less

  4. Idaho National Laboratory Research & Development Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stricker, Nicole

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and governmentmore » agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.« less

  5. Integrated Unit Deployments: Rethinking Air National Guard Fighter Mobilizations

    DTIC Science & Technology

    2016-06-01

    INTEGRATED UNIT DEPLOYMENTS: RETHINKING AIR NATIONAL GUARD FIGHTER MOBILIZATIONS BY MAJOR ANDREW P. JACOB A THESIS...This study comprises an analysis of the mobilization and deployment of Air National Guard fighter aircraft units in a search for an efficient and... mobilization . This thesis suggests that Integrated Unit Deployments will provide the balance between Air National Guard overseas deployments and

  6. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  7. Remote Systems Design & Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  8. Sandia National Laboratories: Sandia National Laboratories: News: Events

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  9. Critical components required to improve deployable laboratory biological hazards identification

    NASA Astrophysics Data System (ADS)

    Niemeyer, Debra M.

    2004-08-01

    An ever-expanding global military mission necessitates quick and accurate identification of biological hazards, whether naturally occurring or man-made. Coupled with an ever-present threat of biological attack, an expanded U.S. presence in worn-torn locations like Southwest Asia presents unique public health challenges. We must heed modern day "lessons learned" from Operation Desert Shield and the Soviet Afghanistan Campaign and guard against rapid incapacitation of troop strength from endemic disease and biological attack. To minimize readiness impacts, field hygiene is enforced, and research on better medical countermeasures such as antibiotics and vaccines continues. However, there are no preventions or remedies for all military-relevant infectious diseases or biological agents. A deployable, streamlined, self-contained diagnostic and public health surveillance laboratory capability with a reach-back communication is critical to meeting global readiness challenges. Current deployable laboratory packages comprise primarily diagnostic or environmental sample testing capabilities. Discussion will focus on critical components needed to improve existing laboratory assets, and to facilitate deployment of small, specialized packages far forward. The ideal laboratory model described will become an essential tool for the Combatant or Incident Commander to maintain force projection in the expeditionary environment.

  10. The pressing energy innovation challenge of the US National Laboratories

    NASA Astrophysics Data System (ADS)

    Anadon, Laura Diaz; Chan, Gabriel; Bin-Nun, Amitai Y.; Narayanamurti, Venkatesh

    2016-10-01

    Accelerating the development and deployment of energy technologies is a pressing challenge. Doing so will require policy reform that improves the efficacy of public research organizations and strengthens the links between public and private innovators. With their US$14 billion annual budget and unique mandates, the US National Laboratories have the potential to critically advance energy innovation, yet reviews of their performance find several areas of weak organizational design. Here, we discuss the challenges the National Laboratories face in engaging the private sector, increasing their contributions to transformative research, and developing culture and management practices to better support innovation. We also offer recommendations for how policymakers can address these challenges.

  11. Research on the Use of Robotics in Hazardous Environments at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwok, Kwan S.

    Many hazardous material handling needs exist in remote unstructured environments. Currently these operations are accomplished using personnel in direct contact with the hazards. A safe and cost effective alternative to this approach is the use of intelligent robotic systems for safe handling, packaging, transport, and even excavation of hazardous materials. The Intelligent Systems and Robotics Center of Sandia National Laboratories has developed and deployed robotic technologies for use in hazardous environments, three of which have been deployed in DOE production facilities for handling of special nuclear materials. Other systems are currently under development for packaging special nuclear materials. This papermore » presents an overview of the research activities, including five delivered systems, at %ndia National Laboratories on the use of robotics in hazardous environments.« less

  12. Sandia National Laboratories:

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  13. Sandia National Laboratories: Research: Laboratory Directed Research &

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  14. Perceptions of Individual and Family Functioning Among Deployed Female National Guard Members.

    PubMed

    Kelly, Patricia J; Cheng, An-Lin; Berkel, LaVerne A; Nilsson, Johanna

    2016-08-01

    Females currently make up 15% of U.S. military service members. Minimal attention has been paid to families of female National Guard members who have been deployed and their subsequent reintegration challenges. This cross-sectional Internet-based survey of female members of four National Guard units compared those who were and were not deployed. Instruments, guided by the variables of the Family Resilience Model, measured individual, family, and deployment-related factors. Bivariate analysis and ordinal logistic regression were done to assess differences between the groups. Of the 239 National Guard members surveyed, deployed women (n = 164) had significantly higher levels of posttraumatic stress disorder (PTSD; p < .001) and lower coping skills (p = .003) than non-deployed women (n = 75). Perceptions of overall family functioning were higher among deployed when compared with never deployed women. Results indicate community interventions that focus on strengthening coping skills of female Guard members would be useful for this population. © The Author(s) 2016.

  15. Sandia National Laboratories: News

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  16. Sandia National Laboratories: Locations

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  17. Sandia National Laboratories: Careers

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  18. Sandia National Laboratories: Mission

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  19. Sandia National Laboratories: Research

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  20. Sandia National Laboratories: Feedback

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  1. Smith Newton Vehicle Performance Evaluation – 4th Quarter 2013; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-01-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  2. FY 2009 National Renewable Energy Laboratory (NREL) Annual Report: A Year of Energy Transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2010-01-01

    This FY2009 Annual Report surveys the National Renewable Energy Laboratory's (NREL) accomplishments in renewable energy and energy efficiency research and development, commercialization and deployment of technologies, and strategic energy analysis. It offers NREL's vision and progress in building a clean, sustainable research campus and reports on community involvement.

  3. Sandia National Laboratories: National Security Missions: Defense Systems

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  4. The Development and Deployment of a Virtual Unit Operations Laboratory

    ERIC Educational Resources Information Center

    Vaidyanath, Sreeram; Williams, Jason; Hilliard, Marcus; Wiesner, Theodore

    2007-01-01

    Computer-simulated experiments offer many benefits to engineering curricula in the areas of safety, cost, and flexibility. We report our experience in developing and deploying a computer-simulated unit operations laboratory, driven by the guiding principle of maximum fidelity to the physical lab. We find that, while the up-front investment in…

  5. Sandia National Laboratories: National Security Missions: Defense Systems

    Science.gov Websites

    Accomplishments Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD Cyber & Infrastructure Security Global Security Remote Sensing & Verification Research Research Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  6. Sandia National Laboratories: Search Results

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  7. Sandia National Laboratories: Social Media

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  8. Sandia National Laboratories: News: Videos

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  9. Sandia National Laboratories: About Sandia

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  10. Sandia National Laboratories: Research: Biodefense

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  11. Sandia National Laboratories: Research: Bioscience

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  12. Post-deployment Mental Health in Reserve and National Guard Service Members: Deploying With or Without One's Unit and Deployment Preparedness.

    PubMed

    Ursano, Robert J; Wang, Jing; Fullerton, Carol S; Ramsawh, Holly; Gifford, Robert K; Russell, Dale; Cohen, Gregory H; Sampson, Laura; Galea, Sandro

    2018-01-01

    Given the greater prevalence of post-deployment mental health concerns among reservists, the higher likelihood of deploying without their regular unit, and potentially lower rates of deployment preparedness, we examined associations between deploying with or without one's regular unit (individual augmentee status, IAS), deployment preparedness, and mental health problems including post-traumatic stress disorder (PTSD), depression (MDD), and binge drinking in a nationally representative sample of Reserve Component (RC) Army and Marine-enlisted males (n = 705). A series of multivariate regressions examined the association of mental health with IAS and deployment preparedness, adjusting for demographics. To examine whether deployment preparedness varied by IAS, an IAS × deployment preparedness interaction was included. In an adjusted model, being an individual augmentee and low deployment preparedness were associated with any mental health problem (screening positive for PTSD, MDD, binge drinking, or any combination of the three). There was a significant IAS × deployment preparedness interaction. Mental health problems did not vary by preparedness among individual augmentees. Participants deploying with regular units with low-medium preparedness had greater risk for mental health problems (odds ratio [OR] = 3.69, 95% confidence interval [CI] = 1.78-7.62 and OR = 2.29, 95% CI = 1.12-4.71), than those with high preparedness. RC-enlisted male personnel who deployed without their regular unit were five times more likely to have a mental health problem, and were 61% more likely to report binge drinking. Additionally, those with lower levels of deployment preparedness were up to three times more likely to have a mental health problem and up to six times more likely to report PTSD. The current investigation found that both IAS and deployment preparedness were associated with negative mental health outcomes in a large representative sample of previously deployed RC

  13. Children of National Guard troops: a pilot study of deployment, patriotism, and media coverage.

    PubMed

    Pfefferbaum, Betty; Jeon-Slaughter, Haekyung; Jacobs, Anne K; Houston, J Brian

    2013-01-01

    This exploratory pilot study examined the psychosocial effects of the war in Iraq, patriotism, and attention to war-related media coverage in the children of National Guard troops across phases of parental deployment--pre deployment, during deployment, and post deployment. Participants included 11 children, ages 8 to 18 years. Data collected in each deployment phase included demographics, the Behavior Assessment System for Children, (Second Edition, BASC-2), patriotism (national identity, uncritical patriotism, and constructive patriotism), and attention to war-related media coverage. School problems and emotional symptoms were significantly higher during deployment than post deployment. National identity and constructive patriotism increased and uncritical patriotism decreased post deployment from levels during deployment. Uncritical patriotism correlated positively with emotional symptoms and correlated negatively with personal adjustment. Constructive patriotism correlated positively with emotional symptoms and with internalizing problems. Greater attention to war-related media coverage correlated with uncritical patriotism, and attention to internet coverage correlated with constructive patriotism. Attention to media coverage was linked to greater emotional and behavioral problems and was negatively correlated with personal adjustment. The results of this pilot study identified relationships of both patriotism and attention to media coverage with children's emotional and behavioral status and personal adjustment suggesting areas for future investigation.

  14. White Paper on Dish Stirling Technology: Path Toward Commercial Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andraka, Charles E.; Stechel, Ellen; Becker, Peter

    2016-07-01

    Dish Stirling energy systems have been developed for distributed and large-scale utility deployment. This report summarizes the state of the technology in a joint project between Stirling Energy Systems, Sandia National Laboratories, and the Department of Energy in 2011. It then lays out a feasible path to large scale deployment, including development needs and anticipated cost reduction paths that will make a viable deployment product.

  15. Children of the U.S. National Guard: Making Meaning and Responding to Parental Deployment

    ERIC Educational Resources Information Center

    Thompson, David E.; Baptist, Joyce; Miller, Bryant; Henry, Una

    2017-01-01

    This qualitative study explored how 24 youths' behaviors during deployment were influenced by their perceptions of their non-deployed parents. Interviews were conducted with youths of previously deployed National Guard parents. Analysis of interviews suggests that the youths' interactions with their non-deployed parents strongly influence their…

  16. Sandia National Laboratories: Visiting Research Scholars

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  17. Sandia National Laboratories: News: Image Gallery

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  18. Sandia National Laboratories: Privacy and Security

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  19. Sandia National Laboratories: Sandia Digital Media

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  20. Sandia National Laboratories: Careers: Special Programs

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  1. Sandia National Laboratories: Cooperative Monitoring Center

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  2. Sandia National Laboratories: Integrated Military Systems

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  3. Sandia National Laboratories: News: Image Gallery

    Science.gov Websites

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  4. Safety | Argonne National Laboratory

    Science.gov Websites

    laboratory's ongoing effort to provide a safe and productive environment for employees, users, other site Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Environment Careers Education Community Diversity Directory Energy Environment National Security User Facilities

  5. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators,more » hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and

  6. About the Frederick National Laboratory for Cancer Research | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory is a Federally Funded Research and Development Center (FFRDC) sponsored by the National Cancer Institute (NCI) and currently operated by Leidos Biomedical Research, Inc. The laboratory addresses some of the most urge

  7. Deployment of Phytotechnology in the 317/319 Area at Argonne National Laboratory-East, Innovative Technology Evaluation Report

    EPA Science Inventory

    Hybrid poplar and hybrid willow trees were planted for several environmental objectives at the Argonne National Laboratory - East, near Chicago, IL. Some trees were planted to clean TCE and other solvents from soil, some were planted to control surface water flow on a landfill, a...

  8. Insights: Future of the national laboratories. National Renewable Energy Laboratory. [The future of the National Renewable Energy (Sources) Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, D.

    Psychologists tell us that people are born with certain personality traits, such as shyness or boldness, which their environment can encourage, subdue, or even alter. National labs have somewhat similar characteristics. They were created for particular missions and staffed by people who built organizations in which those missions could be fulfilled. As a result, the Department of Energy's (DOE) national labs are among the world's finest repositories of technology and scientific talent, especially in the fields of defense, nuclear weapons, nuclear power, and basic energy. Sunderman, director of the National Renewable Energy Laboratory, discusses the history of the laboratory andmore » its place in the future, both in terms of technologies and nurturing.« less

  9. Sandia National Laboratories: Employee & Retiree Resources: Emergency

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  10. Sandia National Laboratories: News: Publications: Environmental Reports

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  11. Sandia National Laboratories: About Sandia: Environmental Responsibility

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  12. Sandia National Laboratories: About Sandia: Community Involvement

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  13. Sandia National Laboratories: News: Publications: HPC Reports

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  14. Sandia National Laboratories: Community Involvement: Volunteer Programs

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  15. Sandia National Laboratories: News: Search Sandia Publications

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  16. Sandia National Laboratories: Microsystems Science & Technology Center

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  17. Sandia National Laboratories: About Sandia: Community Involvement:

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  18. Sandia National Laboratories: News: Publications: Strategic Plan

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  19. Sandia National Laboratories: Research: Research Foundations: Nanodevices

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  20. Sandia National Laboratories: Employee & Retiree Resources: Technical

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  1. Sandia National Laboratories: Z Pulsed Power Facility

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  2. Sandia National Laboratories: Cooperative Research and Development

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  3. Sandia National Laboratories: Advanced Simulation and Computing

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  4. Sandia National Laboratories: News: Publications: Annual Report

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  5. Frederick National Laboratory Collaboration Success Stories | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory, that helps fine-tune nano

  6. Working paper : national costs of the metropolitan ITS infrastructure : updated with 2004 deployment data

    DOT National Transportation Integrated Search

    The purpose of this report, "Working Paper National Costs of the Metropolitan ITS infrastructure: Updated with 2004 Deployment Data," is to update the estimates of the costs remaining to deploy Intelligent Transportation Systems (ITS) infrastructure ...

  7. Working paper : national costs of the metropolitan ITS infrastructure : updated with 2005 deployment data

    DOT National Transportation Integrated Search

    2006-07-01

    The purpose of this report, "Working Paper National Costs of the Metropolitan ITS Infrastructure: Updated with 2005 Deployment Data," is to update the estimates of the costs remaining to fully deploy Intelligent Transportation Systems (ITS) infrastru...

  8. Contracting with the Frederick National Laboratory | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Our Acquisitions Directorate supports the national laboratory with high quality products and services to achieve its national mission. In addition to engaging large subcontractors, we are also committed to working with small businesses, minority- and

  9. Gender differences in the effects of deployment-related stressors and pre-deployment risk factors on the development of PTSD symptoms in National Guard Soldiers deployed to Iraq and Afghanistan.

    PubMed

    Polusny, Melissa A; Kumpula, Mandy J; Meis, Laura A; Erbes, Christopher R; Arbisi, Paul A; Murdoch, Maureen; Thuras, Paul; Kehle-Forbes, Shannon M; Johnson, Alexandria K

    2014-02-01

    Although women in the military are exposed to combat and its aftermath, little is known about whether combat as well as pre-deployment risk/protective factors differentially predict post-deployment PTSD symptoms among women compared to men. The current study assesses the influence of combat-related stressors and pre-deployment risk/protective factors on women's risk of developing PTSD symptoms following deployment relative to men's risk. Participants were 801 US National Guard Soldiers (712 men, 89 women) deployed to Iraq or Afghanistan who completed measures of potential risk/protective factors and PTSD symptoms one month before deployment (Time 1) and measures of deployment-related stressors and PTSD symptoms about 2-3 months after returning from deployment (Time 2). Men reported greater exposure to combat situations than women, while women reported greater sexual stressors during deployment than men. Exposure to the aftermath of combat (e.g., witnessing injured/dying people) did not differ by gender. At Time 2, women reported more severe PTSD symptoms and higher rates of probable PTSD than did men. Gender remained a predictor of higher PTSD symptoms after accounting for pre-deployment symptoms, prior interpersonal victimization, and combat related stressors. Gender moderated the association between several risk factors (combat-related stressors, prior interpersonal victimization, lack of unit support and pre-deployment concerns about life/family disruptions) and post-deployment PTSD symptoms. Elevated PTSD symptoms among female service members were not explained simply by gender differences in pre-deployment or deployment-related risk factors. Combat related stressors, prior interpersonal victimization, and pre-deployment concerns about life and family disruptions during deployment were differentially associated with greater post-deployment PTSD symptoms for women than men. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. An Integrated RFID and Barcode Tagged Item Inventory System for Deployment at New Brunswick Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younkin, James R; Kuhn, Michael J; Gradle, Colleen

    New Brunswick Laboratory (NBL) has a numerous inventory containing thousands of plutonium and uranium certified reference materials. The current manual inventory process is well established but is a lengthy process which requires significant oversight and double checking to ensure correctness. Oak Ridge National Laboratory has worked with NBL to develop and deploy a new inventory system which utilizes handheld computers with barcode scanners and radio frequency identification (RFID) readers termed the Tagged Item Inventory System (TIIS). Certified reference materials are identified by labels which incorporate RFID tags and barcodes. The label printing process and RFID tag association process are integratedmore » into the main desktop software application. Software on the handheld computers syncs with software on designated desktop machines and the NBL inventory database to provide a seamless inventory process. This process includes: 1) identifying items to be inventoried, 2) downloading the current inventory information to the handheld computer, 3) using the handheld to read item and location labels, and 4) syncing the handheld computer with a designated desktop machine to analyze the results, print reports, etc. The security of this inventory software has been a major concern. Designated roles linked to authenticated logins are used to control access to the desktop software while password protection and badge verification are used to control access to the handheld computers. The overall system design and deployment at NBL will be presented. The performance of the system will also be discussed with respect to a small piece of the overall inventory. Future work includes performing a full inventory at NBL with the Tagged Item Inventory System and comparing performance, cost, and radiation exposures to the current manual inventory process.« less

  11. Sandia National Laboratories: Working with Sandia: Small Business

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  12. Sandia National Laboratories: News: Media Resources: Media Contacts

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  13. Sandia National Laboratories: Employee & Retiree Resources: Remote Access

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  14. Secondary standards laboratories for ionizing radiation calibrations: The national laboratory interests

    NASA Astrophysics Data System (ADS)

    Roberson, P. I.; Campbell, G. W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary.

  15. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge:

    Science.gov Websites

    Accomplishments Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD Cyber & Infrastructure Security Global Security Remote Sensing & Verification Research Research Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  16. Facilities | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Research Facilities Advanced Powertrain Research Facility Center for Transportation Research Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Materials Engineering Research Facility

  17. Prospective risk factors for new-onset post-traumatic stress disorder in National Guard soldiers deployed to Iraq.

    PubMed

    Polusny, M A; Erbes, C R; Murdoch, M; Arbisi, P A; Thuras, P; Rath, M B

    2011-04-01

    National Guard troops are at increased risk for post-traumatic stress disorder (PTSD); however, little is known about risk and resilience in this population. The Readiness and Resilience in National Guard Soldiers Study is a prospective, longitudinal investigation of 522 Army National Guard troops deployed to Iraq from March 2006 to July 2007. Participants completed measures of PTSD symptoms and potential risk/protective factors 1 month before deployment. Of these, 81% (n=424) completed measures of PTSD, deployment stressor exposure and post-deployment outcomes 2-3 months after returning from Iraq. New onset of probable PTSD 'diagnosis' was measured by the PTSD Checklist - Military (PCL-M). Independent predictors of new-onset probable PTSD were identified using hierarchical logistic regression analyses. At baseline prior to deployment, 3.7% had probable PTSD. Among soldiers without PTSD symptoms at baseline, 13.8% reported post-deployment new-onset probable PTSD. Hierarchical logistic regression adjusted for gender, age, race/ethnicity and military rank showed that reporting more stressors prior to deployment predicted new-onset probable PTSD [odds ratio (OR) 2.20] as did feeling less prepared for deployment (OR 0.58). After accounting for pre-deployment factors, new-onset probable PTSD was predicted by exposure to combat (OR 2.19) and to combat's aftermath (OR 1.62). Reporting more stressful life events after deployment (OR 1.96) was associated with increased odds of new-onset probable PTSD, while post-deployment social support (OR 0.31) was a significant protective factor in the etiology of PTSD. Combat exposure may be unavoidable in military service members, but other vulnerability and protective factors also predict PTSD and could be targets for prevention strategies.

  18. Cultivating National Leaders in an Elite School: Deploying the Transnational in the National Interest

    ERIC Educational Resources Information Center

    Koh, Aaron; Kenway, Jane

    2012-01-01

    This paper explores the leadership cultivation practices of one elite school in Singapore. We point to the links between the habitus of the Singapore state and that of the school showing how different components of the school's leadership curriculum deploy the transnational in order to produce leaders for the nation. In essence, we argue that the…

  19. Scientific Openness and National Security at the National Laboratories

    NASA Astrophysics Data System (ADS)

    McTague, John

    2000-04-01

    The possible loss to the People's Republic of China of important U.S. nuclear-weapons-related information has aroused concern about interactions of scientists employed by the national laboratories with foreign nationals. As a result, the National Academies assembled a committee to examine the roles of the national laboratories, the contribution of foreign interactions to the fulfillment of those roles, the risks and benefits of scientific openness in this context, and the merits and liabilities of the specific policies being implemented or proposed with respect to contacts with foreign nationals. The committee concluded that there are many aspects of the work at the laboratories that benefit from or even demand the opportunity for foreign interactions. The committee recommended five principles for guiding policy: (1) Maintain balance. Policy governing international dialogue by laboratory staff should seek to encourage international engagement in some areas, while tightly controlling it in others. (2) Educate staff. Security procedures should be clear, easy to follow, and serve an understandable purpose. (3) Streamline procedures. Good science is compatible with good security if there is intelligent line management both at the labs and in Washington, which applies effective tools for security in a sensible fashion. (4) Focus efforts. DOE should focus its efforts governing tightened security for information. The greatest attention should obviously be provided to the protection of classified information by appropriate physical and cybersecurity measures, and by personnel procedures and training. (5) Beware of prejudice against foreigners. Over the past half-century foreign-born individuals have contributed broadly and profoundly to national security through their work at the national laboratories.

  20. Leveraging Cababilities of the National Laboratories and Academia to Understand the Properties of Warm Dense MgSiO3

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Townsend, Joshua P.; Shulenburger, Luke; Seagle, Christopher T.; Furnish, Michael D.; Fei, Yingwei

    2017-06-01

    For the past seven years, the Z Fundamental Science program has fostered collaboration between scientists at the national laboratories and academic research groups to utilize the Z-machine to explore properties of matter in extreme conditions. A recent example of this involves a collaboration between the Carnegie institution of Washington and Sandia to determine the properties of warm dense MgSiO3 by performing shock experiments using the Z-machine. To reach the higher densities desired, bridgmanite samples are being fabricated at Carnegie using multi-anvil presses. We will describe the preparations under way for these experiments, including pre-shot ab-initio calculations of the Hugoniot and the deployment of dual-layer flyer plates that allow for the measurement of sound velocities along the Hugoniot. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. A scope of the problem: Post-deployment reintegration challenges in a National Guard Unit.

    PubMed

    Wilcox, Sherrie L; Oh, Hyunsung; Redmond, Sarah A; Chicas, Joseph; Hassan, Anthony M; Lee, Pey-Jiuan; Ell, Kathleen

    2015-01-01

    More Reserve and Guard members have been activated in the past few years than in any other time in history. In addition to the high rates of psychological and behavioral challenges among military personnel, there are other equally important post-deployment reintegration challenges. Post-deployment reintegration challenges are particularly important to Reserve and Guard members, who transition rapidly from civilian-military-civilian. This study aims to describe the scope of challenges that a battalion of National Guard members (NGM) report experiencing after returning from a one-year deployment to Iraq. This article reports data from a sample of 126 NGM who recently returned from a one-year deployment to Iraq. The scope of post-deployment problems at baseline, 3- and 6-month post-deployment are presented. Overall, the rates of post-deployment psychological and behavioral problems were elevated upon returning from deployment and remained fairly constant for up to 6 months post-deployment. Approximately 30% of respondents were unsatisfied with their relationship and upwards of 30% reported family reintegration challenges. Comparisons with similar research and implications for prevention and improvement of post-deployment quality of life are addressed.

  2. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  3. Quantifying and Understanding Effects from Wildlife, Radar, and Public Engagement on Future Wind Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tegen, Suzanne

    This presentation provides an overview of findings from a report published in 2016 by researchers at the National Renewable Energy Laboratory, An Initial Evaluation of Siting Considerations on Current and Future Wind Deployment. The presentation covers the background for research, the Energy Department's Wind Vision, research methods, siting considerations, the wind project deployment process, and costs associated with siting considerations.

  4. 915-MHz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, M.; Bartholomew, M. J.; Giangrande, S.

    When considering the amount of shortwave radiation incident on a photovoltaic solar array and, therefore, the amount and stability of the energy output from the system, clouds represent the greatest source of short-term (i.e., scale of minutes to hours) variability through scattering and reflection of incoming solar radiation. Providing estimates of this short-term variability is important for determining and regulating the output from large solar arrays as they connect with the larger power infrastructure. In support of the installation of a 37-MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study of the impacts of clouds onmore » the output of the solar array has been undertaken. The study emphasis is on predicting the change in surface solar radiation resulting from the observed/forecast cloud field on a 5-minute time scale. At these time scales, advection of cloud elements over the solar array is of particular importance. As part of the BNL Aerosol Life Cycle Intensive Operational Period (IOP), a 915-MHz Radar Wind Profiler (RWP) was deployed to determine the profile of low-level horizontal winds and the depth of the planetary boundary layer. The initial deployment mission of the 915-MHz RWP for cloud forecasting has been expanded the deployment to provide horizontal wind measurements for estimating and constraining cloud advection speeds. A secondary focus is on the observation of dynamics and microphysics of precipitation during cold season/winter storms on Long Island. In total, the profiler was deployed at BNL for 1 year from May 2011 through May 2012.« less

  5. 915-Mhz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, M.; Bartholomew, M. J.; Giangrande, S.

    When considering the amount of shortwave radiation incident on a photovoltaic solar array and, therefore, the amount and stability of the energy output from the system, clouds represent the greatest source of short-term (i.e., scale of minutes to hours) variability through scattering and reflection of incoming solar radiation. Providing estimates of this short-term variability is important for determining and regulating the output from large solar arrays as they connect with the larger power infrastructure. In support of the installation of a 37-MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study of the impacts of clouds onmore » the output of the solar array has been undertaken. The study emphasis is on predicting the change in surface solar radiation resulting from the observed/forecast cloud field on a 5-minute time scale. At these time scales, advection of cloud elements over the solar array is of particular importance. As part of the BNL Aerosol Life Cycle Intensive Operational Period (IOP), a 915-MHz Radar Wind Profiler (RWP) was deployed to determine the profile of low-level horizontal winds and the depth of the planetary boundary layer. The initial deployment mission of the 915-MHz RWP for cloud forecasting has been expanded the deployment to provide horizontal wind measurements for estimating and constraining cloud advection speeds. A secondary focus is on the observation of dynamics and microphysics of precipitation during cold season/winter storms on Long Island. In total, the profiler was deployed at BNL for 1 year from May 2011 through May 2012.« less

  6. Sandia National Laboratories: Physical, Chemical, and Nano Sciences

    Science.gov Websites

    Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Honey I shrunk the circuit CINT Virtual Tour Center for Integrated Nanotechnologies Honey I shrunk the circuit Ion Beam Lab Virtual Tour: Coming Soon! Honey I shrunk the circuit CINT 10 Year Anniversary Video

  7. Sandia National Laboratories: Hydrogen Risk Assessment Models toolkit now

    Science.gov Websites

    Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD Cyber & Infrastructure Security Global Security Remote Sensing & Verification Research Research Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  8. Establishment of National Laboratory Standards in Public and Private Hospital Laboratories

    PubMed Central

    ANJARANI, Soghra; SAFADEL, Nooshafarin; DAHIM, Parisa; AMINI, Rana; MAHDAVI, Saeed; MIRAB SAMIEE, Siamak

    2013-01-01

    In September 2007 national standard manual was finalized and officially announced as the minimal quality requirements for all medical laboratories in the country. Apart from auditing laboratories, Reference Health Laboratory has performed benchmarking auditing of medical laboratory network (surveys) in provinces. 12th benchmarks performed in Tehran and Alborz provinces, Iran in 2010 in three stages. We tried to compare different processes, their quality and accordance with national standard measures between public and private hospital laboratories. The assessment tool was a standardized checklist consists of 164 questions. Analyzing process show although in most cases implementing the standard requirements are more prominent in private laboratories, there is still a long way to complete fulfillment of requirements, and it takes a lot of effort. Differences between laboratories in public and private sectors especially in laboratory personnel and management process are significant. Probably lack of motivation, plays a key role in obtaining less desirable results in laboratories in public sectors. PMID:23514840

  9. Case study: design and implementation of training for scientists deploying to Ebola diagnostic field laboratories in Sierra Leone: October 2014 to February 2016

    PubMed Central

    Lewis, Suzanna M.; Lansley, Amber; Fraser, Sara; Shieber, Clare; Shah, Sonal; Semper, Amanda; Bailey, Daniel; Busuttil, Jason; Evans, Liz; Carroll, Miles W.; Silman, Nigel J.; Brooks, Tim; Shallcross, Jane A.

