Science.gov

Sample records for natural calcium fluoride

  1. Process for converting magnesium fluoride to calcium fluoride

    DOEpatents

    Kreuzmann, A.B.; Palmer, D.A.

    1984-12-21

    This invention is a process for the conversion of magnesium fluoride to calcium fluoride whereby magnesium fluoride is decomposed by heating in the presence of calcium carbonate, calcium oxide or calcium hydroxide. Magnesium fluoride is a by-product of the reduction of uranium tetrafluoride to form uranium metal and has no known commercial use, thus its production creates a significant storage problem. The advantage of this invention is that the quality of calcium fluoride produced is sufficient to be used in the industrial manufacture of anhydrous hydrogen fluoride, steel mill flux or ceramic applications.

  2. The activity of calcium in calcium-metal-fluoride fluxes

    NASA Astrophysics Data System (ADS)

    Ochifuji, Yuichiro; Tsukihashi, Fumitaka; Sano, Nobuo

    1995-08-01

    The standard Gibbs energy of reaction Ca (1) + O (mass pct, in Zr) = CaO (s) has been determined as follows by equilibrating molten calcium with solid zirconium in a CaO crucible: Δ G° = -64,300(±700) + 19.8(±3.5) T J/mol (1373 to 1623 K) The activities of calcium in the CaOsatd-Ca- MF2 ( M: Ca, Ba, Mg) and CaOsatd-Ca-NaF systems were measured as a function of calcium composition at high calcium contents at 1473 K on the basis of the standard Gibbs energy. The activities of calcium increase in the order of CaF2, BaF2, and MgF2 at the same calcium fraction of these fluxes. The observed activities are compared with those estimated by using the Temkin model for ionic solutions. Furthermore, the possibility of the removal of tramp elements such as tin, arsenic, antimony, bismuth, and lead from carbon-saturated iron by using calcium-metal-fluoride fluxes is discussed.

  3. The activity of calcium in calcium-metal-fluoride fluxes

    SciTech Connect

    Ochifuji, Yuichiro; Tsukihashi, Fumitaka; Sano, Nobuo

    1995-08-01

    The standard Gibbs energy of reaction Ca (1) + {und O} (mass pct, in Zr) = CaO (s) has been determined as follows by equilibrating molten calcium with solid zirconium in a CaO crucible: {Delta}G{degree} = {minus}64,300({+-}700) + 19.8({+-}3.5)T J/mol (1,373 to 1,623 K). The activities of calcium in the CaO{sub satd.}-Ca-MF{sub 2} (M: Ca, Ba, Mg) and CaO{sub satd.}-Ca-NaF systems were measured as a function of calcium composition at high calcium contents at 1,473 K on the basis of the standard Gibbs energy. The activities of calcium increase in the order of CaF{sub 2}, BaF{sub 2}, and MgF{sub 2} at the same calcium fraction of these fluxes. The observed activities are compared with those estimated by using the Temkin model for ionic solutions. Furthermore, the possibility of the removal of tramp elements such as tin, arsenic, antimony, bismuth, and lead from carbon-saturated iron by using calcium-metal-fluoride fluxes is discussed.

  4. Observation of color center peaks in calcium fluoride.

    PubMed

    Aoki, T; Garvie, L A J; Rez, P

    2015-06-01

    Alkali halides such as calcium fluoride all have color center defects that absorb light in the visible region. Using a moncochromator equipped, aberration corrected, scanning transmission electron microscope (STEM) we recorded spectra showing the time evolution of the generation of F and H centers in calcium fluoride. The final stage of electron beam irradiation is the formation of metallic calcium nanoparticles. High resolution low loss spectra for the Vacuum Ultraviolet region were also recorded. PMID:25725200

  5. Ion chromatography detection of fluoride in calcium carbonate.

    PubMed

    Lefler, Jamie E; Ivey, Michelle M

    2011-09-01

    Fluoride in aquatic systems is increasing due to anthropogenic pollution, but little is known about how this fluoride affects organisms that live in and around aquatic habitats. Fluoride can bioaccumulate in structures comprised of calcium carbonate, such as shells and skeletons of both freshwater and saltwater species as diverse as snails, corals, and coccolithophorid algae. In this article, ion chromatography (IC) techniques are developed to detect and quantify fluoride in a matrix of calcium carbonate. Solid samples are dissolved in hydrochloric acid, pretreated to remove the majority of the chloride ions, and then analyzed using IC. With these methods, the 3σ limit of detection is 0.2 mg of fluoride/kg of calcium carbonate. PMID:21859530

  6. Thermochemistry of calcium oxide and calcium hydroxide in fluoride slags

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Mitchell, A.

    1990-08-01

    Calcium oxide activity in binary CaF2-CaO and ternary CaF2-CaO-Al2O3 and CaF2-CaO-SiO2 slags has been determined by CO2-slag equilibrium experiments at 1400 °C. The carbonate ca-pacity of these slags has also been computed and compared with sulfide capacity data available in the literature. The similarity in trends suggests the possibility of characterizing carbonate capacity as an alternative basicity index for fluoride-base slags. Slag-D2O equilibrium experi-ments are performed at 1400°C with different fluoride-base slags to determine water solubility at two different partial pressures of D2O, employing a new slag sampling technique. A novel isotope tracer detection technique is employed to analyze water in the slags. The water solubility data found show higher values than the previous literature data by an order of magnitude but show a linear relationship with the square root of water vapor partial pressure. The activity of hydroxide computed from the data is shown to be helpful in estimating water solubility in in-dustrial electroslag remelting (ESR) slags.

  7. Pyrochemical recovery of plutonium from calcium fluoride reduction slag

    DOEpatents

    Christensen, D.C.

    A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.

  8. Tamarind (Tamarindus indica) fruit shell carbon: A calcium-rich promising adsorbent for fluoride removal from groundwater.

    PubMed

    Sivasankar, V; Rajkumar, S; Murugesh, S; Darchen, A

    2012-07-30

    Tamarindus indica fruit shells (TIFSs) are naturally calcium rich compounds. They were impregnated with ammonium carbonate and then carbonized, leading to ammonium carbonate activated ACA-TIFS carbon. The resulting materials and carbon arising from virgin fruit shells V-TIFS were characterized and assayed as adsorbent for the removal of fluoride anions from groundwater. The fluoride scavenging ability of TIFS carbons was due to naturally dispersed calcium compounds. X-ray diffraction (XRD) showed that TIFS carbon contained a mixture of calcium oxalate and calcium carbonate. Batch studies on the fluoride removal efficiency of TIFS carbons with respect to contact time, pH, initial fluoride concentration, and co-ion interference were conducted. Applicability of various kinetic models (viz., pseudo-first-order, pseudo-second-order, intra-particle diffusion and Elovich) and sorption isotherms were tested for batch techniques. The fluoride removal capacity of TIFS carbons was found to be 91% and 83% at a pH of 7.05 for V-TIFS and ACA-TIFS carbons, respectively. The practical applicability of TIFS carbons using groundwater samples was approved. The fluoride removal was greater in groundwater without hydrogen carbonate ions than those containing these ions. The characterizations of fluoride unloaded and loaded TIFS carbons were done by SEM and XRD studies. PMID:22626627

  9. Characterization of the terbium-doped calcium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Zheleznov, Dmitry S.; Starobor, Aleksey V.; Palashov, Oleg V.

    2015-08-01

    Optical, thermo-optical and magneto-optical characteristics of the terbium-doped (10 at.%) calcium fluoride sample were investigated. It was made the analysis, confirmed the possibility of development of a Faraday isolator and a cryogenic Faraday isolator based on the studied medium, which will provide more than 30 dB isolation ratio of laser radiation in the "eye-safe" wavelength range (1530-1620 nm) at the 5 and 20 kW power, respectively.

  10. The Effect of Calcium Pre-Rinse on Salivary Fluoride After 900 ppm Fluoride Mouthwash: A Randomized Clinical Trial

    PubMed Central

    Ramazani, Nahid; Ahmadi, Rahil; Heidari, Zahra; Hushmandi, Arezoo

    2013-01-01

    Objective: Calcium fluoride deposit during fluoride application. Uptake and retention of fluoride by saliva depends generally on the concentration of calcium. In this study, the effect of calcium pre-rinse on salivary fluoride concentration after a 900 ppm fluoride mouthwash was investigated. Materials and Methods: This cross-over double-blind randomized clinical trial was conducted in a girls’ dormitory in Zahedan University of Medical Sciences, southeast Iran. In this study, 42 female dental students were chosen using simple randomization. During the first phase, 21 subjects (group A) used fluoride rinse (F regimen) and the remaining (group B) used calcium pre-rinse followed immediately by fluoride rinse (Ca + F regimen). In the second phase, participants rinsed using the mouthwashes not previously used. Prior to each phase prophylaxis was performed and no fluoridated product was used during a two-week interval between the phases. Salivary samples were taken immediately before (baseline), 1 and 12 hours after rinsing. The salivary fluoride concentration was determined using fluoride sensitive electrode. Repeated measures ANOVA was used for statistical analysis and the significance level was set at P<0.05. Results: There was significant difference between fluoride concentrations at different time points (P< 0.001). Significant differences were observed when the different time points of two regimens were examined. In contrast to this, the baseline before using F regimen and the baseline before using Ca + F regimen did not show any significance (P= 0.070). Conclusion: Pre-rinsing with calcium before fluoride is recommended because of significant increases in salivary fluoride concentration. PMID:24396357

  11. Effect of oral calcium and calcium + fluoride treatments on mouse bone properties during suspension

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Luttges, M. W.; Allen, K. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The bone effects of oral dosages of calcium chloride with or without supplementary sodium fluoride were assessed in antiorthostatically suspended mice. Two calcium dosages were used to replace half (3.1 mM) or all(6.3 mM) of the dietary calcium lost due to reduced food intake by the suspended mice. Two groups of 6.3 mM CaCl2-treated mice were additionally treated with 0.25 or 2.5 mM NaF. The results indicate that supplementation of the mouse drinking water with calcium salts prevents bone changes induced by short-term suspension, while calcium salts in combination with fluoride are less effective as fluoride dosage increases. However, the calcium supplements change the relationship between the femur mechanical properties and the mineral composition of the bone. Because of this, it appears that oral calcium supplements are effective through a mechanism other than simple dietary supplementation and may indicate a dependence of bone consistency on systemic and local fluid conditions.

  12. Gum containing calcium fluoride reinforces enamel subsurface lesions in situ.

    PubMed

    Kitasako, Y; Sadr, A; Hamba, H; Ikeda, M; Tagami, J

    2012-04-01

    The aim of this study was to assess the effect of chewing gum containing phosphoryl oligosaccharides of calcium (POs-Ca) and a low concentration of fluoride (F) on the hardness of enamel subsurface lesions, utilizing a double-blind, randomized, and controlled in situ model. Fifteen individuals wore removable lingual appliances with 3 bovine-enamel insets containing subsurface demineralized lesions. Three times a day for 14 days, they chewed one of the 3 chewing gums (placebo, POs-Ca, POs-Ca+F). After the treatment period, cross-sectional mineral content, nanoindentation hardness, and fluoride ion mapping by time-of-flight secondary ion mass spectrometry (TOF-SIMS) were evaluated. Although there were no statistical differences in overall mineral content and hardness recovery rates between POs-Ca and POs-Ca+F subsurface lesions (p > 0.05), nanoindentation at 1-μm distance increments from the surface showed statistical differences in hardness recovery rate between POs-Ca and POs-Ca+F in the superficial 20-μm region (p < 0.05). Fluoride mapping revealed distribution of the ion up to 20 μm from the surface in the POs-Ca+F group. Nanoindentation and TOF-SIMS results highlighted the benefits of bioavailability of fluoride ion on reinforcement of the superficial zone of subsurface lesions in situ (NCT01377493). PMID:22337700

  13. Antibacterial and physical properties of calcium-phosphate and calcium-fluoride nanocomposites with chlorhexidine

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Xu, Hockin H. K.; Kraigsley, Alison M.; Lin, Nancy J.; Lin-Gibson, Sheng; Zhou, Xuedong

    2012-01-01

    Objectives Previous studies have developed calcium phosphate and fluoride releasing composites. Other studies have incorporated chlorhexidine (CHX) particles into dental composites. However, CHX has not been incorporated in calcium phosphate and fluoride composites. The objectives of this study were to develop nanocomposites containing amorphous calcium phosphate (ACP) or calcium fluoride (CaF2) nanoparticles and CHX particles, and investigate S. mutans biofilm formation and lactic acid production for the first time. Methods Chlorhexidine was frozen via liquid nitrogen and ground to obtain a particle size of 0.62 µm. Four nanocomposites were fabricated with fillers of: Nano ACP; nano ACP+10% CHX; nano CaF2; nano CaF2+10% CHX. Three commercial materials were tested as controls: A resin-modified glass ionomer, and two composites. S. mutans live/dead assay, colony-forming unit (CFU) counts, biofilm metabolic activity, and lactic acid were measured. Results Adding CHX fillers to ACP and CaF2 nanocomposites greatly increased their antimicrobial capability. ACP and CaF2 nanocomposites with CHX that were inoculated with S. mutans had a growth medium pH > 6.5 after 3 d, while the control commercial composites had a cariogenic pH of 4.2. Nanocomposites with CHX reduced the biofilm metabolic activity by 10–20 folds and reduced the acid production, compared to the controls. CFU on nanocomposites with CHX were three orders of magnitude less than that on commercial composite. Mechanical properties of nanocomposites with CHX matched a commercial composite without fluoride. Significance The novel calcium phosphate and fluoride nanocomposites could be rendered antibacterial with CHX to greatly reduce biofilm formation, acid production, CFU and metabolic activity. The antimicrobial and remineralizing nanocomposites with good mechanical properties may be promising for a wide range of tooth restorations with anti-caries capabilities. PMID:22317794

  14. PHz current switching in calcium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Kwon, Ojoon; Kim, D.

    2016-05-01

    We demonstrate that a current can be induced and switched in a sub-femtosecond time-scale in an insulating calcium fluoride single crystal by an intense optical field. This measurement indicates that a sizable current can be generated and also controlled by an optical field in a dielectric medium, implying the capability of rapid current switching at a rate of optical frequency, PHz (1015 Hz), which is a couple of orders of magnitude higher than that of contemporary electronic signal processing. This demonstration may serve to facilitate the development of ultrafast devices in PHz frequency.

  15. Intraoral evaluation of mineralization of cosmetic defects by a toothpaste containing calcium, fluoride, and sodium bicarbonate.

    PubMed

    Litkowski, Leonard J; Quinlan, Kathleen B; Ross, David R; Ghassemi, Annahita; Winston, Anthony; Charig, Andrew; Flickinger, Mark; Vorwerk, Linda

    2004-09-01

    New dual-phase fluoride toothpastes that contain soluble calcium, phosphate, and baking soda have recently been introduced into the market. These toothpastes are designed to fill in small surface defects in tooth enamel and thereby enhance tooth esthetics such as gloss. This two-part study was designed to assess these superficial mineralizing effects from using one of these products compared with an experimental calcium-containing, bicarbonate-free formulation and a conventional fluoride toothpaste using an intraoral model. Enamel specimens with 4 types of defects were mounted into an intraoral appliance and placed in the mouths of volunteers for 1 month. The four types of defects were whitening toothpaste abrasion, coarse abrasion, natural dimpling, and acid etching. Before and after intraoral exposure, scanning electron microscope photographs of the specimens were made. The surface microhardness of the acid-etched specimens also was determined. The volunteers brushed their specimens twice daily with one of three randomly assigned toothpastes. The toothpastes were a two-phase, calcium-containing, bicarbonate-based toothpaste; an experimental, two-phase, calcium-containing, bicarbonate-free toothpaste; and a conventional toothpaste. Only the calcium-containing toothpastes showed unequivocal signs of mineral deposition into surface defects, leading to smoothing of the enamel. All three products significantly increased the hardness of the etched enamel, presumably because of fluoride. However, only the two calcium-containing toothpastes gave significantly greater hardness increases than the conventional toothpaste; the specimens treated with a conventional toothpaste were indistinguishable from those treated with saliva. PMID:15645904

  16. Laser-Induced Damage of Calcium Fluoride

    SciTech Connect

    Espana, Aubrey L.; Joly, Alan G.; Hess, Wayne P.; Dickinson, J T.

    2004-12-01

    Radiation damage of materials has long been of fundamental interest, especially since the growth of laser technology. One such source of damage comes from UV laser light. Laser systems continue to move into shorter wavelength ranges, but unfortunately are limited by the damage threshold of their optical components. For example, semiconductor lithography is making its way into the 157nm range and requires a material that can not only transmit this light (air cannot), but also withstand the highly energetic photons present at this shorter wavelength. CaF2, an alkaline earth halide, is the chosen material for vacuum UV 157 nm excimer radiation. It can transmit light down to 120 nm and is relatively inexpensive. Although it is readily available through natural and synthetic sources, it is often times difficult to find in high purity. Impurities in the crystal can result in occupied states in the band gap that induce photon absorption [2] and ultimately lead to the degradation of the material. In order to predict how well CaF2 will perform under irradiation of short wavelength laser light, one must understand the mechanisms for laser-induced damage. Laser damage is often a two-step process: initial photons create new defects in the lattice and subsequent photons excite these defects. When laser light is incident on a solid surface there is an initial production of electron-hole (e-h) pairs, a heating of free electrons and a generation of local heating around optically absorbing centers [3]. Once this initial excitation converts to the driving energy for nuclear motion, the result is an ejection of atoms, ions and molecules from the surface, known as desorption or ablation [3]. Secondary processes further driving desorption are photoabsorption, successive excitations of self-trapped excitons (STE's) and defects, and ionization of neutrals by incident laser light [3]. The combination of laser-induced desorption and the alterations to the electronic and geometrical

  17. Fluoride varnishes with calcium glycerophosphate: fluoride release and effect on in vitro enamel demineralization.

    PubMed

    Carvalho, Thiago Saads; Peters, Bianca Glerean; Rios, Daniela; Magalhães, Ana Carolina; Sampaio, Fabio Correia; Buzalaf, Marília Afonso Rabelo; Bönecker, Marcelo José Strazzeri

    2015-01-01

    The aims of this study were (1) to assess the amount of fluoride (F) released from varnishes containing calcium glycerophosphate (CaGP) and (2) to assess the effect of the experimental varnishes on in vitro demineralization. Six test groups using 5 varnishes: base varnish (no active ingredients); Duraphat® (2.26% NaF); Duofluorid® (5.63% NaF/CaF2); experimental varnish 1 (1% CaGP/5.63% NaF/CaF2); experimental varnish 2 (5% CaGP/5.63% NaF/CaF2); and no varnish were set up. In stage 1, 60 acrylic blocks were randomly distributed into 6 groups (n = 10). Then 300 µg of each varnish was applied to each block. The blocks were immersed in deionized water, which was changed after 1, 8, 12, 24, 48 and 72 hours. Fluoride concentration in the water was analyzed using a fluoride electrode. In stage 2, 60 bovine enamel samples were distributed into 6 groups (n = 10), and treated with 300 µg of the respective varnish. After 6 h the varnish was removed and the samples were subjected to a 7-day in vitro pH cycle (6 h demineralization/18 h remineralization per day). The demineralization was measured using surface hardness. The results showed that both experimental varnishes released more fluoride than Duofluorid® and Duraphat® (p < 0.05), but Duraphat® showed the best preventive effect by decreasing enamel hardness loss (p < 0.05). Therefore, we conclude that even though (1) the experimental varnishes containing CaGP released greater amounts of F, (2) they did not increase in the preventive effect against enamel demineralization. PMID:26176358

  18. Fluoride concentrations in dental plaque and saliva after the use of a fluoride dentifrice preceded by a calcium lactate rinse.

    PubMed

    Pessan, Juliano P; Sicca, Cristina M; de Souza, Tatiana S; da Silva, Salete M B; Whitford, Gary M; Buzalaf, Marília A R

    2006-12-01

    Plaque fluoride concentrations ([F]) are directly related to plaque calcium concentrations [Ca]. Attempts to increase plaque F uptake from dentifrices or rinses have used methods designed to increase plaque [Ca] but with inconsistent results. This double-blind, double-crossover study tested the effect of a 150 mM calcium lactate rinse used prior to brushing with placebo or fluoridated dentifrices (1030 p.p.m. as NaF) on plaque and salivary [F] and [Ca]. Sixteen children (8-10 yr of age) were randomly assigned to four different groups according to the four treatments (placebo dentifrice or fluoridated dentifrice preceded by calcium lactate or deionized water prerinses). Plaque and saliva were collected 1 and 12 h after brushing on day 7 after starting to use the dentifrices. F was determined using the electrode and Ca was determined using atomic absorption spectrometry. Plaque and salivary [Ca] were not significantly increased after use of the calcium lactate prerinse, except for plaque [Ca] 1 h after the use of the placebo dentifrice. A significant increase in salivary [F] was associated with the calcium lactate prerinse only at 1 h after the use of the fluoridated dentifrice. The the calcium lactate prerinse did not significantly affect plaque [F] under any condition. PMID:17184230

  19. Calcium Fluoride Precipitation and Deposition From 12 mmol/L Fluoride Solutions With Different Calcium Addition Rates

    PubMed Central

    Markovic, M; Takagi, S; Chow, LC; Frukhtbeyn, S

    2009-01-01

    The effects of different Ca-addition rates on calcium fluoride (CaF2) precipitation and deposition were investigated in 12 mmol/L sodium fluoride solutions to which 0.1 mol/L calcium chloride solution was continuously added at average rates of (5, 7.5, 10, 12.5, 15 or 20) mmol L−1 min−1. The changes in ionic fluoride and calcium concentrations, as well as turbidity, were continuously recorded by F and Ca electrodes, and a fiber optic based spectrophotometer, respectively. The F− concentration decreased and turbidity increased with time indicating precipitation of CaF2. For the systems with Ca-addition rates of (5, 7.5, 10, 12.5, 15, and 20) mmol L−1 min−1, the 1 min CaF2 depositions in the model substrate (cellulose filter paper, pores 0.2 µm) expressed as mean ± SD of deposited F per substrate surface area were (3.78 ± 0.31, 11.45 ± 0.89, 9.31 ± 0.68, 8.20 ± 0.56, 6.63 ± 0.43, and 2.09 ± 0.28) µg/cm2, respectively (n = 10 for each group). The 1-min F depositions did not show positive correlation to Ca-addition rates. The lowest 1-min F deposition was obtained in the systems with the highest Ca-addition rate of 20 mmol L−1 min−1 for which CaF2 precipitation rate reached the maximum value of 0.31 mmol L−1 s−1 almost immediately after beginning of reaction (6 s). The largest 1-min F depositions were obtained from the systems with Ca addition rates of (7.5 to 12.5) mmol L−1 min−1 in which CaF2 precipitation rates continuously increased reaching the maximum values of (0.13 to 0.20) mmol L−1 s−1 after (18 to 29) s, respectively. The 1-min F depositions were greatly enhanced in comparison with the control F solutions that did not have continuous Ca-addition. This indicates that continuous Ca addition that controls the rate of CaF2 formation could be a critical factor for larger F depositions from F solutions. The efficacy of conventional F mouthrinses could be improved with addition of a substance that continuously releases Ca.

  20. Calcium mobilization and phosphoinositide turnover in fluoride-activated human neutrophils

    SciTech Connect

    Strnad, C.F.; Wong, K.

    1986-05-01

    Fluoride ion, at concentrations above 10 mM, has been found to activate a superoxide production response in human neutrophils which is strongly dependent on the presence of extracellular calcium. In an attempt to further explore the calcium requirement of fluoride-induced neutrophil activation, intracellular calcium concentrations were monitored through use of the fluorescent calcium probe, Quin 2. Fluoride ion, at concentrations between 10 and 20 mM, was found to elicit a rise in intracellular calcium levels which was characterized by a lag period of 4 to 10 min and a prolonged duration of action (greater than 20 min). In contrast, the chemotactic peptide, formylmethionyl-leucyl-phenylalanine (FMLP), induced a rise in intracellular calcium concentration which peaked within 1 min. Preincubation of cells with 1 ..mu..g/ml pertussis toxin resulted in inhibition of the FMLP-induced response, but not that elicited by fluoride. Furthermore, anion exchange chromatography indicated that inositol phosphate accumulation occurred in fluoride-treated cells in association with calcium mobilization. Recent evidence suggests that the FMLP receptor is coupled to phospholipase C and phosphoinositide turnover through a guanine nucleotide binding protein susceptible to inhibition by pertussis toxin. Present results suggest that fluoride ion may serve to activate this protein in a manner resistant to inhibition by pertussis toxin.

  1. Mechanism of Calcium Fluoride Acceleration for Vacuum Carbothermic Reduction of Magnesia

    NASA Astrophysics Data System (ADS)

    Jiang, Yun; Liu, Yu-qin; Ma, Hong-wen; Zhou, Wei-gong

    2016-04-01

    The use of a small amount of calcium fluoride as an additive greatly accelerated the reduction of magnesia during the preparation of magnesium from magnesia using the vacuum carbothermic reduction method. At 1573 K (1300 °C), the magnesia reaction rates of the samples with 1, 3, and 5 pct CaF2 were all approximately 26 pct, three times that of free CaF2, and they were arranged in order of the calcium fluoride weight percentages at 1673 K (1400 °C). The residues were analyzed using chemical analysis, XRD, SEM, EDS, and XRF. The possible acceleration mechanism was discussed. Calcium fluoride combined with magnesia and silicon dioxide to form a eutectic that melted as a channel to aid the solid-solid reaction between carbon and magnesia at approximately 1573 K (1300 °C). Calcium fluoride in the molten state offered free calcium ions and fluorine ions. Fluorine ions entered and distorted the magnesia crystal lattice. The structural strength and chemical stability of the magnesia crystal lattice decreased, which facilitated the magnesia reduction by carbon. Calcium ions were employed to generate the calcium and magnesium silicate. The easyly evaporating fluorides, including magnesium fluoride and silicon tetrafluoride, were regarded as the main reason for the loss of fluorine.

  2. Birefringence simulation of annealed ingot of calcium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Ogino, H.; Miyazaki, N.; Mabuchi, T.; Nawata, T.

    2008-01-01

    We developed a method for simulating birefringence of an annealed ingot of calcium fluoride single crystal caused by the residual stress after annealing process. The method comprises the heat conduction analysis that provides the temperature distribution during the ingot annealing, the elastic thermal stress analysis using the assumption of the stress-free temperature that provides the residual stress after annealing, and the birefringence analysis of an annealed ingot induced by the residual stress. The finite element method was applied to the heat conduction analysis and the elastic thermal stress analysis. In these analyses, the temperature dependence of material properties and the crystal anisotropy were taken into account. In the birefringence analysis, the photoelastic effect gives the change of refractive indices, from which the optical path difference in the annealed ingot is calculated by the Jones calculus. The relation between the Jones calculus and the approximate method using the stress components averaged along the optical path is discussed theoretically. It is found that the result of the approximate method agrees very well with that of the Jones calculus in birefringence analysis. The distribution pattern of the optical path difference in the annealed ingot obtained from the present birefringence calculation methods agrees reasonably well with that of the experiment. The calculated values also agree reasonably well with those of the experiment, when a stress-free temperature is adequately selected.

  3. Optical Zeeman Spectroscopy of Calcium Fluoride, CaF.

    NASA Astrophysics Data System (ADS)

    Steimle, Timothy; Kokkin, Damian L.; Delvin, Jack; Tarbutt, Michael

    2015-06-01

    Recently laser cooling has been demonstrated for the diatomic radical calcium fluoride, CaF. The mechanism of magneto-optical trapping for diatomic molecules has been elucidated recently by Tarbutt where a rate model was used to model the interaction of molecules with multiple frequencies of laser light. It was shown that the correct choice of laser polarization depends on the sign of the upper state magnetic g-factor. The magnetic tuning of the low rotational levels in the X^2σ^+, A^2Π and B^2σ^+ electronic states of CaF, have been experimentally investigated using high resolution optical Zeeman spectroscopy of a cold molecular beam sample. The observed Zeeman-induced shifts and splittings were successfully modeled using a traditional effective Hamiltonian approach to account for the interaction between the (ν=0) A^2Π and (ν=0) B^2σ^+ states. The determined magnetic g-factors for the X^2σ^+, A^2Π and B^2σ^+ states are compared to those predicted by perturbation theory. V. Zhelyazkova, A. Cournol, T.E. Wall, A. Matsushima, J.J. Hudson, E.A. Hinds, M.R. Tarbutt and B.E. Sauer, Phys. Rev. A 89, 053416 (2014) M. R. Tarbutt, New J. Phys 17, 015007 (2015)

  4. Elevation of PTH and PTHrp induced by excessive fluoride in rats on a calcium-deficient diet.

    PubMed

    Xu, Hui; Liu, Qin-Yi; Zhang, Jing-Min; Zhang, He; Li, Guang-Sheng

    2010-10-01

    Study on the role of parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrp) in the process of skeletal fluorosis, involved especially in calcium deficiency, is rare. We evaluated the level of serum PTH and mRNA expression of PTHrp in femur when rats were exposed to excessive fluoride with low-calcium diet. Wistar rats (n = 60) was divided into four groups, a control group, fluoride group, low-calcium group, and low-calcium fluoride group. The fluoride groups were treated with fluoride by drinking tap water containing 100 mg F-/L. The low-calcium diet contained 0.05% calcium. Serum was collected in the first, fourth, eighth, and 12th of phase for the detemination of PTH and Ca(2+). RNA extraction from femora was used to analyze the mRNA express of PTHrp, osteopontin (OPN), and osteocalcin (OCN) after 12 weeks of fluoride dosing. Results showed that serum PTH increased gradually with the extension of fluoride exposure, but Ca2+ decreased, both of which embodied a time-dependent relationship. Cotreatment of excessive fluoride with low-calcium diet largely stimulated the secretion of PTH. The low dietary calcium markedly increased mRNA expression of PTHrp in animals with fluoride treatment. Expression of OPN and OCN significantly increased in the rats treated with excessive fluoride and low-calcium diet. We demonstrated that fluoride by itself affected the body's calcium metabolism and stimulate the secretion of PTH. PTH may play an important role in anabolic effect of excessive fluoride on bone turnover of skeletal fluorosis and calcium deficiency exacerbated the action of PTH and PTHrp on the characteristic bone lesion of fluorosis. PMID:19915804

  5. The effect of fluoride on bone of rats fed diets deficient in calcium or phosphorus.

    PubMed

    Guggenheim, K; Simkin, A; Wolinsky, I

    1976-11-24

    Four groups of weanling rats were fed for 2 weeks on a diet sufficient or insufficient in calcium and/or phosphorus. Each group was divided into four subgroups which were offered distilled water supplemented with 0, 50, 75, or 150 ppm fluoride. High levels of fluoride in drinking water inhibited weight gain. This inhibition was less in rats deficient in phosphorus than when normal-phosphorus diets were offered. At a low level, fluoride was without any effect on bone ash, thickness of femoral cortical bone, and mechanical strength, as measured by maximal load, ultimate stress to breaking, and limit of elasticity. Modulus of elasticity was decreased. At higher levels fluoride tended to decrease most of these parameters, except in rats deprived of both calcium and phosphorus. The effect of fluoride was modified by lack of dietary calcium and/or phosphorus and appeared to be weaker in rats deficient in these nutrients. Lack of dietary calcium and/or phosphorus decreased bone strength more than did fluoride content of water and of bone mineral. Concentration of bone ash and thickness of femoral cortical bone were closely correlated with parameters of mechanical strength. PMID:1000346

  6. Effect of Fluoride, Casein Phosphopeptide–Amorphous Calcium Phosphate and Casein Phosphopeptide–Amorphous Calcium Phosphate Fluoride on Enamel Surface Microhardness After Microabrasion: An in Vitro Study

    PubMed Central

    Ahmadi Zenouz, Ghazaleh; Ezoji, Fariba; Khafri, Soraya

    2015-01-01

    Objectives: This study aimed to assess the effect of applying casein phosphopeptide– amorphous calcium phosphate (CPP-ACP) paste, casein phosphopeptide–amorphous calcium phosphate fluoride (CPP-ACPF) paste and sodium fluoride gel on surface microhardness of enamel after microabrasion. Materials and Methods: Thirty freshly extracted human premolars were selected. All samples were subjected to hardness indentations made with the Vickers hardness machine and the average value was recorded as the initial surface microhardness. The specimens were then randomly divided into three groups (n=10) of CPP-ACPF, fluoride and CPPACP. The teeth were micro-abraded with Opalustre. Microhardness test was performed to assess the post-abrasion hardness. Three remineralization modalities were performed on samples of each group. The enamel surface microhardness measurements were performed. To compare the difference between groups, the rehardening and softening values were defined. One-way ANOVA and Tukey’s post hoc test at a significance level of 5% were used for statistical analysis. Results: The mean microhardness value (MMV) had a significant decrease after microabrasion from baseline. The MMV had a significant increase after remineralization in all groups. The MMV of CPP-ACPF group was significantly more than that of fluoride group (P=0.027). The rehardening value of fluoride group was significantly more than that of other groups (P<0.001). Conclusion: All the remineralizing agents were effective for rehardening the enamel after microabrasion. The CPP-ACP and CPP-ACPF pastes are effective, but to a lesser extent than neutral sodium fluoride gel in remineralizing enamel surface. Incorporation of fluoride to CPP-ACP formulation does not provide any additional remineralizing potential. PMID:27252753

  7. Apatite precipitation on a novel fast-setting calcium silicate cement containing fluoride

    PubMed Central

    Ranjkesh, Bahram; Chevallier, Jacques; Salehi, Hamideh; Cuisinier, Frédéric; Isidor, Flemming; Løvschall, Henrik

    2016-01-01

    Abstract Aim: Calcium silicate cements are widely used in endodontics. Novel fast-setting calcium silicate cement with fluoride (Protooth) has been developed for potential applications in teeth crowns including cavity lining and cementation. Objective: To evaluate the surface apatite-forming ability of Protooth compositions as a function of fluoride content and immersion time in phosphate-buffered saline (PBS). Material and methods: Three cement compositions were tested: Protooth (3.5% fluoride and 10% radiocontrast), ultrafast Protooth (3.5% fluoride and 20% radiocontrast), and high fluoride Protooth (15% fluoride and 25% radiocontrast). Powders were cap-mixed with liquid, filled to the molds and immersed in PBS. Scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy were used to characterize the precipitations morphology and composition after 1, 7, 28, and 56 days. Apatite/belite Raman peak height indicated the apatite thickness. Results: Spherical calcium phosphate precipitations with acicular crystallites were formed after 1-day immersion in PBS and Raman spectra disclosed the phosphate band at 965 cm−1, supporting the apatite formation over Protooth compositions. The apatite deposition continued and more voluminous precipitations were observed after 56 days over the surface of all cements. Raman bands suggested the formation of β-type carbonated apatite over Protooth compositions. High fluoride Protooth showed the most compact deposition with significantly higher apatite/belite ratio compared to Protooth and ultrafast Protooth after 28 and 56 days. Conclusions: Calcium phosphate precipitations (apatite) were formed over Protooth compositions after immersion in PBS with increasing apatite formation as a function of time. High fluoride Protooth exhibited thicker apatite deposition. PMID:27335901

  8. Plaque fluoride concentrations in a community without water fluoridation: effects of calcium and use of a fluoride or placebo dentifrice.

