Science.gov

Sample records for natural abundance 13c

  1. High-resolution magic-angle spinning (13)C spectroscopy of brain tissue at natural abundance.

    PubMed

    Yang, Yongxia; Chen, Lei; Gao, Hongchang; Zeng, Danlin; Yue, Yong; Liu, Maili; Lei, Hao; Deng, Feng; Ye, Chaohui

    2006-03-01

    High-resolution magic-angle spinning (MAS) (1)H and (13)C magnetic resonance spectroscopy (MRS) has recently been applied to study the metabolism in intact biological tissue samples. Because of the low natural abundance and the low gyromagnetic ratio of the (13)C nuclei, signal enhancement techniques such as cross-polarization (CP) and distortionless enhancement by polarization transfer (DEPT) are often employed in MAS (13)C MRS to improve the detection sensitivity. In this study, several sensitivity enhancement techniques commonly used in liquid- and solid-state NMR, including CP, DEPT and nuclear Overhauser enhancement (NOE), were combined with MAS to acquire high-resolution (13)C spectra on intact rat brain tissue at natural abundance, and were compared for their performances. The results showed that different signal enhancement techniques are sensitive to different classes of molecules/metabolites, depending on their molecular weights and mobility. DEPT was found to enhance the signals of low-molecular weight metabolites exclusively, while the signals of lipids, which often are associated with membranes and have relatively lower mobility, were highly sensitive to CP enhancement. PMID:16477685

  2. In Vivo Natural-Abundance 13C Nuclear Magnetic Resonance Studies of Living Ectomycorrhizal Fungi 1

    PubMed Central

    Martin, Francis; Canet, Daniel; Marchal, Jean-Pierre; Brondeau, Jean

    1984-01-01

    Natural-abundance 13C nuclear magnetic resonance spectroscopy has been used to study intact mycelia of the ectomycorrhizal fungi Cenococcum graniforme (Ascomycetes) and Hebeloma crustuliniforme (Basidiomycetes). A number of sharp resonances are observed in living fungi. These signals primarily arise from fatty acyl chains and carbohydrate nuclei. The spectra are interpreted in terms of relative concentrations of the major fatty acids present in the fungal triglycerides. The small line width of fatty acids (mainly oleic, linoleic, and palmitic acids) resonances and spin-lattice relaxation time are indicative of fast rotational reorientations and are consequently thought to arise from fatty acyl chains in fat droplets. We were able to locate the site of lipids accumulation within mycelia using light microscopy and histological staining. Many lipid droplets were observed in mycelia of both species. These results suggest that fatty acids droplets could be involved in carbon storage and metabolism from ectomycorrhizal fungi. PMID:16663561

  3. Evidence of 13C non-covalent isotope effects obtained by quantitative 13C nuclear magnetic resonance spectroscopy at natural abundance during normal phase liquid chromatography.

    PubMed

    Botosoa, Eliot P; Silvestre, Virginie; Robins, Richard J; Rojas, Jose Manuel Moreno; Guillou, Claude; Remaud, Gérald S

    2009-10-16

    Quantitative isotopic (13)C NMR at natural abundance has been used to determine the site-by-site (13)C/(12)C ratios in vanillin and a number of related compounds eluted from silica gel chromatography columns under similar conditions. Head-to-tail isotope fractionation is observed in all compounds at the majority of carbon positions. Furthermore, the site-specific isotope deviations show signatures characteristic of the position and functionality of the substituents present. The observed effects are more complex than would be obtained by simply summing the individual effects. Such detail is hidden when only the global (13)C content is measured by mass spectrometry. In particular, carbon positions within the aromatic ring are found to show site-specific isotope fractionation between the solute and the stationary phase. These interactions, defined as non-covalent isotope effects, can be normal or inverse and vary with the substitution pattern present. PMID:19748628

  4. Position-Specific Isotope Analysis of Xanthines: A (13)C Nuclear Magnetic Resonance Method to Determine the (13)C Intramolecular Composition at Natural Abundance.

    PubMed

    Diomande, Didier G; Martineau, Estelle; Gilbert, Alexis; Nun, Pierrick; Murata, Ariaki; Yamada, Keita; Watanabe, Naoharu; Tea, Illa; Robins, Richard J; Yoshida, Naohiro; Remaud, Gérald S

    2015-07-01

    The natural xanthines caffeine, theobromine, and theophylline are of major commercial importance as flavor constituents in coffee, cocoa, tea, and a number of other beverages. However, their exploitation for authenticity, a requirement in these commodities that have a large origin-based price-range, by the standard method of isotope ratio monitoring by mass spectrometry (irm-MS) is limited. We have now developed a methodology that overcomes this deficit that exploits the power of isotopic quantitative (13)C nuclear magnetic resonance (NMR) spectrometry combined with chemical modification of the xanthines to enable the determination of positional intramolecular (13)C/(12)C ratios (δ(13)Ci) with high precision. However, only caffeine is amenable to analysis: theobromine and theophylline present substantial difficulties due to their poor solubility. However, their N-methylation to caffeine makes spectral acquisition feasible. The method is confirmed as robust, with good repeatability of the δ(13)Ci values in caffeine appropriate for isotope fractionation measurements at natural abundance. It is shown that there is negligible isotope fractionation during the chemical N-methylation procedure. Thus, the method preserves the original positional δ(13)Ci values. The method has been applied to measure the position-specific variation of the (13)C/(12)C distribution in caffeine. Not only is a clear difference between caffeine isolated from different sources observed, but theobromine from cocoa is found to show a (13)C pattern distinct from that of caffeine. PMID:26067163

  5. Characterization of Stratum Corneum Molecular Dynamics by Natural-Abundance 13C Solid-State NMR

    PubMed Central

    Bouwstra, Joke A.; Sparr, Emma; Topgaard, Daniel

    2013-01-01

    Despite the enormous potential for pharmaceutical applications, there is still a lack of understanding of the molecular details that can contribute to increased permeability of the stratum corneum (SC). To investigate the influence of hydration and heating on the SC, we record the natural-abundance 13C signal of SC using polarization transfer solid-state NMR methods. Resonance lines from all major SC components are assigned. Comparison of the signal intensities obtained with the INEPT and CP pulse sequences gives information on the molecular dynamics of SC components. The majority of the lipids are rigid at 32°C, and those lipids co-exist with a small pool of mobile lipids. The ratio between mobile and rigid lipids increases with hydration. An abrupt change of keratin filament dynamics occurs at RH = 80–85%, from completely rigid to a structure with rigid backbone and mobile protruding terminals. Heating has a strong effect on the lipid mobility, but only a weak influence on the keratin filaments. The results provide novel molecular insight into how the SC constituents are affected by hydration and heating, and improve the understanding of enhanced SC permeability, which is associated with elevated temperatures and SC hydration. PMID:23626744

  6. Critical evaluation of 13C natural abundance techniques to partition soil-surface CO2 efflux

    NASA Astrophysics Data System (ADS)

    Snell, H.; Midwood, A. J.; Robinson, D.

    2013-12-01

    Soil is the largest terrestrial store of carbon and the flux of CO2 from soils to the atmosphere is estimated at around 98 Pg (98 billion tonnes) of carbon per year. The CO2 efflux from the soil surface is derived from plant root and rhizosphere respiration (autotrophically fuelled) and microbial degradation of soil organic matter (heterotrophic respiration). Heterotrophic respiration is a key determinant of an ecosystem's long-term C balance, but one that is difficult to measure in the field. One approach involves partitioning the total soil-surface CO2 efflux between heterotrophic and autotrophic components; this can be done using differences in the natural abundance stable isotope ratios (δ13C) of autotrophic and heterotrophic CO2 as the end-members of a simple mixing model. In most natural, temperate ecosystems, current and historical vegetation cover (and therefore also plant-derived soil organic matter) is produced from C3 photosynthesis so the difference in δ13C between the autotrophic and heterotrophic CO2 sources is small. Successful partitioning therefore requires accurate and precise measurements of the δ13CO2 of the autotrophic and heterotrophic end-members (obtained by measuring the δ13CO2 of soil-free roots and root-free soil) and of total soil CO2 efflux. There is currently little consensus on the optimum measurement protocols. Here we systematically tested some of the most commonly used techniques to identify and minimise methodological errors. Using soil-surface chambers to sample total CO2 efflux and a cavity ring-down spectrometer to measure δ13CO2 in a partitioning study on a Scottish moorland, we found that: using soil-penetrating collars leads to a more depleted chamber measurement of total soil δ13CO2 as a result of severing roots and fungal hyphae or equilibrating with δ13CO2 at depth or both; root incubations provide an accurate estimate of in-situ root respired δ13CO2 provided they are sampled within one hour; the δ13CO2 from root

  7. The natural 13C abundance of plasma glucose is a useful biomarker of recent dietary caloric sweetener intake.

    PubMed

    Cook, Chad M; Alvig, Amy L; Liu, Yu Qiu David; Schoeller, Dale A

    2010-02-01

    There is a need for objective biomarkers of dietary intake, because self-reporting is often subject to bias. We tested the validity of a biomarker for the fraction of dietary carbohydrate (CHO) from cane sugar and high fructose corn syrup (C(4) sugars) using natural (13)C abundance of plasma glucose. In a randomized, single-blinded, crossover design, 5 participants consumed 3 weight-maintaining diets for 7 d, with a 2-wk washout between diet periods. Diets differed in the fraction of total CHO energy from C(4) sugars (5, 16, or 32%). During each diet period, blood samples were drawn at hours 0800 and 1600 on d 1, 3, and 5 and at 0800, 1000, 1200, 1400, and 1600 on d 7. The delta(13)C abundance of plasma glucose was analyzed via GC- isotope ratio MS. Within each diet period, delta(13)C abundance of the 0800 fasting glucose did not change from baseline with increasing time during a diet period; however, there was a strong positive correlation (R(2) = 0.89) between delta(13)C abundance of the glucose concentration at 1000 on d 7 and the percent of breakfast CHO from C(4) sugars. Also, delta(13)C abundance of the combined plasma glucose samples on d 7 demonstrated a strong positive correlation (R(2) = 0.90) with the percent of total daily CHO from C(4) sugars. The natural delta(13)C abundance of postprandial plasma glucose relative to dietary C(4) CHO content was a valid biomarker for contributions of C(4) caloric sweeteners from the previous meal. PMID:20018804

  8. Afforestation impacts microbial biomass and its natural (13)C and (15)N abundance in soil aggregates in central China.

    PubMed

    Wu, Junjun; Zhang, Qian; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli

    2016-10-15

    We investigated soil microbial biomass and its natural abundance of δ(13)C and δ(15)N in aggregates (>2000μm, 250-2000μm, 53-250μm and <53μm) of afforested (implementing woodland and shrubland plantations) soils, adjacent croplands and open area (i.e., control) in the Danjiangkou Reservoir area of central China. The afforested soils averaged higher microbial biomass carbon (MBC) and nitrogen (MBN) levels in all aggregates than in open area and cropland, with higher microbial biomass in micro-aggregates (<250μm) than in macro-aggregates (>2000μm). The δ(13)C of soil microbial biomass was more enriched in woodland soils than in other land use types, while δ(15)N of soil microbial biomass was more enriched compared with that of organic soil in all land use types. The δ(13)C and δ(15)N of microbial biomass were positively correlated with the δ(13)C and δ(15)N of organic soil across aggregates and land use types, whereas the (13)C and (15)N enrichment of microbial biomass exhibited linear decreases with the corresponding C:N ratio of organic soil. Our results suggest that shifts in the natural (13)C and (15)N abundance of microbial biomass reflect changes in the stabilization and turnover of soil organic matter (SOM) and thereby imply that afforestation can greatly impact SOM accumulation over the long-term. PMID:27285796

  9. Quantitation of metabolic compartmentation in hyperammonemic brain by natural abundance 13C-NMR detection of 13C-15N coupling patterns and isotopic shifts.

    PubMed

    Lapidot, A; Gopher, A

    1997-02-01

    In the present study, the removal of cerebral ammonia by glutamine synthetase (GS) and by reductive amination of 2-oxoglutarate by glutamate dehydrogenase in the presence of an amino donor group, was determined in hyperammonemic rabbit brains. The 15N enrichments of brain metabolite alpha-amino and amide positions of glutamine, glutamate, and alanine were determined by the indirect detection of 15N-labeled compounds of the 13C-15N spin coupling patterns of natural abundance 13C-NMR spectra. The 13C-NMR spectra of brain extracts were obtained from rabbits infused with 15NH4Cl with or without intraperitoneal infusion of the GS inhibitor, L-methionine DL-sulfoximine, in a reasonable acquisition time period. When 15NH4Cl was infused, [5-15N]glutamine and [2-15N]glutamine concentrations reached 5.2 mumol/100 mg protein and 3.6 mumol/100 mg protein, respectively, which indicates the relatively high activity of reductive amination of 2-oxoglutarate in the glutamate dehydrogenase reaction. The low concentration of [2-15N]glutamate, which is about 30% of that of [2-15N]glutamine obtained in this study, suggests that very little glutamine serves as a precursor of neuronal glutamate. When GS was inhibited by L-methionine DL-sulfoximine, a flux of 15NH4+ via the residual activity of GS was accompanied by an apparent increase of [2-15N]glutamate and [15N]alanine concentrations (2.9 mumol/100 mg protein and 1.8 mumol/100 mg protein, respectively). These findings and those obtained from 13C-13C isotopomer analysis (Lapidot and Gopher, 1994b) suggest that astrocytic 2-oxoglutarate is partially utilized (together with an amino group donor) as a precursor for neuronal glutamate in the hyperammonemic brain when GS is inhibited. This process can partly replace GS activity in metabolizing ammonia in the hyperammonemic rabbit brain. PMID:9057821

  10. Natural abundance measurements of 13C indicate increased deep soil carbon mineralization after forest disturbance

    NASA Astrophysics Data System (ADS)

    Diochon, Amanda; Kellman, Lisa

    2008-07-01

    Northern forest soils represent globally important stores of carbon (C), yet there is no consensus about how they are altered by the widespread practice of harvesting that dominates many forested landscapes. Here we present the first study to systematically investigate the utility of δ 13C and C content depth profiles to infer temporal changes in belowground carbon cycling processes following disturbance in a pure C3 ecosystem. We document carbon concentration and δ 13C depth profile enrichment trends consistent with a kinetic fractionation arising from soil organic carbon (SOC) humification across a northern forest chronosequence (1, 15, 45, 80 and 125+ yrs). Reduced soil C storage that coincided with observed soil profile δ 13C-enrichment patterns which intensified following clearcut harvesting, pointed to losses of SOC in the deeper (>20 cm) mineral soil. This study suggests the δ 13C approach may assist in identifying mechanisms responsible for soil C storage changes in disturbed C3 forest ecosystems.

  11. The natural abundance of 13C with different agricultural management by NIRS with fibre optic probe technology.

    PubMed

    Fuentes, Mariela; González-Martín, Inmaculada; Hernández-Hierro, Jose Miguel; Hidalgo, Claudia; Govaerts, Bram; Etchevers, Jorge; Sayre, Ken D; Dendooven, Luc

    2009-06-30

    In the present study the natural abundance of (13)C is quantified in agricultural soils in Mexico which have been submitted to different agronomic practices, zero and conventional tillage, retention of crop residues (with and without) and rotation of crops (wheat and maize) for 17 years, which have influenced the physical, chemical and biological characteristics of the soil. The natural abundance of C13 is quantified by near infrared spectra (NIRS) with a remote reflectance fibre optic probe, applying the probe directly to the soil samples. Discriminate partial least squares analysis of the near infrared spectra allowed to classify soils with and without residues, regardless of the type of tillage or rotation systems used with a prediction rate of 90% in the internal validation and 94% in the external validation. The NIRS calibration model using a modified partial least squares regression allowed to determine the delta(13)C in soils with or without residues, with multiple correlation coefficients 0.81 and standard error prediction 0.5 per thousand in soils with residues and 0.92 and 0.2 per thousand in soils without residues. The ratio performance deviation for the quantification of delta(13)C in soil was 2.5 in soil with residues and 3.8 without residues. This indicated that the model was adequate to determine the delta(13)C of unknown soils in the -16.2 per thousand to -20.4 per thousand range. The development of the NIR calibration permits analytic determinations of the values of delta(13)C in unknown agricultural soils in less time, employing a non-destructive method, by the application of the fibre optic probe of remote reflectance to the soil sample. PMID:19376340

  12. Food webs in Mongolian grasslands: the analysis of 13C and 15N natural abundances.

    PubMed

    Kohzu, Ayato; Iwata, T; Kato, M; Nishikawa, J; Wada, Eitaro; Amartuvshin, N; Namkhaidorj, B; Fujita, N

    2009-09-01

    Overgrazing often lowers species richness and productivity of grassland communities. For Mongolian grassland ecosystems, a lack of detailed information about food-web structures makes it difficult to predict the effects of overgrazing on species diversity and community composition. We analysed the delta13C and delta15N signatures of herbaceous plants, arthropods (grouped by feeding habit), wild and domestic mammals, and humans in central Mongolia to understand the predominant food-web pathways in this grassland ecosystem. The delta13C and delta15N values of mammals showed little variation within species, but varied considerably with slope position for arthropods. The apparent isotopic discrimination between body tissue and hair of mammals was estimated as 2.0 per thousand for delta13C and 2.1 per thousand for delta15N, which was large enough to cause overestimation of the trophic level of mammals if not taken into account when using hair samples to measure isotopic enrichment. PMID:19507080

  13. Natural abundance and 13C-enriched characterisation of atmospheric methane uptake in a forest soil

    NASA Astrophysics Data System (ADS)

    Maxfield, Peter; Hornibrook, Edward; Evershed, Richard

    2013-04-01

    Whilst much attention is focused on CH4 emission inventories, CH4 sinks are sometimes overlooked and not accurately accounted for in national budgets. Two primary reasons for this disjunction include uncertainties about the magnitude and mechanism of terrestrial CH4 oxidation, and an under-appreciation of the quantity of CH4 that is removed from the atmosphere by microorganisms. These uncertainties in part are caused by a lack of high-resolution field data that quantify microbial soil CH4 sink. To fully characterize the soil CH4 sink, isotopic fractionation of CH4during uptake and the fate of CH4 carbon following oxidation by soil microorganisms should be quantified in addition to CH4 fluxes. Here we report on field tests studying CH4 uptake in soil using a Picarro G2201-i cavity ringdown spectrometer (CRDS). Short term atmospheric CH4 uptake was continuously measured in a forest soil in Leigh Woods, UK where the soil methanotrophic community and soil CH4 uptake kinetic isotopic effect (KIE) had been previously quantified using stable isotope probing and conventional stable isotope analysis techniques (Maxfield et al., 2008). Two methodological approaches were tested: (i) direct measurement of the soil CH4 uptake KIE at subambient CH4 concentrations, and (ii) methanotrophic carbon conversion efficiency (CCE) where CCE was evaluated through monitoring the direct conversion of 13C-labelled CH4 to 13C-labelled CO2. The suitability of the G2201-i analyzer as a continuous isotopic CH4 and CO2 analyzer for use at both subambient CH4 concentrations and high 13C-enrichments will be discussed. Maxfield, P.J., Evershed, R.P. and Hornibrook, E.R.C. (2008) Physical and biological controls on the in situ kinetic isotope effect associated with oxidation of atmospheric CH4 in mineral soils. Environmental Science & Technology, 42, 7824-7830.

  14. 13C natural abundance in serum retinol acts as a biomarker for increases in dietary provitamin A.

    PubMed

    Howe, Julie A; Valentine, Ashley R; Hull, Angela K; Tanumihardjo, Sherry A

    2009-02-01

    The natural isotopic composition of 13C and 12C in tissues is largely determined by the diet. Sources of provitamin A carotenoids (e.g., vegetables) typically have a lower 13C to 12C ratio (13C:12C) than preformed vitamin A sources (i.e., dairy and meat) from corn-fed animals, which are prevalent in the US. The 13C:12C of serum retinol (13C:12C-retinol) was evaluated as a biomarker for vegetable intake in a 3-mo dietary intervention designed to promote weight-loss by increased vegetable consumption or reduced calorie and fat intake. Subjects were 21-50 y of age with a BMI between 30-40 kg/m2 and were enrolled from one geographic area in the US. The high vegetable group (n=20) was encouraged to increase daily vegetable and fruit consumption to 0.95 liter vegetables and 0.24-0.35 liter fruits. The caloric reduction group (n=17) was encouraged to lower caloric intake by 500 kcal and consume13C:12C-retinol. 13C:12C-Retinol decreased in the vegetable group after intervention (P=0.050) and the correlation with provitamin A intake was approaching significance (P=0.079). 13C:12C-Retinol did not change in the caloric reduction group (P=0.43). 13C:12C-Retinol changes with the vitamin A source in the diet and can be used as a biomarker for increases in dietary provitamin A vegetable intake. PMID:19116317

  15. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on (13)C natural abundances.

    PubMed

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily F; Hänsel, Falk; Fischer, Markus; Kleinebecker, Till

    2016-10-01

    Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ(13)C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier (13)C due to closing stomata leading to an enrichment of (13)C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ(13)C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ(13)C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ(13)C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change. PMID:27220098

  16. 13C Natural Abundance in Serum Retinol Acts as a Biomarker for Increases in Dietary Provitamin A

    PubMed Central

    Howe, Julie A; Valentine, Ashley R; Hull, Angela K; Tanumihardjo, Sherry A

    2009-01-01

    The natural isotopic composition of 13C and 12C in tissues is largely determined by the diet. Sources of provitamin A carotenoids (e.g., vegetables) typically have a lower 13C to 12C ratio (13C:12C) than preformed vitamin A sources (i.e., dairy and meat) from corn-fed animals, which are prevalent in the US. The 13C:12C of serum retinol (13C:12C-retinol) was evaluated as a biomarker for vegetable intake in a 3-mo dietary intervention designed to promote weight-loss by increased vegetable consumption or reduced calorie and fat intake. Subjects were 21–50 y of age with a BMI between 30–40 kg/m2 and were enrolled from one geographic area in the US. The high vegetable group (n = 20) was encouraged to increase daily vegetable and fruit consumption to 0.95 liter vegetables and 0.24–0.35 liter fruits. The caloric reduction group (n = 17) was encouraged to lower caloric intake by 500 kcal and consume ≤25% kcal from fat daily. Provided meals supplied 75–100% vegetable and fruit goals and 50–67% kcal and fat g per day. Carotenoid supplementation was discontinued by subjects during the study. Serum retinol and provitamin A carotenoid concentrations; intake of preformed vitamin A, provitamin A, and fat; and body weight, fat mass, and lean mass were analyzed for correlations to 13C:12C-retinol. 13C:12C-Retinol decreased in the vegetable group after intervention (P = 0.050) and the correlation with provitamin A intake was approaching significance (P = 0.079). 13C:12C-Retinol did not change in the caloric reduction group (P = 0.43). 13C:12C-Retinol changes with the vitamin A source in the diet and can be used as a biomarker for increases in dietary provitamin A vegetable intake. PMID:19116317

  17. Effect of petroleum products on the decomposition of soil organic matter as assessed by 13C natural abundance

    NASA Astrophysics Data System (ADS)

    Stelmach, Wioleta; Szarlip, Paweł; Trembaczowski, Andrzej; Bieganowski, Andrzej

    2016-04-01

    Petroleum products are common contaminants in soils due to human activities. They are toxic for microorganisms and threat their functions, including decomposition of soil organic matter (SOM). The direct estimation of altered SOM decomposition - based on the CO2 emission - is impossible after oil contamination, because oil decomposition also contributes to the CO2 release. We used the natural differences in the isotopic signature (δ13C) of SOM and of oil products to partition the total CO2 for both sources and to analyze the suppression of SOM decomposition. The dynamics of 13C fractionation during the mineralization of gasoline and diesel was measured during 42 days. The 13C fractionation varied between -8.8‰ and +3.6‰ within the first 10 days, and stabilized thereafter at about -5.3‰ for gasoline and +3.2‰ for diesel. These 13C fractionations and δ13C values of CO2 emitted from the soil were used for correct partitioning of the total CO2. Contamination with gasoline reduced the CO2 efflux from SOM decomposition by a factor of 25 (from 151 to 6 mg C-CO2 kg‑1 soil during 42 days). The negative effect of diesel was much lower: the CO2 efflux from SOM was decreased by less than a factor of 2. The strong effect of gasoline versus diesel reflects the lower absorption of gasoline to mineral particles and the development of a thin film on water surfaces, leading to toxicity for microorganisms. We conclude that the small differences of 13C of SOM and of organic pollutants can be used to partition CO2 fluxes and analyze pollutant effects on SOM decomposition.

  18. Land use Effects on Storage, Stability and Structure of Organic Carbon in Soil Density Fractions Revealed by 13C Natural Abundance and CPMAS 13C NMR

    NASA Astrophysics Data System (ADS)

    Flessa, H.; Helfrich, M.; John, B.; Yamashita, T.; Ludwig, B.

    2004-12-01

    The type of land use and soil cultivation are important factors controlling organic carbon storage (SOC) in soils and they can also influence the relative importance, the structure, and the stability of different SOC pools. The objectives of our study were: i) to quantify the SOC stocks in different density fractions (mineral-associated soil organic matter > 2 g cm-3 (Mineral-SOM), free particulate organic matter < 1.6 g cm-3 (free POM), light occluded particulate organic matter < 1.6 g cm-3 (occluded POM<1.6) and dense occluded particulate organic matter 1.6 to 2.0 g cm-3 (occluded POM1.6-2.0)) of silty soils under different land use (spruce forest, grassland, maize, wheat), ii) to determine the structure of these SOC fractions by CPMAS 13C NMR spectroscopy, and iii) to analyse the stability of these SOC fractions in the maize soil on the basis of the stable isotope composition of SOC. The SOC concentration in the A horizon increased in the order wheat (12.7 g kg-1) < maize (13.0 g kg-1) < grassland (24.5 g kg-1) < spruce (40.5 g kg-1). The major part (86-91%) of the SOC was associated with the heavy mineral fraction at the grassland, maize and wheat site. In the A horizon of the spruce soil, the particulate organic matter accounted for 52% of the total SOC content. The chemical structure of the soil organic matter (SOM) was influenced by litter quality, the intensity of litter decomposition and the related production and storage of microbially-derived substances. SOM of the acid forest soil was characterized by large amounts of POM with a high content of spruce litter-derived alkyl C. In the biologically more active grassland and maize soil, litter-derived POM was decomposed more rapidly and SOC stocks were dominated by mineral-associated SOM which contained greater proportions of aryl and carbonyl C. The cultivation of the grassland soil induced enhanced mineralization of POM and in particular of mineral-associated SOM. The faster SOC turnover was associated

  19. A New Tool for NMR Crystallography: Complete (13)C/(15)N Assignment of Organic Molecules at Natural Isotopic Abundance Using DNP-Enhanced Solid-State NMR.

    PubMed

    Märker, Katharina; Pingret, Morgane; Mouesca, Jean-Marie; Gasparutto, Didier; Hediger, Sabine; De Paëpe, Gaël

    2015-11-01

    NMR crystallography of organic molecules at natural isotopic abundance (NA) strongly relies on the comparison of assigned experimental and computed NMR chemical shifts. However, a broad applicability of this approach is often hampered by the still limited (1)H resolution and/or difficulties in assigning (13)C and (15)N resonances without the use of structure-based chemical shift calculations. As shown here, such difficulties can be overcome by (13)C-(13)C and for the first time (15)N-(13)C correlation experiments, recorded with the help of dynamic nuclear polarization. We present the complete de novo (13)C and (15)N resonance assignment at NA of a self-assembled 2'-deoxyguanosine derivative presenting two different molecules in the asymmetric crystallographic unit cell. This de novo assignment method is exclusively based on aforementioned correlation spectra and is an important addition to the NMR crystallography approach, rendering firstly (1)H assignment straightforward, and being secondly a prerequisite for distance measurements with solid-state NMR. PMID:26485326

  20. Natural 15N- and 13C-abundance as indicators of forest nitrogen status and soil carbon dynamics

    SciTech Connect

    Garten Jr, Charles T; Hanson, Paul J; Todd Jr, Donald E; Lu, Benwhea Bonnie; Brice, Deanne Jane

    2007-09-01

    This book highlights new and emerging uses of stable isotope analysis in a variety of ecological disciplines. While the use of natural abundance isotopes in ecological research is now relatively standard, new techniques and ways of interpreting patterns are developing rapidly. The second edition of this book provides a thorough, up-to-date examination of these methods of research. As part of the Ecological Methods and Concepts series which provides the latest information on experimental techniques in ecology, this book looks at a wide range of techniques that use natural abundance isotopes to: {sm_bullet} follow whole ecosystem element cycling {sm_bullet} understand processes of soil organic matter formation {sm_bullet} follow the movement of water in whole watersheds {sm_bullet} understand the effects of pollution in both terrestrial and aquatic environments {sm_bullet} study extreme systems such as hydrothermal vents {sm_bullet}follow migrating organisms In each case, the book explains the background to the methodology, looks at the underlying principles and assumptions, and outlines the potential limitations and pitfalls. Stable Isotopes in Ecology and Environmental Science is an ideal resource for both ecologists who are new to isotopic analysis, and more experienced isotope ecologists interested in innovative techniques and pioneering new uses.

  1. Molecular Investigation of the Short-term Sequestration of Natural Abundance 13C -labelled Cow Dung in the Surface Horizons of a Temperate Grassland Soil

    NASA Astrophysics Data System (ADS)

    Dungait, J.; Bol, R.; Evershed, R. P.

    2004-12-01

    An adequate understanding of the carbon (C) sequestration potential of grasslands requires that the quantity and residence times of C inputs be measured. Herbivore dung is largely comprised of plant cell wall material, a significant source of stable C in intensively grazed temperate grassland ecosystems that contributes to the soil carbon budget. Our work uses compound-specific isotope analysis to identify the pattern of input of dung-derived compounds from natural abundance 13C/-labelled cow dung into the surface horizons of a temperate grassland soil over one year. C4 dung (δ 13C \\-12.6 ‰ ) from maize fed cows was applied to a temperate grassland surface (δ 13C \\-29.95 ‰ ) at IGER-North Wyke (Devon, UK), and dung remains and soil cores beneath the treatments collected at ŧ = 7, 14, 28, 56, 112, 224 and 372 days. Bulk dung carbon present in the 0\\-1 cm and 1\\-5 cm surface horizons of a grassland soil over one year was estimated using Δ 13C between C4 dung and C3 dung, after Bol {\\et al.} (2000). The major biochemical components of dung were quantified using proximate forage fibre analyses, after Goering and Van Soest (1970) and identified using `wet' chemical and GC-MS methods. Plant cell wall polysaccharides and lignin were found to account for up to 67 {%} of dung dry matter. Hydrolysed polysaccharides were prepared as alditol acetates for analyses (after Docherty {\\et al.}, 2001), and a novel application of an off-line pyrolysis method applied to measure lignin-derived phenolic compounds (after Poole & van Bergen, 2002). This paper focuses on major events in the incorporation of dung carbon, estimated using natural abundance 13C&-slash;labelling technique. This revealed a major bulk input of dung carbon after a period of significant rainfall with a consequent decline in bulk soil δ 13C values until the end of the experiment (Dungait {\\et al.}, submitted). Findings will be presented revealing contribution of plant cell wall polysaccharides and

  2. Early-stage changes in natural (13)C and (15)N abundance and nutrient dynamics during different litter decomposition.

    PubMed

    Gautam, Mukesh Kumar; Lee, Kwang-Sik; Song, Byeong-Yeol; Lee, Dongho; Bong, Yeon-Sik

    2016-05-01

    Decomposition, nutrient, and isotopic (δ(13)C and δ(15)N) dynamics during 1 year were studied for leaf and twig litters of Pinus densiflora, Castanea crenata, Erigeron annuus, and Miscanthus sinensis growing on a highly weathered soil with constrained nutrient supply using litterbags in a cool temperate region of South Korea. Decay constant (k/year) ranged from 0.58 to 1.29/year, and mass loss ranged from 22.36 to 58.43 % among litter types. The results demonstrate that mass loss and nutrient dynamics of decomposing litter were influenced by the seasonality of mineralization and immobilization processes. In general, most nutrients exhibited alternate phases of rapid mineralization followed by gradual immobilization, except K, which was released throughout the field incubation. At the end of study, among all the nutrients only N and P showed net immobilization. Mobility of different nutrients from decomposing litter as the percentage of initial litter nutrient concentration was in the order of K > Mg > Ca > N ≈ P. The δ(13)C (0.32-6.70 ‰) and δ(15)N (0.74-3.90 ‰) values of residual litters showed nonlinear increase and decrease, respectively compared to initial isotopic values during decomposition. Litter of different functional types and chemical quality converged toward a conservative nutrient use strategy through mechanisms of slow decomposition and slow nutrient mobilization. Our results indicate that litter quality and season, are the most important regulators of litter decomposition in these forests. The results revealed significant relationships between litter decomposition rates and N, C:N ratio and P, and seasonality (temperature). These results and the convergence of different litters towards conservative nutrient use in these nutrient constrained ecosystems imply optimization of litter management because litter removal can have cascading effects on litter decomposition and nutrient availability in these systems. PMID:26915037

  3. High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance

    PubMed Central

    Zare, Richard N.; Kuramoto, Douglas S.; Haase, Christa; Tan, Sze M.; Crosson, Eric R.; Saad, Nabil M. R.

    2009-01-01

    A continuous-flow cavity ring-down spectroscopy (CRDS) system integrating a chromatographic separation technique, a catalytic combustor, and an isotopic 13C/12C optical analyzer is described for the isotopic analysis of a mixture of organic compounds. A demonstration of its potential is made for the geochemically important class of short-chain hydrocarbons. The system proved to be linear over a 3-fold injection volume dynamic range with an average precision of 0.95‰ and 0.67‰ for ethane and propane, respectively. The calibrated accuracy for methane, ethane, and propane is within 3‰ of the values determined using isotope ratio mass spectrometry (IRMS), which is the current method of choice for compound-specific isotope analysis. With anticipated improvements, the low-cost, portable, and easy-to-use CRDS-based instrumental setup is poised to evolve into a credible challenge to the high-cost and complex IRMS-based technique. PMID:19564619

  4. Natural abundances of 15N and 13C in leaves of some N2-fixing and non-N2-fixing trees and shrubs in Syria.

    PubMed

    Kurdali, F; Al-Shamma'a, M

    2009-09-01

    A survey study was conducted on man-made plantations located at two different areas in the arid region of Syria to determine the variations in natural abundances of the (15)N and (13)C isotopes in leaves of several woody legume and non-legume species, and to better understand the consequence of such variations on nitrogen fixation and carbon assimilation. In the first study area (non-saline soil), the delta(15)N values in four legume species (Acacia cyanophylla,-1.73 per thousand Acacia farnesiana,-0.55 per thousand Prosopis juliflora,-1.64 per thousand; and Medicago arborea,+1.6 \\textperthousand) and one actinorhizal plant (Elaeagnus angustifolia,-0.46 to-2.1 per thousand) were found to be close to that of the atmospheric value pointing to a major contribution of N(2) fixing in these species; whereas, delta(15)N values of the non-fixing plant species were highly positive. delta(13)C per thousand; in leaves of the C3 plants were found to be affected by plant species, ranging from a minimum of-28.67 per thousand; to a maximum of-23 per thousand. However, they were relatively similar within each plant species although they were grown at different sites. In the second study area (salt affected soil), a higher carbon discrimination value (Delta(13)C per thousand) was exhibited by P. juliflora, indicating that the latter is a salt tolerant species; however, its delta(15)N was highly positive (+7.03 per thousand) suggesting a negligible contribution of the fixed N(2). Hence, it was concluded that the enhancement of N(2) fixation might be achieved by selection of salt-tolerant Rhizobium strains. PMID:20183233

  5. NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Freedberg, Darón I.; Keire, David A.

    2015-02-01

    2D NMR 1H-X (X = 15N or 13C) HSQC spectra contain cross-peaks for all XHn moieties. Multiplicity-edited1H-13C HSQC pulse sequences generate opposite signs between peaks of CH2 and CH/CH3 at a cost of lower signal-to-noise due to the 13C T2 relaxation during an additional 1/1JCH period. Such CHn-editing experiments are useful in assignment of chemical shifts and have been successfully applied to small molecules and small proteins (e.g. ubiquitin) dissolved in deuterated solvents where, generally, peak overlap is minimal. By contrast, for larger biomolecules, peak overlap in 2D HSQC spectra is unavoidable and peaks with opposite phases cancel each other out in the edited spectra. However, there is an increasing need for using NMR to profile biomolecules at natural abundance dissolved in water (e.g., protein therapeutics) where NMR experiments beyond 2D are impractical. Therefore, the existing 2D multiplicity-edited HSQC methods must be improved to acquire data on nuclei other than 13C (i.e.15N), to resolve more peaks, to reduce T2 losses and to accommodate water suppression approaches. To meet these needs, a multiplicity-separated1H-X HSQC (MS-HSQC) experiment was developed and tested on 500 and 700 MHz NMR spectrometers equipped with room temperature probes using RNase A (14 kDa) and retroviral capsid (26 kDa) proteins dissolved in 95% H2O/5% D2O. In this pulse sequence, the 1/1JXH editing-period is incorporated into the semi-constant time (semi-CT) X resonance chemical shift evolution period, which increases sensitivity, and importantly, the sum and the difference of the interleaved 1JXH-active and the 1JXH-inactive HSQC experiments yield two separate spectra for XH2 and XH/XH3. Furthermore we demonstrate improved water suppression using triple xyz-gradients instead of the more widely used z-gradient only water-suppression approach.

  6. Conformational study of C8 diazocine turn mimics using {sup 3}J{sub CH} coupling constants with {sup 13}C in natural abundance

    SciTech Connect

    Bean, J.W.; Briand, J.; Burgess, J.L.; Callahan, J.F.

    1994-12-01

    The conformations of two diazocine turn mimics, which were later incorporated into GPIIb/IIIa peptide antagonists, were investigated using nuclear magnetic resonance techniques. The two compounds, methyl (2,5-dioxo-3-(S)-(3-{omega}-tosylguanidino-propyl)-4-methyl-octahydro-1,4-dazocin-1-yl)acetate (1) and methyl (2,5-dioxo-3-(S)-(3-{omega}-tosyl-guanidino-propyl)-octahydro-1,5-diazocin-1-yl)acetate (2), differ only in their substituent at the diazocine position 4 nitrogen, yet this substitution results in a marked difference in the affinity of the resulting analogs for the GPIIb/IIIa receptor. It was of interest to determine if the difference observed in the antagonistic potency between these analogs was related to constitutional or, perhaps, conformational differences. The backbone conformations of these two molecules can be determined by measuring vicinal coupling constants along the trimethylene portion of the C8 ring backbone and by measuring interproton NOE intensities between the diazocine methine proton and the protons of the trimethylene group. For compound 1, {sup 3}J{sub HH} values measured from a P.E.COSY spectrum and interproton distances calculated from ROESY buildup curves indicated the presence of a single C8 ring backbone conformation where the trimethylene bridge adopted a staggered conformation and the H{alpha}1 and H{gamma}1 protons of the trimethylene group were 2.2 A from the methine proton. For compound 2, however, partial overlap of the central H{beta}1 and H{beta}2 protons made it impossible to measure {sup 3}J{sub HH} values from the P.E.COSY spectrum. We therefore used a {sup 13}C-filtered TOCSY experiment to measure the {sup 3}J{sub CH} values in both compounds 1 and 2. These heteronuclear vicinal coupling constants measured with {sup 13}C in natural abundance in conjunction with measured interproton NOE intensities indicate that these compounds share a common C8 ring backbone conformation.