    2017-01-01

    As part of the UK response to the 2013–2016 Ebola virus disease (EVD) epidemic in West Africa, Public Health England (PHE) were tasked with establishing three field Ebola virus (EBOV) diagnostic laboratories in Sierra Leone by the UK Department for International Development (DFID). These provided diagnostic support to the Ebola Treatment Centre (ETC) facilities located in Kerry Town, Makeni and Port Loko. The Novel and Dangerous Pathogens (NADP) Training group at PHE, Porton Down, designed and implemented a pre-deployment Ebola diagnostic laboratory training programme for UK volunteer scientists being deployed to the PHE EVD laboratories. Here, we describe the training, workflow and capabilities of these field laboratories for use in response to disease epidemics and in epidemiological surveillance. We discuss the training outcomes, the laboratory outputs, lessons learned and the legacy value of the support provided. We hope this information will assist in the recruitment and training of staff for future responses and in the design and implementation of rapid deployment diagnostic field laboratories for future outbreaks of high consequence pathogens. This article is part of the themed issue ‘The 2013–2016 West African Ebola epidemic: data, decision-making and disease control’. PMID:28396470

  10. Progress toward establishing a US national laboratory on the International Space Station

    NASA Astrophysics Data System (ADS)

    Uhran, Mark L.

    2010-01-01

    The International Space Station (ISS) is rapidly approaching the long-awaited completion of assembly. All United States (US) core elements have been integrated and tested on-orbit and the principle elements of the European and Japanese laboratories were successfully deployed in 2008. The fully envisioned configuration is on schedule to be completed as planned by the end of US government fiscal year 2010. Section 507 of the NASA Authorization Act of 2005 designated the US segment of the ISS as a " national laboratory", thereby opening up its use to other US government agencies, US private firms and US non-profit institutions. This paper reports on progress toward identifying and entering into agreements with entities outside of NASA that plan to use the ISS in the post-assembly timeframe. The original 1984 vision of a robust, multi-mission space station serving as a platform for the advancement of US science, technology and industry will soon be achieved.

  11. Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Michael P; Giangrande, Scott E; Bartholomew, Mary Jane

    The Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) [http://www.arm.gov/campaigns/osc2013rwpcf] campaign was scheduled to take place from 15 July 2013 through 15 July 2015 (or until shipped for the next U.S. Department of Energy Atmospheric Radiation Measurement [ARM] Climate Research Facility first Mobile Facility [AMF1] deployment). The campaign involved the deployment of the AMF1 Scintec 915 MHz Radar Wind Profiler (RWP) at BNL, in conjunction with several other ARM, BNL and National Weather Service (NWS) instruments. The two main scientific foci of the campaign were: 1) To provide profiles of the horizontal wind to be used tomore » test and validate short-term cloud advection forecasts for solar-energy applications and 2) to provide vertical profiling capabilities for the study of dynamics (i.e., vertical velocity) and hydrometeors in winter storms. This campaign was a serendipitous opportunity that arose following the deployment of the RWP at the Two-Column Aerosol Project (TCAP) campaign in Cape Cod, Massachusetts and restriction from participation in the Green Ocean Amazon 2014/15 (GoAmazon 2014/15) campaign due to radio-frequency allocation restriction for international deployments. The RWP arrived at BNL in the fall of 2013, but deployment was delayed until fall of 2014 as work/safety planning and site preparation were completed. The RWP further encountered multiple electrical failures, which eventually required several shipments of instrument power supplies and the final amplifier to the vendor to complete repairs. Data collection began in late January 2015. The operational modes of the RWP were changed such that in addition to collecting traditional profiles of the horizontal wind, a vertically pointing mode was also included for the purpose of precipitation sensing and estimation of vertical velocities. The RWP operated well until the end of the campaign in July 2015 and collected observations for more than 20

  12. Sandia National Laboratories: National Security Missions: Nuclear Weapons:

    Science.gov Websites

    Safety & Security Sandia National Laboratories Exceptional service in the national interest & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Twitter YouTube Flickr RSS Top Nuclear Weapons About Nuclear Weapons at Sandia Safety & Security

  13. Frederick National Laboratory's Contribution to ATOM | Frederick National Laboratory for Cancer Research

    Cancer.gov

    As a founding member organization of ATOM, the Frederick National Laboratory will contribute scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive model

  14. Deployment cycle stressors and post-traumatic stress symptoms in Army National Guard women: the mediating effect of resilience.

    PubMed

    Wooten, Nikki R

    2012-01-01

    This study examined the associations between deployment cycle stressors, post-traumatic stress symptoms (PTSS), and resilience in Army National Guard (ARNG) women deployed to Operations Enduring Freedom and Iraqi Freedom. Resilience was also tested as a mediator. Hierarchical linear regression indicated that deployment and post-deployment stressors were positively associated, and resilience was negatively associated with PTSS. Resilience fully mediated the association between post-deployment stressors and PTSS. Findings suggest assessing deployment and post-deployment stressors in ARNG women may be helpful in identifying those at risk for severe PTSS; and highlight the potential of individual-level resilient characteristics in mitigating the adverse impact of post-deployment stressors.

  15. Biomedical engineering at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Zanner, Mary Ann

    1994-12-01

    The potential exists to reduce or control some aspects of the U.S. health care expenditure without compromising health care delivery by developing carefully selected technologies which impact favorably on the health care system. A focused effort to develop such technologies is underway at Sandia National Laboratories. As a DOE National Laboratory, Sandia possesses a wealth of engineering and scientific expertise that can be readily applied to this critical national need. Appropriate mechanisms currently exist to allow transfer of technology from the laboratory to the private sector. Sandia's Biomedical Engineering Initiative addresses the development of properly evaluated, cost-effective medical technologies through team collaborations with the medical community. Technology development is subjected to certain criteria including wide applicability, earlier diagnoses, increased efficiency, cost-effectiveness and dual-use. Examples of Sandia's medical technologies include a noninvasive blood glucose sensor, computer aided mammographic screening, noninvasive fetal oximetry and blood gas measurement, burn diagnostics and laser debridement, telerobotics and ultrasonic scanning for prosthetic devices. Sandia National Laboratories has the potential to aid in directing medical technology development efforts which emphasize health care needs, earlier diagnosis, cost containment and improvement of the quality of life.

  16. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, S.

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure successmore » in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.« less

  17. National Exposure Research Laboratory

    EPA Pesticide Factsheets

    The Ecosystems Research Division of EPA’s National Exposure Research Laboratory, conducts research on organic and inorganic chemicals, greenhouse gas biogeochemical cycles, and land use perturbations that create stressor exposures and potentia risk

  18. LDRD Highlights at the National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alayat, R. A.

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then,more » this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.« less

  19. Sandia National Laboratories: What Sandia Looks For In Our Suppliers

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  20. Sandia National Laboratories: Working with Sandia: What Does Sandia Buy?

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  1. Sandia National Laboratories: Sandia inks pact with Fire and Rescue

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  2. Newberry Seismic Deployment Fieldwork Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Templeton, D C

    2012-03-21

    This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquakemore » detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.« less

  3. Community | Argonne National Laboratory

    Science.gov Websites

    occupies 1,500 wooded acres 25 miles southwest of Chicago in DuPage County, Ill. Our highly collaborative Experience at Argonne National Laboratory Chicago Tribune New UChicago Program Teaches Data Science for

  4. BROOKHAVEN NATIONAL LABORATORY WILDLIFE MANAGEMENT PLAN.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NAIDU,J.R.

    2002-10-22

    The purpose of the Wildlife Management Plan (WMP) is to promote stewardship of the natural resources found at the Brookhaven National Laboratory (BNL), and to integrate their protection with pursuit of the Laboratory's mission.

  5. National Center for Photovoltaics at NREL

    ScienceCinema

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2018-06-08

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  6. Power source evaluation capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  7. Hood College, Frederick National Laboratory Will Renew Popular Scientific Symposium | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Hood College and the Frederick National Laboratory for Cancer Research have partnered to cohost an annual scientific symposium in the tradition of the landmark Oncogene Meeting, a national fixture in Frederick for more than 20 year

  8. Privacy Policy | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The privacy of our users is of utmost importance to Frederick National Laboratory. The policy outlined below establishes how Frederick National Laboratory will use the information we gather about you from your visit to our website. We may coll

  9. Assessment of a Post-deployment Yellow Ribbon Reintegration Program for National Guard Members and Supporters

    PubMed Central

    Scherrer, Jeffrey F.; Widner, Greg; Shroff, Manan; Matthieu, Monica; Balan, Sundari; van den Berk-Clark, Carissa; Price, Rumi Kato

    2014-01-01

    The Yellow Ribbon Reintegration Program (YRRP) was created to meet the needs of National Guard members and their families throughout the deployment cycle. This study examined the perceived utility of the YRRP’s delivery of information and assistance during the post-deployment reintegration period by National Guard members and accompanying supporters who were mostly spouses. Over 22 months, from 10 YRRP events, 683 service members and 411 supporters completed questionnaires immediately after the YRRP. We analyzed questions on information and help provision, timeliness and concerns related to education, employment, legal, family, and health. Service members and supporters most often endorsed education needs being met (76.8% and 78.2% respectively) and were least likely to endorse legal needs being met (63.5% and 60% respectively). Significantly more supporters than service members (p < 0.0001) reported that the YRRP was the first time they learned of available services across all domains. Service members were significantly more likely than supporters to report concerns about education, employment, and health; while supporters were significantly more likely to report concerns about family. Results suggest the YRRP fills gaps in supporter knowledge and provides needed information and resources to most National Guard families 2-4 months after a deployment. PMID:25373071

  10. News | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Home Learning solvers Home Learning Center Undergraduates Graduates Faculty Partners News & Events News & Events -4114 Contact Us Argonne Educational Programs is committed to providing a learning environment that

  11. National Water Quality Laboratory - A Profile

    USGS Publications Warehouse

    Raese, Jon W.

    2001-01-01

    The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) is a full-service laboratory that specializes in environmental analytical chemistry. The NWQL's primary mission is to support USGS programs requiring environmental analyses that provide consistent methodology for national assessment and trends analysis. The NWQL provides the following: high-quality chemical data; consistent, published, state-of-the-art methodology; extremely low-detection levels; high-volume capability; biological unit for identifying benthic invertebrates; quality assurance for determining long-term water-quality trends; and a professional staff.

  12. Development of the HERMIES III mobile robot research testbed at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manges, W.W.; Hamel, W.R.; Weisbin, C.R.

    1988-01-01

    The latest robot in the Hostile Environment Robotic Machine Intelligence Experiment Series (HERMIES) is now under development at the Center for Engineering Systems Advanced Research (CESAR) in the Oak Ridge National Laboratory. The HERMIES III robot incorporates a larger than human size 7-degree-of-freedom manipulator mounted on a 2-degree-of-freedom mobile platform including a variety of sensors and computers. The deployment of this robot represents a significant increase in research capabilities for the CESAR laboratory. The initial on-board computer capacity of the robot exceeds that of 20 Vax 11/780s. The navigation and vision algorithms under development make extensive use of the on-boardmore » NCUBE hypercube computer while the sensors are interfaced through five VME computers running the OS-9 real-time, multitasking operating system. This paper describes the motivation, key issues, and detailed design trade-offs of implementing the first phase (basic functionality) of the HERMIES III robot. 10 refs., 7 figs.« less

  13. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov Websites

    ; Security Weapons Science & Technology Defense Systems & Assessments About Defense Systems & ; Development Technology Deployment Centers Working With Sandia Working With Sandia Prospective Suppliers What Information Construction & Facilities Contract Audit Sandia's Economic Impact Licensing & Technology

  14. Biosafety Practices and Emergency Response at the Idaho National Laboratory and Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank F. Roberto; Dina M. Matz

    2008-03-01

    Strict federal regulations govern the possession, use, and transfer of pathogens and toxins with potential to cause harm to the public, either through accidental or deliberate means. Laboratories registered through either the Centers for Disease Control and Prevention (CDC), the U.S. Dept. of Agriculture (USDA), or both, must prepare biosafety, security, and incident response plans, conduct drills or exercises on an annual basis, and update plans accordingly. At the Idaho National Laboratory (INL), biosafety, laboratory, and emergency management staff have been working together for 2 years to satisfy federal and DOE/NNSA requirements. This has been done through the establishment ofmore » plans, training, tabletop and walk-through exercises and drills, and coordination with local and regional emergency response personnel. Responding to the release of infectious agents or toxins is challenging, but through familiarization with the nature of the hazardous biological substances or organisms, and integration with laboratory-wide emergency response procedures, credible scenarios are being used to evaluate our ability to protect workers, the public, and the environment from agents we must work with to provide for national biodefense.« less

  15. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    PubMed

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  16. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas

    PubMed Central

    Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community. PMID:27559843

  17. Small Cube Satellite Deploy

    NASA Image and Video Library

    2013-11-19

    ISS038-E-003874 (19 Nov. 2013) --- Three nanosatellites, known as Cubesats, are deployed from a Small Satellite Orbital Deployer (SSOD) attached to the Kibo laboratory's robotic arm at 7:10 a.m. (EST) on Nov. 19, 2013. Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, monitored the satellite deployment while operating the Japanese robotic arm from inside Kibo. The Cubesats were delivered to the International Space Station Aug. 9, aboard Japan's fourth H-II Transfer Vehicle, Kounotori-4.

  18. Posttraumatic Stress Symptoms Among National Guard Soldiers Deployed to Iraq: Associations with Parenting Behaviors and Couple Adjustment

    PubMed Central

    Gewirtz, Abigail H.; Polusny, Melissa A.; DeGarmo, David S.; Khaylis, Anna; Erbes, Christopher R.

    2011-01-01

    Objective This article reports findings from a one-year longitudinal study examining the impact of change in PTSD symptoms following combat deployment on National Guard soldiers’ perceived parenting, and couple adjustment one year following return from Iraq. Method Participants were 468 Army National Guard fathers from a Brigade Combat Team (mean age 36 years; median deployment length 16 months; 89% European American, 5% African American, 6% Hispanic American). Participants completed an in-theater survey one month before returning home from OIF deployment (Time 1), and again, one year post-deployment (Time 2). The PTSD Checklist-Military Version (PCL-M; Weathers, Litz, Herman, Huska, & Keane, 1993) was gathered at both times, and two items assessing social support were gathered at baseline only. At Time 2, participants also completed self-report measures of parenting (Alabama Parenting Questionnaire—Short Form; Elgar, Waschbusch, Dadds, & Sigvaldason, 2007), couple adjustment (Dyadic Adjustment Scale-7; Sharpley & Rogers, 1984; Spanier, 1976), parent-child relationship quality (4 items from the Social Adjustment Scale-Self Report; Weissman & Bothwell, 1976), alcohol use (Alcohol Use Disorders Identification Test; Babor, Higgins-Biddle, Saunders, & Monteiro, 2001), and items assessing injuries sustained while deployed. Results Structural equation modeling analyses showed that increases in PTSD symptoms were associated with poorer couple adjustment and greater perceived parenting challenges at Time 2 (both at p<.001). Furthermore, PTSD symptoms predicted parenting challenges independent of their impact on couple adjustment. Conclusions Findings highlight the importance of investigating and intervening to support parenting and couple adjustment among combat-affected National Guard families. PMID:20873896

  19. A layered approach to technology transfer of AVIRIS between Earth Search Sciences, Inc. and the Idaho National Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Ferguson, James S.; Ferguson, Joanne E.; Peel, John, III; Vance, Larry

    1995-01-01

    Since initial contact between Earth Search Sciences, Inc. (ESSI) and the Idaho National Engineering Laboratory (INEL) in February, 1994, at least seven proposals have been submitted in response to a variety of solicitations to commercialize and improve the AVIRIS instrument. These proposals, matching ESSI's unique position with respect to agreements with the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) to utilize, miniaturize, and commercialize the AVIRIS instrument and platform, are combined with the applied engineering of the INEL. Teaming ESSI, NASA/JPL, and INEL with diverse industrial partners has strengthened the respective proposals. These efforts carefully structure the overall project plans to ensure the development, demonstration, and deployment of this concept to the national and international arenas. The objectives of these efforts include: (1) developing a miniaturized commercial, real-time, cost effective version of the AVIRIS instrument; (2) identifying multiple users for AVIRIS; (3) integrating the AVIRIS technology with other technologies; (4) gaining the confidence/acceptance of other government agencies and private industry in AVIRIS; and (5) increasing the technology base of U.S. industry.

  20. Heart rate variability: Pre-deployment predictor of post-deployment PTSD symptoms

    PubMed Central

    Pyne, Jeffrey M.; Constans, Joseph I.; Wiederhold, Mark D.; Gibson, Douglas P.; Kimbrell, Timothy; Kramer, Teresa L.; Pitcock, Jeffery A.; Han, Xiaotong; Williams, D. Keith; Chartrand, Don; Gevirtz, Richard N.; Spira, James; Wiederhold, Brenda K.; McCraty, Rollin; McCune, Thomas R.

    2017-01-01

    Heart rate variability is a physiological measure associated with autonomic nervous system activity. This study hypothesized that lower pre-deployment HRV would be associated with higher post-deployment post-traumatic stress disorder (PTSD) symptoms. Three-hundred-forty-three Army National Guard soldiers enrolled in the Warriors Achieving Resilience (WAR) study were analyzed. The primary outcome was PTSD symptom severity using the PTSD Checklist – Military version (PCL) measured at baseline, 3- and 12-month post-deployment. Heart rate variability predictor variables included: high frequency power (HF) and standard deviation of the normal cardiac inter-beat interval (SDNN). Generalized linear mixed models revealed that the pre-deployment PCL*ln(HF) interaction term was significant (p < 0.0001). Pre-deployment SDNN was not a significant predictor of post-deployment PCL. Covariates included age, pre-deployment PCL, race/ethnicity, marital status, tobacco use, childhood abuse, pre-deployment traumatic brain injury, and previous combat zone deployment. Pre-deployment heart rate variability predicts post-deployment PTSD symptoms in the context of higher pre-deployment PCL scores. PMID:27773678

  1. New Webpage Brings Increased Visibility to Frederick National Laboratory Subcontracting Opportunities | Frederick National Laboratory for Cancer Research

    Cancer.gov

    A new webpage will now make it easier for small businesses and others to find and apply for Frederick National Laboratory for Cancer Research business opportunities. The new solicitations page, which launched on the Frederick National Lab website Aug

  2. Frederick National Laboratory, National Cancer Institute of Mexico to Offer Training Fellowships | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- The Frederick National Laboratory for Cancer Research will extend its scientific mentoring across international borders for the first time by offering postdoctoral research fellowships to scientists under an agreement with the Nati

  3. Los Alamos National Laboratory Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neu, Mary

    Mary Neu, Associate Director for Chemistry, Life and Earth Sciences at Los Alamos National Laboratory, delivers opening remarks at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  4. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  5. India Solar Resource Data: Enhanced Data for Accelerated Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires an understanding of the underlying solar resource. Under a bilateral partnership between the United States and India - the U.S.-India Energy Dialogue - the National Renewable Energy Laboratory has updated Indian solar data and maps using data provided by the Ministry of New and Renewable Energy (MNRE) and the National Institute for Solar Energy (NISE). This fact sheet overviews the updated maps and data, which help identify high-quality solar energy projects. This can help accelerate the deployment of solar energy in India.

  6. Mixed waste landfill corrective measures study final report Sandia National Laboratories, Albuquerque, New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peace, Gerald; Goering, Timothy James

    2004-03-01

    The Mixed Waste Landfill occupies 2.6 acres in the north-central portion of Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico. The landfill accepted low-level radioactive and mixed waste from March 1959 to December 1988. This report represents the Corrective Measures Study that has been conducted for the Mixed Waste Landfill. The purpose of the study was to identify, develop, and evaluate corrective measures alternatives and recommend the corrective measure(s) to be taken at the site. Based upon detailed evaluation and risk assessment using guidance provided by the U.S. Environmental Protection Agency and the New Mexico Environment Department, themore » U.S. Department of Energy and Sandia National Laboratories recommend that a vegetative soil cover be deployed as the preferred corrective measure for the Mixed Waste Landfill. The cover would be of sufficient thickness to store precipitation, minimize infiltration and deep percolation, support a healthy vegetative community, and perform with minimal maintenance by emulating the natural analogue ecosystem. There would be no intrusive remedial activities at the site and therefore no potential for exposure to the waste. This alternative poses minimal risk to site workers implementing institutional controls associated with long-term environmental monitoring as well as routine maintenance and surveillance of the site.« less

  7. National Water Quality Laboratory Profile

    USGS Publications Warehouse

    Raese, Jon W.

    1994-01-01

    The National Water Quality Laboratory determines organic and inorganic constituents in samples of surface and ground water, river and lake sediment, aquatic plant and animal material, and precipitation collected throughout the United States and its territories by the U.S. Geological Survey. In water year 1994, the Laboratory produced more than 900,000 analytical results for about 65,000 samples. The Laboratory also coordinates an extensive network of contract laboratories for the determination of radiochemical and stable isotopes and work for the U.S. Department of Defense Environmental Contamination Hydrology Program. Heightened concerns about water quality and about the possible effects of toxic chemicals at trace and ultratrace levels have contributed to an increased demand for impartial, objective, and independent data.

  8. Three small deployed satellites

    NASA Image and Video Library

    2012-10-04

    ISS033-E-009282 (4 Oct. 2012) --- Several tiny satellites are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module’s robotic arm on Oct. 4, 2012. Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, set up the satellite deployment gear inside the lab and placed it in the Kibo airlock. The Japanese robotic arm then grappled the deployment system and its satellites from the airlock for deployment. Earth’s horizon and the blackness of space provide the backdrop for the scene.

  9. Lawrence Livermore National Laboratory Environmental Report 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Henry E.; Armstrong, Dave; Blake, Rick G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  10. Lawrence Livermore National Laboratory Environmental Report 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  11. JEMRMS Small Satellite Deployment Observation

    NASA Image and Video Library

    2012-10-04

    ISS033-E-009334 (4 Oct. 2012) --- Several tiny satellites are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module’s robotic arm on Oct. 4, 2012. Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, set up the satellite deployment gear inside the lab and placed it in the Kibo airlock. The Japanese robotic arm then grappled the deployment system and its satellites from the airlock for deployment.

  12. JEMRMS Small Satellite Deployment Observation

    NASA Image and Video Library

    2012-10-04

    ISS033-E-009458 (4 Oct. 2012) --- Several tiny satellites are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module’s robotic arm on Oct. 4, 2012. Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, set up the satellite deployment gear inside the lab and placed it in the Kibo airlock. The Japanese robotic arm then grappled the deployment system and its satellites from the airlock for deployment.

  13. Undergraduates | Argonne National Laboratory

    Science.gov Websites

    Directory Argonne National Laboratory Educational Programs Connecting today's world-class research to which you can use to change the world." -Nelson Mandela Undergrads are just beginning their journey into the world of science and engineering. Here at Argonne, we work to make the world a better place

  14. Visiting Scholars Program | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Visiting Scholars Program (VSP) provides a unique opportunity for scientists to collaborate with the Frederick National Laboratory for Cancer Research (FNLCR), the only federal national laboratory in the United States devoted exclusively to b

  15. Saving Water at Los Alamos National Laboratory

    ScienceCinema

    Erickson, Andy

    2018-01-16

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility that supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.

  16. Graduates | Argonne National Laboratory

    Science.gov Websites

    Staff Directory Argonne National Laboratory Educational Programs Connecting today's world-class research , Argonne is the place to be if you are a graduate student. With access to world-class facilities and world -reknowned researchers, graduate students at Argonne can taste the best of the research and development world

  17. Deployment of the National Transparent Optical Network around the San Francisco Bay Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCammon, K.; Haigh, R.; Armstrong, G.

    1996-06-01

    We report on the deployment and initial operation of the National Transparent Optical Network, an experimental WDM network testbed around the San Francisco Bay Area, during the Optical Fiber Conference (OFC`96) held in San Jose, CA. The deployment aspects of the physical plant, optical and SONET layers are examined along with a discussion of broadband applications which utilized the network during the OFC`96 demonstration. The network features dense WDM technology, transparent optical routing technology using acousto- optic tunable filter based switches, and network modules with add/drop, multicast, and wavelength translation capabilities. The physical layer consisted of over 300 km ofmore » Sprint and Pacific Bell conventional single mode fiber which was amplified with I I optical amplifiers deployed in pre-amp, post-amp, and line amp configurations. An out-of-band control network provided datacom channels from remote equipment sites to the SONET network manager deployed at the San Jose Convention Center for the conference. Data transport over five wavelengths was achieved in the 1550 nm window using a variety of signal formats including analog and digital signal transmission on different wavelengths on the same fiber. The network operated throughout the week of OFC`96 and is still in operation today.« less

  18. Technology | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory develops and applies advanced, next-generation technologies to solve basic and applied problems in the biomedical sciences, and serves as a national resource of shared high-tech facilities.

  19. Inverter testing at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Ginn, Jerry W.; Bonn, Russell H.; Sittler, Greg

    1997-02-01

    Inverters are key building blocks of photovoltaic (PV) systems that produce ac power. The balance of systems (BOS) portion of a PV system can account for up to 50% of the system cost, and its reliable operation is essential for a successful PV system. As part of its BOS program, Sandia National Laboratories (SNL) maintains a laboratory wherein accurate electrical measurements of power systems can be made under a variety of conditions. This paper outlines the work that is done in that laboratory.

  20. Three small deployed satellites

    NASA Image and Video Library

    2012-10-04

    ISS033-E-009286 (4 Oct. 2012) --- Several tiny satellites are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module’s robotic arm on Oct. 4, 2012. Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, set up the satellite deployment gear inside the lab and placed it in the Kibo airlock. The Japanese robotic arm then grappled the deployment system and its satellites from the airlock for deployment. A portion of the station’s solar array panels and a blue and white part of Earth provide the backdrop for the scene.

  1. Three small deployed satellites

    NASA Image and Video Library

    2012-10-04

    ISS033-E-009285 (4 Oct. 2012) --- Several tiny satellites are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module’s robotic arm on Oct. 4, 2012. Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, set up the satellite deployment gear inside the lab and placed it in the Kibo airlock. The Japanese robotic arm then grappled the deployment system and its satellites from the airlock for deployment. A portion of the station’s solar array panels and a blue and white part of Earth provide the backdrop for the scene.

  2. Remote Sensing Laboratory - RSL

    ScienceCinema

    None

    2018-01-16

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  3. Public health foodborne illness case study during a Special Operations Forces deployment to South America.

    PubMed

    McCown, Michael; Grzeszak, Benjamin

    2010-01-01

    Although many public health articles have been published detailing foodborne illness outbreaks, a medical literature search revealed no articles that detail a case study or a specific response of a deployed U.S. military unit to a potential foodborne illness. This article describes a recent public health case study of a U.S. Special Operations Forces (SOF) team sickened while deployed to South America. It highlights public health factors which may affect U.S. personnel deployed or serving overseas and may serve as a guide for a deployed SOF medic to reference in response to a potential food- or waterborne illness outbreak. Eight food samples and five water samples were collected. The food samples were obtained from the host nation kitchen that provided food to the SOF team. The water samples were collected from the kitchen as well as from multiple sites on the host nation base. These samples were packaged in sterile containers, stored at appropriate temperatures, and submitted to a U.S. Army diagnostic laboratory for analysis. Laboratory results confirmed the presence of elevated aerobic plate counts (APCs) in the food prepared by the host nation and consumed by the SOF team. High APCs in food are the primary indicator of improper sanitation of food preparation surfaces and utensils. This case study concluded that poor kitchen sanitation, improper food storage, preparation, and/or holding were the probable conditions that led to the team?s symptoms. These results emphasize the importance of ensuring safe food and water for U.S. personnel serving overseas, especially in a deployment or combat setting. Contaminated food and/or water will negatively impact the health and availability of forces, which may lead to mission failure. The SOF medic must respond to potential outbreaks and be able to (1) critically inspect food preparation areas and accurately advise commanders in order to correct deficiencies and (2) perform food/water surveillance testing consistently

  4. Partnering at the National Laboratories: Catalysis as a Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JACKSON,NANCY B.

    1999-09-14

    The role of the national laboratories, particularly the defense program laboratories, since the end of the cold war, has been a topic of continuing debate. The relationship of national laboratories to industry spurred debate which ranged from designating the labs as instrumental to maintaining U.S. economic competitiveness to concern over the perception of corporate welfare to questions regarding the industrial globalization and the possibility of U.S. taxpayer dollars supporting foreign entities. Less debated, but equally important, has been the national laboratories' potential competition with academia for federal research dollars and discussions detailing the role of each in the national researchmore » enterprise.« less

  5. 2020 Foresight Forging the Future of Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzanowski, P.