    PubMed

    Whitford, G M; Buzalaf, M A R; Bijella, M F B; Waller, J L

    2005-01-01

    The results of a recent study by Whitford et al. [Caries Res 2002;36:256-265] with subjects whose drinking water was fluoridated led to two major conclusions: (1) Compared to the use of a placebo dentifrice, plaque fluoride concentrations ([F]) throughout much of the day are not significantly increased by the use of an F dentifrice but (2) they are positively related to plaque [Ca] (p = 0.0001). The present double-blind, double-crossover study with 16 subjects used the same protocol and was done to: (1) determine the effects of the use of an F dentifrice on salivary and plaque [F] in a community without water fluoridation and (2) further examine the relationship between plaque [Ca] and [F]. Following the use of an F dentifrice or placebo for one week, whole saliva and plaque were collected 1.0 and 12 h after the last use of the products. The study was repeated to include rinsing with a 20 mmol/l CaCl(2) solution immediately before the use of the dentifrices. The CaCl(2) rinse had only minor effects on salivary [Ca] and [F] and none on the plaque concentrations. Unlike the results found in the fluoridated community, all salivary and plaque [F] associated with the use of the F dentifrice were significantly higher than those associated with the use of the placebo. The results suggest that the cariostatic effectiveness of an F dentifrice should be greater in areas without water fluoridation. As noted previously, plaque [F] were positively related to plaque [Ca] (p = 0.0001). PMID:15741721

  9. Fluoride

    MedlinePlus

    Fluoride is used to prevent tooth decay. It is taken up by teeth and helps to strengthen ... and block the cavity-forming action of bacteria. Fluoride usually is prescribed for children and adults whose ...

  10. Fluoride

    MedlinePlus

    Fluoride is used to prevent tooth decay. It is taken up by teeth and helps to strengthen teeth, resist acid, and block the cavity-forming action of bacteria. Fluoride usually is prescribed for children ...

  11. Liquid Fluoride Salt Experimentation Using a Small Natural Circulation Cell

    SciTech Connect

    Yoder Jr, Graydon L; Heatherly, Dennis Wayne; Williams, David F; Elkassabgi, Yousri M.; Caja, Joseph; Caja, Mario; Jordan, John; Salinas, Roberto

    2014-04-01

    A small molten fluoride salt experiment has been constructed and tested to develop experimental techniques for application in liquid fluoride salt systems. There were five major objectives in developing this test apparatus: Allow visual observation of the salt during testing (how can lighting be introduced, how can pictures be taken, what can be seen) Determine if IR photography can be used to examine components submerged in the salt Determine if the experimental configuration provides salt velocity sufficient for collection of corrosion data for future experimentation Determine if a laser Doppler velocimeter can be used to quantify salt velocities. Acquire natural circulation heat transfer data in fluoride salt at temperatures up to 700oC All of these objectives were successfully achieved during testing with the exception of the fourth: acquiring velocity data using the laser Doppler velocimeter. This paper describes the experiment and experimental techniques used, and presents data taken during natural circulation testing.

  12. Physiologic Conditions Affect Toxicity of Ingested Industrial Fluoride

    PubMed Central

    Sauerheber, Richard

    2013-01-01

    The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings. PMID:23840230

  13. Combinatorial incorporation of fluoride and cobalt ions into calcium phosphates to stimulate osteogenesis and angiogenesis.

    PubMed

    Birgani, Zeinab Tahmasebi; Gharraee, Nazli; Malhotra, Angad; van Blitterswijk, Clemens A; Habibovic, Pamela

    2016-02-01

    Bone healing requires two critical mechanisms, angiogenesis and osteogenesis. In order to improve bone graft substitutes, both mechanisms should be addressed simultaneously. While the individual effects of various bioinorganics have been studied, an understanding of the combinatorial effects is lacking. Cobalt and fluoride ions, in appropriate concentrations, are known to individually favor the vascularization and mineralization processes, respectively. This study investigated the potential of using a combination of fluoride and cobalt ions to simultaneously promote osteogenesis and angiogenesis in human mesenchymal stromal cells (hMSCs). Using a two-step biomimetic method, wells of tissue culture plates were coated with a calcium phosphate (CaP) layer without or with the incorporation of cobalt, fluoride, or both. In parallel, hMSCs were cultured on uncoated well plates, and cultured with cobalt and/or fluoride ions within the media. The results revealed that cobalt ions increased the expression of angiogenic markers, with the effects being stronger when the ions were added as a dissolved salt in cell medium as compared to incorporation into CaP. Cobalt ions generally suppressed the ALP activity, the expression of osteogenic genes, and the level of mineralization, regardless of delivery method. Fluoride ions, individually or in combination with cobalt, significantly increased the expression of many of the selected osteogenic markers, as well as mineral deposition. This study demonstrates an approach to simultaneously target the two essential mechanisms in bone healing: angiogenesis and osteogenesis. The incorporation of cobalt and fluoride into CaPs is a promising method to improve the biological performance of fully synthetic bone graft substitutes. PMID:26929187

  14. Study of changes in phosphate, calcium and fluoride ions in plaque and saliva after the administration of a fluoride mouth rinse.

    PubMed

    Poureslami, H R; Torkzadeh, M; Sefadini, M R

    2007-01-01

    In this study, the effects of 0.2% sodium fluoride mouthwash solution on calcium, phosphate and fluoride ion contents of saliva and microbial plaque was assessed. Fourteen volunteer students (7-12 years of age) of a boarding educational centre in Kerman City (Iran) were selected and under defined conditions, their saliva and plaque samples were collected. The concentrations of fluoride, calcium and phosphate ions of the samples were determined, and after 14 days, under the same conditions, the students were asked to rinse their mouth with 0.2% sodium fluoride mouthwash solution. The second set of saliva and plaque samples were collected and the concentrations of the ions were determined. Data was analyzed using paired t-test and the results were presented as tables. P < 0.05 was considered as statistically significant. After using 0.2% sodium fluoride mouthwash solution, a significant increase was observed in the F 2 ion concentration both plaque ( P P < 0.000) of all the studied subjects, while the concentration of phosphate decreased in both saliva and plaque; however, this decrease was significant only in plaque ( P < 0.01). The calcium ion concentration decreased in both plaque and saliva; however, in none of them, the decrease was significant ( P> 0.09 and P> 0.2, respectively). PMID:17951927

  15. Enhancement of luminescence in white emitting strontium fluoride core @ calcium fluoride shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumam, Nandini; Singh, Ningthoujam Premananda; Singh, Laishram Priyobarta; Srivastava, Sri Krishna

    2015-09-01

    Synthesis of lanthanide-doped fluoride SrF2:3Dy and SrF2:3Dy@CaF2 nanoparticles with different ratios of core to shell (1:0.5, 1:1 and 1:2) has been carried out by employing ethylene glycol route. X-ray diffraction (XRD) patterns reveal that the structure of the prepared nanoparticles was of cubical shape, which is also evident in TEM images. The size of the nanoparticles for core (SrF2:3Dy) is found to increase when core is covered by shell (CaF2). It is also evident from Fourier transform infrared spectroscopy (FTIR) that ethylene glycol successfully controls the growth and acts as a shape modifier by regulating growth rate. In the photoluminescence investigation, emission spectra of SrF2:3Dy is found to be highly enhanced when SrF2:3Dy is covered by CaF2 due to the decrease of cross relaxation amongst the Dy3+-Dy3+ ions. Such type of enhancement of luminescence in homonanostructure SrF2:3Dy@CaF2 (core@shell) has not been studied so far, to the best of the authors' knowledge. This luminescent material exhibits prominently white light emitting properties as shown by the Commission Internationale d'Eclairage (CIE) chromaticity diagram. The calculated correlate colour temperature (CCT) values for SrF2:3Dy, SrF2:3Dy@CaF2 (1:0.05), SrF2:3Dy@CaF2 (1:1) and SrF2:3Dy@CaF2 (1:2) are 5475, 5476, 5384 and 5525 K, respectively, which lie in the cold white region.

  16. Efficacy of calcium- and fluoride-containing materials for the remineralization of primary teeth with early enamel lesion.

    PubMed

    Memarpour, Mahtab; Soltanimehr, Elham; Sattarahmady, Naghmeh

    2015-09-01

    The aim of the study was to determine the efficacy of different products containing fluoride, calcium and phosphate for enamel remineralization in eroded primary teeth. A total of 90 sound primary canine teeth were randomly divided into 5 groups of 18 teeth each: 1) control (polished enamel), 2) 5% DuraShield sodium fluoride varnish, 3) 500 ppm fluoridated toothpaste, 4) casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) cream, and 5) Clinpro White varnish containing functionalized tri-calcium phosphate (fTCP). Enamel microhardness (EMH) was measured in all samples before and after demineralization and after 28 days of remineralization. Also 8 samples in groups 2 to 5 and four samples of sound and demineralized enamel were examined with atomic force microscopy (AFM). All data were analyzed with one-way ANOVA (p<0.05). Mean microhardness of demineralized enamel was significantly lower than in enamel at baseline (p<0.001). Remineralization significantly increased microharness in groups 2 to 5 compared to the control group (p<0.001). Percent EMH after remineralization with CPP-ACP was significantly higher than after fTCP (p=0.029), toothpaste (p< 0.001) or fluoride varnish (p<0.001); however, there was no significant difference between toothpaste and fluoride varnish (p=0.062). Microhardness increased more after fTCP treatment than after treatment with sodium fluoride varnish (p<0.001) or fluoridated toothpaste (p=0.045). AFM images showed that enamel roughness decreased most after treatment with fTCP, followed by CPP-ACP, toothpaste and fluoride varnish. The efficacy of CPP-ACP cream for remineralizing eroded enamel was greater than fluoride toothpaste, fluoride varnish or fTCP varnish. PMID:26179280

  17. a Study of Epitaxial Growth of Calcium Fluoride on Silicon

    NASA Astrophysics Data System (ADS)

    Howard, L. K.

    Available from UMI in association with The British Library. The alkaline earth fluorides are good insulators at room temperature and have received significant attention as epitaxial dielectrics on semiconductors, their crystal structure and lattice parameters resembling those of common semiconductors. Such dielectrics enable passivation of semiconductors lacking stable oxides, isolation of devices on one substrate, and fabrication of 3-dimensional epitaxial heterostructures. The CaF_2/Si system was the structure investigated since the room temperature lattice mismatch is only 0.6%. A vacuum system was therefore developed for the deposition of CaF_2 onto silicon, and an RBS system, incorporating detector cooling, developed to establish the dependence of epitaxy on substrate temperature using channeling of 340 keV protons (giving an enhanced depth resolution and improved sensitivity to light elements compared to 2 MeV He^{+ } analysis). Epitaxial growth was obtained on n-type Si(111) and Si(100) substrates at 400-750 ^circC and 575-675^ circC respectively. A reaction between the CaF_2 and silicon occurred at higher temperatures producing non-uniform films. The epitaxy was also dependent on film thickness, the optimum de-channelled fractions obtained in the film of 8.25% and 15.2% for Si(111) and Si(100) substrates respectively were unobtainable for films under 1200 A. The insulator surface morphology was examined using Scanning Electron Microscopy. Epitaxial films on Si(111) were generally smooth, while preferential growth along <110> directions was observed for epitaxial insulators on Si(100), possibly due to slip along the (111) fluorite cleavage planes resulting from differences in the thermal expansion coefficients of CaF_2 and silicon and an increase in lattice mismatch with substrate temperature, although no cracking of the insulator was observed. The insulation and electrical properties of the films were investigated. Film resistivities upto 5E8 Omegacm and

  18. Erosion protection by calcium lactate/sodium fluoride rinses under different salivary flows in vitro.

    PubMed

    Borges, Alessandra B; Scaramucci, Taís; Lippert, Frank; Zero, Domenick T; Hara, Anderson T

    2014-01-01

    This study investigated the effect of a calcium lactate prerinse on sodium fluoride protection in an in vitro erosion-remineralization model simulating two different salivary flow rates. Enamel and dentin specimens were randomly assigned to 6 groups (n = 8), according to the combination between rinse treatments - deionized water (DIW), 12 mM NaF (NaF) or 150 mM calcium lactate followed by NaF (CaL + NaF) - and unstimulated salivary flow rates - 0.5 or 0.05 ml/min - simulating normal and low salivary flow rates, respectively. The specimens were placed into custom-made devices, creating a sealed chamber on the specimen surface connected to a peristaltic pump. Citric acid was injected into the chamber for 2 min, followed by artificial saliva (0.5 or 0.05 ml/min) for 60 min. This cycle was repeated 4×/day for 3 days. Rinse treatments were performed daily 30 min after the 1st and 4th erosive challenges, for 1 min each time. Surface loss was determined by optical profilometry. KOH-soluble fluoride and structurally bound fluoride were determined in specimens at the end of the experiment. Data were analyzed by 2-way ANOVA and Tukey tests (α = 0.05). NaF and CaL + NaF exhibited significantly lower enamel and dentin loss than DIW, with no difference between them for normal flow conditions. The low salivary flow rate increased enamel and dentin loss, except for CaL + NaF, which presented overall higher KOH-soluble and structurally bound fluoride levels. The results suggest that the NaF rinse was able to reduce erosion progression. Although the CaL prerinse considerably increased F availability, it enhanced NaF protection against dentin erosion only under hyposalivatory conditions. PMID:24480975

  19. Treatment of Volatile Organic Compounds with Mesoporous Materials Prepared from Calcium Fluoride Sludge.

    PubMed

    Kang, Sv-Yuan; Tsai, Hsiao-Hsin; Nguyen, Nhat-Thien; Chang, Chang-Tang; Tseng, Chao-Heng

    2016-02-01

    Large amount of calcium fluoride sludge was generated by semiconductor industry every year. It also needs high requirement of fuel consumption using rotor concentrator and thermal oxidizer to treat VOCs. The mesoporous catalyst prepared by calcium fluoride sludge was used for VOCs treatment in this study. Acetone is a kind of solvent and used in a large number of laboratories and factories. The serious problems will be caused when it exposed to the environmental. Economic and practical technology is needed to eliminate this kind of hazardous air pollutant. In this research, the adsorption of acetone was tested with CF-MCM (mesoporous silica materials synthesized from calcium fluoride). The raw material was mixed with cationic cetyltrimethyl ammonium bromide (CTAB) surfactants, firstly. The prepared mesoporous silica materials were characterized by nitrogen adsorption and desorption analysis, transmission electron microscope (TEM), scanning electron microscopy (SEM), X-ray powder diffractometer (XRPD) and Fourier transform infrared spectroscopy (FTIR). The results showed that the surface area, large pore volume and pore diameter could be up to 862 m2 g(-1), 0.57 cm3 g(-1) and 2.9 nm, respectively. The crystal patterns of CF-MCM were similar with MCM-41 from TEM image. The adsorption capacity of acetone with CF-MCM was 118, 190, 194 and 201 mg g(-1), respectively, under 500, 1000, 1500 and 2000 ppm. Furthermore, the adsorption capacity of MCM-41 and CF-MCM was almost the same. The effects of operation parameters, such as contact time and mixture concentration, on the performance of CF-MCM were also discussed in this study. PMID:27433709

  20. [Reference values of calcium, vitamin D, phosphorus, magnesium and fluoride for the Venezuelan population].

    PubMed

    Macías-Tomei, Coromoto; Palacios, Cristina; Mariño Elizondo, Mariana; Carías, Diamela; Noguera, Dalmacia; Chávez Pérez, José Félix

    2013-12-01

    The following micronutrients were considered together for their role in bone health: calcium, vitamin D, phosphorus, magnesium and fluoride. Calcium: not enough is known to change current recommendations. In adolescents and adults, limited data suggest that consuming the recommended level is associated with normal bone mass. In older adults, the limited data reported low consumption and a high rate of fractures but there is no information on whether the current values are adequate. Vitamin D: the limited data reported high deficiency in older adults, which was related to osteoporosis. Given the recent increase in North American recommendation for their contribution to bone health, we proposed to increase the recommendation to 400-600 IU/d for Venezuela. Phosphorus, magnesium and fluoride: the lack of local data does not support changing the latest recommendations. Therefore, it highlights the lack of local studies to assess current recommendations. Studies are needed to estimate the intake of these micronutrients in the population and evaluate their interaction and their relation to bone and overall health. Information of the adequacy of these nutrients in human milk for infants is needed. Alto, it is necessary to implement an effective nutrition surveillance system and implement interventions that maximize bone health from an early stage, including the design and implementation of a dairy policy that leads to an increase in production and consumption by the population. PMID:25924466

  1. EFFECT OF FLUORIDE VARNISHES CONTAINING DIFFERENT CALCIUM PHOSPHATE SOURCES ON MINERALIZATION OF INITIAL PRIMARY ENAMEL LESIONS.

    PubMed

    Rirattanapong, Praphasri; Vongsavan, Kadkao; Saengsirinavin, Chavengkiat; Pornmahala, Tuenjai

    2014-11-01

    This study was conducted to evaluate the effect of fluoride varnishes containing different calcium phosphate sources on demineralization of initial primary enamel lesions. Forty-eight sound primary incisors were completely coated with nail varnish except for two 1 x 1 mm windows before being placed in demineralizing solution for 4 days. After demineralization, one of the windows in each tooth was coated with nail varnish. The teeth were randomly divided into four groups (A to D; n = 12), and then the other (exposed) window was treated with: Group A: deionized water, Group B: Duraphat® fluoride varnish, Group C: Clinpro™ White varnish and Group D: Enamel Pro® varnish. The pH-cycling regimen was carried out consisting of demineralization (6 hours) and remineralization (18 hours) for 7 days. Polarized light microscopy was used to evaluate the lesion depth initially and then after a seven-day pH cycle. Lesion depth was measured using a computerized method with the Image-Pro® Plus Program. The pair t-test was used to compare lesion depths before and after treatment. Differences in mean lesion depths among the groups were compared with the one-way ANOVA and Tukey's multiple comparison tests with 95% confidence intervals. The lesion depths had a significant difference between before and after treatment of the all groups. There was a significant increase in lesion depth in Group A compared to the other groups. No significant differences were seen among Groups B, C and D, containing fluoride and the different calcium phosphate sources in inhibiting progression of initial primary enamel lesions. PMID:26466437

  2. Effect of a casein/calcium phosphate-containing tooth cream and fluoride on enamel erosion in vitro.

    PubMed

    Lennon, A M; Pfeffer, M; Buchalla, W; Becker, K; Lennon, S; Attin, T

    2006-01-01

    The aim of this study was to determine whether a tooth cream containing casein/calcium phosphate (CasCP) protects enamel against erosion. Sixty bovine enamel specimens were prepared for profilometry and distributed into five groups. Specimens were rinsed with artificial saliva interrupted by 1% citric acid (pH 2.3) for 30 s 6 times daily for 14 days. Group 1 (n=12) was not treated (control); in group 2 (n=12) CasCP was applied for 120 s twice daily; in group 3 (n=12) 250 ppm fluoride as NaF was applied for 120 s twice daily; in group 4 (n=12) CasCP was applied for 120 s, then 250 ppm fluoride for 120 s twice daily, and in group 5 (n=12) amine fluoride (AmF) gel (12,500 ppm fluoride) was applied for 120 s twice daily. Differences between groups with respect to erosive enamel loss (profilometrically determined depth after 7 and 14 days) were tested by the Mann-Whitney test (alpha=0.05). After 7/14 days' erosive cycling, specimens treated with AmF gel showed significantly less enamel loss (18.5/35.5 microm; medians) than those treated with CasCP (25.5/46.9 microm), 250 ppm fluoride (25.0/ 40.9 microm), CasCP and 250 ppm fluoride (23.9/47.4 microm) or with no treatment (26.3/49.8 microm). It is concluded that highly fluoridated acidic AmF gel can protect enamel against erosion while CasCP, 250 ppm fluoride or a combination of CasCP and 250 ppm fluoride provide little protection. PMID:16508274

  3. Divalent fluoride doped cerium fluoride scintillator

    DOEpatents

    Anderson, David F.; Sparrow, Robert W.

    1991-01-01

    The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).

  4. Fluoride: A naturally-occurring health hazard in drinking-water resources of Northern Thailand.

    PubMed

    Chuah, C Joon; Lye, Han Rui; Ziegler, Alan D; Wood, Spencer H; Kongpun, Chatpat; Rajchagool, Sunsanee

    2016-03-01

    In Northern Thailand, incidences of fluorosis resulting from the consumption of high-fluoride drinking-water have been documented. In this study, we mapped the high-fluoride endemic areas and described the relevant transport processes of fluoride in enriched waters in the provinces of Chiang Mai and Lamphun. Over one thousand surface and sub-surface water samples including a total of 995 collected from shallow (depth: ≤ 30 m) and deep (> 30 m) wells were analysed from two unconnected high-fluoride endemic areas. At the Chiang Mai site, 31% of the shallow wells contained hazardous levels (≥ 1.5 mg/L) of fluoride, compared with the 18% observed in the deep wells. However, at the Lamphun site, more deep wells (35%) contained water with at least 1.5mg/L fluoride compared with the shallow wells (7%). At the Chiang Mai site, the high-fluoride waters originate from a nearby geothermal field. Fluoride-rich geothermal waters are distributed across the area following natural hydrological pathways of surface and sub-surface water flow. At the Lamphun site, a well-defined, curvilinear high-fluoride anomalous zone, resembling that of the nearby conspicuous Mae Tha Fault, was identified. This similarity provides evidence of the existence of an unmapped, blind fault as well as its likely association to a geogenic source (biotite-granite) of fluoride related to the faulted zone. Excessive abstraction of ground water resources may also have affected the distribution and concentration of fluoride at both sites. The distribution of these high-fluoride waters is influenced by a myriad of complex natural and anthropogenic processes which thus created a challenge for the management of water resources for safe consumption in affected areas. The notion of clean and safe drinking water can be found in deeper aquifers is not necessarily true. Groundwater at any depth should always be tested before the construction of wells. PMID:26747991

  5. An AC phase measuring interferometer for measuring dn/dT of fused silica and calcium fluoride at 193 nm

    SciTech Connect

    Shagam, R.N.

    1998-09-01

    A novel method for the measurement of the change in index of refraction vs. temperature (dn/dT) of fused silica and calcium fluoride at the 193 nm wavelength has been developed in support of thermal modeling efforts for the development of 193 nm-based photolithographic exposure tools. The method, based upon grating lateral shear interferometry, uses a transmissive linear grating to divide a 193 nm laser beam into several beam paths by diffraction which propagate through separate identical material samples. One diffracted order passing through one sample overlaps the undiffracted beam from a second sample and forms interference fringes dependent upon the optical path difference between the two samples. Optical phase delay due to an index change from heating one of the samples causes the interference fringes to change sinusoidally with phase. The interferometer also makes use of AC phase measurement techniques through lateral translation of the grating. Results for several samples of fused silica and calcium fluoride are demonstrated.

  6. Effect of fluoride varnishes containing tri-calcium phosphate sources on remineralization of initial primary enamel lesions.

    PubMed

    Rirattanapong, Praphasri; Vongsavan, Kadkao; Saengsirinavin, Chavengkiat; Pornmahala, Tuenjai

    2014-03-01

    The aim of this study was to evaluate the effect of fluoride varnishes containing tri-calcium phosphate on remineralization of primary enamel lesions. Forty-eight sound primary incisors were coated with nail varnish, leaving two 1 x 1 mm windows before being placed in a demineralizing solution for four days. After demineralization, all the specimens were coated with nail varnish over one of the windows and were randomly assigned to one of four groups: Group A: deionized water; Group B: Duraphat Fluoride Varnish; Group C: Clinpro White Varnish; Group D: TCP-fluoride varnish. Polarized light microscopy was used to evaluate initial lesion depth and after a 7-day pH cycle. Lesion depth was measured using a computerized method with the Image-Pro Plus Program. The differences in mean lesion depths were compared among the groups using the One-Way ANOVA and Tukey's multiple comparison tests at a 95% confidence interval. Group A had a significant increase in lesion depth compared to the other groups. No significant differences were found among Groups B, C and D. We concluded fluoride varnishes containing tri-calcium phosphate inhibit progression of initial primary enamel lesions, and the brands tested were not significantly different from each other in efficacy. PMID:24968692

  7. Calcium Prerinse before Fluoride Rinse Reduces Enamel Demineralization: An in situ Caries Study.

    PubMed

    Souza, João Gabriel S; Tenuta, Livia Maria Andaló; Del Bel Cury, Altair Antoninha; Nóbrega, Diego Figueiredo; Budin, Renan R; de Queiroz, Mateus X; Vogel, Gerald L; Cury, Jaime A

    2016-01-01

    A calcium (Ca) prerinse before a fluoride (F) rinse has been shown to increase oral F levels. We tested the anticaries effect of this combination in a dose-response in situ caries model. In a double-blind, crossover experiment, 10 volunteers carried enamel slabs in palatal appliances for 14 days, during which they rinsed twice/day with one of four rinse combinations: (1) a placebo prerinse (150 mM sodium lactate) followed by a distilled water rinse (negative control); (2) a placebo prerinse followed by a 250 ppm F rinse; (3) a placebo prerinse followed by a 1,000 ppm F rinse, or (4) a Ca prerinse (150 mM Ca, as calcium lactate) followed by a 250 ppm F rinse. Sucrose solution was dripped onto the slabs 8×/day to simulate a high cariogenic challenge. The percent surface hardness loss (%SHL) was significantly lower in the Ca prerinse used with the 250 ppm F rinse group (%SHL = 38.0 ± 21.0) when compared with the F rinse alone (%SHL = 59.5 ± 24.1) and similar to the 1,000 ppm F rinse group (%SHL = 42.0 ± 18.3). Compared with the 250 ppm F rinse, the Ca prerinse increased biofilm fluid F only twice (nonsignificant). However, it greatly increased F in biofilm solids (∼22×). The Ca prerinse had little effect on loosely or firmly bound enamel F. The results showed an increased level of protection against demineralization by the use of a Ca prerinse, which seems to be caused by the enhancement of F concentration in the biofilm. PMID:27355353

  8. Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach.

    PubMed

    Kulshrestha, Shatavari; Khan, Shakir; Hasan, Sadaf; Khan, M Ehtisham; Misba, Lama; Khan, Asad U

    2016-02-01

    Biofilm formation on the tooth surface is the root cause of dental caries and periodontal diseases. Streptococcus mutans is known to produce biofilm which is one of the primary causes of dental caries. Acid production and acid tolerance along with exopolysaccharide (EPS) formation are major virulence factors of S. mutans biofilm. In the current study, calcium fluoride nanoparticles (CaF2-NPs) were evaluated for their effect on the biofilm forming ability of S. mutans in vivo and in vitro. The in vitro studies revealed 89 % and 90 % reduction in biofilm formation and EPS production, respectively. Moreover, acid production and acid tolerance abilities of S. mutans were also reduced considerably in the presence of CaF2-NPs. Confocal laser scanning microscopy and transmission electron microscopy images were in accordance with the other results indicating inhibition of biofilm without affecting bacterial viability. The qRT-PCR gene expression analysis showed significant downregulation of various virulence genes (vicR, gtfC, ftf, spaP, comDE) associated with biofilm formation. Furthermore, CaF2-NPs were found to substantially decrease the caries in treated rat groups as compared to the untreated groups in in vivo studies. Scanning electron micrographs of rat's teeth further validated our results. These findings suggest that the CaF2-NPs may be used as a potential antibiofilm applicant against S. mutans and may be applied as a topical agent to reduce dental caries. PMID:26610805

  9. Water Atomization of Barium Fluoride: Calcium Fluoride for Enhanced Flow Characteristics of PS304 Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher

    2003-01-01

    PS304 is a plasma spray deposited solid lubricant coating with feedstock composed of NiCr, Cr2O3, Ag, and BaF2-CaF2 powders. The effects of rounded BaF2-CaF2 particles on the gravity-fed flow characteristics of PS304 feedstock have been investigated. The BaF2-CaF2 powder was fabricated by water atomization using four sets of process parameters. Each of these powders was then characterized by microscopy and classified by screening to obtain 45 to 106 micron particles and added incrementally from 0 to 10 wt% to the other constituents of the PS304 feedstock, namely nichrome, chromia, and silver powders. The relationship between feedstock flow rate, measured with the Hall flowmeter, and concentration of fluorides was found to be linear in each case. The slopes of the lines were between those of the linear relationships previously reported using angular and spherical fluorides and were closer to the relationship predicted using the rule of mixtures. The results offer a fluoride fabrication technique potentially more cost-effective than gas atomization processes or traditional comminution processes.

  10. Systemic fluoride.

    PubMed

    Sampaio, Fábio Correia; Levy, Steven Marc

    2011-01-01

    There is substantial evidence that fluoride, through different applications and formulas, works to control caries development. The first observations of fluoride's effects on dental caries were linked to fluoride naturally present in the drinking water, and then from controlled water fluoridation programs. Other systemic methods to deliver fluoride were later suggested, including dietary fluoride supplements such as salt and milk. These systemic methods are now being questioned due to the fact that many studies have indicated that fluoride's action relies mainly on its post-eruptive effect from topical contact with the tooth structure. It is known that even the methods of delivering fluoride known as 'systemic' act mainly through a topical effect when they are in contact with the teeth. The effectiveness of water fluoridation in many geographic areas is lower than in previous eras due to the widespread use of other fluoride modalities. Nevertheless, this evidence should not be interpreted as an indication that systemic methods are no longer relevant ways to deliver fluoride on an individual basis or for collective health programs. Caution must be taken to avoid excess ingestion of fluoride when prescribing dietary fluoride supplements for children in order to minimize the risk of dental fluorosis, particularly if there are other relevant sources of fluoride intake - such as drinking water, salt or milk and/or dentifrice. Safe and effective doses of fluoride can be achieved when combining topical and systemic methods. PMID:21701196

  11. Effects of acute doses of sodium fluoride on the morphology and the detectable calcium associated with secretory ameloblasts in rat incisors.