  7. Abundance anomaly of the 13C species of CCH

    NASA Astrophysics Data System (ADS)

    Sakai, N.; Saruwatari, O.; Sakai, T.; Takano, S.; Yamamoto, S.

    2010-03-01

    Aims: We have observed the N = 1-0 lines of CCH and its 13C isotopic species toward a cold dark cloud, TMC-1 and a star-forming region, L1527, to investigate the 13C abundances and formation pathways of CCH. Methods: The observations have been carried out with the IRAM 30 m telescope. Results: We have successfully detected the lines of 13CCH and C13CH toward the both sources and found a significant intensity difference between the two 13C isotopic species. The [C13CH] /[13CCH] abundance ratios are 1.6 ± 0.4 (3σ) and 1.6 ± 0.1 (3σ) for TMC-1 and L1527, respectively. The abundance difference between C13CH and 13CCH means that the two carbon atoms of CCH are not equivalent in the formation pathway. On the other hand, the [CCH]/[C13CH] and [CCH]/[13CCH] ratios are evaluated to be larger than 170 and 250 toward TMC-1, and to be larger than 80 and 135 toward L1527, respectively. Therefore, both of the 13C species are significantly diluted in comparison with the interstellar 12C/13C ratio of 60. The dilution is discussed in terms of a behavior of 13C in molecular clouds.

  8. 13C Natural Abundance of Serum Retinol Is a Novel Biomarker for Evaluating Provitamin A Carotenoid-Biofortified Maize Consumption in Male Mongolian Gerbils123

    PubMed Central

    Pungarcher, India; Mourao, Luciana; Davis, Christopher R; Simon, Philipp; Pixley, Kevin V; Tanumihardjo, Sherry A

    2016-01-01

    Background: Crops such as maize, sorghum, and millet are being biofortified with provitamin A carotenoids to ensure adequate vitamin A (VA) intakes. VA assessment can be challenging because serum retinol concentrations are homeostatically controlled and more sensitive techniques are resource-intensive. Objectives: We investigated changes in serum retinol relative differences of isotope amount ratios of 13C/12C (δ13C) caused by natural 13C fractionation in C3 compared with C4 plants as a biomarker to detect provitamin A efficacy from biofortified (orange) maize and high-carotene carrots. Methods: The design was a 2 × 2 × 2 maize (orange compared with white) by carrot (orange compared with white) by a VA fortificant (VA+ compared with VA−) in weanling male Mongolian gerbils (n = 55), which included a 14-d VA depletion period and a 62-d treatment period (1 baseline and 8 treatment groups; n = 5−7/group). Liver VA and serum retinol were quantified, purified by HPLC, and analyzed by GC combustion isotope ratio mass spectrometry for 13C. Results: Treatments affected liver VA concentrations (0.048 ± 0.039 to 0.79 ± 0.24 μmol/g; P < 0.0001) but not overall serum retinol concentrations (1.38 ± 0.22 μmol/L). Serum retinol and liver VA δ13C were significantly correlated (R2 = 0.92; P < 0.0001). Serum retinol δ13C differentiated control groups that consumed white maize and white carrots (−27.1 ± 1.2 δ13C‰) from treated groups that consumed orange maize and white carrots (−21.6 ± 1.4 δ13C‰ P < 0.0001) and white maize and orange carrots (−30.6 ± 0.7 δ13C‰ P < 0.0001). A prediction model demonstrated the relative contribution of orange maize to total dietary VA for groups that consumed VA from mixed sources. Conclusions: Provitamin A efficacy and quantitative estimation of the relative contribution to dietary VA were demonstrated with the use of serum retinol δ13C. This method could be used for maize efficacy or effectiveness studies and with

  9. Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests

    PubMed Central

    Högberg, Peter; Plamboeck, Agneta H.; Taylor, Andrew F. S.; Fransson, Petra M. A.

    1999-01-01

    Fungi play crucial roles in the biogeochemistry of terrestrial ecosystems, most notably as saprophytes decomposing organic matter and as mycorrhizal fungi enhancing plant nutrient uptake. However, a recurrent problem in fungal ecology is to establish the trophic status of species in the field. Our interpretations and conclusions are too often based on extrapolations from laboratory microcosm experiments or on anecdotal field evidence. Here, we used natural variations in stable carbon isotope ratios (δ13C) as an approach to distinguish between fungal decomposers and symbiotic mycorrhizal fungal species in the rich sporocarp flora (our sample contains 135 species) of temperate forests. We also demonstrated that host-specific mycorrhizal fungi that receive C from overstorey or understorey tree species differ in their δ13C. The many promiscuous mycorrhizal fungi, associated with and connecting several tree hosts, were calculated to receive 57–100% of their C from overstorey trees. Thus, overstorey trees also support, partly or wholly, the nutrient-absorbing mycelia of their alleged competitors, the understorey trees. PMID:10411910

  10. Distributions and Transformations of Natural Abundance 14C and 13C in Dissolved and Particulate Lipids in a Major Temperate Estuary

    NASA Astrophysics Data System (ADS)

    Bauer, J. E.; Canuel, E. A.; McIntosh, H.; Barrett, A.; Ferer, E.; Hossler, K.

    2013-12-01

    Limited previous studies have shown major differences in the natural 14C and 13C isotopic signatures and radiocarbon ages of different biochemical classes (e.g., proteins, carbohydrates, lipid, etc.) in river, estuarine and marine dissolved and particulate organic matter (DOM and POM, respectively). Of particular note are the much greater radiocarbon ages of lipophilic materials than other compound classes. Possible explanations for these findings include greater-than-expected inputs of fossil and highly aged lipid-containing organic matter to rivers and estuaries, extended sorptive-protection of lipophilic materials from degradation and/or lower overall reactivities of lipids vs. other major biochemical classes. We measured the Delta 14C and del 13C signatures and 14C ages of lipid classes in DOM and POM in a major temperate estuary, Delaware Bay (USA) over two years. Changes in DOM were also followed during large volume dark and light incubations to assess the microbial and photochemical reactivity and processing of DOM and lipids. Neutral lipids in DOM were among the most highly aged (> 30,000 yrs BP) of any materials measured in natural waters to date, and were significantly older than co-occurring polar lipids (~4,000-5,000 yrs BP). In general, DOM lipid ages were significantly greater than POM lipid ages across the river-estuary transect, arguing against sorptive protection as the major factor explaining greater ages of lipid than those of other compound classes. Both dark and light incubations of DOM resulted in losses of very highly aged material (30-50,000 y BP), with the remnant exported lipids being correspondingly younger. The microbial and photochemical alterations were most pronounced for lipids from freshwater reaches of the system (i.e., the Delaware River). These findings suggest that a) dissolved vs. particulate lipids have fundamentally different sources and/or physico-chemical partitioning, b) different lipid classes (e.g., neutral vs. polar

  11. Assessing the use of delta(13)C natural abundance in separation of root and microbial respiration in a Danish beech (Fagus sylvatica L.) forest.

    PubMed

    Formánek, Pavel; Ambus, Per

    2004-01-01

    Our understanding of forest biosphere-atmosphere interactions is fundamental for predicting forest ecosystem responses to climatic changes. Currently, however, our knowledge is incomplete partly due to inability to separate the major components of soil CO(2) effluxes, viz. root respiration, microbial decomposition of soil organic matter and microbial decomposition of litter material. In this study we examined whether the delta(13)C characteristics of solid organic matter and respired CO(2) from different soil-C components and root respiration in a Danish beech forest were useful to provide information on the root respiration contribution to total CO(2) effluxes. The delta(13)C isotopic analyses of CO(2) were performed using a FinniganMAT Delta(PLUS) isotope-ratio mass spectrometer coupled in continuous flow mode to a trace gas preparation-concentration unit (PreCon). Gas samples in 2-mL crimp seal vials were analysed in a fully automatic mode with an experimental standard error +/-0.11 per thousand. We observed that the CO(2) derived from root-free mineral soil horizons (A, B(W)) was more enriched in (13)C (delta(13)C range -21.6 to -21.2 per thousand ) compared with CO(2) derived from root-free humus layers (delta(13)C range -23.6 to -23.4 per thousand ). The CO(2) evolved from root respiration in isolated young beech plants revealed a value intermediate between those for the soil humus and mineral horizons, delta(13)C(root) = -22.2 per thousand, but was associated with great variability (SE +/- 1.0 per thousand ) due to plant-specific differences. delta(13)C of CO(2) from in situ below-ground respiration averaged -22.8 per thousand, intermediate between the values for the humus layer and root respiration, but variability was great (SE +/- 0.4 per thousand ) due to pronounced spatial patterns. Overall, we were unable to statistically separate the CO(2) of root respiration vs. soil organic matter decomposition based solely on delta(13)C signatures, yet the trend in

  12. Incremental vacuum dehydration-decarbonation experiments on a natural gibbsite (α-Al(OH 3)): CO 2 abundance and δ 13C values

    NASA Astrophysics Data System (ADS)

    Tabor, Neil J.; Yapp, Crayton J.

    2005-02-01

    Incremental vacuum dehydration-decarbonation experiments were performed at 190°C on chemically "cleaned" aliquots of a gibbsite-dominated, Eocene-age bauxite sample with evolution of CO 2 and H 2O. "Plateau" F (CO 2/H 2O ratios) and δ 13C values of the CO 2 derived from gibbsite were attained over the dehydration interval, X v(H 2) = 0.16 to 0.67 (i.e., 16 to 67% breakdown of gibbsite). The plateau value of F for gibbsite was 0.0043 ± 0.0003, while the corresponding δ 13C value of evolved CO 2 was -16.0‰±0.4‰. Additional experiments on chemically cleaned aliquots included (1) treatment with a solution of 0.3M Na-Citrate + 0.1M Na-Dithionite and (2) an exchange experiment with 0.1 bar of 13C-depleted CO 2 (-46‰) at 105°C for 64.5 h. Neither of these additional treatments resulted in a measurable perturbation of plateau values of F or δ 13C for CO 2 evolved from gibbsite during dehydroxylation. These results support published work on Holocene samples which suggested that CO 2 occluded in gibbsite may preserve information on δ 13C values of CO 2 in ancient terrestrial systems. The plateau values of F observed in the Eocene gibbsite indicate that it may be possible to experimentally calibrate a relationship between the concentration of CO 2 occluded in gibbsite and CO 2 in the environment at the time of crystallization. Such a calibration would significantly enhance the value of gibbsite as a source of information on ancient oxidized carbon systems.

  13. Priming of Soil Carbon Decomposition in Two Inner Mongolia Grassland Soils following Sheep Dung Addition: A Study Using 13C Natural Abundance Approach

    PubMed Central

    Ma, Xiuzhi; Ambus, Per; Wang, Shiping; Wang, Yanfen; Wang, Chengjie

    2013-01-01

    To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content) and a heavily degraded Artemisia frigida dominated community (1.3% organic matter content). Dung was collected from sheep either fed on L. chinensis (C3 plant with δ13C = −26.8‰; dung δ13C = −26.2‰) or Cleistogenes squarrosa (C4 plant with δ13C = −14.6‰; dung δ13C = −15.7‰). Fresh C3 and C4 sheep dung was mixed with the two grassland soils and incubated under controlled conditions for analysis of 13C-CO2 emissions. Soil samples were taken at days 17, 43, 86, 127 and 152 after sheep dung addition to detect the δ13C signal in soil and dung components. Analysis revealed that 16.9% and 16.6% of the sheep dung C had decomposed, of which 3.5% and 2.8% was sequestrated in the soils of L. chinensis and A. frigida grasslands, respectively, while the remaining decomposed sheep dung was emitted as CO2. The cumulative amounts of C respired from dung treated soils during 152 days were 7–8 times higher than in the un-amended controls. In both grassland soils, ca. 60% of the evolved CO2 originated from the decomposing sheep dung and 40% from the native soil C. Priming effects of soil C decomposition were observed in both soils, i.e. 1.4 g and 1.6 g additional soil C kg−1 dry soil had been emitted as CO2 for the L. chinensis and A. frigida soils, respectively. Hence, the net C losses from L. chinensis and A. frigida soils were 0.6 g and 0.9 g C kg−1 soil, which was 2.6% and 7.0% of the total C in L. chinensis and A. frigida grasslands soils, respectively. Our results suggest that grazing of degraded Inner Mongolian pastures may cause a net soil C loss due to the positive priming effect, thereby accelerating soil deterioration. PMID:24236024

  14. Natural (13) C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern.

    PubMed

    Lamade, Emmanuelle; Tcherkez, Guillaume; Darlan, Nuzul Hijri; Rodrigues, Rosario Lobato; Fresneau, Chantal; Mauve, Caroline; Lamothe-Sibold, Marlène; Sketriené, Diana; Ghashghaie, Jaleh

    2016-01-01

    Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis-based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C-sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural (13) C-abundance (δ(13) C) in oil palm tissues, including fruits at different maturation stages. We find a (13) C-enrichment in heterotrophic organs compared to mature leaves, with roots being the most (13) C-enriched. The δ(13) C in fruits decreased during maturation, reflecting the accumulation in (13) C-depleted lipids. We further used observed δ(13) C values to compute plausible carbon fluxes using a steady-state model of (13) C-distribution including metabolic isotope effects ((12) v/(13) v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C-exchange between organs. PMID:26228944

  15. An overview of methods using 13C for improved compound identification in metabolomics and natural products

    PubMed Central

    Clendinen, Chaevien S.; Stupp, Gregory S.; Ajredini, Ramadan; Lee-McMullen, Brittany; Beecher, Chris; Edison, Arthur S.

    2015-01-01

    Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR) investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS), discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize 13C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA), which utilizes samples that are isotopically labeled with 5% (test) and 95% (control) 13C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5 and 95% channels. For NMR applications, we describe two 13C-based approaches. For samples at natural abundance, we have developed a workflow to obtain 13C–13C and 13C–1H statistical correlations using 1D 13C and 1H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct 13C–13C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which 13C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest. PMID:26379677

  16. Natural isotope correction of MS/MS measurements for metabolomics and (13) C fluxomics.

    PubMed

    Niedenführ, Sebastian; Ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha

    2016-05-01

    Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13) C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full useof LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13) C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation. Biotechnol. Bioeng. 2016;113: 1137-1147. © 2015 Wiley Periodicals, Inc. PMID:26479486

  17. Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite

    PubMed Central

    Eagle, Robert A.; Schauble, Edwin A.; Tripati, Aradhna K.; Tütken, Thomas; Hulbert, Richard C.; Eiler, John M.

    2010-01-01

    The stable isotope compositions of biologically precipitated apatite in bone, teeth, and scales are widely used to obtain information on the diet, behavior, and physiology of extinct organisms and to reconstruct past climate. Here we report the application of a new type of geochemical measurement to bioapatite, a “clumped-isotope” paleothermometer, based on the thermodynamically driven preference for 13C and 18O to bond with each other within carbonate ions in the bioapatite crystal lattice. This effect is dependent on temperature but, unlike conventional stable isotope paleothermometers, is independent from the isotopic composition of water from which the mineral formed. We show that the abundance of 13C-18O bonds in the carbonate component of tooth bioapatite from modern specimens decreases with increasing body temperature of the animal, following a relationship between isotope “clumping” and temperature that is statistically indistinguishable from inorganic calcite. This result is in agreement with a theoretical model of isotopic ordering in carbonate ion groups in apatite and calcite. This thermometer constrains body temperatures of bioapatite-producing organisms with an accuracy of 1–2 °C. Analyses of fossilized tooth enamel of both Pleistocene and Miocene age yielded temperatures within error of those derived from similar modern taxa. Clumped-isotope analysis of bioapatite represents a new approach in the study of the thermophysiology of extinct species, allowing the first direct measurement of their body temperatures. It will also open new avenues in the study of paleoclimate, as the measurement of clumped isotopes in phosphorites and fossils has the potential to reconstruct environmental temperatures. PMID:20498092

  18. Biosynthetic production of universally (13)C-labelled polyunsaturated fatty acids as reference materials for natural health product research.

    PubMed

    Le, Phuong Mai; Fraser, Catherine; Gardner, Graeme; Liang, Wei-Wan; Kralovec, Jaroslav A; Cunnane, Stephen C; Windust, Anthony J

    2007-09-01

    Long-chain polyunsaturated fatty acids (LCPUFA) including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have become important natural health products with numerous proven benefits related to brain function and cardiovascular health. Not only are omega-3 fatty acids available in a plethora of dietary supplements, but they are also increasingly being incorporated as triglycerides into conventional foods, including bread, milk, yoghurt and confectionaries. Recently, transgenic oil seed crops and livestock have been developed that enhance omega-3 fatty acid content. This diverse array of matrices presents a difficult analytical challenge and is compounded further by samples generated through clinical research. Stable isotope (13)C-labelled LCPUFA standards offer many advantages as research tools because they may be distinguished from their naturally abundant counterparts by mass spectrometry and directly incorporated as internal standards into analytical procedures. Further, (13)C-labelled LCPUFAs are safe to use as metabolic tracers to study uptake and metabolism in humans. Currently, (13)C-labelled LCPUFAs are expensive, available in limited supply and not in triglyceride form. To resolve these issues, marine heterotrophic microorganisms are being isolated and screened for LCPUFA production with a view to the efficient biosynthetic production of U-(13)C-labelled fatty acids using U-(13)C glucose as a carbon source. Of 37 isolates obtained, most were thraustochytrids, and either DHA or omega-6 docosapentaenoic acid (22:5n-6) were produced as the major LCPUFA. The marine protist Hyalochlorella marina was identified as a novel source of EPA and omega-3 docosapentaenoic acid (22:5n-3). As proof of principle, gram-level production of (13)C-labelled DHA has been achieved with high chemical purity ( >99%) and high (13)C incorporation levels (>90%), as confirmed by NMR and MS analyses. Finally, U-(13)C-DHA was enzymatically re-esterified to

  19. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    NASA Astrophysics Data System (ADS)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  20. Choice of dietary protein of vegetarians and omnivores is reflected in their hair protein 13C and 15N abundance.

    PubMed

    Petzke, Klaus J; Boeing, Heiner; Metges, Cornelia C

    2005-01-01

    Stable isotopic (15N, 13C) composition of tissues depends on isotopic pattern of food sources. We investigated whether the isotopic compositions of human hair protein and amino acids reflect the habitual dietary protein intake. Hair samples were analyzed from 100 omnivores (selected randomly out of the 1987-1988 German nutrition survey VERA), and from 15 ovo-lacto-vegetarians (OLV), and from 6 vegans recruited separately. Hair bulk and amino acid specific isotopic compositions were analyzed by isotope-ratio mass spectrometry (EA/IRMS and GC/C/IRMS, respectively) and the results were correlated with data of the 7 day dietary records. Hair bulk 15N and 13C abundances clearly reflect the particular eating habits. Vegans can be distinguished from OLV and both are significantly distinct from omnivores in both 15N and 13C abundances. 15N and 13C abundances rose with a higher proportion of animal to total protein intake (PAPI). Individual proportions of animal protein consumption (IPAP) were calculated using isotopic abundances and a linear regression model using animal protein consumption data of vegans (PAPI = 0) and omnivores (mean PAPI = 0.639). IPAP values positively correlated with the intake of protein, meat, meat products, and animal protein. Distinct patterns for hair amino acid specific 15N and 13C abundances were measured but with lower resolution between food preference groups compared with bulk values. In conclusion, hair 13C and 15N values both reflected the extent of animal protein consumption. Bulk isotopic abundance of hair can be tested for future use in the validation of dietary assessment methods. PMID:15880664

  1. Comparing Soil and Bison δ13C to Field Estimates of C4 Plant Abundances in North America

    NASA Astrophysics Data System (ADS)

    Griffith, D.; Still, C. J.; Cotton, J.; Powell, B.

    2015-12-01

    Stable carbon isotope data (i.e., δ13C) from soils and herbivore tissue are commonly used as a proxy for the relative abundance of C4 and C3 plants at a site. These data are also increasingly used to represent other climatologically relevant properties of vegetated environments, such as productivity, aridity, water use efficiency, and tree cover. The δ13C values of soils and herbivore tissues are generally assumed to resemble their source vegetation, after accounting for diverse fractionation processes during litter decomposition and tissue metabolism and turnover. However, δ13C values have rarely been compared to source vegetation at a regional to continental scale. As a result, the quality of δ13C as a proxy has not been thoroughly evaluated, and the importance of modifying factors have not been assessed at biogeographically relevant scales. To address some of these issues, we combined three multi-source datasets from North America: herbaceous C4 plant abundances from thousands of vegetation plots, hundreds of soil δ13C measurements, and hundreds of bison collagen, hair, and enamel δ13C data (tissues with different turnover rates). These datasets were resampled to common grid for comparison. A stronger relationship with C4 vegetation existed for bison as compared to soil δ13C. To determine which factors might explain deviations in the vegetation plot and isotopic data, we used statistical models to quantify the influence of soil variables, mean annual precipitation and temperature, tree cover, presence of invasives, and fire frequency in conjunction with plot-based C4 abundance data. Our bison model was only improved by the addition of invasives. In contrast, our soil model was significantly improved when accounting for tree cover (C3 vegetation and shade), precipitation, various soil parameters, and invasive grasses, suggesting that soils are more likely to be biased from source vegetation in ways that could influence interpretation as a proxy at broad

  2. Galactic Chemical Evolution and Solar s-process Abundances: Dependence on the 13C-pocket Structure

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Travaglio, C.; Gallino, R.; Wiescher, M.; Käppeler, F.

    2014-05-01

    We study the s-process abundances (A >~ 90) at the epoch of the solar system formation. Asymptotic giant branch yields are computed with an updated neutron capture network and updated initial solar abundances. We confirm our previous results obtained with a Galactic chemical evolution (GCE) model: (1) as suggested by the s-process spread observed in disk stars and in presolar meteoritic SiC grains, a weighted average of s-process strengths is needed to reproduce the solar s distribution of isotopes with A > 130; and (2) an additional contribution (of about 25%) is required in order to represent the solar s-process abundances of isotopes from A = 90 to 130. Furthermore, we investigate the effect of different internal structures of the 13C pocket, which may affect the efficiency of the 13C(α, n)16O reaction, the major neutron source of the s process. First, keeping the same 13C profile adopted so far, we modify by a factor of two the mass involved in the pocket; second, we assume a flat 13C profile in the pocket, and we test again the effects of the variation of the mass of the pocket. We find that GCE s predictions at the epoch of the solar system formation marginally depend on the size and shape of the 13C pocket once a different weighted range of 13C-pocket strengths is assumed. We obtain that, independently of the internal structure of the 13C pocket, the missing solar system s-process contribution in the range from A = 90 to 130 remains essentially the same.

  3. Galactic chemical evolution and solar s-process abundances: Dependence on the {sup 13}C-pocket structure

    SciTech Connect

    Bisterzo, S.; Travaglio, C.; Gallino, R.; Wiescher, M.; Käppeler, F. E-mail: sarabisterzo@gmail.com

    2014-05-20

    We study the s-process abundances (A ≳ 90) at the epoch of the solar system formation. Asymptotic giant branch yields are computed with an updated neutron capture network and updated initial solar abundances. We confirm our previous results obtained with a Galactic chemical evolution (GCE) model: (1) as suggested by the s-process spread observed in disk stars and in presolar meteoritic SiC grains, a weighted average of s-process strengths is needed to reproduce the solar s distribution of isotopes with A > 130; and (2) an additional contribution (of about 25%) is required in order to represent the solar s-process abundances of isotopes from A = 90 to 130. Furthermore, we investigate the effect of different internal structures of the {sup 13}C pocket, which may affect the efficiency of the {sup 13}C(α, n){sup 16}O reaction, the major neutron source of the s process. First, keeping the same {sup 13}C profile adopted so far, we modify by a factor of two the mass involved in the pocket; second, we assume a flat {sup 13}C profile in the pocket, and we test again the effects of the variation of the mass of the pocket. We find that GCE s predictions at the epoch of the solar system formation marginally depend on the size and shape of the {sup 13}C pocket once a different weighted range of {sup 13}C-pocket strengths is assumed. We obtain that, independently of the internal structure of the {sup 13}C pocket, the missing solar system s-process contribution in the range from A = 90 to 130 remains essentially the same.

  4. Abundance Anomaly of the 13C Isotopic Species of c-C3H2 in the Low-mass Star Formation Region L1527

    NASA Astrophysics Data System (ADS)

    Yoshida, Kento; Sakai, Nami; Tokudome, Tomoya; López-Sepulcre, Ana; Watanabe, Yoshimasa; Takano, Shuro; Lefloch, Bertrand; Ceccarelli, Cecilia; Bachiller, Rafael; Caux, Emmanuel; Vastel, Charlotte; Yamamoto, Satoshi

    2015-07-01

    The rotational spectral lines of c-C3H2 and two kinds of the 13C isotopic species, c-{}13{{CCCH}}2 ({C}2v symmetry) and c-{{CC}}13{{CH}}2 (Cs symmetry), have been observed in the 1–3 mm band toward the low-mass star-forming region L1527. We have detected 7, 3, and 6 lines of c-C3H2, c-{}13{{CCCH}}2, and c-{{CC}}13{{CH}}2, respectively, with the Nobeyama 45 m telescope and 34, 6, and 13 lines, respectively, with the IRAM 30 m telescope, where seven, two, and two transitions, respectively, are observed with both telescopes. With these data, we have evaluated the column densities of the normal and 13C isotopic species. The [c-C3H2]/[c-{}13{{CCCH}}2] ratio is determined to be 310 ± 80, while the [c-C3H2]/[c-{{CC}}13{{CH}}2] ratio is determined to be 61 ± 11. The [c-C3H2]/[c-{}13{{CCCH}}2] and [c-C3H2]/[c-{{CC}}13{{CH}}2] ratios expected from the elemental 12C/13C ratio are 60–70 and 30–35, respectively, where the latter takes into account the statistical factor of 2 for the two equivalent carbon atoms in c-C3H2. Hence, this observation further confirms the dilution of the 13C species in carbon-chain molecules and their related molecules, which are thought to originate from the dilution of 13C+ in the gas-phase C+ due to the isotope exchange reaction: {}13{{{C}}}++{CO}\\to {}13{CO}+{{{C}}}+. Moreover, the abundances of the two 13C isotopic species are different from each other. The ratio of c-{}13{{CCCH}}2 species relative to c-{{CC}}13{{CH}}2 is determined to be 0.20 ± 0.05. If 13C were randomly substituted for the three carbon atoms, the [c-{}13{{CCCH}}2]/[c-{{CC}}13{{CH}}2] ratio would be 0.5. Hence, the observed ratio indicates that c-{{CC}}13{{CH}}2 exists more favorably. Possible origins of the different abundances are discussed. Based on observations carried out with the IRAM 30 m Telescope and the NRO 45 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). NRO is a branch of the National Astronomical Observatory of Japan

  5. Identification of natural metabolites in mixture: a pattern recognition strategy based on (13)C NMR.

    PubMed

    Hubert, Jane; Nuzillard, Jean-Marc; Purson, Sylvain; Hamzaoui, Mahmoud; Borie, Nicolas; Reynaud, Romain; Renault, Jean-Hugues

    2014-03-18

    Because of their highly complex metabolite profile, the chemical characterization of bioactive natural extracts usually requires time-consuming multistep purification procedures to achieve the structural elucidation of pure individual metabolites. The aim of the present work was to develop a dereplication strategy for the identification of natural metabolites directly within mixtures. Exploiting the polarity range of metabolites, the principle was to rapidly fractionate a multigram quantity of a crude extract by centrifugal partition extraction (CPE). The obtained fractions of simplified chemical composition were subsequently analyzed by (13)C NMR. After automatic collection and alignment of (13)C signals across spectra, hierarchical clustering analysis (HCA) was performed for pattern recognition. As a result, strong correlations between (13)C signals of a single structure within the mixtures of the fraction series were visualized as chemical shift clusters. Each cluster was finally assigned to a molecular structure with the help of a locally built (13)C NMR chemical shift database. The proof of principle of this strategy was achieved on a simple model mixture of commercially available plant secondary metabolites and then applied to a bark extract of the African tree Anogeissus leiocarpus Guill. & Perr. (Combretaceae). Starting from 5 g of this genuine extract, the fraction series was generated by CPE in only 95 min. (13)C NMR analyses of all fractions followed by pattern recognition of (13)C chemical shifts resulted in the unambiguous identification of seven major compounds, namely, sericoside, trachelosperogenin E, ellagic acid, an epimer mixture of (+)-gallocatechin and (-)-epigallocatechin, 3,3'-di-O-methylellagic acid 4'-O-xylopyranoside, and 3,4,3'-tri-O-methylflavellagic acid 4'-O-glucopyranoside. PMID:24555703

  6. Four-Component Relativistic DFT Calculations of (13)C Chemical Shifts of Halogenated Natural Substances.

    PubMed

    Casella, Girolamo; Bagno, Alessandro; Komorovsky, Stanislav; Repisky, Michal; Saielli, Giacomo

    2015-12-14

    We have calculated the (13)C NMR chemical shifts of a large ensemble of halogenated organic molecules (81 molecules for a total of 250 experimental (13)C NMR data at four different levels of theory), ranging from small rigid organic compounds, used to benchmark the performance of various levels of theory, to natural substances of marine origin with conformational degrees of freedom. Carbon atoms bonded to heavy halogen atoms, particularly bromine and iodine, are known to be rather challenging when it comes to the prediction of their chemical shifts by quantum methods, due to relativistic effects. In this paper, we have applied the state-of-the-art four-component relativistic density functional theory for the prediction of such NMR properties and compared the performance with two-component and nonrelativistic methods. Our results highlight the necessity to include relativistic corrections within a four-component description for the most accurate prediction of the NMR properties of halogenated organic substances. PMID:26541625

  7. Economical synthesis of 13C-labeled opiates, cocaine derivatives and selected urinary metabolites by derivatization of the natural products.

    PubMed

    Karlsen, Morten; Liu, Huiling; Johansen, Jon Eigill; Hoff, Bård Helge

    2015-01-01

    The illegal use of opiates and cocaine is a challenge world-wide, but some derivatives are also valuable pharmaceuticals. Reference samples of the active ingredients and their metabolites are needed both for controlling administration in the clinic and to detect drugs of abuse. Especially, (13)C-labeled compounds are useful for identification and quantification purposes by mass spectroscopic techniques, potentially increasing accuracy by minimizing ion alteration/suppression effects. Thus, the synthesis of [acetyl-(13)C4]heroin, [acetyl-(13)C4-methyl-(13)C]heroin, [acetyl-(13)C2-methyl-(13)C]6-acetylmorphine, [N-methyl-(13)C-O-metyl-(13)C]codeine and phenyl-(13)C6-labeled derivatives of cocaine, benzoylecgonine, norcocaine and cocaethylene was undertaken to provide such reference materials. The synthetic work has focused on identifying (13)C atom-efficient routes towards these derivatives. Therefore, the (13)C-labeled opiates and cocaine derivatives were made from the corresponding natural products. PMID:25816077

  8. (1) H and (13) C NMR data on natural and synthetic capsaicinoids.

    PubMed

    Gómez-Calvario, Víctor; Garduño-Ramírez, María Luisa; León-Rivera, Ismael; Rios, María Yolanda

    2016-04-01

    Capsaicinoids are the compounds responsible for the pungency of chili peppers. These substances have attracted the attention of many research groups in recent decades because of their antinociceptive, analgesic, anti-inflammatory, and anti-obesity properties, among others. There are nearly 160 capsaicinoids reported in the literature. Approximately 25 of them are natural products, while the rest are synthetic or semi-synthetic products. A large amount of NMR data for the capsaicinoids is dispersed throughout literature. Therefore, there is a need to organize all this NMR data in a systematic and orderly way. This review summarizes the (1) H and (13) C NMR data on 159 natural and synthetic capsaicinoids, with a brief discussion of some typical and relevant aspects of these NMR data. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26626418

  9. 13C NMR Metabolomics: INADEQUATE Network Analysis

    PubMed Central

    Clendinen, Chaevien S.; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S.

    2015-01-01

    The many advantages of 13C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, 13C NMR offers a straightforward measurement of these compounds. Two-dimensional 13C-13C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semi-automated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE datasets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures. PMID:25932900

  10. Effect of photosynthesis on the abundance of 18O13C16O in atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Hofmann, Magdalena E. G.; Pons, Thijs L.; Ziegler, Martin; Lourens, Lucas J.; Röckmann, Thomas

    2016-04-01

    The abundance of the isotopologue 18O13C16O (Δ47) in atmospheric air is a promising new tracer for the atmospheric carbon cycle (Eiler and Schauble, 2004; Affek and Eiler, 2006; Affek et al., 2007). The large gross fluxes in CO2 between the atmosphere and biosphere are supposed to play a major role in controlling its abundance. Eiler and Schauble (2004) set up a box model describing the effect of air-leaf interaction on the abundance of 18O13C16O in atmospheric air. The main assumption is that the exchange between CO2 and water within the mesophyll cells will imprint a Δ47 value on the back-diffusing CO2 that reflects the leaf temperature. Additionally, kinetic effects due to CO2 diffusion into and out of the stomata are thought to play a role. We investigated the effect of photosynthesis on the residual CO2 under controlled conditions using a leaf chamber set-up to quantitatively test the model assumptions suggested by Eiler and Schauble (2004). We studied the effect of photosynthesis on the residual CO2 using two C3 and one C4 plant species: (i) sunflower (Helianthus annuus), a C3 species with a high leaf conductance for CO2 diffusion, (ii) ivy (Hedera hibernica), a C3 species with a low conductance, and (iii), maize (Zea mays), a species with the C4 photosynthetic pathway. We also investigated the effect of different light intensities (photosynthetic photon flux density of 200, 700 and 1800 μmol m2s‑1), and thus, photosynthetic rate in sunflower and maize. A leaf was mounted in a cuvette with a transparent window and an adjustable light source. The air inside was thoroughly mixed, making the composition of the outgoing air equal to the air inside. A gas-mixing unit was attached at the entrance of the cuvette that mixed air with a high concentration of scrambled CO2 with a Δ47 value of 0 to 0.1‰ with CO2 free air to set the CO2 concentration of ingoing air at 500 ppm. The flow rate through the cuvette was adjusted to the photosynthetic activity of the

  11. The Nature of Carbonate and Organic δ13C Covariance Through Geological Time

    NASA Astrophysics Data System (ADS)

    Oehlert, A. M.; Swart, P. K.

    2014-12-01

    Significant evolutionary, climatic, and oceanographic events in Earth history are often accompanied by excursions in the carbon isotope composition (δ13C) of marine carbonates and co-occurring sedimentary organic material. The observation of synchronous excursions in the δ13C values of marine carbonates and coeval organic matter is commonly thought to prove that the deposit has not been altered by diagenesis, and that the variations in the δ13C records are the result of a significant change in global carbon cycling. Furthermore, this model suggests that the covariance of carbonate and organic δ13C records is driven only by changes in the δ13C value of the dissolved inorganic carbon in the surface waters of the ocean. However, recent work suggests that there may be at least two alternate models for generating covariance between carbonate and organic δ13C values in the geologic record. One of the models invokes sea-level driven syndepositional mixing between isotopically distinct sources of carbonate and organic material to produce positive covariance between carbonate and organic δ13C values. The second model suggests that post-depositional alteration to the carbonate δ13C values during meteoric diagenesis, in concert with concurrent contributions of terrestrial organic material during subaerial exposure, can also produce co-occurring negative excursions with tightly covariant δ13C records. In contrast to earlier interpretations of covariant δ13C values, these models suggest that both syndepositional and post-depositional factors can significantly influence the relationship between carbonate and organic δ13C values in a variety of depositional environments. The implications for reconstructions of ancient global carbon cycle events will be explored within the context of these three models, and their relative importance throughout geologic time will be discussed.

  12. Diagonal free homonuclear correlation using heteronuclei at natural abundance.

    PubMed

    Baishya, Bikash

    2015-07-01

    Homonuclear correlated spectroscopy such as COSY and TOCSY provides crucial structural information. In all homonuclear correlation, the most intense peaks are represented by the diagonal. As a result, the useful cross peaks close to the diagonal get obscured by the huge tails of diagonal peaks. Herein, we show that by editing the proton magnetization by a 13C nucleus in natural abundance, it is possible to eliminate the inphase coherence or untransferred magnetization that leads to the diagonal peak while retaining the antiphase coherence or transferred magnetization required for creation of cross peak. After the coherence transfer step, the untransferred magnetization directly attached to 13C evolves under one bond heteronuclear coupling while the transferred transverse magnetization directly attached to remote 12C does not. As a result, the untransferred magnetization directly attached to 13C can be converted to an unobservable heteronuclear multiple quantum coherence leading to a diagonal free correlated spectrum with a sensitivity penalty of two orders of magnitude but comparable to HSQC kind of experiments at natural abundance. The method demonstrated for COSY and TOCSY allows all proton-proton correlations to be observed except the geminal proton-proton correlations. Further, protons directly attached to heteronuclei other than 13C must be scalar coupled to protons directly attached to 13C to have a detectable cross peak. PMID:26001137

  13. Chemical structural studies of natural lignin by dipolar dephasing solid-state 13C nuclear magnetic resonance

    USGS Publications Warehouse

    Hatcher, P.G.

    1987-01-01

    Two natural lignins, one from a gymnosperm wood the other from angiosperm wood, were examined by conventional solid-state and dipolar dephasing 13C nuclear magnetic resonance (NMR) techniques. The results obtained from both techniques show that the structure of natural lignins is consistent with models of softwood and hardwood lignin. The dipolar dephasing NMR data provide a measure of the degree of substitution on aromatic rings which is consistent with the models. ?? 1987.

  14. The carbon abundance and 12C/13C isotopic ratio in the atmosphere of Arcturus from 2.3 µm CO bands

    NASA Astrophysics Data System (ADS)

    Pavlenko, Ya. V.