    2000-01-01

    The Lawrence Livermore National Laboratory (LLNL) of 2020 will look much different from the LLNL of today and vastly different from how it looked twenty years ago. We, the members of the Long-Range Strategy Project, envision a Laboratory not defined by one program--nuclear weapons research--but by several core programs related to or synergistic with LLNL's national security mission. We expect the Laboratory to be fully engaged with sponsors and the local community and closely partnering with other research and development (R&D) organizations and academia. Unclassified work will be a vital part of the Laboratory of 2020 and will visibly demonstratemore » LLNL's international science and technology strengths. We firmly believe that there will be a critical and continuing role for the Laboratory. As a dynamic and versatile multipurpose laboratory with a national security focus, LLNL will be applying its capabilities in science and technology to meet the needs of the nation in the 21st century. With strategic investments in science, outstanding technical capabilities, and effective relationships, the Laboratory will, we believe, continue to play a key role in securing the nation's future.« less

  6. HEP Division Argonne National Laboratory

    Science.gov Websites

    Argonne National Laboratory Environmental Safety & Health DOE Logo Home Division ES&H ... Search Argonne Home >High Energy Physics> Environmental Safety & Health Environmental Safety & Health New Employee Training */ ?> Office Safety: Checklist (Submitted Checklists) Submitted

  7. NREL and Sandia National Laboratories (SNL) Support of Ocean Renewable Power Company's TidGen™ Power System Technology Readiness Advancement Initiative Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LiVecchi, Al

    2015-05-07

    This document summarizes the tasks identified for National Laboratory technical support of Ocean Renewable Power Corporation (ORPC) DOE grant awarded under the FY10 Industry Solicitation DE-FOA-0000293: Technology Readiness Advancement Initiative. The system ORPC will deploy in Cobscook Bay, ME is known as the TidGen™ Power System. The Turbine Generator Unit (TGU) each have a rated capacity of 150 to 175 kW, and they are mounted on bottom support frames and connected to an onshore substation using an underwater power and control cable. This system is designed for tidal energy applications in water depths from 60 to 150 feet. In fundingmore » provided separately by DOE, National Laboratory partners NREL and SNL will provide in-kind resources and technical expertise to help ensure that industry projects meet DOE WWPP (Wind and Water Power Program) objectives by reducing risk to these high value projects.« less

  8. Comparing post-deployment mental health services utilization in soldiers deployed to Balkan, Iraq and Afghanistan.

    PubMed

    Madsen, T; Sadowa Vedtofte, M; Nordentoft, M; Ravnborg Nissen, L; Bo Andersen, S

    2017-06-01

    Insight on how different missions have impacted rates of mental health service (MHS) utilization is unexplored. We compared postdeployment MHS utilization in a national cohort of first-time deployed to missions in Balkan, Iraq, and Afghanistan respectively. A prospective national cohort study of 13 246 first-time deployed in the period 1996 through 2012 to missions in Balkan area, Iraq, or Afghanistan respectively. Soldiers 'MHS utilization was also compared with a 5:1 sex-, age-, and calendar year-matched never-deployed background population. Postdeployment utilization of MHS was retrieved from national coverage registers. Using Cox survival analyses, participants were followed and compared with regard to receiving three different types of psychiatric services: (i) admission to psychiatric hospital, (ii) psychiatric outpatient contact, and (iii) prescriptions of psychotropics. Utilizing of psychiatric outpatient services and psychotropics was significantly higher in first-time deployed to Iraq and Afghanistan compared with deployed to Balkan. However, the rate of postdeployment admission to psychiatric hospital did not differ between missions. Postdeployment rates of psychiatric admission and psychiatric outpatient treatment were significantly higher in Afghanistan-deployed personnel compared with the background population. Utilization of MHS differed significantly between mission areas and was highest after the latest mission to Afghanistan. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Final Report National Laboratory Professional Development Workshop for Underrepresented Participants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Valerie

    The 2013 CMD-IT National Laboratories Professional Development Workshop for Underrepresented Participants (CMD-IT NLPDev 2013) was held at the Oak Ridge National Laboratory campus in Oak Ridge, TN. from June 13 - 14, 2013. Sponsored by the Department of Energy (DOE) Advanced Scientific Computing Research Program, the primary goal of these workshops is to provide information about career opportunities in computational science at the various national laboratories and to mentor the underrepresented participants through community building and expert presentations focused on career success. This second annual workshop offered sessions to facilitate career advancement and, in particular, the strategies and resources neededmore » to be successful at the national laboratories.« less

  10. 60 Years of Great Science (Oak Ridge National Laboratory)

    DOE R&D Accomplishments Database

    2003-01-01

    This issue of Oak Ridge National Laboratory Review (vol. 36, issue 1) highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  11. Oak Ridge National Laboratory Core Competencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, J.B.; Anderson, T.D.; Berven, B.A.

    1994-12-01

    A core competency is a distinguishing integration of capabilities which enables an organization to deliver mission results. Core competencies represent the collective learning of an organization and provide the capacity to perform present and future missions. Core competencies are distinguishing characteristics which offer comparative advantage and are difficult to reproduce. They exhibit customer focus, mission relevance, and vertical integration from research through applications. They are demonstrable by metrics such as level of investment, uniqueness of facilities and expertise, and national impact. The Oak Ridge National Laboratory (ORNL) has identified four core competencies which satisfy the above criteria. Each core competencymore » represents an annual investment of at least $100M and is characterized by an integration of Laboratory technical foundations in physical, chemical, and materials sciences; biological, environmental, and social sciences; engineering sciences; and computational sciences and informatics. The ability to integrate broad technical foundations to develop and sustain core competencies in support of national R&D goals is a distinguishing strength of the national laboratories. The ORNL core competencies are: 9 Energy Production and End-Use Technologies o Biological and Environmental Sciences and Technology o Advanced Materials Synthesis, Processing, and Characterization & Neutron-Based Science and Technology. The distinguishing characteristics of each ORNL core competency are described. In addition, written material is provided for two emerging competencies: Manufacturing Technologies and Computational Science and Advanced Computing. Distinguishing institutional competencies in the Development and Operation of National Research Facilities, R&D Integration and Partnerships, Technology Transfer, and Science Education are also described. Finally, financial data for the ORNL core competencies are summarized in the appendices.« less

  12. Posttraumatic Stress Symptoms among National Guard Soldiers Deployed to Iraq: Associations with Parenting Behaviors and Couple Adjustment

    ERIC Educational Resources Information Center

    Gewirtz, Abigail H.; Polusny, Melissa A.; DeGarmo, David S.; Khaylis, Anna; Erbes, Christopher R.

    2010-01-01

    Objective: In this article, we report findings from a 1-year longitudinal study examining the impact of change in posttraumatic stress disorder (PTSD) symptoms following combat deployment on National Guard soldiers' perceived parenting and couple adjustment 1 year following return from Iraq. Method: Participants were 468 Army National Guard…

  13. Sandia National Laboratories: Contact Us

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New )* Non-mail deliveries: 1515 Eubank SE Albuquerque, NM 87123 Sandia National Laboratories, California P.O

  14. Increase Workshop | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Home Learning solvers Home Learning Center Undergraduates Graduates Faculty Partners News & Events Faculty Visiting Us Argonne Educational Programs is committed to providing a learning environment that emphasizes the

  15. Saving Water at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Andy

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility thatmore » supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.« less

  16. Development of a paperless, Y2K compliant exposure tracking database at Los Alamos National Laboratory.

    PubMed

    Conwell, J L; Creek, K L; Pozzi, A R; Whyte, H M

    2001-02-01

    The Industrial Hygiene and Safety Group at Los Alamos National Laboratory (LANL) developed a database application known as IH DataView, which manages industrial hygiene monitoring data. IH DataView replaces a LANL legacy system, IHSD, that restricted user access to a single point of data entry needed enhancements that support new operational requirements, and was not Year 2000 (Y2K) compliant. IH DataView features a comprehensive suite of data collection and tracking capabilities. Through the use of Oracle database management and application development tools, the system is Y2K compliant and Web enabled for easy deployment and user access via the Internet. System accessibility is particularly important because LANL operations are spread over 43 square miles, and industrial hygienists (IHs) located across the laboratory will use the system. IH DataView shows promise of being useful in the future because it eliminates these problems. It has a flexible architecture and sophisticated capability to collect, track, and analyze data in easy-to-use form.

  17. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, T.; Cox, W.; Hwang, H.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories` operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had nomore » discernible impact on the general public or on the environment.« less

  18. JEMRMS Small Satellite Deployment Observation

    NASA Image and Video Library

    2012-10-04

    ISS033-E-009315 (4 Oct. 2012) --- Several tiny satellites are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module’s robotic arm on Oct. 4, 2012. Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, set up the satellite deployment gear inside the lab and placed it in the Kibo airlock. The Japanese robotic arm then grappled the deployment system and its satellites from the airlock for deployment. A blue and white part of Earth provides the backdrop for the scene.

  19. Grid Modernization Laboratory Consortium - Testing and Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroposki, Benjamin; Skare, Paul; Pratt, Rob

    This paper highlights some of the unique testing capabilities and projects being performed at several national laboratories as part of the U. S. Department of Energy Grid Modernization Laboratory Consortium. As part of this effort, the Grid Modernization Laboratory Consortium Testing Network isbeing developed to accelerate grid modernization by enablingaccess to a comprehensive testing infrastructure and creating a repository of validated models and simulation tools that will be publicly available. This work is key to accelerating thedevelopment, validation, standardization, adoption, and deployment of new grid technologies to help meet U. S. energy goals.

  20. Internship Opportunities | Argonne National Laboratory

    Science.gov Websites

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Home Learning -class research to tomorrow's STEM problem solvers Home Learning Center Undergraduates Graduates Faculty ) 252-4114 Contact Us Argonne Educational Programs is committed to providing a learning environment that

  1. Idaho National Laboratory Cultural Resource Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie Braun Williams

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Officemore » will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  2. Remote Sensing Laboratory - RSL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip,more » maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.« less

  3. ORNL (Oak Ridge National Laboratory) 89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, T.D.; Appleton, B.R.; Jefferson, J.W.

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory.

  4. [On the way to national reference system of laboratory medicine].

    PubMed

    Muravskaia, N P; Men'shikov, V V

    2014-10-01

    The application of standard samples and reference techniques of implementation of measurements is needed for a valid support of reliability of analyses applied in clinical diagnostic laboratories. They play role of landmarks under metrologic monitoring, calibration of devices and control of quality of results. The article presents analysis of shortcomings interfering with formation of national reference system in Russia harmonized with possibilities provided by international organizations. Among them are the joint Committee on metrologic monitoring in laboratory medicine under the auspices of the International Bureau of Weights and Measures, the International Federation of clinical chemistry and laboratory medicine, etc. The results of the recent development of national normative documents, standard samples and techniques assisted by the authors of article are considered. They are the first steps to organization of national reference system which would comprise all range of modern analytical technologies of laboratory medicine. The national and international measures are proposed to enhance the promptest resolving of task of organization of national reference system for laboratory medicine in the interests of increasing of effectiveness of medical care to citizen of Russia.

  5. NanoRack Cubesat Deployer (NRCSD) Operations

    NASA Image and Video Library

    2014-08-19

    ISS040-E-100890 (19 Aug. 2014) --- Through a window in the International Space Station?s Kibo laboratory, an Expedition 40 crew member photographed the CubeSat deployer mechanism in the grasp of the Japanese robotic arm prior to a series of NanoRacks CubeSat miniature satellite deployments.

  6. Connected Vehicle Pilot Deployment Program phase I : comprehensive Pilot Deployment Plan : Tampa Hillsborough Expressway Authority (THEA) : final report.

    DOT National Transportation Integrated Search

    2016-07-01

    The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is part of a national effort to advance CV technologies by deploying, demonstrating, testing and offering lessons learned for future deployers. The THE...

  7. Visitor's Guide | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research headquarters are located at the Advanced Technology and Research Facility (ATRF), located at 8560 Progress Drive, Frederick Maryland. Additional offices and laboratories are locatedon the NC

  8. Los Alamos National Laboratory Prepares for Fire Season

    ScienceCinema

    L’Esperance, Manny

    2018-01-16

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  9. Los Alamos National Laboratory Prepares for Fire Season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L’Esperance, Manny

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  10. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-044887 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  11. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-044889 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  12. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-044890 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  13. Supporting deployed operations: are military nurses gaining the relevant experience from MDHUs to be competent in deployed operations?

    PubMed

    Beaumont, Steven P; Allan, Helen T

    2014-01-01

    To explore how peacetime employment of military nurses in the UK National Health Service Medical Defence Hospital Units prepares them to be competent to practise in their role on deployment. Military secondary care nurses are employed within UK National Health Service Trusts to gain clinical experience that will be relevant to their military nursing role. A two-stage grounded theory study using mixed methods: postal questionnaire survey and in-depth interviews. In stage one a postal questionnaire was distributed to all serving military nurses. Stage two involved 12 semi-structured interviews. The data from both parts of the study were analysed using grounded theory. Four categories and one core category were identified, which suggested that participants did not feel fully prepared for deployment. Their feelings of preparedness increased with deployment experience and decreased when the nature of injuries seen on deployment changed. Respondents argued that even when unprepared, they did not feel incompetent. The findings suggest that the peacetime clinical experience gained in the National Health Service did not always develop the necessary competencies to carry out roles as military nurses on deployment. This study highlights the unique role of military nurses. We discuss these findings in the light of the literature on competency and expertise. The military nurses in this study did not feel fully prepared for deployed operations. We propose a new model for how military nurses could gain relevant experience from their National Health Service placements. National Health Service clinical placements need to be reassessed regularly to ensure that they are meeting military nurses' clinical requirements. Experiences of nurses returning from deployment could be shared and used as a basis for reflection and learning within National Health Service Trusts and also inform decisions regarding the appropriateness of clinical placements for qualified military nurses. © 2012

  14. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SAmore » examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.« less

  15. Annual Report on the State of the DOE National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-01-01

    This first Annual Report to Congress on the State of the DOE National Laboratories provides a comprehensive overview of the Lab system, covering S&T programs, management and strategic planning. The Department committed to prepare this report in response to recommendations from the Congressionally mandated Commission to Review the Effectiveness of the National Energy Laboratories (CRENEL) that the Department should better communicate the value that the Laboratories provide to the Nation. We expect that future annual reports will be much more compact, building on the extensive description of the Laboratories and of the governance structures that are part of this firstmore » report.« less

  16. Mental Health Disorders, Suicide Risk, and Treatment seeking among Formerly Deployed National Guardand Reserve Service Member seen in Non VA Facilities

    DTIC Science & Technology

    2016-10-01

    1 AWARD NUMBER: W81XWH-15-1-0506 TITLE: Mental Health Disorders, Suicide Risk, and Treatment seeking among Formerly Deployed National Guard... Suicide Risk, and Treatment seeking among Formerly Deployed National Guard and Reserve Service Member seen in Non-VA Facilities 5b. GRANT NUMBER W81XWH...and Reserve veterans. The prevalence of current PTSD was 7% (95% CI = 5.7-8.5). Preliminary analyses indicated that PTSD, depression , mental health

  17. India Solar Resource Data: Enhanced Data for Accelerated Deployment (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires an understanding of the underlying solar resource. Under a bilateral partnership between the United States and India - the U.S.-India Energy Dialogue - the National Renewable Energy Laboratory has updated Indian solar data and maps using data provided by the Ministry of New and Renewable Energy (MNRE) and the National Institute for Solar Energy (NISE). This fact sheet overviews the updated maps and data, which help identify high-quality solar energy projects. This can help accelerate the deployment of solar energy in India.

  18. Frederick National Laboratory and Georgetown University Launch Research and Education Collaboration | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- A new collaboration established between Georgetown University and the Frederick National Laboratory for Cancer Research aims to expand both institutions’ research and training missions in the biomedical sciences. Representatives f

  19. National Security Implications of Virtual Currency: Examining the Potential for Non-state Actor Deployment

    DTIC Science & Technology

    2015-02-01

    Centralization . . . . . . . . . . . . . . . . . . . . . . 43 “Anonymity”: A Bitcoin Case Study...been a case of x National Security Implications of Virtual Currency such a non-state actor deployment; in this report, we aim to high- light...development of VCs may advance, including a gen- eral increased sophistication in cryptographic applications. More gen- erally, we make the case that the main

  20. Frederick National Laboratory Rallies to Meet Demand for Zika Vaccine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research is producing another round of Zika vaccine for ongoing studies to determine the best delivery method and dosage. This will lay the groundwork for additional tests to see if the vaccine prevents i

  1. Technology Innovation at the National Renewable Energy Laboratory (Text

    Science.gov Websites

    market, new processes out in the fields, and to make an impact." A photo montage of six different Version) | NREL Technology Innovation at the National Renewable Energy Laboratory (Text Version ) Technology Innovation at the National Renewable Energy Laboratory (Text Version) This is the text version for

  2. Sandia National Laboratories: Fabrication, Testing and Validation

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas safe, secure, reliable, and can fully support the Nation's deterrence policy. Employing only the most support of this mission, Sandia National Laboratories has a significant role in advancing the "state

  3. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-044883 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it begins the deployment of a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  4. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-044994 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station prior to the deployment of a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.

  5. The International Space Station: A National Laboratory

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2012-01-01

    After more than a decade of assembly missions and the end of the space shuttle program, the International Space Station (ISS) has reached assembly completion. With other visiting spacecraft now docking with the ISS on a regular basis, the orbiting outpost now serves as a National Laboratory to scientists back on Earth. The ISS has the ability to strengthen relationships between NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. The ISS National Laboratory also opens new paths for the exploration and economic development of space. In this presentation we will explore the operation of the ISS and the realm of scientific research onboard that includes: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science.

  6. Critical Infrastructure Protection- Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bofman, Ryan K.

    Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.

  7. Predictors of Army National Guard and Reserve members' use of Veteran Health Administration health care after demobilizing from OEF/OIF deployment.

    PubMed

    Harris, Alex H S; Chen, Cheng; Mohr, Beth A; Adams, Rachel Sayko; Williams, Thomas V; Larson, Mary Jo

    2014-10-01

    This study described rates and predictors of Army National Guard and Army Reserve members' enrollment in and utilization of Veteran Health Administration (VHA) services in the 365 days following demobilization from an index deployment. We also explored regional and VHA facility variation in serving eligible members in their catchment areas. The sample included 125,434 Army National Guard and 48,423 Army Reserve members who demobilized after a deployment ending between FY 2008 and FY 2011. Demographic, geographic, deployment, and Military Health System eligibility were derived from Defense Enrollment Eligibility Reporting System and "Contingency Tracking System" data. The VHA National Patient Care Databases were used to ascertain VHA utilization and status (e.g., enrollee, TRICARE). Logistic regression models were used to evaluate predictors of VHA utilization as an enrollee in the year following demobilization. Of the study members demobilizing during the observation period, 56.9% of Army National Guard members and 45.7% of Army Reserve members utilized VHA as an enrollee within 12 months. Demographic, regional, health coverage, and deployment-related factors were associated with VHA enrollment and utilization, and significant variation by VHA facility was found. These findings can be useful in the design of specific outreach efforts to improve linkage from the Military Health System to the VHA. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  8. Gerst depressurized Kibo for Cubesat deployment

    NASA Image and Video Library

    2014-08-18

    ISS040-E-096126 (18 Aug. 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, depressurizes the Kibo airlock in preparation for a series of NanoRacks CubeSat miniature satellite deployments. The first two pairs of nanosatellites are scheduled for deployment on Aug. 19. The Planet Labs Dove satellites that were carried to the station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25.

  9. Gerst depressurized Kibo for Cubesat deployment

    NASA Image and Video Library

    2014-08-18

    ISS040-E-096122 (18 Aug. 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, depressurizes the Kibo airlock in preparation for a series of NanoRacks CubeSat miniature satellite deployments. The first two pairs of nanosatellites are scheduled for deployment on Aug. 19. The Planet Labs Dove satellites that were carried to the station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25.

  10. Global Impact | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Through its direct support of clinical research, Frederick National Laboratory activities are not limited to national programs. The labis actively involved in more than 400 domestic and international studies related to cancer; influenza, HIV, E

  11. Sandia National Laboratories focus issue: introduction.

    PubMed

    Boye, Robert

    2014-08-20

    For more than six decades, Sandia has provided the critical science and technology to address the nation's most challenging issues. Our original nuclear weapons mission has been complemented with work in defense systems, energy and climate, as well as international and homeland security. Our vision is to be a premier science and engineering laboratory for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.

  12. IBBR and Frederick National Laboratory Collaborate to Study Vaccine-Boosting Compounds | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory and the University of Maryland’s Institute for Bioscience and Biotechnology Research (IBBR) will work under a formal collaboration to evaluate the effectiveness of new compounds that might be used to enhance the im

  13. Frederick National Laboratory Scientists to Present Advanced Technologies in Cancer Research | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Hundreds of science and business professionals are expected to attend the second annual Technology Showcase at the Frederick National Laboratory for Cancer Research, scheduled for June 13.  The event will feature technologies bei

  14. Potentially modifiable pre-, peri-, and postdeployment characteristics associated with deployment-related posttraumatic stress disorder among ohio army national guard soldiers.

    PubMed

    Goldmann, Emily; Calabrese, Joseph R; Prescott, Marta R; Tamburrino, Marijo; Liberzon, Israel; Slembarski, Renee; Shirley, Edwin; Fine, Thomas; Goto, Toyomi; Wilson, Kimberly; Ganocy, Stephen; Chan, Philip; Serrano, Mary Beth; Sizemore, James; Galea, Sandro

    2012-02-01

    To evaluate potentially modifiable deployment characteristics-- predeployment preparedness, unit support during deployment, and postdeployment support-that may be associated with deployment-related posttraumatic stress disorder (PTSD). We recruited a sample of 2616 Ohio Army National Guard (OHARNG) soldiers and conducted structured interviews to assess traumatic event exposure and PTSD related to the soldiers' most recent deployment, consistent with DSM-IV criteria. We assessed preparedness, unit support, and postdeployment support by using multimeasure scales adapted from the Deployment Risk and Resilience Survey. The prevalence of deployment-related PTSD was 9.6%. In adjusted logistic models, high levels of all three deployment characteristics (compared with low) were independently associated with lower odds of PTSD. When we evaluated the influence of combinations of deployment characteristics on the development of PTSD, we found that postdeployment support was an essential factor in the prevention of PTSD. Results show that factors throughout the life course of deployment-in particular, postdeployment support-may influence the development of PTSD. These results suggest that the development of suitable postdeployment support opportunities may be centrally important in mitigating the psychological consequences of war. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. A remote laboratory for USRP-based software defined radio

    NASA Astrophysics Data System (ADS)

    Gandhinagar Ekanthappa, Rudresh; Escobar, Rodrigo; Matevossian, Achot; Akopian, David

    2014-02-01

    Electrical and computer engineering graduates need practical working skills with real-world electronic devices, which are addressed to some extent by hands-on laboratories. Deployment capacity of hands-on laboratories is typically constrained due to insufficient equipment availability, facility shortages, and lack of human resources for in-class support and maintenance. At the same time, at many sites, existing experimental systems are usually underutilized due to class scheduling bottlenecks. Nowadays, online education gains popularity and remote laboratories have been suggested to broaden access to experimentation resources. Remote laboratories resolve many problems as various costs can be shared, and student access to instrumentation is facilitated in terms of access time and locations. Labs are converted to homeworks that can be done without physical presence in laboratories. Even though they are not providing full sense of hands-on experimentation, remote labs are a viable alternatives for underserved educational sites. This paper studies remote modality of USRP-based radio-communication labs offered by National Instruments (NI). The labs are offered to graduate and undergraduate students and tentative assessments support feasibility of remote deployments.

  16. Idaho National Laboratory Cultural Resource Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrey, Diana Lee

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Officemore » will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  17. Idaho National Laboratory Cultural Resource Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Officemore » will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  18. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Todd Randall; Wright, Virginia Latta

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  19. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-11-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  20. Technology Deployment Annual Report 2014 December

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arterburn, George K.

    This report is a summary of key Technology Deployment activities and achievements for 2014, including intellectual property, granted copyrights, royalties, license agreements, CRADAs, WFOs and Technology-Based Economic Development. Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventionsmore » and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In our multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational instiutitons throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are

  1. Pacific Northwest National Laboratory institutional plan FY 1997--2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research fundamental knowledge is created of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. Legacy environmental problems are solved by delivering technologies that remedy existing environmental hazards, today`s environmental needs are addressed with technologies that prevent pollution and minimize waste, and the technical foundation is being laid for tomorrow`s inherently clean energy and industrial processes. Pacific Northwest National Laboratory also applies its capabilities to meet selected nationalmore » security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. Brief summaries are given of the various tasks being carried out under these broad categories.« less

  2. The USDA Forest Service National Seed Laboratory

    Treesearch

    Robert P. Karrfalt

    2006-01-01

    The USDA Forest Service National Seed Laboratory has provided seed technology services to the forest and conservation seed and nursery industry for more than 50 years. This paper briefly traces the lab’s evolution from a regional facility concerned principally with southern pines to its newest mission as a national facility working with all native U.S. plants and...

  3. Fiber-Optic Sensing System: Overview, Development and Deployment in Flight at NASA

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man; Parker, Allen R.; Piazza, Anthony; Richards, W. Lance

    2015-01-01

    An overview of the research and technological development of the fiber-optic sensing system (FOSS) at the National Aeronautics and Space Administration Armstrong Flight Research Center (NASA AFRC) is presented. Theory behind fiber Bragg grating (FBG) sensors, as well as interrogation technique based on optical frequency domain reflectometry (OFDR) is discussed. Assessment and validation of FOSS as an accurate measurement tool for structural health monitoring is realized in the laboratory environment as well as large-scale flight deployment.

  4. 75 FR 82004 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Laboratory AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory...--Radioactive Waste Management. Public Participation: The EM SSAB, Idaho National Laboratory, welcomes the...

  5. 78 FR 12747 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... Laboratory AGENCY: Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... Management System Public Participation: The EM SSAB, Idaho National Laboratory, welcomes the attendance of...

  6. Ebola Laboratory Response at the Eternal Love Winning Africa Campus, Monrovia, Liberia, 2014–2015

    PubMed Central

    de Wit, Emmie; Rosenke, Kyle; Fischer, Robert J.; Marzi, Andrea; Prescott, Joseph; Bushmaker, Trenton; van Doremalen, Neeltje; Emery, Shannon L.; Falzarano, Darryl; Feldmann, Friederike; Groseth, Allison; Hoenen, Thomas; Juma, Bonventure; McNally, Kristin L.; Ochieng, Melvin; Omballa, Victor; Onyango, Clayton O.; Owuor, Collins; Rowe, Thomas; Safronetz, David; Self, Joshua; Williamson, Brandi N.; Zemtsova, Galina; Grolla, Allen; Kobinger, Gary; Rayfield, Mark; Ströher, Ute; Strong, James E.; Best, Sonja M.; Ebihara, Hideki; Zoon, Kathryn C.; Nichol, Stuart T.; Nyenswah, Tolbert G.; Bolay, Fatorma K.; Massaquoi, Moses; Feldmann, Heinz; Fields, Barry

    2016-01-01

    West Africa experienced the first epidemic of Ebola virus infection, with by far the greatest number of cases in Guinea, Sierra Leone, and Liberia. The unprecedented epidemic triggered an unparalleled response, including the deployment of multiple Ebola treatment units and mobile/field diagnostic laboratories. The National Institute of Allergy and Infectious Diseases and the Centers for Disease Control and Prevention deployed a joint laboratory to Monrovia, Liberia, in August 2014 to support the newly founded Ebola treatment unit at the Eternal Love Winning Africa (ELWA) campus. The laboratory operated initially out of a tent structure but quickly moved into a fixed-wall building owing to severe weather conditions, the need for increased security, and the high sample volume. Until May 2015, when the laboratory closed, the site handled close to 6000 clinical specimens for Ebola virus diagnosis and supported the medical staff in case patient management. Laboratory operation and safety, as well as Ebola virus diagnostic assays, are described and discussed; in addition, lessons learned for future deployments are reviewed. PMID:27333914

  7. Internships and Fellowships | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory hasmany exciting opportunities for scientists and biotechnology professionalsthrough numerous post-doctoral and pre-doctoral fellowship positions sponsored by the National Cancer Institute (NCI) at Freder

  8. Charter of the Sandia National Laboratories Sandia Postdoctoral Development (SPD) Association.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, Amber Alane Fisher; Rodgers, Theron; Dong, Wen

    The SNL SPD Association represents all personnel that are classified as Postdoctoral Appointees at Sandia National Laboratories. The purpose of the SNL SPD Association is to address the needs and concerns of Postdoctoral Appointees within Sandia National Laboratories.

  9. Laboratory Directed Research and Development Annual Report for 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Pamela J.

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalablemore » synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.« less

  10. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2014-02-11

    ISS038-E-045009 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing. Station solar array panels, Earth's horizon and the blackness of space provide the backdrop for the scene.

  11. Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants

    NASA Astrophysics Data System (ADS)

    Gardner, A.; Baer, D. S.; Owano, T. G.; Provencal, R. A.; Gupta, M.; Parsotam, V.; Graves, P.; Goldstein, A.; Guha, A.

    2010-12-01

    Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants A. Gardner(1), D. Baer (1), T. Owano (1), R. Provencal (1), V. Parsotam (1), P. Graves (1), M. Gupta (1), Allen Goldstein (2), Abhinav Guha (2) (1) Los Gatos Research, 67 East Evelyn Avenue, Suite 3, Mountain View, CA 94041-1529 (2) Department of Environmental Science, Policy, and Management, University of California at Berkeley Quantifying the Urban Fossil Fuel Plume: Convergence of top-down and bottom-up approaches (Session A54). We report on the design, development and deployment of a novel Mobile Emissions Laboratory, consisting of innovative laser-based gas analyzers, for rapid measurements of multiple greenhouse gases and pollutants. Designed for real-time mobile and stationery emissions monitoring, the Mobile Emissions Laboratory was deployed at several locations during 2010, including CalNEX 2010, Caldecott Tunnel (Oakland, CA), and Altamont Landfill (Livermore, CA), to record real-time continuous measurements of isotopic CO2 (δ13C, CO2), methane (CH4), acetylene (C2H2), nitrous oxide (N2O), carbon monoxide (CO), and isotopic water vapor (H2O; δ18O, δ2H). The commercial gas analyzers are based on novel cavity-enhanced laser absorption spectroscopy. The portable analyzers provide measurements in real time, require about 150 watts (each) of power and do not need liquid nitrogen to operate. These instruments have been applied in the field for applications that require high data rates (for eddy correlation flux), wide dynamic range (e.g., for chamber flux and other applications with concentrations that can be 10-1000 times higher than typical ambient levels) and highest accuracy (atmospheric monitoring stations). The Mobile Emissions Laboratory, which contains onboard batteries for long-term unattended measurements without access to mains power, can provide regulatory agencies, monitoring stations

  12. Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments

    DOE R&D Accomplishments Database

    2002-01-01

    For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

  13. Design and deploying study of a new petal-type deployable solid surface antenna

    NASA Astrophysics Data System (ADS)

    Huang, He; Guan, Fu-Ling; Pan, Liang-Lai; Xu, Yan

    2018-07-01

    Deployable solid surface reflector is still one of the most important ways to fulfill the ultra-high-accuracy and ultra-large-aperture reflector antennas. However the drawback of integrate stiffness is still a main problem for solid surface reflectors in the former research. To figure out this problem, a New Petal-type Deployable Solid Surface Antenna (NPDSSA) is developed in this study. A kind of drag springs are applied as linkages with adjacent petals to improve the integrate rigidity. The structural design is introduced and the geometric parameters are analyzed to find their effects on the rotation and package capacities. The software simulations and laboratory model tests are conducted to verify the deploying process of NPDSSA. Two models are employed to study the property of linkage butts and drag springs. It is indicated that model NPDSSA with the application of linkage butts and drag springs has better integrality and stability during the deploying. Finally it is concluded that NPDSSA is feasible for space applications.