    PubMed

    Monsour, P A; Harbrow, D J; Warshawsky, H

    1989-04-01

    Fluoride in high concentrations is known to have an adverse effect on the formation of enamel. The effect of a single injection of two concentrations of sodium fluoride on inner enamel secretory ameloblasts was investigated morphologically by electron microscopy and functionally by assessing the location and relative amount of available calcium, using the potassium pyroantimonate method. The results showed that acute doses of fluoride interfere with the normal function of secretory ameloblasts. The increase in the population of lysosome-like structures observed after fluoride administration is suggestive of defects in the synthetic pathway. Concomitant with the effect of fluoride on secretory ameloblasts is an inhibition of enamel formation, resulting in incomplete enamel rods and leaving large remnants of Tomes' processes buried in the enamel. The distribution of the calcium pyroantimonate deposits found tends to support the concept of calcium traveling between the cells to the enamel. Acute doses of fluoride also reduce the amount of calcium available for complexing with pyroantimonate in the intercellular region. PMID:2926125

  12. Reuse of hazardous calcium fluoride sludge from the integrated circuit industry.

    PubMed

    Zhu, Ping; Cao, Zhenbang; Ye, YiLi; Qian, Guangren; Lu, Bo; Zhou, Ming; Zhou, Jin

    2013-11-01

    The Chinese integrated circuit industry has been transformed from a small state-owned sector into a global competitor, but chip manufacturing produces large amounts of calcium fluoride sludges (CFS). In China, landfill is a current option for treating CFS. In order to solve the problem of unavailable landfill sites and prevent fluorine from dissolved CFS polluting water sources, CFS was tested as a component for a ceramic product made with sodium borate, sodium phosphate and waste alumina using a low-temperature sintering technology, and the effects of various factors on characteristics of the ceramic were investigated to optimize the process. The best sintering temperature was controlled at 700°C, and the optimal raw material ratio of the ceramic was 11% sodium borate, 54% sodium phosphate, 30% CFS and 5% waste alumina. The CFS ceramic was characterized by a morphological structure and X-ray diffraction. The results indicated that CFS was transformed into Na2Ca(PO4)F as an inert and a main crystalline phase in the ceramic, which was enclosed by the borophosphate glass. Toxicity characteristic leaching procedure, corrosion resistance and compressive strength tests verified CFS ceramic as a qualified construction ceramic material, and the fluorine from CFS was solidified in the inert crystalline phase, which would not be released to cause secondary pollution. This novel technology not only avoids the CFS hydrolyzing reaction forming harmful hydrofluoric acid gas at 800°C and above, but also produces high-performance ceramics as a construction material, in accordance with the concept of sustainable development. PMID:24025370

  13. Automated ion-selective electrode method for determining fluoride in natural waters

    USGS Publications Warehouse

    Erdmann, D.E.

    1975-01-01

    An automated fluoride method which uses AutoAnalyzer modules in conjunction with a fluoride ion-selective electrode was evaluated. The results obtained on 38 natural water samples are in excellent agreement with those determined by a similar manual method (average difference = 0.026 mg/l). An average fluoride concentration of 0.496 mg/l was found when several natural water samples were spiked with 0.50 mg/l fluoride. Aluminum is the only significant interfering substance, and it can be easily tolerated if its concentration does not exceed 2 mg/l. Thirty samples were analyzed per hour over a concentration range of 0-2 mg/l.

  14. Pulp response to high fluoride releasing glass ionomer, silver diamine fluoride, and calcium hydroxide used for indirect pulp treatment: An in-vivo comparative study

    PubMed Central

    Korwar, Atish; Sharma, Sidhartha; Logani, Ajay; Shah, Naseem

    2015-01-01

    Aims and Objectives: The study aims at determining pulp response of two high fluoride releasing materials silver diamine fluoride (SDF) and Type VII glass ionomer cement (GIC) when used as indirect pulp treatment (IPT) materials. Materials and Methods: Deep Class V cavities were made on four first premolars indicated for extraction for orthodontic reasons. SDF, Type VII GIC, and calcium hydroxide base are given in three premolars, and one is kept control. Premolars were extracted 6 weeks after the procedure and subjected to histopathological examination to determine the pulp response. The results were analyzed using Chi-square test. Results: No inflammatory changes were observed in any of the groups. Significantly more number of specimens in SDF and Type VII GIC groups showed tertiary dentin deposition (TDD) when compared to control group. No significant difference was seen in TDD when intergroup comparison was made. Odontoblasts were seen as short cuboidal cells with dense basophilic nucleus in SDF and Type VII GIC group. Conclusion: The study demonstrated TDD inducing ability of SDF and Type VII GIC and also established the biocompatibility when used as IPT materials. PMID:26321822

  15. Evolving Role of Molecular Imaging with (18)F-Sodium Fluoride PET as a Biomarker for Calcium Metabolism.

    PubMed

    Raynor, William; Houshmand, Sina; Gholami, Saeid; Emamzadehfard, Sahra; Rajapakse, Chamith S; Blomberg, Björn Alexander; Werner, Thomas J; Høilund-Carlsen, Poul F; Baker, Joshua F; Alavi, Abass

    2016-08-01

    (18)F-sodium fluoride (NaF) as an imaging tracer portrays calcium metabolic activity either in the osseous structures or in soft tissue. Currently, clinical use of NaF-PET is confined to detecting metastasis to the bone, but this approach reveals indirect evidence for disease activity and will have limited use in the future in favor of more direct approaches that visualize cancer cells in the read marrow where they reside. This has proven to be the case with FDG-PET imaging in most cancers. However, a variety of studies support the application of NaF-PET to assess benign osseous diseases. In particular, bone turnover can be measured from NaF uptake to diagnose osteoporosis. Several studies have evaluated the efficacy of bisphosphonates and their lasting effects as treatment for osteoporosis using bone turnover measured by NaF-PET. Additionally, NaF uptake in vessels tracks calcification in the plaques at the molecular level, which is relevant to coronary artery disease. Also, NaF-PET imaging of diseased joints is able to project disease progression in osteoarthritis, rheumatoid arthritis, and ankylosing spondylitis. Further studies suggest potential use of NaF-PET in domains such as back pain, osteosarcoma, stress-related fracture, and bisphosphonate-induced osteonecrosis of the jaw. The critical role of NaF-PET in disease detection and characterization of many musculoskeletal disorders has been clearly demonstrated in the literature, and these methods will become more widespread in the future. The data from PET imaging are quantitative in nature, and as such, it adds a major dimension to assessing disease activity. PMID:27301549

  16. Fluoride toothpaste containing 1.5% arginine and insoluble calcium as a new standard of care in caries prevention.

    PubMed

    ten Cate, J M; Cummins, D

    2013-01-01

    In spite of obvious achievements in prevention, caries remains a prevalent disease. Fluorides are effective by inhibiting enamel and dentin demineralization and enhancing remineralization, but have little or no influence on bacterial processes in dental plaque. Dental caries is a continuum of stages from reversible, early lesions to irreversible, pre-cavitated lesions and, ultimately, to cavities. Prevention should focus on strengthening protective and reducing pathological factors, and careful monitoring of the disease state. While fluoride and the mineral aspects of caries have been in focus for decades, new insights into the etiology of caries have generated novel concepts and approaches to its prevention and treatment. The observation that some plaque bacteria can produce alkali metabolites and, thus, raise pH or neutralize acid formed in plaque has long been known. Such pH rise factors are related to caries susceptibility. Nourishing the plaque with substrates that encourage alkali-producing reactions is a protective factor in the caries continuum. This article reviews the results of clinical studies with a novel toothpaste containing 1.5% arginine, an insoluble calcium compound, and fluoride which have demonstrated superior remineralization of white spot enamel lesions and rehardening of root surface lesions, favorable effects on the de-/remineralization balance, as well as superior cavity prevention efficacy compared to toothpaste with fluoride alone. Studies have also confirmed formation of ammonia and elevated pH levels in subjects using the arginine-containing toothpaste. This novel toothpaste effectively combines the established effects of fluoride on de- and remineralization with reduction of caries-inducing pathological factors resulting from plaque metabolism. PMID:24660269

  17. Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis.

    PubMed

    Shen, Junjie; Schäfer, Andrea I

    2015-09-15

    This study examined the feasibility of nanofiltration (NF) and reverse osmosis (RO) in treating challenging natural tropical waters containing high fluoride and natural organic matter (NOM). A total of 166 water samples were collected from 120 sources within northern Tanzania over a period of 16 months. Chemical analysis showed that 81% of the samples have fluoride levels exceeding the WHO drinking guideline of 1.5mg/L. The highest fluoride levels were detected in waters characterized by high ionic strength, high inorganic carbon and on some occasions high total organic carbon (TOC) concentrations. Bench-scale experiments with 22 representative waters (selected based on fluoride concentration, salinity, origin and in some instances organic matter) and 6 NF/RO membranes revealed that ionic strength and recovery affected fluoride retention and permeate flux. This is predominantly due to osmotic pressure and hence the variation of diffusion/convection contributes to fluoride transport. Different membranes had distinct fluoride removal capacities, showing different raw water concentration treatability limits regarding the WHO guideline compliance. BW30, BW30-LE and NF90 membranes had a feed concentration limit of 30-40 mg/L at 50% recovery. NOM retention was independent of water matrices but is governed predominantly by size exclusion. NOM was observed to have a positive impact on fluoride removal. Several mechanisms could contribute but further studies are required before a conclusion could be drawn. In summary, NF/RO membranes were proved to remove both fluoride and NOM reliably even from the most challenging Tanzanian waters, increasing the available drinking water sources. PMID:26005995

  18. Access to Fluoridated Water and Adult Dental Caries: A Natural Experiment.

    PubMed

    Peres, M A; Peres, K G; Barbato, P R; Höfelmann, D A

    2016-07-01

    Systematic reviews have found no evidence to support a benefit of water fluoridation (WF) to prevent dental caries in adult populations. The aim of this natural experiment was to investigate whether lifetime access to fluoridated water is associated with dental caries experience among adults from Florianópolis, Brazil. The data originated from a population-based cohort study (EpiFloripa Adult) initiated in 2009 (n = 1,720) when participants were aged 20 to 59 years. The second wave was carried out in 2012 (n = 1,140) and included a dental examination and a face-to-face questionnaire. Participants residing at the same address since the age of 7 y or before were included in the primary analyses. Sensitivity analyses were also performed. WF was implemented in the city in 2 different periods of time: 1982 (60% of the population) and 1996. Dental caries was assessed by the decayed, missing, and filled teeth (DMFT) index. A combination of residential status, participant's age, and year of implementation of WF permitted the creation of participants' lifetime access to fluoridated water: >75%, 50% to 75%, and <50% of a participant's lifetime. Covariates included sex, age, socioeconomic mobility, educational attainment, income, pattern of dental attendance, and smoking. Participants who accessed fluoridate water <50% of their lifetime presented a higher mean rate ratio of DMFT (1.39; 95% CI, 1.05-1.84) compared with those living >75% of their lifetime with residential access to fluoridated water. Participants living between 50% and 75% and <50% of their lives in fluoridated areas presented a decayed and filled teeth mean ratio of 1.34 (95% CI, 1.02-1.75) and 1.47 (95% CI, 1.05-2.04) higher than those with residential access to fluoridated water >75% of their lifetime, respectively. Longer residential lifetime access to fluoridated water was associated with less dental caries even in a context of multiple exposures to fluoride. PMID:27053119

  19. The occurrence and geochemistry of fluoride in some natural waters of Kenya

    NASA Astrophysics Data System (ADS)

    Gaciri, S. J.; Davies, T. C.

    1993-03-01

    In recent years the acquisition of considerable additional data on the hydrogeochemical behaviour of fluoride in natural waters of Kenya has been made possible by extensive surface-water and groundwater sampling campaigns as well as by improvements in analytical techniques. Ultimately, the principal source of fluoride relates to emissions from volcanic activity associated with the East African Rift System. Through various intermediate steps, but also directly, fluoride passes into the natural water system and components of the food chain. Ingestion by man is mainly through drinking water and other beverages. River waters in Kenya generally have a fluoride concentration lower than the recommended level (1.3 ppm) for potable water, thus promoting susceptibility to dental caries. Groundwaters and lake waters show considerably higher fluoride contents, resulting in the widespread incidence of fluorosis in areas where groundwater is the major source of drinking water, and lake fish is a regular component of the diet. This paper presents a synthesis of the data so far obtained on the sources and distribution of fluoride in the hydrological system of Kenya, examines the extent of fluorine toxicity and puts forward recommendations to combat or minimise the problem.

  20. Strontium hydroxyapatite and strontium carbonate as templates for the precipitation of calcium-phosphates in the absence and presence of fluoride

    NASA Astrophysics Data System (ADS)

    Sternitzke, Vanessa; Janousch, Markus; Heeb, Michèle B.; Hering, Janet G.; Johnson, C. Annette

    2014-06-01

    The heterogeneous precipitation of calcium-phosphates on calcium hydroxyapatite (Ca10(PO4)6(OH)2 or HAP) in the presence and absence of fluoride is important in the formation of bone and teeth, protection against tooth decay, dental and skeletal fluorosis and defluoridation of drinking water. Strontium hydroxyapatite (Sr10(PO4)6(OH)2 or SrHAP) and strontium carbonate (SrCO3) were used as calcium-free seed templates in precipitation experiments conducted with varying initial calcium-to-phosphate (Ca/P) or calcium-to-phosphate-to-fluoride (Ca/P/F) ratios. Suspensions of SrHAP or SrCO3 seed templates (which were calcium-limited for both templates and phosphate-limited in the case of SrCO3) were reacted at pH 7.3 (25 °C) over 3 days. The resulting solids were examined with Scanning Transmission Electron Microscopy (STEM), X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and X-ray Photoelectron Spectroscopy (XPS), X-ray Absorption Near Edge Structure (XANES), and Extended X-ray Absorption Fine Structure spectroscopy (EXAFS). Calcium apatite was the predominant phase identified by all techniques independent of the added Ca/P ratios and of the presence of fluoride. It was not possible to make an unambiguous distinction between HAP and fluorapatite (Ca10(PO4)6F2, FAP). The apatite was calcium-deficient and probably contained some strontium.

  1. In vitro evaluation of remineralization efficacy of different calcium- and fluoride-based delivery systems on artificially demineralized enamel surface

    PubMed Central

    Gangrade, Aparajita; Gade, Vandana; Patil, Sanjay; Gade, Jaykumar; Chandhok, Deepika; Thakur, Deepa

    2016-01-01

    Background: Caries is the most common dental disease facing the world population. Caries can be prevented by remineralizing early enamel lesions. Aim: To evaluate remineralization efficacy of stannous fluoride (SnF2), casein phosphopeptide-amorphous calcium phosphate with fluoride (CPP-ACPF) and calcium sucrose phosphate (CaSP). Materials and Methods: Fifty enamel samples were taken; they were divided into five groups (n = 10). Demineralization was carried out with Groups A, B, C, and E. Remineralization was carried out with Groups A, B, and C for 7 days using SnF2, CPP-ACPF, and CaSP, respectively. In Group D, no surface treatment was carried out, to mark as positive control whereas Group E was kept as negative control with only surface demineralization of enamel. Enamel microhardness was tested using Vickers's microhardness tester after 7 day remineralization regime. Statistical Analysis: One-way analysis of variance and post hoc Tukey tests were performed. Results: The mean microhardness values in descending order: Positive control > SnF2> CaSP > CPP-ACPF > negative control. Conclusion: All remineralizing agents showed improved surface remineralization. However, complete remineralization did not occur within 7 days. SnF2 showed the highest potential for remineralization followed by CaSP and CPP-ACPF. PMID:27563180

  2. Stability of fluoride complex with silica and its distribution in natural water systems

    USGS Publications Warehouse

    Roberson, C.E.; Barnes, R.B.

    1978-01-01

    Fluoride reacts with silicic acid to form SiF2-6. A fluoride electrode was used to obtain an equilibrium constant of 1030.18 for the reaction:Si(OH) 0 6 + 6F-+4H+ = SiF 2- 6 + 4H2O at 25??C. Although there may be some experimental evidence for existence of traces of species containing less than six F- ions per silicon (n = 6), the species SiF2-6 predominates for n values from about 0.1 to 6. Silicic-acid complexing with fluoride is important only in solutions which have rather low pH and low concentrations of other cations which compete with silicon for fluoride. Computations for cold volcanic condensates from Hawaii indicate that for some samples much of the silicon is complexed by fluoride as SiF2-6. However, in most cooled acidic natural water samples Al and Fe are more important than Si in complexing fluoride. ?? 1978.

  3. The influence of lithium fluoride on in vitro biocompatibility and bioactivity of calcium aluminate-pMMA composite cement.

    PubMed

    Oh, S H; Choi, S Y; Choi, S H; Lee, Y K; Kim, K N

    2004-01-01

    The objective of this study is to assess the influence of lithium fluoride on in vitro biocompatibility and bioactivity of calcium aluminate (CA)-polymethylmethacrylate (PMMA) composite cement exhibiting quick setting time ( < 15 min), low exothermic temperature (< 47 degrees C), and high compressive strength (> 100 MPa). The biocompatibility was measured by examining cytotoxicity tests such as the agar diffusion test with L929 cell line and the hemolysis test with fresh rabbit blood. To estimate the bioactivity of CA-PMMA composite cement, we determined hydroxyapatite (HAp) formation on the surface of composite cement in the simulated body (SBF) solution by using thin-film XRD, XPS, SEM, EPMA and ICP-AES. The results of biocompatibility tests indicated that all experimental compositions of this study had no cytotoxicity and no hemolysis so that there was no cytotoxicity with regard to non-reacted monomers (MMA and TEGDMA) and lithium fluoride. The results of bioactivity tests revealed that CA-PMMA composite cement without lithium fluoride did not form HAp on its surface after 60 days of soaking in the SBF. On the other hand, LiAl2(OH)7 . 2H2O and HAp were formed on the surface of CA-PMMA composite cement including 1.0% by weight of lithium fluoride after 7 and 15 days of soaking in the SBF, respectively. The 5 microm of LiAl2(OH)7 . 2H2O and HAp mixed layers were formed on the surface of specimen after 60 days of soaking in the SBF. PMID:15338588

  4. Natural fluoride in drinking water and myocardial infarction: A cohort study in Sweden.

    PubMed

    Näsman, Peggy; Granath, Fredrik; Ekstrand, Jan; Ekbom, Anders; Sandborgh-Englund, Gunilla; Fored, C Michael

    2016-08-15

    Large geographical variation in the coronary heart disease (CHD) incidence is seen worldwide and only a part of this difference is attributed to the classic risk factors. Several environmental factors, such as trace elements in the drinking water have been implicated in the pathogenesis of CHD. The objective was to assess the association between drinking water fluoride exposure and myocardial infarction in Sweden using nationwide registers. This large cohort consisted of 455,619 individuals, born in Sweden between January 1, 1900 and December 31, 1919, alive and living in their municipality of birth at the time of start of follow-up. Estimated individual drinking water fluoride exposure was stratified into four categories: very low (<0.3mg/l), low (0.3-<0.7mg/l), medium (0.7-<1.5mg/l) and high (≥1.5mg/l). In Cox regression analyses, compared to the very low fluoride group, the adjusted Hazard Ratio for the low fluoride group was 0.99 (95% confidence interval, 0.98-1.00), for the medium fluoride group 1.01 (95% confidence interval, 0.99-1.03) and 0.98 (95% confidence interval, 0.96-1.01) for the highest fluoride group. Adding water hardness to the model did not change the results. We conclude that the investigated levels of natural drinking water fluoride content does not appear to be associated with myocardial infarction, nor related to the geographic myocardial infarction risk variation in Sweden. Potential misclassification of exposure and unmeasured confounding may have influenced the results. PMID:27100011

  5. Comparison of a dual-phase fluoride toothpaste containing calcium, phosphate, and sodium bicarbonate with a regular fluoride toothpaste on calculus formation.

    PubMed

    Putt, Mark S; Milleman, Kimberly R; Milleman, Jeffery L; Ghassemi, Annahita

    2004-09-01

    This clinical study compared the effect on dental calculus formation of a dual-phase fluoride dentifrice containing sodium bicarbonate, calcium, and phosphate with that of a regular dentifrice using a short-term clinical model in which calculus formation was facilitated. A total of 87 adult volunteers completed this study, which was a double-blind, parallel-group design, consisting of 2-week pretrial and trial periods separated by a washout period. A partial-mouth technique was used wherein the lower anterior teeth were protected from brushing by a custom-fitted toothshield, which doubled as an applicator for an undiluted dentifrice, twice daily. Calculus was measured on the labial/lingual surfaces of six lower anterior teeth by the Volpe-Manhold Index (V-MI). Subjects used a non-tartar-control dentifrice during the pretrial period to determine calculus formation rates, and these V-MI scores were used as baseline data for random allocation to either a control or test product for the trial period. Subjects who were accepted into the study, based on existing tartar deposits, readily formed calculus during the pretrial period using the toothshield method. During the trial period, subjects who were assigned the test dentifrice had comparable amounts of calculus accumulation to those who used the control dentifrice. However, subjects in the test dentifrice group had significantly lower (16%) calculus scores on lingual surfaces than those in the control group. Intragroup comparisons of V-MI data from the pretrial period with those from the trial period provided similar overall results to the comparisons between groups. This study demonstrated that a dual-phase baking soda dentifrice containing calcium and phosphate did not increase calculus accumulation relative to a regular dentifrice when used by adults with a propensity for developing calculus. PMID:15645907

  6. Comparison of aluminum modified natural materials in the removal of fluoride ions.

    PubMed

    Teutli-Sequeira, A; Solache-Ríos, M; Martínez-Miranda, V; Linares-Hernández, I

    2014-03-15

    The removal behaviors of fluoride ions from aqueous solutions and drinking water by aluminum modified hematite, zeolitic tuff and calcite were determined. Drinking water containing naturally 8.29 mg of fluoride ions per liter was characterized. The hematite, zeolitic tuff and calcite were aluminum modified by an electrochemical method. The effects of contact time and the dose of adsorbent were determined. The PZC (point of zero charge) values for aluminum modified hematite, zeolitic tuff and calcite were 6.2, 5.8 and 8.4, respectively. Adsorption kinetic data were best fitted to pseudo-second-order and Elovich models and equilibrium data to Langmuir-Freundlich isotherm model. The highest fluoride sorption capacities (10.25 and 1.16 mg/g for aqueous solutions and drinking water respectively) were obtained for aluminum modified zeolite with an adsorbent dosage of 10 g/L and an initial F(-) concentration of 9 and 8.29 mg/L for aqueous solutions and drinking water respectively (the final concentrations were 0.08 and 0.7 mg/L respectively). The main mechanism involved in the adsorption of fluoride ions is chemisorption on heterogeneous materials according to the results obtained by fitting the data to kinetic and isotherm models respectively. Aluminum modified zeolitic tuff showed the best characteristics for the removal of fluoride ions from water. PMID:24461843

  7. Competitive adsorption of fluoride and natural organic matter onto activated alumina.

    PubMed

    Mouelhi, Meral; Giraudet, Sylvain; Amrane, Abdeltif; Hamrouni, Béchir

    2016-09-01

    Natural organic matter (NOM) is a major water constituent that affects the performance of water treatment processes. Several studies have shown that NOM can be adsorbed on the surface of oxides and may compete with other ions. The overall goal of this study was essentially to investigate the competitive adsorption between fluoride and NOM on activated alumina (AA). For this purpose, a humic acid (HA) was used as a model compound for NOM. The interaction of NOM with fluoride, the simultaneous competitive adsorption, and the effect of preloading AA with NOM were investigated. The specific absorbance of HA was determined at 254 nm. Size-exclusion chromatography measurements confirmed the adsorption of aromatic fractions of NOM onto AA. The presence of HA in the system inhibited fluoride sorption onto AA and the removal yield using fresh AA decreased from 70.4 % to 51.0 % in the presence of HA. The decrease was more pronounced using AA preloaded with HA, reaching 37.7 %. The interference of coexisting ions and their effect on fluoride removal capacity were evaluated, showing a severe impact of the presence of phosphate on the removal capacity unlike nitrates and sulfates, which slightly improved the fluoride sorption. PMID:26849225

  8. Biocompatibility of fluoride-coated magnesium-calcium alloys with optimized degradation kinetics in a subcutaneous mouse model.

    PubMed

    Drynda, Andreas; Seibt, Juliane; Hassel, Thomas; Bach, Friedrich Wilhelm; Peuster, Matthias

    2013-01-01

    The principle of biodegradation has been considered for many years in the development of cardiovascular stents, especially for patients with congenital heart defects. A variety of materials have been examined with regard to their suitability for cardiovascular devices. Iron- and magnesium-based stents were investigated intensively during the last years. It has been shown, that iron, or iron based alloys have slow degradation kinetics whereas magnesium-based systems exhibit rapid degradation rates. Recently we have developed fluoride coated binary magnesium-calcium alloys with reduced degradation kinetics. These alloys exhibit good biocompatibility and no major adverse effects toward smooth muscle and endothelial cells in in vitro experiments. In this study, these alloys were investigated in a subcutaneous mouse model. Fluoride coated (fc) magnesium, as well as MgCa0.4%, MgCa0.6%, MgCa0.8%, MgCa1.0%, and a commercially available WE43 alloy were implanted in form of (fc) cylindrical plates into the subcutaneous tissue of NMRI mice. After a 3 and 6 months follow-up, the (fc) alloy plates were examined by histomorphometric techniques to assess their degradation rate in vivo. Our data indicate that all (fc) alloys showed a significant corrosion. For both time points the (fc) MgCa alloys showed a higher corrosion rate in comparison to the (fc) WE43 reference alloy. Significant adverse effects were not observed. Fluoride coating of magnesium-based alloys can be a suitable way to reduce degradation rates. However, the (fc) MgCa alloys did not exhibit decreased degradation kinetics in comparison to the (fc) WE43 alloy in a subcutaneous mouse model. PMID:22767427

  9. Titanium dioxide/calcium fluoride nanocrystallite for efficient dye-sensitized solar cell. A strategy of enhancing light harvest

    NASA Astrophysics Data System (ADS)

    Wang, Zubin; Tang, Qunwei; He, Benlin; Chen, Xiaoxu; Chen, Haiyan; Yu, Liangmin

    2015-02-01

    Enhancement of light harvest for dye excitation is a persistent objective in dye-sensitized solar cell (DSSC). We present here the fabrication of titanium dioxide/calcium fluoride (TiO2/CaF2) photoanodes for efficient DSSC applications. Owing to the interference effect of incident light beams reflected from TiO2/CaF2 and CaF2/electrolyte interfaces, the light intensity and therefore dye excitation have been markedly enhanced. The crystal structure and therefore photovoltaic performance are optimized by adjusting CaF2 dosage. A maximum power conversion efficiency of 7.66% is measured from the DSSC employing TiO2/0.5 wt% CaF2 nanocrystallite in comparison with 6.02% for the solar cell with pristine TiO2 anode.

  10. Combining casein phosphopeptide-amorphous calcium phosphate with fluoride: synergistic remineralization potential of artificially demineralized enamel or not?

    NASA Astrophysics Data System (ADS)

    Elsayad, Iman; Sakr, Amal; Badr, Yahia

    2009-07-01

    Recaldent is a product of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). The remineralizing potential of CPP-ACP per se, or when combined with 0.22% Fl gel on artificially demineralized enamel using laser florescence, is investigated. Mesial surfaces of 15 sound human molars are tested using a He-Cd laser beam at 441.5 nm with 18-mW power as an excitation source on a suitable setup based on a Spex 750-M monochromator provided with a photomultiplier tube (PMT) for detection of collected autofluorescence from sound enamel. Mesial surfaces are subjected to demineralization for ten days. The spectra from demineralized enamel are measured. Teeth are divided into three groups according to the remineralizing regimen: group 1 Recaldent per se, group 2 Recaldent combined with fluoride gel and ACP, and group 3 artificial saliva as a positive control. After following these protocols for three weeks, the spectra from the remineralized enamel are measured. The spectra of enamel autofluorescence are recorded and normalized to peak intensity at about 540 nm to compare spectra from sound, demineralized, and remineralized enamel surfaces. A slight red shift occurred in spectra from demineralized enamel, while a blue shift may occur in remineralized enamel. Group 2 shows the highest remineralizing potential. Combining fluoride and ACP with CPP-ACP can give a synergistic effect on enamel remineralization.

  11. Improved laser damage threshold performance of calcium fluoride optical surfaces via Accelerated Neutral Atom Beam (ANAB) processing

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, S.; Walsh, M.; Svrluga, R.; Thomas, M.

    2015-11-01

    Optics are not keeping up with the pace of laser advancements. The laser industry is rapidly increasing its power capabilities and reducing wavelengths which have exposed the optics as a weak link in lifetime failures for these advanced systems. Nanometer sized surface defects (scratches, pits, bumps and residual particles) on the surface of optics are a significant limiting factor to high end performance. Angstrom level smoothing of materials such as calcium fluoride, spinel, magnesium fluoride, zinc sulfide, LBO and others presents a unique challenge for traditional polishing techniques. Exogenesis Corporation, using its new and proprietary Accelerated Neutral Atom Beam (ANAB) technology, is able to remove nano-scale surface damage and particle contamination leaving many material surfaces with roughness typically around one Angstrom. This surface defect mitigation via ANAB processing can be shown to increase performance properties of high intensity optical materials. This paper describes the ANAB technology and summarizes smoothing results for calcium fluoride laser windows. It further correlates laser damage threshold improvements with the smoothing produced by ANAB surface treatment. All ANAB processing was performed at Exogenesis Corporation using an nAccel100TM Accelerated Particle Beam processing tool. All surface measurement data for the paper was produced via AFM analysis on a Park Model XE70 AFM, and all laser damage testing was performed at Spica Technologies, Inc. Exogenesis Corporation's ANAB processing technology is a new and unique surface modification technique that has demonstrated to be highly effective at correcting nano-scale surface defects. ANAB is a non-contact vacuum process comprised of an intense beam of accelerated, electrically neutral gas atoms with average energies of a few tens of electron volts. The ANAB process does not apply mechanical forces associated with traditional polishing techniques. ANAB efficiently removes surface

  12. Fluoride in the environment and its metabolism in humans.

    PubMed

    Jha, Sunil Kumar; Mishra, Vinay Kumar; Sharma, Dinesh Kumar; Damodaran, Thukkaram

    2011-01-01

    The presence of environmental fluoride and its impact on human health is well documented. When consumed in adequate quantity, fluoride prevents dental caries, assists in the formation of dental enamels, and prevents deficiencies in bone mineralization. At excessive exposure levels, ingestion of fluoride causes dental fluorosis skeletal fluorosis, and manifestations such as gastrointestinal, neurological, and urinary problems. The distribution of fluoride in the environment is uneven and largely is believed to derive from geogenic causes. The natural sources of fluoride are fluorite, fluorapatite, and cryolite, whereas anthropogenic sources include coal burning, oil refining, steel production, brick-making industries, and phosphatic fertilizer plants, among others. Among the various sources of fluoride in the environment, those of anthropogenic origin have occasionally been considered to be major ones. The gourndwater is more susceptible to fluoride accumulation and contamination than are other environmental media, primarily because of its contact with geological substrates underneath. The high fluoride concentration in water usually reflects the solubility of fluoride (CaF₂). High concentrations are also often associated with soft, alkaline, and calcium-deficient waters. The fluoride compounds that occur naturally in drinking water are almost totally bioavailable (90%) and are completely absorbed from the gastrointestinal tract. As a result, drinking water is considered to be the potential source of fluoride that causes fluorosis. Because the bioavailability of fluoride is generally reduced in humans when consumed with milk or a calcium-rich diet, it is highly recommended that the inhabitants of fluoride-contaminated areas should incorporate calcium-rich foods in their routine diet. Guidelines for limiting the fluoride intake from drinking water have been postulated by various authorities. Such limits are designed to protect public health and should reflect all

  13. Ab-initio Calculations of Electronic Properties of Calcium Fluoride (CaF2)

    NASA Astrophysics Data System (ADS)

    Bohara, Bir; Franklin, Lashounda; Malozovsky, Yuriy; Bagayoko, Diola

    We have performed first principle, local density approximation (LDA) calculations of electronic and related properties of cubic calcium fluorite (CaF2) . Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss the electronic energy bands, including the large band gap, total and partial density of states, electron and hole effective masses, and the bulk modulus. Our calculated, indirect (X- Γ) band gap is 12.98 eV; it is 1 eV above an experimental value of 11.8 eV. The calculated bulk modulus (82.89 GPA) is excellent agreement with the experimental result of 82.0 +/-0.7. Our predicted equilibrium lattice constant is 5.42Å. Acknowledgments: This work is funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR], and NSF HRD-1002541, the US Department of Energy, National, Nuclear Security Administration (NNSA) (Award No. DE-NA-0002630), LaSPACE, and LONI-SUBR.

  14. Fluoride coatings make effective lubricants in molten sodium environment

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Coating bearing surfaces with calcium fluoride-barium fluoride film provides effective lubrication against sliding friction in molten sodium and other severe environments at high and low temperatures.

  15. Lubricating Properties of Ceramic-Bonded Calcium Fluoride Coatings on Nickel-Base Alloys from 75 to 1900 deg F

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1962-01-01

    The endurance life and the friction coefficient of ceramic-bonded calcium fluoride (CaF2) coatings on nickel-base alloys were determined at temperatures from 75 F to 1900 F. The specimen configuration consisted of a hemispherical rider (3/16-in. rad.) sliding against the flat surface of a rotating disk. Increasing the ambient temperature (up to 1500 F) or the sliding velocity generally reduced the friction coefficient and improved coating life. Base-metal selection was critical above 1500 F. For instance, cast Inconel sliding against coated Inconel X was lubricated effectively to 1500 F, but at 1600 F severe blistering of the coatings occurred. However, good lubrication and adherence were obtained for Rene 41 sliding against coated Rene 41 at temperatures up to 1900 F; no blisters developed, coating wear life was fairly good, and the rider wear rate was significantly lower than for the unlubricated metals. Friction coefficients were 0.12 at 1500 F, 0.15 at 1700 F, and 0.17 at 1800 F and 1900 F. Because of its ready availability, Inconel X appears to be the preferred substrate alloy for applications in which the temperature does not exceed 1500 F. Rene 41 would have to be used in applications involving higher temperatures. Improved coating life was derived by either preoxidizing the substrate metals prior to the coating application or by applying a very thin (less than 0.0002 in.) burnished and sintered overlay to the surface of the coating. Preoxidation did not affect the friction coefficient. The overlay generally resulted in a higher friction coefficient than that obtained without the overlay. The combination of both modifications resulted in longer coating life and in friction coefficients intermediate between those obtained with either modification alone.