    2008-09-01

    We have modeled absorption lines of the 12CO and 13CO (Δ υ = 2) molecular bands at λλ 2.29 2.45 µm in the spectrum of Arcturus (K2III). A grid of model atmospheres and synthetic spectra were computed for the red giant using T eff = 4300, log g = 1.5, and the elemental abundances of Peterson et al. (1993), with the exception of the abundances of carbon, log N(C), and oxygen, log N(O) and the carbon isotopic ratio, 12C/13C, which were varied in our computations. The computed spectra were compared to the observed spectrum of Arcturus from the atlas of Hinkle et al. (1976). The best fit between the synthetic and observed spectra is achieved for log N(C) = -3.78, 12C/13C = 8 ± 0.5. We discuss the dependence of 12C/13C on log N(C) and log N(O) in the atmosphere of the red giant.

  15. NMR characterization of 13C-benzene sorbed to natural and prepared charcoals.

    PubMed

    Smernik, Ronald J; Kookana, Rai S; Skjemstad, Jan O

    2006-03-15

    We investigated how the NMR properties of uniformly 13C-labeled benzene molecules are influenced by sorption to charcoals produced in the laboratory and collected from the field following wildfires. Uniformly 13C-labeled benzene was sorbed to two charcoals produced in the laboratory at 450 and 850 degrees C. The chemical shift of benzene sorbed to the higher-temperature charcoal was 5-6 ppm lower than that of benzene sorbed to the lower-temperature charcoal. This difference was attributed to stronger diamagnetic ring currents (which cause a shift to lower ppm values) in the more condensed or "graphitic" high-temperature charcoal. The chemical shift of benzene sorbed to two charcoals collected from the field following wildfires indicated a degree of charcoal graphitization intermediate between that of the two laboratory-prepared charcoals. Variable contact time and dipolar dephasing experiments showed that the molecular mobility of sorbed benzene molecules increased with increasing charcoal graphitization, and also increased with increasing benzene concentration. We propose that the chemical shift displacement of molecules sorbed to charcoal could be used to identify molecules sorbed to black carbon in heterogeneous matrixes such as soils and sediments, and to establish how condensed or "graphitic" the black carbon is. PMID:16570595

  16. 13 ENDOR studies of organic radicals in natural isotopic abundance

    NASA Astrophysics Data System (ADS)

    Kirste, Burkhard

    13C ENDOR studies of phenoxyls, galvinoxyls, triphenylmethyl radicals, nitroxides, and cyclosilane and semiquinone radical anions with natural isotopic distribution are reported. The method is described, and it is shown that 13C coupling constants can be measured precisely; in favorable cases even the determination of signs is possible by general TRIPLE resonance. Studies of the relaxation behavior of 13C ENDOR signals or measurements of hyperfine shifts in liquid-crystalline solutions yield information about dipolar hyperfine interactions and hence π spin populations which is of aid in assignments to molecular positions. Complete sets of 13C coupling constants have been determined for 2,4,6-tri- tert-butylphenoxyl and Coppinger's radical. For the central carbon atoms of tert-butyl groups, a Q parameter of Qτ-Bu C = -34 MHz is proposed, and for a 29Si atom in trimethylsilyl groups, QTMSSi = +49 MHz. Favorable conditions for natural-abundance 13C ENDOR experiments, e.g., small hyperfine anisotropies and use of deuterated compounds, and limitations of the method are discussed.

  17. Accurate quantitative 13C NMR spectroscopy: repeatability over time of site-specific 13C isotope ratio determination.

    PubMed

    Caytan, Elsa; Botosoa, Eliot P; Silvestre, Virginie; Robins, Richard J; Akoka, Serge; Remaud, Gérald S

    2007-11-01

    The stability over time (repeatability) for the determination of site-specific 13C/12C ratios at natural abundance by quantitative 13C NMR spectroscopy has been tested on three probes: enriched bilabeled [1,2-13C2]ethanol; ethanol at natural abundance; and vanillin at natural abundance. It is shown in all three cases that the standard deviation for a series of measurements taken every 2-3 months over periods between 9 and 13 months is equal to or smaller than the standard deviation calculated from 5-10 replicate measurements made on a single sample. The precision which can be achieved using the present analytical 13C NMR protocol is higher than the prerequisite value of 1-2 per thousand for the determination of site-specific 13C/12C ratios at natural abundance (13C-SNIF-NMR). Hence, this technique permits the discrimination of very small variations in 13C/12C ratios between carbon positions, as found in biogenic natural products. This observed stability over time in 13C NMR spectroscopy indicates that further improvements in precision will depend primarily on improved signal-to-noise ratio. PMID:17900175

  18. Determining carbon-carbon connectivities in natural abundance organic powders using dipolar couplings.

    PubMed

    Dekhil, Myriam; Mollica, Giulia; Bonniot, Tristan Texier; Ziarelli, Fabio; Thureau, Pierre; Viel, Stéphane

    2016-06-30

    We present a solid-state NMR methodology capable of investigating the carbon skeleton of natural abundance organic powders. The methodology is based on the (13)C-(13)C dipolar coupling interaction and allows carbon-carbon connectivities to be unambiguously established for a wide range of organic solids. This methodology is particularly suitable for disordered solids, such as natural or synthetic macromolecules, which cannot be studied using conventional diffraction or NMR techniques. PMID:27319808

  19. A paleothermometer based on abundances of 13C-18O bonds in bioapatite: Calibration and reconstruction of the body temperatures of extinct Cenozoic mammals and Mesozoic dinosaurs

    NASA Astrophysics Data System (ADS)

    Eagle, R.; Schauble, E. A.; Tripati, A. K.; Fricke, H. C.; Tuetken, T.; Eiler, J. M.

    2009-12-01

    The stable isotope compositions of biologically precipitated apatite in bone, teeth, and scales are widely used to obtain information on the diet, behavior, and physiology of extinct organisms, and to reconstruct past climate in terrestrial and marine settings. Here we report the application of a new type of geochemical measurement to bioapatite, a ‘clumped isotope’ thermometer based on the thermodynamically driven preference for 13C and 18O to bond with each other within carbonate ions in the crystal lattice of apatite. This effect is dependent on temperature but unlike conventional stable isotope paleotemperature proxies, is independent from the isotopic composition of water from which the mineral formed. We show that the abundance of 13C-18O bonds in the carbonate component of apatite from modern teeth is proportional to the body temperature of the organism, with an accuracy of 1-2oC, and that the empirical calibration is supported by a theoretical model of isotopic ordering. We also report initial paleothermometry results from analyses of Cenozoic fossil mammal teeth and Mesozoic dinosaur teeth. Therefore, clumped isotope analysis of bioapatite represents a new approach in the study of the physiology of extinct species by allowing the first relatively assumption-free measurement of their body temperatures. It will also open new avenues in the study of paleoclimate, as the measurements of clumped isotopes in apatite from fossils, such as conodonts and brachiopods, as well as phosphorites, have the potential to record environmental temperatures.

  20. /sup 13/C spin diffusion of adamantane

    SciTech Connect

    Bronniman, C.E.; Szeverenyi, N.M.; Maciel, G.E.

    1983-10-15

    Two-dimensional exchange spectroscopy of natural abundance /sup 13/C--/sup 13/C spin diffusion in solid adamantane illustrates the influence that /sup 13/C--/sup 1/H dipole--dipole coupling exerts on /sup 13/C spin diffusion by determining spectral overlap in the /sup 13/C system. 2D /sup 13/C spectra were obtained for several values of mixing time tau/sub m/ and compared with spectra calculated in the limit of nearest-neighbor coupling. Good agreement is obtained for short tau/sub m/, during which the equilibration of neighboring spins dominates. For longer tau/sub m/, slower spin diffusion that is not acounted for by the simple model is seen; after nearest-neighbor spins equilibrate, communication over larger distances produces further mixing. It is possible to modify spin diffusion rates by altering experimental conditions, e.g., magic-angle spinning, low-power /sup 1/H decoupling, or spin locking /sup 13/C in the rotating frame during tau/sub m/.

  1. Short-Term Effects of Tillage Practices on Soil Organic Carbon Turnover Assessed by δ13C Abundance in Particle-Size Fractions of Black Soils from Northeast China

    PubMed Central

    Zhang, Xiaoping; Chen, Xuewen

    2014-01-01

    The combination of isotope trace technique and SOC fractionation allows a better understanding of SOC dynamics. A five-year tillage experiment consisting of no-tillage (NT) and mouldboard plough (MP) was used to study the changes in particle-size SOC fractions and corresponding δ13C natural abundance to assess SOC turnover in the 0–20 cm layer of black soils under tillage practices. Compared to the initial level, total SOC tended to be stratified but showed a slight increase in the entire plough layer under short-term NT. MP had no significant impacts on SOC at any depth. Because of significant increases in coarse particulate organic carbon (POC) and decreases in fine POC, total POC did not remarkably decrease under NT and MP. A distinct increase in silt plus clay OC occurred in NT plots, but not in MP plots. However, the δ13C abundances of both coarse and fine POC increased, while those of silt plus clay OC remained almost the same under NT. The C derived from C3 plants was mainly associated with fine particles and much less with coarse particles. These results suggested that short-term NT and MP preferentially enhanced the turnover of POC, which was considerably faster than that of silt plus clay OC. PMID:25162052

  2. Measurement of 13CO2 in expired air as an index of compliance to a high carbohydrate diet naturally enriched in 13C.

    PubMed

    Gay, L J; Schutz, Y; DiVetta, V; Schneiter, P; Tappy, L; Jéquier, E

    1994-09-01

    The aim of this study was to determine whether breath 13CO2 measurements could be used to assess the compliance to a diet containing carbohydrates naturally enriched in 13C. The study was divided into two periods: Period 1 (baseline of 4 days) with low 13C/12C ratio carbohydrates. Period 2 (5 days) isocaloric diet with a high 13C/12C ratio (corn, cane sugar, pineapple, millet) carbohydrates. Measurements were made of respiratory gas exchange by indirect calorimetry, urinary nitrogen excretion and breath 13CO2 every morning in post-absorptive conditions, both in resting state and during a 45-min low intensity exercise (walking on a treadmill). The subjects were 10 healthy lean women (BMI 20.4 +/- 1.7 kg/m2, % body fat 24.4 +/- 1.3%), the 13C enrichment of oxidized carbohydrate and breath 13CO2 were compared to the enrichment of exogenous dietary carbohydrates. At rest the enrichment of oxidized carbohydrate increased significantly after one day of 13C carbohydrate enriched diet and reached a steady value (103 +/- 16%) similar to the enrichment of exogenous carbohydrates. During exercise, the 13C enrichment of oxidized carbohydrate remained significantly lower (68 +/- 17%) than that of dietary carbohydrates. The compliance to a diet with a high content of carbohydrates naturally enriched in 13C may be assessed from the measurement of breath 13CO2 enrichment combined with respiratory gas exchange in resting, postabsorptive conditions. PMID:7812411

  3. A survey of methane isotope abundance (14C, 13C, 2H) from five nearshore marine basins that reveals unusual radiocarbon levels in subsurface waters

    NASA Astrophysics Data System (ADS)

    Kessler, J. D.; Reeburgh, W. S.; Valentine, D. L.; Kinnaman, F. S.; Peltzer, E. T.; Brewer, P. G.; Southon, J.; Tyler, S. C.

    2008-12-01

    Methane (CH4) in the subsurface ocean is often supersaturated compared to equilibrium with the modern atmosphere. In order to investigate sources of CH4 to the subsurface ocean, isotope surveys (14C-CH4,δ13C-CH4, δ2H-CH4) were conducted at five locations: Skan Bay (SB), Santa Barbara Basin (SBB), Santa Monica Basin (SMB), Cariaco Basin (CB), and the Guaymas Basin (GB). Depth distributions of CH4 concentration and isotopic abundance were determined for both the sediment and water column at the SB, SBB, SMB, and CB sites; CH4 emitted from seeps on the continental shelf adjacent to the SBB as well as seeps and decomposing clathrate hydrates in the GB was also collected, purified, and analyzed. Methane isotope distributions in the sediments were consistent with known methanogenic and methanotrophic activity; seep- and clathrate-hydrate-derived CH4 was found to be depleted in radiocarbon. However, surprising results were obtained in the water column at all sites investigated. In SB the radiocarbon content of the subsurface CH4 concentration maximum was on average 41% less than its suspected sediment CH4 source, suggesting CH4 seepage in the bay. In the SBB, SMB, and CB, the 14C-CH4 contents in the subsurface ocean were 1.2 to 3.6 times greater than modern carbon quantities suggesting a source of 14C from atmospheric nuclear weapons testing, nuclear power plant effluents, or cosmogenic isotope production.

  4. The {sup 13}C-pocket structure in AGB models: constraints from zirconium isotope abundances in single mainstream SiC grains

    SciTech Connect

    Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Gallino, Roberto; Bisterzo, Sara; Savina, Michael R.

    2014-06-20

    We present postprocess asymptotic giant branch (AGB) nucleosynthesis models with different {sup 13}C-pocket internal structures to better explain zirconium isotope measurements in mainstream presolar SiC grains by Nicolussi et al. and Barzyk et al. We show that higher-than-solar {sup 92}Zr/{sup 94}Zr ratios can be predicted by adopting a {sup 13}C-pocket with a flat {sup 13}C profile, instead of the previous decreasing-with-depth {sup 13}C profile. The improved agreement between grain data for zirconium isotopes and AGB models provides additional support for a recent proposal of a flat {sup 13}C profile based on barium isotopes in mainstream SiC grains by Liu et al.

  5. The 13C-Pocket Structure in AGB Models: Constraints from Zirconium Isotope Abundances in Single Mainstream SiC Grains

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Gallino, Roberto; Bisterzo, Sara; Davis, Andrew M.; Savina, Michael R.; Pellin, Michael J.

    2014-06-01

    We present postprocess asymptotic giant branch (AGB) nucleosynthesis models with different 13C-pocket internal structures to better explain zirconium isotope measurements in mainstream presolar SiC grains by Nicolussi et al. and Barzyk et al. We show that higher-than-solar 92Zr/94Zr ratios can be predicted by adopting a 13C-pocket with a flat 13C profile, instead of the previous decreasing-with-depth 13C profile. The improved agreement between grain data for zirconium isotopes and AGB models provides additional support for a recent proposal of a flat 13C profile based on barium isotopes in mainstream SiC grains by Liu et al.

  6. Hyperpolarized NMR of plant and cancer cell extracts at natural abundance.

    PubMed

    Dumez, Jean-Nicolas; Milani, Jonas; Vuichoud, Basile; Bornet, Aurélien; Lalande-Martin, Julie; Tea, Illa; Yon, Maxime; Maucourt, Mickaël; Deborde, Catherine; Moing, Annick; Frydman, Lucio; Bodenhausen, Geoffrey; Jannin, Sami; Giraudeau, Patrick

    2015-09-01

    Natural abundance (13)C NMR spectra of biological extracts are recorded in a single scan provided that the samples are hyperpolarized by dissolution dynamic nuclear polarization combined with cross polarization. Heteronuclear 2D correlation spectra of hyperpolarized breast cancer cell extracts can also be obtained in a single scan. Hyperpolarized NMR of extracts opens many perspectives for metabolomics. PMID:26215673

  7. Consistent fractionation of 13C in nature and in the laboratory: growth-rate effects in some haptophyte algae.

    PubMed

    Bidigare, R R; Fluegge, A; Freeman, K H; Hanson, K L; Hayes, J M; Hollander, D; Jasper, J P; King, L L; Laws, E A; Milder, J; Millero, F J; Pancost, R; Popp, B N; Steinberg, P A; Wakeham, S G

    1997-06-01

    The carbon isotopic fractionation accompanying formation of biomass by alkenone-producing algae in natural marine environments varies systematically with the concentration of dissolved phosphate. Specifically, if the fractionation is expressed by epsilon p approximately delta e - delta p, where delta e and delta p are the delta 13C values for dissolved CO2 and for algal biomass (determined by isotopic analysis of C37 alkadienones), respectively, and if Ce is the concentration of dissolved CO2, micromole kg-1, then b = 38 + 160*[PO4], where [PO4] is the concentration of dissolved phosphate, microM, and b = (25 - epsilon p)Ce. The correlation found between b and [PO4] is due to effects linking nutrient levels to growth rates and cellular carbon budgets for alkenone-containing algae, most likely by trace-metal limitations on algal growth. The relationship reported here is characteristic of 39 samples (r2 = 0.95) from the Santa Monica Basin (six different times during the annual cycle), the equatorial Pacific (boreal spring and fall cruises as well as during an iron-enrichment experiment), and the Peru upwelling zone. Points representative of samples from the Sargasso Sea ([PO4] < or = 0.1 microM) fall above the b = f[PO4] line. Analysis of correlations expected between mu (growth rate), epsilon p, and Ce shows that, for our entire data set, most variations in epsilon p result from variations in mu rather than Ce. Accordingly, before concentrations of dissolved CO2 can be estimated from isotopic fractionations, some means of accounting for variations in growth rate must be found, perhaps by drawing on relationships between [PO4] and Cd/Ca ratios in shells of planktonic foraminifera. PMID:11540616

  8. Consistent fractionation of 13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae

    NASA Astrophysics Data System (ADS)

    Bidigare, Robert R.; Fluegge, Arnim; Freeman, Katherine H.; Hanson, Kristi L.; Hayes, John M.; Hollander, David; Jasper, John P.; King, Linda L.; Laws, Edward A.; Milder, Jeffrey; Millero, Frank J.; Pancost, Richard; Popp, Brian N.; Steinberg, Paul A.; Wakeham, Stuart G.

    1997-06-01

    The carbon isotopic fractionation accompanying formation of biomass by alkenone-producing algae in natural marine environments varies systematically with the concentration of dissolved phosphate. Specifically, if the fractionation is expressed by єP ≈ δe - δp, where δe and δp are the δ13C values for dissolved CO2 and for algal biomass (determined by isotopic analysis of C37 alkadienones), respectively, and if Ce is the concentration of dissolved CO2, μmol kg-1, then b = 38 + 160*[PO4], where [PO4] is the concentration of dissolved phosphate, μM, and b = (25 - єp)Ce. The correlation found between b and [PO4] is due to effects linking nutrient levels to growth rates and cellular carbon budgets for alkenone-containing algae, most likely by trace-metal limitations on algal growth. The relationship reported here is characteristic of 39 samples (r2 = 0.95) from the Santa Monica Basin (six different times during the annual cycle), the equatorial Pacific (boreal spring and fall cruises as well as during an iron-enrichment experiment), and the Peru upwelling zone. Points representative of samples from the Sargasso Sea ([PO4] ≤ 0.1 μM) fall above the b = f[PO4] line. Analysis of correlations expected between μ (growth rate), єp, and Ce shows that, for our entire data set, most variations in єp result from variations in μ rather than Ce. Accordingly, before concentrations of dissolved CO2 can be estimated from isotopic fractionations, some means of accounting for variations in growth rate must be found, perhaps by drawing on relationships between [PO4] and Cd/Ca ratios in shells of planktonic foraminifera.

  9. The effect of dietary amino acid abundance and isotopic composition on the growth rate, metabolism and tissue δ13C of rainbow trout.

    PubMed

    Gaye-Siessegger, Julia; McCullagh, James S O; Focken, Ulfert

    2011-06-28

    The aim of the present study was to test whether the dietary non-essential/conditionally essential amino acid composition has an effect on growth and protein utilisation and on δ13C of individual amino acids in rainbow trout (Oncorhynchus mykiss). Trout were reared on six purified diets containing only synthetic amino acids in place of protein. Diet 1 mimicked the amino acid composition of fishmeal, in diet 2, cysteine (Cys), glycine (Gly), proline (Pro) and tyrosine (Tyr) were isonitrogenously replaced by their precursor amino acids serine (Ser), glutamic acid (Glu) and phenylalanine (Phe), and in diet 3, alanine (Ala), asparagine and aspartate, Cys, Gly, Pro, Ser and Tyr were isonitrogenously replaced by Glu. Diets 4, 5 and 6 resembled diets 1, 2 and 3 except that Glu contained 0·1 % 13C-enriched Glu. A control group was reared on a fishmeal-based diet. A total of forty-two trout (4·7 (sd 0·57) g) were fed one of the diets at a level of 3·5 % body mass for 10 weeks in a flow-through system. Dietary non-essential amino acid composition significantly influenced protein gain (P < 0·025) and δ13C of Ala, arginine (Arg), Gly, histidine (His), Phe and Tyr. Non-enriched Glu was predominantly found in trout fed 13C-enriched Glu, which is consistent with the fact that Glu has been shown to be used extensively in the gut as an energy source but is less consistent with the enrichment of Pro in fish fed diet 6 compared with fish fed diet 3. Further research is required to better understand the mechanisms that lead to the alteration of amino acid δ13C between diet and body tissues. PMID:21418707

  10. Distinct fungal and bacterial δ13C signatures can drive the increase in soil δ13C with depth

    NASA Astrophysics Data System (ADS)

    Kohl, Lukas; Laganièrea, Jérôme; Edwards, Kate A.; Billings, Sharon A.; Morrill, Penny L.; Van Biesen, Geert; Ziegler, Susan E.

    2015-04-01

    Soil microbial biomass is a key precursor of soil organic carbon (SOC), and the enrichment in 13C during SOC diagenesis has been purported to be driven by increasing proportions of microbially derived SOC. Yet, little is known about how the δ13C of soil microbial biomass - and by extension the δ13C of microbial inputs to SOC - vary in space, time, or with the composition of the microbial community. Phospholipid fatty acids (PLFA) can be analyzed to measure the variation of the natural abundance δ13C values of both individual groups of microorganisms and the microbial community as a whole. Here, we show how variations of δ13CPLFA within the soil profile provides insight into C fluxes in undisturbed soils and demonstrate that distinct δ13C of fungal and bacterial biomass and their relative abundance can drive the increase of bulk δ13CSOC with depth. We studied the variation in natural abundance δ13C signatures of PLFA in podzolic soil profiles from mesic boreal forests in Atlantic Canada. Samples from the organic horizons (L,F,H) and the mineral (B; top 10 cm) horizons were analyzed for δ13C values of PLFA specific to fungi, G+ bacteria, or G- bacteria as proxies for the δ13C of the biomass of these groups, and for δ13C values of PLFA produced by a wide range of microorganisms (e.g. 16:0) as a proxy for the δ13C value of microbial biomass as a whole. Results were compared to fungi:bacteria ratios (F:B) and bulk δ13CSOC values. The δ13C values of group-specific PLFA were driven by differences among source organisms, with fungal PLFA consistently depleted (2.1 to 6.4‰) relative to and G+ and G- bacterial PLFA in the same sample. All group-specific PLFA, however, exhibited nearly constant δ13C values throughout the soil profile, apparently unaffected by the over 2.8‰ increase in δ13CSOC with depth from the L to B horizons. This indicates that bulk SOC poorly represents the substrates actually consumed by soil microorganisms in situ. Instead, our

  11. Application of (13)C ramp CPMAS NMR with phase-adjusted spinning sidebands (PASS) for the quantitative estimation of carbon functional groups in natural organic matter.

    PubMed

    Ikeya, Kosuke; Watanabe, Akira

    2016-01-01

    The composition of carbon (C) functional groups in natural organic matter (NOM), such as dissolved organic matter, soil organic matter, and humic substances, is frequently estimated using solid-state (13)C NMR techniques. A problem associated with quantitative analysis using general cross polarization/magic angle spinning (CPMAS) spectra is the appearance of spinning side bands (SSBs) split from the original center peaks of sp (2) hybridized C species (i.e., aromatic and carbonyl C). Ramp CP/phase-adjusted side band suppressing (PASS) is a pulse sequence that integrates SSBs separately and quantitatively recovers them into their inherent center peaks. In the present study, the applicability of ramp CP/PASS to NOM analysis was compared with direct polarization (DPMAS), another quantitative method but one that requires a long operation time, and/or a ramp CP/total suppression side band (ramp CP/TOSS) technique, a popular but non-quantitative method for deleting SSBs. The test materials were six soil humic acid samples with various known degrees of aromaticity and two fulvic acids. There were no significant differences in the relative abundance of alkyl C, O-alkyl C, and aromatic C between the ramp CP/PASS and DPMAS methods, while the signal intensities corresponding to aromatic C in the ramp CP/TOSS spectra were consistently less than the values obtained in the ramp CP/PASS spectra. These results indicate that ramp CP/PASS can be used to accurately estimate the C composition of NOM samples. PMID:26522329

  12. Helium isotopic abundance variation in nature

    SciTech Connect

    Holden, N.E.

    1993-08-01

    The isotopic abundance of helium in nature has been reviewed. This atomic weight value is based on the value of helium in the atmosphere, which is invariant around the world and up to a distance of 100,000 feet. Helium does vary in natural gas, volcanic rocks and gases, ocean floor sediments, waters of various types and in radioactive minerals and ores due to {alpha} particle decay of radioactive nuclides.

  13. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  14. Will Abundant Natural Gas Solve Climate Change?

    NASA Astrophysics Data System (ADS)

    McJeon, H. C.; Edmonds, J.; Bauer, N.; Leon, C.; Fisher, B.; Flannery, B.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; Riahi, K.; Rogner, H.; Tavoni, M.

    2015-12-01

    The rapid deployment of hydraulic fracturing and horizontal drilling technologies enabled the production of previously uneconomic shale gas resources in North America. Global deployment of these advanced gas production technologies could bring large influx of economically competitive unconventional gas resources to the energy system. It has been hoped that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions, which in turn could reduce climate forcing. Other researchers countered that the non-CO2 greenhouse gas (GHG) emissions associated with shale gas production make its lifecycle emissions higher than those of coal. In this study, we employ five state-of-the-art integrated assessment models (IAMs) of energy-economy-climate systems to assess the full impact of abundant gas on climate change. The models show large additional natural gas consumption up to +170% by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2% to +11%), and a majority of the models reported a small increase in climate forcing (from -0.3% to +7%) associated with the increased use of abundant gas. Our results show that while globally abundant gas may substantially change the future energy market equilibrium, it will not significantly mitigate climate change on its own in the absence of climate policies.

  15. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    SciTech Connect

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  16. Strategy for Enhancement of (13)C-Photo-CIDNP NMR Spectra by Exploiting Fractional (13)C-Labeling of Tryptophan.

    PubMed

    Eisenreich, Wolfgang; Joshi, Monika; Illarionov, Boris; Kacprzak, Sylwia; Lukaschek, Michail; Kothe, Gerd; Budisa, Nediljko; Fischer, Markus; Bacher, Adelbert; Weber, Stefan

    2015-10-29

    The photo-CIDNP effect has proven to be useful to strongly enhance NMR signals of photochemically active proteins simply by irradiation with light. The evolving characteristic patterns of enhanced absorptive and emissive NMR lines can be exploited to elucidate the photochemistry and photophysics of light-driven protein reactions. In particular, by the assignment of (13)C NMR resonances, redox-active amino acids may be identified and thereby electron-transfer pathways unraveled, in favorable cases, even with (13)C at natural abundance. If signal enhancement is weak, uniform (13)C isotope labeling is traditionally applied to increase the signal strength of protein (13)C NMR. However, this typically leads to cross relaxation, which transfers light-induced nuclear-spin polarization to adjacent (13)C nuclei, thereby preventing an unambiguous analysis of the photo-CIDNP effect. In this contribution, two isotope labeling strategies are presented; one leads to specific but ubiquitous (13)C labeling in tryptophan, and the other is based on fractional isotope labeling affording sets of isotopologs with low probability of next-neighbor isotope accumulation within individual tryptophan molecules. Consequently, cross relaxation is largely avoided while the signal enhancement by (13)C enrichment is preserved. This results in significantly simplified polarization patterns that are easier to analyze with respect to the generation of light-generated nuclear-spin polarization. PMID:26244593

  17. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  18. Speleothem calcite farmed in situ: Modern calibration of δ 18O and δ 13C paleoclimate proxies in a continuously-monitored natural cave system

    NASA Astrophysics Data System (ADS)

    Tremaine, Darrel M.; Froelich, Philip N.; Wang, Yang

    2011-09-01

    Understanding the relationships between speleothem stable isotopes (δ 13C δ 18O) and in situ cave forcing mechanisms is important to interpreting ancient stalagmite paleoclimate records. Cave studies have demonstrated that the δ 18O of inorganically precipitated (low temperature) speleothem calcite is systematically heavier than the δ 18O of laboratory-grown calcite for a given temperature. To understand this apparent offset, rainwater, cave drip water, groundwater, and modern naturally precipitated calcite (farmed in situ) were grown at multiple locations inside Hollow Ridge Cave in Marianna, Florida. High resolution micrometeorological, air chemistry time series and ventilation regimes were also monitored continuously at two locations inside the cave, supplemented with periodic bi-monthly air gas grab sample transects throughout the cave. Cave air chemistry and isotope monitoring reveal density-driven airflow pathways through Hollow Ridge Cave at velocities of up to 1.2 m s -1 in winter and 0.4 m s -1 in summer. Hollow Ridge Cave displays a strong ventilation gradient in the front of the cave near the entrances, resulting in cave air that is a mixture of soil gas and atmospheric CO 2. A clear relationship is found between calcite δ 13C and cave air ventilation rates estimated by proxies pCO 2 and 222Rn. Calcite δ 13C decreased linearly with distance from the front entrance to the interior of the cave during all seasons, with a maximum entrance-to-interior gradient of Δδ 13C CaCO3 = -7‰. A whole-cave "Hendy test" at multiple contemporaneous farming sites reveals that ventilation induces a +1.9 ± 0.96‰ δ 13C offset between calcite precipitated in a ventilation flow path and calcite precipitated on the edge or out of flow paths. This interpretation of the "Hendy test" has implications for interpreting δ 13C records in ancient speleothems. Calcite δ 13C CaCO3 may be a proxy not only for atmospheric CO 2 or overlying vegetation shifts but also for

  19. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  20. Determining the Local Abundance of Martian Methane and its 13-C/l2-C and D/H Isotopic Ratios for Comparison with Related Gas and Soil Analysis on the 2011 Mars Science Laboratory (MSL) Mission

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; Mahaffy, Paul R.

    2011-01-01

    Understanding the origin of Martian methane will require numerous complementary measurements from both in situ and remote sensing investigations and laboratory work to correlate planetary surface geophysics with atmospheric dynamics and chemistry. Three instruments (Quadrupole Mass Spectrometer (QMS), Gas Chromatograph (GC) and Tunable Laser Spectrometer (TLS)) with sophisticated sample handling and processing capability make up the Sample Analysis at Mars (SAM) analytical chemistry suite on NASA s 2011 Mars Science Laboratory (MSL) Mission. Leveraging off the SAM sample and gas processing capability that includes methane enrichment, TLS has unprecedented sensitivity for measuring absolute methane (parts-per-trillion), water, and carbon dioxide abundances in both the Martian atmosphere and evolved from heated soil samples. In concert with a wide variety of associated trace gases (e.g. SO2, H2S, NH3, higher hydrocarbons, organics, etc.) and other isotope ratios measured by SAM, TLS will focus on determining the absolute abundances of methane, water and carbon dioxide, and their isotope ratios: 13C/12C and D/H in methane; 13C/12C and 18O/17O/16O in carbon dioxide; and 18O/17O/16O and D/H in water. Measurements near the MSL landing site will be correlated with satellite (Mars Express, Mars 2016) and ground-based observations.

  1. Late-Quaternary variation in C3 and C4 grass abundance in southeastern Australia as inferred from δ13C analysis: Assessing the roles of climate, pCO2, and fire

    NASA Astrophysics Data System (ADS)

    Nelson, David M.; Urban, Michael A.; Kershaw, A. Peter; Hu, Feng Sheng

    2016-05-01

    Climate, atmospheric pCO2, and fire all may exert major influences on the relative abundance of C3 and C4 grasses in the present-day vegetation. However, the relative role of these factors in driving variation in C3 and C4 grass abundances in the paleorecord is uncertain, and C4 abundance is often interpreted narrowly as a proxy indicator of aridity or pCO2. We measured δ13C values of individual grains of grass (Poaceae) pollen in the sediments of two sites in southeastern Australia to assess changes in the proportions of C3 and C4 grasses during the past 25,000 years. These data were compared with shifts in pCO2, temperature, moisture balance, and fire to assess how these factors were related to long-term variation of C4 grass abundance during the late Quaternary. At Caledonia Fen, a high-elevation site in the Snowy Mountains, C4 grass abundance decreased from an average of 66% during the glacial period to 11% during the Holocene, primarily in response to increased pCO2 and temperature. In contrast, this pattern did not exist in low-elevation savannah woodlands around Tower Hill Northwest Crater, where C4 grass abundance instead varied in response to shifts in regional aridity. Fire did not appear to have strongly influenced the proportions of C3 and C4 grasses on the landscape at millennial timescales at either site. These patterns are similar to those of a recent study in East Africa, suggesting that elevation-related climatic differences influence how the abundance of C3 and C4 grasses responds to shifts in climate and pCO2. These results caution against using C4 plant abundance as a proxy indicator of either climate or pCO2 without an adequate understanding of key controlling factors.

  2. Study of molecular interactions with 13C DNP-NMR

    NASA Astrophysics Data System (ADS)

    Lerche, Mathilde H.; Meier, Sebastian; Jensen, Pernille R.; Baumann, Herbert; Petersen, Bent O.; Karlsson, Magnus; Duus, Jens Ø.; Ardenkjær-Larsen, Jan H.

    2010-03-01

    NMR spectroscopy is an established, versatile technique for the detection of molecular interactions, even when these interactions are weak. Signal enhancement by several orders of magnitude through dynamic nuclear polarization alleviates several practical limitations of NMR-based interaction studies. This enhanced non-equilibrium polarization contributes sensitivity for the detection of molecular interactions in a single NMR transient. We show that direct 13C NMR ligand binding studies at natural isotopic abundance of 13C gets feasible in this way. Resultant screens are easy to interpret and can be performed at 13C concentrations below μM. In addition to such ligand-detected studies of molecular interaction, ligand binding can be assessed and quantified with enzymatic assays that employ hyperpolarized substrates at varying enzyme inhibitor concentrations. The physical labeling of nuclear spins by hyperpolarization thus provides the opportunity to devise fast novel in vitro experiments with low material requirement and without the need for synthetic modifications of target or ligands.

  3. Use of 13C NMR and ftir for elucidation of degradation pathways during natural litter decomposition and composting I. early stage leaf degradation

    USGS Publications Warehouse

    Wershaw, R. L.; Leenheer, J.A.; Kennedy, K.R.; Noyes, T.I.

    1996-01-01

    Oxidative degradation of plant tissue leads to the formation of natural dissolved organic carbon (DOC) and humus. Infrared (IR) and 13C nuclear magnetic resonance (NMR) spectrometry have been used to elucidate the chemical reactions of the early stages of degradation that give rise to DOC derived from litter and compost. The results of this study indicate that oxidation of the lignin components of plant tissue follows the sequence of O-demethylation, and hydroxylation followed by ring-fission, chain-shortening, and oxidative removal of substituents. Oxidative ring-fission leads to the formation of carboxylic acid groups on the cleaved ends of the rings and, in the process, transforms phenolic groups into aliphatic alcoholic groups. The carbohydrate components are broken down into aliphatic hydroxy acids and aliphatic alcohols.

  4. Long-term Trends and Confidence in Global Natural Gas Fugitive Emissions Rates Based on δ13C-CH4

    NASA Astrophysics Data System (ADS)

    Schwietzke, S.; Sherwood, O.; Tans, P. P.; Michel, S. E.; Miller, J. B.; Dlugokencky, E. J.; Griffin, W. M.; Bruhwiler, L.

    2014-12-01

    Numerous life cycle assessment (LCA) and field studies have estimated natural gas (NG) fugitive emissions rates (FER) - the fraction of produced NG, mostly CH4, emitted to the atmosphere, unintentionally or by design, during extraction, processing, transport, and distribution - at local, regional, and national scales. In a recent study, we estimated for the first time the global mean FER using long-term (three decades) atmospheric CH4, δ13C-CH4, and C2H6 measurements from global monitoring networks. As a further development, this work investigates the global mean FER uncertainty range (factor of 2) in more detail to increase confidence in the results. The objectives of this research are to (i) estimate probability distribution functions (PDF) of global mean FER, and (ii) identify long-term trends in global fossil fuel (FF) and other CH4 sources. In order to achieve these objectives, global atmospheric δ13C-CH4 measurements since the mid-1980s are analyzed using a box-model of the global CH4 sources and sinks. First, we derive PDFs of the key model parameters including literature isotopic source signatures, atmospheric lifetimes, natural and anthropogenic emissions, and FF hydrocarbon gas composition. Second, a Monte Carlo simulation of the box-model is performed to quantify FER confidence intervals. While our model attributes the majority of increased CH4 levels over the past three decades to microbial sources, FF sources have also increased slightly. However, FER - an indicator of NG life cycle efficiency - has decreased over the same period given the large NG production increase worldwide. Results are most sensitive to global average microbial isotopic signatures (weighted by source strength) and bottom-up estimates of biomass burning emissions, which will be discussed in more detail.

  5. Structural determination of complex natural products by quantum mechanical calculations of (13)C NMR chemical shifts: development of a parameterized protocol for terpenes.

    PubMed

    de Albuquerque, Ana Carolina Ferreira; Ribeiro, Daniel Joras; de Amorim, Mauro Barbosa

    2016-08-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most important tools for determining the structures of organic molecules. Despite the advances made in this technique, revisions of erroneously established structures for natural products are still commonly published in the literature. In this context, the prediction of chemical shifts through ab initio and density functional theory (DFT) calculations has become a very powerful tool for assisting with the structural determination of complex organic molecules. In this work, we present the development of a protocol for (13)C chemical shift calculations of terpenes, a class of natural products that are widely distributed among plant species and are very important due to their biological and pharmacological activities. This protocol consists of GIAO-DFT calculations of chemical shifts and the application of a parameterized scaling factor in order to ensure accurate structural determination of this class of natural products. The application of this protocol to a set of five terpenes yielded accurate calculated chemical shifts, showing that this is a very attractive tool for the calculation of complex organic structures such as terpenes. PMID:27424297

  6. A study of the abundance and {sup 13}C/{sup 12}C ratio of atmospheric carbon dioxide and oceanic carbon in relation to the global carbon cycle. Final technical report, February 15, 1990--July 31, 1995

    SciTech Connect

    Keeling, C.D.

    1995-12-31

    Knowledge can be gained about the fluxes and storage of carbon in natural systems and their relation to climate by detecting temporal and spatial patterns in atmospheric CO{sub 2}. When patterns in its {sup 13}C/{sup 12}C isotopic ratio are included in the analysis, there is also a basis for distinguishing organic and inorganic processes. The authors systematically measured the concentration and {sup 13}C/{sup 12}C ratio of atmospheric CO{sub 2} to produce time series data essential to reveal these temporal and spatial patterns. To pursue the significance of these patterns further, the result also involved measurements of inorganic carbon in sea water and of CO{sub 2} in air near growing land plants. The study was coordinated with a study of the same title concurrently funded by the National Science Foundation (NSF). The study called for continued atmospheric measurements at an array of ten stations from the Arctic Basin to the South Pole. Air was collected in flasks brought back to the laboratory for analysis, except at Mauna Loa. Observatory, Hawaii, where continuous measurements were also carried out.