  14. The International Space Station: A National Science Laboratory

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2011-01-01

    After more than a decade of assembly missions and on the heels of the final voyage of Space Shuttle Discovery, the International Space Station (ISS) has reached assembly completion. With visiting spacecraft now docking with the ISS on a regular basis, the Station now serves as a National Laboratory to scientists back on Earth. ISS strengthens relationships among NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. In this lecture we will explore the various areas of research onboard ISS to promote this advancement: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science. The ISS National Laboratory will also open new paths for the exploration and economic development of space.

  15. 2015 Key Wind Program and National Laboratory Accomplishments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Energy Efficiency and Renewable Energy

    The U.S. Department of Energy (DOE) Wind Program is committed to helping the nation secure cost-competitive sources of renewable energy through the development and deployment of innovative wind power technologies. By investing in improvements to wind plant design, technology development, and operation as well as developing tools to identify the highest quality wind resources, the Wind Program serves as a leader in making wind energy technologies more competitive with traditional sources of energy and a larger part of our nation’s renewable energy portfolio.

  16. Antenna Deployment for a Pathfinder Lunar Radio Observatory

    NASA Astrophysics Data System (ADS)

    MacDowall, Robert J.; Minetto, F. A.; Lazio, T. W.; Jones, D. L.; Kasper, J. C.; Burns, J. O.; Stewart, K. P.; Weiler, K. W.

    2012-05-01

    A first step in the development of a large radio observatory on the moon for cosmological or other astrophysical and planetary goals is to deploy a few antennas as a pathfinder mission. In this presentation, we describe a mechanism being developed to deploy such antennas from a small craft, such as a Google Lunar X-prize lander. The antenna concept is to deposit antennas and leads on a polyimide film, such as Kapton, and to unroll the film on the lunar surface. The deployment technique utilized is to launch an anchor which pulls a double line from a reel at the spacecraft. Subsequently, the anchor is set by catching on the surface or collecting sufficient regolith. A motor then pulls in one end of the line, pulling the film off of its roller onto the lunar surface. Detection of a low frequency cutoff of the galactic radio background or of solar radio bursts by such a system would determine the maximum lunar ionospheric density at the time of measurement. The current design and testing, including videos of the deployment, will be presented. These activities are funded in part by the NASA Lunar Science Institute as an activity of the Lunar University Network for Astrophysical Research (LUNAR) consortium. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  17. Antenna Deployment for a Pathfinder Lunar Radio Observatory

    NASA Technical Reports Server (NTRS)

    MacDowall, Robert J.; Minetto, F. A.; Lazio, T. W.; Jones, D. L.; Kasper, J. C.; Burns, J. O.; Stewart, K. P.; Weiler, K. W.

    2012-01-01

    A first step in the development of a large radio observatory on the moon for cosmological or other astrophysical and planetary goals is to deploy a few antennas as a pathfinder mission. In this presentation, we describe a mechanism being developed to deploy such antennas from a small craft, such as a Google Lunar X-prize lander. The antenna concept is to deposit antennas and leads on a polyimide film, such as Kapton, and to unroll the film on the lunar surface. The deployment technique utilized is to launch an anchor which pulls a double line from a reel at the spacecraft. Subsequently, the anchor is set by catching on the surface or collecting sufficient regolith. A motor then pulls in one end of the line, pulling the film off of its roller onto the lunar surface. Detection of a low frequency cutoff of the galactic radio background or of solar radio bursts by such a system would determine the maximum lunar ionospheric density at the time of measurement. The current design and testing, including videos of the deployment, will be presented. These activities are funded in part by the NASA Lunar Science Institute as an activity of the Lunar University Network for Astrophysical Research (LUNAR) consortium. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  18. 75 Breakthroughs by the U.S. Department of Energy's National Laboratories; Breakthroughs 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Born at a time when the world faced a dire threat, the National Laboratory System protects America through science and technology. For more than 75 years, the Department of Energy’s national laboratories have solved important problems in science, energy and national security. Partnering with industry and academia, the laboratories also drive innovation to advance economic competitiveness and ensure our nation’s future prosperity. Over the years, America's National Laboratories have been changing and improving the lives of millions of people and this expertise continues to keep our nation at the forefront of science and technology in a rapidly changing world. Thismore » network of Department of Energy Laboratories has grown into 17 facilities across the country. As this list of breakthroughs attests, Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination and helped to reveal the secrets of the universe.« less

  19. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  20. Management of Acute Diarrheal Illness During Deployment: A Deployment Health Guideline and Expert Panel Report.

    PubMed

    Riddle, Mark S; Martin, Gregory J; Murray, Clinton K; Burgess, Timothy H; Connor, Patrick; Mancuso, James D; Schnaubelt, Elizabeth R; Ballard, Timothy P; Fraser, Jamie; Tribble, David R

    2017-09-01

    Acute diarrheal illness during deployment causes significant morbidity and loss of duty days. Effective and timely treatment is needed to reduce individual, unit, and health system performance impacts. This critical appraisal of the literature, as part of the development of expert consensus guidelines, asked several key questions related to self-care and healthcare-seeking behavior, antibiotics for self-treatment of travelers' diarrhea, what antibiotics/regimens should be considered for treatment of acute watery diarrhea and febrile diarrhea and/or dysentery, and when and what laboratory diagnostics should be used to support management of deployment-related travelers' diarrhea. Studies of acute diarrhea management in military and other travelers were assessed for relevance and quality. On the basis of this critical appraisal, guideline recommendations were developed and graded by the Expert Panel using good standards in clinical guideline development methodology. New definitions for defining the severity of diarrhea during deployment were established. A total of 13 graded recommendations on the topics of prophylaxis, therapy and diagnosis, and follow-up were developed. In addition, four non-graded consensus-based statements were adopted. Successful management of acute diarrheal illness during deployment requires action at the provider, population, and commander levels. Strong evidence supports that single-dose antimicrobial therapy is effective in most cases of moderate to severe acute diarrheal illness during deployment. Further studies are needed to address gaps in available knowledge regarding optimal therapies for treatment, prevention, and laboratory testing of acute diarrheal illness. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  1. Utility-Scale Photovoltaic Deployment Scenarios of the Western United States: Implications for Solar Energy Zones in Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frew, Bethany; Mai, Trieu; Krishnan, Venkat

    2016-12-01

    In this study, we use the National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment System (ReEDS) capacity expansion model to estimate utility-scale photovoltaic (UPV) deployment trends from present day through 2030. The analysis seeks to inform the U.S. Bureau of Land Management's (BLM's) planning activities related to UPV development on federal lands in Nevada as part of the Resource Management Plan (RMP) revision for the Las Vegas and Pahrump field offices. These planning activities include assessing the demand for new or expanded additional Solar Energy Zones (SEZ), per the process outlined in BLM's Western Solar Plan process.

  2. Victimization and adversity among children experiencing war-related parental absence or deployment in a nationally representative US sample.

    PubMed

    Turner, Heather A; Finkelhor, David; Hamby, Sherry; Henly, Megan

    2017-05-01

    This study compares children and youth who have experienced lifetime war-related parental absence or deployment with those having no such history on a variety of victimization types, non-victimization adversity, trauma symptoms, and delinquency; and assesses whether cumulative adversity and victimization help to explain elevated emotional and behavioral problems among children of parents who have experienced war-related absence or deployment. The National Surveys of Children's Exposure to Violence (NatSCEV) are comprised of three cross-sectional telephone surveys conducted in 2008, 2011, and 2014. Data were collected on the experiences of children aged one month to seventeen years. In each survey, interviews were conducted with youth 10-17 years old and with caregivers of children 0-9 years old. The analyses use pooled data from all three U.S. nationally-representative samples (total sample size of 13,052). Lifetime parental war-related absence or deployment was a marker for elevated childhood exposure to a wide array of victimization and adversity types. Cumulative past year exposure to multiple forms of victimization and adversity fully explained elevated trauma symptoms and delinquency in this population of children. Given the breadth of victimization and adversity risk, children with histories of parental war-related absence or deployment, as well as their families, represent important target groups for broad-based prevention and interventions to reduce exposure and ameliorate consequences when it does occur. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noakes, Mark W; Burgess, Thomas W; Rowe, John C

    2011-01-01

    Oak Ridge National Laboratory (ORNL) has a long history in the development of remote systems to support the nuclear environment. ORNL, working in conjunction with Central Research Laboratories, created what is believed to be the first microcomputer-based implementation of dual-arm master-slave remote manipulation. As part of the Consolidated Fuel Reprocessing Program, ORNL developed the dual-arm advanced servomanipulator focusing on remote maintainability for systems exposed to high radiation fields. ORNL also participated in almost all of the various technical areas of the U.S. Department of Energy s Robotics Technology Development Program, while leading the Decontamination and Decommissioning and Tank Waste Retrievalmore » categories. Over the course of this involvement, ORNL has developed a substantial base of working knowledge as to what works when and under what circumstances for many types of remote systems tasks as well as operator interface modes, control bandwidth, and sensing requirements to name a few. By using a select list of manipulator systems that is not meant to be exhaustive, this paper will discuss history and outcome of development, field-testing, deployment, and operations from a lessons learned perspective. The final outcome is a summary paper outlining ORNL experiences and guidelines for transition of developmental remote systems to real-world hazardous environments.« less

  4. Safeguards Knowledge Management & Retention at U.S. National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddal, Risa; Jones, Rebecca; Bersell, Bridget

    In 2017, four U.S. National Laboratories collaborated on behalf of DOE/NNSA to explore the safeguards knowledge retention problem, identify possible approaches, and develop a strategy to address it. The one-year effort consisted of four primary tasks. First, the project sought to identify critical safeguards information at risk of loss. Second, a survey and workshop were conducted to assess nine U.S. National Laboratories' efforts to determine current safeguards knowledge retention practices and challenges, and identify best practices. Third, specific tools were developed to identify and predict critical safeguards knowledge gaps and how best to recruit in order to fill those gaps.more » Finally, based on findings from the first three tasks and research on other organizational approaches to address similar issues, a strategy was developed on potential knowledge retention methods, customized HR policies, and best practices that could be implemented across the National Laboratory Complex.« less

  5. Location | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  6. Collaborations | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory has a range of contractual agreement options available which offer flexibility to facilitate the formation of partnerships. The appropriate business mechanism is considered based on the scope and objectives of the pa

  7. Small Cube Satellite Deploy

    NASA Image and Video Library

    2013-11-19

    ISS038-E-003876 (19 Nov. 2013) --- Three nanosatellites, known as Cubesats, are featured in this image photographed by an Expedition 38 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module's robotic arm on Nov. 19, 2013. Japan Aerospace Exploration Agency astronaut Koichi Wakata, flight engineer, monitored the satellite deployment while operating the Japanese robotic arm from inside Kibo. The Cubesats were delivered to the International Space Station Aug. 9, aboard Japan’s fourth H-II Transfer Vehicle, Kounotori-4.

  8. Sandia National Laboratories: About Sandia: Environmental Responsibility:

    Science.gov Websites

    Environmental Management: Sandia Sandia National Laboratories Exceptional service in the Environmental Responsibility Environmental Management System Pollution Prevention History 60 impacts Diversity ; Verification Research Research Foundations Bioscience Computing & Information Science Electromagnetics

  9. National Storage Laboratory: a collaborative research project

    NASA Astrophysics Data System (ADS)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  10. What We Do | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory is the only U.S. national lab wholly focused on research, technology, and collaboration in the biomedical sciences- working to discover, to innovate, and to improve human health. We accelerate progress against can

  11. Mobile robotics research at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morse, W.D.

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  12. Mozambique's journey toward accreditation of the National Tuberculosis Reference Laboratory.

    PubMed

    Viegas, Sofia O; Azam, Khalide; Madeira, Carla; Aguiar, Carmen; Dolores, Carolina; Mandlaze, Ana P; Chongo, Patrina; Masamha, Jessina; Cirillo, Daniela M; Jani, Ilesh V; Gudo, Eduardo S

    2017-01-01

    Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL) in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL's process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique to achieve ISO 15189 accreditation. From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan.

  13. Accessibility | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is making every effort to ensure that the information available on our website is accessible to all. If you use special adaptive equipment to access the web and encounter problems when usin

  14. NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM (NELAP) SUPPORT

    EPA Science Inventory

    The nation has long suffered from the inefficiencies and inconsistencies of the current multiple environmental laboratory accreditation programs. In the 1970's, EPA set minimum standards for a drinking water certification program. The drinking water program was adopted by the s...

  15. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of The Director)

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selectedmore » from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.« less

  16. A woman like you: Women scientists and engineers at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita

    1991-01-01

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less

  17. Abusive Relationship and Its Associated Factors Between Deployed and Un-Deployed Veterans in College.

    PubMed

    Min, Hosik

    2018-03-01

    This study is to examine the effect of student veteran status on abusive relationships, namely, emotional, physical, and sexual abuse. In addition, this study divided student veterans into two groups, deployed and un-deployed veterans, to see whether two groups demonstrate different results on abusive relationships. Logistic regression models were employed as a statistical strategy using the 2011-2014 American College Health Association National College Health Assessment II (ACHA-NCHA-II) data. The results found that deployed veterans were more likely to experience physical abuse, while un-deployed veterans were more likely to experience emotional abuse. Student veterans did not show any significant relationship with sexual abuse regardless deployment experience. It would be appropriate to consider the results of this study to address abusive relationships among student veterans, which help them to not only adjust college life but also succeed in careers and have healthy family relationships.

  18. Finding Their Way Back In: Family Reintegration Following Guard Deployment.

    PubMed

    Messecar, Deborah C

    2017-03-01

    The aim of this study was to describe deployed National Guard members' and their families' perceptions of their experience with family reintegration, and the causes and conditions of challenges reintegration presents after deployment. A total of 26 National Guard members and 19 family members participated in individual (n = 22), couples (n = 6), or focus group (n = 17) interviews. In-depth interviews were used to assess needs and maximize input from military families regarding deployment-related experiences and reintegration issues. Qualitative coding and analysis of data were completed using NVivo. Finding their way back in is the key process that the military members must complete to successfully reestablish their desired social connections with the family and reclaim their place within the family. Several conditions shape the degree of challenges with reintegration that veterans and their family will encounter. These include preparation for deployment, length and type of deployment, communication during deployment, and finally, awareness of how deployment changes the military member and the family. Support resources dedicated to providing National Guard members and their families with assistance in preparing for deployments and educating them about the importance of communication during deployment should be maintained and expanded. Broader educational efforts that increase awareness of what to expect regarding how deployment changes the military member and the family are needed. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  19. Sandia National Laboratories: Research: Research Foundations: Radiation

    Science.gov Websites

    Effects and High Energy Density Science Sandia National Laboratories Exceptional service in the Engineering Science Geoscience Materials Science Nanodevices & Microsystems Radiation Effects & High Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy

  20. History | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research was established as the Frederick Cancer Research and Development Center in 1972 when about 70 acres and 67 buildings of the U.S. Army were transferred to the U.S. Department of Health and Huma

  1. Analysis of a Single Year of Performance Data for Thin Film Modules Deployed at NREL and NISE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacAlpine, Sara; Deceglie, Michael; Kurtz, Sarah

    2016-08-01

    The National Renewable Energy Laboratory (NREL) and National Institute of Solar Energy (NISE), located in the United States and India, respectively, have partnered to deploy and monitor modules of three different thin film technologies, to compare the performance and/or degradation between the two sites. This report analyzes a single year of performance data (May 2014 -- May 2015) for the three thin film technologies, exploring the modules' performance under standard test conditions and monthly performance ratios, as well as fill factors varying season, light level, and temperature.

  2. Sandia National Laboratories analysis code data base

    NASA Astrophysics Data System (ADS)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  3. 76 FR 17367 - National Voluntary Laboratory Accreditation Program; Operating Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology 15 CFR Part 285 [Docket No: 110125063-1062-02] RIN 0693-AB61 National Voluntary Laboratory Accreditation Program; Operating Procedures AGENCY: National Institute of Standards and Technology (NIST), Commerce. ACTION: Notice of proposed...

  4. NREL and Sandia National Laboratories to Sharpen Wind Farm Turbine Controls

    Science.gov Websites

    | News | NREL NREL and Sandia National Laboratories to Sharpen Wind Farm Turbine Controls NREL and Sandia National Laboratories to Sharpen Wind Farm Turbine Controls April 1, 2016 Researchers at wind turbine modeling. The NREL controls team have been evaluating their control theory in simulations

  5. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigali, Mark J.; Miller, James E.; Altman, Susan J.

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documentsmore » Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.« less

  6. Precision and manufacturing at the Lawrence Livermore National Laboratory

    NASA Technical Reports Server (NTRS)

    Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.

    1994-01-01

    Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  7. Precision and manufacturing at the Lawrence Livermore National Laboratory

    NASA Astrophysics Data System (ADS)

    Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.

    1994-02-01

    Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  8. Battery testing at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1993-03-01

    Argonne National Laboratory's Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies: Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid. These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

  9. Smoking patterns among Los Alamos National Laboratory employees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, M.C.; Wilkinson, G.S.

    Smoking patterns among 5507 employees at Los Alamos National Laboratory were investigated for those who underwent physical examinations by occupational physicians from 1978 to 1983. More male than female employees smoked, although differences in smoking rates between the sexes were not as large as differences observed for national smoking rates. Employees over 40 were more likely to smoke than younger employees, males consumed more cigarettes than did females, and Anglo employees smoked more cigarettes than did Hispanic employees. Highly educated employees smoked less than did less-educated workers, and staff members exhibited the lowest rates of smoking. Smoking cessation programs formore » Laboratory employees should be directed toward those subpopulations with the highest rates of smoking. 31 refs., 8 figs., 1 tab.« less

  10. Implementation of a National Reference Laboratory for Buruli Ulcer Disease in Togo

    PubMed Central

    Badziklou, Kossi; Halatoko, Wemboo Afiwa; Maman, Issaka; Vogel, Felix; Bidjada, Bawimodom; Awoussi, Koffi Somenou; Piten, Ebekalisai; Helfrich, Kerstin; Mengele, Carolin; Nitschke, Jörg; Amekuse, Komi; Wiedemann, Franz Xaver; Diefenhardt, Adolf; Kobara, Basile; Herbinger, Karl–Heinz; Kere, Abiba Banla; Prince-David, Mireille; Löscher, Thomas; Bretzel, Gisela

    2013-01-01

    Background In a previous study PCR analysis of clinical samples from suspected cases of Buruli ulcer disease (BUD) from Togo and external quality assurance (EQA) for local microscopy were conducted at an external reference laboratory in Germany. The relatively poor performance of local microscopy as well as effort and time associated with shipment of PCR samples necessitated the implementation of stringent EQA measures and availability of local laboratory capacity. This study describes the approach to implementation of a national BUD reference laboratory in Togo. Methodology Large scale outreach activities accompanied by regular training programs for health care professionals were conducted in the regions “Maritime” and “Central,” standard operating procedures defined all processes in participating laboratories (regional, national and external reference laboratories) as well as the interaction between laboratories and partners in the field. Microscopy was conducted at regional level and slides were subjected to EQA at national and external reference laboratories. For PCR analysis, sample pairs were collected and subjected to a dry-reagent-based IS2404-PCR (DRB-PCR) at national level and standard IS2404 PCR followed by IS2404 qPCR analysis of negative samples at the external reference laboratory. Principal Findings The inter-laboratory concordance rates for microscopy ranged from 89% to 94%; overall, microscopy confirmed 50% of all suspected BUD cases. The inter-laboratory concordance rate for PCR was 96% with an overall PCR case confirmation rate of 78%. Compared to a previous study, the rate of BUD patients with non-ulcerative lesions increased from 37% to 50%, the mean duration of disease before clinical diagnosis decreased significantly from 182.6 to 82.1 days among patients with ulcerative lesions, and the percentage of category III lesions decreased from 30.3% to 19.2%. Conclusions High inter-laboratory concordance rates as well as case confirmation

  11. Implementation of a national reference laboratory for Buruli ulcer disease in Togo.

    PubMed

    Beissner, Marcus; Huber, Kristina Lydia; Badziklou, Kossi; Halatoko, Wemboo Afiwa; Maman, Issaka; Vogel, Felix; Bidjada, Bawimodom; Awoussi, Koffi Somenou; Piten, Ebekalisai; Helfrich, Kerstin; Mengele, Carolin; Nitschke, Jörg; Amekuse, Komi; Wiedemann, Franz Xaver; Diefenhardt, Adolf; Kobara, Basile; Herbinger, Karl-Heinz; Kere, Abiba Banla; Prince-David, Mireille; Löscher, Thomas; Bretzel, Gisela

    2013-01-01

    In a previous study PCR analysis of clinical samples from suspected cases of Buruli ulcer disease (BUD) from Togo and external quality assurance (EQA) for local microscopy were conducted at an external reference laboratory in Germany. The relatively poor performance of local microscopy as well as effort and time associated with shipment of PCR samples necessitated the implementation of stringent EQA measures and availability of local laboratory capacity. This study describes the approach to implementation of a national BUD reference laboratory in Togo. Large scale outreach activities accompanied by regular training programs for health care professionals were conducted in the regions "Maritime" and "Central," standard operating procedures defined all processes in participating laboratories (regional, national and external reference laboratories) as well as the interaction between laboratories and partners in the field. Microscopy was conducted at regional level and slides were subjected to EQA at national and external reference laboratories. For PCR analysis, sample pairs were collected and subjected to a dry-reagent-based IS2404-PCR (DRB-PCR) at national level and standard IS2404 PCR followed by IS2404 qPCR analysis of negative samples at the external reference laboratory. The inter-laboratory concordance rates for microscopy ranged from 89% to 94%; overall, microscopy confirmed 50% of all suspected BUD cases. The inter-laboratory concordance rate for PCR was 96% with an overall PCR case confirmation rate of 78%. Compared to a previous study, the rate of BUD patients with non-ulcerative lesions increased from 37% to 50%, the mean duration of disease before clinical diagnosis decreased significantly from 182.6 to 82.1 days among patients with ulcerative lesions, and the percentage of category III lesions decreased from 30.3% to 19.2%. High inter-laboratory concordance rates as well as case confirmation rates of 50% (microscopy), 71% (PCR at national level), and 78

  12. Ebola Laboratory Response at the Eternal Love Winning Africa Campus, Monrovia, Liberia, 2014-2015.

    PubMed

    de Wit, Emmie; Rosenke, Kyle; Fischer, Robert J; Marzi, Andrea; Prescott, Joseph; Bushmaker, Trenton; van Doremalen, Neeltje; Emery, Shannon L; Falzarano, Darryl; Feldmann, Friederike; Groseth, Allison; Hoenen, Thomas; Juma, Bonventure; McNally, Kristin L; Ochieng, Melvin; Omballa, Victor; Onyango, Clayton O; Owuor, Collins; Rowe, Thomas; Safronetz, David; Self, Joshua; Williamson, Brandi N; Zemtsova, Galina; Grolla, Allen; Kobinger, Gary; Rayfield, Mark; Ströher, Ute; Strong, James E; Best, Sonja M; Ebihara, Hideki; Zoon, Kathryn C; Nichol, Stuart T; Nyenswah, Tolbert G; Bolay, Fatorma K; Massaquoi, Moses; Feldmann, Heinz; Fields, Barry

    2016-10-15

    West Africa experienced the first epidemic of Ebola virus infection, with by far the greatest number of cases in Guinea, Sierra Leone, and Liberia. The unprecedented epidemic triggered an unparalleled response, including the deployment of multiple Ebola treatment units and mobile/field diagnostic laboratories. The National Institute of Allergy and Infectious Diseases and the Centers for Disease Control and Prevention deployed a joint laboratory to Monrovia, Liberia, in August 2014 to support the newly founded Ebola treatment unit at the Eternal Love Winning Africa (ELWA) campus. The laboratory operated initially out of a tent structure but quickly moved into a fixed-wall building owing to severe weather conditions, the need for increased security, and the high sample volume. Until May 2015, when the laboratory closed, the site handled close to 6000 clinical specimens for Ebola virus diagnosis and supported the medical staff in case patient management. Laboratory operation and safety, as well as Ebola virus diagnostic assays, are described and discussed; in addition, lessons learned for future deployments are reviewed. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Collaboration Agreement | Frederick National Laboratory for Cancer Research

    Cancer.gov

    A Collaboration Agreement is appropriate for research collaboration involving intellectual and material contributions by the Frederick National Laboratory and external partner(s). It is useful for proof-of-concept studies. Includes brief re

  14. Non-traditional Infrasound Deployment

    NASA Astrophysics Data System (ADS)

    McKenna, M. H.; McComas, S.; Simpson, C. P.; Diaz-Alvarez, H.; Costley, R. D.; Hayward, C.; Golden, P.; Endress, A.

    2017-12-01

    Historically, infrasound arrays have been deployed in rural environments where anthropological noise sources are limited. As interest in monitoring low energy sources at local distances grows in the infrasound community, it will be vital to understand how to monitor infrasound sources in an urban environment. Arrays deployed in urban centers have to overcome the decreased signal-to-noise ratio and reduced amount of real estate available to deploy an array. To advance the understanding of monitoring infrasound sources in urban environments, local and regional infrasound arrays were deployed on building rooftops on the campus at Southern Methodist University (SMU), and data were collected for one seasonal cycle. The data were evaluated for structural source signals (continuous-wave packets), and when a signal was identified, the back azimuth to the source was determined through frequency-wavenumber analysis. This information was used to identify hypothesized structural sources; these sources were verified through direct measurement and dynamic structural analysis modeling. In addition to the rooftop arrays, a camouflaged infrasound sensor was installed on the SMU campus and evaluated to determine its effectiveness for wind noise reduction. Permission to publish was granted by Director, Geotechnical and Structures Laboratory.

  15. Frontiers: Research highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  16. Frontiers: Research Highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    DOE R&D Accomplishments Database

    1996-01-01

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  17. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It alsomore » summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.« less

  18. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAlpine, Bradley

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclearmore » capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.« less

  19. 1990 National Water Quality Laboratory Services Catalog

    USGS Publications Warehouse

    Pritt, Jeffrey; Jones, Berwyn E.

    1989-01-01

    PREFACE This catalog provides information about analytical services available from the National Water Quality Laboratory (NWQL) to support programs of the Water Resources Division of the U.S. Geological Survey. To assist personnel in the selection of analytical services, the catalog lists cost, sample volume, applicable concentration range, detection level, precision of analysis, and preservation techniques for samples to be submitted for analysis. Prices for services reflect operationa1 costs, the complexity of each analytical procedure, and the costs to ensure analytical quality control. The catalog consists of five parts. Part 1 is a glossary of terminology; Part 2 lists the bottles, containers, solutions, and other materials that are available through the NWQL; Part 3 describes the field processing of samples to be submitted for analysis; Part 4 describes analytical services that are available; and Part 5 contains indices of analytical methodology and Chemical Abstract Services (CAS) numbers. Nomenclature used in the catalog is consistent with WATSTORE and STORET. The user is provided with laboratory codes and schedules that consist of groupings of parameters which are measured together in the NWQL. In cases where more than one analytical range is offered for a single element or compound, different laboratory codes are given. Book 5 of the series 'Techniques of Water Resources Investigations of the U.S. Geological Survey' should be consulted for more information about the analytical procedures included in the tabulations. This catalog supersedes U.S. Geological Survey Open-File Report 86-232 '1986-87-88 National Water Quality Laboratory Services Catalog', October 1985.

  20. Contact Us | Frederick National Laboratory for Cancer Research

    Cancer.gov

    E-mail:fnlwebsite@nih.gov Phone:(301) 846-1000 Postal Mail: Frederick National Laboratory for Cancer Research P.O. Box B Frederick, MD 21702-1201 Human Resources Office of Recruitment (301) 846-5362 Jim

  1. Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Brian K.

    2014-08-01

    This technology evaluation was performed by Pacific Northwest National Laboratory and Oak Ridge National Laboratory on behalf of the Federal Energy Management Program. The objective was to quantify the benefits side stream filtration provides to a cooling tower system. The evaluation assessed the performance of an existing side stream filtration system at a cooling tower system at Oak Ridge National Laboratory’s Spallation Neutron Source research facility. This location was selected because it offered the opportunity for a side-by-side comparison of a system featuring side stream filtration and an unfiltered system.

  2. Kathleen Igo | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Directorate: Clinical Research Program Department or lab: Clinical Monitoring Research Program (CMRP) How many years have you worked at the Frederick National Laboratory? I am in my 7th year of employment.

  3. Locations Accessible | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland.Operations and Technical Support contractor Leidos Biomedical Resea

  4. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruski, Marek; Sadow, Aaron; Slowing, Igor

    Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/ molecular catalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through trans-formative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to attack scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appoint-ments at a university and a National Laboratory.« less

  5. Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.

    Catalysis research at the U.S. Department of Energy’s (DOE’s) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to tackle scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appointments at a university and a National Laboratory.« less

  6. Practical recommendations for strengthening national and regional laboratory networks in Africa in the Global Health Security era.