  16. Purex Processing of Dissolved Sand, Slag, and Crucible Containing High Levels of Boric Acid and Calcium Fluoride

    SciTech Connect

    Kyser, E.A.

    1998-05-01

    The plutonium solution obtained from the dissolution of SSC in F- Canyon will be high in fluoride. Flowsheet adjustments must be made to increase the plutonium extraction in the solvent extraction cycle to keep Pu losses from being excessive.

  17. The effect of casein phosphopeptide-amorphous calcium phosphate paste and sodium fluoride mouthwash on the prevention of dentine erosion: An in vitro study

    PubMed Central

    Moezizadeh, Maryam; Alimi, Azar

    2014-01-01

    Aim: The purpose was to compare the effect of 0.2% sodium fluoride mouthwash and casein phosphopeptide-amorphous calcium phosphate paste on prevention of dentin erosion. Materials and Methods: Buccal surfaces of 36 sound premolar teeth were ground flat and polished with abrasive discs. Half the polished surfaces were covered with tape to maintain a reference surface. Samples were randomly allocated into three groups. Group A was pretreated with tooth mousse (TM) 4 times a day for 5 days. Group B was pretreated with 0.2% sodium fluoride mouthwash 4 times a day for 5 days. Group C was considered as the control group with no pretreatment. In the next step, the samples were exposed to Coca-Cola 4 times a day for 3 days. After each erosive cycle, the samples were rinsed with deionized water and stored in artificial saliva. The surface loss was determined using profilometry. Results: The erosion in both Groups A and B was less than the control group. The surface loss in mouthwash group was significantly lower than in the control group. Erosion in TM group was more than the mouthwash group and less than the control group. Conclusion: Sodium fluoride mouthwash is more effective for prevention of dentin erosion. PMID:24944448

  18. Effect of fluoride on calcium ion concentration and expression of nuclear transcription factor kappa-B ρ65 in rat hippocampus.

    PubMed

    Zhang, Jing; Zhu, Wen-Jing; Xu, Xiao-Hong; Zhang, Zi-Gui

    2011-07-01

    The study investigated the neurotoxicity of drinking water fluorosis in rat hippocampus. Just weaning male Sprague-Dawley (SD) rats were given 15, 30, 60 mg/L NaF solution and tap water for 9 months. The calcium ion concentration ([Ca(2+)]) in synaptosomes was measured by double wavelength fluorescence spectrophotometer and the expression level of nuclear transcription factor kappa-B ρ65 (NF-κB ρ65) in hippocampal CA3 region was measured by immunohistochemistry. The results showed that [Ca(2+)] significantly increased (F = 33.218, P < 0.01) in moderate fluoride group compared with the control group, and the expression level of NF-κB ρ65 in CA3 region presented an increasing trend as fluoride concentration increased. These results indicate that increase of synaptosomes [Ca(2+)] and NF-κB ρ65 expression level may be the molecular basis of central nervous system damage caused by chronic fluoride intoxication. NF-κB ρ65 in CA3 region is probably a target molecule for fluorosis. PMID:20304620

  19. Artificial dental root made of natural calcium carbonate (Bioracine).

    PubMed

    Camprasse, S; Camprasse, G; Pouzol, M; Lopez, E

    1990-01-01

    'Bioracine' is an artificial dental root made of natural calcium carbonate (Pinctade maxima mother of pearl). This non-biodegradable material is very close to bone tissue in its physicochemical composition and presents remarkable hardness, resistance and elasticity. Bioracine is a buried dental implant with a special screw thread, presenting a large surface which shows pores of 2-3 mum. A histological study of the interface between the implant and human maxillary bone demonstrated an extraordinary cellular union between these two tissues. Furthermore, bioracine presents two new technical innovations: a periprosthetic epithelial attachment of connective tissue with an active shock absorbing system. Bioracine is an exceptional dental root substitute that matches the biological properties of natural bone. PMID:10147506

  20. [Fluoride in children saliva with its natural low intake in cases of fluoridated salt or water consumption].

    PubMed

    Popruzhenko, T V; Terekhova, T N

    2008-01-01

    Fluoride content dynamics in whole saliva in 3 groups of 5-6 year old children before and after meal. All children lived in the region with lov F-0,2 ppm in water, used fluoridated toothpaste and went to kindergartens. Children from group A (n=10) did not have other sources of F, group B children (n=10) drink one glass a day of F-water (1 ppm), participants from group C (n=11) eat F-salt 250+/-100 ppm. The F in saliva samples gathered prior to and following meal was determined. Before the meal children saliva in group A contains 0,058 ppm F, in group B - 0,078 ppm F, in group C - 0,074 ppm F. Saliva of group A children shows the increase of F after the meal (0,067 ppm), F decreases lower the starting point after the 5th minute (0,056 ppm) and restores to normal by minute 40. Group B showed the decrease of F right after the meal, lasting to minute 20 (0,060 ppm), than a small increase followed (0,063 ppm), and finally the restoration to normal by minute 50. In group C immediate raise of F (0,085 ppm) was noticed, by minute 10 - some decline (0,076 ppm), from minute 20 F rises to level 0,090 ppm, after that it is decreasing slowly, but by minute 60 remains higher tan the starting point (0, 076 ppm). Thus, F-salt use allows to raise a basic level of F, and also to positively change F dynamics in oral fluid during the risk period (after the meal intake). PMID:19156108

  1. Fluoridation Basics

    MedlinePlus

    ... Water Fluoridation Journal Articles for Community Water Fluoridation Water Fluoridation Basics Recommend on Facebook Tweet Share Compartir ... because of tooth decay. History of Fluoride in Water In the 1930s, scientists examined the relationship between ...

  2. Calcium

    MedlinePlus

    ... of calcium dietary supplements are carbonate and citrate. Calcium carbonate is inexpensive, but is absorbed best when taken ... antacid products, such as Tums® and Rolaids®, contain calcium carbonate. Each pill or chew provides 200–400 mg ...

  3. Analysis of bone formation on porous and calcium phosphate-coated acetabular cups: a randomised clinical [18F]fluoride PET study.

    PubMed

    Ullmark, Gösta; Sörensen, Jens; Nilsson, Olle

    2012-01-01

    We present a study using Fluoride-Positron Emission Tomography (F-PET/CT) to analyse new bone formation in periacetabular bone adjacent to press fit cups following THA. In 16 THA (8 patients) with bilateral hip osteoarthritis simultaneous bilateral total hip arthroplasty (THA) was performed, employing electrochemically applied calcium phosphate coated (HA) cups or porous-coated (PC) cups allocated at random to compare the two sides. A reference group of 13 individuals with a normal healthy hip was used to determine 'normal' bone metabolism. [18F]fluoride -PET/CT was used to analyze bone formation adjacent to the cups 1 week, 4 months and 12 months after surgery. Clinical and radiographic evaluation was performed preoperatively, postoperatively and at 2 years. Bone forming activity had a mean of 5.71, 4.69 and 3.47 SUV around the HA- and 5.04, 4.80 and 3.50 SUV around the PC-cups at 1 week, 4 months and 12 months respectively. Normal bone metabolism was 3.68 SUV. After 1 year activity had declined to normal levels for both groups. The clinical results were good in all cases. HA coating resulted in higher uptake indicating higher bone forming activity after 1 week. F-PET/CT is a valuable tool to analyse bone formation and secondary stabilisation of an acetabular cup. PMID:22547382

  4. Fluorides and non-fluoride remineralization systems.

    PubMed

    Amaechi, Bennett T; van Loveren, Cor

    2013-01-01

    Caries develops when the equilibrium between de- and remineralization is unbalanced favoring demineralization. De- and remineralization occur depending on the degree of saturation of the interstitial fluids with respect to the tooth mineral. This equilibrium is positively influenced when fluoride, calcium and phosphate ions are added favoring remineralization. In addition, when fluoride is present, it will be incorporated into the newly formed mineral which is then less soluble. Toothpastes may contain fluoride and calcium ions separately or together in various compounds (remineralization systems) and may therefore reduce demineralization and promote remineralization. Formulating all these compounds in one paste may be challenging due to possible premature calcium-fluoride interactions and the low solubility of CaF2. There is a large amount of clinical evidence supporting the potent caries preventive effect of fluoride toothpastes indisputably. The amount of clinical evidence of the effectiveness of the other remineralization systems is far less convincing. Evidence is lacking for head to head comparisons of the various remineralization systems. PMID:23817057

  5. Evaluation and comparison of the efficacy of low fluoridated and calcium phosphate-based dentifrice formulations when used with powered and manual toothbrush in children with autism

    PubMed Central

    Awasthi, Prateek; Peshwani, Bharti; Tiwari, Shilpi; Thakur, Ruchi; Shashikiran, N. D.; Singla, Shilpy

    2015-01-01

    Background: Autism is a neurobiological disorder characterized by impaired social interaction, communication difficulties, and lacking manual dexterity. These limitations make the oral hygiene maintenance very difficult. Aim: The aim of this present study is to evaluate and compare the efficacy of low fluoridated and calcium phosphate-based dentifrice formulations when used with powered and manual toothbrush in children with autism. Setting and Design: Sample comprised 22 children with autism who daily visited a day care and education center named ARUSHI - a center for children with special health care needs in Bhopal. Methods: Children were divided into two groups (Group A and B) according to toothbrush used and further divided into subgroups (A1 and B1 [low fluoridated − Pediflor toothpaste] and A2 and B2 [calcium sucrose phosphate − Enafix toothpaste]). Oral hygiene instructions and brushing technique demonstration were given every day for a period of 1-month. Oral health status was evaluated before and after the study using simplified oral hygiene index (OHI-S) and its Miglani's modification for primary dentition, plaque index (PI), gingival index (GI), and decayed, missing, and filled teeth (DMFT)/deft index. The perception of parents regarding oral hygiene practices for their kids was also evaluated by an awareness and attitude questionnaire. Statistical Analysis: OHI-S, GI, PI, and DMFT/deft were statistically evaluated using Mann–Whitney U- test. Results and Conclusion: Mean value of OHI-S decreased significantly with powered toothbrush (0.035 [P < 0.05]) in both groups. However, PI decreased significantly for Enafix when used with powered toothbrush (0.042 [P < 0.05]). Perception of parents was seen to improve significantly after 1-month study (0.000 [P < 0.05]). PMID:26604573

  6. Nature of the Enhancement in Ferroelectric Properties by Gold Nanoparticles in Vinylidene Fluoride and Trifluoroethylene Copolymer.

    PubMed

    Tsutsumi, Naoto; Kosugi, Ryusei; Kinashi, Kenji; Sakai, Wataru

    2016-07-01

    Ferroelectric polymers are a candidate for versatile and cheap data storage memory devices, with easy processing for a large-scale device. Easy switching and large remanent polarization of preferentially formed β-crystal dipoles in a copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)) are promising properties for versatile memory devices. At higher frequency switching, however, the remanent polarization is reduced and a high coercive field, an electric field for polarization switching is required. The addition of a small amount of nanoparticles (NPs) significantly improves these ferroelectric properties in fluoropolymers. Here, we show that the addition of NPs of gold (Au), silver (Ag), and silicon oxide (SiO2) enhanced the ferroelectric properties in P(VDF-TrFE). AuNPs significantly affected a 40% increase of the remanent polarization, 14% reduction of the coercive field, and 100% increase of the switching speed of ferroelectric polarization. The nature of these enhancements due to the addition of NPs is verified. A higher shift of the binding energy of Au (4f7/2 and 4f5/2) and an increase of the fluorine ion (F(-)) was observed in AuNP-doped P(VDF-TrFE). Strong interactions between the AuNPs and the ferroelectric backbone gave rise to the formation of the interfacial polarization, which induced the local electric field to enhance the ferroelectric properties of the increment of the remanent polarization, the reduction of the coercive field, and faster switching speed. PMID:27309153

  7. A health risk assessment for fluoride in Central Europe.

    PubMed

    Fordyce, F M; Vrana, K; Zhovinsky, E; Povoroznuk, V; Toth, G; Hope, B C; Iljinsky, U; Baker, J

    2007-04-01

    Like many elements, fluorine (which generally occurs in nature as fluoride) is beneficial to human health in trace amounts, but can be toxic in excess. The links between low intakes of fluoride and dental protection are well known; however, fluoride is a powerful calcium-seeking element and can interfere with the calcified structure of bones and teeth in the human body at higher concentrations causing dental or skeletal fluorosis. One of the main exposure routes is via drinking water and the World Health Organisation currently sets water quality guidelines for the element. In Central Europe, groundwater resources that exceed the guideline value of 1.5 mg l-1 are widespread and effects on health of high fluoride in water have been reported. The aim of the current project was to develop a geographic information system (GIS) to aid the identification of areas where high-fluoride waters and fluorosis may be a problem; hence, where water treatment technologies should be targeted. The development of the GIS was based upon the collation and digitisation of existing information relevant to fluoride risk in Ukraine, Moldova, Hungary and Slovakia assembled for the first time in a readily accessible form. In addition, geochemistry and health studies to examine in more detail the relationships between high-fluoride drinking waters and health effects in the population were carried out in Moldova and Ukraine demonstrating dental fluorosis prevalence rates of 60-90% in adolescents consuming water containing 2-7 mg l-1 fluoride. PMID:17256094

  8. Fluoride in UK rivers.

    PubMed

    Neal, Colin; Neal, Margaret; Davies, Helen; Smith, Jennifer

    2003-10-01

    concentrations within the more contaminated rivers, and this is indicated by a negative upper bound between fluoride and calcium. The waters are undersaturated with respect to fluorite and oversaturated with respect to calcium fluoro-phosphates. This upper bound may reflect either physical controls, such as the availability and size of point and diffuse sources for fluoride coupled to mixing of these sources with rain and soil runoff of low concentration, or solubility controls for a pure or mixed-phase mineral that cannot be specified here. PMID:14499534

  9. Calcium

    MedlinePlus

    ... body stores more than 99 percent of its calcium in the bones and teeth to help make and keep them ... in the foods you eat. Foods rich in calcium include Dairy products such as milk, cheese, and yogurt Leafy, green vegetables Fish with soft bones that you eat, such as canned sardines and ...

  10. Natural variations in calcium isotope composition as a monitor of bone mineral balance in humans.

    NASA Astrophysics Data System (ADS)

    Skulan, J.; Anbar, A.; Thomas, B.; Smith, S.

    2004-12-01

    The skeleton is the largest reservoir of calcium in the human body and is responsible for the short term control of blood levels of this element. Accurate measurement of changes in bone calcium balance is critical to understanding how calcium metabolism responds to physiological and environmental changes and, more specifically, to diagnosing and evaluating the effectiveness of treatments for osteoporosis and other serious calcium-related disorders. It is very difficult to measure bone calcium balance using current techniques, however, because these techniques rely either on separate estimates of bone resorption and formation that are not quantitatively comparable, or on complex and expensive studies of calcium kinetics using administered isotopic tracers. This difficulty is even more apparent and more severe for measurements of short-term changes in bone calcium balance that do not produce detectable changes in bone mineral density. Calcium isotopes may provide a novel means of addressing this problem. The foundation of this isotope application is the ca. 1.3 per mil fractionation of calcium during bone formation, favoring light calcium in the bone. This fractionation results in a steady-state isotopic offset between calcium in bone and calcium in soft tissues, blood and urine. Perturbations to this steady state due to changes in the net formation or resorption of bone should be reflected in changes in the isotopic composition of soft tissues and fluids. Here we present evidence that easily detectable shifts in the natural calcium isotope composition of human urine rapidly reflect changes in bone calcium balance. Urine from subjects in a 17-week bed rest study was analyzed for calcium isotopic composition. Bed rest promotes net resorption of bone, shifting calcium from bone to soft tissues, blood and urine. The calcium isotope composition of patients in this study shifted toward lighter values during bed rest, consistent with net resorption of isotopically

  11. Calcium

    MedlinePlus

    ... milligrams) of calcium each day. Get it from: Dairy products. Low-fat milk, yogurt, cheese, and cottage ... lactase that helps digest the sugar (lactose) in dairy products, and may have gas, bloating, cramps, or ...

  12. Influences of naturally occurring agents in combination with fluoride on gene expression and structural organization of Streptococcus mutans in biofilms

    PubMed Central

    2009-01-01

    Background The association of specific bioactive flavonoids and terpenoids with fluoride can modulate the development of cariogenic biofilms by simultaneously affecting the synthesis of exopolysaccharides (EPS) and acid production by Streptococcus mutans, which enhanced the cariostatic effectiveness of fluoride in vivo. In the present study, we further investigated whether the biological actions of combinations of myricetin (flavonoid), tt-farnesol (terpenoid) and fluoride can influence the expression of specific genes of S. mutans within biofilms and their structural organization using real-time PCR and confocal fluorescence microscopy. Results Twice-daily treatment (one-minute exposure) during biofilm formation affected the gene expression by S. mutans both at early (49-h) and later (97-h) stages of biofilm development. Biofilms treated with combination of agents displayed lower mRNA levels for gtfB and gtfD (associated with exopolysaccharides synthesis) and aguD (associated with S. mutans acid tolerance) than those treated with vehicle-control (p < 0.05). Furthermore, treatment with combination of agents markedly affected the structure-architecture of S. mutans biofilms by reducing the biovolume (biomass) and proportions of both EPS and bacterial cells across the biofilm depth, especially in the middle and outer layers (vs. vehicle-control, p < 0.05). The biofilms treated with combination of agents were also less acidogenic, and had reduced amounts of extracellular insoluble glucans and intracellular polysaccharides than vehicle-treated biofilms (p < 0.05). Conclusion The data show that the combination of naturally-occurring agents with fluoride effectively disrupted the expression of specific virulence genes, structural organization and accumulation of S. mutans biofilms, which may explain the enhanced cariostatic effect of our chemotherapeutic approach. PMID:19863808

  13. Optimal Fluoridation

    PubMed Central

    Lee, John R.

    1975-01-01

    Optimal fluoridation has been defined as that fluoride exposure which confers maximal cariostasis with minimal toxicity and its values have been previously determined to be 0.5 to 1 mg per day for infants and 1 to 1.5 mg per day for an average child. Total fluoride ingestion and urine excretion were studied in Marin County, California, children in 1973 before municipal water fluoridation. Results showed fluoride exposure to be higher than anticipated and fulfilled previously accepted criteria for optimal fluoridation. Present and future water fluoridation plans need to be reevaluated in light of total environmental fluoride exposure. PMID:1130041

  14. Fluoride and Oral Health.

    PubMed

    O'Mullane, D M; Baez, R J; Jones, S; Lennon, M A; Petersen, P E; Rugg-Gunn, A J; Whelton, H; Whitford, G M

    2016-06-01

    The discovery during the first half of the 20th century of the link between natural fluoride, adjusted fluoride levels in drinking water and reduced dental caries prevalence proved to be a stimulus for worldwide on-going research into the role of fluoride in improving oral health. Epidemiological studies of fluoridation programmes have confirmed their safety and their effectiveness in controlling dental caries. Major advances in our knowledge of how fluoride impacts the caries process have led to the development, assessment of effectiveness and promotion of other fluoride vehicles including salt, milk, tablets, toothpaste, gels and varnishes. In 1993, the World Health Organization convened an Expert Committee to provide authoritative information on the role of fluorides in the promotion of oral health throughout the world (WHO TRS 846, 1994). This present publication is a revision of the original 1994 document, again using the expertise of researchers from the extensive fields of knowledge required to successfully implement complex interventions such as the use of fluorides to improve dental and oral health. Financial support for research into the development of these new fluoride strategies has come from many sources including government health departments as well as international and national grant agencies. In addition, the unique role which industry has played in the development, formulation, assessment of effectiveness and promotion of the various fluoride vehicles and strategies is noteworthy. This updated version of 'Fluoride and Oral Health' has adopted an evidence-based approach to its commentary on the different fluoride vehicles and strategies and also to its recommendations. In this regard, full account is taken of the many recent systematic reviews published in peer reviewed literature. PMID:27352462

  15. On the nature of structural disorder in calcium silicate hydrates with a calcium/silicon ratio similar to tobermorite

    SciTech Connect

    Grangeon, Sylvain; Claret, Francis; Lerouge, Catherine; Warmont, Fabienne; Sato, Tsutomu; Anraku, Sohtaro; Linard, Yannick

    2013-10-15

    Four calcium silicate hydrates (C-S-H) with structural calcium/silicon (Ca/Si) ratios ranging from 0.82 ± 0.02 to 0.87 ± 0.02 were synthesized at room temperature, 50, 80, and 110 °C. Their structure was elucidated by collating information from electron probe micro-analysis, transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, and powder X-ray diffraction (XRD). A modeling approach specific to defective minerals was used because sample turbostratism prevented analysis using usual XRD refinement techniques (e.g. Rietveld analysis). It is shown that C-S-H with Ca/Si ratio of ∼ 0.8 are structurally similar to nano-crystalline turbostratic tobermorite, a naturally occurring mineral. Their structure thus consists of sheets of calcium atoms in 7-fold coordination, covered by ribbons of silicon tetrahedra with a dreierketten (wollastonite-like) organization. In these silicate ribbons, 0.42 Si per bridging tetrahedron are missing. Random stacking faults occur systematically between successive layers (turbostratic stacking). Layer-to-layer distance is equal to 11.34 Å. Crystallites have a mean size of 10 nm in the a–b plane, and a mean number of 2.6–2.9 layers stacked coherently along the c* axis.

  16. Spectrophotometric determination of fluoride in fluoride-bearing minerals after decomposition by fusion with sodium hydroxide.

    PubMed

    Adelantado, J V; Martinez, V P; Moreno, A C; Reig, F B

    1985-03-01

    The decomposition of highly insoluble minerals (fluorspar and cryolite) by fusion with molten alkali-metal hydroxides is studied. The introduction of additives such as aluminium compounds or sodium peroxide to obtain total liberation of fluoride from calcium fluoride samples, is tested. The fusion is done in a silver crucible with a Bunsen burner. The cooled melt is easily soluble, giving solutions suitable for spectrophotometric fluoride determination by the Zr(IV)-fluoride-Erichrome Cyanine R method. PMID:18963832

  17. Massachusetts fluoridation update 2006.

    PubMed

    Allukian, Myron

    2006-01-01

    Massachusetts has a long history of activity with community water fluoridation. Although the state has 3.8 million people living in 137 fluoridated communities, there are more than 2 million people who do not have these benefits. The Bay State is ranked 35th in the country regarding the percent of people on public water supplies with fluoridation. We can do better than that. We have more than 60 years of experience receiving the health and economic benefits of fluoridation in our country; however, there is still a lot of misinformation about fluoridation, and the unreliable nature of information posted on the Internet exacerbates much of this misinformation. Dental professionals, their patients, and decision-makers must be continuously educated about the safety, health, and economic benefits of community water fluoridation. Patients from 6 months to 16 years of age living in nonfluoridated communities should be prescribed supplemental fluoride. Dental professionals in nonfluoridated communities should assist them to become fluoridated. All dental professionals need to become more involved in the leadership of their communities. PMID:16683510

  18. Characterization of calcium isotopes in natural and synthetic barite

    USGS Publications Warehouse

    Griffith, E.M.; Schauble, E.A.; Bullen, T.D.; Paytan, A.

    2008-01-01

    The mineral barite (BaSO4) accommodates calcium in its crystal lattice, providing an archive of Ca-isotopes in the highly stable sulfate mineral. Holocene marine (pelagic) barite samples from the major ocean basins are isotopically indistinguishable from each other (??44/40Ca = -2.01 ?? 0.15???) but are different from hydrothermal and cold seep barite samples (??44/40Ca = -4.13 to -2.72???). Laboratory precipitated (synthetic) barite samples are more depleted in the heavy Ca-isotopes than pelagic marine barite and span a range of Ca-isotope compositions, ??44/40Ca = -3.42 to -2.40???. Temperature, saturation state, a Ba2 + / a SO42 -, and aCa2+/aBa2+ each influence the fractionation of Ca-isotopes in synthetic barite; however, the fractionation in marine barite samples is not strongly related to any measured environmental parameter. First-principles lattice dynamical modeling predicts that at equilibrium Ca-substituted barite will have much lower 44Ca/40Ca than calcite, by -9??? at 0 ??C and -8??? at 25 ??C. Based on this model, none of the measured barite samples appear to be in isotopic equilibrium with their parent solutions, although as predicted they do record lower ??44/40Ca values than seawater and calcite. Kinetic fractionation processes therefore most likely control the extent of isotopic fractionation exhibited in barite. Potential fractionation mechanisms include factors influencing Ca2+ substitution for Ba2+ in barite (e.g. ionic strength and trace element concentration of the solution, competing complexation reactions, precipitation or growth rate, temperature, pressure, and saturation state) as well as nucleation and crystal growth rates. These factors should be considered when investigating controls on isotopic fractionation of Ca2+ and other elements in inorganic and biogenic minerals. ?? 2008 Elsevier Ltd.

  19. Fluoride laser crystals: old and new

    NASA Astrophysics Data System (ADS)

    Jenssen, Hans P.; Cassanho, Arlete

    2006-02-01

    The development of oxide and fluoride materials as gain materials of choice for solid state lasers ranges from early materials such as Calcium Fluoride and Calcium Tungstate crystals to the now ubiquitous Nd hosts YLF, YAG and Vanadate. Among Tunable laser materials, MgF II - an early favorite, gave way to superior oxides such as Alexandrite and Ti:Sapphire only to be followed by development of still newer tunable fluoride media, notably, fluoride colquiriites such as Cr-doped LiSAF and LiCaF. Newer fluoride crystals, such as Barium Yttrium Fluoride BaY II F 8 (BYF), KY 3F 10 (KYF) and the tunable Cr doped LiCaGaF 6 are attractive laser materials, but their growth has not been optimized. Key advantages of two of these new crystals are discussed. Crystal growth results for BYF and Cr:LiCaGaF 6 as well as some material characterization are presented.

  20. Practical considerations, column studies and natural organic material competition for fluoride removal with bone char and aluminum amended materials in the Main Ethiopian Rift Valley.

    PubMed

    Brunson, Laura R; Sabatini, David A

    2014-08-01

    The fluoride removal capacities of three materials, bone char (BC), aluminum oxide coated bone char (ACBC) and aluminum oxide impregnated wood char (AIWC), along with activated alumina (AA) as a baseline material, were investigated in batch and column studies, including comparison between synthetic and natural groundwater. Results suggest that in all cases the laboratory column results exhibited higher fluoride removal efficiency than the field studies conducted in the Ethiopian Rift Valley. Further studies indicate that the reduced effectiveness in the field was likely due to a combination of the high pH of groundwater (8.2) and the presence of competing ions (sulfate). Batch studies testing potential competition from natural organic material (NOM) showed no statistical evidence of NOM competition with BC and minor evidence of competition with ACBC and AIWC. To provide evidence for using Rapid Scale Small Column Test (RSSCT) principles for BC two different column volume and particle sizes were used. The results indicate that RSSCT scaling equations, developed for activated carbon, are applicable for BC removal of fluoride. These results thus provide valuable insights for translating laboratory results of novel sorbents for mitigating fluoride tainted groundwater in the field. PMID:24393599

  1. Natural calcium isotonic composition of urine as a marker of bone mineral balance

    USGS Publications Warehouse

    Skulan, J.; Bullen, T.; Anbar, A.D.; Puzas, J.E.; Shackelford, L.; LeBlanc, A.; Smith, S.M.

    2007-01-01

    Background: We investigated whether changes in the natural isotopic composition of calcium in human urine track changes in net bone mineral balance, as predicted by a model of calcium isotopic behavior in vertebrates. If so, isotopic analysis of natural urine or blood calcium could be used to monitor short-term changes in bone mineral balance that cannot be detected with other techniques. Methods: Calcium isotopic compositions are expressed as ??44Ca, or the difference in parts per thousand between the 44Ca/40Ca of a sample and the 44Ca/ 40Ca of a standard reference material. ??44Ca was measured in urine samples from 10 persons who participated in a study of the effectiveness of countermeasures to bone loss in spaceflight, in which 17 weeks of bed rest was used to induce bone loss. Study participants were assigned to 1 of 3 treatment groups: controls received no treatment, one treatment group received alendronate, and another group performed resistive exercise. Measurements were made on urine samples collected before, at 2 or 3 points during, and after bed rest. Results: Urine ??44Ca values during bed rest were lower in controls than in individuals treated with alendronate (P <0.05, ANOVA) or exercise (P <0.05), and lower than the control group baseline (P <0.05, Mest). Results were consistent with the model and with biochemical and bone mineral density data. Conclusion: Results confirm the predicted relationship between bone mineral balance and calcium isotopes, suggesting that calcium isotopic analysis of urine might be refined into a clinical and research tool. ?? 2007 American Association for Clinical Chemistry.

  2. Dentifrice Fluoride

    NASA Astrophysics Data System (ADS)

    Rakita, Philip E.

    2004-05-01

    The effectiveness of the fluoride ion in lowering the incidence of dental caries is a major factor in the field of dental health. Observations and research studies in the first half of the 20th century have lead to the widespread adoption of fluoridated water and the use of inorganic fluoride compounds in oral care products, such as toothpaste and dental rinses. This article provides a brief review of the types of compounds used and the chemistry involved.

  3. Crystal structure of complex natural aluminum magnesium calcium iron oxide

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.; Verin, I. A.

    2010-07-15

    The structure of a new natural oxide found near the Tashelga River (Eastern Siberia) was studied by X-ray diffraction. The pseudo-orthorhombic unit cell parameters are a = 5.6973(1) A, b = 17.1823(4) A, c = 23.5718(5) A, {beta} = 90{sup o}, sp. gr. Pc. The structure was refined to R = 0.0516 based on 4773 reflections with vertical bar F vertical bar > 7{sigma}(F) taking into account the twin plane perpendicular to the z axis (the twin components are 0.47 and 0.53). The crystal-chemical formula (Z = 4) is Ca{sub 2}Mg{sub 2}{sup IV}Fe{sub 2}{sup (2+)IV}[Al{sub 14}{sup VI}O{sub 31}(OH)][Al{sub 2}{sup IV}O][Al{sup IV}]AL{sup IV}(OH)], where the Roman numerals designate the coordination of the atoms. The structure of the mineral is based on wide ribbons of edge-sharing Al octahedra (an integral part of the spinel layer). The ribbons run along the shortest x axis and are inclined to the y and z axes. The adjacent ribbons are shifted with respect to each other along the y axis, resulting in the formation of step-like layers in which the two-ribbon thickness alternates with the three-ribbon thickness. Additional Al octahedra and Mg and Fe{sup 2+} tetrahedra are located between the ribbons. The layers are linked together to form a three-dimensional framework by Al tetrahedra, Ca polyhedra, and hydrogen bonds with the participation of OH groups.

  4. Bottled Water and Fluoride

    MedlinePlus

    ... Fluoridation Journal Articles for Community Water Fluoridation Bottled Water Recommend on Facebook Tweet Share Compartir Consumers drink ... questions about bottled water and fluoride. Does bottled water contain fluoride? Bottled water products may contain fluoride, ...

  5. Fluoride Plus Functionalized β-TCP

    PubMed Central

    Karlinsey, R.L.; Pfarrer, A.M.

    2012-01-01

    With more than 50 years of clinical success, fluoride serves as the gold standard agent for preventing tooth decay. In particular, the action of fluoride facilitates saliva-driven remineralization of demineralized enamel and alters solubility beneficially. Still, tooth decay remains problematic, and one way to address it may be through the development of new mineralizing agents. Laboratory and clinical studies have demonstrated that the combination of fluoride and functionalized β-tricalcium phosphate (fTCP) produces stronger, more acid-resistant mineral relative to fluoride, native β-TCP, or fTCP alone. In contrast to other calcium-based approaches that seem to rely on high levels of calcium and phosphate to drive remineralization, fTCP is a low-dose system designed to fit within existing topical fluoride preparations. The functionalization of β-TCP with organic and/or inorganic molecules provides a barrier that prevents premature fluoride-calcium interactions and aids in mineralization when applied via common preparations and procedures. While additional clinical studies are warranted, supplementing with fTCP to enhance fluoride-based nucleation activity, with subsequent remineralization driven by dietary and salivary calcium and phosphate, appears to be a promising approach. PMID:22899679

  6. In vitro calcium availability in bakery products fortified with tuna bone powder as a natural calcium source.

    PubMed

    Nemati, Mahnaz; Kamilah, Hanisah; Huda, Nurul; Ariffin, Fazilah

    2015-08-01

    Avoidance of dairy products due to lactose intolerance can lead to insufficiency of calcium (Ca) in the body. In an approach to address this problem, tuna bone powder (TBP) was formulated as a calcium supplement to fortify bakery products. In a study, TBP recovered by alkaline treatment contained 38.16 g/100 g of calcium and 23.31 g/100 g of phosphorus. The ratio of Ca:P that was close to 2:1 was hence comparable to that in human bones. The availability of calcium in TBP was 53.93%, which was significantly higher than most calcium salts, tricalcium phosphate (TCP) being the exception. In vitro availability of calcium in TBP-fortified cookies or TCP-fortified cookies were comparable at 38.9% and 39.5%, respectively. These values were higher than the readings from TBP-fortified bread (36.7%) or TCP-fortified bread (37.4%). Sensory evaluation of bakery products containing TBP or TCP elicited comparable scores for the two additives from test panels. Hence, TBP could be used in the production of high calcium bakery products that would enjoy consumer acceptance. PMID:27144766

  7. Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass

    PubMed Central

    Davis, Harry B.; Gwinner, Fernanda; Mitchell, John C.; Ferracane, Jack L.