  7. Crystal structure and theoretical study of IR and 1H and 13C NMR spectra of cordatin, a natural product with antiulcerogenic activity

    NASA Astrophysics Data System (ADS)

    Brasil, Davi S. B.; Alves, Cláudio N.; Guilhon, Giselle M. S. P.; Muller, Adolfo H.; Secco, Ricardo De S.; Peris, Gabriel; Llusar, Rosa

    Cordatin is a furan diterpenoid with a clerodane skeleton isolated from Croton palanostigma Klotzsch (Euphorbiaceae). This natural product shows significant antiulcerogenic activity, similar to cimetidine (Tagamet®), a compound used for the treatment of peptic ulcers. The crystal structure of cordatin was obtained by X-ray diffraction and its geometrical parameters were compared with theoretical calculations at the B3LYP theory level. The IR and NMR (1H and 13C chemical shifts and coupling constants) spectra were obtained and compared with the theoretical calculations. The B3LYP theory level, with the 6-31G(d,p) and 6-311G(d,p) basis set, provided IR absorption values close to the experimental data. Moreover, theoretical NMR parameters obtained in both gas phase and chloroform solvent at the B3PW91/DGDZVP, B3LYP/6-311+G(2d,p), and B3PW91/6-311+G(2d,p) levels showed good correlations with the experimental results.

  8. 13C/12C and 15N/14N Isotope Analysis to Characterize Natural Degradation of Atrazine: Evidence from Parent and Daughter Compound Values

    NASA Astrophysics Data System (ADS)

    Elsner, Martin; Meyer, Armin

    2013-04-01

    The mobile and still herbicidal metabolites desethylatrazine (DEA) and desisopropylatrazine (DIA) are frequently detected together with its parent compound atrazine (Atz) in the aquatic environment. Interpretation of their transformation state is often difficult with current methods, which are mainly measuring concentrations. Alternatively, compound specific isotope analyses (CSIA) has become a novel tool to detect degradation processes of contaminants in groundwater. The aim of our study was to investigate on the lab scale 13C/12C and 15N/14N isotope trends in parent and daughter compounds associated with different degradation scenarios of atrazine likely to occur in the environment. Thus atrazine was dealkylated with (i) permanganate and (ii) the bacterium Rhodococcus sp. NI86/21. In both transformations, 13C/12C ratios of atrazine increased strongly (epsilon carbon/permanganate = -4.6 ± 0.6 ‰ and epsilon carbon/Rhodoccoccus = -3.8 ± 0.2 ‰) whereas nitrogen isotope fractionation was small. 13C/12C ratios of DEA showed the following trends. (i) When DEA was formed as only product (Atz + permanganate) 13C/12C remained constant, close to the initial value of Atz. (ii) When DEA was formed together with deisopropylatrazine (biodegradation of Atz) 13C/12C increased, but only within 2‰. (iii) When DEA and DIA was further biodegraded, 13C/12C increased for both metabolites up to 9‰. Thus strong enrichment of 13C/12C in the metabolites in comparison to Atz can give strong testimony for further breakdown of the metabolite.

  9. Development of a 13C-optimized 1.5-mm high temperature superconducting NMR probe

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Vijaykumar; Hooker, Jerris W.; Withers, Richard S.; Nast, Robert E.; Brey, William W.; Edison, Arthur S.

    2013-10-01

    We report a 1.5-mm NMR probe based on high temperature superconductors operating at 14.1 T optimized for 13C detection. The probe has a total sample volume of about 35 microliters (μL) with an active volume of 20 μL and provides exceptional mass sensitivity for 13C detection. The probe also has excellent 1H sensitivity and employs a 2H lock; 15N irradiation capability can be added in the future. The coils are cooled to about 20 K using a standard Agilent cryogenic refrigeration system, and the sample temperature is regulated near room temperature. The coil design considerations are discussed in detail. This probe is ideal for directly detected 13C NMR experiments for natural products chemistry and metabolomics applications, for which 35 μL is an optimal sample volume. The outstanding 13C sensitivity of this probe allowed us to directly determine the 13C connectivity on 1.1 mg of natural abundance histidine using an INADEQUATE experiment. We demonstrated the utility of this probe for 13C-based metabolomics using a synthetic mixture of common natural abundance metabolites whose concentrations ranged from 1 to 5 mM (40-200 nmol).

  10. Development of a 13C-Optimized 1.5-mm High Temperature Superconducting NMR Probe

    PubMed Central

    Ramaswamy, Vijaykumar; Hooker, Jerris W.; Withers, Richard S.; Nast, Robert E.; Brey, William W.; Edison, Arthur S.

    2013-01-01

    We report a 1.5-mm NMR probe based on high temperature superconductors operating at 14.1 T optimized for 13C detection. The probe has a total sample volume of about 35 microliters (μL) with an active volume of 20 μL and provides exceptional mass sensitivity for 13C detection. The probe also has excellent 1H sensitivity and employs a 2H channel lock; 15N irradiation capability can be added in the future. The coils are cooled to about 20 K using a standard Agilent cryogenic refrigeration system, and the sample temperature is regulated near room temperature. The coil design considerations are discussed in detail. This probe is ideal for directly detected 13C NMR experiments for natural products chemistry and metabolomics applications, for which 35 μL is an optimal sample volume. The outstanding 13C sensitivity of this probe allowed us to directly determine the 13C connectivity on 1.1 mg of natural abundance histidine using an INADEQUATE experiment. We demonstrated the utility of this probe for 13C-based metabolomics using a synthetic mixture of common natural abundance metabolites whose concentrations ranged from 1 to 5 mM (40 to 200 nmol). PMID:23969086

  11. In Situ 13C and 23Na Magic Angle Spinning NMR Investigation of Supercritical CO2 Incorporation in Smectite-Natural Organic Matter Composites

    SciTech Connect

    Bowers, Geoffrey M.; Hoyt, David W.; Burton, Sarah D.; Ferguson, Brennan O.; Varga, Tamas; Kirkpatrick, Robert J.

    2014-01-29

    This paper presents an in situ NMR study of clay-natural organic polymer systems (a hectoritehumic acid [HA] composite) under CO2 storage reservoir conditions (90 bars CO2 pressure, 50°C). The 13C and 23Na NMR data show that supercritical CO2 interacts more strongly with the composite than with the base clay and does not react to form other C-containing species over several days at elevated CO2. With and without organic matter, the data suggest that CO2 enters the interlayer space of Na-hectorite equilibrated at 43% relative humidity. The presence of supercritical CO2 also leads to increased 23Na signal intensity, reduced line width at half height, increased basal width, more rapid 23Na T1 relaxation rates, and a shift to more positive resonance frequencies. Larger changes are observed for the hectorite-HA composite than for the base clay. In light of recently reported MD simulations of other polymer-Na-smectite composites, we interpret the observed changes as an increase in the rate of Na+ site hopping in the presence of supercritical CO2, the presence of potential new Na+ sorption sites when the humic acid is present, and perhaps an accompanying increase in the number of Na+ ions actively involved in site hopping. The results suggest that the presence of organic material either in clay interlayers or on external particle surfaces can significantly affect the behavior of supercritical CO2 and the mobility of metal ions in reservoir rocks.

  12. Measuring doubly 13C-substituted ethane by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Clog, M.; Ling, C.; Eiler, J. M.

    2012-12-01

    Ethane (C2H6) is present in non-negligible amounts in most natural gas reservoirs and is used to produce ethylene for petrochemical industries. It is one of the by-products of lipid metabolism and is the arguably simplest molecule that can manifest multiple 13C substitutions. There are several plausible controls on the relative abundances of 13C2H6 in natural gases: thermodynamically controlled homogeneous isotope exchange reactions analogous to those behind carbonate clumped isotope thermometry; inheritance from larger biomolecules that under thermal degradation to produce natural gas; mixing of natural gases that differ markedly in bulk isotopic composition; or combinations of these and/or other, less expected fractionations. There is little basis for predicting which of these will dominate in natural samples. Here, we focus on an analytical techniques that will provide the avenue for exploring these phenomena. The method is based on high-resolution gas source isotope ratio mass spectrometry, using the Thermo 253-Ultra (a new prototype mass spectrometer). This instrument achieves the mass resolution (M/Δ M) up to 27,000, permitting separation of the isobaric interferences of potential contaminants and isotopologues of an analtye or its fragments which share a cardinal mass. We present techniques to analyze several isotopologues of molecular and fragment ions of C2H6. The critical isobaric separations for our purposes include: discrimination of 13C2H6 from 13C12CDH5 at mass 32 and separation of the 13CH3 fragment from 12CH4 at mass 16, both requiring at least a mass resolution of 20000 to make an adequate measurement. Other obvious interferences are either cleanly separated (e.g., O2, O) or accounted for by peak-stripping (CH3OH on mass 32 and NH2 on mass 16). We focus on a set of measurements which constrain: the doubly-substituted isotopologue, 13C2H6, and the 13CH3/12CH3 ratio of the methyl fragment, which constrains the bulk δ 13C. Similar methods can be

  13. 13C FRACTIONATION DURING RELIC SOIL ORGANIC C MINERALIZATION ON CARBON BUDGETS AND HALF-LIVES CALCULATED USING THE STABLE ISOTOPE APPROACH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 13C natural abundance approach for determining soil organic C (SOC) stability and turnover has been used to determine SOC mineralization kinetics. These calculations often assume that 13C fractionation during relic SOC and non-harvested biomass mineralization is insignificant. The objective of t...

  14. Constraints on the factors controlling 13C-18O bond abundances in biologically precipitated carbonates from measurements of marine calcifiers cultured at variable temperature, pH, and salinity

    NASA Astrophysics Data System (ADS)

    Conchas, T. E.; Eagle, R.; Eiler, J. M.; Ries, J. B.; Freitas, P. S.; Hiebenthal, C.; Wanamaker, A. D.; Tripati, A. K.

    2012-12-01

    Marine mollusks and corals are widely used as archives of past climate change; oxygen isotopic composition (δ18O value) of their carbonate minerals is perhaps the most commonly used proxy to reconstruct paleoclimate from these marine calcifiers. However, oxygen isotope paleothermometry of mollusks and corals is complicated by non-equilibrium "vital effects" and variations in seawater pH changes, both of which influence the net fractionation of oxygen isotopes between carbonate and water. Carbonate "clumped isotope" thermometry is an emerging approach that potentially addresses these ambiguities. Here we report measurements of abundance of 13C-18O bonds (described by the measured parameter Δ47) in a variety of marine calcifiers cultured under controlled conditions. Previous studies on biologically precipitated samples such as foraminifera, coccoliths, and corals have shown that Δ47 values are related to calcification temperature with a relationship that is generally similar to inorganic carbonate. However, the influence of effects other than temperature has not been extensively studied and little work has been done to explore the potential for small non-equilibrium effects in cultured specimens that were grown under controlled conditions. In this study, we report δ18O and Δ47 measurements of mollusk specimens that were cultured at several temperatures ranging from 5 to 25°C, as well as different pH and salinity values. We also report data for other marine calcifiers including the temperate coral species Oculina arbuscula and the coralline red algae Neogoniolithon sp., that were cultured at a single temperature but variable pH.

  15. Investigating microbial carbon cycling using natural abundance isotope analysis of PLFA

    NASA Astrophysics Data System (ADS)

    Slater, G. G.; Brady, A.; Cowie, B.

    2008-12-01

    Understanding microbial carbon sources and cycling is fundamental to our conceptualization of microbial ecosystems and their role in biogeochemical cycling in natural systems. Achieving this understanding requires application of a wide range of approaches. Natural abundance isotope analysis of individual compounds, particularly cellular components such as Phospholipids Fatty Acids (PLFA) can provide insights into the carbon sources and metabolic activities of the in situ microbial community from environmental samples. This is primarily because specific PLFA can be well resolved by gas chromatography even from complex matrices where confounding biological/organic compound abound. These PLFA can then be attributed to the viable microbial community, in some cases to specific components of this community and due to characteristic biosynthetic fractionations of stable isotope ratios, δ13C analysis of PLFA can: differentiate isotopically distinct primary carbon sources of heterotrophic communities; identify isotopic patterns characteristic of autotrophic versus heterotrophic processes; and elucidate microbial biosynthetic pathways. In cases where there δ13C cannot provide resolution of carbon sources, new approaches in Δ14C of PLFA can be applied. The vast range in Δ14C of ancient and modern carbon provides an easily traceable signal that can differentiate uptake and utilization of these carbon sources. This is particularly useful in cases such as contaminated sites where petroleum based contamination has occurred, or in natural systems where microbial communities may be utilizing geologic versus recently photosynthetically fixed carbon. This talk will present several examples demonstrating the utility of this approach.

  16. Inter-laboratory calibration of natural gas round robins for δ2H and δ13C using off-line and on-line techniques

    USGS Publications Warehouse

    Dai, Jinxing; Xia, Xinyu; Li, Zhisheng; Coleman, Dennis D.; Dias, Robert F.; Gao, Ling; Li, Jian; Deev, Andrei; Li, Jin; Dessort, Daniel; Duclerc, Dominique; Li, Liwu; Liu, Jinzhong; Schloemer, Stefan; Zhang, Wenlong; Ni, Yunyan; Hu, Guoyi; Wang, Xiaobo; Tang, Yongchun

    2012-01-01

    Compound-specific carbon and hydrogen isotopic compositions of three natural gas round robins were calibrated by ten laboratories carrying out more than 800 measurements including both on-line and off-line methods. Two-point calibrations were performed with international measurement standards for hydrogen isotope ratios (VSMOW and SLAP) and carbon isotope ratios (NBS 19 and L-SVEC CO2). The consensus δ13C values and uncertainties were derived from the Maximum Likelihood Estimation (MLE) based on off-line measurements; the consensus δ2H values and uncertainties were derived from MLE of both off-line and on-line measurements, taking the bias of on-line measurements into account. The calibrated consensus values in ‰ relative to VSMOW and VPDB are: NG1 (coal-related gas): Methane: δ2HVSMOW = − 185.1‰ ± 1.2‰, δ13CVPDB = − 34.18‰ ± 0.10‰ Ethane: δ2HVSMOW = − 156.3‰ ± 1.8‰, δ13CVPDB = − 24.66‰ ± 0.11‰ Propane: δ2HVSMOW = − 143.6‰ ± 3.3‰, δ13CVPDB = − 22.21‰ ± 0.11‰ i-Butane: δ13CVPDB = − 21.62‰ ± 0.12‰ n-Butane: δ13CVPDB = − 21.74‰ ± 0.13‰ CO2: δ13CVPDB = − 5.00‰ ± 0.12‰ NG2 (biogas): Methane: δ2HVSMOW = − 237.0‰ ± 1.2‰, δ13CVPDB = − 68.89‰ ± 0.12‰ NG3 (oil-related gas): Methane: δ2HVSMOW = − 167.6‰ ± 1.0‰, δ13CVPDB = − 43.61‰ ± 0.09‰ Ethane: δ2HVSMOW = − 164.1‰ ± 2.4‰, δ13CVPDB = − 40.24‰ ± 0.10‰ Propane: δ2HVSMOW = − 138.4‰ ± 3.0‰, δ13CVPDB = − 33.79‰ ± 0.09‰ All of the assigned values are traceable to the international carbon isotope standard of VPDB and hydrogen isotope standard of VSMOW.

  17. Natural abundances of carbon isotopes in acetate from a coastal marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Martens, C. S.; Des Marais, D. J.

    1987-01-01

    Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.

  18. Site-specific 13C content by quantitative isotopic 13C nuclear magnetic resonance spectrometry: a pilot inter-laboratory study.

    PubMed

    Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst; Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro; Pagelot, Alain; Moskau, Detlef; Moreno, Aitor; Schleucher, Jürgen; Reniero, Fabiano; Holland, Margaret; Guillou, Claude; Silvestre, Virginie; Akoka, Serge; Remaud, Gérald S

    2013-07-25

    Isotopic (13)C NMR spectrometry, which is able to measure intra-molecular (13)C composition, is of emerging demand because of the new information provided by the (13)C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic (13)C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular (13)C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic (13)C NMR was then assessed on vanillin from three different origins associated with specific δ (13)Ci profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ (13)Ci in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results. PMID:23845488

  19. Simultaneous imaging of 13C metabolism and 1H structure: technical considerations and potential applications.

    PubMed

    Gordon, Jeremy W; Fain, Sean B; Niles, David J; Ludwig, Kai D; Johnson, Kevin M; Peterson, Eric T

    2015-05-01

    Real-time imaging of (13)C metabolism in vivo has been enabled by recent advances in hyperpolarization. As a result of the inherently low natural abundance of endogenous (13)C nuclei, hyperpolarized (13)C images lack structural information that could be used to aid in motion detection and anatomical registration. Motion before or during the (13)C acquisition can therefore result in artifacts and misregistration that may obscure measures of metabolism. In this work, we demonstrate a method to simultaneously image both (1)H and (13)C nuclei using a dual-nucleus spectral-spatial radiofrequency excitation and a fully coincident readout for rapid multinuclear spectroscopic imaging. With the appropriate multinuclear hardware, and the means to simultaneously excite and receive on both channels, this technique is straightforward to implement requiring little to no increase in scan time. Phantom and in vivo experiments were performed with both Cartesian and spiral trajectories to validate and illustrate the utility of simultaneous acquisitions. Motion compensation of dynamic metabolic measurements acquired during free breathing was demonstrated using motion tracking derived from (1)H data. Simultaneous multinuclear imaging provides structural (1)H and metabolic (13)C images that are correlated both spatially and temporally, and are therefore amenable to joint (1)H and (13)C analysis and correction of structure-function images. PMID:25810146

  20. Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II: High-resolution variations in abundances and 13C contents of free and sulphur-bound carbon skeletons in a single marl bed

    NASA Technical Reports Server (NTRS)

    Kenig, F.; Damste, J. S.; Frewin, N. L.; Hayes, J. M.; De Leeuw, J. W.

    1995-01-01

    The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (delta vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their delta values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13 C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of delta values measured was 24.7%, from -11.6% for a component derived from green sulphur bacteria (Chlorobiaceae) to -36.3% for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with

  1. Calculation of total meal d13C from individual food d13C.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variations in the isotopic signature of carbon in biological samples can be used to distinguish dietary patterns and monitor shifts in metabolism. But for these variations to have meaning, the isotopic signature of the diet must be known. We sought to determine if knowledge of the 13C isotopic abund...

  2. Natural abundance carbon-13 nuclear magnetic resonance studies of histone and DNA dynamics in nucleosome cores.

    PubMed

    Hilliard, P R; Smith, R M; Rill, R L

    1986-05-01

    Natural abundance carbon-13 nuclear magnetic resonance spectra (67.9 MHz) were obtained for native nucleosome cores: cores dissociated in 2 M NaCl and 2 M NaCl, 6 M urea; and cores degraded with DNase I plus proteinase K. Phosphorus-31 NMR spectra of native and dissociated cores and core length DNA were also obtained at 60.7 MHz. The 31P resonance and spin-lattice relaxation time (T1) of DNA were only slightly affected by packaging in nucleosome cores, in agreement with other reports, but 13C resonances of DNA were essentially unobservable. The loss of DNA spectral intensity suggests that rapid internal motions of DNA sugar carbons in protein-free DNA previously demonstrated by 13C NMR methods are partly restricted in nucleosomes. The 13C spectrum of native cores contains many narrow intense resonances assigned to lysine side chain and alpha-carbons, glycine alpha-carbons, alanine alpha- and beta- carbons, and arginine side chain carbons. Several weaker resonances were also assigned. The narrow line widths, short T1 values, and non-minimal nuclear Overhauser enhancements of these resonances, including alpha- and beta-carbons, show that some terminal chain segments of histones in nucleosomes are as mobile as small random coil polypeptides. The mobile segments include about 9% of all histone residues and 25% of all lysines, but only 10% of all arginines. The compositions of these segments indicate that mobile regions are located in amino- or carboxyl-terminal sequences of two or more histones. In addition, high mobility was observed for side chain carbons of 45-50% of all lysines (delta and epsilon carbons) and about 25% of all arginines (zeta carbon) in histones (including those in mobile segments), suggesting that basic residues in terminal histone sequences are not strongly involved in nucleosome structure and may instead help stabilize higher order chromatin structure. PMID:3700380

  3. Paramagnetic relaxation enhancement solid-state NMR studies of heterogeneous catalytic reaction over HY zeolite using natural abundance reactant.

    PubMed

    Zhou, Lei; Li, Shenhui; Su, Yongchao; Li, Bojie; Deng, Feng

    2015-01-01

    Paramagnetic relaxation enhancement solid-state NMR (PRE ssNMR) technique was used to investigate catalytic reaction over zeolite HY. After introducing paramagnetic Cu(II) ions into the zeolite, the enhancement of longitudinal relaxation rates of nearby nuclei, i.e.(29)Si of the framework and (13)C of the absorbents, was measured. It was demonstrated that the PRE ssNMR technique facilitated the fast acquisition of NMR signals to monitor the heterogeneous catalytic reaction (such as acetone to hydrocarbon) using natural abundance reactants. PMID:25616847

  4. Directly detected 55Mn MRI: Application to phantoms for human hyperpolarized 13C MRI development

    PubMed Central

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D.; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B.

    2014-01-01

    In this work we demonstrate for the first time directly detected manganese-55 (55Mn) MRI using a clinical 3T MRI scanner designed for human hyperpolarized 13C clinical studies with no additional hardware modifications. Due to the similar frequency of the 55Mn and 13C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective “13C” MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, 55Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical 13C phantom MRI, at greatly reduced cost as compared with large 13C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d= 8 cm) containing concentrated aqueous sodium permanganate (2.7M) was scanned rapidly by 55Mn MRI in a human head coil tuned for 13C, using a balanced SSFP acquisition. The requisite penetration of RF magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for 55Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image SNR of ~60 at 0.5cm3 spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP 13C coils and methods designed for human studies. PMID:25179135

  5. Development of new method of δ(13)C measurement for trace hydrocarbons in natural gas using solid phase micro-extraction coupled to gas chromatography isotope ratio mass spectrometry.

    PubMed

    Li, Zhongping; Wang, Xibin; Li, Liwu; Zhang, Mingjie; Tao, Mingxin; Xing, Lantian; Cao, Chunhui; Xia, Yanqing

    2014-11-01

    Compound specific isotope analysis (CSIA) of normal-level hydrocarbons (C1-C4) in natural gas is often successfully used in natural gas origin identification and classification, but little progress so far has been made for trace level hydrocarbons (C5-C14) in natural gas. In this study, we developed a method for rapid analysis of carbon isotopic ratios for trace hydrocarbons in natural gas samples. This method can be described as a combined approach characterized by solid phase micro-extraction (SPME) technique coupled to gas chromatography isotope ratio mass spectrometry (GC/IRMS). In this study, the CAR-PDMS fiber was chosen as the SPME adsorptive material after comparative experiments with other four fibers, and the parameters, including equilibration time, extraction temperature and desorption time, for efficient extraction of trace hydrocarbons were systematically optimized. The results showed the carbon isotopic fractionation was not observed as a function of equilibration time and extraction temperature. And the δ(13)C signatures determined by SPME-GC/IRMS were in good agreement with the known δ(13)C values of C5-C14 measured by GC-IRMS, and the accuracy is generally within ±0.5‰. Five natural gas samples were analyzed using this method, and the δ(13)C values for C5-C14 components were obtained with satisfied repeatability. The SPME-GC/IRMS approach fitted with CAR-PDMS fiber is well suited for the preconcentration of trace hydrocarbons and provides so far the most reliable carbon isotopic analysis for trace compounds in natural gas. PMID:25465020

  6. In folio respiratory fluxomics revealed by 13C isotopic labeling and H/D isotope effects highlight the noncyclic nature of the tricarboxylic acid "cycle" in illuminated leaves.

    PubMed

    Tcherkez, Guillaume; Mahé, Aline; Gauthier, Paul; Mauve, Caroline; Gout, Elizabeth; Bligny, Richard; Cornic, Gabriel; Hodges, Michael

    2009-10-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, (13)C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA "cycle" does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. PMID:19675152

  7. Short-term natural δ13C variations in pools and fluxes in a beech forest: the transfer of isotopic signal from recent photosynthates to soil respired CO2

    NASA Astrophysics Data System (ADS)

    Gavrichkova, O.; Proietti, S.; Moscatello, S.; Portarena, S.; Battistelli, A.; Matteucci, G.; Brugnoli, E.

    2011-03-01

    The fate of photosynthetic products within the plant-soil continuum determines how long the reduced carbon resides within the ecosystem and when it returns back to the atmosphere in the form of respiratory CO2. We have tested the possibility of measuring natural variation in δ13C to disentangle potential times needed to transfer carbohydrates produced by photosynthesis down to roots and, in general, to belowground up to its further release in the form of soil respiration into the atmosphere in a beech (Fagus sylvatica) forest. For these purposes we have measured the variation in stable carbon and oxygen isotope compositions in plant material and in soil respired CO2 every three hours for three consequent days. Possible steps and different signs of post-photosynthetic fractionation during carbon translocation were also identified. A 12 h-periodicity was observed for variation in δ13C in soluble sugars in the top crown leaves and it can be explained by starch day/night dynamics in synthesis and breakdown and by stomatal limitations under elevated vapour pressure deficits. Photosynthetic products were transported down the trunk and mixed with older carbon pools, therefore causing the dampening of the δ13C signal variation. The strongest periodicity of 24 h was found in δ13C in soil respiration indicating changes in root contribution to the total CO2 efflux. Nevertheless, it was possible to identify the speed of carbon translocation through the plant-soil continuum. A period of 24 h was needed to transfer the C assimilated by photosynthesis from the top crown leaves to the tree trunk at breast height and additional 3 h for further respiration of that C by roots and soil microorganisms and its to subsequent diffusion back to the atmosphere.

  8. (13)C-Breath testing in animals: theory, applications, and future directions.

    PubMed

    McCue, Marshall D; Welch, Kenneth C

    2016-04-01

    The carbon isotope values in the exhaled breath of an animal mirror the carbon isotope values of the metabolic fuels being oxidized. The measurement of stable carbon isotopes in carbon dioxide is called (13)C-breath testing and offers a minimally invasive method to study substrate oxidation in vivo. (13)C-breath testing has been broadly used to study human exercise, nutrition, and pathologies since the 1970s. Owing to reduced use of radioactive isotopes and the increased convenience and affordability of (13)C-analyzers, the past decade has witnessed a sharp increase in the use of breath testing throughout comparative physiology-especially to answer questions about how and when animals oxidize particular nutrients. Here, we review the practical aspects of (13)C-breath testing and identify the strengths and weaknesses of different methodological approaches including the use of natural abundance versus artificially-enriched (13)C tracers. We critically compare the information that can be obtained using different experimental protocols such as diet-switching versus fuel-switching. We also discuss several factors that should be considered when designing breath testing experiments including extrinsic versus intrinsic (13)C-labelling and different approaches to model nutrient oxidation. We use case studies to highlight the myriad applications of (13)C-breath testing in basic and clinical human studies as well as comparative studies of fuel use, energetics, and carbon turnover in multiple vertebrate and invertebrate groups. Lastly, we call for increased and rigorous use of (13)C-breath testing to explore a variety of new research areas and potentially answer long standing questions related to thermobiology, locomotion, and nutrition. PMID:26660654

  9. Animal /sup 13/C//sup 12/C correlates with trophic level in pelagic food webs

    SciTech Connect

    Rau, G.H.; Mearns, A.J.; Young, D.R.; Olson, R.J.; Schafer, H.A.; Kaplan, I.R.

    1983-01-01

    Whatever the underlying cause(s), our observations further substantiate the existence of small but progressive increases in animal tissue /sup 13/C//sup 12/C with increasing trophic level. Such a relationship has significant implications for the use of stable carbon isotope natural abundance in animal tissues or remains, in order to interpret the tropic structure and food base of past as well as present-day animal communities. The delta/sup 13/C of the marine animal tissues analyzed ranged from -20.6 to -15.8%. The macro-fauna from the eastern tropical Pacific Ocean had higher isotope values than the net plankton collected from the same area. The average increases in delta/sup 13/C per trophic level were 0.73 and 1.38% for the California coastal waters and for the eastern tropical Pacific, respectively. These isotopic increases approximate closely those previously reported to occur within single trophic level steps.

  10. Chlorine-36 abundance in natural and synthetic perchlorate

    SciTech Connect

    Heikoop, Jeffrey M; Dale, M; Sturchio, Neil C; Caffee, M; Belosa, A D; Heraty, Jr., L J; Bohike, J K; Hatzinger, P B; Jackson, W A; Gu, B

    2009-01-01

    Perchlorate (ClO{sub 4}{sup -}) is ubiquitous in the environment. It occurs naturally as a product of atmospheric photochemical reactions, and is synthesized for military, aerospace, and industrial applications. Nitrate-enriched soils of the Atacama Desert (Chile) contain high concentrations of natural ClO{sub 4}{sup -}; nitrate produced from these soils has been exported worldwide since the mid-1800's for use in agriculture. The widespread introduction of synthetic and agricultural ClO{sub 4}{sup -} into the environment has complicated attempts to understand the geochemical cycle of ClO{sub 4}{sup -}. Natural ClO{sub 4}{sup -} samples from the southwestern United States have relatively high {sup 36}Cl abundances ({sup 36}Cl/Cl = 3,100 x 10{sup -15} to 28,800 x 10{sup -15}), compared with samples of synthetic ({sup 36}Cl/Cl = 0.0 x 10{sup -15} to 40 x 10{sup -15}) and Atacama Desert ({sup 36}Cl/Cl = 0.9 x 10{sup -15} to 590 x 10{sup -15}) ClO{sub 4}{sup -}. These data give a lower limit for the initial {sup 36}Cl abundance of natural ClO{sub 4}{sup -} and provide temporal and other constraints on its geochemical cycle.

  11. 1H, 13C and 15N NMR assignments of the E. coli peptide deformylase in complex with a natural inhibitor called actinonin.

    PubMed

    Larue, Valéry; Seijo, Bili; Tisne, Carine; Dardel, Frédéric

    2009-06-01

    In eubacteria, the formyl group of nascent polypeptides is removed by peptide deformylase protein (PDF). This is the reason why PDF has received special attention in the course of the search for new antibacterial agents. We observed by NMR that actinonin, a natural inhibitor, induced drastic changes in the HSQC spectrum of E. coli PDF. We report here the complete NMR chemical shift assignments of PDF resonances bound to actinonin. PMID:19636969

  12. Directly detected (55)Mn MRI: application to phantoms for human hyperpolarized (13)C MRI development.

    PubMed

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B

    2014-12-01

    In this work we demonstrate for the first time directly detected manganese-55 ((55)Mn) magnetic resonance imaging (MRI) using a clinical 3T MRI scanner designed for human hyperpolarized (13)C clinical studies with no additional hardware modifications. Due to the similar frequency of the (55)Mn and (13)C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective "(13)C" MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, (55)Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical (13)C phantom MRI, at greatly reduced cost as compared with large (13)C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d=8 cm) containing concentrated aqueous sodium permanganate (2.7 M) was scanned rapidly by (55)Mn MRI in a human head coil tuned for (13)C, using a balanced steady state free precession acquisition. The requisite penetration of radiofrequency magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for (55)Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image signal-to-noise ratio of ~60 at 0.5 cm(3) spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP (13)C coils and methods designed for human studies. PMID:25179135

  13. Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish

    NASA Astrophysics Data System (ADS)

    Thorrold, Simon R.; Campana, Steven E.; Jones, Cynthia M.; Swart, Peter K.

    1997-07-01

    Fish otoliths are aragonitic accretions located within the inner ear of teleost fish. The acellular nature of otoliths, along with taxon-specific shapes, chronological growth increments, and abundance in the fossil record suggest that the stable isotope chemistry of these structures may be unique recorders of environmental conditions experienced by fish in both modern and ancient water masses. To assess the factors determining δ 13C and δ 18O fractionation in fish otoliths, we reared Atlantic croaker ( Micropogonias undulatus) larvae under controlled environmental conditions. Metabolic effects apparently generated large isotopic disequilibria in the δ 13C values of M. undulatus otoliths. We found evidence of a negative regression between δ 13C- carbonate-δ 13C water (δ 13C) and temperature: δ 13C = -1.78 - 0.18 T °C However, this relationship was aliased to a degree by a positive correlation between δ 13C and somatic growth and otolith precipitation rates. Oxygen isotopes were deposited close to equilibrium with the ambient water. The relationship between temperature and the 18O/ 16O fractionation factor (α) was determined empirically to be: 1000 ln α = 18.56(10 3T K -1) - 32.54 The fractionation factor was not affected by either otolith precipitation or fish growth rates. Reconstruction of water temperature histories should, therefore, be possible from the δ 18O values of M. undulatus otoliths with a precision of 1°C, providing the δ 18O of the ambient water can be estimated.

  14. Paper Thermoelectrics: Merging Nanotechnology with Naturally Abundant Fibrous Material.

    PubMed

    Sun, Chengjun; Goharpey, Amir Hossein; Rai, Ayush; Zhang, Teng; Ko, Dong-Kyun

    2016-08-31

    The development of paper-based sensors, antennas, and energy-harvesting devices can transform the way electronic devices are manufactured and used. Herein we describe an approach to fabricate paper thermoelectric generators for the first time by directly impregnating naturally abundant cellulose materials with p- or n-type colloidal semiconductor quantum dots. We investigate Seebeck coefficients and electrical conductivities as a function of temperature between 300 and 400 K as well as in-plane thermal conductivities using Angstrom's method. We further demonstrate equipment-free fabrication of flexible thermoelectric modules using p- and n-type paper strips. Leveraged by paper's inherently low thermal conductivity and high flexibility, these paper modules have the potential to efficiently utilize heat available in natural and man-made environments by maximizing the thermal contact to heat sources of arbitrary geometry. PMID:27505304

  15. Short-term natural δ13C and δ18O variations in pools and fluxes in a beech forest: the transfer of isotopic signal from recent photosynthates to soil respired CO2

    NASA Astrophysics Data System (ADS)

    Gavrichkova, O.; Proietti, S.; Moscatello, S.; Portarena, S.; Battistelli, A.; Matteucci, G.; Brugnoli, E.

    2011-10-01

    The fate of photosynthetic products within the plant-soil continuum determines how long the reduced carbon resides within the ecosystem and when it returns back to the atmosphere in the form of respiratory CO2. We have tested the possibility of measuring natural variation in δ13C and δ18O to disentangle the potential times needed to transfer carbohydrates produced by photosynthesis down to trunk, roots and, in general, to belowground up to its further release in the form of soil respiration into the atmosphere in a beech (Fagus sylvatica) forest. We have measured the variation in stable carbon and oxygen isotope compositions in plant material and in soil respired CO2 every three hours for three consecutive days. Possible steps and different signs of post-photosynthetic fractionation during carbon translocation were also identified. A 12 h-periodicity was observed for variation in δ13C in soluble sugars in the top crown leaves and it can be explained by starch day/night dynamics in synthesis and breakdown and by stomatal limitations under elevated vapour pressure deficits. Photosynthetic products were transported down the trunk and mixed with older carbon pools, therefore causing the dampening of the δ13C signal variation. The strongest periodicity of 24 h was found in δ13C in soil respiration indicating changes in root contribution to the total CO2 efflux. Other non-biological causes like diffusion fractionation and advection induced by gas withdrawn from the measurement chamber complicate data interpretation on this step of C transfer path. Nevertheless, it was possible to identify the speed of carbohydrates' translocation from the point of assimilation to the trunk breast height because leaf-imprinted enrichment of δ18O in soluble sugars was less modified along the downward transport and was well related to environmental parameters potentially linked to stomatal conductance. The speed of carbohydrates translocation from the site of assimilation to the trunk

  16. In search of the mechanisms behind soil carbon metabolism of a Douglas fir forest in complex terrain using naturally abundant 13C

    NASA Astrophysics Data System (ADS)

    Kayler, Z. E.; Sulzman, E. W.; Barnard, H. R.; Kennedy, A.; Phillips, C.; Mix, A.; Bond, B. J.

    2008-12-01

    Soil is well known for being highly variable, spatially and temporally, in moisture, texture, nutrients, carbon content and organisms. The magnitude of variation in soil characteristics represented in a study is, in part, determined by the choice in site location. Choosing sites that are topographically flat reduces variability due to environmental gradients, variability that is amplified in sites of complex terrain. We measured soil respiration, an integrative measure of ecosystem biological and physical processes, and its isotopic signature (δ13CR-s) to accomplish two goals: 1. Explore how gradients in temperature and moisture within a steeply sloped watershed affect the flux and isotopic signature of soil CO2 2. Deconvolve the isotopic signature of soil respiration into autotrophic and heterotrophic sources using a multi-source mixing model constrained by samples of soil organic matter and water soluble extracts of leaf foliage. Our site is located in a steep catchment within the central Cascades of Oregon (HJ Andrews LTER) where we made respiration measurements in plots established along side a sensor transect that continuously measures soil moisture and temperature; air relative humidity and temperature; and tree transpiration. There was a distinct difference in soil metabolism between the south and north aspects in the watershed. Temperature-corrected basal respiration of the south facing slope was 1 μmol m-2s-1 greater than the north facing slope. There was also a difference in isotopic signature between the two slopes that could be as great as 2 per mil depending on the period within the growing season. The strength of the correlation between environmental variables and soil carbon flux was non-uniform across the catchment. There was, however, a strong positive correlation between soil flux with recent transpiration rates (0 to 3 days prior) as well as with transpiration rates that occurred up to 9 days previously. This pattern was especially prevalent for locations near the ridge of each slope and dampened with a decrease in plot elevation. The correlation between δ13CR-s and transpiration, as well as vapor pressure deficit, was similar with a high degree of correlation that occurred 0-3 and 8 days before sampling. The correlation analysis suggests that soil flux in this forest is primarily controlled by aboveground inputs throughout the growing season. The source partitioning analysis confirms this observation although the magnitude of the aboveground contribution varies with season and topographic position.

  17. Paleoclimate reconstruction:natural abundance of d13C and d15N of modern plant pollen to interpret fossil data

    NASA Astrophysics Data System (ADS)

    Descolas-Gros, C.

    2003-04-01

    δ13 values of modern plant organic carbon allow the differentiation of the different physiological plant categories. The geographical distribution of these plants according to their photosynthetic pathways provides informations on the modifications of climatic parameters (pCO_2, temperature, rainfall...). δ13 variability of organic carbon of fossil plants enables us to interpret geographical plants distribution and associated climatic parameters over geological time. In order to do parametrisation of these relationships, well preserved molecules are suited. Sporopollenin which is the main constituent of the external part of pollen grain is well preserved in paleosediments. This makes of this molecule an interesting tool for paleovegetation reconstructions. The interest of δ15N associated measurements is demonstrated. These different aspects were discussed with our results and those of the litterature.