    PubMed

    Best, Michele; Sakande, Jean

    2016-01-01

    The role of national health laboratories in support of public health response has expanded beyond laboratory testing to include a number of other core functions such as emergency response, training and outreach, communications, laboratory-based surveillance and data management. These functions can only be accomplished by an efficient and resilient national laboratory network that includes public health, reference, clinical and other laboratories. It is a primary responsibility of the national health laboratory in the Ministry of Health to develop and maintain the national laboratory network in the country. In this article, we present practical recommendations based on 17 years of network development experience for the development of effective national laboratory networks. These recommendations and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of resilient, integrated laboratory networks will enhance each state's public health system and is critical to the development of a robust national laboratory response network to meet global health security threats.

  7. Practical recommendations for strengthening national and regional laboratory networks in Africa in the Global Health Security era

    PubMed Central

    2016-01-01

    The role of national health laboratories in support of public health response has expanded beyond laboratory testing to include a number of other core functions such as emergency response, training and outreach, communications, laboratory-based surveillance and data management. These functions can only be accomplished by an efficient and resilient national laboratory network that includes public health, reference, clinical and other laboratories. It is a primary responsibility of the national health laboratory in the Ministry of Health to develop and maintain the national laboratory network in the country. In this article, we present practical recommendations based on 17 years of network development experience for the development of effective national laboratory networks. These recommendations and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of resilient, integrated laboratory networks will enhance each state’s public health system and is critical to the development of a robust national laboratory response network to meet global health security threats. PMID:28879137

  8. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basques, Eric O.

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of programmore » promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.« less

  9. Informal Physics Education: Outreach from a National Laboratory

    NASA Astrophysics Data System (ADS)

    Sanchez, Jose; Dixon, Patricia; Hughes, Roxanne

    2012-02-01

    This presentation highlights strategies for K-20 teaching and learning about materials research in informal settings. The National High Magnetic Field Laboratory's Center for Integrating Research & Learning is in a unique position to conduct programs that reach K-20 students and teachers. As part of a national laboratory the Center provides the infrastructure around which informal education programs are implemented, including the nationally-recognized programming as well as facilitating scientists' educational outreach in the community. Research Experiences for Undergraduates, focuses on encouraging women and other underrepresented groups to pursue STEM careers reaching approximately 200 students many of whom have pursued careers in research as well as academia. The Research Experiences for Teachers program has provided internships for over 150 teachers; the Center also reaches over 10,000 students each year through school and community outreach. Success of informal education programs relies heavily on establishing strong mentoring relationships between scientists and K-20 students and teachers. The Center's success at maintaining diverse programming that transforms how materials education is presented beyond the traditional classroom is the focus for this presentation.

  10. Battery testing at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY-92 on both single cells and multi-cell modules that encompass six battery technologies (Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  11. Mozambique’s journey toward accreditation of the National Tuberculosis Reference Laboratory

    PubMed Central

    Madeira, Carla; Aguiar, Carmen; Dolores, Carolina; Mandlaze, Ana P.; Chongo, Patrina; Masamha, Jessina

    2017-01-01

    Background Internationally-accredited laboratories are recognised for their superior test reliability, operational performance, quality management and competence. In a bid to meet international quality standards, the Mozambique National Institute of Health enrolled the National Tuberculosis Reference Laboratory (NTRL) in a continuous quality improvement process towards ISO 15189 accreditation. Here, we describe the road map taken by the NTRL to achieve international accreditation. Methods The NTRL adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme as a strategy to implement a quality management system. After SLMTA, the Mozambique National Institute of Health committed to accelerate the NTRL’s process toward accreditation. An action plan was designed to streamline the process. Quality indicators were defined to benchmark progress. Staff were trained to improve performance. Mentorship from an experienced assessor was provided. Fulfilment of accreditation standards was assessed by the Portuguese Accreditation Board. Results Of the eight laboratories participating in SLMTA, the NTRL was the best-performing laboratory, achieving a 53.6% improvement over the SLMTA baseline conducted in February 2011 to the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) assessment in June 2013. During the accreditation assessment in September 2014, 25 minor nonconformities were identified and addressed. In March 2015, the NTRL received Portuguese Accreditation Board recognition of technical competency for fluorescence smear microscopy, and solid and liquid culture. The NTRL is the first laboratory in Mozambique to achieve ISO 15189 accreditation. Conclusions From our experience, accreditation was made possible by institutional commitment, strong laboratory leadership, staff motivation, adequate infrastructure and a comprehensive action plan. PMID:28879162

  12. Batteries and Energy Storage | Argonne National Laboratory

    Science.gov Websites

    -energy density lithium-ion batteries, while using our fundamental science capabilities to develop storage ), headquartered at Argonne National Laboratory, seeks to develop new technologies that move beyond lithium-ion Transportation SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans

  13. Deployment of ITS : a summary of the 2010 national survey results.

    DOT National Transportation Integrated Search

    2011-08-01

    This report presents summary results of the 2010 ITS Deployment Tracking survey, the most recent survey conducted by the ITS Deployment Tracking Project. The U.S. Department of Transportation and its member agencies, including the Research and Innova...

  14. Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory

    NASA Astrophysics Data System (ADS)

    Friedman, Alex

    2007-07-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.

  15. Strengthening national health laboratories in sub-Saharan Africa: a decade of remarkable progress

    PubMed Central

    Alemnji, G. A.; Zeh, C.; Yao, K.; Fonjungo, P. N.

    2016-01-01

    OBJECTIVES Efforts to combat the HIV/AIDS pandemic have underscored the fragile and neglected nature of some national health laboratories in Africa. In response, national and international partners and various governments have worked collaboratively over the last several years to build sustainable laboratory capacities within the continent. Key accomplishments reflecting this successful partnership include the establishment of the African-based World Health Organization Regional Office for Africa (WHO-AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA); development of the Strengthening Laboratory Management Toward Accreditation (SLMTA) training programme; and launching of a Pan African-based institution, the African Society for Laboratory Medicine (ASLM). These platforms continue to serve as the foundations for national health laboratory infrastructure enhancement, capacity development and overall quality system improvement. Further targeted interventions should encourage countries to aim at integrated tiered referral networks, promote quality system improvement and accreditation, develop laboratory policies and strategic plans, enhance training and laboratory workforce development and a retention strategy, create career paths for laboratory professionals and establish public–private partnerships. Maintaining the gains and ensuring sustainability will require concerted action by all stakeholders with strong leadership and funding from African governments and from the African Union. PMID:24506521

  16. Beverly Hayes | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Employee name: Bev Hayes Directorate: Management Operations Department or lab: Contracts and Acquisitions How many years have you worked at the Frederick National Laboratory? Four months going on one year! Job responsibilities: With the C&A manageme

  17. Airbags to Martian Landers: Analyses at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwinn, K.W.

    1994-03-01

    A new direction for the national laboratories is to assist US business with research and development, primarily through cooperative research and development agreements (CRADAs). Technology transfer to the private sector has been very successful as over 200 CRADAs are in place at Sandia. Because of these cooperative efforts, technology has evolved into some new areas not commonly associated with the former mission of the national laboratories. An example of this is the analysis of fabric structures. Explicit analyses and expertise in constructing parachutes led to the development of a next generation automobile airbag; which led to the construction, testing, andmore » analysis of the Jet Propulsion Laboratory Mars Environmental Survey Lander; and finally led to the development of CAD based custom garment designs using 3D scanned images of the human body. The structural analysis of these fabric structures is described as well as a more traditional example Sandia with the test/analysis correlation of the impact of a weapon container.« less

  18. Pacific Northwest National Laboratory Annual Site Environmental Report for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Joanne P.; Sackschewsky, Michael R.; Tilden, Harold T.

    2014-09-30

    Pacific Northwest National Laboratory (PNNL), one of the U.S. Department of Energy (DOE) Office of Science’s 10 national laboratories, provides innovative science and technology development in the areas of energy and the environment, fundamental and computational science, and national security. DOE’s Pacific Northwest Site Office (PNSO) is responsible for oversight of PNNL at its Campus in Richland, Washington, as well as its facilities in Sequim, Seattle, and North Bonneville, Washington, and Corvallis and Portland, Oregon.

  19. Sandia National Laboratories: National Security Missions: International

    Science.gov Websites

    Weapons Safety & Security Weapons Science & Technology Defense Systems & Assessments About Directed Research & Development Technology Deployment Centers Working With Sandia Working With Sandia Payable Contract Information Construction & Facilities Contract Audit Sandia's Economic Impact

  20. 2016 Annual Site Environmental Report Sandia National Laboratories/New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salas, Angela Maria; Griffith, Stacy R.

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at SNL, New Mexico. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/NM during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and ecological surveillance, waste management, pollution prevention, environmentalmore » restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.« less

  1. 78 FR 66964 - International Space Station National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-129)] International Space Station National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal of the charter of the International Space Station National...

  2. Deployment Efficiency and Barrier Effectiveness Testing of a Temporary Anti-Personnel (TAP) Barrier System.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, David James; Hedrick, Charles D.; Martinez, Ruben

    This report documents tests conducted by Sandia National Laboratories (SNL) on behalf of the U.S. Department of State to evaluate a temporary anti-personnel (TAP) barrier system developed by Mitigation Technologies. For this, the SNL Denial and Structural Assessment department developed a test protocol for the evaluation of the TAP barrier system on the basis of deployment efficiency and barrier effectiveness against a riotous/mob attack threat. The test protocol was then executed by SNL personnel and the results of the testing are documented.

  3. Introduction to the National Information Display Laboratory

    NASA Technical Reports Server (NTRS)

    Carlson, Curtis R.

    1992-01-01

    The goals of the National Information Display Laboratory (NIDL) are described in viewgraph form. The NIDL is a Center of Excellence in softcopy technology with the overall goal to develop new ways to satisfy government information needs through aggressive user support and the development of advanced technology. Government/industry/academia participation, standards development, and various display technologies are addressed.

  4. Sandia National Laboratories: National Security Missions: International

    Science.gov Websites

    ; Security Weapons Science & Technology Defense Systems & Assessments About Defense Systems & ; Development Technology Deployment Centers Working With Sandia Working With Sandia Prospective Suppliers What Information Construction & Facilities Contract Audit Sandia's Economic Impact Licensing & Technology

  5. Sandia National Laboratories: National Security Missions: International

    Science.gov Websites

    Programs Environmental Responsibility Environmental Management System Pollution Prevention History 60 ; Security Weapons Science & Technology Defense Systems & Assessments About Defense Systems & ; Development Technology Deployment Centers Working With Sandia Working With Sandia Prospective Suppliers What

  6. Sandia National Laboratories: National Security Missions: International

    Science.gov Websites

    Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Defense Systems & Assessments About Directed Research & Development Technology Deployment Centers Working With Sandia Working With Sandia

  7. Sandia National Laboratories: National Security Missions: International

    Science.gov Websites

    Weapons Safety & Security Weapons Science & Technology Defense Systems & Assessments About Directed Research & Development Technology Deployment Centers Working With Sandia Working With Sandia Licensing & Technology Transfer Browse Technology Portfolios Technology Partnerships Business, Industry

  8. The laboratory efficiencies initiative: partnership for building a sustainable national public health laboratory system.

    PubMed

    Ridderhof, John C; Moulton, Anthony D; Ned, Renée M; Nicholson, Janet K A; Chu, May C; Becker, Scott J; Blank, Eric C; Breckenridge, Karen J; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners.

  9. The Laboratory Efficiencies Initiative: Partnership for Building a Sustainable National Public Health Laboratory System

    PubMed Central

    Moulton, Anthony D.; Ned, Renée M.; Nicholson, Janet K.A.; Chu, May C.; Becker, Scott J.; Blank, Eric C.; Breckenridge, Karen J.; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners. PMID:23997300

  10. Chemical and Biological Mobile Laboratory: infrastructure employed by Brazilian Army in emergency response actions

    NASA Astrophysics Data System (ADS)

    Cardozo, M.; Oliveira, V. G. M.; Sousa, R. B.; de Paula, R. L.

    2018-03-01

    The Brazilian Army specified and acquired a mobile chemical and biological laboratory in order to confirm in a fast and mobile way with more precise analytical techniques the information obtained by the emergency responders field teams. The laboratory was designed for displacement in different scenarios of the national territory. This paper describes the laboratorial structure, the material flow and the deployment of this defense product in the major international events occurred in Brazil from 2011 to 2016, with the objective of providing in situ identification of chemical and biological threats.

  11. Calibration procedure for Slocum glider deployed optical instruments.

    PubMed

    Cetinić, Ivona; Toro-Farmer, Gerardo; Ragan, Matthew; Oberg, Carl; Jones, Burton H

    2009-08-31

    Recent developments in the field of the autonomous underwater vehicles allow the wide usage of these platforms as part of scientific experiments, monitoring campaigns and more. The vehicles are often equipped with sensors measuring temperature, conductivity, chlorophyll a fluorescence (Chl a), colored dissolved organic matter (CDOM) fluorescence, phycoerithrin (PE) fluorescence and spectral volume scattering function at 117 degrees, providing users with high resolution, real time data. However, calibration of these instruments can be problematic. Most in situ calibrations are performed by deploying complementary instrument packages or water samplers in the proximity of the glider. Laboratory calibrations of the mounted sensors are difficult due to the placement of the instruments within the body of the vehicle. For the laboratory calibrations of the Slocum glider instruments we developed a small calibration chamber where we can perform precise calibrations of the optical instruments aboard our glider, as well as sensors from other deployment platforms. These procedures enable us to obtain pre- and post-deployment calibrations for optical fluorescence instruments, which may differ due to the biofouling and other physical damage that can occur during long-term glider deployments. We found that biofouling caused significant changes in the calibration scaling factors of fluorescent sensors, suggesting the need for consistent and repetitive calibrations for gliders as proposed in this paper.

  12. Frederick National Laboratory Celebrates 40 Years | Poster

    Cancer.gov

    By Ashley DeVine, Staff Writer Forty years ago, what we now call the Frederick National Laboratory for Cancer Research was born. Here are some highlights in the facility’s history. October 19, 1971 – President Richard Nixon announced that Fort Detrick would be converted from a biological warfare facility to a cancer research center (Covert, Norman M., Cutting Edge: A History

  13. 76 FR 4133 - National Environmental Policy Act; Mars Science Laboratory (MSL) Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-008)] National Environmental Policy Act; Mars Science Laboratory (MSL) Mission AGENCY: National Aeronautics and Space Administration (NASA...). SUMMARY: Pursuant to the National Environmental Policy Act, as amended, (NEPA) (42 U.S.C. 4321 et seq...

  14. NATIONAL LABORATORIES: Better Performance Reporting Could Aid Oversight of Laboratory-Directed R&D Program

    DTIC Science & Technology

    2001-09-01

    Development ( LDRD ) program, which formalized a long-standing policy of allowing its multi-program national laboratories discretion to conduct self...initiated, independent research and development (R&D). DOE requires that LDRD work must focus on the advanced study of scientific or technical problems...

  15. NRMRL SCIENCE PUBLICATIONS (NATIONAL RISK MANAGEMENT RESEARCH LABORATORY, EPA, CINCINNATI, OH)

    EPA Science Inventory

    The National Risk Management Research Laboratory (NRMRL)is the U.S.EPA's center for investigating technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory's research progra...

  16. NATIONAL RISK MANAGEMENT RESEARCH LABORATORY - PROVIDING SOLUTIONS FOR A BETTER TOMORROW

    EPA Science Inventory

    As part of the U.S. Environmental Protection Agency's Office of Research and Development, the National Risk Management Research Laboratory (NRMRL) conducts research into ways to prevent and reduce pollution risks that threaten human health and the environment. The laboratory inve...

  17. Beta-Testing Agreement | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Beta-Testing Agreements are appropriate forlimited term evaluation and applications development of new software, technology, or equipment platforms by the Frederick National Laboratory in collaboration with an external commercial partner. It ma

  18. Technology Innovation for the CTBT, the National Laboratory Contribution

    NASA Astrophysics Data System (ADS)

    Goldstein, W. H.

    2016-12-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) and its Protocol are the result of a long history of scientific engagement and international technical collaboration. The U.S. Department of Energy National Laboratories have been conducting nuclear explosive test-ban research for over 50 years and have made significant contributions to this legacy. Recent examples include the RSTT (regional seismic travel time) computer code and the Smart Sampler—both of these products are the result of collaborations among Livermore, Sandia, Los Alamos, and Pacific Northwest National Laboratories. The RSTT code enables fast and accurate seismic event locations using regional data. This code solves the long-standing problem of using teleseismic and regional seismic data together to locate events. The Smart Sampler is designed for use in On-site Inspections to sample soil gases to look for noble gas fission products from a potential underground nuclear explosive test. The Smart Sampler solves the long-standing problem of collecting soil gases without contaminating the sample with gases from the atmosphere by operating only during atmospheric low-pressure events. Both these products are being evaluated by the Preparatory Commission for the CTBT Organization and the international community. In addition to R&D, the National Laboratories provide experts to support U.S. policy makers in ongoing discussions such as CTBT Working Group B, which sets policy for the development of the CTBT monitoring and verification regime.

  19. Internship at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunham, Ryan Q.

    2012-07-11

    Los Alamos National Laboratory (LANL) is located in Los Alamos, New Mexico. It provides support for our country's nuclear weapon stockpile as well as many other scientific research projects. I am an Undergraduate Student Intern in the Systems Design and Analysis group within the Nuclear Nonproliferation division of the Global Security directorate at LANL. I have been tasked with data analysis and modeling of particles in a fluidized bed system for the capture of carbon dioxide from power plant flue gas.

  20. National laboratory policies and plans in sub-Saharan African countries: gaps and opportunities

    PubMed Central

    van der Broek, Ankie; Jansen, Christel; de Bruijn, Hilde; Schultsz, Constance

    2017-01-01

    Background The 2008 Maputo Declaration calls for the development of dedicated national laboratory policies and strategic plans supporting the enhancement of laboratory services in response to the long-lasting relegation of medical laboratory systems in sub-Saharan Africa. Objectives This study describes the extent to which laboratories are addressed in the national health policies and plans created directly following the 2008 momentum for laboratory strengthening. Method National health policies and plans from 39 sub-Saharan African countries, valid throughout and beyond 31 December 2010 were collected in March 2012 and analysed during 2013. Results Laboratories were addressed by all countries. Human resources were the most addressed topic (38/39) and finances and budget were the least addressed (< 5/39). Countries lagging behind in national laboratory strategic planning at the end of 2013 (17/39) were more likely to be francophone countries located in West-Central Africa (13/17) and have historically low HIV prevalence. The most common gaps anticipated to compromise the implementation of the policies and plans were the disconnect between policies and plans, under-developed finance sections and monitoring and evaluating frameworks, absence of points of reference to define gaps and shortages, and inappropriate governance structure. Conclusion The availability of laboratory policy and plan implementation can be improved by strictly applying a more standardised methodology for policy development, using harmonised norms to set targets for improvement and intensifying the establishment of directorates of laboratory services directly under the authority of Ministries of Health. Horizontal programmes such as the Global Health Security Agenda could provide the necessary impulse to take the least advanced countries on board. PMID:28879152

  1. Customer satisfaction assessment at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DN Anderson; ML Sours

    2000-03-23

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. This report presents the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of two major sections: Strategic Value and Project Performance. Both sections contain a set of questions that can be answered with a 5-point Likert scale response. The strategic value section consists of five questions that are designed to determine if a project directly contributes to critical future national needs. The project Performance section consists ofmore » nine questions designed to determine PNNL performance in meeting customer expectations. A statistical model for customer survey data is developed and this report discusses how to analyze the data with this model. The properties of the statistical model can be used to establish a gold standard or performance expectation for the laboratory, and then to assess progress. The gold standard is defined using laboratory management input--answers to four questions, in terms of the information obtained from the customer survey: (1) What should the average Strategic Value be for the laboratory project portfolio? (2) What Strategic Value interval should include most of the projects in the laboratory portfolio? (3) What should average Project Performance be for projects with a Strategic Value of about 2? (4) What should average Project Performance be for projects with a Strategic Value of about 4? To be able to provide meaningful answers to these questions, the PNNL customer survey will need to be fully implemented for several years, thus providing a link between management perceptions of laboratory performance and customer survey data.« less

  2. Lawrence Livermore National Laboratory Environmental Report 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  3. Lawrence Livermore National Laboratory Environmental Report 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosene, C. A.; Jones, H. E.

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  4. What We Offer | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Opportunities We recognize that employee benefit programs are an important part of the total compensation package, and are committed to providing you with comprehensive benefit options. The Frederick National Laboratory's prime contractor, Leidos

  5. Testing activities at the National Battery Test Laboratory

    NASA Astrophysics Data System (ADS)

    Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.

    The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.

  6. Strengthening national health laboratories in sub-Saharan Africa: a decade of remarkable progress.

    PubMed

    Alemnji, G A; Zeh, C; Yao, K; Fonjungo, P N

    2014-04-01

    Efforts to combat the HIV/AIDS pandemic have underscored the fragile and neglected nature of some national health laboratories in Africa. In response, national and international partners and various governments have worked collaboratively over the last several years to build sustainable laboratory capacities within the continent. Key accomplishments reflecting this successful partnership include the establishment of the African-based World Health Organization Regional Office for Africa (WHO-AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA); development of the Strengthening Laboratory Management Toward Accreditation (SLMTA) training programme; and launching of a Pan African-based institution, the African Society for Laboratory Medicine (ASLM). These platforms continue to serve as the foundations for national health laboratory infrastructure enhancement, capacity development and overall quality system improvement. Further targeted interventions should encourage countries to aim at integrated tiered referral networks, promote quality system improvement and accreditation, develop laboratory policies and strategic plans, enhance training and laboratory workforce development and a retention strategy, create career paths for laboratory professionals and establish public-private partnerships. Maintaining the gains and ensuring sustainability will require concerted action by all stakeholders with strong leadership and funding from African governments and from the African Union. Published 2014. This article is a U.S. Government work and is in the public domain in the U.S.A.

  7. Nanotechnology Laboratory Collaborates with Army to Develop Botulism Vaccine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Nanotechnology Characterization Laboratory (NCL) is collaborating with the Army to develop a candidate vaccine against botulism. Under a collaboration agreement between the National Cancer Institute and the U.S. Army Medical Research Institute of

  8. Transient dynamics capability at Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Attaway, Steven W.; Biffle, Johnny H.; Sjaardema, G. D.; Heinstein, M. W.; Schoof, L. A.

    1993-01-01

    A brief overview of the transient dynamics capabilities at Sandia National Laboratories, with an emphasis on recent new developments and current research is presented. In addition, the Sandia National Laboratories (SNL) Engineering Analysis Code Access System (SEACAS), which is a collection of structural and thermal codes and utilities used by analysts at SNL, is described. The SEACAS system includes pre- and post-processing codes, analysis codes, database translation codes, support libraries, Unix shell scripts for execution, and an installation system. SEACAS is used at SNL on a daily basis as a production, research, and development system for the engineering analysts and code developers. Over the past year, approximately 190 days of CPU time were used by SEACAS codes on jobs running from a few seconds up to two and one-half days of CPU time. SEACAS is running on several different systems at SNL including Cray Unicos, Hewlett Packard PH-UX, Digital Equipment Ultrix, and Sun SunOS. An overview of SEACAS, including a short description of the codes in the system, are presented. Abstracts and references for the codes are listed at the end of the report.

  9. Mars pathfinder Rover egress deployable ramp assembly

    NASA Technical Reports Server (NTRS)

    Spence, Brian R.; Sword, Lee F.

    1996-01-01

    The Mars Pathfinder Program is a NASA Discovery Mission, led by the Jet Propulsion Laboratory, to launch and place a small planetary Rover for exploration on the Martian surface. To enable safe and successful egress of the Rover vehicle from the spacecraft, a pair of flight-qualified, deployable ramp assemblies have been developed. This paper focuses on the unique, lightweight deployable ramp assemblies. A brief mission overview and key design requirements are discussed. Design and development activities leading to qualification and flight systems are presented.

  10. [Information system of the national network of public health laboratories in Peru (Netlab)].

    PubMed

    Vargas-Herrera, Javier; Segovia-Juarez, José; Garro Nuñez, Gladys María

    2015-01-01

    Clinical laboratory information systems produce improvements in the quality of information, reduce service costs, and diminish wait times for results, among other things. In the construction process of this information system, the National Institute of Health (NIH) of Peru has developed and implemented a web-based application to communicate to health personnel (laboratory workers, epidemiologists, health strategy managers, physicians, etc.) the results of laboratory tests performed at the Peruvian NIH or in the laboratories of the National Network of Public Health Laboratories which is called NETLAB. This article presents the experience of implementing NETLAB, its current situation, perspectives of its use, and its contribution to the prevention and control of diseases in Peru.

  11. Conceptual design of new metrology laboratories for the National Physical Laboratory, United Kingdom

    NASA Astrophysics Data System (ADS)

    Manning, Christopher J.

    1994-10-01

    The National Physical Laboratory is planning to house the Division of Mechanical and Optical Metrology and the Division of Material Metrology in a new purpose built laboratory building on its site at Teddington, London, England. The scientific staff were involved in identifying and agreeing the vibration performance requirements of the conceptual design. This was complemented by an extensive surgery of vibration levels within the existing facilities and ambient vibration studies at the proposed site. At one end of the site there is significant vibration input from road traffic. Some of the test equipment is also in itself a source of vibration input. These factors, together with normal occupancy inputs, footfalls and door slams, and a highly serviced building led to vibration being dominant in influencing the structural form. The resulting structural concept comprises three separate structural elements for vibration and geotechnical reasons. The laboratories most sensitive to disturbance by vibration are located at the end of the site farthest from local roads on a massive ground bearing slab. Less sensitive laboratories and those containing vibration sources are located on a massive slab in deep, piled foundations. A common central plant area is located alongside on its own massive slab. Medium sensitivity laboratories and offices are located at first floor level on a reinforced concrete suspended floor of maximum stiffness per unit mass. The whole design has been such as to permit upgrading of areas, eg office to laboratory; laboratory to `high sensitivity' laboratory, to cater for changes in future use of the building.

  12. [Laboratory management fee in national health insurance; what is required from clinical laboratory physicians? --message from Chairpersons].

    PubMed

    Kimura, Satoshi; Koshiba, Masahiro

    2013-06-01

    The laboratory management fee (LMF) in national health insurance ("Kentai-Kensa-Kanri-Kasan" in Japanese) has had a major impact on Japanese clinical laboratories, especially in recent years. In 2012, the fee was raised to approximately 5,000 yen per admitted patient. In order to address this national support, clinical pathologists are required to increase their knowledge and skills. On the other hand, there are insufficient clinical pathologists in Japan. In order to solve this problem, the Japanese Society of Laboratory Medicine (JSLM) approved a new license for Qualified Clinical Laboratory Managing Physicians (CLMPs), in addition to Certified Clinical Laboratory Physicians (CCLPs). The requirements to become a CLMP are less strict than for CCLP. There are approximately 500 CLMPs and 600 CCLPs in this country. The aim of this symposium was to offer opportunities to increase attendees' clinical skills, especially CLMPs and young clinical pathologists. Four CCLPs were chosen as speakers from a university hospital, a major city hospital, a medium-sized acute care hospital, and a university hospital anatomical pathologist, together with a chief medical technologist from a university hospital. All the speakers presented their ideal role models of clinical pathologists matching LMF requirements. JSLM together with the Japanese Association of Clinical Laboratory Physicians (JACLaP) sponsored this symposium. It was a successful meeting with more than two hundred attendees.

  13. Impact of Deployment-Related Sexual Stressors on Psychiatric Symptoms After Accounting for Predeployment Stressors: Findings From a U.S. National Guard Cohort.

    PubMed

    McCallum, Ethan B; Murdoch, Maureen; Erbes, Christopher R; Arbisi, Paul; Polusny, Melissa A

    2015-08-01

    This study used a longitudinal research design to examine the impact of predeployment stressors and deployment-related sexual stressors on self-reported psychiatric symptoms of U.S. National Guard soldiers returning from deployments to Iraq or Afghanistan. Prior to deployment, participants completed measures of depression and posttraumatic stress symptoms, along with an inventory of predeployment stressor experiences. At 3-months postdeployment, participants (468 men, 60 women) again completed self-report measures of psychiatric symptoms, along with an inventory of sexual stressors experienced during deployment. We compared a cross-sectional model of sexual stressors' impact on psychiatric symptoms, in which only postdeployment reports were considered, to a longitudinal model in which we adjusted for participants' predeployment stressors and psychiatric symptoms. No participants reported sexual assault during deployment, though sexual harassment was common. The cross-sectional model suggested that deployment-related sexual stressors were significantly associated with postdeployment depression (R(2) = .11) and posttraumatic stress symptoms (R(2) = .10). Once predeployment factors were taken into consideration, however, sexual stressors were no longer significant. The results did not support the notion of lasting negative impact for low-level sexual stressors (e.g., sexual harassment) during deployment after predeployment stressors are accounted for. Future studies of sexual stressors should consider longitudinal designs. © 2015 International Society for Traumatic Stress Studies.

  14. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmentalmore » Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less

  15. Changing Family Roles-Across the Deployment Cycle

    DTIC Science & Technology

    2016-09-01

    informant, longitudinal investigation of Army National Guard families’ experience of deployment project focuses on a) the negotiation and management of...focuses on a) the negotiation and management of family roles during deployment cycles, and b) on the impact of technology-based communication during...member. During reintegration, the service member and partner complete a series of brief telephone interviews regarding their negotiation about household

  16. The Role of a National Biocontainment Laboratory in Emergencies.

    PubMed

    Le Duc, James W; Ksiazek, Thomas G

    2015-01-01

    Over a decade ago, the National Institutes of Health awarded partial support for the construction and operation of 2 National Biocontainment Laboratories, with the condition that they would be available to assist in the event of public health emergencies-although how a biocontainment facility located on an academic campus might contribute was not defined. Here we offer examples of how one of these laboratories has contributed to a coordinated response to 2 recent international public health emergencies. Essential assets for success include highly trained and experienced staff, access to reference pathogens and reagents, cutting-edge knowledge of the field, appropriate biocontainment facilities, robust biosafety and biosecurity programs, and availability of modern instrumentation. The ability to marry the strengths of academia in basic and applied research with access to appropriate biocontainment facilities while drawing on a highly skilled cadre of experienced experts has proven extremely valuable in the response to recent national emergencies and will continue to do so in the future. Areas where additional planning and preparation are needed have also been identified through these experiences.