    2014-01-01

    Objectives Materials that are capable of releasing ions such as calcium and fluoride, that are necessary for remineralization of dentin and enamel, have been the topic of intensive research for many years. The source of calcium has most often been some form of calcium phosphate, and that for fluoride has been one of several metal fluoride or hexafluorophosphate salts. Fluoride-containing bioactive glass (BAG) prepared by the sol-gel method acts as a single source of both calcium and fluoride ions in aqueous solutions. The objective of this investigation was to determine if BAG, when added to a composite formulation, can be used as a single source for calcium and fluoride ion release over an extended time period, and to determine if the BAG-containing composite can be recharged upon exposure to a solution of 5,000 ppm fluoride. Methods BAG 61 (61% Si; 31% Ca; 4% P; 3% F; 1% B) and BAG 81 (81% Si; 11% Ca; 4% P; 3% F; 1% B) were synthesized by the sol gel method. The composite used was composed of 50/50 Bis-GMA/TEGDMA, 0.8% EDMAB, 0.4% CQ, and 0.05% BHT, combined with a mixture of BAG (15%) and strontium glass (85%) to a total filler load of 72% by weight. Disks were prepared, allowed to age for 24 h, abraded, then placed into DI water. Calcium and fluoride release was measured by atomic absorption spectroscopy and fluoride ion selective electrode methods, respectively, after 2, 22, and 222 h. The composite samples were then soaked for 5 min in an aqueous 5,000 ppm fluoride solution, after which calcium and fluoride release was again measured at 2, 22, and 222 h time points. Results Prior to fluoride recharge, release of fluoride ions was similar for the BAG 61 and BAG 81 composites after 2 h, and also similar after 22 h. At the four subsequent time points, one prior to, and three following fluoride recharge, the BAG 81 composite released significantly more fluoride ions (p<0.05). Both composites were recharged by exposure to 5,000 ppm fluoride, although the BAG 81

  8. Fluoride in groundwater: toxicological exposure and remedies.

    PubMed

    Jha, S K; Singh, R K; Damodaran, T; Mishra, V K; Sharma, D K; Rai, Deepak

    2013-01-01

    Fluoride is a chemical element that is found most frequently in groundwater and has become one of the most important toxicological environmental hazards globally. The occurrence of fluoride in groundwater is due to weathering and leaching of fluoride-bearing minerals from rocks and sediments. Fluoride when ingested in small quantities (<0.5 mg/L) is beneficial in promoting dental health by reducing dental caries, whereas higher concentrations (>1.5 mg/L) may cause fluorosis. It is estimated that about 200 million people, from among 25 nations the world over, may suffer from fluorosis and the causes have been ascribed to fluoride contamination in groundwater including India. High fluoride occurrence in groundwaters is expected from sodium bicarbonate-type water, which is calcium deficient. The alkalinity of water also helps in mobilizing fluoride from fluorite (CaF2). Fluoride exposure in humans is related to (1) fluoride concentration in drinking water, (2) duration of consumption, and (3) climate of the area. In hotter climates where water consumption is greater, exposure doses of fluoride need to be modified based on mean fluoride intake. Various cost-effective and simple procedures for water defluoridation techniques are already known, but the benefits of such techniques have not reached the rural affected population due to limitations. Therefore, there is a need to develop workable strategies to provide fluoride-safe drinking water to rural communities. The study investigated the geochemistry and occurrence of fluoride and its contamination in groundwater, human exposure, various adverse health effects, and possible remedial measures from fluoride toxicity effects. PMID:23573940

  9. REDUCTION OF FLUORIDE TO METAL

    DOEpatents

    Carlson, O.N.; Schmidt, F.A.; Spedding, F.H.

    1960-08-30

    A process is given for making yttrium metal by reducing yttrium fluoride with calcium plus magnesium. Calcium is added in an excess of from 10 to 20% and magnesium in a quantity to yield a magnesium--yttrium alloy containing from 12 to 25% magnesium when the reaction mass is heated in an inert atmosphere at from 900 to 1106 deg C, but preferably above the melting point of the alloy. Calcium chloride may be added so as to obtain a less viscous slag containing from 30 to 60% calcium chloride. After removal of the slag the alloy is vacuum-heated at about 1100 deg C for volatilization of the magnesium and calcium.

  10. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel.

    PubMed

    Hutchens, Stacy A; Benson, Roberto S; Evans, Barbara R; O'Neill, Hugh M; Rawn, Claudia J

    2006-09-01

    A novel composite material consisting of calcium-deficient hydroxyapatite (CdHAP) biomimetically deposited in a bacterial cellulose hydrogel was synthesized and characterized. Cellulose produced by Gluconacetobacter hansenii was purified and sequentially incubated in solutions of calcium chloride followed by sodium phosphate dibasic. A substantial amount of apatite (50-90% of total dry weight) was homogeneously incorporated throughout the hydrogel after this treatment. X-ray diffractometry (XRD) showed that CdHAP crystallites had formed in the cellulose. XRD further demonstrated that the CdHAP was comprised of 10-50 nm anisotropic crystallites elongated in the c-axis, similar to natural bone apatite. Fourier transform infrared (FTIR) spectroscopy demonstrated that hydroxyl IR bands of the cellulose shifted to lower wave numbers indicating that a coordinate bond had possibly formed between the CdHAP and the cellulose hydroxyl groups. FTIR also suggested that the CdHAP had formed from an octacalcium phosphate precursor similar to physiological bone. Scanning electron microscopy (SEM) images confirmed that uniform approximately 1 microm spherical CdHAP particles comprised of nanosized crystallites with a lamellar morphology had formed in the cellulose. The synthesis of the composite mimics the natural biomineralization of bone indicating that bacterial cellulose can be used as a template for biomimetic apatite formation. This composite may have potential use as an orthopedic biomaterial. PMID:16713623

  11. Biomimetic Synthesis of Calcium-Deficient Hydroxyapatite in a Natural Hydrogel

    SciTech Connect

    Hutchens, Stacy A; Benson, Roberto S.; Evans, Barbara R; O'Neill, Hugh Michael; Rawn, Claudia J

    2006-01-01

    A novel composite material consisting of calcium-deficient hydroxyapatite (CdHAP) biomimetically deposited in a bacterial cellulose hydrogel was synthesized and characterized. Cellulose produced by Gluconacetobacter hansenii was purified and sequentially incubated in solutions of calcium chloride followed by sodium phosphate dibasic. A substantial amount of apatite (50-90% of total dry weight) was homogeneously incorporated throughout the hydrogel after this treatment. X-ray diffractometry (XRD) showed that CdHAP crystallites had formed in the cellulose. XRD further demonstrated that the CdHAP was comprised of 10-50nm anisotropic crystallites elongated in the c-axis, similar to natural bone apatite. Fourier transform infrared (FTIR) spectroscopy demonstrated that hydroxyl IR bands of the cellulose shifted to lower wave numbers indicating that a coordinate bond had possibly formed between the CdHAP and the cellulose hydroxyl groups. FTIR also suggested that the CdHAP had formed from an octacalcium phosphate precursor similar to physiological bone. Scanning electron microscopy (SEM) images confirmed that uniform ?1 mm spherical CdHAP particles comprised of nanosized crystallites with a lamellar morphology had formed in the cellulose. The synthesis of the composite mimics the natural biomineralization of bone indicating that bacterial cellulose can be used as a template for biomimetic apatite formation. This composite may have potential use as an orthopedic biomaterial.

  12. High Fluoride and Geothermal Activities In Continental Rift Zones, Ethiopia

    NASA Astrophysics Data System (ADS)

    Weldesenbet, S. F.; Wohnlich, S.

    2012-12-01

    The Central Main Ethiopian Rift basin is a continental rift system characterized by volcano-tectonic depression endowed with huge geothermal resource and associated natural geochemical changes on groundwater quality. Chemical composition of groundwater in the study area showed a well defined trend along flow from the highland and escarpment to the rift floor aquifer. The low TDS (< 500mg/l) Ca-Mg-HCO3 dominated water at recharge area in the highlands and escarpments evolve progressively into Ca-Na-HCO3 and Na-Ca-HCO3 type waters along the rift ward groundwater flow paths. These waters finally appear as moderate TDS (mean 960mg/l) Na-HCO3 type and as high TDS (> 1000 mg/l) Na-HCO3-Cl type in volcano-lacustrine aquifers of the rift floor. High concentrations of fluoride (up to 97.2 mg/l) and arsenic (up to 98μg/l) are recognized feature of groundwaters which occur mostly in the vicinity of the geothermal fields and the rift lakes in the basin. Fluoride and arsenic content of dry volcaniclastic sediments close to these areas are in the range 666-2586mg/kg and 10-13mg/kg respectively. The relationship between fluoride and calcium concentrations in groundwaters showed negative correlation. Near-equilibrium state attained between the mineral fluorite (CaF2) and the majority of fluoride-rich (>30mg/l) thermal groundwater and shallow cold groundwater. This indicated that the equilibrium condition control the high concentration of fluoride in the groundwaters. Whereas undersaturation state of fluorite in some relatively low-fluoride (<30mg/l) thermal waters indicated a dilution by cold waters. Laboratory batch leaching experiments showed that fast dissolution of fluoride from the sediment samples suddenly leached into the interacting water at the first one hour and then remain stable throughout the experiment. The concentrations of leached fluoride from the hot spring deposits, the lacustrine sediments, and the pyroclastic rock are usually low (1% of the total or less than

  13. Fluoride and Geothermal Activities In Continental Rift Zones, Ethiopia

    NASA Astrophysics Data System (ADS)

    Weldesenbet, S. F.

    2012-12-01

    The Central Main Ethiopian Rift basin is a continental rift system characterized by volcano-tectonic depression endowed with huge geothermal resource and associated natural geochemical changes on groundwater quality. Chemical composition of groundwater in the study area showed a well defined trend along flow from the highland and escarpment to the rift floor aquifer. The low TDS (< 500mg/l) Ca-Mg-HCO3 dominated water at recharge area in the highlands and escarpments evolve progressively into Ca-Na-HCO3 and Na-Ca-HCO3 type waters along the rift ward groundwater flow paths. These waters finally appear as moderate TDS (mean 960mg/l) Na-HCO3 type and as high TDS (> 1000 mg/l) Na-HCO3-Cl type in volcano-lacustrine aquifers of the rift floor. High concentrations of fluoride (up to 97.2 mg/l) and arsenic (up to 98μg/l) are recognized feature of groundwaters which occur mostly in the vicinity of the geothermal fields and the rift lakes in the basin. Fluoride and arsenic content of dry volcaniclastic sediments close to these areas are in the range 666-2586mg/kg and 10-13mg/kg respectively. The relationship between fluoride and calcium concentrations in groundwaters showed negative correlation. Near-equilibrium state attained between the mineral fluorite (CaF2) and the majority of fluoride-rich (>30mg/l) thermal groundwater and shallow cold groundwater. This indicated that the equilibrium condition control the high concentration of fluoride in the groundwaters. Whereas undersaturation state of fluorite in some relatively low-fluoride (<30mg/l) thermal waters indicated a dilution by cold waters. Laboratory batch leaching experiments showed that fast dissolution of fluoride from the sediment samples suddenly leached into the interacting water at the first one hour and then remain stable throughout the experiment. The concentrations of leached fluoride from the hot spring deposits, the lacustrine sediments, and the pyroclastic rock are usually low (1% of the total or less than

  14. Thermodynamic modeling of hydrogen fluoride production relevant to actinide residue treatment

    SciTech Connect

    West, M.H.; Axler, K.M.

    1995-02-01

    This report addresses issues specific to generation of hydrogen fluoride via reaction of calcium fluoride with sulfuric acid. This process has been established on a commercial scale and is under consideration for treatment of calcium fluoride residues from uranium processing. Magnesium fluoride slags are also available as a product of uranium processing. The technique of using sulfuric acid for the production of hydrogen fluoride from magnesium fluoride is also under consideration as a residue processing scheme. In the current study, thermodynamic modeling was used to investigate these chemical processing systems. Results presented herein reveal information relevant to selection of processing temperatures and conditions. Details include predicted effects in system composition based on operating temperatures for both the calcium fluoride and the magnesium fluoride systems.

  15. Analysis of 1-Minute Potentially Available Fluoride from Dentifrice

    PubMed Central

    Carey, Clifton M; Holahan, Erin C; Schmuck, Burton D

    2014-01-01

    Previous reports found that some fluoride-containing dentifrices do not release effective concentrations of fluoride during brushing. Failure to release fluoride can be due to dentifrice matrix components that interfere with the solubilization of the fluoride salts during brushing. A new generation of dentifrices has the capability to precipitate beneficial fluoride salts during tooth brushing. Therefore, a method that assesses the potentially available fluoride during the 1-minute brushing is needed. A new filter-paper absorption method to assess the 1-min bioavailable fluoride concentration was developed to meet this need. This method utilizes coiled filter paper that rapidly absorbs the aqueous phase of the dentifrice slurry followed by centrifugation to recover that fluid for fluoride measurement via fluoride ion-selective electrode. The analytical method was used to successfully determine the total fluoride and 1-min bioavailable fluoride in eight dentifrice products containing sodium fluoride (NaF), disodium monofluorophosphate (Na2FPO3, MFP), stannous fluoride (SnF2), or NaF with amorphous calcium phosphate (NaF + ACP). The results showed that some of the dentifrices tested had significantly lower potentially available fluoride than the total fluoride. For a MFP-containing sample, aged seven years past its expiry date, there was significant reduction in the bioavailable fluoride compared to MFP products that were not aged. Other than the aged MFP and the SnF2-containing samples the bioavailable fluoride for all products tested had at least 80 % of the label fluoride concentration. The filter paper absorption method yielded reproducible results for the products tested with MFP samples showing the largest variations. PMID:25821392

  16. Effects of natural organic matter on calcium and phosphorus co-precipitation.

    PubMed

    Sindelar, Hugo R; Brown, Mark T; Boyer, Treavor H

    2015-11-01

    Phosphorus (P), calcium (Ca) and natural organic matter (NOM) naturally occur in all aquatic ecosystems. However, excessive P loads can cause eutrophic or hyper-eutrophic conditions in these waters. As a result, P regulation is important for these impaired aquatic systems, and Ca-P co-precipitation is a vital mechanism of natural P removal in many alkaline systems, such as the Florida Everglades. The interaction of P, Ca, and NOM is also an important factor in lime softening and corrosion control, both critical processes of drinking water treatment. Determining the role of NOM in Ca-P co-precipitation is important for identifying mechanisms that may limit P removal in both natural and engineered systems. The main goal of this research is to assess the role of NOM in inhibiting Ca and P co-precipitation by: (1) measuring how Ca, NOM, and P concentrations affect NOM's potential inhibition of co-precipitation; (2) determining the effect of pH; and (3) evaluating the precipitated solids. Results showed that Ca-P co-precipitation occurs at pH 9.5 in the presence of high natural organic matter (NOM) (≈30 mg L(-1)). The supersaturation of calcite overcomes the inhibitory effect of NOM seen at lower pH values. Higher initial P concentrations lead to both higher P precipitation rates and densities of P on the calcite surface. The maximum surface density of co-precipitated P on the precipitated calcite surface increases with increasing NOM levels, suggesting that NOM does prevent the co-precipitation of Ca and P. PMID:26079982

  17. Grain boundary diffusion of oxygen, potassium and calcium in natural and hot-pressed feldspar aggregates

    NASA Astrophysics Data System (ADS)

    Farver, John R.; Yund, Richard A.

    1995-01-01

    Grain boundary diffusion rates of oxygen, potassium and calcium in fine-grained feldspar aggregates were determined experimentally. The starting materials were a natural albite rock from the Tanco pegmatite and aggregates hot-pressed from fragments of Amelia albite or Ab, Or and An composition glasses. The technique employed isotopic tracers (18O, 41K, 42Ca) either evaporated onto the surface or in an aqueous solution surrounding the sample, and depth profiling using an ion microprobe (SIMS). From the depth profiles, the product of the grain boundary diffusion coefficient (D') and effective boundary width (δ) was calculated using numerical solutions to the appropriate diffusion equation. The experimental reproducibility of D'δ is a factor of 3. A separate determination of D' independent of δ yields an effective grain boundary width of ˜3 nm, consistent with high resolution TEM observations of a physical grain boundary width <5 nm. Oxygen (as molecular water) grain boundary diffusion rates were determined in the Ab and Or aggregates at 450°-800°C and 100 MPa (hydrothermal), potassium rates in Or aggregates at 450°-700°C both at 0.1 MPa (in air) and at 100 MPa (hydrothermal), and calcium rates in An aggregates at 700°-1100°C and 0.1 MPa (in air). Oxygen grain boundary diffusion rates are similar in all three of the Ab aggregates and in the Or aggregate. Potassium and oxygen depth profiles measured in the same samples yield different D'δ values, confirming a diffusional transport mechanism. Potassium diffusion in the Or aggregate has a greater activation energy (216 vs 78 kJ/mol) than oxygen, and the Arrhenius relations cross at ˜625°C. Potassium D'δ values in Or aggregates are about a factor of five greater in hydrothermal experiments at 100 MPa than in experiments at 0.1 MPa in air. Calcium grain boundary diffusion rates in An aggregates are 4 to 5 orders of magnitude slower than potassium in Or and have a greater (291 kJ/mol) activation energy. This

  18. Carbide-fluoride-silver self-lubricating composite

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E. (Inventor)

    1987-01-01

    A self-lubricating, friction and wear reducing composite material is described for use over a wide temperature spectrum from cryogenic temperature to about 900 C in a chemically reactive environment comprising silver, barium fluoride/calcium fluoride eutectic, and metal bonded chromium carbide.

  19. Carbide/fluoride/silver self-lubricating composite

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E. (Inventor)

    1988-01-01

    A self-lubricating, friction and wear reducing composite material for use over a wide temperature spectrum from cryogenic temperature to about 900.degree. C. in a chemically reactive environment comprising silver, barium fluoride/calcium fluoride eutectic, and metal bonded chromium carbide.

  20. Fluoride in diet

    MedlinePlus

    ... Infants can only get fluoride through drinking infant formulas. Breast milk has a negligible amount of fluoride ... of water to use in concentrated or powdered formulas. DO NOT use any fluoride supplement without talking ...

  1. Atomic force microscopic comparison of remineralization with casein-phosphopeptide amorphous calcium phosphate paste, acidulated phosphate fluoride gel and iron supplement in primary and permanent teeth: An in-vitro study

    PubMed Central

    Agrawal, Nikita; Shashikiran, N. D.; Singla, Shilpy; Ravi, K. S.; Kulkarni, Vinaya Kumar

    2014-01-01

    Context: Demineralization of tooth by erosion is caused by frequent contact between the tooth surface and acids present in soft drinks. Aim: The present study objective was to evaluate the remineralization potential of casein-phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste, 1.23% acidulated phosphate fluoride (APF) gel and iron supplement on dental erosion by soft drinks in human primary and permanent enamel using atomic force microscopy (AFM). Materials and Methods: Specimens were made from extracted 15 primary and 15 permanent teeth which were randomly divided into three treatment groups: CPP-ACP paste, APF gel and iron supplement. AFM was used for baseline readings followed by demineralization and remineralization cycle. Results and Statistics: Almost all group of samples showed remineralization that is a reduction in surface roughness which was higher with CPP-ACP paste. Statistical analysis was performed using by one-way ANOVA and Mann-Whitney U-test with P < 0.05. Conclusions: It can be concluded that the application of CPP-ACP paste is effective on preventing dental erosion from soft drinks. PMID:24808700

  2. Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure

    NASA Astrophysics Data System (ADS)

    He, Fupo; Ye, Jiandong

    2013-08-01

    In this study, a core/shell bi-layered calcium phosphate cement (CPC)-based composite scaffold with adjustable compressive strength, which mimicked the structure of natural cortical/cancellous bone, was fabricated. The dense tubular CPC shell was prepared by isostatic pressing CPC powder with a specially designed mould. A porous CPC core with unidirectional lamellar pore structure was fabricated inside the cavity of dense tubular CPC shell by unidirectional freeze casting, followed by infiltration of poly(lactic-co-glycolic acid) and immobilization of collagen. The compressive strength of bi-layered CPC-based composite scaffold can be controlled by varying thickness ratio of dense layer to porous layer. Compared to the scaffold without dense shell, the pore interconnection of bi-layered scaffold was not obviously compromised because of its high unidirectional interconnectivity but poor three dimensional interconnectivity. The in vitro results showed that the rat bone marrow stromal cells attached and proliferated well on the bi-layered CPC-based composite scaffold. This novel bi-layered CPC-based composite scaffold is promising for bone repair.

  3. Cellular lightweight concrete containing high-calcium fly ash and natural zeolite

    NASA Astrophysics Data System (ADS)

    Jitchaiyaphum, Khamphee; Sinsiri, Theerawat; Jaturapitakkul, Chai; Chindaprasirt, Prinya

    2013-05-01

    Cellular lightweight concrete (CLC) with the controlled density of approximately 800 kg/m3 was made from a preformed foam, Type-I Portland cement (OPC), fly ash (FA), or natural zeolite (NZ), and its compressive strength, setting time, water absorption, and microstructure of were tested. High-calcium FA and NZ with the median particle sizes of 14.52 and 7.72 μm, respectively, were used to partially replace OPC at 0, 10wt%, 20wt%, and 30wt% of the binder (OPC and pozzolan admixture). A water-to-binder mass ratio (W/B) of 0.5 was used for all mixes. The testing results indicated that CLC containing 10wt% NZ had the highest compressive strength. The replacement of OPC with NZ decreased the total porosity and air void size but increased the capillary porosity of the CLC. The incorporation of a suitable amount of NZ decreased the setting time, total porosity, and pore size of the paste compared with the findings with the same amount of FA. The total porosity and cumulative pore volume decreased, whereas the gel and capillary pores increased as a result of adding both pozzolans at all replacement levels. The water absorption increased as the capillary porosity increased; this effect depended on the volume of air entrained and the type or amount of pozzolan.

  4. [Comparative in vitro evaluation of modern glass ionomer cements for adhesion strength and fluoride release].

    PubMed

    Zhitkov, M Yu; Rusanov, F S; Poyurovskaya, I Ya

    2016-01-01

    The study proved similar adhesion strength and fluoride release level in aqueous extracts of glass ionomer cements Cemion (VladMiVa, Russia), Glassin Rest (Omega-Dent, Russia), Cemfil 10 (StomaDent, Russia) and Fuji VIII (GC Corporation, Japan). Despite of close concentrations of fluoride in glasses, the rate of fluoride release in water from calcium and calcium-barium glasses is much higher than that of strontium glasses. PMID:27239999

  5. The effective use of fluorides in public health.

    PubMed Central

    Jones, Sheila; Burt, Brian A.; Petersen, Poul Erik; Lennon, Michael A.

    2005-01-01

    Dental caries remain a public health problem for many developing countries and for underprivileged populations in developed countries. This paper outlines the historical development of public health approaches to the use of fluoride and comments on their effectiveness. Early research and development was concerned with waterborne fluorides, both naturally occurring and added, and their effects on the prevalence and incidence of dental caries and dental fluorosis. In the latter half of the 20th century, the focus of research was on fluoride toothpastes and mouth rinses. More recently, systematic reviews summarizing these extensive databases have indicated that water fluoridation and fluoride toothpastes both substantially reduce the prevalence and incidence of dental caries. We present four case studies that illustrate the use of fluoride in modern public health practice, focusing on: recent water fluoridation schemes in California, USA; salt fluoridation in Jamaica; milk fluoridation in Chile; and the development of "affordable" fluoride toothpastes in Indonesia. Common themes are the concern to reduce demands for compliance with fluoride regimes that rely upon action by individuals and their families, and the issue of cost. We recommend that a community should use no more than one systemic fluoride (i.e. water or salt or milk fluoridation) combined with the use of fluoride toothpastes, and that the prevalence of dental fluorosis should be monitored in order to detect increases in or higher-than-acceptable levels. PMID:16211158

  6. How Does Fluoride Work?

    MedlinePlus

    ... Help White House Lunch Recipes How Does Fluoride Work? KidsHealth > For Kids > How Does Fluoride Work? Print A A A Text Size There's fluoride ... even in your water. But how does it work to keep teeth healthy? Let's find out. Fluoride ...

  7. A glass-encapsulated calcium phosphate wasteform for the immobilization of actinide-, fluoride-, and chloride-containing radioactive wastes from the pyrochemical reprocessing of plutonium metal

    NASA Astrophysics Data System (ADS)

    Donald, I. W.; Metcalfe, B. L.; Fong, S. K.; Gerrard, L. A.; Strachan, D. M.; Scheele, R. D.

    2007-03-01

    Chloride-containing radioactive wastes are generated during the pyrochemical reprocessing of Pu metal. Immobilization of these wastes in borosilicate glass or Synroc-type ceramics is not feasible due to the very low solubility of chlorides in these hosts. Alternative candidates have therefore been sought including phosphate-based glasses, crystalline ceramics and hybrid glass/ceramic systems. These studies have shown that high losses of chloride or evolution of chlorine gas from the melt make vitrification an unacceptable solution unless suitable off-gas treatment facilities capable of dealing with these corrosive by-products are available. On the other hand, both sodium aluminosilicate and calcium phosphate ceramics are capable of retaining chloride in stable mineral phases, which include sodalite, Na 8(AlSiO 4) 6Cl 2, chlorapatite, Ca 5(PO 4) 3Cl, and spodiosite, Ca 2(PO 4)Cl. The immobilization process developed in this study involves a solid state process in which waste and precursor powders are mixed and reacted in air at temperatures in the range 700-800 °C. The ceramic products are non-hygroscopic free-flowing powders that only require encapsulation in a relatively low melting temperature phosphate-based glass to produce a monolithic wasteform suitable for storage and ultimate disposal.

  8. Direct estimates of natural selection in Iberia indicate calcium absorption was not the only driver of lactase persistence in Europe.

    PubMed

    Sverrisdóttir, Oddny Ósk; Timpson, Adrian; Toombs, Jamie; Lecoeur, Cecile; Froguel, Philippe; Carretero, Jose Miguel; Arsuaga Ferreras, Juan Luis; Götherström, Anders; Thomas, Mark G

    2014-04-01

    Lactase persistence (LP) is a genetically determined trait whereby the enzyme lactase is expressed throughout adult life. Lactase is necessary for the digestion of lactose--the main carbohydrate in milk--and its production is downregulated after the weaning period in most humans and all other mammals studied. Several sources of evidence indicate that LP has evolved independently, in different parts of the world over the last 10,000 years, and has been subject to strong natural selection in dairying populations. In Europeans, LP is strongly associated with, and probably caused by, a single C to T mutation 13,910 bp upstream of the lactase (LCT) gene (-13,910*T). Despite a considerable body of research, the reasons why LP should provide such a strong selective advantage remain poorly understood. In this study, we examine one of the most widely cited hypotheses for selection on LP--that fresh milk consumption supplemented the poor vitamin D and calcium status of northern Europe's early farmers (the calcium assimilation hypothesis). We do this by testing for natural selection on -13,910*T using ancient DNA data from the skeletal remains of eight late Neolithic Iberian individuals, whom we would not expect to have poor vitamin D and calcium status because of relatively high incident UVB light levels. None of the eight samples successfully typed in the study had the derived T-allele. In addition, we reanalyze published data from French Neolithic remains to both test for population continuity and further examine the evolution of LP in the region. Using simulations that accommodate genetic drift, natural selection, uncertainty in calibrated radiocarbon dates, and sampling error, we find that natural selection is still required to explain the observed increase in allele frequency. We conclude that the calcium assimilation hypothesis is insufficient to explain the spread of LP in Europe. PMID:24448642

  9. Influence of the surfactant nature on the calcium carbonate synthesis in water-in-oil emulsion

    NASA Astrophysics Data System (ADS)

    Szcześ, Aleksandra

    2009-02-01

    Calcium carbonate has been precipitated from water-in-oil emulsions consisting of n-hexane/nonionic surfactant (Brij 30) and its mixture with cationic (DTAB) or anionic surfactant (SDS) to which calcium chloride and sodium carbonate were added. It was found that the surfactant kind and its amount can regulate the size, form and morphology of the precipitated particles. In case of nonionic surfactant the water/surfactant ratio is the most important parameter that allows to obtain small and regular calcium carbonate crystals. Addition of the DTAB results in different morphology of particles having the same crystal form, whereas addition of SDS changes the kind of emulsion from water-in-oil to oil-in-water. Moreover, light transmittance and backscattering light measurements have been used as a method to study the kinetics of calcium carbonate precipitation in emulsion systems.

  10. Natural and anthropogenic drivers of calcium depletion in a northern forest during the last millennium

    PubMed Central

    Leys, Bérangère A.; Likens, Gene E.; Craine, Joseph M.; Lacroix, Brice; McLauchlan, Kendra K.

    2016-01-01

    The pace and degree of nutrient limitation are among the most critical uncertainties in predicting terrestrial ecosystem responses to global change. In the northeastern United States, forest growth has recently declined along with decreased soil calcium (Ca) availability, suggesting that acid rain has depleted soil Ca to the point where it may be a limiting nutrient. However, it is unknown whether the past 60 y of changes in Ca availability are strictly anthropogenic or partly a natural consequence of long-term ecosystem development. Here, we report a high-resolution millennial-scale record of Ca and 16 other elements from the sediments of Mirror Lake, a 15-ha lake in the White Mountains of New Hampshire surrounded by northern hardwood forest. We found that sedimentary Ca concentrations had been declining steadily for 900 y before regional Euro-American settlement. This Ca decline was not a result of serial episodic disturbances but instead the gradual weathering of soils and soil Ca availability. As Ca availability was declining, nitrogen availability concurrently was increasing. These data indicate that nutrient availability on base-poor, parent materials is sensitive to acidifying processes on millennial timescales. Forest harvesting and acid rain in the postsettlement period mobilized significant amounts of Ca from watershed soils, but these effects were exacerbated by the long-term pattern. Shifting nutrient limitation can potentially occur within 10,000 y of ecosystem development, which alters our assessments of the speed and trajectory of nutrient limitation in forests, and could require reformulation of global models of forest productivity. PMID:27298361

  11. Natural and anthropogenic drivers of calcium depletion in a northern forest during the last millennium.

    PubMed

    Leys, Bérangère A; Likens, Gene E; Johnson, Chris E; Craine, Joseph M; Lacroix, Brice; McLauchlan, Kendra K

    2016-06-21

    The pace and degree of nutrient limitation are among the most critical uncertainties in predicting terrestrial ecosystem responses to global change. In the northeastern United States, forest growth has recently declined along with decreased soil calcium (Ca) availability, suggesting that acid rain has depleted soil Ca to the point where it may be a limiting nutrient. However, it is unknown whether the past 60 y of changes in Ca availability are strictly anthropogenic or partly a natural consequence of long-term ecosystem development. Here, we report a high-resolution millennial-scale record of Ca and 16 other elements from the sediments of Mirror Lake, a 15-ha lake in the White Mountains of New Hampshire surrounded by northern hardwood forest. We found that sedimentary Ca concentrations had been declining steadily for 900 y before regional Euro-American settlement. This Ca decline was not a result of serial episodic disturbances but instead the gradual weathering of soils and soil Ca availability. As Ca availability was declining, nitrogen availability concurrently was increasing. These data indicate that nutrient availability on base-poor, parent materials is sensitive to acidifying processes on millennial timescales. Forest harvesting and acid rain in the postsettlement period mobilized significant amounts of Ca from watershed soils, but these effects were exacerbated by the long-term pattern. Shifting nutrient limitation can potentially occur within 10,000 y of ecosystem development, which alters our assessments of the speed and trajectory of nutrient limitation in forests, and could require reformulation of global models of forest productivity. PMID:27298361

  12. Similar healthy osteoclast and osteoblast activity on nanocrystalline hydroxyapatite and nanoparticles of tri-calcium phosphate compared to natural bone

    PubMed Central

    MacMillan, Adam K; Lamberti, Francis V; Moulton, Julia N; Geilich, Benjamin M; Webster, Thomas J

    2014-01-01

    While there have been numerous studies to determine osteoblast (bone forming cell) functions on nanocrystalline compared to micron crystalline ceramics, there have been few studies which have examined osteoclast activity (including tartrate-resistant acid phosphatase, formation of resorption pits, size of resorption pits, and receptor activator of nuclear factor κB [RANK]). This is despite the fact that osteoclasts are an important part of maintaining healthy bone since they resorb bone during the bone remodeling process. Moreover, while it is now well documented that bone formation is enhanced on nanoceramics compared to micron ceramics, some have pondered whether osteoblast functions (such as osteoprotegerin and RANK ligand [RANKL]) are normal (ie, non-diseased) on such materials compared to natural bone. For these reasons, the objective of the present in vitro study was to determine various functions of osteoclasts and osteoblasts on nanocrystalline and micron crystalline hydroxyapatite as well as tri-calcium phosphate materials and compare such results to cortical and cancellous bone. Results showed for the first time similar osteoclast activity (including tartrate-resistant acid phosphatase, formation of resorption pits, size of resorption pits, and RANK) and osteoblast activity (osteoprotegerin and RANKL) on nanocrystalline hydroxyapatite compared to natural bone, whereas osteoclast and osteoblast functions on micron crystalline versions of these ceramics were much different than natural bone. In this manner, this study provides additional evidence that nanocrystalline calcium phosphates can serve as suitable synthetic analogs to natural bone to improve numerous orthopedic applications. It also provides the first data of healthy osteoclast and osteoblast functions on nanocrystalline calcium phosphates compared to natural bone. PMID:25506216

  13. Fluoride stimulates ( sup 3 H)thymidine incorporation and alkaline phosphatase production by human osteoblasts

    SciTech Connect

    Khokher, M.A.; Dandona, P. )

    1990-11-01

    The effect of sodium fluoride on alkaline phosphatase (ALP) release and ({sup 3}H)thymidine uptake by human osteoblasts in culture was investigated. Sodium fluoride stimulated both ALP release and ({sup 3}H)thymidine uptake at concentrations of sodium fluoride greater than 250 mumol/L. This stimulation was similar in magnitude to that induced by 1,25-dihydroxycholecalciferol. The fluoride-induced increase in ALP was inhibited by verapamil, a calcium channel blocker. We conclude that sodium fluoride stimulates osteoblasts to proliferate and to release ALP. This stimulation by fluoride is dependent on calcium influx. Fluoride-induced stimulation of human osteoblasts may be relevant to its effect in enhancing bone formation in patients with osteoporosis.