  18. Regioselective syntheses of [13C]4-labelled sodium 1-carboxy-2-(2-ethylhexyloxycarbonyl)ethanesulfonate and sodium 2-carboxy-1-(2-ethylhexyloxycarbonyl)ethanesulfonate from [13C]4-maleic anhydride.

    PubMed

    Barsamian, Adam L; Perkins, Matt J; Field, Jennifer A; Blakemore, Paul R

    2014-05-15

    The entitled monohydrolysis products, also known as α-ethylhexyl and β-ethylhexyl sulfosuccinate (EHSS), of the surfactant diisooctyl sulfosuccinate (DOSS) were synthesized in stable isotope-labelled form from [(13)C]4 -maleic anhydride. Sodium [(13)C]4 -1-carboxy-2-(2-ethylhexyloxycarbonyl)ethanesulfonate (α-EHSS) was prepared by the method of Larpent by reaction of 2-ethylhexan-1-ol with [(13)C]4 -maleic anhydride followed by regioselective conjugate addition of sodium bisulfite to the resulting monoester (38% overall yield). The regiochemical outcome of bisulfite addition was confirmed by a combination of (13)C/(13)C (incredible natural abundance double quantum transfer) and (1)H/(13)C (heteronuclear multiple-bond correlation (HMBC)) NMR spectral correlation experiments. Sodium [(13)C]4 -2-carboxy-1-(2-ethylhexyloxycarbonyl)ethanesulfonate (β-EHSS) was prepared in four steps by reaction of 4-methoxybenzyl alcohol with [(13)C]4 -maleic anhydride, regioselective sodium bisulfite addition, N,N'-dicyclohexylcarbodiimide-mediated esterification with 2-ethylhexan-1-ol, and p-methoxybenzyl ester deprotection with trifluoroacetic acid (13% overall yield). The regiochemical outcome of the second synthesis was confirmed by a combination of (1)JCC scalar coupling constant analysis and (1)H/(13)C (HMBC) NMR spectral correlation. The materials prepared are required as internal standards for the liquid chromatography-mass spectrometry (LC-MS)/MS trace analysis of the degradation products of DOSS, the anionic surfactant found in Corexit, the oil dispersant used during emergency response efforts connected to the Deepwater Horizon oil spill of April 2010. PMID:24700711

  19. {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions

    SciTech Connect

    Sevelsted, Tine F.; Herfort, Duncan

    2013-10-15

    {sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.

  20. Study of Urban environmental quality through Isotopes δ13C

    NASA Astrophysics Data System (ADS)

    González-Sosa, E.; Mastachi-Loza, C.; Becerril-Piña, R.; Ramos-Salinas, N. M.

    2012-04-01

    Usually, trees with similar pH values on their bark develop epiphytes of similar species, the acidity to be a factor for growth. The aim of the study was evaluate the air quality through isotope δ13C in order to define the levels of environmental quality in the city of Queretaro, Mexico. In this work were collected at least 4 epiphytes positioned in trees of the species Prosopis Laevigata at 25 sites of Queretaro City. The samples were analyzed for trace elements with an inductively coupled plasma atomic emission spectroscopy (ICP). The collecting took place during dry period, in May and early rain June 2011 period, and on four sectors to identify the spatial distribution of pollution, using isotopic analysis of concentration of δ 13C. According with the results there are significant differences among the species in each of the sampled areas. The 5 February Avenue presented greater diversity and richness of δ13C, followed by those who were surveyed in the proximity of the UAQ and finally in the middle-east area. An average value of δ13C-17.92%, followed by those surveyed in the vicinity of the UAQ that correspond to sector I and II with an concentration of δ13C-17.55% and δ13C-17.22%, and finally the samples collected in trees scattered in the East-Sector II and IV with a value of δ13C-17.02% and δ13C-15.62%, respectively. Also were observed differences between the dry and wet period. It is likely that these results of δ 13C in moist period reflect the drag of the isotopes due to rain events that could mark a trend in the dilution of this element, however there is a trend in terms of abundance and composition of finding more impact in those species sampled in dry period, in May and early June 2011.

  1. Diversity and abundance of phosphonate biosynthetic genes in nature

    PubMed Central

    Yu, Xiaomin; Doroghazi, James R.; Janga, Sarath C.; Zhang, Jun Kai; Circello, Benjamin; Griffin, Benjamin M.; Labeda, David P.; Metcalf, William W.

    2013-01-01

    Phosphonates, molecules containing direct carbon–phosphorus bonds, compose a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than 50 y ago, the extent and diversity of phosphonate production in nature remains poorly characterized. The rearrangement of phosphoenolpyruvate (PEP) to phosphonopyruvate, catalyzed by the enzyme PEP mutase (PepM), is shared by the vast majority of known phosphonate biosynthetic pathways. Thus, the pepM gene can be used as a molecular marker to examine the occurrence and abundance of phosphonate-producing organisms. Based on the presence of this gene, phosphonate biosynthesis is common in microbes, with ∼5% of sequenced bacterial genomes and 7% of genome equivalents in metagenomic datasets carrying pepM homologs. Similarly, we detected the pepM gene in ∼5% of random actinomycete isolates. The pepM-containing gene neighborhoods from 25 of these isolates were cloned, sequenced, and compared with those found in sequenced genomes. PEP mutase sequence conservation is strongly correlated with conservation of other nearby genes, suggesting that the diversity of phosphonate biosynthetic pathways can be predicted by examining PEP mutase diversity. We used this approach to estimate the range of phosphonate biosynthetic pathways in nature, revealing dozens of discrete groups in pepM amplicons from local soils, whereas hundreds were observed in metagenomic datasets. Collectively, our analyses show that phosphonate biosynthesis is both diverse and relatively common in nature, suggesting that the role of phosphonate molecules in the biosphere may be more important than is often recognized. PMID:24297932

  2. Monitoring electron donor metabolism under variable electron acceptor conditions using 13C-labeled lactate

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.; Yang, L.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Three sets of flow-through columns constructed with aquifer sediment from Hanford (WA) were used to study reduction of Cr(VI) to poorly soluble Cr(III) under denitrifying, sulfate-reducing/fermentative, and iron-reducing conditions with lactate as the electron donor. In order to understand the relationship between electron donors and biomarkers, and to determine the differences in carbon isotope fractionation resulting from different microbial metabolic processes, we monitored the variation in carbon isotopes in dissolved inorganic carbon (DIC), in total organic carbon (TOC), and in lactate, acetate and propionate. The greatest enrichment in 13C in columns was observed under denitrifying conditions. The δ13C of DIC increased by ~1750 to ~2000‰ fifteen days after supplementation of natural abundance lactate with a 13C-labeled lactate tracer (for an influent δ13C of ~2250‰ for the lactate) indicating almost complete oxidation of the electron donor. The denitrifying columns were among the most active columns and had the highest cell counts and the denitrification rate was highly correlated with Cr(VI) reduction rate. δ13C values of DIC ranged from ~540 to ~1170‰ for iron-reducing conditions. The lower enrichment in iron columns was related to the lower biological activity observed with lower yields of RNA and cell numbers in the column effluents. The carbon isotope shift in the sulfate-reducing ~198 to ~1960‰ for sulfate-reducing conditions reflecting the lower levels of the lactate in these columns. Additionally, in two of the sulfate columns, almost complete fermentation of the lactate occurred, producing acetate and propionate with the labeled carbon signature, but relatively smaller amounts of inorganic carbon. For all electron-accepting conditions, TOC yielded similar δ13C values as lactate stock solutions. Differences in C use efficiency, metabolic rate or metabolic pathway contributed to the differing TOC δ13C to DIC δ13C ratios between treatments

  3. Liquid chromatography combined with mass spectrometry for 13C isotopic analysis in life science research.

    PubMed

    Godin, Jean-Philippe; Fay, Laurent-Bernard; Hopfgartner, Gérard

    2007-01-01

    Among the different disciplines covered by mass spectrometry, measurement of (13)C/(12)C isotopic ratio crosses a large section of disciplines from a tool revealing the origin of compounds to more recent approaches such as metabolomics and proteomics. Isotope ratio mass spectrometry (IRMS) and molecular mass spectrometry (MS) are the two most mature techniques for (13)C isotopic analysis of compounds, respectively, for high and low-isotopic precision. For the sample introduction, the coupling of gas chromatography (GC) to either IRMS or MS is state of the art technique for targeted isotopic analysis of volatile analytes. However, liquid chromatography (LC) also needs to be considered as a tool for the sample introduction into IRMS or MS for (13)C isotopic analyses of non-volatile analytes at natural abundance as well as for (13)C-labeled compounds. This review presents the past and the current processes used to perform (13)C isotopic analysis in combination with LC. It gives particular attention to the combination of LC with IRMS which started in the 1990's with the moving wire transport, then subsequently moved to the chemical reaction interface (CRI) and was made commercially available in 2004 with the wet chemical oxidation interface (LC-IRMS). The LC-IRMS method development is also discussed in this review, including the possible approaches for increasing selectivity and efficiency, for example, using a 100% aqueous mobile phase for the LC separation. In addition, applications for measuring (13)C isotopic enrichments using atmospheric pressure LC-MS instruments with a quadrupole, a time-of-flight, and an ion trap analyzer are also discussed as well as a LC-ICPMS using a prototype instrument with two quadrupoles. PMID:17853432

  4. Large and unexpected enrichment in stratospheric 16O13C18O and its meridional variation

    PubMed Central

    Yeung, Laurence Y.; Affek, Hagit P.; Hoag, Katherine J.; Guo, Weifu; Wiegel, Aaron A.; Atlas, Elliot L.; Schauffler, Sue M.; Okumura, Mitchio; Boering, Kristie A.; Eiler, John M.

    2009-01-01

    The stratospheric CO2 oxygen isotope budget is thought to be governed primarily by the O(1D)+CO2 isotope exchange reaction. However, there is increasing evidence that other important physical processes may be occurring that standard isotopic tools have been unable to identify. Measuring the distribution of the exceedingly rare CO2 isotopologue 16O13C18O, in concert with 18O and 17O abundances, provides sensitivities to these additional processes and, thus, is a valuable test of current models. We identify a large and unexpected meridional variation in stratospheric 16O13C18O, observed as proportions in the polar vortex that are higher than in any naturally derived CO2 sample to date. We show, through photochemical experiments, that lower 16O13C18O proportions observed in the midlatitudes are determined primarily by the O(1D)+CO2 isotope exchange reaction, which promotes a stochastic isotopologue distribution. In contrast, higher 16O13C18O proportions in the polar vortex show correlations with long-lived stratospheric tracer and bulk isotope abundances opposite to those observed at midlatitudes and, thus, opposite to those easily explained by O(1D)+CO2. We believe the most plausible explanation for this meridional variation is either an unrecognized isotopic fractionation associated with the mesospheric photochemistry of CO2 or temperature-dependent isotopic exchange on polar stratospheric clouds. Unraveling the ultimate source of stratospheric 16O13C18O enrichments may impose additional isotopic constraints on biosphere–atmosphere carbon exchange, biosphere productivity, and their respective responses to climate change. PMID:19564595

  5. Strength and limits using 13C phospholipid fatty acid analysis in soil ecology

    NASA Astrophysics Data System (ADS)

    Watzinger, Andrea

    2016-04-01

    This presentation on microbial phospholipid biomarkers, their isotope analysis and their ability to reveal soil functions summarizes experiences gained by the author for more than 10 years. The amount and composition of phospholipid fatty acids (PLFAs) measured in environmental samples strongly depend on the methodology. To achieve comparable results the extraction, separation and methylation method must be kept constant. PLFAs patterns are sensitive to microbial community shifts even though the taxonomic resolution of PLFAs is low. The possibility to easily link lipid biomarkers with stable isotope techniques is identified as a major advantage when addressing soil functions. Measurement of PLFA isotopic ratios is sensitive and enables detecting isotopic fractionation. The difference between the carbon isotopic ratio of single PLFAs and their substrate (δ13C) can vary between -6 and +11‰. This difference derives from the fractionation during biosynthesis and from substrate inhomogeneity. Consequently, natural abundance studies are restricted to quantifying substrate uptake of the total microbial biomass. In contrast, artificial labelling enables quantifying carbon uptake into single PLFAs, but labelling success depends on homogeneous and undisturbed label application. Current developments in microbial ecology (e.g. 13C and 15N proteomics) and isotope techniques (online monitoring of CO2 isotope ratios) will likely improve soil functional interpretations in the future. 13C PLFA analysis will continue to contribute because it is affordable, sensitive and allows frequent sampling combined with the use of small amounts of 13C label.

  6. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA.

    PubMed

    Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. PMID:24881032

  7. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

  8. Acceleration of Natural-Abundance Solid-State MAS NMR Measurements on Bone by Paramagnetic Relaxation from Gadolinium-DTPA

    PubMed Central

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-01-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylenetriamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. PMID:24881032

  9. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Geilmann, Heike; Brand, Willi A.; Bohlke, John Karl

    2003-01-01

    Analytical grade L-glutamic acid is chemically stable and has a C/N mole ratio of 5, which is close to that of many of natural biological materials, such as blood and animal tissue. Two L-glutamic acid reference materials with substantially different 13C and 15N abundances have been prepared for use as organic reference materials for C and N isotopic measurements. USGS40 is analytical grade L-glutamic acid and has a δ13C value of −26.24‰ relative to VPDB and a δ15N value of −4.52‰ relative to N2 in air. USGS41 was prepared by dissolving analytical grade L-glutamic acid with L-glutamic acid enriched in 13C and 15N. USGS41 has a δ13C value of +37.76‰ and a δ15N value of +47.57‰. The δ13C and δ15N values of both materials were measured against the international reference materials NBS 19 calcium carbonate (δ13C = +1.95‰), L-SVEC lithium carbonate (δ13C = −46.48‰), IAEA-N-1 ammonium sulfate (δ15N = 0.43‰), and USGS32 potassium nitrate (δ15N = 180‰) by on-line combustion continuous-flow and off-line dual-inlet isotope-ratio mass spectrometry. Both USGS40 and USGS41 are isotopically homogeneous; reproducibility of δ13C is better than 0.13‰, and that of δ15N is better than 0.13‰ in 100-μg amounts. These two isotopic reference materials can be used for (i) calibrating local laboratory reference materials, and (ii) quantifying drift with time, mass-dependent fractionations, and isotope-ratio-scale contraction in the isotopic analysis of various biological materials. Isotopic results presented in this paper yield a δ13C value for NBS 22 oil of −29.91‰, in contrast to the commonly accepted value of −29.78‰ for which off-line blank corrections probably have not been quantified satisfactorily.

  10. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey.

    PubMed

    Cotte, J F; Casabianca, H; Lhéritier, J; Perrucchietti, C; Sanglar, C; Waton, H; Grenier-Loustalot, M F

    2007-01-16

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The delta(13)C parameter was not significant for characterizing an origin, while the (D/H)(I) ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C(4) syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per thousand (permil). A filtration step was added to the experimental procedure and provided results that were compliant with the natural origin of our honey samples. In addition, spiking with a C(4) syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying. PMID:17386484

  11. Anomalous 13C enrichment in modern marine organic carbon

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Claypool, G.E.

    1985-01-01

    Marine organic carbon is heavier isotopically (13C enriched) than most land-plant or terrestrial organic C1. Accordingly, ??13C values of organic C in modern marine sediments are routinely interpreted in terms of the relative proportions of marine and terrestrial sources of the preserved organic matter2,3. When independent geochemical techniques are used to evaluate the source of organic matter in Cretaceous or older rocks, those rocks containing mostly marine organic C are found typically to have lighter (more-negative) ??13C values than rocks containing mostly terrestrial organic C. Here we conclude that marine photosynthesis in mid-Cretaceous and earlier oceans generally resulted in a greater fractionation of C isotopes and produced organic C having lighter ??13C values. Modern marine photosynthesis may be occurring under unusual geological conditions (higher oceanic primary production rates, lower PCO2) that limit dissolved CO2 availability and minimize carbon isotope fractionation4. ?? 1985 Nature Publishing Group.

  12. Vertical δ13C and δ15N changes during pedogenesis

    NASA Astrophysics Data System (ADS)

    Brunn, Melanie; Spielvogel, Sandra; Wells, Andrew; Condron, Leo; Oelmann, Yvonne

    2015-04-01

    The natural abundance of soil organic matter (SOM) stable C and N isotope ratios are subjected to vertical changes throughout the soil profile. This vertical distribution is a widely reported phenomenon across varieties of ecosystems and constitutes important insights of soil carbon cycling. In most ecosystems, SOM becomes enriched in heavy isotopes by several per mill in the first few centimeters of the topsoil. The enrichment of 13C in SOM with soil depth is attributed to biological and physical-chemical processes in soil e.g., plant physiological impacts, microbial decomposition, sorption and transport processes. Such vertical trends in 13C and 15N abundance have rarely been related to SOM composition during pedogenesis. The aims of our study were to investigate short and long-term δ13C and δ15N depth changes and their interrelations under progressing pedogenesis and ecosystem development. We sampled soils across the well studied fordune progradation Haast-chronosequence, a dune ridge system under super-humid climate at the West Coast of New Zealand's South Island (43° 53' S, 169° 3' E). Soils from 11 sites with five replicates each covered a time span of around 2870 yr of soil development (from Arenosol to Podzol). Vertical changes of δ13C and δ15N values of SOM were investigated in the organic layers and in 1-cm depth intervals of the upper 10 cm of the mineral soil. With increasing soil depth SOM became enriched in δ13C by 1.9 ± SE 0.1 o and in δ15N by 6.0 ± 0.4 ‰˙Litter δ13C values slightly decreased with increasing soil age (r = -0.61; p = 0.00) likely due to less efficient assimilation linked to nutrient limitations. Fractionation processes during mycorrhizal transfer appeared to affect δ15N values in the litter. We found a strong decrease of δ15N in the early succession stages ≤ 300 yr B.P. (r = -0.95; p = 0.00). Positive relations of vertical 13C and 15N enrichment with soil age might be related to decomposition and appeared to be

  13. Convenient synthesis of nickel (5,7,12,14,19,21,26,28- sup 13 C sub 8 )phthalocyanine

    SciTech Connect

    Barrett, A.G.M.; Broderick, W.E.; Hoffman, B.M.; Velazquez, C.S. )

    1989-06-23

    Metallophthalocyanines are convenient precursors for diverse low-dimensional electrical conductors. Recently we wished to prepare large quantities of nickel (5,7,12,14,19,21,26,28-{sup 13}C{sub 8})phthalocyanine (4) with high isotopic enrichment. Previously macrocycle 4 had been prepared at five times natural abundance by the cyclization of 1,2-dicyanobenzene (3). The partially labeled 1,2-dicyanobenzene (3) in turn was prepared from {sup 13}C-enriched potassium cyanide through the use of copper(I) cyanide. However, we were reluctant to employ this methodology to achieve greater enrichment because of the high cost of 99% potassium ({sup 13}C)cyanide and low overall yield of the process. Herein we report an efficient method to prepare 4 using (arene)tricarbonylchromium chemistry.

  14. Novel Peak Assignments of in Vivo 13C MRS in Human Brain at 1.5 T

    NASA Astrophysics Data System (ADS)

    Blüml, Stefan; Hwang, Jong-Hee; Moreno, Angel; Ross, Brian D.

    2000-04-01

    13C MRS studies at natural abundance and after intravenous 1-13C glucose infusion were performed on a 1.5-T clinical scanner in four subjects. Localization to the occipital cortex was achieved by a surface coil. In natural abundance spectra glucose C3β,5β, myo-inositol, glutamate C1,2,5, glutamine C1,2,5, N-acetyl-aspartate C1-4,Cdbnd O, creatine CH2, CH3, and CCdbnd N, taurine C2,3, bicarbonate HCO-3 were identified. After glucose infusion 13C enrichment of glucose C1α,1β, glutamate C1-4, glutamine C1-4, aspartate C2,3, N-acetyl-aspartate C2,3, lactate C3, alanine C3, and HCO-3 were observed. The observation of 13C enrichment of resonances resonating at >150 ppm is an extension of previously published studies and will provide a more precise determination of metabolic rates and substrate decarboxylation in human brain.

  15. Identification of Biodegradation Pathways in a Multi-Process Phytoremediation System (MPPS) Using Natural Abundance 14C Analysis of PLFA

    NASA Astrophysics Data System (ADS)

    Cowie, B. R.; Greenberg, B. M.; Slater, G. F.

    2008-12-01

    Optimizing remediation of petroleum-contaminated soils requires thorough understanding of the mechanisms and pathways involved in a proposed remediation system. In many engineered and natural attenuation systems, multiple degradation pathways may contribute to observed contaminant mass losses. In this study, biodegradation in the soil microbial community was identified as a major pathway for petroleum hydrocarbon removal in a Multi-Process Phytoremediation System (MPPS) using natural abundance 14C analysis of Phospholipid Fatty Acids (PLFA). In contaminated soils, PLFA were depleted in Δ14C to less than -800‰, directly demonstrating microbial uptake and utilization of petroleum derived carbon (Δ14C = -992‰) during bioremediation. Mass balance indicated that more than 80% of microbial carbon was derived from petroleum hydrocarbons and a maximum of 20% was produced from metabolism of modern carbon sources. In contrast, in a nearby uncontaminated control soil, the microbial community maintained a nearly modern 14C signature, suggesting preferential degradation of more labile, recent carbon. Mass balance using δ13C and Δ14C of soil CO2 demonstrated that mineralization of petroleum carbon contributed 60-65% of soil CO2 at the contaminated site. The remainder was derived from atmospheric (27-30%) and decomposition of non- petroleum natural organic carbon (5-10%). The clean control exhibited substantially lower CO2 concentrations that were derived from atmospheric (55%) and natural organic carbon (45%) sources. This study highlights the value of using multiple carbon isotopes to identify degradation pathways in petroleum- contaminated soils undergoing phytoremediation and the power of natural abundance 14C to detect petroleum metabolism in natural microbial communities.

  16. Quantitative (13)C Solid-State NMR Spectra by Multiple-Contact Cross-polarization for Drug Delivery: From Active Principles to Excipients and Drug Carriers.

    PubMed

    Saïdi, Fadila; Taulelle, Francis; Martineau, Charlotte

    2016-08-01

    In this contribution, we present an analysis of the main parameters influencing the efficiency of the (1)H → (13)C multiple-contact cross-polarization nuclear magnetic resonance (NMR) experiment in the context of solid pharmaceutical materials. Using the optimum experimental conditions, quantitative (13)C NMR spectra are then obtained for porous metal-organic frameworks (potential drug carriers) and for components present in drug formulations (active principle ingredient and excipients, amorphous or crystalline). Finally, we show that mixtures of components can also be quantified with this method and, hence, that it represents an ideal tool for quantification of pharmaceutical formulations by (13)C cross-polarization under magic-angle spinning NMR in the industry as it is robust and easy to set up, much faster than direct (13)C polarization and is efficient for samples at natural abundance. PMID:27372550

  17. Towards a vibrational analysis of spheroidene. Resonance Raman spectroscopy of 13C-labelled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction centre.

    PubMed

    Kok, P; Köhler, J; Groenen, E J; Gebhard, R; van der Hoef, I; Lugtenburg, J; Hoff, A F; Farhoosh, R; Frank, H A

    1994-04-28

    We report resonance Raman spectra of the carotenoid spheroidene and its 14'-13C and 15'-13C substituted analogues in petroleum ether and bound to the reaction centre of Rhodobacter sphaeroides R26. The spectra in petroleum ether correspond to planar all-trans spheroidene while those of the reaction centres are consistent with a nonplanar 15,15'-cis spheroidene. The effect of 13C labelling is largest in the carbon-carbon double-bond stretching region. The 15'-13C substitution of the reaction centre bound spheroidene, however, hardly changes the C=C band as compared to that for the natural abundance spheroidene apart from a new weak band at 1508 cm(-1). This observation has been interpreted as a decoupling of the C15=C15' stretch from the other double-bond stretches in combination with a small intrinsic Raman intensity of this local mode for 15,15'-cis spheroidene. PMID:8167135

  18. New guidelines for δ13C measurements

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Gehre, Matthias; Groning, Manfred; Meijer, Harro A. J.; Toman, Blaza; Verkouteren, R. Michael

    2006-01-01

    Consistency of δ13C measurements can be improved 39−47% by anchoring the δ13C scale with two isotopic reference materials differing substantially in 13C/12C. It is recommended thatδ13C values of both organic and inorganic materials be measured and expressed relative to VPDB (Vienna Peedee belemnite) on a scale normalized by assigning consensus values of −46.6‰ to L-SVEC lithium carbonate and +1.95‰ to NBS 19 calcium carbonate. Uncertainties of other reference material values on this scale are improved by factors up to two or more, and the values of some have been notably shifted:  the δ13C of NBS 22 oil is −30.03%.

  19. Determining the isotopic abundance of a labeled compound by mass spectrometry and how correcting for natural abundance distribution using analogous data from the unlabeled compound leads to a systematic error.

    PubMed

    Schenk, David J; Lockley, William J S; Elmore, Charles S; Hesk, Dave; Roberts, Drew

    2016-04-01

    When the isotopic abundance or specific activity of a labeled compound is determined by mass spectrometry (MS), it is necessary to correct the raw MS data to eliminate ion intensity contributions, which arise from the presence of heavy isotopes at natural abundance (e.g., a typical carbon compound contains ~1.1% (13) C per carbon atom). The most common approach is to employ a correction in which the mass-to-charge distribution of the corresponding unlabeled compound is used to subtract the natural abundance contributions from the raw mass-to-charge distribution pattern of the labeled compound. Following this correction, the residual intensities should be due to the presence of the newly introduced labeled atoms only. However, this will only be the case when the natural abundance mass isotopomer distribution of the unlabeled compound is the same as that of the labeled species. Although this may be a good approximation, it cannot be accurate in all cases. The implications of this approximation for the determination of isotopic abundance and specific activity have been examined in practice. Isotopically mixed stable-atom labeled valine batches were produced, and both these and [(14) C6 ]carbamazepine were analyzed by MS to determine the extent of the error introduced by the approach. Our studies revealed that significant errors are possible for small highly-labeled compounds, such as valine, under some circumstances. In the case with [(14) C6 ]carbamazepine, the errors introduced were minor but could be significant for (14) C-labeled compounds with particular isotopic distributions. This source of systematic error can be minimized, although not eliminated, by the selection of an appropriate isotopic correction pattern or by the use of a program that varies the natural abundance distribution throughout the correction. PMID:26916110

  20. Does the Shuram δ13C excursion record Ediacaran oxygenation?

    NASA Astrophysics Data System (ADS)

    Husson, J. M.; Maloof, A. C.; Schoene, B.; Higgins, J. A.

    2013-12-01

    The most negative carbon isotope excursion in Earth history is found in carbonate rocks of the Ediacaran Period (635-542 Ma). Known colloquially as the the 'Shuram' excursion, workers have long noted its tantalizing, broad concordance with the rise of abundant macro-scale fossils in the rock record, variously interpreted as animals, giant protists, macro-algae and lichen, and known as the 'Ediacaran Biota.' Thus, the Shuram excursion has been interpreted by many in the context of a dramatically changing redox state of the Ediacaran oceans - e.g., a result of methane cycling in a low O2 atmosphere, the final destruction of a large pool of recalcitrant dissolved organic carbon (DOC), and the step-wise oxidation of the Ediacaran oceans. More recently, diagenetic interpretations of the Shuram excursion - e.g. sedimentary in-growth of very δ13C depleted authigenic carbonates, meteoric alteration of Ediacaran carbonates, late-stage burial diagenesis - have challenged the various Ediacaran redox models. A rigorous geologic context is required to discriminate between these explanatory models, and determine whether the Shuram excursion can be used to evaluate terminal Neoproterozoic oxygenation. Here, we present chemo-stratigraphic data (δ13C, δ18O, δ44/42Ca and redox sensitive trace element abundances) from 12 measured sections of the Ediacaran-aged Wonoka Formation (Fm.) of South Australia that require a syn-depositional age for the extraordinary range of δ13C values (-12 to +4‰) observed in the formation. In some locations, the Wonoka Fm. is ~700 meters (m) of mixed shelf limestones and siliclastics that record the full 16 ‰ δ13C excursion in a remarkably consistent fashion across 100s of square kilometers of basin area. Fabric-altering diagenesis, where present, occurs at the sub-meter vertical scale, only results in sub-permil offsets in δ13C and cannot be used to explain the full δ13C excursion. In other places, the Wonoka Fm. is host to deep (1 km

  1. In vivo13C spectroscopy in the rat brain using hyperpolarized [1- 13C]pyruvate and [2- 13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Marjańska, Małgorzata; Iltis, Isabelle; Shestov, Alexander A.; Deelchand, Dinesh K.; Nelson, Christopher; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2010-10-01

    The low sensitivity of 13C spectroscopy can be enhanced using dynamic nuclear polarization. Detection of hyperpolarized [1- 13C]pyruvate and its metabolic products has been reported in kidney, liver, and muscle. In this work, the feasibility of measuring 13C signals of hyperpolarized 13C metabolic products in the rat brain in vivo following the injection of hyperpolarized [1- 13C]pyruvate and [2- 13C]pyruvate is investigated. Injection of [2- 13C]pyruvate led to the detection of [2- 13C]lactate, but no other downstream metabolites such as TCA cycle intermediates were detected. Injection of [1- 13C]pyruvate enabled the detection of both [1- 13C]lactate and [ 13C]bicarbonate. A metabolic model was used to fit the hyperpolarized 13C time courses obtained during infusion of [1- 13C]pyruvate and to determine the values of VPDH and VLDH.

  2. Diversity and abundance of phosphonate biosynthetic genes in nature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphonates, molecules containing direct C-P bonds, comprise a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than fifty years ago, the extent and diversity of phosphonate production in natur...

  3. Proton-Enhanced 13C Nuclear Magnetic Resonance of Lipids and Biomembranes

    PubMed Central

    Urbina, Julio; Waugh, J. S.

    1974-01-01

    A recently developed nuclear double resonance technique which permits sensitive detection, together with high resolution, of rare spins in solids or other dipolar-coupled nuclear systems [Pines, Gibby, and Waugh (1973) J. Chem. Phys. 59, 569] has been applied to the study of natural abundance 13C-nuclear magnetic resonance in lipid mesophases and of selectively labeled carbon sites in bacterial membranes. Detailed microscopic information on the molecular organization and phase transitions of the lipid phases and their interaction with ions and other molecules can be obtained from the study of the chemical shift anisotropies and dynamical aspects of the 13C NMR spectra of unsonicated lipid dispersions (liposomes). Experiments are reported which demonstrated the feasibility of quantitatively observing the 13C-nuclear magnetic resonance of specifically labeled sites in unperturbed Escherichia coli membrane vesicles for the study of the physical state of the lipids with the aim of relating it to the known lipid-dependent functional properties of the membranes. PMID:4531036

  4. Carbon and nitrogen biogeochemistry in the ocean: A study using stable isotope natural abundance

    NASA Technical Reports Server (NTRS)

    Rau, G. H.; Desmarais, David J.

    1985-01-01

    Determining the biogeochemical pathways traveled by carbon and nitrogen in the ocean is fundamental to the understanding of how the ocean participates in the cycling of these elements within the biosphere. Because biological production, metabolism, and respiration can significantly alter the natural abundance of C-13 and N-15, these abundances can provide important information about the nature of these biological processes and their variability in the marine environment. The research initially seeks to characterize the spatial and temporal patterns of stable isotope abundances in organic matter, and to relate these abundances to C and N biogeochemical processes within selected areas of the northeastern Pacific Ocean.

  5. Measuring (13)C/(15)N chemical shift anisotropy in [(13)C,(15)N] uniformly enriched proteins using CSA amplification.

    PubMed

    Hung, Ivan; Ge, Yuwei; Liu, Xiaoli; Liu, Mali; Li, Conggang; Gan, Zhehong

    2015-11-01

    Extended chemical shift anisotropy amplification (xCSA) is applied for measuring (13)C/(15)N chemical shift anisotropy (CSA) of uniformly labeled proteins under magic-angle spinning (MAS). The amplification sequence consists of a sequence of π-pulses that repetitively interrupt MAS averaging of the CSA interaction. The timing of the pulses is designed to generate amplified spinning sideband manifolds which can be fitted to extract CSA parameters. The (13)C/(13)C homonuclear dipolar interactions are not affected by the π-pulses due to the bilinear nature of the spin operators and are averaged by MAS in the xCSA experiment. These features make the constant evolution-time experiment suitable for measuring CSA of uniformly labeled samples. The incorporation of xCSA with multi-dimensional (13)C/(15)N correlation is demonstrated with a GB1 protein sample as a model system for measuring (13)C/(15)N CSA of all backbone (15)NH, (13)CA and (13)CO sites. PMID:26404770

  6. Resolution enhancement in spectra of natural products dissolved in weakly orienting media with the help of 1H homonuclear dipolar decoupling during acquisition: Application to 1H- 13C dipolar couplings measurements

    NASA Astrophysics Data System (ADS)

    Farjon, Jonathan; Bermel, Wolfgang; Griesinger, Christian

    2006-05-01

    In weakly orienting media such as poly-γ-benzyl- L-glutamate (PBLG) a polymer that forms a chiral liquid crystal in organic solvents, the spectral resolution for embedded molecules is usually poor because of numerous 1H, 1H dipolar couplings that generally broaden proton spectra. Therefore 1H, 13C dipolar couplings are difficult or impossible to measure. Here, we incorporate Flip-Flop decoupling during detection into an HSQC experiment. Flip-Flop removes the 1H, 1H dipolar couplings and scales the chemical shifts of the protons as well as the 1H, 13C dipolar couplings during detection. A resolution gain by a factor 1.5-4.2 and improved signal intensity by an average factor of 1.6-1.7 have been obtained. This technique is demonstrated on (+)-menthol dissolved in a PBLG/CDCl 3 phase.

  7. Natural variability in abundance of prevalent soybean proteins.

    PubMed

    Natarajan, Savithiry S

    2010-12-01

    Soybean is an inexpensive source of protein for humans and animals. Genetic modifications (GMO) to soybean have become inevitable on two fronts, both quality and yield will need to improve to meet increasing global demand. To ensure the safety of the crop for consumers it is important to determine the natural variation in seed protein constituents as well as any unintended changes that may occur in the GMO as a result of genetic modification. Understanding the natural variation of seed proteins in wild and cultivated soybeans that have been used in conventional soybean breeding programs is critical for determining unintended protein expression in GMO soybeans. In recent years, proteomic technologies have been used as an effective analytical tool for examining modifications of protein profiles. We have standardized and applied these technologies to determine and quantify the spectrum of proteins present in soybean seed. We used two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), and liquid chromatography mass spectrometry (LC-MS) for the separation, quantification, and identification of different classes of soybean seed proteins. We have observed significant variations in different classes of proteins, including storage, allergen and anti-nutritional protein profiles, between non-GMO cultivated and wild soybean varieties. This information is useful for scientists and regulatory agencies to determine whether the unintended expression of proteins found in transgenic soybean is within the range of natural variation. PMID:20709130

  8. Transposases are the most abundant, most ubiquitous genes in nature

    PubMed Central

    Aziz, Ramy K.; Breitbart, Mya; Edwards, Robert A.

    2010-01-01

    Genes, like organisms, struggle for existence, and the most successful genes persist and widely disseminate in nature. The unbiased determination of the most successful genes requires access to sequence data from a wide range of phylogenetic taxa and ecosystems, which has finally become achievable thanks to the deluge of genomic and metagenomic sequences. Here, we analyzed 10 million protein-encoding genes and gene tags in sequenced bacterial, archaeal, eukaryotic and viral genomes and metagenomes, and our analysis demonstrates that genes encoding transposases are the most prevalent genes in nature. The finding that these genes, classically considered as selfish genes, outnumber essential or housekeeping genes suggests that they offer selective advantage to the genomes and ecosystems they inhabit, a hypothesis in agreement with an emerging body of literature. Their mobile nature not only promotes dissemination of transposable elements within and between genomes but also leads to mutations and rearrangements that can accelerate biological diversification and—consequently—evolution. By securing their own replication and dissemination, transposases guarantee to thrive so long as nucleic acid-based life forms exist. PMID:20215432

  9. States of 13C with abnormal radii

    NASA Astrophysics Data System (ADS)

    Demyanova, A. S.; Ogloblin, A. A.; Danilov, A. N.; Goncharov, S. A.; Belyaeva, T. L.; Sobolev, Yu. G.; Khlebnikov, S. V.; Burtebaev, N.; Trzaska, W.; Heikkinen, P.; Tyurin, G. P.; Janseitov, D.; Gurov, Yu. B.

    2016-05-01

    Differential cross-sections of the elastic and inelastic 13C + α scattering were measured at E(α) = 90 MeV. The root mean-square radii() of 13C nucleus in the states: 8.86 (1/2-), 3.09 (1/2+) and 9.90 (3/2-) MeV were determined by the Modified diffraction model (MDM). The radii of the first two levels are enhanced compared to that of the ground state of 13C, confirming the suggestion that the 8.86 MeV state is an analogue of the Hoyle state in 12C and the 3.09 MeV state has a neutron halo. Some indications to the abnormally small size of the 9.90 MeV state were obtained.

  10. Analysing Groundwater Using the 13C Isotope

    NASA Astrophysics Data System (ADS)

    Awad, Sadek

    The stable isotope of the carbon atom (13C) give information about the type of the mineralisation of the groundwater existing during the water seepage and about the recharge conditions of the groundwater. The concentration of the CO2(aq.) dissolved during the infiltration of the water through the soil's layers has an effect on the mineralisation of this water. The type of the photosynthesis's cycle (C-3 or C-4 carbon cycle) can have a very important role to determine the conditions (closed or open system) of the mineralisation of groundwater. The isotope 13C of the dissolved CO2 in water give us a certain information about the origin and the area of pollution of water. The proportion of the biogenic carbon and its percentage in the mineralisation of groundwater is determined by using the isotope 13C.

  11. Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Assonov, Sergey S.

    2010-01-01

    Measurements of δ(13C) determined on CO2 with an isotope-ratio mass spectrometer (IRMS) must be corrected for the amount of 17O in the CO2. For data consistency, this must be done using identical methods by different laboratories. This report aims at unifying data treatment for CO2 IRMS by proposing (i) a unified set of numerical values, and (ii) a unified correction algorithm, based on a simple, linear approximation formula. Because the oxygen of natural CO2 is derived mostly from the global water pool, it is recommended that a value of 0.528 be employed for the factor λ, which relates differences in 17O and 18O abundances. With the currently accepted N(13C)/N(12C) of 0.011 180(28) in VPDB (Vienna Peedee belemnite) reevaluation of data yields a value of 0.000 393(1) for the oxygen isotope ratio N(17O)/N(16O) of the evolved CO2. The ratio of these quantities, a ratio of isotope ratios, is essential for the 17O abundance correction: [N(17O)/N(16O)]/[N(13C)/N(12C)] = 0.035 16(8). The equation [δ(13C) ≈ 45δVPDB-CO2 + 2 17R/13R (45δVPDB-CO2 – λ46δVPDB-CO2)] closely approximates δ(13C) values with less than 0.010 ‰ deviation for normal oxygen-bearing materials and no more than 0.026 ‰ in extreme cases. Other materials containing oxygen of non-mass-dependent isotope composition require a more specific data treatment. A similar linear approximation is also suggested for δ(18O). The linear approximations are easy to implement in a data spreadsheet, and also help in generating a simplified uncertainty budget.