  17. 15 CFR 270.102 - Conditions for establishment and deployment of a Team.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... deployment of a Team. 270.102 Section 270.102 Commerce and Foreign Trade Regulations Relating to Commerce and... SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.102 Conditions for establishment and deployment of a Team. (a) The Director may establish a Team for deployment...

  18. 15 CFR 270.102 - Conditions for establishment and deployment of a Team.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... deployment of a Team. 270.102 Section 270.102 Commerce and Foreign Trade Regulations Relating to Commerce and... SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.102 Conditions for establishment and deployment of a Team. (a) The Director may establish a Team for deployment...

  19. 15 CFR 270.102 - Conditions for establishment and deployment of a Team.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... deployment of a Team. 270.102 Section 270.102 Commerce and Foreign Trade Regulations Relating to Commerce and... SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.102 Conditions for establishment and deployment of a Team. (a) The Director may establish a Team for deployment...

  20. 15 CFR 270.102 - Conditions for establishment and deployment of a Team.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... deployment of a Team. 270.102 Section 270.102 Commerce and Foreign Trade Regulations Relating to Commerce and... SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.102 Conditions for establishment and deployment of a Team. (a) The Director may establish a Team for deployment...

  1. 15 CFR 270.102 - Conditions for establishment and deployment of a Team.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... deployment of a Team. 270.102 Section 270.102 Commerce and Foreign Trade Regulations Relating to Commerce and... SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment and Deployment of Teams § 270.102 Conditions for establishment and deployment of a Team. (a) The Director may establish a Team for deployment...

  2. 76 FR 65752 - International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-104)] International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space... International and Interagency Relations, (202) 358-0550, National Aeronautics and Space Administration...

  3. Laboratory-Directed Research and Development 2016 Summary Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclearmore » Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear

  4. Abstract - Cooperative Research and Development Agreement between Ames National Laboratory and National Energy Technology Laboratory AGMT-0609

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryden, Mark; Tucker, David A.

    The goal of this project is to develop a merged environment for simulation and analysis (MESA) at the National Energy Technology Laboratory’s (NETL) Hybrid Performance (Hyper) project laboratory. The MESA sensor lab developed as a component of this research will provide a development platform for investigating: 1) advanced control strategies, 2) testing and development of sensor hardware, 3) various modeling in-the-loop algorithms and 4) other advanced computational algorithms for improved plant performance using sensors, real-time models, and complex systems tools.

  5. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; English, Charles Joe

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, whichmore » is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less

  6. Who We Are | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory is addressing some of the most urgent problems in the biomedical sciences – in cancer and AIDS, drug development and first-in-human clinical trials, applications of nanotechnology in medicine, and rapid response to

  7. National Water Quality Laboratory, 1995 services catalog

    USGS Publications Warehouse

    Timme, P.J.

    1995-01-01

    This Services Catalog contains information about field supplies and analytical services available from the National Water Quality Laboratory in Denver, Colo., and field supplies available from the Quality Water Service Unit in Ocala, Fla., to members of the U.S. Geological Survey. To assist personnel in the selection of analytical services, this catalog lists sample volume, required containers, applicable concentration range, detection level, precision of analysis, and preservation requirements for samples.

  8. Customer Satisfaction Assessment at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Dale N.; Sours, Mardell L.

    2000-03-20

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. We present the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of 2 major sections, Strategic Value and Project Performance. The Strategic Value section of the questionnaire consists of 5 questions that can be answered with a 5 point Likert scale response. These questions are designed to determine if a project is directly contributing to critical future national needs. The Project Performance section of the questionnaire consistsmore » of 9 questions that can be answered with a 5 point Likert scale response. These questions determine PNNL performance in meeting customer expectations. Many approaches could be used to analyze customer survey data. We present a statistical model that can accurately capture the random behavior of customer survey data. The properties of this statistical model can be used to establish a "gold standard'' or performance expectation for the laboratory, and then assess progress. The gold standard is defined from input from laboratory management --- answers to 4 simple questions, in terms of the information obtained from the CSAP customer survey, define the standard: *What should the average Strategic Value be for the laboratory project portfolio? *What Strategic Value interval should include most of the projects in the laboratory portfolio? *What should average Project Performance be for projects with a Strategic Value of about 2? *What should average Project Performance be for projects with a Strategic Value of about 4? We discuss how to analyze CSAP customer survey data with this model. Our discussion will include "lessons learned" and issues that can invalidate this type of assessment.« less

  9. Energy Secretary Rick Perry Visits Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Energy Secretary Rick Perry visited Oak Ridge National Laboratory on May 22, 2017. During his visit, the secretary not only toured the lab's premier research facilities, but also had some fun with two of its 3D-printed vehicles.

  10. Lab Plays Central Role in Groundbreaking National Clinical Trial in Precision Medicine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Molecular Characterization Laboratory at the Frederick National Laboratory for Cancer Research lies at the heart of an ambitious new approach for testing cancer drugs that will use the newest tools of precision medicine to select the best treatme

  11. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energymore » Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition

  12. Sandia National Laboratories Institutional Plan FY1994--1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defensemore » imperatives.« less

  13. Frederick National Laboratory Celebrates 40 Years | Poster

    Cancer.gov

    By Ashley DeVine, Staff Writer Forty years ago, what we now call the Frederick National Laboratory for Cancer Research was born. Here are some highlights in the facility’s history. October 19, 1971 – President Richard Nixon announced that Fort Detrick would be converted from a biological warfare facility to a cancer research center (Covert, Norman M., Cutting Edge: A History of Fort Detrick, Maryland, 1943–1993, pp. 85–87).

  14. 78 FR 24154 - Notice of Availability of a National Animal Health Laboratory Network Reorganization Concept Paper

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ...] Notice of Availability of a National Animal Health Laboratory Network Reorganization Concept Paper AGENCY... Network (NAHLN) for public review and comment. The NAHLN is a nationally coordinated network and... Coordinator, National Animal Health Laboratory Network, Veterinary Services, APHIS, 2140 Centre Avenue...

  15. Sandia National Laboratories, California Environmental Management System program manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a setmore » of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  16. GrayQb TM Single-Faced Version 2 (SF2) Hanford Plutonium Reclamation Facility (PRF) deployment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plummer, J. R.; Immel, D. M.; Serrato, M. G.

    2015-11-18

    The Savannah River National Laboratory (SRNL) in partnership with CH2M Plateau Remediation Company (CHPRC) deployed the GrayQb TM SF2 radiation imaging device at the Hanford Plutonium Reclamation Facility (PRF) to assist in the radiological characterization of the canyon. The deployment goal was to locate radiological contamination hot spots in the PRF canyon, where pencil tanks were removed and decontamination/debris removal operations are on-going, to support the CHPRC facility decontamination and decommissioning (D&D) effort. The PRF canyon D&D effort supports completion of the CHPRC Plutonium Finishing Plant Decommissioning Project. The GrayQb TM SF2 (Single Faced Version 2) is a non-destructive examinationmore » device developed by SRNL to generate radiation contour maps showing source locations and relative radiological levels present in the area under examination. The Hanford PRF GrayQbTM Deployment was sponsored by CH2M Plateau Remediation Company (CHPRC) through the DOE Richland Operations Office, Inter-Entity Work Order (IEWO), DOE-RL IEWO- M0SR900210.« less

  17. Economic Impact of Large-Scale Deployment of Offshore Marine and Hydrokinetic Technology in Oregon Coastal Counties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, T.; Tegen, S.; Beiter, P.

    To begin understanding the potential economic impacts of large-scale WEC technology, the Bureau of Ocean Energy Management (BOEM) commissioned the National Renewable Energy Laboratory (NREL) to conduct an economic impact analysis of largescale WEC deployment for Oregon coastal counties. This report follows a previously published report by BOEM and NREL on the jobs and economic impacts of WEC technology for the entire state (Jimenez and Tegen 2015). As in Jimenez and Tegen (2015), this analysis examined two deployment scenarios in the 2026-2045 timeframe: the first scenario assumed 13,000 megawatts (MW) of WEC technology deployed during the analysis period, and themore » second assumed 18,000 MW of WEC technology deployed by 2045. Both scenarios require major technology and cost improvements in the WEC devices. The study is on very large-scale deployment so readers can examine and discuss the potential of a successful and very large WEC industry. The 13,000-MW is used as the basis for the county analysis as it is the smaller of the two scenarios. Sensitivity studies examined the effects of a robust in-state WEC supply chain. The region of analysis is comprised of the seven coastal counties in Oregon—Clatsop, Coos, Curry, Douglas, Lane, Lincoln, and Tillamook—so estimates of jobs and other economic impacts are specific to this coastal county area.« less

  18. Nuclear energy related capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickering, Susan Y.

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing themore » nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.« less

  19. A woman like you: Women scientists and engineers at Brookhaven National Laboratory. Careers in action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less

  20. Gran Sasso National Laboratory: Outreach and communication activities

    NASA Astrophysics Data System (ADS)

    Antolini, R.; Di Giovanni, A.; Galeota, M.; Sebastiani, S.

    2010-01-01

    Due to its fascinating structures, the Gran Sasso National Laboratory (LNGS) offers huge opportunities for communication and outreach activities conceived for students and general public. A great effort is devoted to the organisation of the "OPEN DAY", in which the scientific staff of Gran Sasso introduces non expert people to the main relevant research topics of the laboratory through interactive demonstrations and particle detectors. In particular, a portable cosmic rays telescope has been realized: the detector is used by LNGS team in pubblic events as well as to promote the scientific activities of the Laboratory. In order to point out the importance of the scientific culture for young people, LNGS is involved in the organisation of several training courses for students and teachers focused on the improvement of the knowledge on modern physics topics. Since May 2008 is operating in Teramo the "Galileium", an interactive museum for physics and astrophysics.

  1. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael F. Simpson

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  2. Material Transfer Agreement (MTA) | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  3. Integration of National Laboratory and Low-Activity Waste Pre-Treatment System Technology Service Providers - 16435

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Karthik H.; Thien, Michael G.; Wellman, Dawn M.

    The National Laboratories are a critical partner and provide expertise in numerous aspects of the successful execution of the Direct-Feed Low Activity Waste Program. The National Laboratories are maturing the technologies of the Low-Activity Waste Pre-Treatment System (LAWPS) consistent with DOE Order 413.3B “Program and Project Management for the Acquisition of Capital Assets” expectations. The National Laboratories continue to mature waste forms, i.e. glass and secondary waste grout, for formulations and predictions of long-term performance as inputs to performance assessments. The working processes with the National Laboratories have been developed in procurements, communications, and reporting to support the necessary delivery-basedmore » technology support. The relationship continues to evolve from planning and technology development to support of ongoing operations and integration of multiple highly coordinated facilities.« less

  4. Lessons learned in deploying software estimation technology and tools

    NASA Technical Reports Server (NTRS)

    Panlilio-Yap, Nikki; Ho, Danny

    1994-01-01

    Developing a software product involves estimating various project parameters. This is typically done in the planning stages of the project when there is much uncertainty and very little information. Coming up with accurate estimates of effort, cost, schedule, and reliability is a critical problem faced by all software project managers. The use of estimation models and commercially available tools in conjunction with the best bottom-up estimates of software-development experts enhances the ability of a product development group to derive reasonable estimates of important project parameters. This paper describes the experience of the IBM Software Solutions (SWS) Toronto Laboratory in selecting software estimation models and tools and deploying their use to the laboratory's product development groups. It introduces the SLIM and COSTAR products, the software estimation tools selected for deployment to the product areas, and discusses the rationale for their selection. The paper also describes the mechanisms used for technology injection and tool deployment, and concludes with a discussion of important lessons learned in the technology and tool insertion process.

  5. Comparison of on-site field measured inorganic arsenic in rice with laboratory measurements using a field deployable method: Method validation.

    PubMed

    Mlangeni, Angstone Thembachako; Vecchi, Valeria; Norton, Gareth J; Raab, Andrea; Krupp, Eva M; Feldmann, Joerg

    2018-10-15

    A commercial arsenic field kit designed to measure inorganic arsenic (iAs) in water was modified into a field deployable method (FDM) to measure iAs in rice. While the method has been validated to give precise and accurate results in the laboratory, its on-site field performance has not been evaluated. This study was designed to test the method on-site in Malawi in order to evaluate its accuracy and precision in determination of iAs on-site by comparing with a validated reference method and giving original data on inorganic arsenic in Malawian rice and rice-based products. The method was validated by using the established laboratory-based HPLC-ICPMS. Statistical tests indicated there were no significant differences between on-site and laboratory iAs measurements determined using the FDM (p = 0.263, ά = 0.05) and between on-site measurements and measurements determined using HPLC-ICP-MS (p = 0.299, ά = 0.05). This method allows quick (within 1 h) and efficient screening of rice containing iAs concentrations on-site. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory for Cancer Research, that helps fine-tune nanomedicine formulations and overcomes a key hurdle on the pat

  7. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S COMPREHENSIVE HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from nine U.S. studies related to human activities into one comprehensive data system that can be accessed via the world-wide web. The data system is called CHAD-Consolidated Human Activity Database-and it is ...

  8. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finstad, Casey Charles

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  9. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S CONSOLIDATED HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from 12 U.S. studies related to human activities into one comprehensive data system that can be accessed via the Internet. The data system is called the Consolidated Human Activity Database (CHAD), and it is ...

  10. EPA/ORD NATIONAL EXPOSURE RESEARCH LABORATORY MEASUREMENT SCIENCE SUPPORT FOR HOMELAND SECURITY

    EPA Science Inventory

    This product describes the National Exposure Research Laboratory research and development support for homeland security through the proposed National Exposure Measurements Center (NEMC). Key NEMC functional areas depicted in this poster are: standardized analytical method develo...

  11. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth A.

    2013-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  12. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartock, Mike; Hansen, Todd

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategicmore » management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.« less

  13. The Fiftieth Anniversary of Brookhaven National Laboratory: A Turbulent Time

    NASA Astrophysics Data System (ADS)

    Bond, Peter D.

    2018-03-01

    The fiftieth anniversary year of Brookhaven National Laboratory was momentous, but for reasons other than celebrating its scientific accomplishments. Legacy environmental contamination, community unrest, politics, and internal Department of Energy issues dominated the year. It was the early days of perhaps the most turbulent time in the lab's history. The consequences resulted in significant changes at the lab, but in addition they brought a change to contracts to manage the Department of Energy laboratories.

  14. The Fiftieth Anniversary of Brookhaven National Laboratory: A Turbulent Time

    NASA Astrophysics Data System (ADS)

    Bond, Peter D.

    2018-06-01

    The fiftieth anniversary year of Brookhaven National Laboratory was momentous, but for reasons other than celebrating its scientific accomplishments. Legacy environmental contamination, community unrest, politics, and internal Department of Energy issues dominated the year. It was the early days of perhaps the most turbulent time in the lab's history. The consequences resulted in significant changes at the lab, but in addition they brought a change to contracts to manage the Department of Energy laboratories.

  15. New Visiting Scholars Program at Frederick National Laboratory | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research is now accepting Expressions of Interest to its new Visiting Scholars Program (VSP). VSP is a unique opportunity for researchers to work on important cancer and AIDS projects with teams of scientists at the only federal national laboratory in the United States devoted exclusively to biomedical research.

  16. Technical Service Agreement (TSA) | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Frederick National Laboratory for Cancer Research (FNLCR) scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than 200 collaborations with more than 80 partners. The Frederi

  17. Site environmental report for 2009 : Sandia National Laboratories, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into tenmore » chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.« less

  18. Site Environmental Report for 2010 Sandia National Laboratories, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chaptermore » 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.« less

  19. A Novel Approach for a Low-Cost Deployable Antenna

    NASA Technical Reports Server (NTRS)

    Amend, Chris; Nurnberger, Michael; Oppenheimer, Paul; Koss, Steve; Purdy, Bill

    2010-01-01

    The Naval Research Laboratory (NRL) has designed, built, and fully qualified a low cost, low Passive Intermodulation (PIM) 12-foot (3.66-m) diameter deployable ultra high frequency (UHF) antenna for the Tacsat-4 program. The design utilized novel approaches in reflector material and capacitive coupling techniques. This paper discusses major design trades, unique design characteristics, and lessons learned from the development of the Tacsat 4 deployable antenna. This antenna development was sponsored by the Office of Naval Research.

  20. 77 FR 65374 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... management in the areas of environmental restoration, waste management, and related activities. Tentative...

  1. Public health microbiology in Germany: 20 years of national reference centers and consultant laboratories.

    PubMed

    Beermann, Sandra; Allerberger, Franz; Wirtz, Angela; Burger, Reinhard; Hamouda, Osamah

    2015-10-01

    In 1995, in agreement with the German Federal Ministry of Health, the Robert Koch Institute established a public health microbiology system consisting of national reference centers (NRCs) and consultant laboratories (CLs). The goal was to improve the efficiency of infection protection by advising the authorities on possible measures and to supplement infectious disease surveillance by monitoring selected pathogens that have high public health relevance. Currently, there are 19 NRCs and 40 CLs, each appointed for three years. In 2009, an additional system of national networks of NRCs and CLs was set up in order to enhance effectiveness and cooperation within the national reference laboratory system. The aim of these networks was to advance exchange in diagnostic methods and prevention concepts among reference laboratories and to develop geographic coverage of services. In the last two decades, the German public health laboratory reference system coped with all major infectious disease challenges. The European Union and the European Centre for Disease Prevention and Control (ECDC) are considering implementing a European public health microbiology reference laboratory system. The German reference laboratory system should be well prepared to participate actively in this upcoming endeavor. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Tracking state deployments of commercial vehicle information systems and networks : 1998 Michigan state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  3. Tracking state deployments of commercial vehicle information systems and networks : 1998 Pennsylvania state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  4. Tracking state deployments of commercial vehicle information systems and networks : 1998 Minnesota state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  5. Tracking state deployments of commercial vehicle information systems and networks : 1998 Kansas state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  6. Tracking state deployments of commercial vehicle information systems and networks : 1998 Colorado state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  7. Tracking state deployments of commercial vehicle information systems and networks : 1998 Connecticut state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  8. Tracking state deployments of commercial vehicle information systems and networks : 1998 Missouri state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  9. Tracking state deployments of commercial vehicle information systems and networks : 1998 Delaware state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  10. Tracking state deployments of commercial vehicle information systems and networks : 1998 Massachusetts state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  11. Tracking state deployments of commercial vehicle information systems and networks : 1998 Arizona state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  12. Tracking state deployments of commercial vehicle information systems and networks : 1998 Nebraska state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  13. Tracking state deployments of commercial vehicle information systems and networks : 1998 Wyoming state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  14. Tracking state deployments of commercial vehicle information systems and networks : 1998 Idaho state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  15. Tracking state deployments of commercial vehicle information systems and networks : 1998 Kentucky state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  16. Tracking state deployments of commercial vehicle information systems and networks : 1998 Indiana state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  17. Tracking state deployments of commercial vehicle information systems and networks : 1998 Louisiana state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  18. Tracking state deployments of commercial vehicle information systems and networks : 1998 Maryland state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  19. Tracking state deployments of commercial vehicle information systems and networks : 1998 Oklahoma state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  20. Tracking state deployments of commercial vehicle information systems and networks : 1998 Alaska state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  1. Tracking state deployments of commercial vehicle information systems and networks : 1998 Montana state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  2. Tracking state deployments of commercial vehicle information systems and networks : 1998 Maine state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  3. Tracking state deployments of commercial vehicle information systems and networks : 1998 Vermont state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  4. Tracking state deployments of commercial vehicle information systems and networks : 1998 Hawaii state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  5. Tracking state deployments of commercial vehicle information systems and networks : 1998 Nevada state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  6. Tracking state deployments of commercial vehicle information systems and networks : 1998 Mississippi state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  7. Tracking state deployments of commercial vehicle information systems and networks : 1998 Ohio state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  8. Tracking state deployments of commercial vehicle information systems and networks : 1998 Georgia state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  9. Tracking state deployments of commercial vehicle information systems and networks : 1998 Alabama state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  10. Tracking state deployments of commercial vehicle information systems and networks : 1998 Virginia state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  11. Tracking state deployments of commercial vehicle information systems and networks : 1998 Utah state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  12. Tracking state deployments of commercial vehicle information systems and networks : 1998 California state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  13. Tracking state deployments of commercial vehicle information systems and networks : 1998 Oregon state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  14. Tracking state deployments of commercial vehicle information systems and networks : 1998 Tennessee state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  15. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program provesmore » its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.« less

  16. AmeriFlux US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matamala, Roser

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site). Site Description - Two eddy correlation systems are installed at Fermi National Accelerator Laboratory: one on a restored prairie (established October 2004) and one on a corn/soybean rotation agricultural field (established in July 2005). The prairie site had been farmed for more than 100 years, but was converted to prairie in 1989. April annual to bi-annual prescribed burns have taken place from 1994 - 2007.

  17. 76 FR 68179 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... November 14, 2011, of the Environmental Management Site-Specific Advisory Board, Idaho National Laboratory...: Robert L. Pence, Federal Coordinator, Department of Energy, Idaho Operations Office, 1955 Fremont Avenue...

  18. Surface water data at Los Alamos National Laboratory: 2009 water year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, David; McCullough, Betsy

    2010-05-01

    The principal investigators collected and computed surface water discharge data from 73 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  19. Surface water data at Los Alamos National Laboratory: 2008 water year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  20. Frederick National Laboratory Advisory Committee Welcomes New FNL, NCI Leaders | Poster

    Cancer.gov

    The Frederick National Laboratory Advisory Committee recently met to discuss the future of several high-profile Frederick National Lab initiatives in a meeting that included a chance to meet the new NCI and FNLCR leaders. Here is a look at a few of the highlights from the last of the 2017 FNLAC meetings.

  1. NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION CONFERENCE (NELAC): CONSTITUTION, BYLAWS, AND STANDARDS

    EPA Science Inventory

    The principles and operating procedures for the National Environmental Laboratory Accreditation Conference (NELAC) are contained in the NELAC Constitution and Bylaws. The major portion of this document (standards) contains detailed requirements for accrediting environmental labo...

  2. Natural Gas Storage Research at Savannah River National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, Don; Sulic, Martin; Tamburello, David A.

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  3. Four Argonne National Laboratory scientists receive Early Career Research

    Science.gov Websites

    Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Writing Internship Four Argonne National Laboratory scientists receive Early Career Research Program economic impact of cascading shortages. He will also seek to enable scaling on high-performance computing

  4. 75 FR 24685 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... prior to the meeting. ADDRESSES: Hilton Garden Inn, 700 Lindsay Boulevard, Idaho Falls, Idaho 83402. FOR...

  5. 76 FR 39080 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  6. Forecasting residential solar photovoltaic deployment in California

    DOE PAGES

    Dong, Changgui; Sigrin, Benjamin; Brinkman, Gregory

    2016-12-06

    Residential distributed photovoltaic (PV) deployment in the United States has experienced robust growth, and policy changes impacting the value of solar are likely to occur at the federal and state levels. To establish a credible baseline and evaluate impacts of potential new policies, this analysis employs multiple methods to forecast residential PV deployment in California, including a time-series forecasting model, a threshold heterogeneity diffusion model, a Bass diffusion model, and National Renewable Energy Laboratory's dSolar model. As a baseline, the residential PV market in California is modeled to peak in the early 2020s, with a peak annual installation of 1.5-2more » GW across models. We then use the baseline results from the dSolar model and the threshold model to gauge the impact of the recent federal investment tax credit (ITC) extension, the newly approved California net energy metering (NEM) policy, and a hypothetical value-of-solar (VOS) compensation scheme. We find that the recent ITC extension may increase annual PV installations by 12%-18% (roughly 500 MW, MW) for the California residential sector in 2019-2020. The new NEM policy only has a negligible effect in California due to the relatively small new charges (< 100 MW in 2019-2020). Moreover, impacts of the VOS compensation scheme (0.12 cents per kilowatt-hour) are larger, reducing annual PV adoption by 32% (or 900-1300 MW) in 2019-2020.« less

  7. Forecasting residential solar photovoltaic deployment in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Changgui; Sigrin, Benjamin; Brinkman, Gregory

    Residential distributed photovoltaic (PV) deployment in the United States has experienced robust growth, and policy changes impacting the value of solar are likely to occur at the federal and state levels. To establish a credible baseline and evaluate impacts of potential new policies, this analysis employs multiple methods to forecast residential PV deployment in California, including a time-series forecasting model, a threshold heterogeneity diffusion model, a Bass diffusion model, and National Renewable Energy Laboratory's dSolar model. As a baseline, the residential PV market in California is modeled to peak in the early 2020s, with a peak annual installation of 1.5-2more » GW across models. We then use the baseline results from the dSolar model and the threshold model to gauge the impact of the recent federal investment tax credit (ITC) extension, the newly approved California net energy metering (NEM) policy, and a hypothetical value-of-solar (VOS) compensation scheme. We find that the recent ITC extension may increase annual PV installations by 12%-18% (roughly 500 MW, MW) for the California residential sector in 2019-2020. The new NEM policy only has a negligible effect in California due to the relatively small new charges (< 100 MW in 2019-2020). Moreover, impacts of the VOS compensation scheme (0.12 cents per kilowatt-hour) are larger, reducing annual PV adoption by 32% (or 900-1300 MW) in 2019-2020.« less

  8. Deployment of Intelligent Transportation Systems: A Summary of the 2016 National Survey Results

    DOT National Transportation Integrated Search

    2018-03-01

    This report presents summary results of the 2016 ITS Deployment Tracking survey, the most recent survey conducted through the ITS Deployment Tracking Project. The U.S. Department of Transportation and the ITS Joint Program Office have pursued a resea...

  9. The National Superconducting Cyclotron Laboratory

    NASA Astrophysics Data System (ADS)

    Gelbke, C. Korad; Morrissey, D. J.; York, R. C.

    1996-10-01

    The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University has constructed and operates two superconducting cyclotrons for research in nuclear science, accelerator and instrumental physics. The K500, the world's first superconducting cyclotron, was commissioned in 1982 and the K1200, the world's most powerful cyclotron, was commissioned in 1988. Heavy-ion beams across the entire periodic table produced in a pair of ECR ion sources and accelerated to energies on the order of 100 MeV/A are delivered to a modern and versatile complement of experimental apparatus, including the new S800 high-resolution superconducting magnetic spectrograph now undergoing initial testing. The diverse variety of beams are used for studies of the quantum-statistical properties of hot nuclei, the liquid-gas phase transition in nuclear matter, and for nuclear structure research, particularly with radioactive ion beams from the A1200 fragment separator. The NSCL provides radioactive nuclear beams out to the limits of stability on both the neutron-rich and the proton-rich sides of the valley of stability. The laboratory is also used for multi-disciplinary research in astrophysics, condensed matter physics, geophysics, medicine, and biology. The NSCL has recently proposed a major upgrade of its facility based on coupled operation of the two cyclotrons. The upgrade will provide large increases in beam intensities for radioactive beam production and increased energies of the heaviest beams.

  10. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable formore » nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).« less

  11. 75 FR 56527 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... meeting of the Environmental Management Site-Specific Advisory Board (EM SSAB), Idaho National Laboratory... prior to the meeting. ADDRESSES: Coeur d'Alene Resort, 115 South Second Street, Coeur d'Alene, Idaho...

  12. NWTC Helps Guide U.S. Offshore R&D; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-07-01

    The National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is helping guide our nation's research-and-development effort in offshore renewable energy, which includes: Design, modeling, and analysis tools; Device and component testing; Resource characterization; Economic modeling and analysis; Grid integration.

  13. A new matrix for scoring the functionality of national laboratory networks in Africa: introducing the LABNET scorecard.

    PubMed

    Ondoa, Pascale; Datema, Tjeerd; Keita-Sow, Mah-Sere; Ndihokubwayo, Jean-Bosco; Isadore, Jocelyn; Oskam, Linda; Nkengasong, John; Lewis, Kim

    2016-01-01

    Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and current interventions to enhance laboratory capacity in resource-limited-settings. We have developed a matrix for the assessment of national laboratory network functionality and progress thereof, with support from the African Society of Laboratory Medicine and the Association of Public Health Laboratories. The laboratory network (LABNET) scorecard was designed to: (1) Measure the status of nine overarching core capabilities of laboratory network required to achieve global health security targets, as recommended by the main normative standards; (2) Complement the World Health Organization joint external evaluation tool for the assessment of health system preparedness to International Health Regulations (2005) by providing detailed information on laboratory systems; and (3) Serve as a clear roadmap to guide the stepwise implementation of laboratory capability to prevent, detect and act upon infectious threats. The application of the LABNET scorecard under the coordination of the African Society of Laboratory Medicine and the Association of Public Health Laboratories could contribute to the design, monitoring and evaluation of upcoming Global Health Security Agenda-supported laboratory capacity building programmes in sub Saharan-Africa and other resource-limited settings, and inform the development of national laboratory policies and strategic plans. Endorsement by the World Health Organization Regional Office for Africa is foreseen.

  14. Natural Gas Storage Research at Savannah River National Laboratory

    ScienceCinema

    Anton, Don; Sulic, Martin; Tamburello, David A.