  14. Fluoride and Water (For Parents)

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Fluoride and Water KidsHealth > For Parents > Fluoride and Water Print A ... to 19-year-olds continue Fluoride and the Water Supply For more than 60 years, water fluoridation ...

  15. Preparation and pre-characterization of epoxidized natural rubber (ENR) / poly(vinylidene fluoride) (PVDF) (ENR/PVDF) thin film composite membrane

    NASA Astrophysics Data System (ADS)

    Mod, Norliyana; Othaman, Rizafizah

    2015-09-01

    Epoxidised Natural Rubber (ENR) / Poly (Vinylidene Fluoride) (PVDF) (ENR/PVDF) (60:40 wt%) thin film composite membrane was prepared by using solution casting technique. The focuses of this paper are to prepare ENR/PVDF membrane with ratio of ENR to PVDF 60:40 wt%, and to study the effectiveness of treating Palm Oil Mill Effluent (POME) using the membrane. The prepared membrane was analyzed using optical microscope and the treatment of POME was investigated using dead-end stirred cell. Treated and untreated POME was analyzed to test the percentage of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removal. Optical microscope micrographs showed that the surface of the membrane was slightly uneven. The rate of flux which passed through the membrane was 0.60 L/hm2. Both BOD and COD decreased by 23.6 % and 49.32 % respectively, after single treatment. This showed that the membrane can be used for POME treatment. The value of BOD and COD removal can be increased by recycling the treated POME for more than two cycles, which will be further studied by authors.

  16. Grout formulation for disposal of low-level and hazardous waste streams containing fluoride

    DOEpatents

    McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

    1987-06-02

    A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

  17. FLUORIDE: A REVIEW OF USE AND EFFECTS ON HEALTH

    PubMed Central

    Kanduti, Domen; Sterbenk, Petra; Artnik, Barbara

    2016-01-01

    Introduction: Appropriate oral health care is fundamental for any individual’s health. Dental caries is still one of the major public health problems. The most effective way of caries prevention is the use of fluoride. Aim: The aim of our research was to review the literature about fluoride toxicity and to inform physicians, dentists and public health specialists whether fluoride use is expedient and safe. Methods: Data we used in our review were systematically searched and collected from web pages and documents published from different international institutions. Results: Fluoride occurs naturally in our environment but we consume it in small amounts. Exposure can occur through dietary intake, respiration and fluoride supplements. The most important factor for fluoride presence in alimentation is fluoridated water. Methods, which led to greater fluoride exposure and lowered caries prevalence, are considered to be one of the greatest accomplishments in the 20th century`s public dental health. During pregnancy, the placenta acts as a barrier. The fluoride, therefore, crosses the placenta in low concentrations. Fluoride can be transmitted through the plasma into the mother’s milk; however, the concentration is low. The most important action of fluoride is topical, when it is present in the saliva in the appropriate concentration. The most important effect of fluoride on caries incidence is through its role in the process of remineralization and demineralization of tooth enamel. Acute toxicity can occur after ingesting one or more doses of fluoride over a short time period which then leads to poisoning. Today, poisoning is mainly due to unsupervised ingestion of products for dental and oral hygiene and over-fluoridated water. Conclusion: Even though fluoride can be toxic in extremely high concentrations, it`s topical use is safe. The European Academy of Paediatric Dentistry (EAPD) recommends a preventive topical use of fluoride supplements because of their

  18. Fluoridation update 2014.

    PubMed

    Allukian, Myron; Wong, Chloe

    2014-01-01

    This year more than 4 million people living in 140 communities in Massachusetts will have the health and economic benefits of community water fluoridation. However Massachusetts is ranked only 37th in the country for fluoridation, with just 62 percent of the population on a public water supply living in fluoridated communities. Nationally, more than 210 million Americans, about 74.6 percent of the U.S. population on a community water supply live in fluoridated communities. PMID:25226771

  19. Impact of uranyl-calcium-carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments.

    PubMed

    Stewart, Brandy D; Mayes, Melanie A; Fendorf, Scott

    2010-02-01

    Adsorption on soil and sediment solids may decrease aqueous uranium concentrations and limit its propensity for migration in natural and contaminated settings. Uranium adsorption will be controlled in large part by its aqueous speciation, with a particular dependence on the presence of dissolved calcium and carbonate. Here we quantify the impact of uranyl speciation on adsorption to both goethite and sediments from the Hanford Clastic Dike and Oak Ridge Melton Branch Ridgetop formations. Hanford sediments were preconditioned with sodium acetate and acetic acid to remove carbonate grains, and Ca and carbonate were reintroduced at defined levels to provide a range of aqueous uranyl species. U(VI) adsorption is directly linked to UO(2)(2+) speciation, with the extent of retention decreasing with formation of ternary uranyl-calcium-carbonato species. Adsorption isotherms under the conditions studied are linear, and K(d) values decrease from 48 to 17 L kg(-1) for goethite, from 64 to 29 L kg (-1) for Hanford sediments, and from 95 to 51 L kg(-1) for Melton Branch sediments as the Ca concentration increases from 0 to 1 mM at pH 7. Our observations reveal that, in carbonate-bearing waters, neutral to slightly acidic pH values ( approximately 5) and limited dissolved calcium are optimal for uranium adsorption. PMID:20058915

  20. Ultrastructural localization of intracellular calcium stores by a new cytochemical method.

    PubMed

    Poenie, M; Epel, D

    1987-09-01

    We describe a new cytochemical method for ultrastructural localization of intracellular calcium stores. This method uses fluoride ions for in situ precipitation of intracellular calcium during fixation. Comparisons made using oxalate, antimonate, or fluoride showed that fluoride was clearly superior for intracellular calcium localization in eggs of the sea urchin Strongylocentrotus purpuratus. Whereas oxalate generally gave no intracellular precipitate and antimonate gave copious but random precipitate, three prominent calcium stores were detected using fluoride: the tubular endoplasmic reticulum, the cortical granules, and large, clear, acidic vesicles of unknown function. The mitochondria of these eggs generally showed no detectable calcium deposits. X-ray spectra confirmed the presence of calcium in the fluoride precipitates, although in some cases magnesium was also detected. Rat skeletal muscle and sea urchin sperm were used to test the reliability of the fluoride method for calcium localization. In rat skeletal muscle, most fluoride precipitate was confined to the sarcoplasmic reticulum. Using sea urchin sperm, which transport calcium into the mitochondria after exposure to egg jelly to induce the acrosome reaction, the expected result was also obtained. Before the acrosome reaction, sperm mitochondria contain no detectable calcium-containing precipitate. Within 4 min after induction of the acrosome reaction, the expected result was also obtained. Before the acrosome reaction, sperm mitochondria displayed many foci of calcium-containing precipitate. The use of fluoride for intracellular calcium localization therefore appears to be a substantial improvement over previous cytochemical methods. PMID:3611737

  1. The ultrastructure of dentine from rat incisors following exposure to sodium fluoride and potassium pyroantimonate staining.

    PubMed

    Appleton, J

    1988-12-01

    Weanling rats were given a single intraperitoneal injection of sodium fluoride and control animals normal saline for four consecutive days. The fluoride produced a consistent response in the mineralizing dentine of the incisors in which a hypermineralized band was succeeded by a hypomineralized band. Potassium pyroantimonate staining for calcium ions showed that following injection of fluoride, in contrast to the controls, there were large amounts of calcium pyroantimonate in the pre-dentine and throughout the odontoblasts. This suggests that fluoride temporarily affects the membrane enzyme systems which maintain calcium concentration gradients between the odontoblasts and the matrix. The resultant influx of calcium is probably associated with the hypermineralization of the dentine matrix in which more hydroxyapatite crystallites are deposited. Upon recovery of the odontoblasts the matrix is relatively depleted of calcium resulting in matrix hypomineralization. PMID:2467356

  2. Amorphous calcium phosphate offers improved crack resistance: a design feature from nature?

    PubMed

    Saber-Samandari, Saeed; Gross, Karlis A

    2011-12-01

    Amorphous calcium phosphate (ACP) is found in biological organisms and coated implants, used in calcium phosphate cements, and has been recently confirmed as a precursor in mineralized tissue; however, nothing is known about crack initiation in ACP or its fracture toughness. The objective of this study was to determine the crack resistance of ACP to help understand its role in biological organisms and assist in the design of calcium-phosphate-based implants. ACP was manufactured by quenching droplets to form a bulk sample and individual splats. Testing of Berkovich and cube-corner indenter types revealed that the Berkovich indenter was more suitable, providing ease of crack detection. Nanoindentation was performed on polished ACP and hydroxyapatite (HAp), and cracks were identified with scanning electron microscopy. Additional nanoindentation was done on splats to assess the suitability for testing microarrays used in high throughput discovery of new bioceramics. ACP required about three times more force to initiate a crack compared to sintered HAp, but about nine times more than a single crystal. Crack initiation resistance decreased with increasing grain size. The fracture toughness of ACP was comparable to a single crystal, but higher for nanograined HAp. The crack initiation load can be potentially used for evaluating microsized samples. ACP prevents crack formation, but requires the presence of nanograins to provide a greater toughness. The implications of the higher crack initiation load in ACP are discussed for biological organisms and thermally processed biomaterials such as thermally sprayed and sintered HAp. PMID:21784179

  3. Manufacture and properties of fluoride cement

    NASA Astrophysics Data System (ADS)

    Malata-Chirwa, Charles David

    This research work aimed at characterising composition, hydration and physical properties of fluoride cement, by studying samples of the cement obtained from Malawi, and comparing them to ordinary Portland cement. By confirming the suitable characteristics of fluoride cement through this work, the results of the research work provide a good basis for the wider adoption of fluoride cement as an alternative to ordinary Portland cement, especially in developing economies. Numerous accounts have been cited regarding the production and use of fluoride cement. Since there have not been conclusive agreement as to its properties, this study was limited to the theories of successful incorporation of fluoride compounds in the manufacture of fluoride cement. Hence, the properties and characteristics reported in this study relate to the cement currently manufactured in Malawi, and, on a comparative basis only, to that manufactured in other parts of the world. Samples of the fluoride cement used in the study were obtained by synthetic manufacture of the cement using common raw materials for the manufacture of fluoride cement that is limestone, silica sand, and fluorspar. These samples were subjected to several comparative tests used to characterise cements including examination under x-ray diffractometer, scanning electron microscopy and tests for setting time and compressive strength. Under similar laboratory conditions, it was possible to prove that fluoride cement hardens more rapidly than ordinary Portland cement. Also observed during the experimental work is that fluoride cement develops higher compressive strengths than ordinary Portland cement. The hardening and setting times are significantly different between the two cements. Also the nature of the hydration products, that is the microstructural development is significantly different in the two cements. The differences brought about between the two cements are because of the presence of fluorine during the clinkering

  4. Enhancing Fluoride: Clinical Human Studies of Alternatives or Boosters for Caries Management.

    PubMed

    Fontana, Margherita

    2016-01-01

    Dental caries remains a major public health problem, especially for certain high-risk population groups. The goal of this study was to assess the evidence regarding strategies meant to be used as alternatives or booster/supplements to fluoride for caries prevention and management. Articles were selected for inclusion if they had a prospective longitudinal design, with a fluoride control arm, and were conducted in human subjects. Of the included studies, 7/18 studies on calcium-based strategies favored the test product (the majority of studies included exposure of fluoride in all groups). All the arginine studies (8/8) included a combination of arginine and a calcium base, and concluded that this has the potential to significantly boost the performance of fluoride. The remaining included studies focused on the addition of microbial-related strategies to a fluoride-containing vehicle (2 xylitol studies and 1 study using a probiotic milk), and all favored the combination as a booster to fluoride. Thus, the current study did not identify evidence for any strategy to effectively be used as a substitute or alternative to fluoride, but identified some consistent evidence derived from the use of prebiotic strategies (primarily from use of arginine combined with calcium) to support their potential use to boost the mechanism of action of fluoride. Thus, fluoride-based strategies remain the standard for caries prevention and management, with some evidence that boosting the effects of fluoride by the use of prebiotic strategies is a promising possibility. PMID:27100833

  5. Laser-Induced Damage of Calcium Fluoride

    SciTech Connect

    Espana, A.; Joly, A.G.; Hess, W.P.; Dickinson, J.T.

    2004-01-01

    As advances continue to be made in laser technology there is an increasing demand for materials that have high thresholds for laser-induced damage. Laser damage occurs when light is absorbed, creating defects in the crystal lattice. These defects can lead to the emission of atoms, ions and molecules from the sample. One specific field where laser damage is of serious concern is semiconductor lithography, which is beginning to use light at a wavelength of 157 nm. CaF2 is a candidate material for use in this new generation of lithography. In order to prevent unnecessary damage of optical components, it is necessary to understand the mechanisms for laser damage and the factors that serve to enhance it. In this research, we study various aspects of laser interactions with CaF2, including impurity absorbance and various forms of damage caused by incident laser light. Ultraviolet (UV) laser light at 266 nm with both femtosecond (fs) and nanosecond (ns) pulse widths is used to induce ion and neutral particle emission from cleaved samples of CaF2. The resulting mass spectra show significant differences suggesting that different mechanisms for desorption occur following excitation using the different pulse durations. Following irradiation by ns pulses at 266 nm, multiple single-photon absorption from defect states is likely responsible for ion emission whereas the fs case is driven by a multi-photon absorption process. This idea is further supported by the measurements made of the transmission and reflection of fs laser pulses at 266 nm, the results of which reveal a non-linear absorption process in effect at high incident intensities. In addition, the kinetic energy profiles of desorbed Ca and K contaminant atoms are different indicating that a different mechanism is responsible for their emission as well. Overall, these results show that purity plays a key role in the desorption of atoms from CaF2 when using ns pulses. On the other hand, once the irradiance reaches high levels, like that of the fs case, significant desorption is possible due to multi-photon absorption by the intrinsic material.

  6. Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil.

    PubMed

    Correia, Leandro Marques; Saboya, Rosana Maria Alves; Campelo, Natália de Sousa; Cecilia, Juan Antonio; Rodríguez-Castellón, Enrique; Cavalcante, Célio Loureiro; Vieira, Rodrigo Silveira

    2014-01-01

    The catalytic activities of calcium oxide obtained from natural sources (crab shell and eggshell) were characterized and evaluated in the transesterification of vegetable oil. These catalysts are mainly composed of calcium carbonate, which is partially converted into CaO after calcination (900°C for 2h). The catalysts have some advantages, such as abundant occurrence, low cost, porous structure, and nontoxic. The materials were characterized by XRD, FTIR, TG/DTG, CO2-TPD, XPS, SEM, and BET methods. The thermal treatment produces small particles of CaCO3 and CaO that are responsible for the catalytic activity. The conversion from triglycerides to methyl ester was not observed in transesterification carried out using natural crab shell and eggshell. Under optimized reaction conditions, the conversions to YFAME using the calcined catalysts were: crab shell (83.10±0.27 wt.%) and eggshell (97.75±0.02 wt.%). These results, showed that these materials have promising viability in transesterification for biodiesel production. PMID:24240148

  7. Prevention of enamel demineralization with a novel fluoride strip: enamel surface composition and depth profile

    PubMed Central

    Lee, Bor-Shiunn; Chou, Po-Hung; Chen, Shu-Yu; Liao, Hua-Yang; Chang, Che-Chen

    2015-01-01

    There is no topically applicable low concentration fluoride delivery device available for caries prevention. This study was aimed to assess the use of a low concentration (1450 ppm) fluoride strip as an effective fluoride delivery system against enamel demineralization. The enamel surface composition and calcium-deficient hydroxyapatite or toothpaste treatments were investigated using X-ray photoelectron spectroscopy. In vitro enamel demineralization was assayed using a pH cycling model and the dissolution of calcium ions from the treated specimens was quantified using ion chromatography. After 24-hr fluoride-strip treatment, the enamel was covered with a CaF2 layer which showed a granular morphology of 1 μm in size. Below the CaF2 layer was a region of mixed fluorapatite and CaF2. Fluoride infiltrated extensively in enamel to produce highly fluorinated fluorohydroxyapatite. In comparison, low-fluoride-level fluorinated fluorohydroxyapatite was formed on the enamel specimen exposed to toothpaste. The treatments with the fluoride strip as short as 1 hr significantly inhibited enamel demineralization. The fluoride strip was effective for topical fluoride delivery and inhibited in vitro demineralization of enamel by forming CaF2 and fluoride-containing apatites at the enamel surface. It exhibited the potential as an effective fluoride delivery device for general use in prevention of caries. PMID:26293361

  8. Hypolipidemic Activity of a Natural Mineral Water Rich in Calcium, Magnesium, and Bicarbonate in Hyperlipidemic Adults

    PubMed Central

    Aslanabadi, Naser; Habibi Asl, Bohlool; Bakhshalizadeh, Babak; Ghaderi, Faranak; Nemati, Mahboob

    2014-01-01

    Purpose: This study compared the effects of a mineral water rich in calcium, magnesium, bicarbonate, and sulfate and a marketed mineral water with a composition similar to that of urban water on the lipid profile of dyslipidemic adults. Methods: In a randomized controlled trial, 32 adults received one liter of "rich mineral water" daily for one month, and 37 adults drank the same amount of normal mineral water for the same period. Changes in lipid profiles were compared separately in each studied group at the end of one month. Results: Results showed that mean cholesterol and low density lipoprotein LDL levels were significantly decreased in both studied groups after one month of drinking mineral water (P<0.05); however, no significant differences in high density lipoprotein (HDL) and triglyceride (TG) levels were seen in either group one month after drinking. There were no statistically significant differences between the "rich mineral water" and the normal mineral water groups in any of the above-mentioned lipid levels ( P>0.05). Conclusion: A one-month intake of mineral water rich in calcium, magnesium bicarbonate, and sulfate decreased cholesterol and LDL levels but not TG or HDL levels in dyslipidemic adults. PMID:24754016

  9. Fluoride and chlorhexidine release from filled resins.

    PubMed

    Shen, C; Zhang, N-Z; Anusavice, K J

    2010-09-01

    Resin-based materials that release either fluoride or chlorhexidine have been formulated for inhibiting caries activity. It is not known if the two agents, when incorporated into one material, would interact and affect their release potential. We hypothesized that the ratio of fluoride to chlorhexidine incorporated into a resin, and the pH of the storage medium, will affect their releases from the material. The material investigated contained 23 wt% of filler, and the ratios of calcium fluoride to chlorhexidine diacetate were 8/2, 5/5, and 2/8. The release was conducted in pH 4, 5, and 6 acetate buffers. The results showed that release of either agent increased as the pH of the medium decreased. The presence of fluoride salt substantially reduced the chlorhexidine release, while the presence of a specific quantity of chlorhexidine significantly increased fluoride release. This interaction can be utilized to optimize the release of either agent for therapeutic purposes. PMID:20581354

  10. SUMMARY REVIEW OF HEALTH EFFECTS ASSOCIATED WITH HYDROGEN FLUORIDE AND RELATED COMPOUNDS: HEALTH ISSUE ASSESSMENT

    EPA Science Inventory

    The major natural sources of airborne hydrogen fluoride (HF) are volcanic activity, ocean spray, and crustal weathering of fluoride-containing rocks. Anthropogenic sources include emissions from industrial operations such as aluminum and fluorocarbon production, and uranium proce...

  11. Effect of ACP-CPP Chewing Gum and Natural Chewable Products on Plaque pH, Calcium and Phosphate Concentration

    PubMed Central

    Sultan, Saima; Chaudhary, Seema; Manuja, Naveen; Kaur, Harsimran; Amit, Sinha Ashish; Lingesha, Ravishankar Telgi

    2016-01-01

    Introduction Numerous epidemiological studies have documented dental caries as the major public health problems throughout the world. It is gradually increasing in the underdeveloped and developing countries especially in children due to increasing popularity of refined sugars. Aim The aim of the study was to evaluate the effect of natural chewable products (Tulsi, sesame seeds, fennel seeds, coconut) and ACP-CPP chewing gum on plaque pH, calcium and phosphate concentration. Materials and Methods A randomized controlled trial, with a cross-over study design, was conducted. Ten subjects aged 15-17 years who agreed to refrain from oral hygiene practice for 48 hours prior to the sample collection were selected for the study. The baseline plaque pH, calcium and phosphate was measured and repeated after 5 and 30 minutes. It was ensured that each study participant was subjected to all the products making an effective sample of ten subjects per product. The data was statistically analysed. Results The mean pH in all the study groups increased after 5 minutes and 30 minutes compared to baseline, except for coconut group at 30 minutes and fennel group at 5 minutes. Highest increase in plaque calcium concentration was found in fennel group followed by recaldent and sesame, respectively. Whereas, the highest increase in plaque phosphate was found in recaldent group followed by sesame group and fennel group respectively. Conclusion Plant products can be effective, inexpensive, easily accessible methods of maintaining oral health. Further studies are recommended to confirm long term effects. PMID:27190943

  12. Serum Estradiol and Testosterone Levels in Kidney Stones Disease with and without Calcium Oxalate Components in Naturally Postmenopausal Women

    PubMed Central

    Ou, Lili; Duan, Xiaolu; Zeng, Guohua

    2013-01-01

    Objective Epidemiological data reveal that the overall risk for kidney stones disease is lower for women compared to age-matched men. However, the beneficial effect for the female sex is lost upon menopause, a time corresponding to the onset of fall in estrogen levels. The aim of this study was to describe the serum estradiol (E2) and testosterone (T) characteristics of naturally postmenopausal women with kidney stones. Methods 113 naturally postmenopausal women with newly diagnosed kidney stones (aged 57.4±4.98 years) and 84 age frequency matched stone-free controls (56.9±4.56 years) were validly recruited in the case-control study. The odds ratios (ORs) for the associations between sex hormones and kidney stones were estimated with logistic regression models, adjusting for demographic data and medical history. Patients were also stratified analyzed according to stone components (calcium oxalate stones [COS]; non-calcium oxalate stones [NCOS]). Results Serum E2 (21.1 vs. 31.1 pg/ml) was significantly lower in kidney stones patients compared to controls. Post-hoc analysis demonstrated that this effect was driven by COS patients (p<0.001). According to tertiles of the E2 levels, a significant higher frequency of COS was seen in the lowest E2 group (p <0.001). Multiple logistic regression analysis identified E2 level as a strong factor that was independently associated with the risk for COS (per 1 SD increase, OR=0.951, 95% confidence interval [CI] = 0.919-0.985; highest: lowest tertile, OR=0.214, 95%CI = 0.069-0.665). However, serum T levels did not significantly differ among the groups. Conclusions Naturally postmenopausal women with higher remaining estradiol levels appear less likely to suffer from kidney calcium oxalate stones. However, no correlation was found between serum T level and kidney stones. These findings support the hypothesis that higher postmenopausal endogenous estrogens may protect against kidney stones with ageing. PMID:24086550

  13. Calcium supplements

    MedlinePlus

    ... TYPES OF CALCIUM SUPPLEMENTS Forms of calcium include: Calcium carbonate: Over-the-counter (OTC) antacid products, such as Tums and Rolaids, contain calcium carbonate. These sources of calcium do not cost much. ...

  14. Natural Abundance 43Ca NMR as a Tool for Exploring Calcium Biomineralization: Renal Stone Formation and Growth

    SciTech Connect

    Bowers, Geoffrey M.; Kirkpatrick, Robert J.

    2011-12-07

    Renal stone diseases are a global health issue with little effective therapeutic recourse aside from surgery and shock-wave lithotripsy, primarily because the fundamental chemical mechanisms behind calcium biomineralization are poorly understood. In this work, we show that natural abundance 43Ca NMR at 21.1 T is an effective means to probe the molecular-level Ca2+ structure in oxalate-based kidney stones. We find that the 43Ca NMR resonance of an authentic oxalate-based kidney stone cannot be explained by a single pure phase of any common Ca2+-bearing stone mineral. Combined with XRD results, our findings suggest an altered calcium oxalate monohydrate-like Ca2+ coordination environment for some fraction of Ca2+ in our sample. The evidence is consistent with existing literature hypothesizing that nonoxalate organic material interacts directly with Ca2+ at stone surfaces and is the primary driver of renal stone aggregation and growth. Our findings show that 43Ca NMR spectroscopy may provide unique and crucial insight into the fundamental chemistry of kidney stone formation, growth, and the role organic molecules play in these processes.

  15. SORBENTS FOR FLUORIDE, METAL FINISHING, AND PETROLEUM SLUDGE LEACHATE CONTAMINANT CONTROL

    EPA Science Inventory

    This report covers the initial laboratory studies carried out to identify the most promising sorbents that may be used to significantly reduce the concentration of measurable contaminant in calcium fluoride sludge leachate, metal finishing sludge leachate, and petroleum sludge le...

  16. Plasma-sprayed metal-glass fluoride coatings for lubrication to 1170 K (1650 F)

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1974-01-01

    Plasma spray of Nichrome matrix composite contains dispersed glass for oxidation protection and calcium fluoride for lubrication. Coatings can be applied to bearing journals and bearing bores. Coating was easily machinable and had excellent bond strength on substrate metal.

  17. Selective separation of phosphate and fluoride from semiconductor wastewater.

    PubMed

    Warmadewanthi, B; Liu, J C

    2009-01-01

    Hydrofluoric acid (HF) and phosphoric acid (H(3)PO(4)) are widely used in semiconductor industry for etching and rinsing purposes. Consequently, significant amount of wastewater containing phosphate and fluoride is generated. Selective separation of phosphate and fluoride from the semiconductor wastewater, containing 936 mg/L of fluoride, 118 mg/L of phosphate, 640 mg/L of sulfate, and 26.7 mg/L of ammonia, was studied. Chemical precipitation and flotation reactions were utilized in the two-stage treatment processes. The first-stage reaction involved the addition of magnesium chloride (MgCl(2)) to induce selective precipitation of magnesium phosphate. The optimal condition was pH 10 and molar ratio, [Mg(2 + )]/[(PO(4) (3-))], of 3:1, and 66.2% of phosphate was removed and recovered as bobierrite (Mg(3)(PO(4))(2).8H(2)O). No reaction was found between MgCl(2) and fluoride. Calcium chloride (CaCl(2)) was used in the second-stage reaction to induce precipitation of calcium fluoride and calcium phosphate. The optimum molar ratio, [Ca(2 + )]/[F(-)], was 0.7 at pH 10, and residual fluoride concentration of 10.7 mg/L and phosphate concentration of lower than 0.5 mg/L was obtained. Thermodynamic equilibrium was modeled with PHREEQC and compared with experimental results. Sodium dodecylsulfate (SDS) was an effective collector for subsequent solid-liquid removal via dispersed air flotation (DiAF). The study demonstrated that phosphate can be selectively recovered from the wastewater. Potential benefits include recovery of phosphate for reuse, lower required dosage of calcium for fluoride removal, and less amount of CaF(2) sludge. PMID:19474500

  18. Removal of hardness agents, calcium and magnesium, by natural and alkaline modified pumice stones in single and binary systems

    NASA Astrophysics Data System (ADS)

    Sepehr, Mohammad Noori; Zarrabi, Mansur; Kazemian, Hossein; Amrane, Abdeltif; Yaghmaian, Kamiar; Ghaffari, Hamid Reza

    2013-06-01

    Natural and alkaline modified pumice stones were used for the adsorption of water hardening cations, Ca2+ and Mg2+. The adsorbents were characterized using XRF, XRD, SEM and FTIR instrumental techniques. At equilibrium time and for 150 mg/L of a given cation, removal efficiencies were 83% and 94% for calcium and 48% and 73% for magnesium for raw and modified pumices, respectively. The optimal pH for raw and modified pumices were found to be 6.0, leading to the removal of 79 and 96% of calcium and 51 and 93% of magnesium by 10 g/L of raw and modified pumice adsorbents, respectively. Maximum adsorption capacities were 57.27 and 62.34 mg/g for Ca2+ and 44.53 and 56.11 mg/g for Mg2+ on the raw and modified pumices, respectively. Ca2+ and Mg2+ adsorption capacities of the pumice adsorbents decreased in the presence of competing cations. Less than 300 min were needed to achieve 99 and 92% desorption of the adsorbed Ca2+ and 100 and 89% of the adsorbed Mg2+ from the natural and modified pumices, respectively. After treating synthetic water solution simulating an actual water stream with the alkali-modified pumice, total hardness of the treated sample met the required standard for drinking water, namely below 300 mg/L of CaCO3 (297.5 mg/L). The studied pumice adsorbents, and especially the treated pumice, can be therefore considered as promising low cost adsorbents, suitable for the removal of hardness ions from drinking water.

  19. Geochemistry and water quality assessment of central Main Ethiopian Rift natural waters with emphasis on source and occurrence of fluoride and arsenic

    NASA Astrophysics Data System (ADS)

    Rango, Tewodros; Bianchini, Gianluca; Beccaluva, Luigi; Tassinari, Renzo

    2010-07-01

    Drinking water supply for the Main Ethiopian Rift (MER) area principally relies on groundwater wells and springs and is characterized by natural source of elevated fluoride concentration. New analyses reveal that the F - geochemical anomaly is associated with other potentially toxic elements such as As, U, Mo and B. Particularly, 35% of the 23 investigated groundwater wells and 70% of the 14 hot springs (and geothermal wells) show arsenic concentrations above the recommended limit of 10 μg/L ( WHO, 2006). Arsenic in groundwater wells has a positive correlation with Na + ( R2 = 0.63) and alkalinity ( HCO3-; R2 = 0.70) as well as with trace elements such as U ( R2 = 0.70), Mo ( R2 = 0.79) and V ( R2 = 0.68). PHREEQC speciation modelling indicates that Fe oxides and hydroxides are stable in water systems, suggesting their role as potential adsorbents that could influence the mobility of arsenic. Chemical analyses of leachates from MER rhyolitic rocks and their weathered and re-worked fluvio-lacustrine sediments were performed to evaluate their contribution as a source of the mentioned geochemical anomalies. These leachates were obtained from a 1-year leaching experiment on powdered rocks and sediments mixed with distilled water (10 g:50 ml). They contain as much as 220 μg/L of As, 7.6 mg/L of F -, 181 μg/L of Mo, 64 μg/L of U and 254 μg/L of V suggesting that the local sediments represent the main source and reservoir of toxic elements. These elements, originally present in the glassy portion of the MER rhyolitic rocks were progressively concentrated in weathered and re-deposited products. Therefore, together with the renowned F - problem, the possible presence of further geochemical anomalies have to be considered in water quality issues and future work has to investigate their possible health impact on the population of MER and other sectors of the East African Rift.

  20. Exploiting the multiplicative nature of fluoroscopic image stochastic noise to enhance calcium imaging recording quality.