  12. Direct analysis of δ13C and concentration of dissolved organic carbon (DOC) in environmental samples by TOC-IRMS

    NASA Astrophysics Data System (ADS)

    Kirkels, Frédérique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten

    2014-05-01

    Dissolved organic carbon (DOC) plays an important role in carbon cycling in terrestrial and aquatic systems. Stable isotope analysis (delta 13C) of DOC could provide valuable insights in its origin, fluxes and environmental fate. Precise and routine analysis of delta 13C and DOC concentration are therefore highly desirable. A promising, new system has been developed for this purpose, linking a high-temperature combustion TOC analyzer trough an interface with a continuous flow isotope ratio mass spectrometer (Elementar group, Hanau, Germany). This TOC-IRMS system enables simultaneous stable isotope (bulk delta 13C) and concentration analysis of DOC, with high oxidation efficiency by high-temperature combustion for complex mixtures as natural DOC. To give delta 13C analysis by TOC-IRMS the necessary impulse for broad-scale application, we present a detailed evaluation of its analytical performance for realistic and challenging conditions inclusive low DOC concentrations and environmental samples. High precision (standard deviation, SD predominantly < 0.15 permil) and accuracy (R2 = 0.9997, i.e. comparison TOC-IRMS and conventional EA-IRMS) were achieved by TOC-IRMS for a broad diversity of DOC solutions. This precision is comparable or even slightly better than that typically reported for EA-IRMS systems, and improves previous techniques for δ13C analysis of DOC. Simultaneously, very good precision was obtained for DOC concentration measurements. Assessment of natural abundance and slightly 13C enriched DOC, a wide range of concentrations (0.2-150 mgC/L) and injection volumes (0.05-3 ml), demonstrated good analytical performance with negligible memory effects, no concentration/volume effects and a wide linearity. Low DOC concentrations (< 2 mgC/L), were correctly analyzed without any pre-concentration. Moreover, TOC-IRMS was successfully applied to analyze DOC from diverse terrestrial, freshwater and marine environments (SD < 0.23 permil). In summary, the TOC

  13. Food Resources of Stream Macronivertebrates Determined by Natural-Abundance stable C and N Isotopes and a 15N Tracer Addition

    SciTech Connect

    Mulholland, P. J.

    2000-01-01

    Trophic relationships were examined using natural-abundance {sup 13}C and {sup 15}N analyses and a {sup 15}N-tracer addition experiment in Walker Branch, a 1st-order forested stream in eastern Tennessee. In the {sup 15}N-tracer addition experiment, we added {sup 15}NH{sub 4} to stream water over a 6-wk period in early spring, and measured {sup 15}N:{sup 14}N ratios in different taxa and biomass compartments over distance and time. Samples collected from a station upstream from the {sup 15}N addition provided data on natural-abundance {sup 13}C:{sup 12}C and {sup 15}N:{sup 14}N ratios. The natural-abundance {sup 15}N analysis proved to be of limited value in identifying food resources of macroinvertebrates because {sup 15}N values were not greatly different among food resources. In general, the natural-abundance stable isotope approach was most useful for determining whether epilithon or detritus were important food resources for organisms that may use both (e.g., the snail Elimia clavaeformis), and to provide corroborative evidence of food resources of taxa for which the {sup 15}N tracer results were not definitive. The {sup 15}N tracer results showed that the mayflies Stenonema spp. and Baetis spp. assimilated primarily epilithon, although Baetis appeared to assimilate a portion of the epilithon (e.g., algal cells) with more rapid N turnover than the bulk pool sampled. Although Elimia did not reach isotopic equilibrium during the tracer experiment, application of a N-turnover model to the field data suggested that it assimilated a combination of epilithon and detritus. The amphipod Gammarus minus appeared to depend mostly on fine benthic organic matter (FBOM), and the coleopteran Anchytarsus bicolor on epixylon. The caddisfly Diplectrona modesta appeared to assimilate primarily a fast N-turnover portion of the FBOM pool, and Simuliidae a fast N-turnover component of the suspended particulate organic matter pool rather than the bulk pool sampled. Together, the

  14. Modification of local electronic state by BEDT-STF doping to κ -(BEDT-TTF)2Cu[N (CN ) 2]Br salt studied by 13C NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ihara, Y.; Kawamoto, A.

    2016-03-01

    We present the results of site-selective 13C NMR spectroscopy on an organic superconductor κ -(BEDT-TTF)2Cu[N (CN ) 2]Br (κ -Br) doped with BEDT-STF molecules. We reveal microscopically the modulation of the local electronic state caused by the BEDT-STF doping from the 13C NMR measurement on two types of samples, which are 13C enriched κ -Br doped with naturally abundant BEDT-STF molecules, and natural κ -Br doped with 13C enriched BEDT-STF molecules. The results of the nuclear spin-lattice relaxation rate 1 /T1 measured both in the normal and superconducting state suggest that the potential disorder at the BEDT-STF sites scatters antiferromagnetic interaction and superconducting Cooper pairs.

  15. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    DOE PAGESBeta

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimensionmore » without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.« less

  16. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  17. Accurate quantification of sphingosine-1-phosphate in normal and Fabry disease plasma, cells and tissues by LC-MS/MS with (13)C-encoded natural S1P as internal standard.

    PubMed

    Mirzaian, Mina; Wisse, Patrick; Ferraz, Maria J; Marques, André R A; Gabriel, Tanit L; van Roomen, Cindy P A A; Ottenhoff, Roelof; van Eijk, Marco; Codée, Jeroen D C; van der Marel, Gijsbert A; Overkleeft, Herman S; Aerts, Johannes M

    2016-08-01

    We developed a mass spectrometric procedure to quantify sphingosine-1-phosphate (S1P) in biological materials. The use of newly synthesized (13)C5 C18-S1P and commercial C17-S1P as internal standards rendered very similar results with respect to linearity, limit of detection and limit of quantitation. Caution is warranted with determination of plasma S1P levels. Earlier it was reported that S1P is elevated in plasma of Fabry disease patients. We investigated this with the improved quantification. No clear conclusion could be drawn for patient plasma samples given the lack of uniformity of blood collection and plasma preparation. To still obtain insight, plasma and tissues were identically collected from α-galactosidase A deficient Fabry mice and matched control animals. No significant difference was observed in plasma S1P levels. A significant 2.3 fold increase was observed in kidney of Fabry mice, but not in liver and heart. Comparative analysis of S1P in cultured fibroblasts from normal subjects and classically affected Fabry disease males revealed no significant difference. In conclusion, accurate quantification of S1P in biological materials is feasible by mass spectrometry using the internal standards (13)C5 C18-S1P or C17-S1P. Significant local increases of S1P in the kidney might occur in Fabry disease as suggested by the mouse model. PMID:27221202

  18. Performance evaluation of quantitative adiabatic (13)C NMR pulse sequences for site-specific isotopic measurements.

    PubMed

    Thibaudeau, Christophe; Remaud, Gérald; Silvestre, Virginie; Akoka, Serge

    2010-07-01

    (2)H/(1)H and (13)C/(12)C site-specific isotope ratios determined by NMR spectroscopy may be used to discriminate pharmaceutically active ingredients based on the synthetic process used in production. Extending the Site-specific Natural Isotope Fractionation NMR (SNIF-NMR) method to (13)C is highly beneficial for complex organic molecules when measurements of (2)H/(1)H ratios lead to poorly defined molecular fingerprints. The current NMR methodology to determine (13)C/(12)C site-specific isotope ratios suffers from poor sensitivity and long experimental times. In this work, several NMR pulse sequences based on polarization transfer were evaluated and optimized to measure precise quantitative (13)C NMR spectra within a short time. Adiabatic 180 degrees (1)H and (13)C pulses were incorporated into distortionless enhancement by polarization transfer (DEPT) and refocused insensitive nuclei enhanced by polarization transfer (INEPT) to minimize the influence of 180 degrees pulse imperfections and of off-resonance effects on the precision of the measured (13)C peak areas. The adiabatic DEPT sequence was applied to draw up a precise site-specific (13)C isotope profile of ibuprofen. A modified heteronuclear cross-polarization (HCP) experiment featuring (1)H and (13)C spin-locks with adiabatic 180 degrees pulses is also introduced. This sequence enables efficient magnetization transfer across a wide (13)C frequency range although not enough for an application in quantitative (13)C isotopic analysis. PMID:20527737

  19. Evaluating microbial carbon sources in Athabasca oil sands tailings ponds using natural abundance stable and radiocarbon isotopes

    NASA Astrophysics Data System (ADS)

    Ahad, J. M.; Pakdel, H.

    2013-12-01

    Natural abundance stable (δ13C) and radiocarbon (Δ14C) isotopes of phospholipid fatty acids (PLFAs) were used to evaluate the carbon sources utilized by the active microbial populations in surface sediments from Athabasca oil sands tailings ponds. The absence of algal-specific PLFAs at three of the four sites investigated, in conjunction with δ13C signatures for PLFAs that were generally within ~3‰ of that reported for oil sands bitumen (~ -30‰), indicated that the microbial communities growing on petroleum constituents were dominated by aerobic heterotrophs. The Δ14C values of PLFAs ranged from -906 to -586‰ and pointed to a significant uptake of fossil carbon (up to ~90% of microbial carbon derived from petroleum), particularly in PLFAs (e.g., cy17:0 and cy19:0) often associated with petroleum hydrocarbon degrading bacteria. The comparatively higher levels of 14C in other, less specific PLFAs (e.g., 16:0) indicated the preferential uptake of younger organic matter by the general microbial population (~50-80% of microbial carbon derived from petroleum). Since the main carbon pools in tailings sediment were essentially 'radiocarbon dead' (i.e., no detectable 14C), the principal source for this modern carbon is considered to be the Athabasca River, which provides the bulk of the water used in the bitumen extraction process. The preferential uptake of the minor amount of young and presumably more biodegradable material present in systems otherwise dominated by recalcitrant petroleum constituents has important implications for remediation strategies. On the one hand, it implies that mining-related organic contaminants could persist in the environment long after tailings pond reclamation has begun. Alternatively, it may be that the young, labile organic matter provided by the Athabasca River plays an important role in stimulating or supporting the microbial utilization of petroleum carbon in oil sands tailings ponds via co-metabolism or priming processes

  20. Use of n-hexadecane-1,2-{sup 13}C to understand the cracking mechanism and kinetics of normal alkanes in crude oils

    SciTech Connect

    Burnham, A.K.; Gregg, H.R.; Ward, R.L.; Knauss, K.G.

    1995-12-01

    Adjacent {sup 13}C atoms are rare in natural abundance, so their use as isotopic tracers provides a sensitive and selective method to follow reaction pathways of specific molecules in complex reaction matrices. N-hexadecane-1,2-{sup 13}C added to neat hexedecane and three distinctly different crude oils has enabled us to outline similarities and differences in the high-pressure alkane cracking reactions in these different matrices, with and without added water. Reaction progress was monitored by GC-MS (P+2) and {sup 13}C NMR ({open_quotes}INADEQUATE{close_quotes} pulse sequence). The overall cracking rate is 60% slower in real oils, apparently because more labile sources in the crude oil preferentially donate hydrogen to the alkyl radicals. The oil matrices also inhibit the formation of larger branched alkanes by alkyl addition of alkenes.

  1. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates

    NASA Astrophysics Data System (ADS)

    Azurmendi, Hugo F.; Freedberg, Darón I.

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for 1DCC determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a 13C-13C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield 1JCC and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for JHH determinations, but adapted and extended to applications where, like in sugars, large one-bond 13C-13C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and oriented phases are very

  2. The use of natural abundance carbon-13 to identify and quantify sources of emitted carbon dioxide in a calcareous southern Ontario Luvisolic soil

    NASA Astrophysics Data System (ADS)

    Wilton, Meaghan

    Three studies Were conducted at the Elora Research Station (ERS) on a Luvisolic soil to investigate the soil inorganic carbon (SIC) and soil organic carbon (SOC) components contributing to the CO2 flux (FC) using natural 13C abundance. SIC contributed to the FC in intact soil incubations. Soil disruption exacerbated the release of CO2 from both pedogenic and lithogenic carbonates. Field and laboratory techniques to obtain the delta13C of respired CO2 (delta13CR) were compared. Short-term deployment of non flow-through non steady-state chambers and the use of the simple two-ended mass balance approach to derive delta 13CR were found acceptable to apply to the ERS site. The delta13CR from a corn field at ERS with a history of multiple C4 and C3 crop rotations was partitioned into SIC and SOC components using two approaches. Root respiration contributed 2% - 64% and carbonates contribute up to 20% to the FC.

  3. The physical state of osmoregulatory solutes in unicellular algae. A natural-abundance carbon-13 nuclear-magnetic-resonance relaxation study.

    PubMed Central

    Norton, R S; MacKay, M A; Borowitzka, L J

    1982-01-01

    Natural-abundance 13C n.m.r. spin-lattice relaxation-time measurements have been carried out on intact cells of the unicellular blue--green alga Synechococcus sp. and the unicellular green alga Dunaliella salina, with the aim of characterizing the environments of the organic osmoregulatory solutes in these salt-tolerant organisms. In Synechococcus sp., all of the major organic osmoregulatory solute, 2-O-alpha-D-glucopyranosylglycerol, is visible in spectra of intact cells. Its rotational motion in the cell is slower by a factor of approx. 2.4 than in aqueous solution, but the molecule is still freely mobile and therefore able to contribute to the osmotic balance. In D. salina, only about 60% of the osmoregulatory solute glycerol is visible in spectra of intact cells. The rotational mobility of this observable fraction is approximately half that found in aqueous solution, but the data also indicate that there is a significant concentration of some paramagnetic species in D. salina which contributes to the overall spin-lattice relaxation of the glycerol carbon atoms. The non-observable fraction, which must correspond to glycerol molecules that have very broad 13C resonances and that are in slow exchange with bulk glycerol, has not been properly characterized as yet, but may represent glycerol in the chloroplast. The implications of these findings in relation to the physical state of the cytoplasm and the mechanism of osmoregulation in these cells are discussed. PMID:6807296

  4. A Computational Framework for High-Throughput Isotopic Natural Abundance Correction of Omics-Level Ultra-High Resolution FT-MS Datasets

    PubMed Central

    Carreer, William J.; Flight, Robert M.; Moseley, Hunter N. B.

    2013-01-01

    New metabolomics applications of ultra-high resolution and accuracy mass spectrometry can provide thousands of detectable isotopologues, with the number of potentially detectable isotopologues increasing exponentially with the number of stable isotopes used in newer isotope tracing methods like stable isotope-resolved metabolomics (SIRM) experiments. This huge increase in usable data requires software capable of correcting the large number of isotopologue peaks resulting from SIRM experiments in a timely manner. We describe the design of a new algorithm and software system capable of handling these high volumes of data, while including quality control methods for maintaining data quality. We validate this new algorithm against a previous single isotope correction algorithm in a two-step cross-validation. Next, we demonstrate the algorithm and correct for the effects of natural abundance for both 13C and 15N isotopes on a set of raw isotopologue intensities of UDP-N-acetyl-D-glucosamine derived from a 13C/15N-tracing experiment. Finally, we demonstrate the algorithm on a full omics-level dataset. PMID:24404440

  5. Are δ13C values of n-alkanes affected by atmospheric CO2 concentrations? Results from a free-air CO2 enrichment (FACE) experiment.

    NASA Astrophysics Data System (ADS)

    Sandquist, D. R.; Williams, D. G.; Shuman, B. N.; Kim, S.; Chen, J.; Macdonald, C.

    2015-12-01

    Compound-specific carbon isotope (δ13C) analyses of leaf waxes (i.e., n-alkanes) can be linked to large-scale shifts in vegetation, such as dominant taxa, functional types, life-forms and photosynthetic pathways that are usually coupled with environmental changes in climate. However using these δ13C values to interpret finer-scale ecosystem properties, including climate attributes such as CO2 concentrations, is difficult owing to uncertainty in the magnitude of internal biosynthetic fractionations that determine the δ13C of waxes relative to that of bulk leaf material. We investigated the composition, abundance and δ13C of n-alkanes in the aboveground biomass of a C4 grass and a C3 grass exposed to experimentally controlled CO2 at ambient [490ppm] and elevated [630ppm] levels within natural grassland in Wyoming. The δ13C values of bulk tissues were predictably different based on the C3 and C4 photosynthetic pathways, but the difference between bulk tissue and n-alkanes (ɛlipid), for both C29 and C31, was consistently greater in the C4 grass. The magnitudes of these ɛlipid values were large (- 7‰ to -15‰) relative to those found in most other studies. CO2 concentration of the growing environment also had a significant effect on n-alkane δ13C values, with consistently higher values of ~ 2‰ under elevated CO2 found in both species and in both a wet and a dry year. These results underscore the importance of recognizing potential abiotic effects on leaf wax δ13C values, in addition to the biotic drivers their variation, when interpreting climate from leaf-wax biomarkers of terrestrial ecosystems.

  6. An efficient NMR method for the characterisation of 14N sites through indirect 13C detection

    PubMed Central

    Jarvis, James A.; Haies, Ibraheem M.

    2013-01-01

    Nitrogen is one of the most abundant elements and plays a key role in the chemistry of biological systems. Despite its widespread distribution, the study of the naturally occurring isotope of nitrogen, 14N (99.6%), has been relatively limited as it is a spin-1 nucleus that typically exhibits a large quadrupolar interaction. Accordingly, most studies of nitrogen sites in biomolecules have been performed on samples enriched with 15N, limiting the application of NMR to samples which can be isotopically enriched. This precludes the analysis of naturally occurring samples and results in the loss of the wealth of structural and dynamic information that the quadrupolar interaction can provide. Recently, several experimental approaches have been developed to characterize 14N sites through their interaction with neighboring ‘spy’ nuclei. Here we describe a novel version of these experiments whereby coherence between the 14N site and the spy nucleus is mediated by the application of a moderate rf field to the 14N. The resulting 13C/14N spectra show good sensitivity on natural abundance and labeled materials; whilst the 14N lineshapes permit the quantitative analysis of the quadrupolar interaction. PMID:23589073

  7. Optoacoustic 13C-breath test analyzer

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  8. THE GALACTIC R CORONAE BOREALIS STARS: THE C{sub 2} SWAN BANDS, THE CARBON PROBLEM, AND THE {sup 12}C/{sup 13}C RATIO

    SciTech Connect

    Hema, B. P.; Pandey, Gajendra; Lambert, David L. E-mail: pandey@iiap.res.in

    2012-03-10

    Observed spectra of R Coronae Borealis (RCB) and hydrogen-deficient carbon (HdC) stars are analyzed by synthesizing the C{sub 2} Swan bands (1, 0), (0, 0), and (0, 1) using our detailed line list and the Uppsala model atmospheres. The (0, 1) and (0, 0) C{sub 2} bands are used to derive the {sup 12}C abundance, and the (1, 0) {sup 12}C{sup 13}C band to determine the {sup 12}C/{sup 13}C ratios. The carbon abundance derived from the C{sub 2} Swan bands is about the same for the adopted models constructed with different carbon abundances over the range 8.5 (C/He = 0.1%) to 10.5 (C/He = 10%). Carbon abundances derived from C I lines are about a factor of four lower than the carbon abundance of the adopted model atmosphere over the same C/He interval, as reported by Asplund et al., who dubbed the mismatch between adopted and derived C abundance as the 'carbon problem'. In principle, the carbon abundances obtained from C{sub 2} Swan bands and that assumed for the model atmosphere can be equated for a particular choice of C/He that varies from star to star. Then, the carbon problem for C{sub 2} bands is eliminated. However, such C/He ratios are in general less than those of the extreme helium stars, the seemingly natural relatives to the RCB and HdC stars. A more likely solution to the C{sub 2} carbon problem may lie in a modification of the model atmosphere's temperature structure. The derived carbon abundances and the {sup 12}C/{sup 13}C ratios are discussed in light of the double degenerate and the final flash scenarios.

  9. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    PubMed

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  10. 13c Measurements On Air of Small Ice Samples

    NASA Astrophysics Data System (ADS)

    Eyer, M.; Leuenberger, M.

    We have developed a new method for 13C analysis for very small air amounts of less than 0.5 cc STP, corresponding to less than 10 gram of ice. It is based on the needle-crasher technique, which we routinely use for CO2 concentration measurements by infrared laser absorption. The extracted air is slowly expanded into a large volume through a water trap held at ­100°C. This sampled air is then carried by a high helium flux through a modified Precon system of Thermo-Finnigan to separate CO2 from the air and to inject the pure CO2 gas in a low helium stream via an open split device to a Delta Plus XL mass spectrometer. The overall precision based on replicates of standard air is significantly better than 0.1 for a single analysis and is further improved by a triplicate measurement of the same sample through a specially designed gas splitter. We have used this new method for investigations on polar ice cores. The 13C measurements are important for climate reconstructions, e.g. to reconstruct the evolution and its variability in the terrestrial and oceanic carbon sinks and to identify natural variations in the marine carbon cycle. During the industrialization atmospheric 13C decreased by about -2, mainly due to the anthropogenic release of biogenic CO2 by fossil fuel burning. Reconstructions of carbon and oxygen cycles of Joos at al. [1999] using a double deconvolution method show that between 1930 and 1950 the net terrestrial release is changing to a net terrestrial uptake of CO2. A highly resolved 13C dataset of this time window would replenish the documentation of this behaviour. Further, it would be interesting to compare such data with O2/N2 measurements, known as an other partitioning tool for carbon sources and sinks. At the EGS 2002 we will present a highly resolved 13C record from Antarctic ice covering this time period.

  11. Towards hyperpolarized 13C-succinate imaging of brain cancer

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.

    2007-05-01

    We describe a novel 13C enriched precursor molecule, sodium 1- 13C acetylenedicarboxylate, which after hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1- 13C-glutamate, 5- 13C-glutamate, 1- 13C-glutamine and 5- 13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood-brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images.

  12. Changes in Natural Abundance Carbon Stable isotopes of Human Blood and Saliva After 24 Days of Controlled Carbohydrate Supplementation

    NASA Astrophysics Data System (ADS)

    Kraft, R. A.; Jahren, A. H.; Baer, D. J.; Caballero, B.

    2008-12-01

    the δ13C value of their blood and saliva relative to baseline: blood clot was enriched by 0.27‰; blood serum by 0.50‰ and saliva by 1.12‰. We believe this overall enrichment resulted from a 13C-enriched bulk diet (δ13C = - 20.42‰) relative to the subjects free-living diet. Evidence for this derives from inspection of foods within the bulk diet provided, compared to published profiles of the typical American diet. We will discuss possible complicating factors, such as differential absorption and metabolism of the supplements according to solubility and caloric value. These results are encouraging for the development of a δ13C blood serum biomarker that, in the company of other tests, could be used to indicate a change in carbohydrate intake. Bray, G.A., Nielsen, S.J. and Popkin, B.M., 2004. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. American Journal of Clinical Nutrition, 79: 537-543. Havel, P.J., 2005. Dietary fructose: Implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutrition Reviews, 63(5): 133-157. Tilman D., 1998. The greening of the green revolution. Nature, 396:211-212.

  13. Unified and isomer-specific NMR metabolomics database for the accurate analysis of (13)C-(1)H HSQC spectra.

    PubMed

    Bingol, Kerem; Li, Da-Wei; Bruschweiler-Li, Lei; Cabrera, Oscar A; Megraw, Timothy; Zhang, Fengli; Brüschweiler, Rafael

    2015-02-20

    A new metabolomics database and query algorithm for the analysis of (13)C-(1)H HSQC spectra is introduced, which unifies NMR spectroscopic information on 555 metabolites from both the Biological Magnetic Resonance Data Bank (BMRB) and Human Metabolome Database (HMDB). The new database, termed Complex Mixture Analysis by NMR (COLMAR) (13)C-(1)H HSQC database, can be queried via an interactive, easy to use web interface at http://spin.ccic.ohio-state.edu/index.php/hsqc/index . Our new HSQC database separately treats slowly exchanging isomers that belong to the same metabolite, which permits improved query in cases where lowly populated isomers are below the HSQC detection limit. The performance of our new database and query web server compares favorably with the one of existing web servers, especially for spectra of samples of high complexity, including metabolite mixtures from the model organisms Drosophila melanogaster and Escherichia coli. For such samples, our web server has on average a 37% higher accuracy (true positive rate) and a 82% lower false positive rate, which makes it a useful tool for the rapid and accurate identification of metabolites from (13)C-(1)H HSQC spectra at natural abundance. This information can be combined and validated with NMR data from 2D TOCSY-type spectra that provide connectivity information not present in HSQC spectra. PMID:25333826

  14. Temporal δ13C records from bottlenose dolphins (Tursiops truncatus) reflect variation in foraging location and global carbon cycling

    NASA Astrophysics Data System (ADS)

    Rossman, S. L.; Barros, N. B.; Ostrom, P. H.; Gandhi, H.; Wells, R. S.

    2010-12-01

    With four decades of data on a population of bottlenose dolphins (Tursiops truncatus) resident to Sarasota Bay (SB), The Sarasota Dolphin Research Program offers an unparalleled platform for ground-truthing stable isotope data and exploring bottlenose dolphin ecology in a natural setting. We explored carbon isotope value fidelity to habitat utilization by comparing δ13C data from whole teeth and muscle to the individual dolphin's proclivity towards foraging in seagrass beds based on observational data. We then examined variation in habitat use based on temporal isotope records. Whole tooth protein isotope values do not show a significant correlation with the observed percentage of foraging in seagrass habitat. In contrast, δ13C values from muscle showed a significant positive relationship with the observational data. Differences in the degree of tissue turn over may account for this distinction between tooth and muscle. Dolphin teeth consist of annually deposited layers that are inert once formed. Thus, the isotopic composition of protein in annuli reflect foraging at the time of deposition. In addition to incorporating variation associated with differences in foraging over the lifetime of the individual, whole tooth isotope values are confounded because a disproportionate amount of tooth protein derives from the first few years of life. Given the turnover time of muscle tissue, isotope values reflect diet over the past several months. From 1991 to 2008, muscle δ13C values showed a significant decline, -13.5‰ to -15.1‰.This time period encompasses a state wide net fishing ban (1995) however other factors such as a series of red tide harmful algal blooms, a decline in predators, increases in shallow water boat traffic and an increase in string ray abundance may also contribute to the temporal isotope trend. To examine changes in dolphin foraging habitat further back in time we analyzed the tip of crown of the tooth which records the isotopic signal from the

  15. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  16. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  17. Dipolar-coupling-mediated total correlation spectroscopy in solid-state 13C NMR: Selection of individual 13C- 13C dipolar interactions

    NASA Astrophysics Data System (ADS)

    Spano, Justin; Wi, Sungsool

    2010-06-01

    Herein is described a useful approach in solid-state NMR, for selecting homonuclear 13C- 13C spin pairs in a multiple- 13C homonuclear dipolar coupled spin system. This method builds upon the zero-quantum (ZQ) dipolar recoupling method introduced by Levitt and coworkers (Marin-Montesinos et al., 2006 [30]) by extending the originally introduced one-dimensional (1D) experiment into a two-dimensional (2D) method with selective irradiation scheme, while moving the 13C- 13C mixing scheme from the transverse to the longitudinal mode, together with a dramatic improvement in the proton decoupling efficiency. Selective spin-pair recoupling experiments incorporating Gaussian and cosine-modulated Gaussian pulses for inverting specific spins were performed, demonstrating the ability to detect informative, simplified/individualized, long-range 13C- 13C homonuclear dipolar coupling interactions more accurately by removing less informative, stronger, short-range 13C- 13C interactions from 2D correlation spectra. The capability of this new approach was demonstrated experimentally on uniformly 13C-labeled Glutamine and a tripeptide sample, GAL.

  18. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGESBeta

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurementmore » of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  19. In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose

    NASA Astrophysics Data System (ADS)

    Xu, Su; Shen, Jun

    2006-10-01

    An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intravenously infused [U- 13C]glucose in a 211 μL voxel located in the adult rat brain. The INEPT-based 1H → 13C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B 1 inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with 1JC4C5 = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with 1JC3C4 = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.

  20. Natural Genetic Variation Influences Protein Abundances in C. elegans Developmental Signalling Pathways

    PubMed Central

    Singh, Kapil Dev; Roschitzki, Bernd; Snoek, L. Basten; Grossmann, Jonas; Zheng, Xue; Elvin, Mark; Kamkina, Polina; Schrimpf, Sabine P.; Poulin, Gino B.; Kammenga, Jan E.; Hengartner, Michael O.

    2016-01-01

    Complex traits, including common disease-related traits, are affected by many different genes that function in multiple pathways and networks. The apoptosis, MAPK, Notch, and Wnt signalling pathways play important roles in development and disease progression. At the moment we have a poor understanding of how allelic variation affects gene expression in these pathways at the level of translation. Here we report the effect of natural genetic variation on transcript and protein abundance involved in developmental signalling pathways in Caenorhabditis elegans. We used selected reaction monitoring to analyse proteins from the abovementioned four pathways in a set of recombinant inbred lines (RILs) generated from the wild-type strains N2 (Bristol) and CB4856 (Hawaii) to enable quantitative trait locus (QTL) mapping. About half of the cases from the 44 genes tested showed a statistically significant change in protein abundance between various strains, most of these were however very weak (below 1.3-fold change). We detected a distant QTL on the left arm of chromosome II that affected protein abundance of the phosphatidylserine receptor protein PSR-1, and two separate QTLs that influenced embryonic and ionizing radiation-induced apoptosis on chromosome IV. Our results demonstrate that natural variation in C. elegans is sufficient to cause significant changes in signalling pathways both at the gene expression (transcript and protein abundance) and phenotypic levels. PMID:26985669

  1. Increased natural mortality at low abundance can generate an Allee effect in a marine fish.

    PubMed

    Kuparinen, Anna; Hutchings, Jeffrey A

    2014-10-01

    Negative density-dependent regulation of population dynamics promotes population growth at low abundance and is therefore vital for recovery following depletion. Inversely, any process that reduces the compensatory density-dependence of population growth can negatively affect recovery. Here, we show that increased adult mortality at low abundance can reverse compensatory population dynamics into its opposite-a demographic Allee effect. Northwest Atlantic cod (Gadus morhua) stocks collapsed dramatically in the early 1990s and have since shown little sign of recovery. Many experienced dramatic increases in natural mortality, ostensibly attributable in some populations to increased predation by seals. Our findings show that increased natural mortality of a magnitude observed for overfished cod stocks has been more than sufficient to fundamentally alter the dynamics of density-dependent population regulation. The demographic Allee effect generated by these changes can slow down or even impede the recovery of depleted populations even in the absence of fishing. PMID:26064531

  2. Increased natural mortality at low abundance can generate an Allee effect in a marine fish

    PubMed Central

    Kuparinen, Anna; Hutchings, Jeffrey A.

    2014-01-01

    Negative density-dependent regulation of population dynamics promotes population growth at low abundance and is therefore vital for recovery following depletion. Inversely, any process that reduces the compensatory density-dependence of population growth can negatively affect recovery. Here, we show that increased adult mortality at low abundance can reverse compensatory population dynamics into its opposite—a demographic Allee effect. Northwest Atlantic cod (Gadus morhua) stocks collapsed dramatically in the early 1990s and have since shown little sign of recovery. Many experienced dramatic increases in natural mortality, ostensibly attributable in some populations to increased predation by seals. Our findings show that increased natural mortality of a magnitude observed for overfished cod stocks has been more than sufficient to fundamentally alter the dynamics of density-dependent population regulation. The demographic Allee effect generated by these changes can slow down or even impede the recovery of depleted populations even in the absence of fishing. PMID:26064531

  3. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy

    NASA Astrophysics Data System (ADS)

    Rossini, Aaron J.; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance 1H-2H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance 2H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2 h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the 2H solid-state NMR spectra is comparable to that of 1H spectra obtained with state of the art homonuclear decoupling techniques.

  4. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy.

    PubMed

    Rossini, Aaron J; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance (1)H-(2)H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance (2)H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the (2)H solid-state NMR spectra is comparable to that of (1)H spectra obtained with state of the art homonuclear decoupling techniques. PMID:26363582

  5. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2 H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1 H decoupling (HPPD) and 1 H- 2 H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2 H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2 H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1 H to 2 H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  6. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1H decoupling (HPPD) and 1H- 2H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1H to 2H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  7. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry

    USGS Publications Warehouse

    Meier, A.L.

    1982-01-01

    The relationships of the absorption of 6Li and 7Li hollow cathode lamp emissions are used to determine lithium isotopic composition in the natural abundance range of geologic materials. Absorption was found to have a nonlinear dependence upon total lithium concentration and isotopic composition. A method using nonlinear equations to describe the relationship of the absorption of 6Li and 7Li lamp radiation is proposed as a means of calculating isotopic composition that is independent of total lithium concentration.

  8. Area per Lipid and Cholesterol Interactions in Membranes from Separated Local-Field 13C NMR Spectroscopy

    PubMed Central

    Leftin, Avigdor; Molugu, Trivikram R.; Job, Constantin; Beyer, Klaus; Brown, Michael F.

    2014-01-01

    Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state 13C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved 13C-1H residual dipolar couplings that were interpreted with a statistical mean-torque model. Liquid-disordered and liquid-ordered phases were characterized according to membrane thickness and average cross-sectional area per lipid. Knowledge of such structural parameters is vital for molecular dynamics simulations, and provides information about the balance of forces in membrane lipid bilayers. Experiments were conducted with both phosphatidylcholine (dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC)) and egg-yolk sphingomyelin (EYSM) lipids, and allowed us to extract segmental order parameters from the 13C-1H residual dipolar couplings. Order parameters were used to calculate membrane structural quantities, including the area per lipid and bilayer thickness. Relative to POPC, EYSM is more ordered in the ld phase and experiences less structural perturbation upon adding 50% cholesterol to form the lo phase. The loss of configurational entropy is smaller for EYSM than for POPC, thus favoring its interaction with cholesterol in raftlike lipid systems. Our studies show that solid-state 13C NMR spectroscopy is applicable to investigations of complex lipids and makes it possible to obtain structural parameters for biomembrane systems where isotope labeling may be prohibitive. PMID:25418296

  9. Natural abundance 2H-ERETIC-NMR authentication of the origin of methyl salicylate.

    PubMed

    Le Grand, Flore; George, Gerard; Akoka, Serge

    2005-06-29

    Methyl salicylate is a compound currently used in the creation of many flavors. It can be obtained by synthesis or from two natural sources: essential oil of wintergreen and essential oil of sweet birch bark. Deuterium site-specific natural isotope abundance (A(i)) determination by NMR spectroscopy with the method of reference ERETIC ((2)H-ERETIC-NMR) has been applied to this compound. A(i) measurements have been performed on 19 samples of methyl salicylate from different origins, natural/synthetic and commercial/extracted. This study demonstrates that appropriate treatment performed on the data allows discrimination between synthetic and natural samples. Moreover, the representation of intramolecular ratios R(6/5) as a function of R(3/2) distinguishes between synthetics, wintergreen oils, and sweet birch bark oils. PMID:15969485

  10. The magnitude of spatial and temporal variation in δ15N and δ13C differs between taxonomic groups: Implications for food web studies

    NASA Astrophysics Data System (ADS)

    Hyndes, Glenn A.; Hanson, Christine E.; Vanderklift, Mathew A.

    2013-03-01

    Understanding variability in stable isotope abundance is essential for effective hypothesis testing and evaluating food sources, trophic levels and food web structure. The magnitude and sources of variability are likely to differ among taxonomic and functional groups. We aimed to quantify variability of δ13C and δ15N for 16 species representing seven distinct taxonomic groups of benthic invertebrates and autotrophs in a marine ecosystem. We quantified the magnitude of variability among individuals or shoots separated by metres, among eight sites separated by kilometres, and between two survey occasions separated by months. δ13C varied by as much as 7‰ for primary producers, 4‰ for consumers, while δ15N varied by as much as 9‰ and 2‰ respectively. Variation in δ15N of seagrass was largely accounted for by differences among sites, while variation in δ13C was mainly attributable to shoots collected a few metres apart. Compared to seagrasses, variation in macroalgae was mainly explained by differences between the two survey occasions for δ15N and among individuals collected a few metres apart for δ13C. Variation was generally lower for consumers and typically explained by differences among individuals for δ15N but displayed inconsistent patterns for δ13C. Dual isotope Bayesian mixing models showed that the potential contributions of food sources for herbivorous consumers varied among sites and between survey occasions, and also that there was high variability or uncertainty in the contributions of sources within sites. The relative consistency in the main sources of variation among broad taxonomic groups in autotrophs suggests that aspects of physiology that are phylogenetically conserved might be important influences on variation in natural abundances of stable isotopes. In comparison, the sources of variability were less consistent within and among broad consumer groups, suggesting complex interactions between consumers and their food sources.

  11. Perfusion and diffusion sensitive 13C stimulated-echo MRSI for metabolic imaging of cancer.

    PubMed

    Larson, Peder E Z; Hurd, Ralph E; Kerr, Adam B; Pauly, John M; Bok, Robert A; Kurhanewicz, John; Vigneron, Daniel B

    2013-06-01

    Metabolic imaging with hyperpolarized [1-(13)C]-pyruvate can rapidly probe tissue metabolic profiles in vivo and has been shown to provide cancer imaging biomarkers for tumor detection, progression, and response to therapy. This technique uses a bolus injection followed by imaging within 1-2 minutes. The observed metabolites include vascular components and their generation is also influenced by cellular transport. These factors complicate image interpretation, especially since [1-(13)C]lactate, a metabolic product that is a biomarker of cancer, is also produced by red blood cells. It would be valuable to understand the distribution of metabolites between the vasculature, interstitial space, and intracellular compartments. The purpose of this study was to better understand this compartmentalization by using a perfusion and diffusion-sensitive stimulated-echo acquisition mode (STEAM) MRSI acquisition method tailored to hyperpolarized substrates. Our results in mouse models showed that among metabolites, the injected substrate (13)C-pyruvate had the largest vascular fraction overall while (13)C-alanine had the smallest vascular fraction. We observed a larger vascular fraction of pyruvate and lactate in the kidneys and liver when compared to back muscle and prostate tumor tissue. Our data suggests that (13)C-lactate in prostate tumor tissue voxels was the most abundant labeled metabolite intracellularly. This was shown in STEAM images that highlighted abnormal cancer cell metabolism and suppressed vascular (13)C metabolite signals. PMID:23260391

  12. Comprehensive discovery of 13C labeled metabolites in the bacterium Methylobacterium extorquens AM1 using gas chromatography-mass spectrometry.