    2018-01-16

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  15. National Media Laboratory media testing results

    NASA Technical Reports Server (NTRS)

    Mularie, William

    1993-01-01

    The government faces a crisis in data storage, analysis, archive, and communication. The sheer quantity of data being poured into the government systems on a daily basis is overwhelming systems ability to capture, analyze, disseminate, and store critical information. Future systems requirements are even more formidable: with single government platforms having data rate of over 1 Gbit/sec, greater than Terabyte/day storage requirements, and with expected data archive lifetimes of over 10 years. The charter of the National Media Laboratory (NML) is to focus the resources of industry, government, and academia on government needs in the evaluation, development, and field support of advanced recording systems.

  16. State perspectives on clean coal technology deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, T.

    1997-12-31

    State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

  17. Deployment of intelligent transportation systems : a summary of the 2013 national survey results.

    DOT National Transportation Integrated Search

    2014-08-01

    This report presents summary results of the 2013 ITS Deployment Tracking survey, the most recent survey conducted by the ITS Deployment Tracking Project. The U.S. Department of Transportation and the ITS Joint Program Office have pursued a research a...

  18. Change in argonne national laboratory: a case study.

    PubMed

    Mozley, A

    1971-10-01

    , William B. Cannon, who is vice president of programs and projects of the University of Chicago, and a small selection of staff members believe that the Laboratory is going through a natural and inevitable process of change consonant with altered missions and objectives in an atomic energy laboratory. The general mood, however, demonstrates the Jeffersonian insight, as relevant in science as in politics, that only democratic governance provides salutary checks and balances when things go wrong. The point deserves close scrutiny when Argonne's tripartite contract comes up for renegotiation in October 1971. Fundamentally Argonne's relations with its sponsoring agency remain at the center of its progress and future plans. Despite administrative and management changes, there is little doubt that he who pays the piper calls the tune. In common with other federal contract research and development adjuncts, Argonne has undoubtedly undergone tightening and winnowing away of flexibility in the past 6 years. In the nuclear reactor program the consequences have been strongly felt, and stringent national budgets have widened the tendency in the research domain. The impact of these changes and of AEC's attitude to basic research raise large questions for the future of the national laboratories. Few doubt that these "major national assets," with their outstanding scientific and technical personnel and equipment, fulfill a unique function and are here to stay, though their missions may undergo some change; the question of their most effective direction and handling, however, remains crucial for those concerned with priorities and decision-making for science. A recent review of 40 national federal adjuncts (30,31) has indicated that the primary sponsoring agency obtains better performance from a center that has a relatively high degree of independence than from one that is tightly controlled. The point is confirmed at Argonne where the present tendency (particularly on the nuclear reactor

  19. Surface Water Data at Los Alamos National Laboratory: 2002 Water Year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.A. Shaull; D. Ortiz; M.R. Alexander

    2003-03-03

    The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.

  20. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  1. Energy and Water Conservation Assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Stephanie R.; Koehler, Theresa M.; Boyd, Brian K.

    2014-05-31

    This report summarizes the results of an energy and water conservation assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory (PNNL). The assessment was performed in October 2013 by engineers from the PNNL Building Performance Team with the support of the dedicated RPL staff and several Facilities and Operations (F&O) department engineers. The assessment was completed for the Facilities and Operations (F&O) department at PNNL in support of the requirements within Section 432 of the Energy Independence and Security Act (EISA) of 2007.

  2. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  3. 75 FR 11872 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Idaho National... Site- Specific Advisory Board, Idaho National Laboratory to be held on March 16, 2010 75 FR 9590. In that notice, the meeting address was Hilton Garden Inn, 700 Lindsay Boulevard, Idaho Falls, Idaho 83402...

  4. Development and analysis of a meteorological database, Argonne National Laboratory, Illinois

    USGS Publications Warehouse

    Over, Thomas M.; Price, Thomas H.; Ishii, Audrey L.

    2010-01-01

    A database of hourly values of air temperature, dewpoint temperature, wind speed, and solar radiation from January 1, 1948, to September 30, 2003, primarily using data collected at the Argonne National Laboratory station, was developed for use in continuous-time hydrologic modeling in northeastern Illinois. Missing and apparently erroneous data values were replaced with adjusted values from nearby stations used as 'backup'. Temporal variations in the statistical properties of the data resulting from changes in measurement and data-storage methodologies were adjusted to match the statistical properties resulting from the data-collection procedures that have been in place since January 1, 1989. The adjustments were computed based on the regressions between the primary data series from Argonne National Laboratory and the backup series using data obtained during common periods; the statistical properties of the regressions were used to assign estimated standard errors to values that were adjusted or filled from other series. Each hourly value was assigned a corresponding data-source flag that indicates the source of the value and its transformations. An analysis of the data-source flags indicates that all the series in the database except dewpoint have a similar fraction of Argonne National Laboratory data, with about 89 percent for the entire period, about 86 percent from 1949 through 1988, and about 98 percent from 1989 through 2003. The dewpoint series, for which observations at Argonne National Laboratory did not begin until 1958, has only about 71 percent Argonne National Laboratory data for the entire period, about 63 percent from 1948 through 1988, and about 93 percent from 1989 through 2003, indicating a lower reliability of the dewpoint sensor. A basic statistical analysis of the filled and adjusted data series in the database, and a series of potential evapotranspiration computed from them using the computer program LXPET (Lamoreux Potential

  5. Strategic Plan for the ORD National Exposure Research Laboratory (NERL)

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) has a valued reputation for supporting the Agency’s mission of protecting human health and the environment with multidisciplinary expertise that brings cutting-edge research and technology to address critical exposure questions and...

  6. A new matrix for scoring the functionality of national laboratory networks in Africa: introducing the LABNET scorecard

    PubMed Central

    Datema, Tjeerd; Keita-Sow, Mah-Sere; Ndihokubwayo, Jean-Bosco; Isadore, Jocelyn; Oskam, Linda; Nkengasong, John; Lewis, Kim

    2016-01-01

    Background Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and current interventions to enhance laboratory capacity in resource-limited-settings. Scorecard for laboratory networks We have developed a matrix for the assessment of national laboratory network functionality and progress thereof, with support from the African Society of Laboratory Medicine and the Association of Public Health Laboratories. The laboratory network (LABNET) scorecard was designed to: (1) Measure the status of nine overarching core capabilities of laboratory network required to achieve global health security targets, as recommended by the main normative standards; (2) Complement the World Health Organization joint external evaluation tool for the assessment of health system preparedness to International Health Regulations (2005) by providing detailed information on laboratory systems; and (3) Serve as a clear roadmap to guide the stepwise implementation of laboratory capability to prevent, detect and act upon infectious threats. Conclusions The application of the LABNET scorecard under the coordination of the African Society of Laboratory Medicine and the Association of Public Health Laboratories could contribute to the design, monitoring and evaluation of upcoming Global Health Security Agenda-supported laboratory capacity building programmes in sub Saharan-Africa and other resource-limited settings, and inform the development of national laboratory policies and strategic plans. Endorsement by the World Health Organization Regional Office for Africa is foreseen. PMID:28879141

  7. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.

    PubMed

    Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J

    2009-06-01

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  8. Self-Deploying Trusses Containing Shape-Memory Polymers

    NASA Technical Reports Server (NTRS)

    Schueler, Robert M.

    2008-01-01

    Composite truss structures are being developed that can be compacted for stowage and later deploy themselves to full size and shape. In the target applications, these smart structures will precisely self-deploy and support a large, lightweight space-based antenna. Self-deploying trusses offer a simple, light, and affordable alternative to articulated mechanisms or inflatable structures. The trusses may also be useful in such terrestrial applications as variable-geometry aircraft components or shelters that can be compacted, transported, and deployed quickly in hostile environments. The truss technology uses high-performance shape-memory-polymer (SMP) thermoset resin reinforced with fibers to form a helical composite structure. At normal operating temperatures, the truss material has the structural properties of a conventional composite. This enables truss designs with required torsion, bending, and compression stiffness. However, when heated to its designed glass transition temperature (Tg), the SMP matrix acquires the flexibility of an elastomer. In this state, the truss can be compressed telescopically to a configuration encompassing a fraction of its original volume. When cooled below Tg, the SMP reverts to a rigid state and holds the truss in the stowed configuration without external constraint. Heating the materials above Tg activates truss deployment as the composite material releases strain energy, driving the truss to its original memorized configuration without the need for further actuation. Laboratory prototype trusses have demonstrated repeatable self-deployment cycles following linear compaction exceeding an 11:1 ratio (see figure).

  9. National Risk Management Research Laboratory Strategic plan and Implementation - Overview

    EPA Science Inventory

    This publication provides an overview of the strategic plan recently developed by the National Risk Management Research Laboratory (NRMRL). It includes a description of NRMRL's mission and goals and their alignment with Agency goals. Additionally, the overview contains a brief se...

  10. Gender differences in the risk and protective factors associated with PTSD: a prospective study of National Guard troops deployed to Iraq.

    PubMed

    Kline, Anna; Ciccone, Donald S; Weiner, Marc; Interian, Alejandro; St Hill, Lauren; Falca-Dodson, Maria; Black, Christopher M; Losonczy, Miklos

    2013-01-01

    This study examines gender differences in post-traumatic stress symptoms (PTSS) and PTSS risk/protective factors among soldiers deployed to Iraq. We pay special attention to two potentially modifiable military factors, military preparedness and unit cohesion, which may buffer the deleterious psychological effects of combat. Longitudinal data were collected on 922 New Jersey National Guard soldiers (91 women) deployed to Iraq in 2008. Anonymous surveys administered at pre- and post-deployment included the PTSD Checklist (PCL), the Unit Support Scale, and a preparedness scale adapted from the Iowa Gulf War Study. Bivariate analyses and hierarchical multiple regression were used to identify predictors of PTSS and their explanatory effects on the relationship between gender and PTSS. Women had a higher prevalence of probable post-deployment PTSD than men (18.7% vs. 8.7%; OR = 2.45; CI [1.37, 4.37]) and significantly higher post-deployment PTSS (33.73 vs. 27.37; p = .001). While there were no gender differences in combat exposure, women scored higher on pre-deployment PTSS (26.9 vs. 23.1; p ≤ .001) and lower on military preparedness (1.65 vs. 2.41; p ≤ .001) and unit cohesion (32.5 vs. 38.1; p ≤ .001). In a multivariate model, controlling for all PTSS risk/resilience factors reduced the gender difference as measured by the unstandardized Beta (B) by 45%, with 18% uniquely attributable to low cohesion and low preparedness. In the fully controlled model, gender remained a significant predictor of PTSS but the effect size was small (d = .26). Modifiable military institutional factors may account for much of the increased vulnerability of women soldiers to PTSD.

  11. Tracking state deployments of commercial vehicle information systems and networks : 1998 New York state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  12. Tracking state deployments of commercial vehicle information systems and networks : 1998 New Jersey state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  13. Tracking state deployments of commercial vehicle information systems and networks : 1998 North Carolina state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  14. Tracking state deployments of commercial vehicle information systems and networks : 1998 North Dakota state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  15. Tracking state deployments of commercial vehicle information systems and networks : 1998 South Carolina state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  16. Tracking state deployments of commercial vehicle information systems and networks : 1998 Rhode Island state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  17. Tracking state deployments of commercial vehicle information systems and networks : 1998 New Mexico state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  18. Tracking state deployments of commercial vehicle information systems and networks : 1998 New Hampshire state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  19. International Safeguards and the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Khris B.; Smith, Leon E.; Frazar, Sarah L.

    Established in 1965, Pacific Northwest National Laboratory’s (PNNL) strong technical ties and shared heritage with the nearby U.S. Department of Energy Hanford Site were central to the early development of expertise in nuclear fuel cycle signatures, separations chemistry, plutonium chemistry, environmental monitoring, modeling and analysis of reactor systems, and nuclear material safeguards and security. From these Hanford origins, PNNL has grown into a multi-program science and engineering enterprise that utilizes this diversity to strengthen the international safeguards regime. Today, PNNL supports the International Atomic Energy Agency (IAEA) in its mission to provide assurances to the international community that nations domore » not use nuclear materials and equipment outside of peaceful uses. PNNL also serves in the IAEA’s Network of Analytical Laboratories (NWAL) by providing analysis of environmental samples gathered around the world. PNNL is involved in safeguards research and development activities in support of many U.S. Government programs such as the National Nuclear Security Administration’s (NNSA) Office of Research and Development, NNSA Office of Nonproliferation and Arms Control, and the U.S. Support Program to IAEA Safeguards. In addition to these programs, PNNL invests internal resources including safeguards-specific training opportunities for staff, and laboratory-directed research and development funding to further ideas that may grow into new capabilities. This paper and accompanying presentation highlight some of PNNL’s contributions in technology development, implementation concepts and approaches, policy, capacity building, and human capital development, in the field of international safeguards.« less

  20. Deployment Experiences, Social Support, and Mental Health: Comparison of Black, White, and Hispanic U.S. Veterans Deployed to Afghanistan and Iraq.

    PubMed

    Muralidharan, Anjana; Austern, David; Hack, Samantha; Vogt, Dawne

    2016-06-01

    Compared to their White counterparts, Black and Hispanic Vietnam-era, male, combat veterans in the United States have experienced discrimination and increased trauma exposure during deployment and exhibited higher rates of postdeployment mental health disorders. The present study examined differences in deployment experiences and postdeployment mental health among male and female Black, Hispanic, and White veterans deployed in support of Operation Enduring Freedom in Afghanistan and Operation Iraqi Freedom in Iraq. Data were drawn from a national survey of veterans (N = 924) who had returned from deployment within the last 2 years. Ethnoracial minority veterans were compared to White veterans of the same gender on deployment experiences and postdeployment mental health. The majority of comparisons did not show significant differences; however, several small group differences did emerge (.02 < η(2) < .04). Ethnoracial minority veterans reported greater perceived threat in the warzone and more family-related concerns and stressors during deployment than White veterans of the same gender. Minority female veterans reported higher levels of postdeployment symptoms of anxiety than their White counterparts, which were accounted for by differences in deployment experience. These differences call for ongoing monitoring. Copyright © 2016 International Society for Traumatic Stress Studies.

  1. Sandia National Laboratories/New Mexico Environmental Information Document - Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAYLISS, LINDA S.; GUERRERO, JOSEPH V.; JOHNS, WILLIAM H.

    This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, themore » EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.« less

  2. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  3. U.S. Department of Energy, Sandia National Laboratories: Printing Case Study

    EPA Pesticide Factsheets

    The U.S. Department of Energy, Sandia National Laboratories (SNL), New Mexico quantified the costs associated with individual desktop printing devices, for comparison with costs associated with using networked copiers as printers

  4. Pre-deployment preparation of military nurses of the South African National Defence Force for participation in peace support operations.

    PubMed

    Jumat, Jennifer D; Bezuidenhout, Marthie C; Neethling, Theodor G

    2014-11-25

    South Africa has dedicated itself to participate in peace support operations (PSOs). The concept of 'jointness', involving different arms of services, was adopted within the South African National Defence Force, thus involving nurses in PSOs. Combat-readiness being a prerequisite for those involved in PSOs raised questions as to the readiness of forces to participate in these missions. There is a need for specific nursing care during PSOs, but the role and functions of nurses during such operations were not clearly defined; thus their preparation for these missions had very little scientific grounding. These were to explore the pre-deployment preparation needs of military professional nurses during PSOs, and to describe the experience of these nurses whilst being deployed. A quantitative exploratory, descriptive and contextual approach was used. Questionnaires were distributed to 99 professional nurses who had deployment experience, and 72 participated (73% response rate). Relevant peace mission concepts are the environment, jointness, behaviour and mission readiness, which served as the conceptual bases for the study. Findings indicated that the nurses were not fully informed of their responsibilities during deployment or the circumstances under which they would have to work and live. Their preparation is not fully integrated with that of the other armed forces, and deficiencies in their training and development were identified which negatively impact on their mission readiness. Recommendations were made in terms of human resource requirements, psychological training, better integration of jointness training, and content of training and development to ensure mission readiness of nurses.

  5. Virtual special issue on catalysis at the U.S. Department of Energy's National Laboratories

    DOE PAGES

    Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.; ...

    2016-04-21

    Here the catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE's mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions.

  6. Global Demands: Limited Forces. US Army Deployment

    DTIC Science & Technology

    1984-01-01

    will remain a perennial problem . The administration does not want to provide potential adver- saries with details of national strategy. Nor do the...deployments ana tactical operations exacerbate this shortfall. In a crisis, the national command authorities will be faced with a serious problem , choosing be...the planned usa of available Arm combat forces to maxium their 00oWta i the most crii" theats. The nation will hae to deal w1th this shortfall i

  7. Using the H Index to Assess Impact of DOE National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, Everett P.

    The most readily accessible elements of the Emerald Matrix by quantitative measures are the knowledge and economy related measures. In this paper, the H Index for an institution will be used to assess STE impact, which is in the knowledge generation element. The H Index was developed by Hirsch (2005) as a measure of an individual’s scientific impact. The H Index is defined as the number of publications that have been cited h or more times for a given author. It has been generalized to organizations. Doing so leads to a complication in that H index scales with the numbermore » of publications. Although this may not be problematic when comparing individual researchers, it systematically favors larger institutions. Molinari and Molinari (2008) proposed an alternative index (hm) designed to assess organizational impact. It transforms the H Index for an organization into an impact index by removing a factor dependent on the number of publications. The hm provides another approach to compare institutions provided that differences in the citation patterns associated with fields of study are addressed. Kinney (2007) used the Molinari and Molinari (2008) approach to compare various scientific institutions in nonbiomedical research areas. Kinney (2007) used the Thomson Reuters Web of Science (WoS) as the source and used publications in nonbiomedical research areas, which is very important because the research areas of universities are much broader than say a DOE national laboratory. Also there are differences in citation rates for the various research fields that make comparisons between individuals or organizations difficult. The results from Kinney (2007) are given in Table 1 and indicate that the DOE national laboratories compare favorably with the selected universities in terms of impact (hm) in the research areas used in Kinney’s analysis. This report will compare hm for DOE national laboratories using an approach similar to Kinney (2007) providing a measure of

  8. Use of incentives to encourage ITS deployment.

    DOT National Transportation Integrated Search

    2014-07-01

    Moving Ahead for Progress in the 21st Century Act (MAP-21) identifies Intelligent Transportation Systems (ITS) as part of the solution to the Nations transportation needs and provides mechanisms for accelerating deployment of innovative technology...

  9. Lessons Learned in Deploying the World s Largest Scale Lustre File System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillow, David A; Fuller, Douglas; Wang, Feiyi

    2010-01-01

    The Spider system at the Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) is the world's largest scale Lustre parallel file system. Envisioned as a shared parallel file system capable of delivering both the bandwidth and capacity requirements of the OLCF's diverse computational environment, the project had a number of ambitious goals. To support the workloads of the OLCF's diverse computational platforms, the aggregate performance and storage capacity of Spider exceed that of our previously deployed systems by a factor of 6x - 240 GB/sec, and 17x - 10 Petabytes, respectively. Furthermore, Spider supports over 26,000 clients concurrently accessing themore » file system, which exceeds our previously deployed systems by nearly 4x. In addition to these scalability challenges, moving to a center-wide shared file system required dramatically improved resiliency and fault-tolerance mechanisms. This paper details our efforts in designing, deploying, and operating Spider. Through a phased approach of research and development, prototyping, deployment, and transition to operations, this work has resulted in a number of insights into large-scale parallel file system architectures, from both the design and the operational perspectives. We present in this paper our solutions to issues such as network congestion, performance baselining and evaluation, file system journaling overheads, and high availability in a system with tens of thousands of components. We also discuss areas of continued challenges, such as stressed metadata performance and the need for file system quality of service alongside with our efforts to address them. Finally, operational aspects of managing a system of this scale are discussed along with real-world data and observations.« less

  10. National survey on intra-laboratory turnaround time for some most common routine and stat laboratory analyses in 479 laboratories in China.

    PubMed

    Fei, Yang; Zeng, Rong; Wang, Wei; He, Falin; Zhong, Kun; Wang, Zhiguo

    2015-01-01

    To investigate the state of the art of intra-laboratory turnaround time (intra-TAT), provide suggestions and find out whether laboratories accredited by International Organization for Standardization (ISO) 15189 or College of American Pathologists (CAP) will show better performance on intra-TAT than non-accredited ones. 479 Chinese clinical laboratories participating in the external quality assessment programs of chemistry, blood gas, and haematology tests organized by the National Centre for Clinical Laboratories in China were included in our study. General information and the median of intra-TAT of routine and stat tests in last one week were asked in the questionnaires. The response rate of clinical biochemistry, blood gas, and haematology testing were 36% (479/1307), 38% (228/598), and 36% (449/1250), respectively. More than 50% of laboratories indicated that they had set up intra-TAT median goals and almost 60% of laboratories declared they had monitored intra-TAT generally for every analyte they performed. Among all analytes we investigated, the intra-TAT of haematology analytes was shorter than biochemistry while the intra-TAT of blood gas analytes was the shortest. There were significant differences between median intra-TAT on different days of the week for routine tests. However, there were no significant differences in median intra-TAT reported by accredited laboratories and non-accredited laboratories. Many laboratories in China are aware of intra-TAT control and are making effort to reach the target. There is still space for improvement. Accredited laboratories have better status on intra-TAT monitoring and target setting than the non-accredited, but there are no significant differences in median intra-TAT reported by them.

  11. National survey on intra-laboratory turnaround time for some most common routine and stat laboratory analyses in 479 laboratories in China

    PubMed Central

    Fei, Yang; Zeng, Rong; Wang, Wei; He, Falin; Zhong, Kun

    2015-01-01

    Introduction To investigate the state of the art of intra-laboratory turnaround time (intra-TAT), provide suggestions and find out whether laboratories accredited by International Organization for Standardization (ISO) 15189 or College of American Pathologists (CAP) will show better performance on intra-TAT than non-accredited ones. Materials and methods 479 Chinese clinical laboratories participating in the external quality assessment programs of chemistry, blood gas, and haematology tests organized by the National Centre for Clinical Laboratories in China were included in our study. General information and the median of intra-TAT of routine and stat tests in last one week were asked in the questionnaires. Results The response rate of clinical biochemistry, blood gas, and haematology testing were 36% (479 / 1307), 38% (228 / 598), and 36% (449 / 1250), respectively. More than 50% of laboratories indicated that they had set up intra-TAT median goals and almost 60% of laboratories declared they had monitored intra-TAT generally for every analyte they performed. Among all analytes we investigated, the intra-TAT of haematology analytes was shorter than biochemistry while the intra-TAT of blood gas analytes was the shortest. There were significant differences between median intra-TAT on different days of the week for routine tests. However, there were no significant differences in median intra-TAT reported by accredited laboratories and non-accredited laboratories. Conclusions Many laboratories in China are aware of intra-TAT control and are making effort to reach the target. There is still space for improvement. Accredited laboratories have better status on intra-TAT monitoring and target setting than the non-accredited, but there are no significant differences in median intra-TAT reported by them. PMID:26110033

  12. Telemedicine deployments within NATO military forces: a data analysis of current and projected capabilities.

    PubMed

    Lam, David M; Poropatich, Ronald K

    2008-11-01

    Since the creation of the NATO Telemedicine Expert Panel (now renamed the TMED Expert Team) in 2000, when few nations had deployed telemedicine systems to support military field operations, this group has been encouraging the nations to deploy telemedicine (TMED) in support of their forces, and to write the use of TMED into NATO doctrine. This has been a relatively successful effort, and TMED is increasingly being used within the military medical structures of some NATO and Partnership for Peace nations to provide medical care to deployed military personnel. We report the results of a multinational survey of current and projected availability of various telemedicine modalities within the NATO medical services that are participating in the work of the TMED expert team (ET). Though only a "snapshot in time," and not representing all NATO nations, this is the first attempt to identify both current and planned TMED utilization within the multinational military medical community. Participating nations report that communication systems now in place at the lowest levels of medical support increasingly enable the routine use of Web-based teleconsultation modalities. Teleradiology is now being seen as the de facto standard for imaging support. While a number of nations report they have deployed capabilities for obtaining clinical consultations at a distance, most responding nations do not have a formal organizational structure to control and manage remote consultation and rely on informal clinical relationships (e.g., requesting consults from the deployed clinician's home hospital or from friends). Military electronic health records are in use by only a minority of nations and fewer still are capable of civilian interface. Less common TMED capabilities (e.g., tele-microbiology, tele-pathology, tele-medical maintenance) are being increasingly used, but are still rarely deployed. As a result of the findings of this survey, specific recommendations for expanding the use of

  13. [Mobile laboratories for rapid deployment and their contribution to the containment of emerging diseases in Sub-Saharan Africa, illustrated by the example of Ebola virus disease].

    PubMed

    Diers, J; Kouriba, B; Ladan Fofana, L; Fleischmann, E; Starke, M; Diallo, S; Babin, F-X; von Bonin, J; Wölfel, R

    2015-01-01

    The Ebola virus, which became a global health concern in 2014, is an example of an emerging pathogen. Ebola virus disease can only be diagnosed in biosafety level 3 and 4 laboratories, which provide the security required to avoid exposure of both the staff and the environment to the pathogen. These laboratories are often far from the site of outbreaks, which may occur in rural areas or border regions (when the disease is imported from a neighboring country). Rapidly deployable laboratory units can bring the diagnosis closer to the outbreak site and thus significantly shorten the time to delivery of results, thus facilitating epidemic containment. Here we report our experience from the first months of implementation in Mali of a mobile laboratory unit of the same type as the European mobile labs and we describe the workflow in the laboratory as well as the training of its Malian staff. Based on our experience and the reports of other projects, we propose a framework in which these mobile laboratory units can strengthen epidemiological surveillance and contribute to containing outbreaks of emerging diseases in sub-Saharan Africa.

  14. BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and themore » nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.« less

  15. Tracking the deployment of the integrated metropolitan ITS infrastructure in Albany, Schenectady, Troy : FY99 results

    DOT National Transportation Integrated Search

    2000-01-01

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  16. Tracking state deployments of commercial vehicle information systems and networks : 1998 District of Columbia state report

    DOT National Transportation Integrated Search

    2000-04-07

    The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...

  17. NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY - ACCOMPLISHMENTS FOR FY 2001

    EPA Science Inventory

    This Annual Report showcases some of the scientific activities of the National Health and Environmental Effects Research Laboratory (NHEERL) in various health and environmental effects research areas. Where appropriate, the contributions of other collaborating research organizat...

  18. Inaugural Technology Showcase Draws Hundreds | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Before a crowded auditorium of science and business professionals at the Frederick National Laboratory for Cancer Research’s Advanced Technology Research Facility (ATRF), Joost Oppenheim, M.D., had just finished his presentation about a compound th

  19. Deployment of the Oklahoma borehole seismic experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harben, P.E.; Rock, D.W.

    1989-01-20

    This paper discusses the Oklahoma borehole seismic experiment, currently in operation, set up by members of the Lawrence Livermore National Laboratory Treaty Verification Program and the Oklahoma Geophysical Observatory to determine deep-borehole seismic characteristics in geology typical of large regions in the Soviet Union. We evaluated and logged an existing 772-m deep borehole on the Observatory site by running caliper, cement bonding, casing inspection, and hole-deviation logs. Two Teledyne Geotech borehole-clamping seismometers were placed at various depths and spacings in the deep borehole. Currently, they are deployed at 727 and 730 m. A Teledyne Geotech shallow-borehole seismometer was mounted inmore » a 4.5-m hole, one meter from the deep borehole. The seismometers' system coherency were tested and found to be excellent to 35 Hz. We have recorded seismic noise, quarry blasts, regional earthquakes and teleseisms in the present configuration. We will begin a study of seismic noise and attenuation as a function of depth in the near future. 7 refs., 18 figs.« less

  20. Deployment and Adverse Pregnancy Outcomes: Primary Findings and Methodological Considerations.

    PubMed

    Katon, Jodie; Cypel, Yasmin; Raza, Mubashra; Zephyrin, Laurie; Reiber, Gayle; Yano, Elizabeth M; Barth, Shannon; Schneiderman, Aaron

    2017-02-01

    Objective To characterize the pregnancy outcomes of women Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Veterans including prevalence of preterm delivery, low birth weight, and macrosomia, and to highlight methodological limitations that can impact findings. Methods A retrospective cohort study was conducted starting in 2014 analyzing data from the 2009 to 2011 National Health Study for a New Generation of US Veterans, which sampled Veterans deployed and not deployed to OIF/OEF. All pregnancies resulting in a live birth were included, and categorized as occurring among non-deployers, before deployment, during deployment, or after deployment. Outcomes included preterm birth, low birth weight, and macrosomia. The association of deployment with selected outcomes was estimated using separate general estimating equations to account for lack of outcome independence among women contributing multiple pregnancies. Adjustment variables included maternal age at outcome, and race/ethnicity. Results There were 2276 live births (191 preterm births, 153 low birth weight infants, and 272 macrosomic infants). Compared with pregnancies before deployment, pregnancies among non-deployers and those after deployment appeared to have greater risk of preterm birth [non-deployers: odds ratio (OR) = 2.16, 95 % confidence interval (CI) 1.25, 3.72; after deployment: OR = 1.90, 95 % CI 0.90, 4.02]. A similar pattern was observed for low birth weight. No association of deployment with macrosomia was detected. Discussion Compared with non-deployers, those who eventually deploy appear to have better pregnancy outcomes prior to deployment, but this advantage is no longer apparent after deployment. Non-deployers may not be an appropriate reference group to study the putative health impacts of deployment on pregnancy outcomes.

  1. Technical Capabilities of the National Vehicle and Fuel Emissions Laboratory (NVFEL)

    EPA Pesticide Factsheets

    National Vehicle and Fuel Emissions Laboratory (NVFEL) is a state-of-the-art test facility that conducts a wide range of emissions testing and analysis for EPA’s motor vehicle, heavy-duty engine, and nonroad engine programs.

  2. Health and safety aspects of deployment of Australian disaster medical assistance team members: results of a national survey.