    PubMed

    Esposti, Federico; Ripamonti, Maddalena; Signorini, Maria G

    2009-01-01

    One of the main problems that affect fluoroscopic imaging is the difficulty in coupling the recorded activity with the morphological information. The comprehension of fluorescence events in relationship with the internal structure of the cell can be very difficult. At this purpose, we developed a new method able to maximize the fluoroscopic movie quality. The method (Maximum Intensity Enhancement, MIE) works as follow: considering all the frames that compose the fluoroscopic movie, the algorithm extracts, for each pixel of the matrix, the maximal brightness value assumed along all the frames. Such values are collected in a maximum intensity matrix. Then, the method provides the projection of the target molecule oscillations which are present in the DeltaF/F(0) movie onto the maximum intensity matrix. This is done by creating a RGB movie and by assigning to the normalized (DeltaF/F(0)) activity a single channel and by reproducing the maximum intensity matrix on all the frames by using the remaining color channels. The application of such a method to fluoroscopic calcium imaging of astrocyte cultures demonstrated a meaningful enhancement in the possibility to discern the internal and external structure of cells. PMID:19964305

  1. Palmitoleic acid calcium salt: a lubricant and bactericidal powder from natural lipids.

    PubMed

    Yamamoto, Yoshiaki; Kawamura, Yuki; Yamazaki, Yuki; Kijima, Tatsuro; Morikawa, Toshiya; Nonomura, Yoshimune

    2015-01-01

    Palmitoleic acid is a promising bactericidal agent for cleansing products with alternative bactericidal abilities. In this study, we focus on the physical and biological activity of palmitoleic acid calcium salt (C16:1 fatty acid Ca salt) because it forms via an ion-exchange reaction between palmitoleic acid and Ca ions in tap water, and remains on the skin surface during the cleansing process. Here, we prepared C16:1 fatty acid Ca salt to investigate its crystal structure and physical and bactericidal properties. The Ca salt was a plate-shaped lamellar crystalline powder with a particle diameter of several micrometers to several tens of micrometers; it exhibited significant lubricity and alternative bactericidal activity against Staphylococcus aureus (S. aureus) and Propionibacterium acnes (P. acnes). We also examined other fatty acid Ca salts prepared from lauric acid (C12:0 fatty acid), palmitic acid (C16:0 fatty acid), and oleic acid (C18:1 fatty acid). The bactericidal activities and lubricity of the fatty acid Ca salts changed with the alkyl chain length and the degree of unsaturation. The C16:1 fatty acid Ca salt exhibited the strongest selective bactericidal ability among the four investigated fatty acid Ca salts. These findings suggest that C16:1 fatty acid and its Ca salt have potential applications in cleansing and cosmetic products. PMID:25757432

  2. Distribution of fluoride in ground water of West Virginia

    USGS Publications Warehouse

    Mathes, M.V.; Waldron, M.C.

    1993-01-01

    This report describes the results of a study by the U.S. Geological Survey, in cooperation with the West Virginia Geological and Economic Survey, to evaluate the distribution of fluoride in ground water of West Virginia. Fluoride is a natural chemical constituent in domestic and public water supplies in West Virginia. Fluoride concentrations of about 1.0 milligram per liter in drinking water are beneficial to dental health. Concentrations greater than 2.0 milligrams per liter, however, could harm teeth and bones. Fluoride concentra- tions in ground water of West Virginia range from less than 0.1 to 12 milligrams per liter. Fluoride concentrations that exceed 2.0 milligrams per liter are found in wells drilled to all depths, wells drilled in all topographic settings, and wells drilled into most geologic units. Most fluoride concentrations that exceed 2.0 milligrams per liter are located at sites clustered in the northwestern part of the State.

  3. PRODUCTION OF THORIUM FLUORIDE

    DOEpatents

    Zachariasen, W.H.

    1959-08-11

    A process is presented for producing anhydrous thorium fluoride comprising the step of contacting a saturated aqueous solution of thorium nitrate with an aqueous solution of hydrofluoric acid having a concentration of about 45 to 50% by weight at a temperature above 70 deg C whereby anhydrous thorium fluoride precipitates.

  4. Complete biodegradable nature of calcium hydroxylapatite after injection for malar enhancement: an MRI study

    PubMed Central

    Pavicic, Tatjana

    2015-01-01

    Background Radiesse® (Calcium hydroxylapatite [CaHA]) is a biocompatible, injectable gel for facial soft tissue augmentation. It is a completely biodegradable filler and this is well documented, but objective imaging methods to confirm this property are scarce. Methods We present a case report in which CaHA was injected into the midface of a 50-year-old woman for volume restoration and shaping of the cheek region. On the right side of the face, 1.6 mL CaHA was injected as several (5−7) small depots (0.1−0.2 mL) using a 28G 3/4 inch needle and the vertical supraperiosteal depot technique. On the contralateral side of the face, the subject received 1.6 mL CaHA over three entry points using a 27G 1 1/2 inch blunt cannula and the fanning technique. CaHA location and degradation were assessed using magnetic resonance imaging (MRI). Results CaHA appears as low-to-intermediate signal intensity on MRI images taken immediately after injection for malar enhancement with a symmetrical distribution. On MRI images taken 2.5 years after injection, no CaHA was visible but tissue volume remained increased, indicating a collagen-stimulating effect. The treatment was well tolerated. Conclusion In addition to producing long-lasting aesthetic and collagen-stimulating effects, MRI images confirm that CaHA is completely biodegradable with no product remaining 2.5 years after injection. PMID:25709485

  5. Nature and origin of the calcium asymmetry-arising during gravitropic response in etiolated pea epicotyls

    SciTech Connect

    Migliaccio, F.; Galston, A.W.

    1987-10-01

    Seven day old etiolated pea epicotyls were loaded symmetrically with /sup 3/H-indole 3-acetic acid (IAA) or /sup 45/Ca/sup 2 +/, then subjected to 1.5 hours of 1g gravistimulation. Epidermal peels taken from top and bottom surfaces after 90 minutes showed an increase in IAA on the lower side and of Ca/sup 2 +/ on the upper side. Inhibitors of IAA movement (TIBA, 9-hydroxyfluorene carboxylic acid) block the development of both IAA and Ca/sup 2 +/ asymmetries, but substances known to interfere with normal Ca/sup 2 +/ transport do not significantly alter either IAA or Ca/sup 2 +/ asymmetries. These substances, however, are active in modifying both Ca/sup 2 +/ uptake and efflux through oat and pea leaf protoplast membranes. The authors conclude that the /sup 45/Ca/sup 2 +/ fed to pea epicotyls occurs largely in the cell wall, and that auxin movement is primary and Ca/sup 2 +/ movement secondary in gravitropism. They hypothesize that apoplastic Ca/sup 2 +/ changes during the graviresponse because it is displaced by H/sup +/ secreted through auxin-induced proton release. This proposed mechanism is supported by localized pH experiments, in which filter paper soaked in various buffers was applied to one side of a carborundum-abraded epicotyls. Buffer at pH 3 increased calcium loss from the side to which it is applied, whereas pH 7 buffer decreases it. Moreover, 10 micromolar IAA and 1 micromolar fusicoccin, which promote H/sup +/ efflux, increase Ca/sup 2 +/ release from pea epicotyl segments, whereas cycloheximide, which inhibits H/sup +/ efflux, has the reverse effect.

  6. Debating Water Fluoridation Before Dr. Strangelove.

    PubMed

    Carstairs, Catherine

    2015-08-01

    In the 1930s, scientists learned that small amounts of fluoride naturally occurring in water could protect teeth from decay, and the idea of artificially adding fluoride to public water supplies to achieve the same effect arose. In the 1940s and early 1950s, a number of studies were completed to determine whether fluoride could have harmful effects. The research suggested that the possibility of harm was small. In the early 1950s, Canadian and US medical, dental, and public health bodies all endorsed water fluoridation. I argue in this article that some early concerns about the toxicity of fluoride were put aside as evidence regarding the effectiveness and safety of water fluoridation mounted and as the opposition was taken over by people with little standing in the scientific, medical, and dental communities. The sense of optimism that infused postwar science and the desire of dentists to have a magic bullet that could wipe out tooth decay also affected the scientific debate. PMID:26066938

  7. Indium fluoride glass fibers

    NASA Astrophysics Data System (ADS)

    Saad, Mohammed

    2012-03-01

    Fluoride glasses are the only material that transmit light from ultraviolet to mid-infrared and can be drawn into industrial optical fibers. The mechanical and optical properties of new indium fluoride glass fibers have been investigated. Multimode fiber 190 microns, has very high mechanical strength greater than 100 kpsi and optical loss as low as 45 dB/km between 2 and 4 microns. Unlike chalcogenide glass fibers, indium fluoride fiber has a wide transmission window from 0.3 to 5.5 microns without any absorption peak. Indium fluoride glass fibers are the technology of choice for all application requiring transmission up to 5 micron such as infrared contour measure (IRCM) and chemical sensing. Furthermore, Indium fluoride glasses have low phonon energy and can be heavily doped and co-doped whit rare-earth elements. Therefore they are very promising candidates for infrared fiber lasers.

  8. Removal of fluoride from semiconductor wastewater by electrocoagulation-flotation.

    PubMed

    Hu, C Y; Lo, S L; Kuan, W H; Lee, Y D

    2005-03-01

    This work employs an anodic surfactant, sodium dodecyl sulfate (SDS), to improve the flotation performance of the electrocoagulation-flotation (ECF) process to treated fluoride containing semiconductor wastewater following calcium precipitation. The dissolved fluoride ions and CaF(2) particles in the wastewater after calcium precipitation were effectively removed in the ECF process simultaneously. The dosage of SDS required for ECF was much less than those for dispersed air flotation (DiAF) or dissolved air flotation (DAF) processes because the CaF(2) particles can be collected by hydro-fluoro-aluminum flocs in ECF. Thus, SDS only served as a frother to make the bubbles tiny and stable in the ECF defluoridation process. The interference of co-existing anions can be overcome by increasing the dosage of calcium ions and SDS. The optimum initial acidity for ECF is close to the initial fluoride concentration after calcium precipitation; the amount of SS removed dropped rapidly if the initial acidity exceeded the optimal value because the surface charge of the hydro-fluoro-aluminum particles increased. The initial acidity of the wastewater after calcium precipitation can be modified by changing the [Ca(OH)(2)]/[Ca(2+)](T) ratio and the appropriate ratio is approximately given by the acid dissociation constant of hydrofluoric acid and the initial pH of the wastewater before calcium precipitation. PMID:15743636

  9. Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties.

    PubMed

    Choudhary, M Iqbal; Nawaz, Sarfraz Ahmad; ul-Haq, Zaheer; Lodhi, M Arif; Ghayur, M Nabeel; Jalil, Saima; Riaz, Naheed; Yousuf, Sammer; Malik, Abdul; Gilani, Anwarul Hassan; ur-Rahman, Atta

    2005-08-19

    The withanolides 1-3 and 4-5 isolated from Ajuga bracteosa and Withania somnifera, respectively, inhibited acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BChE, EC 3.1.1.8) enzymes in a concentration-dependent fashion with IC50 values ranging between 20.5 and 49,2 microm and 29.0 and 85.2 microm for AChE and BChE, respectively. Lineweaver-Burk as well as Dixon plots and their secondary replots indicated that compounds 1, 3, and 5 are the linear mixed-type inhibitors of AChE, while 2 and 4 are non-competitive inhibitors of AChE with K(i) values ranging between 20.0 and 45.0 microm. All compounds were found to be non-competitive inhibitors of BChE with K(i) values ranging between 27.7 and 90.6 microm. Molecular docking study revealed that all the ligands are completely buried inside the aromatic gorge of AChE, while compounds 1, 3, and 5 extend up to the catalytic triad. A comparison of the docking results showed that all ligands generally adopt the same binding mode and lie parallel to the surface of the gorge. The superposition of the docked structures demonstrated that the non-flexible skeleton of the ligands always penetrates the aromatic gorge through the six-membered ring A, allowing their simultaneous interaction with more than one subsite of the active center. The affinity of ligands with AChE was found to be the cumulative effects of number of hydrophobic contacts and hydrogen bonding. Furthermore, all compounds also displayed dose-dependent (0.005-1.0 mg/mL) spasmolytic and Ca2+ antagonistic potentials in isolated rabbit jejunum preparations, compound 4 being the most active with an ED50 value of 0.09 +/- 0.001 mg/mL and 0.22 +/- 0.01 microg/mL on spontaneous and K+ -induced contractions, respectively. The cholinesterase inhibitory potential along with calcium antagonistic ability and safe profile in human neutrophil viability assay could make compounds 1-5 possible drug candidates for further study to treat Alzheimer's disease and

  10. Effect of chemical environment on the dynamics of water confined in calcium silicate minerals: natural and synthetic tobermorite.

    PubMed

    Monasterio, Manuel; Gaitero, Juan J; Manzano, Hegoi; Dolado, Jorge S; Cerveny, Silvina

    2015-05-01

    Confined water in the slit mesopores of the mineral tobermorite provides an excellent model system for analyzing the dynamic properties of water confined in cement-like materials. In this work, we use broadband dielectric spectroscopy (BDS) to analyze the dynamic of water entrapped in this crystalline material. Two samples, one natural and one synthetic, were analyzed, and despite their similar structure, the motion of confined water in their zeolitic cavity displays considerably different behavior. The water dynamics splits into two different behaviors depending on the chemical nature of the otherwise identical structural environment: water molecules located in areas where the primary building units are SiO4 relax slowly compared to water molecules located in cavities built with both AlO4 and SiO4. Compared to water confined in regular porous systems, water restricted in tobermorite is slower, indicating that the mesopore structure induces high disorder in the water structure. A comparison with water confined in the C-S-H gel is also discussed in this work. The strong dynamical changes in water due to the presence of aluminum might have important implications in the chemical transport of ions within hydrated calcium silicates, a process that governs the leaching and chemical degradation of cement. PMID:25867059

  11. Calcium - ionized

    MedlinePlus

    ... at both ionized calcium and calcium attached to proteins. You may need to have a separate ionized calcium test if you have factors that increase or decrease total calcium levels. These may include abnormal blood levels ...

  12. Mechanistic aspects of the interactions between fluoride and dental enamel.

    PubMed

    ten Cate, J M; Featherstone, J D

    1991-01-01

    For many years after the discovery of its caries preventive effect, fluoride was thought to be primarily active by lowering the solubility of the apatitic mineral phase of the dental hard tissues. Recent findings have shed new light on the mechanisms by which fluoride inhibits or delays dental caries. Fluoride present in the oral fluids alters the rate of the naturally occurring dissolution and reprecipitation processes at the tooth-oral fluid interface. Demineralization of enamel is inhibited by concentrations of fluoride in the sub-ppm range. Likewise, remineralization of incipient caries lesions (the earliest stage of enamel caries) is accelerated by trace amounts of fluoride. As these two processes comprise dental caries the physiological balance between hard tissue breakdown and repair is favorably shifted by fluoride. The driving force for both phenomena is thermodynamic, that is, fluorapatite or a fluoridated hydroxyapatite may form when fluoride is supplied at low concentrations. This article critically reviews the current information about tooth-fluoride interactions, both from laboratory and clinical studies. PMID:1892991

  13. Effect of home-used water purifier on fluoride concentration of drinking water in southern Iran

    PubMed Central

    Jaafari-Ashkavandi, Zohreh; Kheirmand, Mehdi

    2013-01-01

    Background: Fluoride in drinking water plays a key role in dental health. Due to the increasing use of water-purifier, the effect of these devices on fluoride concentration of drinking water was evaluated. Materials and Methods: Drinking water samples were collected before and after passing through a home water-purifier, from four different water sources. The fluoride, calcium and magnesium concentration of the samples were measured using the quantitative spectrophotometery technique. Data were analyzed by the Wilcoxon test. P value < 0.1 was considered as significant. Results: The result showed that the concentration of fluoride was 0.05-0.61 ppm before purification and was removed completely afterward. Furthermore, other ions reduced significantly after treatment by the water purifier. Conclusion: This study revealed that this device decreases the fluoride content of water, an issue which should be considered in low and high-fluoridated water sources. PMID:24130584

  14. Dioxins, furans, biphenyls, arsenic, thorium and uranium in natural and anthropogenic sources of phosphorus and calcium used in agriculture.

    PubMed

    Avelar, A C; Ferreira, W M; Pemberthy, D; Abad, E; Amaral, M A

    2016-05-01

    The aim of this study was to assess the presence of dioxins, furans and biphenyls, and the inorganic contaminants such as arsenic (As), thorium (Th) and uranium (U) in three main products used in Agriculture in Brazil: feed grade dicalcium phosphate, calcined bovine bone meal and calcitic limestone. The first two are anthropogenic sources of phosphorus and calcium, while calcitic limestone is a natural unprocessed mineral. Regarding to dioxin-like substances, all samples analyzed exhibited dioxins (PCDD) and furans (PCDF) and dioxin-like polychlorinated biphenyls (dl-PCBs) concentrations below limit of detection (LOD). In general, achieved is in accordance with regulation in Brazil where is established a maximum limit in limestone used in the citric pulp production (0.50pg WHO-TEQ g(-1)). In addition, reported data revealed very low levels for limestone in comparison with similar materials reported by European legislation. As result for toxic metals, achieved data were obtained using Instrumental Neutron Activation Analysis (INAA). On one hand, limestone sample exhibits the largest arsenic concentration. On another hand, dicalcium phosphate exhibited the largest uranium concentration, which represents a standard in animal nutrition. Therefore, it is phosphorus source in the animal feed industry can be a goal of concern in the feed field. PMID:26901743

  15. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes

    PubMed Central

    Morgan, Jennifer L. L.; Skulan, Joseph L.; Gordon, Gwyneth W.; Romaniello, Stephen J.; Smith, Scott M.; Anbar, Ariel D.

    2012-01-01

    The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible. PMID:22652567

  16. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes

    NASA Astrophysics Data System (ADS)

    Morgan, Jennifer L. L.; Skulan, Joseph L.; Gordon, Gwyneth W.; Romaniello, Stephen J.; Smith, Scott M.; Anbar, Ariel D.

    2012-06-01

    The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible.

  17. Fluoride in diet

    MedlinePlus

    ... broken through the gums have changes in the enamel that covers the teeth. Faint white lines or ... regarding fluoride intake from reconstituted infant formula and enamel fluorosis: a report of the American Dental Association ...

  18. Fluoridation: strategies for success.

    PubMed

    Isman, R

    1981-07-01

    Of 19 referenda on community water fluoridation held in the first six months of 1980, 17 were defeated. Among the postulated reasons are a growing distrust of government and the health establishment. The public remains largely ignorant of the purpose and benefits of fluoridation. The emotionalism surrounding the issue has made it difficult to generate public support outside of the health professions. Opponents have also learned to fight fluoridation with increasingly sophisticated techniques. Some of the strategies used in recent successful campaigns in Oakland, California, and Portland, Oregon are described; recommendations that can be applied to communities considering fluoridation include careful wording of ballot measures so they are unequivocally clear and simple; timing ballot measures with elections likely to draw the largest voter turnout; broadening the base of political and financial support; using a figurehead if possible; and making maximum use of the media. PMID:7246838

  19. Calcium Oscillations

    PubMed Central

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlying mechanism of calcium oscillations through the power of mathematical modeling. We also summarize recent findings on the role of calcium entry through store-operated channels in sustaining calcium oscillations and in the mechanism by which calcium oscillations couple to downstream effectors. PMID:21421924

  20. Fluoride toothpastes, rinses, and tablets.

    PubMed

    Stephen, K W

    1994-07-01

    Only from the mid-1950's has therapeutic benefit been obtained via dentifrices, initially with stannous fluoride-then monofluorophosphate-containing products which remained stable and efficacious. Altered abrasive systems followed, and both sodium fluoride and monofluorophosphate/sodium fluoride mixtures were introduced as active anti-caries agents, with recent meta-analysis indicating that sodium fluoride > monofluorophosphate/sodium fluoride > monofluorophosphate. With respect to fluoride levels, clear dose-response relationships have been demonstrated. However, at < 1000 ppm F, the situation is less certain. Since the mid-1980's, anticalculus fluoride dentifrices have been marketed, and have been shown to have similar caries-reducing potential as their non-calculus-inhibiting control formulae. Finally, one study has been described where a sodium fluoride dentifrice successfully reduced root caries. Of the many fluoride formulations used for caries-inhibiting mouthrinsing [e.g., acid phosphate fluoride (100-3000 ppm F), sodium fluoride (45-3000 ppm F), stannous fluoride (100-250 ppm F), ammonium fluoride (1000 ppm F), and amine fluoride (250 ppm F)], sodium fluoride would seem to be the preferred agent. Furthermore, rinse frequency is deemed more important than fluoride ion concentration, but caution is urged re the volumes and concentrations to be used by children, no rinsing being recommended below 4 years. Combination of a 440-pp-F sodium fluoride and 0.05% chlorhexidine school-administered rinse appears to have increased the caries-inhibiting benefit as compared with sodium fluoride alone. Fluoride supplements have reduced deciduous caries from 14 to 93%, and in the permanent dentition, from 20 to 81%.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7865074

  1. Serum fluoride and sialic acid levels in osteosarcoma.

    PubMed

    Sandhu, R; Lal, H; Kundu, Z S; Kharb, S

    2011-12-01

    Osteosarcoma is a rare malignant bone tumor most commonly occurring in children and young adults presenting with painful swelling. Various etiological factors for osteosarcoma are ionizing radiation, family history of bone disorders and cancer, chemicals (fluoride, beryllium, and vinyl chloride), and viruses. Status of fluoride levels in serum of osteosarcoma is still not clear. Recent reports have indicated that there is a link between fluoride exposure and osteosarcoma. Glycoproteins and glycosaminoglycans are an integral part of bone and prolonged exposure to fluoride for long duration has been shown to cause degradation of collagen and ground substance in bones. The present study was planned to analyze serum fluoride, sialic acid, calcium, phosphorus, and alkaline phosphatase levels in 25 patients of osteosarcoma and age- and sex-matched subjects with bone-forming tumours other than osteosarcoma and musculo-skeletal pain (controls, 25 each). Fluoride levels were analyzed by ISE and sialic acid was analyzed by Warren's method. Mean serum fluoride concentration was found to be significantly higher in patients with osteosarcoma as compared to the other two groups. The mean value of flouride in patients with other bone-forming tumors was approximately 50% of the group of osteosarcoma; however, it was significantly higher when compared with patients of group I. Serum sialic acid concentration was found to be significantly raised in patients with osteosarcoma as well as in the group with other bone-forming tumors as compared to the group of controls. There was, however, no significant difference in the group of patients of osteosarcoma when compared with group of patients with other bone-forming tumors. These results showing higher level of fluoride with osteosarcoma compared to others suggesting a role of fluoride in the disease. PMID:19390788

  2. Fluoride release from fissure sealants.

    PubMed

    Garcia-Godoy, F; Abarzua, I; De Goes, M F; Chan, D C

    1997-01-01

    This 30-day study, compared the amounts and patterns of fluoride release from 5 commercially available fluoride-containing pit and fissure sealants: FluroShield, Helioseal-F, Ultraseal XT, Baritone L3, and Teethmate-F; Delton without fluoride, was used as control. Disc-shaped samples of each sealant were immersed in distilled water and the fluoride release was measured periodically until day 30. All the fluoridated sealants tested released measurable fluoride throughout the test period in a similar pattern: the greatest amount of fluoride was released in the first 24 hours after mixing, fell sharply on the second day and decreased slowly for the last days. On day one, Baritone L3 released significantly more fluoride than all other materials. Teethmate-F released the highest amount of fluoride during all the other time intervals from day 2, until day 30. PMID:9643204

  3. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium alginate. 184.1187 Section 184.1187 Food... GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Calcium alginate is prepared...

  4. Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants.

    PubMed

    Ge, Xiang; Leng, Yang; Bao, Chongyun; Xu, Sherry Li; Wang, Renke; Ren, Fuzeng

    2010-11-01

    Percutaneous orthopedic and dental implants require not only good adhesion with bone but also the ability to attach and form seals with connective tissues and the skin. To solve the skin-seal problem of such implants, an electrochemical deposition method was used to modify the surfaces of metallic implants to improve their antibacterial ability and skin seals around them. A dense and uniform fluoridated calcium phosphate coating with a thickness of about 200 nm was deposited on an acid-etched pure titanium substrate by controlling the current density and reaction duration of the electrochemical process. The as-deposited amorphous fluoridated calcium phosphate transformed to fluoridated hydroxyapatite (FHA) after heat treatment at 600°C in a water vapor environment for 3 h. Both single crystal diffraction patterns and high-resolution transmission electron microscope (HRTEM) images confirmed the phase of the fluoridated calcium phosphate after the heat treatment. The antibacterial activities of FHA coatings were tested against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Porphyromonas gingivalis (P. gingivalis) with the film attachment method. The antibacterial activity of FHA coating is much higher than that of pure hydroxyapatite (HA) coating and acid-etched pure titanium surface. The promising features of FHA coating make it suitable for orthopedic and dental applications. PMID:20725973

  5. Quality of our groundwater resources: arsenic and fluoride

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2011-01-01

    Groundwater often contains arsenic or fluoride concentrations too high for drinking or cooking. These constituents, often naturally occurring, are not easy to remove. The right combination of natural or manmade conditions can lead to elevated arsenic or fluoride which includes continental source rocks, high alkalinity and pH, reducing conditions for arsenic, high phosphate, high temperature and high silica. Agencies responsible for safe drinking water should be aware of these conditions, be prepared to monitor, and treat if necessary.

  6. Fluoride content in caffeinated, decaffeinated and herbal teas.

    PubMed

    Chan, J T; Koh, S H

    1996-01-01

    The fluoride contents of infusions prepared from 44 different brands and types of teas were measured. Fluoride concentrations ranged from 0.34 to 3.71 ppm (mean = 1.50 ppm) in caffeinated tea infusions, 0.02-0.14 ppm (mean = 0.05 ppm) in herbal tea infusions, and 1.01-5.20 ppm (mean = 3.19) in decaffeinated tea infusions. This is the first report of the fluoride content of decaffeinated teas. The mean fluoride content of decaffeinated tea infusions is significantly (p < 0.01) higher than the corresponding caffeinated tea. The use of mineral water containing a naturally high fluoride level during the process of decaffeination is the most likely explanation of the above observation. PMID:8850589

  7. Phosphate reduction in a hydroxyapatite fluoride removal system

    NASA Astrophysics Data System (ADS)

    Egner, A.

    2012-12-01

    Fluorosis is a widespread disease that occurs as a result of excess fluoride consumption and can cause severe tooth and bone deformations. To combat fluorosis, several previous studies have examined the potential to replace traditional bone char filters with synthetic hydroxyapatite. Calcite particles with a synthetic hydroxyapatite coating have been shown to effectively removed fluoride, yet the low-cost method for forming these particles leaves high amounts of phosphate both in synthesis waste-water and in filter effluent. High phosphate in filter effluent is problematic because consumption of extremely high phosphate can leach calcium from bones, further exacerbating the fluoride effect. This study examines ways of reducing and reusing waste. In particular, a method of fluoride removal is explored in which fluorapatite coatings may be formed directly. In preliminary studies, batches of 4.1g of Florida limestone (<710 μm) were equilibrated with 100 mL of 10ppm fluoride. In a control batch containing lime but no added phosphate, 14% treatment was achieved, but with added phosphate, 100% treatment was achieved in all batches. Batches with lower levels of phosphate took longer to reach 100% treatment, ranging from less than 24 hours in the highest phosphate batches to approximately 42 hours in the lowest batches. The lower levels tested were well within reasonable levels for drinking water and reached 0ppm fluoride in 42 hours or less.

  8. Calcium - urine

    MedlinePlus

    ... best treatment for the most common type of kidney stone , which is made of calcium. This type of ... the kidneys into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production ...

  9. Calcium Carbonate

    MedlinePlus

    Calcium carbonate is a dietary supplement used when the amount of calcium taken in the diet is not ... for healthy bones, muscles, nervous system, and heart. Calcium carbonate also is used as an antacid to relieve ...

  10. Private Well Water and Fluoride

    MedlinePlus

    ... from my well has less than the recommended level of fluoride for preventing tooth decay? The recommended ... if the water from my well has fluoride levels that are higher than the recommended level for ...

  11. MOLTEN FLUORIDE NUCLEAR REACTOR FUEL

    DOEpatents

    Barton, C.J.; Grimes, W.R.

    1960-01-01

    Molten-salt reactor fuel compositions consisting of mixtures of fluoride salts are reported. In its broadest form, the composition contains an alkali fluoride such as sodium fluoride, zirconium tetrafluoride, and a uranium fluoride, the latter being the tetrafluoride or trifluoride or a mixture of the two. An outstanding property of these fuel compositions is a high coeffieient of thermal expansion which provides a negative temperature coefficient of reactivity in reactors in which they are used.

  12. Aqueous geochemistry of fluoride enriched groundwater in arid part of Western India.

    PubMed

    Singh, Chander Kumar; Mukherjee, Saumitra

    2015-02-01

    Fluoride-enriched water has become a major public health issue in India. The present study tries to evaluate the geochemical mechanism of fluoride enrichment in groundwater of western India. Total 100 groundwater samples were collected for the study spreading across the entire study area. The results of the analyzed parameters formed the attribute database for geographical information system (GIS) analysis and final output maps. A preliminary field survey was conducted and fluoride testing was done using Hach make field kits. The fluoride concentration ranges from 0.08 to 6.6 mg/L (mean 2.4 mg/L), with 63 % of the samples containing fluoride concentrations that exceed the World Health Organization (WHO) drinking water guideline value of 1.5 mg/L and 85 % samples exceeding the Bureau of Indian Standards (BIS) guidelines of 1 mg/L. The study also reveals high concentration of nitrate that is found to be above WHO standrads. The dominant geochemical facies present in water are Na-Cl-HCO3 (26 samples), Na-Ca-Cl-HCO3 (20 samples), Na-Cl (14 samples), and Na-Ca-Mg-Cl-HCO3 (11 samples); however, sodium and bicarbonate being the major component in all the water types of 100 samples, which in fact has a tendency to increase fluoride concentration in water by dissolving fluoride from fluorite. The thermodynamic considerations between the activities of calcium, fluoride, and bicarbonate suggest that fluoride concentration is being governed by activity of calcium ion. X-ray diffraction analysis of sediments reveals calcite and fluorite are the main solubility-control minerals controlling the aqueous geochemistry of high fluoride groundwater. The results indicate that the fluoride concentration in groundwater is mainly governed by geochemical composition of rocks, such as metamorphic granites and sedimentary rocks, alkaline hydrogeological environment, climatic conditions, high temperature and lesser rainfall, and geochemical processes such as weathering, evaporation

  13. Fluoride removal from groundwater by limestone treatment in presence of phosphoric acid.

    PubMed

    Gogoi, Sweety; Nath, Suresh K; Bordoloi, Shreemoyee; Dutta, Robin K

    2015-04-01

    Fluoride removal from groundwater has been studied by addition of dilute phosphoric acid (PA) to the influent water before limestone treatment through laboratory plug-flow column experiments and bench-scale plug-flow pilot tests. In this PA-enhanced limestone defluoridation (PAELD) technique, fluoride is removed from 0.526 mM to 0.50-52.60 μM in 3 h with near neutral final pH. The presence of PA increases the fluoride removal capacity of limestone to 1.10 mg/g compared to 0.39 mg/g reported in its absence. The changes in fluoride removal with variation in initial PA concentration, initial fluoride concentration and the final pH have been found to be statistically significant with p < 0.05. The estimated recurring cost is US$ ≈0.58/m(3) water. Simple scrubbing and rinsing is a preferable method for regeneration of limestone as it is almost equally effective with lime or NaOH. Sorption of fluoride by calcium phosphates produced in situ in the reactor is the dominant mechanism of fluoride removal in the PAELD. Precipitation of CaF2 and sorption of fluoride by the limestone also contribute to the fluoride removal. High efficiency, capacity, safety, environment-friendliness, low cost and simplicity of operation make the PAELD a potential technique for rural application. PMID:25621387

  14. Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio).

    PubMed

    Jianjie, Chen; Wenjuan, Xue; Jinling, Cao; Jie, Song; Ruhui, Jia; Meiyan, Li

    2016-02-01

    Excessive fluoride in natural water ecosystem has the potential to detrimentally affect thyroid endocrine system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of fluoride on growth performance, thyroid histopathology, thyroid hormone levels, and gene expressions in the HPT axis in male zebrafish (Danio rerio) exposed to different determined concentrations of 0.1, 0.9, 2.0 and 4.1 M of fluoride to investigate the effects of fluoride on thyroid endocrine system and the potential toxic mechanisms caused by fluoride. The results indicated that the growth of the male zebrafish used in the experiments was significantly inhibited, the thyroid microtrastructure was changed, and the levels of T3 and T4 were disturbed in fluoride-exposed male fish. In addition, the expressional profiles of genes in HPT axis displayed alteration. The expressions of all studied genes were significantly increased in all fluoride-exposed male fish after exposure for 45 days. The transcriptional levels of corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroglobulin (TG), sodium iodide symporter (NIS), iodothyronine I (DIO1), and thyroid hormone receptor alpha (TRα) were also elevated in all fluoride-exposed male fish after 90 days of exposure, while the inconsistent expressions were found in the mRNA of iodothyronineⅡ (DIO2), UDP glucuronosyltransferase 1 family a, b (UGT1ab), transthyretin (TTR), and thyroid hormone receptor beta (TRβ). These results demonstrated that fluoride could notably inhibit the growth of zebrafish, and significantly affect thyroid endocrine system by changing the microtrastructure of thyroid, altering thyroid hormone levels and endocrine-related gene expressions in male zebrafish. All above indicated that fluoride could pose a great threat to thyroid endocrine system, thus detrimentally affected the normal function of thyroid of male zebrafish. PMID:26748264

  15. Ferrimyoglobin-Fluoride.

    ERIC Educational Resources Information Center

    Russo, Steven O.; Hanania, George I. H.