    PubMed

    Yang, Song; Hoggard, Jamin C; Lidstrom, Mary E; Synovec, Robert E

    2013-11-22

    Herein, we report the identification of isotopically labeled metabolite peaks (or the lack of labeling) between sets of GC-MS data from Methylobacterium extorquens AM1. M. extorquens AM1 is one of the best-characterized model organisms for the study of C1 metabolism in methylotrophic bacteria, a diverse group of microbes that can use reduced one-carbon (C1) sources, such as methanol and methane as a sole source for both energy generation and carbon assimilation. Application of a match value (MV) based metric was used to rank the metabolite peaks in the data from those exhibiting the most mass spectral indications of labeling, to those not exhibiting any indications of labeling. The MV-based ranking corresponded well with analyst interpretation of the mass spectra. The MV-based method was initially demonstrated and validated using a mixture of 21 standards with data sets generated for mixtures at natural abundance, a mixture with 6 of the compounds labeled, and a 1:1 mixture of the natural abundance and labeled mixtures. Experimental data from TMS-derivatized extracts from the bacterium M. extorquens AM1 grown with natural abundance or (13)C-labeled methanol as the carbon source were analyzed. Of 131 peaks considered for the analysis of M. extorquens AM1, the 40 peaks ranked highest for indications of (13)C labeling were all found to be labeled, while those peaks ranked lower progressed from peaks for which labeling was uncertain, to a larger number of peaks that were clearly not labeled. The list of peaks determined to be labeled forms a library of compounds that are known to be labeled following the methanol metabolic pathway in M. extorquens AM1 that can be further investigated in future work, e.g. fluxomic studies. PMID:24007683

  13. The cluster and single-particle states in 13C (α,α)13C reactions

    NASA Astrophysics Data System (ADS)

    Mynbayev, N. A.; Nurmukhanbetova, A. K.; Goldberg, V. Z.; Rogachev, G. V.; Golovkov, M. S.; Koloberdin, M.; Ivanov, I.; Nauruzbayev, D. K.; Berdibek, Sh S.; Rakhymzhanov, A. M.; Tribble, R. E.

    2016-06-01

    The excitation functions of elastic scattering of 13C on alpha particle have been measured using the thick-target inverse kinematic method at the heavy ion DC-60 cyclotron. The helium gas was used as a target and also as a degrader to stop the beam. New data (including 180°degree) of the resonances close to the threshold in 17O have been obtained.

  14. Analogy between mission critical detection in distributed systems and 13C isotope separation column

    NASA Astrophysics Data System (ADS)

    Boca, Maria L.; Secara, Mihai

    2015-02-01

    Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13 Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [2]. Distributed systems are increasingly being applied in critical real-time applications and their complexity forces programmers to use design methods which guarantee correctness and increase the maintainability of the products. Objectoriented methodologies are widely used to cope with complexity in any kind of system, but most of them lack a formal foundation to allow the analysis and verification of designs, which is one of the main requirements for dealing with concurrent and reactive systems. This research is intended to make an analogy between two tips of industrial processes, one 13C Isotope Separation Column and other one distributed systems. We try to highlight detection of "mission critical "situations for this two processes and show with one is more critical and needs deeply supervisyon [1], [3].

  15. Effect of Environmental Factors on Cyanobacterial Abundance and Cyanotoxins Production in Natural and Drinking Water, Bangladesh.

    PubMed

    Affan, Abu; Khomavis, Hisham S; Al-Harbi, Salim Marzoog; Haque, Mahfuzul; Khan, Saleha

    2015-02-01

    Cyanobacterial blooms commonly appear during the summer months in ponds, lakes and reservoirs in Bangladesh. In these areas, fish mortality, odorous water and fish and human skin irritation and eye inflammation have been reported. The influence of physicochemical factors on the occurrence of cyanobacteria and its toxin levels were evaluated in natural and drinking water in Bangladesh. A highly sensitive immunosorbent assay was used to detect microcystins (MCs). Cyanobacteria were found in 22 of 23 samples and the dominant species were Microcystis aeruginosa, followed by Microcystisflosaquae, Anabeana crassa and Aphanizomenon flosaquae. Cyanobacterial abundance varied from 39 to 1315 x 10(3) cells mL(-1) in natural water and 31 to 49 x 10(3) cells mL(-1) in tap water. MC concentrations were 25-82300 pg mL(-1) with the highest value measured in the fish research pond, followed by Ishakha Lake. In tap water, MC concentrations ranged from 30-32 pg mL(-1). The correlation between nitrate-nitrogen (NO3-N) concentration and cyanobacterial cell abundance was R2 = 0.62 while that between cyanobacterial abundance and MC concentration was R2 = 0.98. The increased NO3-N from fish feed, organic manure, poultry and dairy farm waste and fertilizer from agricultural land eutrophicated the water bodies and triggered cyanobacterial bloom formation. The increased amount of cyanobacteria produced MCs, subsequently reducing the water quality. PMID:26364354

  16. CARBON-13 NUCLEAR MAGNETIC RESONANCE. 13C CHEMICAL SHIFTS AND 13C-199HG COUPLING CONSTANTS FOR SOME ORGANOMERCURY COMPOUNDS

    EPA Science Inventory

    The (13)C shieldings and (13)C-(199)Hg coupling constants of fourteen phenyl- and seven alkyl- and alkenyl-mercury compounds have been obtained. Substituent effects on the (13)C shieldings are similar to those in nonmercurated phenyl compounds, with a similar relationship between...

  17. 13C breath tests in infections and beyond.

    PubMed

    Kurpad, Anura V; Ajami, Alfred; Young, Vernon R

    2002-09-01

    Stable isotope labeled compounds are widely used as diagnostic probes in medicine. These diagnostic stable isotope probes are now being expanded in their scope, to provide precise indications of the presence or absence of etiologically significant change in metabolism due to a specific disease. This concept exploits a labeled tracer probe that is a specifically designed substrate of a "gateway" enzyme in a discrete metabolic pathway, whose turnover can be measured by monitoring unidirectional precursor product mass flow. An example of such a probe is the 13C-urea breath test, where labeled urea is given to patients with H. pylori infection. Another example of this kind of probe is used to study the tripeptide glutathione (glu-cys-gly, GSH), which is the most abundant cellular thiol, and protects cells from the toxic effects of reactive oxygen species. Within the gamma glutamyl cycle, 5-oxoproline (L-pyroglutamic acid) is a metabolite generated during GSH catabolism, and is metabolized to glutamic acid by 5-oxoprolinase. This enzyme can also utilize the substrate L-2-oxothiazolidone-4-carboxylate (OTC), to generate intracellular cysteine, which is beneficial to the cell. Thus, labeled (13C) OTC would, under enzymatic attack yield cysteine and 13CO2, and can thus track the state and capacity of glutathione metabolism. Similarly, stable isotope labeled probes can be used to track the activity of the rate of homocysteine clearance, lymphocyte CD26, and liver CYP (cytochrome P450) enzyme activity. In the future, these applications should be able to titrate, in vivo, the characteristics of various specific enzyme systems in the body and their response to stress or infection as well as to treatment regimes. PMID:12362798

  18. Using PLFA Biomarkers and Natural Abundance Stable and Radiocarbon Isotopes to Characterize the Microbial Ecology and Metabolism of Methane Cycling

    NASA Astrophysics Data System (ADS)

    Mills, C. T.; Mandernack, K. W.; Slater, G. F.; Dias, R. F.

    2008-12-01

    Methane generated in the subsurface is a major source of atmospheric CH4, but its release is mitigated by CH4-oxidizing bacteria (methanotrophs). Therefore, it is important to understand the ecology of methanotroph communities in various environments. Phospholipid fatty acid (PLFA) analyses are a particularly useful method for characterizing these communities for two reasons: (1) Many type I and II methanotrophs produce specific PLFA biomarkers that can be used to estimate their populations, and (2) because CH4 is often very depleted in 13C and sometimes 14C, natural abundance δ13CPLFA and Δ14CPLFA values can be used to trace the flow of CH4- derived carbon through microbial ecosystems. We used these tools to evaluate the role of methanotrophs in carbon flow in three different environments: (1) a soil column overlying a coal bed methane (CBM) seep in southwest CO, and pristine, oligotrophic groundwaters within (2) sedimentary and (3) granitic host rocks in Japan. In the soil column impacted by CBM seepage, concentrations of the biomarker PLFAs for type I (16:1ω8cis) and type II (18:1ω8cis) methanotrophs were as high as 13 and 18 nmoles (g dry soil)-1, respectively. Depth profiles of methanotroph PLFA concentrations varied over different sampling dates indicating dynamic populations. δ13CPLFA values of the CBM soils (-25.1 to - 66.9‰) were substantially more negative than those for the control soil (-14.5 to -32.5‰) indicating that CBM is an important carbon source for the CBM-impacted soil microbial community. Δ14CPLFA values (-351 to -936‰) indicate the importance of 14C-dead CBM as a carbon source to the microbial communities, contributing 32 to 66% of total carbon in PLFA structures isolated from shallow soils and 67 to 97% for those isolated from deeper soils. The biomarker for type II methanotrophs, comprised 3 and 18% of total PLFAs in sedimentary and granitic groundwaters, respectively. The Δ14C values determined for type II methanotroph PLFAs

  19. Symbiotic nitrogen fixation in an arid ecosystem measured by sup 15 N natural abundance

    SciTech Connect

    Johnson, G.V. )

    1990-05-01

    Plants dependent on nitrogen fixation have an {sup 15}N abundance similar to the atmosphere, while non-nitrogen fixing plants usually are enriched in {sup 15}N and are similar to soil nitrogen values. The natural abundance of {sup 15}N in leaf tissues and soils was determined to evaluate symbiotic nitrogen fixation by several legumes and actinorhizal species in the Sevilleta Long-term Ecological Research area in central New Mexico. Comparison of {delta}{sup 15}N values for the legume Prosopis glandulosa (mesquite) to adjacent Atriplex canascens (fourwing saltbush) indicated that P. glandulosa obtained 66% of its nitrogen by fixation. The legume Hoffmanseggia jamesii was found to be utilizing soil nitrogen. The {delta}{sup 15}N values for the actinorhizal plants, Elaeagnus angustifolia and Cercocarpus montanus, while below values for soil nitrogen, did not differ from associated non-fixing plants.

  20. Studies of individual carbon sites of azurin from Pseudomonas aeruginosa by natural-abundance carbon-13 nuclear magnetic resonance spectroscopy.

    PubMed

    Ugurbil, K; Norton, R S; Allerhand, A; Bersohn, R

    1977-03-01

    The environments of the aromatic residues (and of the single arginine residue) of azurin from Pseudomonas aeruginosa are investigated by means of natural-abundance 13C Fourier transform NMR spectroscopy. In the case of the diamagnetic Cu(I) azurin, all 17 nonprotonated aromatic carbons (and Czota of Arg-79) yield narrow resonances. Furthermore, a single-carbon amide carbonyl resonance with an unusual chemical shift (peak chi) is observed. The pH dependence of chemical shifts is used to identify the resonances of Cgamma of titrating histidines, and of Cgamma and Czota of the two tyrosines. The resonances of Cgamma and Cdelta2 of the single tryptophan residue (and Czota of Arg-79) are also identified. The pKa values of the two tyrosines are different from each other and higher than typical values of "solvent-exposed" tyrosine residues. Two of the four histidine residues do not titrate (in the pH range 4 to 11). The resonance of Cgamma of one histidine exhibits a pH titration with fast proton exchange behavior and a pKa of 7.5 +/- 0.2. The direction of the titration shift indicates that the imidazole form of this histidine is the Ndelta1-H tautomer. The Cgamma resonance of the other titrating histidine exhibits slow exchange behavior with a pKa of about 7. The imidazole form of this histidine is the Nepsilon2-H tautomer. When going to the paramagnetic Cu(II) protein, only 11 of the 19 carbons mentioned above yield resonances that are narrow enough to be detected. Also, some of the observed resonances exhibit significant paramagnetic broadening. A comparison of spectra of fully reduced azurin, mixtures of reduced and oxidized azurin, and fully oxidized azurin yields the following information. (i) Peak chi arises from an amide group that probably is coordinated to the copper. (ii) The two nontitrating histidine residues are probably copper ligands, with Ndelta1 coordinated to the metal. (iii) The side chains of Arg-79 and the two tyrosine residues are not coordinated to

  1. A combination strategy for extraction and isolation of multi-component natural products by systematic two-phase solvent extraction-(13)C nuclear magnetic resonance pattern recognition and following conical counter-current chromatography separation: Podophyllotoxins and flavonoids from Dysosma versipellis (Hance) as examples.

    PubMed

    Yang, Zhi; Wu, Youqian; Wu, Shihua

    2016-01-29

    Despite of substantial developments of extraction and separation techniques, isolation of natural products from natural resources is still a challenging task. In this work, an efficient strategy for extraction and isolation of multi-component natural products has been successfully developed by combination of systematic two-phase liquid-liquid extraction-(13)C NMR pattern recognition and following conical counter-current chromatography separation. A small-scale crude sample was first distributed into 9 systematic hexane-ethyl acetate-methanol-water (HEMWat) two-phase solvent systems for determination of the optimum extraction solvents and partition coefficients of the prominent components. Then, the optimized solvent systems were used in succession to enrich the hydrophilic and lipophilic components from the large-scale crude sample. At last, the enriched components samples were further purified by a new conical counter-current chromatography (CCC). Due to the use of (13)C NMR pattern recognition, the kinds and structures of major components in the solvent extracts could be predicted. Therefore, the method could collect simultaneously the partition coefficients and the structural information of components in the selected two-phase solvents. As an example, a cytotoxic extract of podophyllotoxins and flavonoids from Dysosma versipellis (Hance) was selected. After the systematic HEMWat system solvent extraction and (13)C NMR pattern recognition analyses, the crude extract of D. versipellis was first degreased by the upper phase of HEMWat system (9:1:9:1, v/v), and then distributed in the two phases of the system of HEMWat (2:8:2:8, v/v) to obtain the hydrophilic lower phase extract and lipophilic upper phase extract, respectively. These extracts were further separated by conical CCC with the HEMWat systems (1:9:1:9 and 4:6:4:6, v/v). As results, total 17 cytotoxic compounds were isolated and identified. In general, whole results suggested that the strategy was very

  2. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  3. Stable Carbon Isotopes (δ 13C) in Coral Skeletons: Experimental Approach and Applications for Paleoceanography

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.

    2004-12-01

    Scleractinian corals obtain fixed carbon via photosynthesis by their endosymbiotic algae (zooxanthellae) and via hetertrophy (injestion of zooplankton, δ 13C ≈ -17 to -22‰ ). Carbon dioxide (CO2) used for photosynthesis is obtained from seawater (δ 13C ≈ 0%) or from respired CO2 within the coral host. The δ 13C of the carbon used in the formation of the underlying coral skeleton is fractionated as a result of both of these metabolic processes. Here I have pooled evidence from several field and tank experiments on the effect of photosynthesis and heterotrophy of coral skeletal δ 13C. In the experiments, decreases in light levels due to shading or depth resulted in a significant decrease in skeletal δ 13C in all species studied (Pavona gigantea, Pavona clavus, Porites compressa). Decreases in photosynthesis in bleached corals also resulted in a decrease in skeletal δ 13C compared to non-bleached corals growing under the same conditions and at the same location. Skeletal δ 13C also decreased at higher than normal light levels most likely due to photoinhibition. Thus, decreases in photosynthesis due to reduced light levels, due to bleaching-induced decreases in chlorophyll a concentrations, or due to photodamage-induced decreases in functional cholorphyll a, results in significant δ 13C decreases. Comprehensive interpretation of all of the data showed that changes in photosynthesis itself can drive the changes in δ 13C. In field experiments, the addition of natural concentrations of zooplankton to the diet resulted in decreases in skeletal δ 13C. Such a decrease was more pronounced with depth and in P. gigantea compared to P. clavus. In situ feeding experiments have since confirmed these findings. However under tank conditions with unaturally high feeding rates, enhanced nitrogen supply in the diet can disrupt the coral-algal symbiosis, stimlate zooxanthellae growth and photosynthesis, and cause an incrase in skeletal δ 13C. It is proposed that under

  4. Natural-abundance stable carbon isotopes of small-subunit ribosomal RNA (SSU rRNA) from Guaymas Basin (Mexico)

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Mendlovitz, H.; Albert, D.; Teske, A. P.

    2012-12-01

    Small-subunit ribosomal RNA (SSU rRNA) is a phylogenetically informative molecule found in all species. Because it is poorly preserved in most environments, it is a useful marker for active microbial populations. We are using the natural-abundance stable carbon isotopic composition of specific microbial groups to help identify the carbon substrates contributing to microbial biomass in a variety of marine environments. At Guaymas Basin, hydrothermal fluids interact with abundant sedimentary organic carbon to produce natural gas and petroleum. Where this reaches the sediment surface, it can support dense patches of seafloor life, including Beggiatoa mats. We report here on the stable carbon isotopic composition of SSU rRNA from a Beggiatoa mat transect, a cold background site, a warm site with high oil concentration, and a second Beggiatoa mat. The central part of the transect mat overlay the steepest temperature gradient, and was visually dominated by orange Beggiatoa. This was fringed by white Beggiatoa mat and bare, but still warm, sediment. Methane concentrations were saturating beneath the orange and white mats and at the oily site, lower beneath bare sediment, and below detection at the background site. Our initial hypotheses were that rRNA isotopic composition would be strongly influenced by methane supply, and that archaeal rRNA might be lighter than bacterial due to contributions from methanogens and anaerobic methane oxidizers. We used biotin-labeled oligonucleotides to capture Bacterial and Archaeal SSU rRNA for isotopic determination. Background-site rRNA was isotopically heaviest, and bacterial RNA from below 2 cm at the oily site was lightest, consistent with control by methane. Within the transect mat, however, the pattern was more complicated; at some sediment depths, rRNA from the mat periphery was isotopically lightest. Part of this may be due to the spatially and temporally variable paths followed by hydrothermal fluid, which can include horizontal

  5. Determination of site-specific carbon isotope ratios at natural abundance by carbon-13 nuclear magnetic resonance spectroscopy.

    PubMed

    Caer, V; Trierweiler, M; Martin, G J; Martin, M L

    1991-10-15

    Site-specific natural isotope fractionation of hydrogen studied by deuterium NMR (SNIF-NMR) spectroscopy is a powerful source of information on hydrogen pathways occurring in biosyntheses in natural conditions. The potential of the carbon counterpart of this method has been investigated and compared. Three typical molecular species, ethanol, acetic acid, and vanillin, have been considered. Taking into account the requirements of quantitative 13C NMR, appropriate experimental procedures have been defined and the repeatability and reproducibility of the isotope ratio determinations have been checked in different conditions. It is shown that the carbon version of the SNIF-NMR method is capable of detecting small differences in the carbon-13 content of the ethyl fragment of ethanols from different botanical or synthetic origins. These results are in agreement with mass spectrometry determinations of the overall carbon isotope ratios. Deviations with respect to a statistical distribution of 13C have been detected in the case of acetic acid and vanillin. However, since the method is very sensitive to several kinds of systematic error, only a relative significance can be attached at present to the internal parameters directly accessible. Isotope dilution experiments have also been carried out in order to check the consistency of the results. In the present state of experimental accuracy, the 13C NMR method is of more limited potential than 2H SNIF-NMR spectroscopy. However it may provide complementary information. Moreover it is particularly efficient for detecting and quantifying adulterations that aim to mimic the overall carbon-13 content of a natural compound by adding a selectivity enriched species to a less expensive substrate from a different origin. PMID:1759714

  6. Determination of 13C isotopic enrichment of valine and threonine by GC-C-IRMS after formation of the N(O,S)-ethoxycarbonyl ethyl ester derivatives of the amino acids.

    PubMed

    Godin, Jean-Philippe; Faure, Magali; Breuille, Denis; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2007-06-01

    We describe a new method of assessing, in a single run, (13)C isotopic enrichment of both Val and Thr by gas chromatography-combustion-isotope-ratio mass spectrometry (GC-C-IRMS). This method characterised by a rapid one-step derivatisation procedure performed at room temperature to form the N(O,S)-ethoxycarbonyl ethyl ester derivatives, and a polar column for GC. The suitability of this method for Val and Thr in in-vivo samples (mucosal hydrolysate) was demonstrated by studying protein metabolism with two tracers ((13)C-valine or (13)C-threonine). The intra-day and inter-day repeatability were both assessed either with standards or with in-vivo samples at natural abundance and at low (13)C isotopic enrichment. For inter-day repeatability CVs were between 0.8 and 1.5% at natural abundance and lower than 5.5% at 0.112 and 0.190 atom% enrichment for Val and Thr, respectively. Overall isotopic precision was studied for eleven standard amino acid derivatives (those of Val, Ala, Leu, Iso, Gly, Pro, Asp, Thr, Ser, Met, and Phe) and was assessed at 0.32 per thousand. The (13)C isotopic measurement was then extended to the other amino acids (Ala, Val, Leu, Iso, Gly, Pro, Thr, and Phe) at natural abundance for in-vivo samples. The isotopic precision was better than 0.002 atom% per amino acid (for n = 4 rats). This analytical method was finally applied to an animal study to measure Thr utilization in protein synthesis. PMID:17468859

  7. GC-MS determination of ratios of stable-isotope labelled to natural urea using [13C15N2]urea for studying urea kinetics in serum and as a means to validate routine methods for the quantitative assay of urea in dialysate.

    PubMed

    Wolthers, B G; Tepper, T; Withag, A; Nagel, G T; de Haan, T H; van Leeuwen, J J; Stegeman, C A; Huisman, R M

    1994-02-01

    A GC-MS determination of urea in serum or spent dialysate is described, using 13C15N2-labelled urea and assaying the area ratio of labelled to natural urea by mass fragmentographic monitoring of fragments m/e 153 and 156, after its eventual conversion into the trimethylsilylether-derivative of 2-hydroxypyrimidine. The procedure can be successfully applied in the follow-up of the disappearance of labelled urea in serum after intravenous injection in man, enabling kinetic parameters of urea to be established, e.g. for purposes of studying the effectiveness of dialysis procedures. Furthermore the method can be used for validation of routine methods for measuring urea in other fluids, in particular dialysate. Examples are given of both applications of the GC-MS method described. PMID:8033352

  8. /sup 13/C nuclear magnetic resonance studies of cardiac metabolism

    SciTech Connect

    Seeholzer, S.H.

    1985-01-01

    The last decade has witnessed the increasing use of Nuclear Magnetic Resonance (NMR) techniques for following the metabolic fate of compounds specifically labeled with /sup 13/C. The goals of the present study are: (1) to develop reliable quantitative procedures for measuring the /sup 13/C enrichment of specific carbon sites in compounds enriched by the metabolism of /sup 13/C-labeled substrates in rat heart, and (2) to use these quantitative measurements of fractional /sup 13/C enrichment within the context of a mathematical flux model describing the carbon flow through the TCA cycle and ancillary pathways, as a means for obtaining unknown flux parameters. Rat hearts have been perfused in vitro with various combinations of glucose, acetate, pyruvate, and propionate to achieve steady state flux conditions, followed by perfusion with the same substrates labeled with /sup 13/C in specific carbon sites. The hearts were frozen at different times after addition of /sup 13/C-labeled substrates and neutralized perchloric acid extracts were used to obtain high resolution proton-decoupled /sup 13/C NMR spectra at 90.55 MHz. The fractional /sup 13/C enrichment (F.E.) of individual carbon sites in different metabolites was calculated from the area of the resolved resonances after correction for saturation and nuclear Overhauser effects. These F.E. measurements by /sup 13/C NMR were validated by the analysis of /sup 13/C-/sup 1/H scalar coupling patterns observed in /sup 1/H NMR spectra of the extracted metabolites. The results obtained from perfusion of hearts glucose plus either (2-/sup 13/C) acetate or (3-/sup 13/C) pyruvate are similar to those obtained by previous investigators using /sup 14/C-labeled substrates.

  9. Changes in protein abundance are observed in bacterial isolates from a natural host

    PubMed Central

    Rees, Megan A.; Stinear, Timothy P.; Goode, Robert J. A.; Coppel, Ross L.; Smith, Alexander I.; Kleifeld, Oded

    2015-01-01

    Bacterial proteomic studies frequently use strains cultured in synthetic liquid media over many generations. It is uncertain whether bacterial proteins expressed under these conditions will be the same as the repertoire found in natural environments, or when bacteria are infecting a host organism. Thus, genomic and proteomic characterization of bacteria derived from the host environment in comparison to reference strains grown in the lab, should aid understanding of pathogenesis. Isolates of Corynebacterium pseudotuberculosis were obtained from the lymph nodes of three naturally infected sheep and compared to a laboratory reference strain using bottom-up proteomics, after whole genome sequencing of each of the field isolates. These comparisons were performed following growth in liquid media that allowed us to reach the required protein amount for proteomic analysis. Over 1350 proteins were identified in the isolated strains, from which unique proteome features were revealed. Several of the identified proteins demonstrated a significant abundance difference in the field isolates compared to the reference strain even though there were no obvious differences in the DNA sequence of the corresponding gene or in nearby non-coding DNA. Higher abundance in the field isolates was observed for proteins related to hypoxia and nutrient deficiency responses as well as to thiopeptide biosynthesis. PMID:26528441

  10. Continuous Flow - Cavity RingDown Spectroscopy Using a Novel Universal Interface for High-Precision Bulk 13C Analysis

    NASA Astrophysics Data System (ADS)

    Saad, Nabil; Richman, Bruce

    2010-05-01

    We have developed the world's first optical spectroscopy-based system for bulk stable isotope analysis of 13C. The system is based on a novel universal interface, named LIAISON, capable of coupling to almost any CO2-generating sample preparation front-end ranging from an elemental analyzer to any dissolved carbon analysis module, which are of significant use in geochemical, ecological and food authentication studies. In one specific application, we have coupled LIAISON to an elemental analyzer (EA) and to a cavity ring-down spectrometer (CRDS) for 13C isotopic analysis of adulterated honey samples. Another application was developed to analyze dissolved inorganic carbon in water samples. LIAISON is suited for handling a high-throughput sample analysis process by running three different gas handling operations in parallel: Admitting combustion gas from the EA into a first gas bellows, analyzing the previous sample collected into a second gas bellows with CRDS, and flushing and purging a third gas bellows in preparation for the upcoming sample collection operation. The sample-to-sample analysis time is 10 minutes and the operation is completely automated for the whole front-end auto-sampler tray capacity, requiring no operator intervention. The CRDS data are collected, tabulated and saved into an output text file. The memory effect between the USGS L-Glutamic acid standard at natural abundance and the moderately enriched USGS L-Glutamic acid standard is excluded by the selection of the adequate number and duration of flush and purge cycles of the gas sample bags. The system's proven accuracy was cross-checked with EA-IRMS and its achieved precision was typically less than 0.2 permil, including the 13C-enriched tested samples. The LIAISON-CRDS system presented here provides a fully automated solution for 13C bulk stable isotope analysis with unprecedented ease-of-use and possible field portability and application with the availability of a compact front-end. In

  11. Fluxomers: a new approach for 13C metabolic flux analysis

    PubMed Central

    2011-01-01

    Background The ability to perform quantitative studies using isotope tracers and metabolic flux analysis (MFA) is critical for detecting pathway bottlenecks and elucidating network regulation in biological systems, especially those that have been engineered to alter their native metabolic capacities. Mathematically, MFA models are traditionally formulated using separate state variables for reaction fluxes and isotopomer abundances. Analysis of isotope labeling experiments using this set of variables results in a non-convex optimization problem that suffers from both implementation complexity and convergence problems. Results This article addresses the mathematical and computational formulation of 13C MFA models using a new set of variables referred to as fluxomers. These composite variables combine both fluxes and isotopomer abundances, which results in a simply-posed formulation and an improved error model that is insensitive to isotopomer measurement normalization. A powerful fluxomer iterative algorithm (FIA) is developed and applied to solve the MFA optimization problem. For moderate-sized networks, the algorithm is shown to outperform the commonly used 13CFLUX cumomer-based algorithm and the more recently introduced OpenFLUX software that relies upon an elementary metabolite unit (EMU) network decomposition, both in terms of convergence time and output variability. Conclusions Substantial improvements in convergence time and statistical quality of results can be achieved by applying fluxomer variables and the FIA algorithm to compute best-fit solutions to MFA models. We expect that the fluxomer formulation will provide a more suitable basis for future algorithms that analyze very large scale networks and design optimal isotope labeling experiments. PMID:21846358

  12. Differences in the fractional abundances of carbohydrates of natural and recombinant human tissue factor

    PubMed Central

    Krudysz-Amblo, Jolanta; Jennings, Mark E; Matthews, Dwight E; Mann, Kenneth G; Butenas, Saulius

    2011-01-01

    Tissue factor (TF) is a single polypeptide integral membrane glycoprotein composed of 263 residues and is essential to life in its role as the initiator of blood coagulation. Objective Previously we have shown that the activity of the natural placental TF (pTF) and the recombinant TF (rTF) from Sf9 insect cells is different (Krudysz-Amblo, J. et al(2010) J. Biol. Chem. 285, 3371–3382). In this study, using mass spectrometry, we show by quantitative analysis that the extent of glycosylation varies on each protein. Results Fractional abundance, of each glycan composition at each of the three glycosylation sites, reveals the most pronounced difference to be at asparagine (Asn) 11. This residue is located in the region of extensive TFfactor VIIa (FVIIa) interaction. Carbohydrate fractional abundance at Asn11 revealed that glycosylation in the natural placental TF is much more prevalent (~76%) than in the recombinant protein (~20%). The extent of glycosylation on Asn124 and Asn137 is similar in the two proteins, despite the pronounced differences in the carbohydrate composition. Additionally, 77% of rTF exists as TF des-1, 2 (missing the first two amino acids from the N-terminus). In contrast, only 31% of pTF is found in the des-1, 2 form. Conclusion These observations may attribute to the difference in the ability of TF-FVIIa complex to activate factor X (FX). Structural and functional comparison of the recombinant and natural protein advances our understanding and knowledge on the biological activity of TF. PMID:21172408

  13. Non-stationary (13)C-metabolic flux ratio analysis.

    PubMed

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media. PMID:23860906

  14. Abundance and phenology patterns of two pond-breeding salamanders determine species interactions in natural populations.

    PubMed

    Anderson, Thomas L; Hocking, Daniel J; Conner, Christopher A; Earl, Julia E; Harper, Elizabeth B; Osbourn, Michael S; Peterman, William E; Rittenhouse, Tracy A G; Semlitsch, Raymond D

    2015-03-01

    Phenology often determines the outcome of interspecific interactions, where early-arriving species often dominate interactions over those arriving later. The effects of phenology on species interactions are especially pronounced in aquatic systems, but the evidence is largely derived from experimental studies. We examined whether differences in breeding phenology between two pond-breeding salamanders (Ambystoma annulatum and A. maculatum) affected metamorph recruitment and demographic traits within natural populations, with the expectation that the fall-breeding A. annulatum would negatively affect the spring-breeding A. maculatum. We monitored populations of each species at five ponds over 4 years using drift fences. Metamorph abundance and survival of A. annulatum were affected by intra- and interspecific processes, whereas metamorph size and date of emigration were primarily influenced by intraspecific effects. Metamorph abundance, snout-vent length, date of emigration and survival for A. maculatum were all predicted by combinations of intra- and interspecific effects, but often showed negative relationships with A. annulatum metamorph traits and abundance. Size and date of metamorphosis were strongly correlated within each species, but in opposite patterns (negative for A. annulatum and positive for A. maculatum), suggesting that the two species use alternative strategies to enhance terrestrial survival and that these factors may influence their interactions. Our results match predictions from experimental studies that suggest recruitment is influenced by intra- and interspecific processes which are determined by phenological differences between species. Incorporating spatiotemporal variability when modeling population dynamics is necessary to understand the importance of phenology in species interactions, especially as shifts in phenology occur under climate change. PMID:25413866

  15. Functional groups identified by solid state 13C NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  16. Studies of individual carbon sites of proteins in solution by natural abundance carbon 13 nuclear magnetic resonance spectroscopy. Strategies for assignments.

    PubMed

    Oldfield, E; Norton, R S; Allerhand, A

    1975-08-25

    Natural abundance 13C Fourier transform NMR spectra (at 15.18 MHz, in 20-mm sample tubes) of aqueous native proteins yield numerous narrow single carbon resonances of nonprotonated aromatic carbons. Techniques for the assignment of these resonances are presented. Each technique is applied to one or more of the following proteins: ferricytochrome c from horse heart and Candida krusei, ferrocytochrome c and cyanoferricytochrome c from horse heart, lysozyme from hen egg white, cyanoferrimyoglobins from horse and sperm whale skeletal muscle, and carbon monoxide myoglobin from horse. In all of the protein spectra we have examined, methine aromatic carbons give rise to broad bands. Studies of the narrow resonances of nonprotonated aromatic carbons of proteins are facilitated by removal of these broad bands by means of the convolution-difference method, preferably from spectra recorded under conditions of noise-modulated off-resonance proton decoupling. We present a summary of the chemical shift ranges for the various types of nonprotonated aromatic carbons of amino acid residues and hemes of diamagnetic proteins, based on our results for hen egg white lysozyme, horse heart ferrocytochrome c, horse carbon monoxide myoglobin, and carbon monoxide hemoglobins from various species... PMID:169240

  17. On the nature of lithium-rich giant stars. Constraints from beryllium abundances

    NASA Astrophysics Data System (ADS)

    Melo, C. H. F.; de Laverny, P.; Santos, N. C.; Israelian, G.; Randich, S.; Do Nascimento, J. D., Jr.; de Medeiros, J. R.

    2005-08-01

    We have derived beryllium abundances for 7 Li-rich giant (A(Li) > 1.5) stars and 10 other Li-normal giants with the aim of investigating the origin of the lithium in the Li-rich giants. In particular, we test the predictions of the engulfment scenario proposed by Siess & Livio (1999, MNRAS, 308, 1133), where the engulfment of a brown dwarf or one or more giant planets would lead to simultaneous enrichment of 7Li and 9Be. We show that regardless of their nature, none of the stars studied in this paper were found to have detectable beryllium. Using simple dilution arguments we show that engulfment of an external object as the sole source of Li enrichment is ruled out by the Li and Be abundance data. The present results favor the idea that Li has been produced in the interior of the stars by a Cameron-Fowler process and brought up to the surface by an extra mixing mechanism.

  18. Distribution and Abundance of Insertion Sequences among Natural Isolates of Escherichia coli

    PubMed Central

    Sawyer, Stanley A.; Dykhuizen, Daniel E.; DuBose, Robert F.; Green, Louis; Mutangadura-Mhlanga, T.; Wolczyk, David F.; Hartl, Daniel L.

    1987-01-01

    A reference collection of 71 natural isolates of Escherichia coli (the ECOR collection) has been studied with respect to the distribution and abundance of transposable insertion sequences using DNA hybridization. The data include 1173 occurrences of six unrelated insertion sequences (IS 1, IS2, IS3, IS4, IS5 and IS 30). The number of insertion elements per strain, and the sizes of DNA restriction fragments containing them, is highly variable and can be used to discriminate even among closely related strains. The occurrence and abundance of pairs of unrelated insertion sequences are apparently statistically independent, but significant correlations result from stratifications in the reference collection. However, there is a highly significant positive association among the insertion sequences considered in the aggregate. Nine branching process models, which differ in assumptions regarding the regulation of transposition and the effect of copy number on fitness, have been evaluated with regard to their fit of the observed distributions. No single model fits all copy number distributions. The best models incorporate no regulation of transposition and a moderate to strong decrease in fitness with increasing copy number for IS1 and IS5, strong regulation of transposition and a negligible to weak decrease in fitness with increasing copy number for IS3, and less than strong regulation of transposition for IS2, IS 4 and IS30. PMID:3030884

  19. HCNMBC - A pulse sequence for H-(C)-N Multiple Bond Correlations at natural isotopic abundance

    NASA Astrophysics Data System (ADS)

    Cheatham, Steve; Gierth, Peter; Bermel, Wolfgang; Kupče, Ēriks

    2014-10-01

    We propose a pulse sequence, HCNMBC for multiple-bond H-(C)-N correlation experiments via one-bond 1J(C,H) and one- or multiple bond nJ(N,C) coupling constants (typically n = 1-3) at the natural isotopic abundance. A new adiabatic refocussing sequence is introduced to provide accurate and robust refocussing of both chemical shift and J-evolution over wide ranges of C-13 and N-15 frequencies. It is demonstrated that the proposed pulse sequence provides high quality spectra even for sub-milligram samples. We show that when a 1.7 mm cryoprobe is available as little as 10 μg of glycine in D2O is sufficient to obtain the HCNMBC spectrum in ca. 12 h. The preliminary results indicate that the pulse sequence has a great potential in the structure determination of nitrogen heterocycles especially in cases where synthesis produces regioisomers.

  20. Natural abundant (17) O NMR in a 1.5-T Halbach magnet.

    PubMed

    Sørensen, Morten K; Bakharev, Oleg N; Jensen, Ole; Nielsen, Niels Chr

    2016-06-01

    We present mobile, low-field (17) O NMR as a means for monitoring oxygen in liquids. Whereas oxygen is one of the most important elements, oxygen NMR is limited by a poor sensitivity related to low natural abundance and gyro-magnetic ratio of the NMR active (17) O isotope. Here, we demonstrate (17) O NMR detection at a Larmor frequency of 8.74 MHz in a 1.5-T Halbach neodymium magnet with a home-built digital NMR instrument suitable for large-scale production and in-line monitoring applications. The proposed (17) O NMR sensor may be applied for direct, noninvasive measurements of water content in, for example, oil, manure, or food in automated quality or process control. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25641664

  1. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs

    DOE PAGESBeta

    Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.; Kispal, Brianna M.; Mireault, Christopher R.; Kobayashi, Takeshi; Pruski, Marek; Schurko, Robert W.