    PubMed

    Aitken, Peter; Leggat, Peter; Robertson, Andrew; Harley, Hazel; Speare, Richard; Leclercq, Muriel

    2009-09-01

    Disaster medical assistance teams (DMATs) have responded to numerous international disasters in recent years. As part of a national survey, the present study was designed to evaluate Australian DMAT experience in relation to health and safety aspects of actual deployment. Data were collected via an anonymous mailed survey distributed by State and Territory representatives on the Australian Health Protection Committee, who identified team members associated with Australian DMAT deployments from the time of the 2004 South East Asian tsunami disaster. The response rate for this survey was 50% (59/118). Most of the personnel had deployed to the tsunami affected areas. The DMAT members were quite experienced with 53% of personnel in the 45-55 years age group (31/59) and a mean level of clinical experience of 21 years. 76% of the respondents were male (44/58). Once deployed, most felt that their basic health needs were adequately met. Almost all stated there were adequate shelter (95%, 56/59), adequate food (93%, 55/59) and adequate water (97%, 57/59). A clear majority, felt there were adequate toilet facilities (80%, 47/59), adequate shower facilities (64%, 37/59); adequate hand washing facilities (68%, 40/59) and adequate personal protective equipment (69%, 41/59). While most felt that there were adequate security briefings (73%, 43/59), fewer felt that security itself was adequate (64%, 38/59). 30% (18/59) felt that team members could not be easily identified. The optimum shift period was identified as 12h (66%, 39/59) or possibly 8h (22%, 13/59) with the optimum period of overseas deployment as 14-21 days (46%, 27/59). Missing essential items were just as likely to be related to personal comfort (28%) as clinical care (36%) or logistic support (36%). The most frequently nominated personal items recommended were: suitable clothes (49%, 29/59); toiletries (36%, 22/59); mobile phone (24%, 14/59); insect repellent (17%, 10/59) and a camera (14%, 8/59). The most common

  3. Site Environmental Report for 2016 Sandia National Laboratories California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    Sandia National Laboratories, California (SNL/CA) is a Department of Energy (DOE) facility. The management and operations of the facility are under a contract with the DOE’s National Nuclear Security Administration (NNSA). On May 1, 2017, the name of the management and operating contractor changed from Sandia Corporation to National Technology and Engineering Solutions of Sandia, LLC (NTESS). The DOE, NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2016 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2012). The report provides a summary ofmore » environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2016, unless noted otherwise. General site and environmental program information is also included.« less

  4. Alcohol Use and Alcohol-Related Problems Before and After Military Combat Deployment

    PubMed Central

    Jacobson, Isabel G.; Ryan, Margaret A. K.; Hooper, Tomoko I.; Smith, Tyler C.; Amoroso, Paul J.; Boyko, Edward J.; Gackstetter, Gary D.; Wells, Timothy S.; Bell, Nicole S.

    2009-01-01

    Context High rates of alcohol misuse after deployment have been reported among personnel returning from past conflicts, yet investigations of alcohol misuse after return from the current wars in Iraq and Afghanistan are lacking. Objectives To determine whether deployment with combat exposures was associated with new-onset or continued alcohol consumption, binge drinking, and alcohol-related problems. Design, Setting, and Participants Data were from Millennium Cohort Study participants who completed both a baseline (July 2001 to June 2003; n=77 047) and follow-up (June 2004 to February 2006; n=55 021) questionnaire (follow-up response rate=71.4%). After we applied exclusion criteria, our analyses included 48 481 participants (active duty, n=26 613; Reserve or National Guard, n=21 868). Of these, 5510 deployed with combat exposures, 5661 deployed without combat exposures, and 37 310 did not deploy. Main Outcome Measures New-onset and continued heavy weekly drinking, binge drinking, and alcohol-related problems at follow-up. Results Baseline prevalence of heavy weekly drinking, binge drinking, and alcohol-related problems among Reserve or National Guard personnel who deployed with combat exposures was 9.0%, 53.6%, and 15.2%, respectively; follow-up prevalence was 12.5%, 53.0%, and 11.9%, respectively; and new-onset rates were 8.8%, 25.6%, and 7.1%, respectively. Among active-duty personnel, new-onset rates were 6.0%, 26.6%, and 4.8%, respectively. Reserve and National Guard personnel who deployed and reported combat exposures were significantly more likely to experience new-onset heavy weekly drinking (odds ratio [OR], 1.63; 95% confidence interval [CI], 1.36–1.96), binge drinking (OR, 1.46; 95% CI, 1.24–1.71), and alcohol-related problems (OR, 1.63; 95% CI, 1.33–2.01) compared with nondeployed personnel. The youngest members of the cohort were at highest risk for all alcohol-related outcomes. Conclusion Reserve and National Guard personnel and younger service

  5. Bradbury science museum: your window to Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deck, Linda Theresa

    The Bradbury Science Museum is the public's window to Los Alamos National Laboratory and supports the Community Program Office's mission to develop community support to accomplish LANL's national security and science mission. It does this by stimulating interest in and increasing basic knowledge of science and technology in northern New Mexico audiences, and increasing public understanding and appreciation of how LANL science and technology solve our global problems. In performing these prime functions, the Museum also preserves the history of scientific accomplishment at the Lab by collecting and preserving artifacts of scientific and historical importance.

  6. Los Alamos National Laboratory considers the use of biodiesel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlin, M. K.

    2002-01-01

    A new EPA-approved alternative fuel, called biodiesel, may soon be used at Los Alamos National Laboratory in everything from diesel trucks to laboratory equipment. Biodiesel transforms vegetable oils into a renewable, cleaner energy source that can be used in any machinery that uses diesel fuel. For the past couple years, the Laboratory has been exploring the possibility of switching over to soybean-based biodiesel. This change could lead to many health and environmental benefits, as well as help reduce the nation's dependence on foreign oil. Biodiesel is a clean, renewable diesel fuel substitute made from soybean and other vegetable oil crops,more » as well as from recycled cooking oils. A chemical process breaks down the vegetable oil into a usable form. Vegetable oil has a chain of about 18 carbons and ordinary diesel has about 12 or 13 carbons. The process breaks the carbon chains of the vegetable oil and separates out the glycerin (a fatty substance used in creams and soaps). The co-product of glycerin can be used by pharmaceutical and cosmetic companies, as well as many other markets. Once the chains are shortened and the glycerin is removed from the oil, the remaining liquid is similar to petroleum diesel fuel. It can be burned in pure form or in a blend of any proportion with petroleum diesel. To be considered an alternative fuel source by the EPA, the blend must be at least 20 percent biodiesel (B20). According to the U.S. Department of Energy (DOE), biodiesel is America's fastest growing alternative fuel.« less

  7. NATIONAL RISK MANAGEMENT RESEARCH LABORATORY: PROVIDING SOLUTIONS FOR A BETTER TOMORROW

    EPA Science Inventory

    This small, two-fold flyer contains general information introducing EPA's National Risk Management Research Laboratory and its research program. The key overarching areas of research described are: Protection of drinking water; control of air pollution; pollution prevention and e...

  8. ECOSYSTEM RESTORATION RESEARCH THROUGH THE NATIONAL RISK MANAGEMENT RESEARCH LABORATORY (NRMRL)

    EPA Science Inventory

    The Ecosystem Restoration Research Program underway through ORD's National Risk Management Research Laboratory (NRMRL) has the long-term goal of providing watershed managers with "..state-of-the-science field-evaluated tools, technical guidance, and decision-support systems for s...

  9. 2018 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, Stacy R.

    The 2018 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base has been prepared in accordance with the “Letter of Agreement Between Department of Energy, National Nuclear Security Administration, Sandia Field Office (DOE/NNSA/SFO) and 377th Air Base Wing (ABW), Kirtland Air Force Base (KAFB) for Terrestrial Sampling” (signed January 2017), Sandia National Laboratories, New Mexico (SNL/NM). The Letter of Agreement requires submittal of an annual terrestrial sampling plan.

  10. 2017 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, Stacy R.

    The 2017 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base has been prepared in accordance with the “Letter of Agreement Between Department of Energy, National Nuclear Security Administration, Sandia Field Office (DOE/NNSA/SFO) and 377th Air Base Wing (ABW), Kirtland Air Force Base (KAFB) for Terrestrial Sampling” (signed January 2017), Sandia National Laboratories, New Mexico (SNL/NM). The Letter of Agreement requires submittal of an annual terrestrial sampling plan.

  11. ALFA MHK Biological Monitoring Stationary deployment

    DOE Data Explorer

    Horne, John

    2016-10-01

    Acoustic backscatter data from a WBAT operating at 70kHz deployed at PMEC-SETS from April to September of 2016. 180 pings were collected at 1Hz every two hours, as part of the Advanced Laboratory and Field Arrays (ALFA) for Marine Energy project. Data was subject to preliminary processing (noise removal, a threshold of -75dB was applied, surface turbulence and data below 0.5m from the bottom was removed).

  12. National evaluation of the SafeTrip-21 initiative : I-95 corridor coalition test bed final evaluation report, North Carolina deployment of portable traffic-monitoring devices.

    DOT National Transportation Integrated Search

    2010-06-11

    The purpose of this document is to present the findings of the national evaluation of the deployment of portable traffic monitoring devices (PTMDs) at a variety of locations in North Carolina conducted under the USDOTs SafeTrip-21 Initiative. The ...

  13. National evaluation of the SafeTrip-21 initiative : I-95 corridor coalition test bed final evaluation report, North Carolina deployment of portable traffic-monitoring devices.

    DOT National Transportation Integrated Search

    2010-06-11

    The purpose of this document is to present the findings of the national evaluation of the deployment of portable trafficmonitoring devices (PTMDs) at a variety of locations in North Carolina conducted under the USDOTs SafeTrip-21 Initiative. The N...

  14. Evaluation of aircraft crash hazard at Los Alamos National Laboratory facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvage, R.D.

    This report selects a method for use in calculating the frequency of an aircraft crash occurring at selected facilities at the Los Alamos National Laboratory (the Laboratory). The Solomon method was chosen to determine these probabilities. Each variable in the Solomon method is defined and a value for each variable is selected for fourteen facilities at the Laboratory. These values and calculated probabilities are to be used in all safety analysis reports and hazards analyses for the facilities addressed in this report. This report also gives detailed directions to perform aircraft-crash frequency calculations for other facilities. This will ensure thatmore » future aircraft-crash frequency calculations are consistent with calculations in this report.« less

  15. Insects of the Idaho National Laboratory: A compilation and review

    Treesearch

    Nancy Hampton

    2005-01-01

    Large tracts of important sagebrush (Artemisia L.) habitat in southeastern Idaho, including thousands of acres at the Idaho National Laboratory (INL), continue to be lost and degraded through wildland fire and other disturbances. The roles of most insects in sagebrush ecosystems are not well understood, and the effects of habitat loss and alteration...

  16. THE EPA NATIONAL EXPOSURE RESEARCH LABORATORY CHILDREN'S PESTICIDE EXPOSURE MEASUREMENT PROGRAM

    EPA Science Inventory

    The U.S. EPA's National Exposure Research Laboratory (NERL) conducts research in support of the Food Quality Protection Act (FQPA) of 1996. FQPA requires that children's risks to pesticide exposures be considered during the tolerance-setting process. The Act requires exposure...

  17. GROUNDWATER PLUME CONTROL WITH PHYTOTECHNOLOGIES AT THE ARGONNE NATIONAL LABORATORY-EAST

    EPA Science Inventory

    In 1999 Argonne National Laboratory-East (ANL-E) designed and installed a series of engineered plantings consisting of a vegetative cover system and approximately 800 hybrid poplars and willows rooting at various predetermined depths. The plants were installed using various meth...

  18. Guidance for Human Subjects Research in the National Exposure Research Laboratory

    EPA Science Inventory

    This document provides guidance to investigators and managers associated with the U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD)’s National Exposure Research Laboratory (NERL) on the ethical conduct, regulatory review, and approval of all huma...

  19. THE EPA NATIONAL EXPOSURE RESEARCH LABORATORY CHILDREN'S PESTICIDE EXPOSURE MEASUREMENT PROGRAM

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) National Exposure Research Laboratory (NERL) is performing research in support of the Food Quality Protection Act (FQPA) of 1996. This act requires that pesticide exposure assessments to be conducted for all potential sources, rou...

  20. Sitewide Environmental Assessment for the National Renewable Energy Laboratory, Golden, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-04

    The Solar Energy Research, Development, and Demonstration Act of 1974 authorized a federal program to develop solar energy as a viable source of the nation`s future energy needs. Under this authority, the National Renewable Energy Laboratory (NREL) was created as a laboratory of the Department of Energy (DOE) to research a number of renewable energy possibilities. The laboratory conducts its operations both in government-owned facilities on the NREL South Table Mountain (STM) Site near Golden, Colorado, and in a number of leased facilities, particularly the Denver West Office Park. NREL operations include research in energy technologies, and other areas ofmore » national environmental and energy technology interest. Examples of these technologies include electricity from sunlight with solar cells (photovoltaics); energy from wind (windmills or wind turbines); conversion of plants and plant products (biomass) into liquid fuels (ethanol and methanol); heat from the sun (solar thermal) in place of wood, oil, gas, coal and other forms of heating; and solar buildings. NREL proposes to continue and expand the present R&D efforts in C&R energy by making infrastructure improvements and constructing facilities to eventually consolidate the R&D and associated support activities at its STM Site. In addition, it is proposed that operations continue in current leased space at the present levels of activity until site development is complete. The construction schedule proposed is designed to develop the site as rapidly as possible, dependent on Congressional funding, to accommodate not only the existing R&D that is being conducted in leased facilities off-site but to also allow for the 20-year projected growth. Impacts from operations currently conducted off-site are quantified and added to the cumulative impacts of the STM site. This environmental assessment provides information to determine the severity of impacts on the environment from the proposed action.« less

  1. [Building and implementation of management system in laboratories of the National Institute of Hygiene].

    PubMed

    Rozbicka, Beata; Brulińska-Ostrowska, Elzbieta

    2008-01-01

    The rules of good laboratory practice have always been observed in the laboratories of National Institute of Hygiene (NIH) and the reliability of the results has been carefully cared after when performing tests for clients. In 2003 the laboratories performing analyses related to food safety were designated as the national reference laboratories. This, added to the necessity of compliance with work standards and requirements of EU legislation and to the need of confirmation of competence by an independent organisation, led to a decision to seek accreditation of Polish Centre of Accreditation (PCA). The following stages of building and implementation of management system were presented: training, modifications of Institute's organisational structure, elaboration of management system's documentation, renovation and refurbishment of laboratory facilities, implementation of measuring and test equipment's supervision, internal audits and management review. The importance of earlier experiences and achievements with regard to validation of analytical methods and guarding of the quality of the results through organisation and participation in proficiency tests was highlighted. Current status of accreditation of testing procedures used in NIH laboratories that perform analyses in the field of chemistry, microbiology, radiobiology and medical diagnostic tests was presented.

  2. Global and national laboratory networks support high quality surveillance for measles and rubella.

    PubMed

    Xu, Wenbo; Zhang, Yan; Wang, Huiling; Zhu, Zhen; Mao, Naiying; Mulders, Mick N; Rota, Paul A

    2017-05-01

    Laboratory networks are an essential component of disease surveillance systems because they provide accurate and timely confirmation of infection. WHO coordinates global laboratory surveillance of vaccine preventable diseases, including measles and rubella. The more than 700 laboratories within the WHO Global Measles and Rubella Laboratory Network (GMRLN) supports surveillance for measles, rubella and congenial rubella syndrome in 191 counties. This paper describes the overall structure and function of the GMRLN and highlights the largest of the national laboratory networks, the China Measles and Rubella Laboratory Network. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. [Tuberculosis Laboratory Surveillance Network (TuLSA) study group. The first step for national tuberculosis laboratory surveillance: Ankara, 2011].

    PubMed

    Sezen, Figen; Albayrak, Nurhan; Özkara, Şeref; Karagöz, Alper; Alp, Alpaslan; Duyar Ağca, Filiz; İnan Süer, Asiye; Müderris, Tuba; Ceyhan, İsmail; Durmaz, Rıza; Ertek, Mustafa

    2015-04-01

    The most effective method for monitoring country-level drug resistance frequency and to implement the necessary control measures is the establishment of a laboratory-based surveillance system. The aim of this study was to summarize the follow up trend of the drug-resistant tuberculosis (TB) cases, determine the load of resistance and evaluate the capacities of laboratories depending on laboratory quality assurance system for the installation work of National Tuberculosis Laboratory Surveillance Network (TuLSA) which has started in Ankara in 2011. TuLSA studies was carried out under the coordination of National Tuberculosis Reference Laboratory (NRL) with the participation of TB laboratories and dispensaries. Specimens of TB patients, reported from health institutions, were followed in TB laboratories, and the epidemiological information was collected from the dispensaries. One isolate per patient with the drug susceptibility test (DST) results were sent to NRL from TB laboratories and in NRL the isolates were rechecked with the genotypical (MTBDRplus, Hain Lifescience, Germany) and phenotypical (MGIT 960, BD, USA) DST methods. Molecular epidemiological analysis were also performed by spoligotyping and MIRU/VNTR. Second-line DST was applied to the isolates resistant to rifampin. A total of 1276 patients were reported between January 1st to December 31th 2011, and 335 cases were defined as "pulmonary TB from Ankara province". The mean age of those patients was 43.4 ± 20 years, and 67.5% were male. Three hundred seventeen (94.6%) patients were identified as new cases. The average sample number obtained from pulmonary TB cases was 3.26 ± 2.88, and 229 (68.3%) of them was culture positive. DST was applied to all culture positive isolates; 90.4% (207/229) of cases were susceptible to the five drugs tested (ethambutol, isoniazid, pyrazinamide, rifampicin, streptomycin). Eight (3.5%) of the isolates were multidrug-resistant (MDR-TB), while no extensively drug

  4. NASA Glenn's Acoustical Testing Laboratory Awarded Accreditation by the National Voluntary Laboratory Accreditation Program

    NASA Technical Reports Server (NTRS)

    Akers, James C.; Cooper, Beth A.

    2004-01-01

    NASA Glenn Research Center's Acoustical Testing Laboratory (ATL) provides a comprehensive array of acoustical testing services, including sound pressure level, sound intensity level, and sound-power-level testing per International Standards Organization (ISO)1 3744. Since its establishment in September 2000, the ATL has provided acoustic emission testing and noise control services for a variety of customers, particularly microgravity space flight hardware that must meet International Space Station acoustic emission requirements. The ATL consists of a 23- by 27- by 20-ft (height) convertible hemi/anechoic test chamber and a separate sound-attenuating test support enclosure. The ATL employs a personal-computer-based data acquisition system that provides up to 26 channels of simultaneous data acquisition with real-time analysis (ref. 4). Specialized diagnostic tools, including a scanning sound-intensity system, allow the ATL's technical staff to support its clients' aggressive low-noise design efforts to meet the space station's acoustic emission requirement. From its inception, the ATL has pursued the goal of developing a comprehensive ISO 17025-compliant quality program that would incorporate Glenn's existing ISO 9000 quality system policies as well as ATL-specific technical policies and procedures. In March 2003, the ATL quality program was awarded accreditation by the National Voluntary Laboratory Accreditation Program (NVLAP) for sound-power-level testing in accordance with ISO 3744. The NVLAP program is administered by the National Institutes of Standards and Technology (NIST) of the U.S. Department of Commerce and provides third-party accreditation for testing and calibration laboratories. There are currently 24 NVLAP-accredited acoustical testing laboratories in the United States. NVLAP accreditation covering one or more specific testing procedures conducted in accordance with established test standards is awarded upon successful completion of an intensive

  5. Idaho National Laboratory Quarterly Performance Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INLmore » from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.« less

  6. Idaho National Laboratory Quarterly Occurrence Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lisbeth Ann

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 85 reportable events (18 from the 4th Qtr FY-15 and 67 from the prior three reporting quarters), as well as 25 other issue reports (including events found to be not reportable and Significant Category A and B conditions)more » identified at INL during the past 12 months (8 from this quarter and 17 from the prior three quarters).« less

  7. Audit Report, "Fire Protection Deficiencies at Los Alamos National Laboratory"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-06-01

    The Department of Energy's Los Alamos National Laboratory (Los Alamos) maintains some of the Nation's most important national security assets, including nuclear materials. Many of Los Alamos' facilities are located in close proximity to one another, are occupied by large numbers of contract and Federal employees, and support activities ranging from nuclear weapons design to science-related activities. Safeguarding against fires, regardless of origin, is essential to protecting employees, surrounding communities, and national security assets. On June 1, 2006, Los Alamos National Security, LLC (LANS), became the managing and operating contractor for Los Alamos, under contract with the Department's National Nuclearmore » Security Administration (NNSA). In preparation for assuming its management responsibilities at Los Alamos, LANS conducted walk-downs of the Laboratory's facilities to identify pre-existing deficiencies that could give rise to liability, obligation, loss or damage. The walk-downs, which identified 812 pre-existing fire protection deficiencies, were conducted by subject matter professionals, including fire protection experts. While the Los Alamos Site Office has overall responsibility for the effectiveness of the fire protection program, LANS, as the Laboratory's operating contractor, has a major, day-to-day role in minimizing fire-related risks. The issue of fire protection at Los Alamos is more than theoretical. In May 2000, the 'Cerro Grande' fire burned about 43,000 acres, including 7,700 acres of Laboratory property. Due to the risk posed by fire to the Laboratory's facilities, workforce, and surrounding communities, we initiated this audit to determine whether pre-existing fire protection deficiencies had been addressed. Our review disclosed that LANS had not resolved many of the fire protection deficiencies that had been identified in early 2006: (1) Of the 296 pre-existing deficiencies we selected for audit, 174 (59 percent) had not been

  8. Translating a National Laboratory Strategic Plan into action through SLMTA in a district hospital laboratory in Botswana.

    PubMed

    Ntshambiwa, Keoratile; Ntabe-Jagwer, Winnie; Kefilwe, Chandapiwa; Samuel, Fredrick; Moyo, Sikhulile

    2014-01-01

    The Ministry of Health (MOH) of Botswana adopted Strengthening Laboratory Management Toward Accreditation (SLMTA), a structured quality improvement programme, as a key tool for the implementation of quality management systems in its public health laboratories. Coupled with focused mentorship, this programme aimed to help MOH achieve the goals of the National Laboratory Strategic Plan to provide quality and timely clinical diagnoses. This article describes the impact of implementing SLMTA in Sekgoma Memorial Hospital Laboratory (SMHL) in Serowe, Botswana. SLMTA implementation in SMHL included trainings, improvement projects, site visits and focused mentorship. To measure progress, audits using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist were conducted at baseline and exit of the programme, with scores corresponding to a zero- to five-star scale. Turnaround times, customer satisfaction, and several other health service indicators were tracked. The laboratory scored 53% (zero stars) at the baseline audit and 80% (three stars) at exit. Nearly three years later, the laboratory scored 85% (four stars) in an official audit conducted by the African Society for Laboratory Medicine. Turnaround times became shorter after SLMTA implementation, with reductions ranging 19% to 52%; overall patient satisfaction increased from 56% to 73%; and clinician satisfaction increased from 41% to 72%. Improvements in inventory management led to decreases in discarded reagents, reducing losses from US $18 000 in 2011 to $40 in 2013. The SLMTA programme contributed to enhanced performance of the laboratory, which in turn yielded potential positive impacts for patient care at the hospital.

  9. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours formore » the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.« less

  10. Technical Feasibility Study for Deployment of Ground-Source Heat Pump Systems: Portsmouth Naval Shipyard -- Kittery, Maine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillesheim, M.; Mosey, G.

    2014-11-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reductionmore » goals.« less

  11. Real-time laboratory exercises to test contingency plans for classical swine fever: experiences from two national laboratories.

    PubMed

    Koenen, F; Uttenthal, A; Meindl-Böhmer, A

    2007-12-01

    In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning contingency plans. These plans should ensure that in the event of an outbreak access to facilities, equipment, resources, trained personnel, and all other facilities needed for the rapid and efficient eradication of the outbreak is guaranteed, and that the procedures to follow are well rehearsed. It is essential that these plans are established during 'peace-time' and are reviewed regularly. This paper provides suggestions on how to perform laboratory exercises to test preparedness and describes the experiences of two national reference laboratories for CSF. The major lesson learnt was the importance of a well-documented laboratory contingency plan. The major pitfalls encountered were shortage of space, difficulties in guaranteeing biosecurity and sufficient supplies of sterile equipment and consumables. The need for a standardised laboratory information management system, that is used by all those involved in order to reduce the administrative load, is also discussed.

  12. Environmental testing philosophy for a Sandia National Laboratories small satellite project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cap, J.S.; Rackley, N.G.

    1996-03-01

    Sandia National Laboratories is the system integrator on a small satellite project. Following the intent of the NASA GEVS document, an integrated test philosophy was formulated to certify the satellite for flight. The purpose of this paper is to present that philosophy.

  13. Feasibility study of medical isotope production at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, C.D.; Miller, D.L.; Carson, S.D.

    1995-12-01

    In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for {sup 99}Mo, the parent of {sup 99m}Tc, in the event of an interruption in themore » current Canadian supply. {sup 99m}Tc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for {sup 99}Mo and to identify and examine all issues with potential for environmental impact.« less

  14. [The National Reference Centres and Reference Laboratories. Importance and tasks].

    PubMed

    Laude, G; Ammon, A

    2005-09-01

    Since 1995, the German Federal Ministry for Health and Social Security funds National Reference Centres (NRC) for the laboratory surveillance of important pathogens and syndromes. Which pathogens or syndromes are selected to be covered by a NRC depends on their epidemiological relevance, the special diagnostic tools, problems with antimicrobial resistance and necessary infection control measures. Currently, there are 15 NRC, which are appointed for a period of 3 years (currently from January 2005 through December 2007). Towards the end of their appointment all NRC are evaluated by a group of specialists. The assessment of their achievements is guided by a catalogue of tasks for the NRC. In addition to the NRC, a total of 50 laboratories are appointed which provide specialist expertise for additional pathogens in order to have a broad range of pathogens for which specialist laboratories are available. Their predominant task is to give advice and support for special diagnostic problems. Both NRC and the specialist laboratories are important parts of the network for infectious disease epidemiology.

  15. Effects of Deployment on Musculoskeletal and Physiological Characteristics and Balance.

    PubMed

    Nagai, Takashi; Abt, John P; Sell, Timothy C; Keenan, Karen A; McGrail, Mark A; Smalley, Brian W; Lephart, Scott M

    2016-09-01

    Despite many nonbattle injuries reported during deployment, few studies have been conducted to evaluate the effects of deployment on musculoskeletal and physiological characteristics and balance. A total of 35 active duty U.S. Army Soldiers participated in laboratory testing before and after deployment to Afghanistan. The following measures were obtained for each Soldier: shoulder, trunk, hip, knee, and ankle strength and range of motion (ROM), balance, body composition, aerobic capacity, and anaerobic power/capacity. Additionally, Soldiers were asked about their physical activity and load carriage. Paired t tests or Wilcoxon tests with an α = 0.05 set a priori were used for statistical analyses. Shoulder external rotation ROM, torso rotation ROM, ankle dorsiflexion ROM, torso rotation strength, and anaerobic power significantly increased following deployment (p < 0.05). Shoulder extension ROM, shoulder external rotation strength, and eyes-closed balance (p < 0.05) were significantly worse following deployment. The majority of Soldiers (85%) engaged in physical activity. In addition, 58% of Soldiers reported regularly carrying a load (22 kg average). The deployment-related changes in musculoskeletal and physiological characteristics and balance as well as physical activity and load carriage during deployment may assist with proper preparation with the intent to optimize tactical readiness and mitigate injury risk. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  16. The Ebola threat: China's response to the West African epidemic and national development of prevention and control policies and infrastructure.

    PubMed

    Fan, Hao-Jun; Gao, Hong-Wei; Ding, Hui; Zhang, Bi-Ke; Hou, Shi-Ke

    2015-02-01

    There is growing concern in West Africa about the spread of the Ebola hemorrhagic fever virus. With the increasing global public health risk, a coordinated international response is necessary. The Chinese government is prepared to work in collaboration with West African countries to assist in the containment and control of the epidemic through the contribution of medical expertise and mobile laboratory testing teams. Nationally, China is implementing prevention programs in major cities and provinces, the distribution of Ebola test kits, and the deployment of a new national Ebola research laboratory.

  17. Non-Economic Obstacles to Wind Deployment: Issues and Regional Differences (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, I.

    2014-05-01

    This presentation provides an overview of national obstacles to wind deployment, with regional assessments. A special mention of offshore projects and distributed wind projects is provided. Detailed maps examine baseline capacity, military and flight radar, golden and bald eagle habitat, bat habitat, whooping crane habitat, and public lands. Regional deployment challenges are also discussed.

  18. USDOT guidance summary for connected vehicle deployments : application deployment.

    DOT National Transportation Integrated Search

    2016-07-01

    This document provides guidance material in regards to the Application Deployment Plan for the CV Pilots DeploymentConcept Development Phase. Methods for application deployment are discussed with definitions for the successfulmanagement of each aspec...

  19. Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, A

    2006-08-30

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improvingmore » our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers

  20. Dual benefit robotics programs at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A.T.

    Sandia National Laboratories has one of the largest integrated robotics laboratories in the United States. Projects include research, development, and application of one-of-a-kind systems, primarily for the Department of Energy (DOE) complex. This work has been underway for more than 10 years. It began with on-site activities that required remote operation, such as reactor and nuclear waste handling. Special purpose robot systems were developed using existing commercial manipulators and fixtures and programs designed in-house. These systems were used in applications such as servicing the Sandia pulsed reactor and inspecting remote roof bolts in an underground radioactive waste disposal facility. Inmore » the beginning, robotics was a small effort, but with increasing attention to the use of robots for hazardous operations, efforts now involve a staff of more than 100 people working in a broad robotics research, development, and applications program that has access to more than 30 robotics systems.« less