    2016-06-08

    14N ultra-wideline (UW), 1H{15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH+ and RR'NH2+) or other (i.e., RNH2 and RNO2) nitrogen environments.« less

  2. FTIR and NDIR spectroscopies as valuable alternatives to IRMS spectrometry for the δ(13)C analysis of food.

    PubMed

    Pironti, Concetta; Proto, Antonio; Camin, Federica; Cucciniello, Raffaele; Zarrella, Ilaria; Motta, Oriana

    2016-11-01

    The (13)C/(12)C carbon isotope ratio is a chemical parameter with many important applications in several scientific area and the technique of choice currently used for the δ(13)C determination is the isotope ratio mass spectrometry (IRMS). This latter is highly accurate (0.1‰) and sensitive (up to 0.01‰), but at the same time expensive and complex. The objective of this work was to assess the reliability of FTIR and NDIRS techniques for the measurement of carbon stable isotope ratio of food sample, in comparison to IRMS. IRMS, NDIRS and FTIR were used to analyze samples of food, such as oil, durum, cocoa, pasta and sugar, in order to determine the natural abundance isotopic ratio of carbon in a parallel way. The results were comparable, showing a close relationship among the three techniques. The main advantage in using FTIR and NDIRS is related to their cheapness and easy-to-operate in comparison to IRMS. PMID:27591614

  3. Dissecting the mechanisms of a class of chemical glycosylation using primary 13C kinetic isotope effects

    NASA Astrophysics Data System (ADS)

    Huang, Min; Garrett, Graham E.; Birlirakis, Nicolas; Bohé, Luis; Pratt, Derek A.; Crich, David

    2012-08-01

    Although arguably the most important reaction in glycoscience, chemical glycosylations are among the least well understood of organic chemical reactions, resulting in an unnecessarily high degree of empiricism and a brake on rational development in this critical area. To address this problem, primary 13C kinetic isotope effects have now been determined for the formation of β- and α-manno- and glucopyranosides using a natural abundance NMR method. In contrast to the common current assumption, for three of the four cases studied the experimental and computed values are indicative of associative displacement of the intermediate covalent glycosyl trifluoromethanesulfonates. For the formation of the α-mannopyranosides, the experimentally determined KIE differs significantly from that computed for an associative displacement, which is strongly suggestive of a dissociative mechanism that approaches the intermediacy of a glycosyl oxocarbenium ion. The application of analogous experiments to other glycosylation systems should shed further light on their mechanisms and thus assist in the design of better reactions conditions with improved stereoselectivity.

  4. Dissecting the Mechanisms of a Class of Chemical Glycosylation Using Primary 13C Kinetic Isotope Effects

    PubMed Central

    Huang, Min; Garrett, Graham E.; Birlirakis, Nicolas; Bohé, Luis

    2012-01-01

    Although arguably the most important reaction in glycoscience, chemical glycosylations are among the least well understood of organic chemical reactions resulting in an unnecessarily high degree of empiricism and a brake on rational development in this critical area. To address this problem primary 13C kinetic isotope effects now have been determined for the formation of β- and α-manno- and glucopyranosides by a natural abundance NMR method. In contrast to the common current assumption, for three of the four cases studied the experimental values concur with those computed for associative displacement of the intermediate covalent glycosyl trifluoromethanesulfonates. For the formation of the α-mannopyranosides the experimentally determined KIE differs significantly from that computed for an associative displacement, which is strongly suggestive of a dissociative mechanism that approaches the intermediacy of a glycosyl oxocarbenium ion. The application of comparable experiments to other glycosylation systems should shed further light on their glycosylation mechanisms and thus assist in the design of better reactions conditions with improved stereoselectivity. PMID:22824899

  5. State-of-the-Art Direct 13C and Indirect 1H-[13C] NMR Spectroscopy In Vivo

    PubMed Central

    de Graaf, Robin A.; Rothman, Douglas L.; Behar, Kevin L.

    2013-01-01

    Carbon-13 NMR spectroscopy in combination with 13C-labeled substrate infusion is a powerful technique to measure a large number of metabolic fluxes non-invasively in vivo. It has been used to quantify glycogen synthesis rates, establish quantitative relationships between energy metabolism and neurotransmission and evaluate the importance of different substrates. All measurements can, in principle, be performed through direct 13C NMR detection or via indirect 1H-[13C] NMR detection of the protons attached to 13C nuclei. The choice for detection scheme and pulse sequence depends on the magnetic field strength, whereas substrate selection depends on the metabolic pathways that are studied. 13C NMR spectroscopy remains a challenging technique that requires several non-standard hardware modifications, infusion of 13C-labeled substrates and sophisticated processing and metabolic modeling. Here the various aspects of direct 13C and indirect 1H-[13C] NMR are reviewed with the aim of providing a practical guide. PMID:21919099

  6. Analysis of dissolved organic carbon concentration and 13C isotopic signature by TOC-IRMS - assessment of analytical performance

    NASA Astrophysics Data System (ADS)

    Kirkels, Frédérique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten

    2013-04-01

    Stable carbon isotopes provide a powerful tool to assess carbon pools and their dynamics. Dissolved organic carbon (DOC) has been recognized to play an important role in ecosystem functioning and carbon cycling and has therefore gained increased research interest. However, direct measurement of 13C isotopic signature of carbon in the dissolved phase is technically challenging particularly using high temperature combustion. Until recently, mainly custom-made systems existed which were modified for coupling of TOC instruments with IRMS for simultaneous assessment of C content and isotopic signature. The variety of coupled systems showed differences in their analytical performances. For analysis of DOC high temperature combustion is recognized as best performing method, owing to its high efficiency of conversion to CO2 also for highly refractory components (e.g. humic, fulvic acids) present in DOC and soil extracts. Therefore, we tested high temperature combustion TOC coupled to IRMS (developed by Elementar Group) for bulk measurements of DOC concentration and 13C signature. The instruments are coupled via an Interface to exchange the carrier gas from O2 to He and to concentrate the derived CO2 for the isotope measurement. Analytical performance of the system was assessed for a variety of organic compounds characterized by different stability and complexity, including humic acid and DOM. We tested injection volumes between 0.2-3 ml, thereby enabling measurement of broad concentration ranges. With an injection volume of 0.5 ml (n=3, preceded by 1 discarded injection), DOC and 13C signatures for concentrations between 5-150 mg C/L were analyzed with high precision (standard deviation (SD) predominantly <0.1‰), good accuracy and linearity (overall SD <0.9‰). For the same settings, slightly higher variation in precision was observed among the lower concentration range and depending upon specific system conditions. Differences in 13C signatures of about 50‰ among

  7. Sensitivity-enhanced IPAP experiments for measuring one-bond 13C '- 13C α and 13C α- 1H α residual dipolar couplings in proteins

    NASA Astrophysics Data System (ADS)

    Ding, Keyang; Gronenborn, Angela M.

    2004-04-01

    Sensitivity-enhanced 2D IPAP experiments using the accordion principle for measuring one-bond 13C '- 13C α and 1H α- 13C α dipolar couplings in proteins are presented. The resolution of the resulting spectra is identical to that of the decoupled HSQC spectra and the sensitivity of the corresponding 1D acquisitions are only slightly lower than those obtained with 3D HNCO and 3D HN(COCA)HA pulse sequences due to an additional delay 2 Δ. For cases of limited resolution in the 2D 15N- 1H N HSQC spectrum the current pulse sequences can easily be modified into 3D versions by introducing a poorly digitized third dimension, if so desired. The experiments described here are a valuable addition to the suites available for determination of residual dipolar couplings in biological systems.

  8. Quality assurance of PASADENA hyperpolarization for 13C biomolecules

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Tran, Thao T.; Bhattacharya, Pratip

    2009-01-01

    Object Define MR quality assurance procedures for maximal PASADENA hyperpolarization of a biological 13C molecular imaging reagent. Materials and methods An automated PASADENA polarizer and a parahydrogen generator were installed. 13C enriched hydroxyethyl acrylate, 1-13C, 2,3,3-d3 (HEA), was converted to hyperpolarized hydroxyethyl propionate, 1-13C, 2,3,3-d3 (HEP) and fumaric acid, 1-13C, 2,3-d2 (FUM) to hyperpolarized succinic acid, 1-13C, 2,3-d2 (SUC), by reaction with parahydrogen and norbornadiene rhodium catalyst. Incremental optimization of successive steps in PASADENA was implemented. MR spectra and in vivo images of hyperpolarized 13C imaging agents were acquired at 1.5 and 4.7 T. Results Application of quality assurance (QA) criteria resulted in incremental optimization of the individual steps in PASADENA implementation. Optimal hyperpolarization of HEP of P = 20% was achieved by calibration of the NMR unit of the polarizer (B0 field strength ± 0.002 mT). Mean hyperpolarization of SUC, P = [15.3 ± 1.9]% (N = 16) in D2O, and P = [12.8 ± 3.1]% (N = 12) in H2O, was achieved every 5–8 min (range 13–20%). An in vivo 13C succinate image of a rat was produced. Conclusion PASADENA spin hyperpolarization of SUC to 15.3% in average was demonstrated (37,400 fold signal enhancement at 4.7 T). The biological fate of 13C succinate, a normally occurring cellular intermediate, might be monitored with enhanced sensitivity. PMID:19067009

  9. Geochemical Approach to Archaeal Ecology: δ13C of GDGTs

    NASA Astrophysics Data System (ADS)

    Lichtin, S.; Warren, C.; Pearson, A.; Pagani, M.

    2015-12-01

    Over the last decade and a half, glycerol dialkyl glycerol tetraethers (GDGTs) have increasingly been used to reconstruct environmental temperatures; proxies like TEX86 that correlate the relative abundance of these archaeal cell membrane lipids to sea surface temperature are omnipresent in paleoclimatology literature. While it has become common to make claims about past temperatures using GDGTs, our present understanding of the organisms that synthesize the compounds is still quite limited. The generally accepted theory states that microorganisms like the Thaumarchaeota modify the structure of membrane lipids to increase intermolecular interactions, strengthening the membrane at higher temperatures. Yet to date, culture experiments have been largely restricted to a single species, Nitrosopumilus maritimes, and recent studies on oceanic archaeal rRNA have revealed that these biomarkers are produced in diverse, heterogeneous, and site-specific communities. This brings up questions as to whether different subclasses of GDGTs, and all subsequent proxies, represent adaptation within a single organismal group or a shift in community composition. To investigate whether GDGTs with different chain structures, from the simple isoprenoidal GDGT-0 to Crenarchaeol with its many cyclopentane groups, are sourced from archaea with similar or disparate metabolic pathways—and if that information is inherited in GDGTs trapped in marine sediments—this study examines the stable carbon isotope values (δ13C) of GDGTs extracted from the uppermost meters of sediment in the Orca Basin, Gulf of Mexico, using spooling-wire microcombustion isotope-ratio mass spectrometer (SWiM-IRMS), tackling a fundamental assumption of the TEX86 proxy that influences the way we perceive the veracity of existing temperature records.

  10. On the nature of sn stars. I. A detailed abundance study

    NASA Astrophysics Data System (ADS)

    Saffe, C.; Levato, H.

    2014-02-01

    The sn stars were first discoved by Abt & Levato when studying the spectral types in different open clusters. These stars present sharp Balmer lines, sharp metallic lines (C II, Si II, Ca II, Ti II, Fe II), and broad coreless He I lines. Some of the sn stars seem to be related to CP stars. Initially Abt & Levato proposed a shell-like nature to explain the sn stars, although this scenario was subsequently questioned. There is no general agreement about their origin. We aim to derive abundances for a sample of 9 stars, including sn and non-sn stars, to determine the possible relation between sn and CP stars and compare their chemical abundances. That most sn stars belong to open clusters allows us to search for a possible relation with fundamental parameters, including the age and rotation. We also study the possible contribution of different effects to the broad He I lines observed in these stars, such as Stark broadening and the possible He-stratification. Effective temperature and gravity were estimated by Strömgren photometry and then refined by requiring ionization and excitation equilibrium of Fe lines. We derived the abundances by fitting the observed spectra with synthetic spectra using an iterative procedure with the SYNTHE and ATLAS9 codes. We derived metallic abundances of 23 different chemical elements for 9 stars and obtained low projected rotational velocities for the sn stars in our sample (vsini up to 69 km s-1). We also compared 5 stars that belong to the same cluster (NGC 6475) and show that the sn characteristics appear in the 3 stars with the lower rotational velocity. However, the apparent preference of sn stars for objects with the lower vsini values should be taken with caution due to the small number of objects studied here. We analysed the photospheric chemical composition of sn stars and show that approximately ~40% of them display chemical peculiarities (such as He-weak and HgMn stars) within a range of temperature of 10 300 K-14 500 K

  11. Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments

    PubMed Central

    Webster, Gordon; O'Sullivan, Louise A.; Meng, Yiyu; Williams, Angharad S.; Sass, Andrea M.; Watkins, Andrew J.; Parkes, R. John; Weightman, Andrew J.

    2014-01-01

    Archaea are widespread in marine sediments, but their occurrence and relationship with natural salinity gradients in estuarine sediments is not well understood. This study investigated the abundance and diversity of Archaea in sediments at three sites [Brightlingsea (BR), Alresford (AR) and Hythe (HY)] along the Colne Estuary, using quantitative real-time PCR (qPCR) of 16S rRNA genes, DNA hybridization, Archaea 16S rRNA and mcrA gene phylogenetic analyses. Total archaeal 16S rRNA abundance in sediments were higher in the low-salinity brackish sediments from HY (2–8 × 107 16S rRNA gene copies cm−3) than the high-salinity marine sites from BR and AR (2 × 104–2 × 107 and 4 × 106–2 × 107 16S rRNA gene copies cm−3, respectively), although as a proportion of the total prokaryotes Archaea were higher at BR than at AR or HY. Phylogenetic analysis showed that members of the ‘Bathyarchaeota’ (MCG), Thaumarchaeota and methanogenic Euryarchaeota were the dominant groups of Archaea. The composition of Thaumarchaeota varied with salinity, as only ‘marine’ group I.1a was present in marine sediments (BR). Methanogen 16S rRNA genes from low-salinity sediments at HY were dominated by acetotrophic Methanosaeta and putatively hydrogentrophic Methanomicrobiales, whereas the marine site (BR) was dominated by mcrA genes belonging to methylotrophic Methanococcoides, versatile Methanosarcina and methanotrophic ANME-2a. Overall, the results indicate that salinity and associated factors play a role in controlling diversity and distribution of Archaea in estuarine sediments. PMID:25764553

  12. Determination of Natural 14C Abundances in Dissolved Organic Carbon in Organic-Rich Marine Sediment Porewaters by Thermal Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Komada, T.

    2010-12-01

    The abundances of natural 14C in dissolved organic carbon (DOC) in the marine environment hold clues regarding the processes that influence the biogeochemical cycling of this large carbon reservoir. At present, UV irradiation is the widely accepted method for oxidizing seawater DOC for determination of their 14C abundances. This technique yields precise and accurate values with low blanks, but it requires a dedicated vacuum line, and hence can be difficult to implement. As an alternative technique that can be conducted on a standard preparatory vacuum line, we modified and tested a thermal sulfate reduction method that was previously developed to determine δ13C values of marine DOC (Fry B. et al., 1996. Analysis of marine DOC using a dry combustion method. Mar. Chem., 54: 191-201.) to determine the 14C abundances of DOC in marine sediment porewaters. In this method, the sample is dried in a 100 ml round-bottom Pyrex flask in the presence of excess oxidant (K2SO4) and acid (H3PO4), and combusted at 550 deg.C. The combustion products are cryogenically processed to collect and quantify CO2 using standard procedures. Materials we have oxidized to date range from 6-24 ml in volume, and 95-1500 μgC in size. The oxidation efficiency of this method was tested by processing known amounts of reagent-grade dextrose and sucrose (as examples of labile organic matter), tannic acid and humic acid (as examples of complex natural organic matter), and porewater DOC extracted from organic-rich nearshore sediments. The carbon yields for all of these materials averaged 99±4% (n=18). The 14C abundances of standard materials IAEA C-6 and IAEA C-5 processed by this method using >1mgC aliquots were within error of certified values. The size and the isotopic value of the blank were determined by a standard dilution technique using IAEA C-6 and IAEA C-5 that ranged in size from 150 to 1500 μgC (n=4 and 2, respectively). This yielded a blank size of 6.7±0.7 μgC, and a blank isotopic

  13. Relative contribution of shoot and ear photosynthesis to grain filling in wheat under good agronomical conditions assessed by differential organ δ13C

    PubMed Central

    Sanchez-Bragado, Rut; Molero, Gemma; Reynolds, Matthew P.; Araus, Jose Luis

    2014-01-01

    During grain filling in C3 cereals, the shoot (particularly the flag leaf) and the ear are believed to play major roles as sources of assimilates. However, both the cost and the intrusive nature of most of the methodologies available to investigate this have prevented conclusive results being obtained. This study compared the carbon isotope composition (δ13C) in its natural abundance in mature kernels with the δ13C of the water-soluble fraction of the peduncle, glumes, and awns to assess the relative contribution of the shoot (understood as the whole set of photosynthetic organs below the peduncle) and ear to grain filling in a set of highly productive wheat lines from the International Maize and Wheat Improvement Center, Mexico, under good agronomic conditions. In overall terms, the contribution of the ear was greater in comparison with that of the shoot. The specific contribution of the flag leaf blade to grain filling was also assessed by comparing the δ13C of grains with the δ13C of the water-soluble fraction of the flag leaf and the awns. The contribution of the flag leaf was minor, ranging between 3 and 18%. Complementary analyses performed such as gas-exchange rates and the accumulated water-soluble carbohydrates in both organs and light intercepted by the canopy at different strata suggested that the ear has a photosynthetic capacity at least comparable to that of the flag leaf. In this sense, selection for a higher contribution of ear photosynthesis to grain yield in breeding programmes could be addressed with the use of stable isotopes. PMID:25053645

  14. IRMS detection of testosterone manipulated with 13C labeled standards in human urine by removing the labeled 13C.

    PubMed

    Wang, Jingzhu; Yang, Rui; Yang, Wenning; Liu, Xin; Xing, Yanyi; Xu, Youxuan

    2014-12-10

    Isotope ratio mass spectrometry (IRMS) is applied to confirm testosterone (T) abuse by determining the carbon isotope ratios (δ(13)C value). However, (13)C labeled standards can be used to control the δ(13)C value and produce manipulated T which cannot be detected by the current method. A method was explored to remove the (13)C labeled atom at C-3 from the molecule of androsterone (Andro), the metabolite of T in urine, to produce the resultant (A-nor-5α-androstane-2,17-dione, ANAD). The difference in δ(13)C values between Andro and ANAD (Δδ(13)CAndro-ANAD, ‰) would change significantly in case manipulated T is abused. Twenty-one volunteers administered T manipulated with different (13)C labeled standards. The collected urine samples were analyzed with the established method, and the maximum value of Δδ(13)CAndro-ANAD post ingestion ranged from 3.0‰ to 8.8‰. Based on the population reference, the cut-off value of Δδ(13)CAndro-ANAD for positive result was suggested as 1.2‰. The developed method could be used to detect T manipulated with 3-(13)C labeled standards. PMID:25441891

  15. Detection of inflammatory cell function using 13C magnetic resonance spectroscopy of hyperpolarized [6-13C]-arginine

    PubMed Central

    Najac, Chloé; Chaumeil, Myriam M.; Kohanbash, Gary; Guglielmetti, Caroline; Gordon, Jeremy W.; Okada, Hideho; Ronen, Sabrina M.

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are highly prevalent inflammatory cells that play a key role in tumor development and are considered therapeutic targets. MDSCs promote tumor growth by blocking T-cell-mediated anti-tumoral immune response through depletion of arginine that is essential for T-cell proliferation. To deplete arginine, MDSCs express high levels of arginase, which catalyzes the breakdown of arginine into urea and ornithine. Here, we developed a new hyperpolarized 13C probe, [6-13C]-arginine, to image arginase activity. We show that [6-13C]-arginine can be hyperpolarized, and hyperpolarized [13C]-urea production from [6-13C]-arginine is linearly correlated with arginase concentration in vitro. Furthermore we show that we can detect a statistically significant increase in hyperpolarized [13C]-urea production in MDSCs when compared to control bone marrow cells. This increase was associated with an increase in intracellular arginase concentration detected using a spectrophotometric assay. Hyperpolarized [6-13C]-arginine could therefore serve to image tumoral MDSC function and more broadly M2-like macrophages. PMID:27507680

  16. Biosynthetic uniform 13C,15N-labelling of zervamicin IIB. Complete 13C and 15N NMR assignment.

    PubMed

    Ovchinnikova, Tatyana V; Shenkarev, Zakhar O; Yakimenko, Zoya A; Svishcheva, Natalia V; Tagaev, Andrey A; Skladnev, Dmitry A; Arseniev, Alexander S

    2003-01-01

    Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution. PMID:14658801

  17. Regional patterns of 15N natural abundance in forest ecosystems along a large transect in eastern China

    NASA Astrophysics Data System (ADS)

    Sheng, Wenping; Yu, Guirui; Fang, Huajun; Liu, Yingchun; Wang, Qiufeng; Chen, Zhi; Zhang, Li

    2014-02-01

    The regional determining factors underlying inter- and intra-site variation of 15N natural abundance in foliage, O horizon and mineral soil were investigated in eastern China.15N natural abundance values for these forest ecosystems were in the middle of the range of values previously found for global forest ecosystems. In contrast to commonly reported global patterns, temperate forest ecosystems were significantly more15N-enriched than tropical forest ecosystems, and foliage δ15N was negatively correlated with increasing mean annual temperature and net soil N mineralisation in eastern China. Tight N cycling in forest ecosystems and the use of atmospheric N deposition by trees might underlie the δ15N distribution patterns in eastern China. The existence of mycorrhizal fungi and root distribution profiles in the soil may also influence the15N natural abundance patterns in forest ecosystems of eastern China.

  18. Direct uptake of organic carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    NASA Astrophysics Data System (ADS)

    Alexandre, A.; Balesdent, J.; Cazevieille, P.; Chevassus-Rosset, C.; Signoret, P.; Mazur, J.-C.; Harutyunyan, A.; Doelsch, E.; Basile-Doelsch, I.; Miche, H.; Santos, G. M.

    2015-12-01

    In the rhizosphere, the uptake of low molecular weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relatively to total uptake is important, organic C uptake is supposed to be low relatively to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and in which extent organic C absorbed by grass roots, under the form of either intact amino acids (AAs) or microbial metabolites, can feed the organic C occluded in phytoliths. For this purpose we added 13C- and 15N-labeled AAs to the silicon-rich hydroponic solution of the grass Festuca arundinacea. The experiment was designed to prevent C leakage from the labeled nutritive solution to the chamber atmosphere. After 14 days of growth, the 13C and 15N enrichments (13C-excess and 15N-excess) in the roots, stems and leaves, and phytoliths, as well as the 13C-excess in AAs extracted from roots and stems and leaves, were quantified relatively to a control experiment in which no labelled AAs were added. The net uptake of 13C derived from the labeled AAs supplied to the nutritive solution (AA-13C) by Festuca arundinacea represented 4.5 % of the total AA-13C supply. AA-13C fixed in the plant represented only 0.13 % of total C. However, the experimental conditions may have underestimated the extent of the process under natural and field conditions. Previous studies showed that 15N and 13C can be absorbed by the roots in several organic and inorganic forms. In the present experiment, the fact that phenylalanine and methionine, that were supplied in high amount to the nutritive solution, were more 13C-enriched than other AAs in the roots and stems and leaves strongly suggested that part of AA-13C was absorbed and translocated in its original AA form. The concentration of AA-13C represented only 0.15 % of the

  19. Field measurements of del13C in ecosystem respiration

    NASA Astrophysics Data System (ADS)

    van Asperen, Hella; Sabbatini, Simone; Nicolini, Giacomo; Warneke, Thorsten; Papale, Dario; Notholt, Justus

    2014-05-01

    Stable carbon isotope del13C-measurements are extensively used to study ecological and biogeochemical processes in ecosystems. Above terrestrial ecosystems, atmospheric del13C can vary largely due to photosynthetic fractionation. Photosynthetic processes prefer the uptake of the lighter isotope 12C (in CO2), thereby enriching the atmosphere in 13C and depleting the ecosystem carbon. At night, when ecosystem respiratory fluxes are dominant, 13C-depleted CO2 is respired and thereby depletes the atmospheric del13C-content. Different ecosystems and different parts of one ecosystem (type of plant, leaves, and roots) fractionate and respire with a different del13C-ratio signature. By determining the del13C-signature of ecosystem respiration in temporal and spatial scale, an analysis can be made of the composition of respiratory sources of the ecosystem. A field study at a dry cropland after harvest (province of Viterbo, Lazio, Italy) was performed in the summer of 2013. A FTIR (Fourier Transform Infrared Spectrometer) was set up to continuously measure CO2-, CH4-, N2O-, CO- and del13C-concentrations. The FTIR was connected to 2 different flux measurements systems: a Flux Gradient system (sampling every half hour at 1.3m and 4.2m) and 2 flux chambers (measured every hour), providing a continuous data set of the biosphere-atmosphere gas fluxes and of the gas concentrations at different heights. Keeling plot intercept values of respiratory CO2, measured by the Flux Gradient system at night, were determined to be between -25‰ and -20‰. Keeling plot intercept values of respiratory CO2, measured by the flux chamber system, varied between -24‰ and -29‰, and showed a clear diurnal pattern, suggesting different (dominant) respiratory processes between day and night.

  20. Natural abundance nitrogen-15 nuclear magnetic resonance spectral studies on selected donors

    NASA Astrophysics Data System (ADS)

    Someswara Rao, N.; Babu Rao, G.; Murthy, B. N.; Das, M. Maria; Prabhakar, T.; Lalitha, M.

    2002-10-01

    The natural abundance 15N-NMR chemical shifts of selected aliphatic amines, 2-substituted pyridine type compounds, bialicyclic tertiary amines have been measured as a function of the nature of the solvent. In the case of cyclic aliphatic amines, like piperidine, morpholine, piperazine, thiomorpholine, the nitrogen is more shielded in concentrated solution compared to that in dilute solution whereas in the hydrogen bonding and protonating solvents there is a prominent deshielding. 2-Substituted pyridines studied can be further divided into four sub groups. The site of hydrogen bonding and protonation in 2-amino, 2-hydroxy and 2-mercapto pyridines have been conclusively proved from the 15N-NMR chemical shifts and the well-known tautomeric forms of the above compounds. Similarly in the case of 2-(2-thienyl)pyridine and 2-(3-thienyl)pyridine, the site of donation has been proved as the nitrogen of the pyridine ring in both the compounds. In a similar manner, the site of hydrogen bonding and protonation in two individual compounds 2-anilinopyridine and 2-(2-pyridyl)benzimidazole have also been established. Among the bialicyclic amines, 1,2-diazabicyclo[2.2.2]octane (DABCO) behaved differently from the other two compounds. In both 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), it was possible to show that N 1-nitrogen in both the compounds is the site of donation. The effect of the second donor site on the 15N-NMR chemical shift, the site of donation in the selected compounds and some typical compounds reported in literature have been presented and discussed.

  1. Natural Abundance 17O Nuclear Magnetic Resonance and Computational Modeling Studies of Lithium Based Liquid Electrolytes

    SciTech Connect

    Deng, Xuchu; Hu, Mary Y.; Wei, Xiaoliang; Wang, Wei; Chen, Zhong; Liu, Jun; Hu, Jian Z.

    2015-07-01

    Natural abundance 17O NMR measurements were conducted on electrolyte solutions consisting of Li[CF3SO2NSO2CF3] (LiTFSI) dissolved in the solvents of ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), and their mixtures at various concentrations. It was observed that 17O chemical shifts of solvent molecules change with the concentration of LiTFSI. The chemical shift displacements of carbonyl oxygen are evidently greater than those of ethereal oxygen, strongly indicating that Li+ ion is coordinated with carbonyl oxygen rather than ethereal oxygen. To understand the detailed molecular interaction, computational modeling of 17O chemical shifts was carried out on proposed solvation structures. By comparing the predicted chemical shifts with the experimental values, it is found that a Li+ ion is coordinated with four double bond oxygen atoms from EC, PC, EMC and TFSI- anion. In the case of excessive amount of solvents of EC, PC and EMC the Li+ coordinated solvent molecules are undergoing quick exchange with bulk solvent molecules, resulting in average 17O chemical shifts. Several kinds of solvation structures are identified, where the proportion of each structure in the liquid electrolytes investigated depends on the concentration of LiTFSI.

  2. Natural abundance deuterium and 18-oxygen effects on the precision of the doubly labeled water method

    NASA Technical Reports Server (NTRS)

    Horvitz, M. A.; Schoeller, D. A.

    2001-01-01

    The doubly labeled water method for measuring total energy expenditure is subject to error from natural variations in the background 2H and 18O in body water. There is disagreement as to whether the variations in background abundances of the two stable isotopes covary and what relative doses of 2H and 18O minimize the impact of variation on the precision of the method. We have performed two studies to investigate the amount and covariance of the background variations. These were a study of urine collected weekly from eight subjects who remained in the Madison, WI locale for 6 wk and frequent urine samples from 14 subjects during round-trip travel to a locale > or = 500 miles from Madison, WI. Background variation in excess of analytical error was detected in six of the eight nontravelers, and covariance was demonstrated in four subjects. Background variation was detected in all 14 travelers, and covariance was demonstrated in 11 subjects. The median slopes of the regression lines of delta2H vs. delta18O were 6 and 7, respectively. Modeling indicated that 2H and 18O doses yielding a 6:1 ratio of final enrichments should minimize this error introduced to the doubly labeled water method.

  3. Probing surface hydrogen bonding and dynamics by natural abundance, multidimensional, 17O DNP-NMR spectroscopy

    DOE PAGESBeta

    Perras, Frederic A.; Chaudhary, Umesh; Slowing, Igor I.; Pruski, Marek

    2016-05-06

    Dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly being used as a tool for the atomic-level characterization of surface sites. DNP surface-enhanced SSNMR spectroscopy of materials has, however, been limited to studying relatively receptive nuclei, and the particularly rare 17O nuclide, which is of great interest for materials science, has not been utilized. We demonstrate that advanced 17O SSNMR experiments can be performed on surface species at natural isotopic abundance using DNP. We use 17O DNP surface-enhanced 2D SSNMR to measure 17O{1H} HETCOR spectra as well as dipolar oscillations on a series of thermally treatedmore » mesoporous silica nanoparticle samples having different pore diameters. These experiments allow for a nonintrusive and unambiguous characterization of hydrogen bonding and dynamics at the surface of the material; no other single experiment can give such details about the interactions at the surface. Lastly, our data show that, upon drying, strongly hydrogen-bonded surface silanols, whose motions are greatly restricted by the interaction when compared to lone silanols, are selectively dehydroxylated.« less

  4. Natural abundance 17O nuclear magnetic resonance and computational modeling studies of lithium based liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Deng, Xuchu; Hu, Mary Y.; Wei, Xiaoliang; Wang, Wei; Chen, Zhong; Liu, Jun; Hu, Jian Zhi

    2015-07-01

    Natural abundance 17O NMR measurements were conducted on electrolyte solutions consisting of Li[CF3SO2NSO2CF3] (LiTFSI) dissolved in the solvents of ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), and their mixtures at various concentrations. It was observed that 17O chemical shifts of solvent molecules change with the concentration of LiTFSI. The chemical shift displacements of carbonyl oxygen are evidently greater than those of ethereal oxygen, strongly indicating that Li+ ion is coordinated with carbonyl oxygen rather than ethereal oxygen. To understand the detailed molecular interaction, computational modeling of 17O chemical shifts was carried out on proposed solvation structures. By comparing the predicted chemical shifts with the experimental values, it is found that a Li+ ion is coordinated with four double bond oxygen atoms from EC, PC, EMC and TFSI- anion. In the case of excessive amount of solvents of EC, PC and EMC the Li+ coordinated solvent molecules are undergoing quick exchange with bulk solvent molecules, resulting in average 17O chemical shifts. Several kinds of solvation structures are identified, where the proportion of each structure in the liquid electrolytes investigated depends on the concentration of LiTFSI.

  5. Application of Natural Isotopic Abundance ¹H-¹³C- and ¹H-¹⁵N-Correlated Two-Dimensional NMR for Evaluation of the Structure of Protein Therapeutics.

    PubMed

    Arbogast, Luke W; Brinson, Robert G; Marino, John P

    2016-01-01

    Methods for characterizing the higher-order structure of protein therapeutics are in great demand for establishing consistency in drug manufacturing, for detecting drug product variations resulting from modifications in the manufacturing process, and for comparing a biosimilar to an innovator reference product. In principle, solution NMR can provide a robust approach for characterization of the conformation(s) of protein therapeutics in formulation at atomic resolution. However, molecular weight limitations and the perceived need for stable isotope labeling have to date limited its practical applications in the biopharmaceutical industry. Advances in NMR magnet and console technologies, cryogenically cooled probes, and new rapid acquisition methodologies, particularly selective optimized flip-angle short transient pulse schemes and nonuniform sampling, have greatly ameliorated these limitations. Here, we describe experimental methods for the collection and analysis of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra applied to protein drug products at natural isotopic abundance, including representatives from the rapidly growing class of monoclonal antibody (mAb) therapeutics. Practical aspects of experimental setup and data acquisition for both standard and rapid acquisition NMR techniques are described. Furthermore, strategies for the statistical comparison of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra are detailed. PMID:26791974

  6. Relation of desert pupfish abundance to selected environmental variables in natural and manmade habitats in the Salton Sea basin

    USGS Publications Warehouse

    Martin, B.A.; Saiki, M.K.

    2005-01-01

    We assessed the relation between abundance of desert pupfish, Cyprinodon macularius, and selected biological and physicochemical variables in natural and manmade habitats within the Salton Sea Basin. Field sampling in a natural tributary, Salt Creek, and three agricultural drains captured eight species including pupfish (1.1% of the total catch), the only native species encountered. According to Bray-Curtis resemblance functions, fish species assemblages differed mostly between Salt Creek and the drains (i.e., the three drains had relatively similar species assemblages). Pupfish numbers and environmental variables varied among sites and sample periods. Canonical correlation showed that pupfish abundance was positively correlated with abundance of western mosquitofish, Gambusia affinis, and negatively correlated with abundance of porthole livebearers, Poeciliopsis gracilis, tilapias (Sarotherodon mossambica and Tilapia zillii), longjaw mudsuckers, Gillichthys mirabilis, and mollies (Poecilia latipinnaandPoecilia mexicana). In addition, pupfish abundance was positively correlated with cover, pH, and salinity, and negatively correlated with sediment factor (a measure of sediment grain size) and dissolved oxygen. Pupfish abundance was generally highest in habitats where water quality extremes (especially high pH and salinity, and low dissolved oxygen) seemingly limited the occurrence of nonnative fishes. This study also documented evidence of predation by mudsuckers on pupfish. These findings support the contention of many resource managers that pupfish populations are adversely influenced by ecological interactions with nonnative fishes. ?? Springer 2005.

  7. Elevated Bacterial Abundance in Laboratory-Grown and Naturally Occurring Frost Flowers Under Late Winter Conditions

    NASA Astrophysics Data System (ADS)

    Bowman, J. S.; Deming, J. W.

    2009-12-01

    Sea ice has been identified as an important microbial habitat, with bacteria and other microbes concentrated in the brine inclusions between ice crystals. Frost flowers, thought to draw brine from underlying sea ice, have not been characterized from a microbial standpoint. To test whether frost flowers serve as an upward vector of bacteria contained within sea ice brines we grew frost flowers in a freezer laboratory (air temperature of -21°C) from saline water spiked with the mesophilic (and thus passive under experimental conditions) bacterium Halomonas pacifica. Salinity of melted samples was measured and bacterial abundance determined by epifluorescent microscopy. Bacterial counts scaled to ice-melt volume averaged 2.82 x 106 ml-1 for frost flowers, compared to 9.47 x 105 ml-1 for underlying ice (3 x higher). Bacterial counts also correlated significantly with salinity (maximum value of 62.5 psu) for frost flowers, brine skim, and ice (df = 17, r = 0.59, p < 0.0001). Segregation coefficients were calculated to describe the efficiency of transport of both cells and salt from the starting solution into frost flowers. From these coefficients an enrichment index was calculated to test for bacterial concentration into frost flowers at a different rate than salt. Analysis with a Student’s T-test (df = 24, t = 0.306, p = .76) indicated that cells and salt were not transported into frost flowers with a significantly different efficiency. To test these findings in the field we then collected frost flowers (and related samples) from new sea ice near Barrow, Alaska in April 2009. Bacterial counts were significantly elevated (again, a 3-fold increase) in natural frost flowers (mean = 2.73 x 105 ml-1) compared to underlying sea ice (mean = 8.46 x 104 cells ml-1). For all field samples collected (frost flowers, underlying brine skim and sea ice, as well as snow), bacterial abundance correlated significantly with salinity (maximum value 124 psu, df = 40, r = 0.60, p < 0

  8. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. PMID:23913630

  9. Formation and abundance of doubly-substituted methane isotopologues ( 13CH 3D) in natural gas systems

    NASA Astrophysics Data System (ADS)

    Ma, Qisheng; Wu, Sheng; Tang, Yongchun

    2008-11-01

    Formation of the Carbon-13 ( 13C) and deuterium (D) doubly-substituted methane isotopologues ( 13CH 3D) in natural gases is studied utilizing both first-principle quantum mechanism molecular calculation and direct FTIR laboratorial measurements of specifically synthesized high isotope concentration methane gas. For 13CH 3D, the symmetrically breathing mode A0 emerges as IR-detectable attributed to the molecular symmetry lowering to C3v from Td of the non-isotopic methane (CH 4), along with a large vibrational frequency shift from ˜3000 to ˜2250 cm -1. Our studies also indicate that the concentration of 13CH 3D is dependent on the environmental temperature through isotope exchanges among methane isotopologues; and the Gibbs' Free Energy difference due to Quantum Mechanics Zero-Point vibrational motions has the major contribution to this temperature dependency. Potential geologic applications of the 13CH 3D measurement to natural gas exploration and assessments are also discussed. In order to detect the 13CH 3D concentration change of each 50 °C in the natural gas system, a 10 -9 resolution is desirable. Such a measurement could provide important add-on information to distinguish natural gas origin and distribution.

  10. The 13C/2H-glucose test for determination of small intestinal lactase activity.

    PubMed

    Vonk, R J; Stellaard, F; Priebe, M G; Koetse, H A; Hagedoorn, R E; De Bruijn, S; Elzinga, H; Lenoir-Wijnkoop, I; Antoine, J M

    2001-03-01

    To diagnose hypolactasia, determination of lactase enzyme activity in small intestinal biopsy material is considered to be the golden standard. Because of its strongly invasive character and the sampling problems, alternative methods have been looked for. We analysed the 13C-glucose response in serum after consumption of 25 g of naturally enriched 13C-lactose. As an internal standard, 0.5 g of 2H-glucose was added and the 2H-glucose response in serum was measured simultaneously. The studies were performed in healthy volunteers with a background of genetically determined lactase nonpersistence (n = 12; low lactase activity) and lactase persistence (n = 27; high lactase activity). The results were compared with those of the lactose hydrogen breath test, the lactose 13CO2 breath test and the previously described 13C-lactose digestion test. After consumption of 13C-lactose and 2H-glucose, the mean ratio 13C-glucose/2H-glucose concentration in serum at 45-75 min was 0.26 +/- 0.09 in the low lactase activity group and 0.93 +/- 0.17 in the high lactase activity group (P < 0.01). Threshold of the ratio between digesters and maldigesters was calculated as 0.46. Accuracy of the new test was superior to all other tests. We conclude that the 13C/2H-glucose test has the potential of determining the small intestinal lactase activity in vivo and of estimating the amount of lactose which is digested in the small intestine. PMID:11264650