    1990-01-01

    Described is an experiment which is designed to investigate the reaction of the protein ferrimyoglobin with fluoride. The activity uses readily available apparatus and the technique of optical absorbance for measurement of concentrations. Experimental design, procedures, and treatment of the equilibrium data are detailed. (CW)

  16. Other Fluoride Products

    MedlinePlus

    ... in preventing tooth decay in people of all ages. Use the information listed below to compare the other fluoride products ... even among children younger than 6 years of age. Proper application technique ... cleared for marketing by the Food and Drug Administration (FDA) as ...

  17. Fluorine (soluble fluoride)

    Integrated Risk Information System (IRIS)

    Fluorine ( soluble fluoride ) ; CASRN 7782 - 41 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for No

  18. The origin of fluoride in groundwater supply to Hermosillo City, Sonora, México

    NASA Astrophysics Data System (ADS)

    Valenzuela-Vásquez, L.; Ramírez-Hernández, J.; Reyes-López, J.; Sol-Uribe, A.; Lázaro-Mancilla, O.

    2006-10-01

    Anomalous high fluoride concentration up to 7.59 mg/dm3 is found in groundwater from “La Victoria” area. This water is used to supply drinking water to Hermosillo City, Sonora. Geochemistry of groundwater, relationship between physicochemical parameters, hydrogeology and geologic setting were correlated to define the origin and the geochemical mechanisms of groundwater fluorine enrichment. High fluoride concentration is associated with high bicarbonates, pH and temperature, and it decreases toward the west and south of the area. Fluoride is in negative correlation to calcium concentration. Sodium sulphate facies of regional deep water flow are related to high fluoride concentration. High electric resistivity rocks associated with granites from the Sierra Bachoco basement might be the deep source of fluoride. Outcropping of Sierra Bachoco in the west causes upward regional flow. Groundwater of longer residence time can be pumped there. The anomalous area is restricted to “La Victoria” because calcareous paleozoic rocks outcrop to the south.

  19. Fluoride rinse effect on retention of CaF2 formed on enamel/dentine by fluoride application.

    PubMed

    Falcão, Amanda; Masson, Nadia; Leitão, Tarcísio Jorge; Botelho, Juliana Nunes; Ferreira-Nóbilo, Naiara de Paula; Tabchoury, Cínthia Pereira Machado; Tenuta, Livia Maria Andaló; Cury, Jaime Aparecido

    2016-01-01

    Calcium fluoride-like materials ("CaF2") formed on dental surfaces after professional fluoride application are unstable in the oral environment but can be retained longer with a daily NaF mouthrinse. We tested the effect of twice daily 0.05% NaF rinses on the retention of "CaF2" formed on enamel and dentine after applying acidulated phosphate fluoride (APF). "CaF2" formed on enamel/dentine by APF application significantly decreased after exposure to artificial saliva and the 0.05% NaF rinse was ineffective to avoid this reduction. These findings suggest that the combination of APF and 0.05% NaF is not clinically relevant, either for caries or dental hypersensitivity. PMID:27050937

  20. The Selection and Prevalence of Natural and Fortified Calcium Food Sources in the Diets of Adolescent Girls

    ERIC Educational Resources Information Center

    Rafferty, Karen; Watson, Patrice; Lappe, Joan M.

    2011-01-01

    Objective: To assess the impact of calcium-fortified food and dairy food on selected nutrient intakes in the diets of adolescent girls. Design: Randomized controlled trial, secondary analysis. Setting and Participants: Adolescent girls (n = 149) from a midwestern metropolitan area participated in randomized controlled trials of bone physiology…

  1. Sensitivity of two biomarkers for biomonitoring exposure to fluoride in children and women: A study in a volcanic area.

    PubMed

    Linhares, Diana Paula Silva; Garcia, Patrícia Ventura; Amaral, Leslie; Ferreira, Teresa; Cury, Jaime A; Vieira, Waldomiro; Rodrigues, Armindo Dos Santos

    2016-07-01

    The natural enrichment of water with fluoride is related to natural sources such as volcanic activity, with it being documented that fluorosis, an endemic and widespread disease in volcanic areas, is associated to the ingestion of high levels of fluoride through water. Thus, in this study, we aimed to define the fluoride concentration in drinking waters of volcanic origin and compare the sensitivity of urine and nail clippings as biomarkers for fluoride exposure in adults and children. Samples of drinking water from four villages in São Miguel Island (Azores) were used and the fluoride concentration was determined, as well the fluoride content in urine and toenails clippings from 66 children and 63 adults from these villages. A validated diet questionnaire, assessing sources of fluoride, was recorded for each participant. The fluoride determination in urine and nail clipping samples was made using a fluoride-specific electrode. A positive correlation was found between the fluoride daily intake and fluoride content in children urine (rs = 0.475; p < 0.001) and in their nail clippings (rs = 0.475; p < 0.001), while in adult women, the fluoride daily intake correlated positively with fluoride content nail clippings (rs = 0.495, p < 0.001). This reveals that nail clippings are more reliable as biomarkers of chronic exposure to fluoride than urine for populations of different ages (children vs. adults). Furthermore, nail clippings are more suitable than urine fluoride levels to assess long term exposure to fluoride in areas where the exposure to fluoride in drinking water is considered within, or slightly above, the recommended legal values. PMID:27155929

  2. Effect of Fluoride Gels on Microhardness and Surface Roughness of Bleached Enamel

    PubMed Central

    China, Ana L.P; Souza, Nayara M; Gomes, Yasmin do S. B. de L; Alexandrino, Larissa D; Silva, Cecy M

    2014-01-01

    The effect of bleaching treatments containing added calcium and combined with neutral or acidic fluoride gels on tooth enamel was investigated in vitro through Knoop microhardness (KHN) and surface roughness (SR) measurements. A total of 60 bovine incisors were tested, including 30 for SR measurements and 30 for KHN measurements. The specimens were divided into 12 groups and subjected to a bleaching agent with hydrogen peroxide 35% (Whiteness HP 35% Maxx, FGM) or hydrogen peroxide 35% with calcium (Whiteness HP 35% Blue Calcium, FGM) and a fluoride treatment flugel acidulated phosphate fluoride (APF) or flugel neutral fluoride (NF). Control specimens were submitted to bleaching treatments without fluoride. Microhardness tests were performed using a Knoop indentor. Roughness measurements were obtained using a roughness analyzer. Measurements were obtained before and after treatment. The specimens were stored in distilled water at 37 °C between treatments. The results were analyzed using descriptive and inferential statistics. Treatments using APF combined with 35% HP caused a decrease in microhardness, while NF combined with HP 35% Ca increased the enamel hardness. Fluoride gels did not alter the SR of the bleached enamel. PMID:25419249

  3. Fatality due to acute systemic fluoride poisoning following a hydrofluoric acid skin burn.

    PubMed

    Tepperman, P B

    1980-10-01

    Reports indicate that death due to hydrofluoric acid exposure is usually the result of inhalation of vapor causing pulmonary edema and fluoride poisoning. Absorption via the skin route of fluoride ion sufficient to cause serious systemic problems and even death has rarely been reported. A fatality resulting from a severe facial burn, which produced acute systemic fluoride poisoning with profound hypocalcemia and hypomagnesemia, is presented. The importance of proper personal protective equipment as well as the immediate initiation of first aid and appropriate medical measures, including the monitoring and replacement of serum calcium and magnesium, are emphasized. PMID:7431138

  4. Fluoride occurrence in publicly supplied drinking water in Estonia

    NASA Astrophysics Data System (ADS)

    Karro, Enn; Indermitte, Ene; Saava, Astrid; Haamer, Kadri; Marandi, Andres

    2006-06-01

    A study was undertaken to examine the content and spatial distribution of fluoride in drinking water. Water samples (735) from public water systems covering all Estonian territory were analysed using SPADNS method. In order to specify the natural source of fluoride, the chemistry data from five aquifer systems utilised for water supply were included into the study. Fluoride concentrations in tap water, to a great extent, ranged from 0.01 to 6.95 mg/l. Drinking water in southern Estonia, where terrigenous Middle-Devonian aquifer system is exploited, has a fluoride concentration lower than recommended level (0.5 mg/l), thus promoting susceptibility to dental caries. The western part of the country is supplied by water with excess fluoride content (1.5-6.9 mg/l). Groundwater abstracted for drinking purposes originates from Ordovician and Silurian carbonate rocks. The content of fluoride in Silurian-Ordovician aquifer system is associated with the groundwater abstraction depth and the main controlling factors of dissolved fluoride are the pH value and the chemical type of water.

  5. Fluoride removal performance of glass derived hydroxyapatite

    SciTech Connect

    Liang, Wen; Zhan, Lei; Piao, Longhua; Russel, Christian

    2011-02-15

    Research highlights: {yields} Novel sodium calcium borate glass derived hydroxyapatite (G-HAP) is prepared. {yields} Micro-G-HAP adsorbs F{sup -} ions in solutions more effectively than commercial nano-HAP. {yields} The adsorption kinetics and isotherms are well fitted by a second order kinetic model and Freundlich isotherm model. -- Abstract: A novel sodium calcium borate glass derived hydroxyapatite (G-HAP) with different ranges of particle size was prepared by immersion sodium calcium borate glass in 0.1 M K{sub 2}HPO{sub 4} solution by the ratio of 50 g L{sup -1} for 7 days. The unique advantage of G-HAP for the adsorption of fluoride ions in solutions was studied. The effects of size and quantity of particles, pH value and adsorption time on adsorption performance were investigated. The maximum adsorption capacity was 17.34 mg g{sup -1} if 5 g L{sup -1}, <100 {mu}m G-HAP was added to a solution with an initial pH value of 6.72 and the adsorption time was 12 h. The results showed that the micro-G-HAP could immobilize F{sup -} in solution more effectively than commercial nano-HAP, which makes potential application of the G-HAP in removing the fluoride ions from wastewater. The adsorption kinetics and isotherms for F{sup -} could be well fitted by a second order kinetic model and Freundlich isotherm model respectively, which could be used to describe the adsorption behavior. The mechanism of G-HAP in immobilizing F{sup -} from aqueous solutions was investigated by the X-ray diffraction (XRD), infrared spectra (IR) and scanning electron microscopy (SEM).

  6. Health Effects Associated with Water Fluoridation.

    ERIC Educational Resources Information Center

    Richmond, Virginia L.

    1979-01-01

    Discussion is presented concerning fluoridation of water supplies. Correlation between fluoride in drinking water and improved dental health is reviewed. Relationship is expressed between fluoridation and reduced tooth decay. Use of fluoride in treating skeletal disorders is discussed. Author advocates fluoridating water supplies. (SA)

  7. 21 CFR 184.1187 - Calcium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005-35-0) is the calcium salt of alginic acid, a natural polyuronide constituent of certain brown...

  8. Magnesium fluoride recovery method

    DOEpatents

    Gay, Richard L.; McKenzie, Donald E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is contacted with an acid under certain prescribed conditions to produce a liquid product and a particulate solid product. The particulate solid product is separated from the liquid and treated at least two more times with acid to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 pCi/gm. In accordance with a particularly preferred embodiment of the invention a catalyst and an oxidizing agent are used during the acid treatment and preferably the acid is sulfuric acid having a strength of about 1.0 Normal.

  9. IMPACT OF FLUORIDE ON DENTAL HEALTH QUALITY

    PubMed Central

    Medjedovic, Eida; Medjedovic, Senad; Deljo, Dervis; Sukalo, Aziz

    2015-01-01

    Introduction: Fluoride is natural element that strengthens teeth and prevents their decay. Experts believe that the best way to prevent cavities is the use of fluoride from multiple sources. Studies even show that in some cases, fluoride can stop already started damage of the teeth. In children younger than 6 years fluoride is incorporated into the enamel of permanent teeth, making the teeth more resistant to the action of bacterial and acids in food. Goal: The aim of this study is to determine the effects of improving the health status of teeth after six months treatment with the use of topical fluoridation 0.5% NaF, and the level and quality of the impact of treatment with chemical 0.5% NaF on the dental health of children at age from 8 to 15 years, in relation to gender and chronological age. This study included school children aged 8 to 15 years who visited health and dental services dependent in Mostar. Results: It is obvious that after the implementation of treatment with 5% NaF by the method of topical fluoridation, health status of subjects from the experimental group significantly improved, so that at the final review 89.71% or 61 subjects of the experimental group had healthy (cured teeth), tooth with dental caries only 5.88% or 4 respondents tooth with dental caries and filling 4.41% or 3 respondents, extracted baby tooth 14.71% or 10 respondents, while for 13.24% of respondents was identified state with still unerupted teeth. Our findings are indirectly confirmed that the six-month treatment of fluoridation with 5% NaF, contributed to statistically significant improvement in overall oral health of the experimental group compared to the control group which was not treated by any dental treatment. Conclusion: It can be concluded that there is a statistically significant difference in the evaluated parameters of oral health of children in the control group compared to the studied parameters of oral health the experimental group of children at the final

  10. Effects of fluoride on in vitro enamel demineralization analyzed by ¹⁹F MAS-NMR.

    PubMed

    Mohammed, N R; Kent, N W; Lynch, R J M; Karpukhina, N; Hill, R; Anderson, P

    2013-01-01

    The mechanistic action of fluoride on inhibition of enamel demineralization was investigated using (19)F magic angle spinning nuclear magnetic resonance (MAS-NMR). The aim of this study was to monitor the fluoride-mineral phase formed on the enamel as a function of the concentration of fluoride ions [F(-)] in the demineralizing medium. The secondary aim was to investigate fluorapatite formation on enamel in the mechanism of fluoride anti-caries efficacy. Enamel blocks were immersed into demineralization solutions of 0.1 M acetic acid (pH 4) with increasing concentrations of fluoride up to 2,262 ppm. At and below 45 ppm [F(-)] in the solution, (19)F MAS-NMR showed fluoride-substituted apatite formation, and above 45 ppm, calcium fluoride (CaF2) formed in increasing proportions. Further increases in [F(-)] caused no further reduction in demineralization, but increased the proportion of CaF2 formed. Additionally, the combined effect of strontium and fluoride on enamel demineralization was also investigated using (19)F MAS-NMR. The presence of 43 ppm [Sr(2+)] in addition to 45 ppm [F(-)] increases the fraction of fluoride-substituted apatite, but delays formation of CaF2 when compared to the demineralization of enamel in fluoride-only solution. PMID:23712030

  11. [Uptake of fluoride into enamel and its effect on acid resistance by application of fluoride-releasing sealant--Part 2. Effect of application time and immersion time into buffer after its removal].

    PubMed

    Kato, K

    1991-03-01

    The purpose of this study was to investigate the relationship between the amount of fluoride in the enamel, taken from a fluoride-releasing sealant (F + sealant) and acid resistance. The F + sealant was applied to the bovine enamel from 1 week to 6 months. After the removal of the F + sealant, the bovine teeth were immersed in phosphate buffer from 1 month to 6 months. At each time period, the enamel was biopsied with acid and its fluoride and calcium concentration were analyzed. Results were as follows: (1) It was suitable to immerse the teeth in 1M KOH solution for 2 days in order to remove the loosely bound fluoride produced by the fluoride application from the enamel. (2) The amount of fluoride in the surface enamel increased in proportion to the application time of F + sealant. (3) The amount of calcium dissolved from the enamel showed the significant decrease by the F + sealant application, while no difference was shown by the application time. (4) The amount of fluoride in the surface enamel acquired by the F + sealant was maintained for 6 months after the removal of the F + sealant. (5) The amount of calcium dissolved from the enamel showed no difference in the period of immersion time. PMID:2066630

  12. Calcium - urine

    MedlinePlus

    ... into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production of ... Milk-alkali syndrome Proximal renal tubular acidosis Rickets Sarcoidosis Vitamin D Update Date 5/3/2015 Updated ...

  13. Influence of Phosphatidylcholine and Calcium on Self-Association and Bile Salt Mixed Micellar Binding of the Natural Bile Pigment, Bilirubin Ditaurate.

    PubMed

    Neubrand, Michael W; Carey, Martin C; Laue, Thomas M

    2015-11-17

    Recently [Neubrand, M. W., et al. (2015) Biochemistry 54, 1542-1557], we determined a concentration-dependent monomer-dimer-tetramer equilibrium in aqueous bilirubin ditaurate (BDT) solutions and explored the nature of high-affinity binding of BDT monomers with monomers and micelles of the common taurine-conjugated bile salts (BS). We now investigate, employing complementary physicochemical methods, including fluorescence emission spectrophotometry and quasi-elastic light scattering spectroscopy, the influence of phosphatidylcholine (PC), the predominant phospholipid of bile and calcium, the major divalent biliary cation, on these self-interactions and heterointeractions. We have used short-chain, lyso and long-chain PC species as models and contrasted our results with those of parallel studies employing unconjugated bilirubin (UCB) as the fully charged dianion. Both bile pigments interacted with the zwitterionic headgroup of short-chain lecithins, forming water-soluble (BDT) and insoluble ion-pair complexes (UCB), respectively. Upon micelle formation, BDT monomers apparently remained at the headgroup mantle of short-chain PCs, but the ion pairs with UCB became internalized within the micelle's hydrophobic core. BDT interacted with the headgroups of unilamellar egg yolk (EY) PC vesicles; however, with the simultaneous addition of CaCl2, a reversible aggregation took place, but not vesicle fusion. With mixed EYPC/BS micelles, BDT became bound to the hydrophilic surface (as with simple BS micelles), and in turn, both BDT and BS bound calcium, but not other divalent cations. The calcium complexation of BDT and BS was enhanced strongly with increases in micellar EYPC, suggesting calcium-mediated cross-bridging of hydrophilic headgroups at the micelle's surface. Therefore, the physicochemical binding of BDT to BS in an artificial bile medium is influenced not only by BS species and concentration but also by long-chain PCs and calcium ions that exert a specific rather

  14. Lead in calcium supplements.

    PubMed

    Scelfo, G M; Flegal, A R

    2000-04-01

    Intercalibrated measurements of lead in calcium supplements indicate the importance of rigorous analytical techniques to accurately quantify contaminant exposures in complex matrices. Without such techniques, measurements of lead concentrations in calcium supplements may be either erroneously low, by as much as 50%, or below the detection limit needed for new public health criteria. In this study, we determined the lead content of 136 brands of supplements that were purchased in 1996. The calcium in the products was derived from natural sources (bonemeal, dolomite, or oyster shell) or was synthesized and/or refined (chelated and nonchelated calcium). The dried products were acid digested and analyzed for lead by high resolution-inductively coupled plasma-mass spectrometry. The method's limit of quantitation averaged 0.06 microg/g, with a coefficient of variation of 1.7% and a 90-100% lead recovery of a bonemeal standard reference material. Two-thirds of those calcium supplements failed to meet the 1999 California criteria for acceptable lead levels (1.5 microg/daily dose of calcium) in consumer products. The nonchelated synthesized and/or refined calcium products, specifically antacids and infant formulas, had the lowest lead concentrations, ranging from nondetectable to 2.9 microg Pb/g calcium, and had the largest proportion of brands meeting the new criteria (85% of the antacids and 100% of the infant formulas). PMID:10753088

  15. Lead in calcium supplements.

    PubMed Central

    Scelfo, G M; Flegal, A R

    2000-01-01

    Intercalibrated measurements of lead in calcium supplements indicate the importance of rigorous analytical techniques to accurately quantify contaminant exposures in complex matrices. Without such techniques, measurements of lead concentrations in calcium supplements may be either erroneously low, by as much as 50%, or below the detection limit needed for new public health criteria. In this study, we determined the lead content of 136 brands of supplements that were purchased in 1996. The calcium in the products was derived from natural sources (bonemeal, dolomite, or oyster shell) or was synthesized and/or refined (chelated and nonchelated calcium). The dried products were acid digested and analyzed for lead by high resolution-inductively coupled plasma-mass spectrometry. The method's limit of quantitation averaged 0.06 microg/g, with a coefficient of variation of 1.7% and a 90-100% lead recovery of a bonemeal standard reference material. Two-thirds of those calcium supplements failed to meet the 1999 California criteria for acceptable lead levels (1.5 microg/daily dose of calcium) in consumer products. The nonchelated synthesized and/or refined calcium products, specifically antacids and infant formulas, had the lowest lead concentrations, ranging from nondetectable to 2.9 microg Pb/g calcium, and had the largest proportion of brands meeting the new criteria (85% of the antacids and 100% of the infant formulas). Images Figure 1 Figure 2 PMID:10753088

  16. Calcium supplements

    MedlinePlus

    ... SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the human body. It helps build and protect your teeth ... absorb calcium. You can get vitamin D from sunlight exposure to your skin and from your diet. Ask your provider whether ...

  17. Method of repressing the precipitation of calcium fluozirconate

    DOEpatents

    Newby, B.J.; Rhodes, D.W.

    1973-12-25

    Boric acid or a borate salt is added to aqueous solutions of fluoride containing radioactive wastes generated during the reprocessing of zirconium alloy nuclear fuels which are to be converted to solid form by calcining in a fluidized bed. The addition of calcium nitrate to the aqueous waste solutions to prevent fluoride volatility during calcination, causes the precipitation of calcium fluozirconate, which tends to form a gel at fluoride concentrations of 3.0 M or greater. The boron containing species introduced into the solution by the addition of the boric acid or borate salt retard the formation of the calcium fluozirconate precipitate and prevent formation of the gel. These boron containing species can be introduced into the solution by the addition of a borate salt but preferably are introduced by the addition of an aqueous solution of boric acid. (Official Gazette)

  18. A critical study on efficiency of different materials for fluoride removal from aqueous media

    PubMed Central

    2013-01-01

    Fluoride is a persistent and non-biodegradable pollutant that accumulates in soil, plants, wildlife and in human beings. Therefore, knowledge of its removal, using best technique with optimum efficiency is needed. The present survey highlights on efficacy of different materials for the removal of fluoride from water. The most important results of extensive studies on various key factors (pH, agitation time, initial fluoride concentration, temperature, particle size, surface area, presence and nature of counter ions and solvent dose) fluctuate fluoride removal capacity of materials are reviewed. PMID:23497619

  19. Fluoride Content in Alcoholic Drinks.

    PubMed

    Goschorska, Marta; Gutowska, Izabela; Baranowska-Bosiacka, Irena; Rać, Monika Ewa; Chlubek, Dariusz

    2016-06-01

    The aim of the study was to determine the role of alcoholic drinks as a potential source of dietary fluoride by means of measuring fluoride levels in selected alcoholic drinks available on the Polish market that are also diverse in terms of the percentage content of ethanol. The study was conducted on 48 types of drinks with low, medium, and high alcohol content available on the Polish market and offered by various manufacturers, both Polish and foreign. Fluoride concentrations in individual samples were measured by potentiometric method with a fluoride ion-selective electrode. The highest fluoride levels were determined in the lowest percentage drinks (less than 10 % v/v ethanol), with the lowest fluoride levels observed in the highest percentage drinks (above 40 % v/v ethanol). In terms of types of alcoholic drinks, the highest fluoride levels were determined in beers and wines, while the lowest levels were observed in vodkas. These data confirm the fact that alcoholic beverages need to be considered as a significant source of fluoride delivered into the body. PMID:26475300

  20. WET FLUORIDE SEPARATION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-11-25

    The separation of U/sup 233/ from thorium, protactinium, and fission products present in neutron-irradiated thorium is accomplished by dissolving the irradiated materials in aqueous nitric acid, adding either a soluble fluoride, iodate, phosphate, or oxalate to precipltate the thorium, separating the precipltate from the solution, and then precipitating uranlum and protactinium by alkalizing the solution. The uranium and protactinium precipitate is removcd from the solution and dissolved in nitric acid. The uranyl nitrate may then be extracted from the acid solution by means of ether, and the protactinium recovered from the aqueous phase.

  1. The absorption and excretion of fluoride and arsenic in humans.

    PubMed

    Zheng, Yujian; Wu, Jiyao; Ng, Jack C; Wang, Guoquan; Lian, Wu

    2002-07-01

    The absorption and excretion of fluoride and arsenic were measured in a group of healthy volunteers given drinking water with naturally high concentration of fluoride (F 2.3 mg/l)(,) or high concentration of arsenic (As 0.15 mg/l), or high concentrations of both fluoride and arsenic (F 2.25 mg/l, As 0.23 mg/l and F 4.05 mg/l, As 0.58 mg/l), respectively. The results indicated that, for arsenic, the absorption rate, the proportion of urinary excretion and the biological-half-life did not show statistically significant differences between drinking water containing high arsenic alone and drinking water containing different levels of high arsenic and fluoride. Excretion and retention of arsenic were positively correlated to the total arsenic intake. Similar results were observed for fluoride. This suggests that there are different metabolic processes for arsenic and fluoride in respect to absorption and excretion; and no joint action can be attributed by these two elements. PMID:12076512

  2. Occurrence of fluoride in ground waters of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alabdulaaly, Abdulrahman I.; Al-Zarah, Abdullah I.; Khan, Mujahid A.

    2013-09-01

    The presence of elevated levels of fluoride in groundwater is considered a global problem. Fluoride in water derives mainly from dissolution of natural minerals in the rocks and soils with which water interacts. The most common fluorine-bearing minerals are fluorite, apatite and micas. Anthropogenic sources of fluoride include agricultural fertilizers and combustion of coal. In the present research, a survey of wells ( n = 1,060) was undertaken in all the 13 regions of the Kingdom of Saudi Arabia to assess the contained fluoride (F) levels. The results indicated variation in fluoride levels from 0.10 to 5.4 mg/L as F throughout the kingdom. The average fluoride levels in milligrams per liter as F were as follows in descending order: 1.80 (Hadwood Shamalyah), 1.37 (Hail), 1.33 (Eastern Province), 1.16 (Al Jouf), 1.11 (Qassim), 1.01 (Riyadh), 0.90 (Madina Al Munnawara), 0.81 (Tabouk), 0.74 (Makkah Al- Mukaramma), 0.73 (Jizan), 0.66 (Asir), 0.64 (Najran), and 0.60 (Al Baha). The results indicated that fluoride levels exceeded the USEPA maximum contaminant limits for drinking water (4 mg/L) in several wells ( n = 7) in different regions of the kingdom and that 13.96 % of the wells exceeded the World Health Organization recommended levels (1.5 mg/L). The results were also compared with the secondary USEPA contaminant standards of 2.0 mg/L for fluorides.

  3. Cytochemical calcium distribution in secretory ameloblasts of the rat in relation to enamel mineralization.

    PubMed

    Chen, S; Eisenmann, D R; Zaki, A E; Ashrafi, S H

    1986-01-01

    Calcium distribution in secretory ameloblasts was studied in rat incisor enamel in which mineralization was temporarily disturbed by injection of either fluoride or cobalt. Pyroantimonate precipitates of calcium were analysed morphometrically in regions of the cell membranes, mitochondria and secretory granules. The disturbances in mineralization were characterized by accumulations of unmineralized enamel matrix at the secretory regions of Tomes' process within 1 h after injection. Fluoride-induced disturbances in mineralization were not accompanied by marked changes in calcium concentration and distribution. It may be that fluoride causes alterations in the synthesis and secretion of the organic matrix which affects its ability to mineralize. Secretory ameloblasts treated with cobalt showed a broad basis for interference with calcium, in particular that which is associated with cell membranes and secretory granules. Secretory ameloblasts may be actively controlling the availability of calcium to enamel by mechanisms involving the cell membrane as well as the secretory granules. PMID:3739601

  4. Topical fluoride for caries prevention

    PubMed Central

    Weyant, Robert J.; Tracy, Sharon L.; Anselmo, Theresa (Tracy); Beltrán-Aguilar, Eugenio D.; Donly, Kevin J.; Frese, William A.; Hujoel, Philippe P.; Iafolla, Timothy; Kohn, William; Kumar, Jayanth; Levy, Steven M.; Tinanoff, Norman; Wright, J. Timothy; Zero, Domenick; Aravamudhan, Krishna; Frantsve-Hawley, Julie; Meyer, Daniel M.

    2015-01-01

    Background A panel of experts convened by the American Dental Association (ADA) Council on Scientific Affairs presents evidence-based clinical recommendations regarding professionally applied and prescription-strength, home-use topical fluoride agents for caries prevention. These recommendations are an update of the 2006 ADA recommendations regarding professionally applied topical fluoride and were developed by using a new process that includes conducting a systematic review of primary studies. Types of Studies Reviewed The authors conducted a search of MEDLINE and the Cochrane Library for clinical trials of professionally applied and prescription-strength topical fluoride agents—including mouthrinses, varnishes, gels, foams and pastes—with caries increment outcomes published in English through October 2012. Results The panel included 71 trials from 82 articles in its review and assessed the efficacy of various topical fluoride caries-preventive agents. The panel makes recommendations for further research. Practical Implications The panel recommends the following for people at risk of developing dental caries: 2.26 percent fluoride varnish or 1.23 percent fluoride (acidulated phosphate fluoride) gel, or a prescription-strength, home-use 0.5 percent fluoride gel or paste or 0.09 percent fluoride mouthrinse for patients 6 years or older. Only 2.26 percent fluoride varnish is recommended for children younger than 6 years. The strengths of the recommendations for the recommended products varied from “in favor” to “expert opinion for.” As part of the evidence-based approach to care, these clinical recommendations should be integrated with the practitioner's professional judgment and the patient's needs and preferences. PMID:24177407

  5. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

  6. Direct determination of fluoride in aluminium reduction materials by using an ion-selective electrode.

    PubMed

    Palmer, T A

    1972-10-01

    Macro amounts of fluoride in aluminium reduction materials are successfully determined with a fluoride electrode. Except for anhydrous aluminium fluoride, which requires fusion with sodium hydroxide, samples are dissolved in aqueous media. Cryolite and sodium fluorosilicatc are dissolved in boiling sodium hydroxide solution. Other materials containing fluoride, such as fluorspar and the reduction cell bath and pot-lining, require dissolution in a hydrochloric acid solution of aluminium chloride. Potential interference from large amounts of aluminium (and calcium, if present) is eliminated and pH control attained by using ammoniacal sulphosalicylate (and EDTA). The procedures are reasonably rapid. Relative errors of less than 2% and a relative standard deviation of 1% are achieved. PMID:18961164

  7. Urinary Fluoride Concentration in Children with Disabilities Following Long-Term Fluoride Tablet Ingestion

    ERIC Educational Resources Information Center

    Liu, Hsiu-Yueh; Chen, Jung-Ren; Hung, Hsin-Chia; Hsiao, Szu-Yu; Huang, Shun-Te; Chen, Hong-Sen

    2011-01-01

    Urine is the most commonly utilized biomarker for fluoride excretion in public health and epidemiological studies. Approximately 30-50% of fluoride is excreted from urine in children. Urinary fluoride excretion reflects the total fluoride intake from multiple sources. After administering fluoride tablets to children with disabilities, urinary…

  8. Determination of Stability Constants of Hydrogen and Aluminum Fluorides with a Fluoride-Selective Electrode

    SciTech Connect

    Baumann, E.W.

    2003-01-06

    The ability to directly determine free fluoride ion concentration (or mean activity) simplifies gathering and interpretation of experimental data for studies of metal complexes. In this work, the new lanthanum fluoride electrode was used to measure free fluoride ion in an investigation of the hydrogen-fluoride and aluminum-fluoride systems in NH4NO3.

  9. 49 CFR 173.163 - Hydrogen fluoride.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned...

  10. 49 CFR 173.163 - Hydrogen fluoride.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned...

  11. 49 CFR 173.163 - Hydrogen fluoride.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned...

  12. 49 CFR 173.163 - Hydrogen fluoride.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned...

  13. 49 CFR 173.163 - Hydrogen fluoride.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned...

  14. Vapor-liquid equilibria for the systems difluoromethane + hydrogen fluoride, dichlorodifluoromethane + hydrogen fluoride, and chlorine + hydrogen fluoride

    SciTech Connect

    Kang, Y.W.

    1998-01-01

    Isothermal vapor-liquid equilibria for difluoromethane + hydrogen fluoride, dichlorodifluoromethane + hydrogen fluoride, and chlorine + hydrogen fluoride have been measured. The experimental data for the binary systems are correlated with the NRTL equation with the vapor-phase association model for the mixtures containing hydrogen fluoride, and the relevant parameters are presented. The binary system difluoromethane + hydrogen fluoride forms a homogeneous liquid phase, and the others form minimum boiling heterogeneous azeotropes at the experimental conditions.

  15. The fluoride content of antlers as an indicator of fluoride exposure in red deer (Cervus elaphus): A historical biomonitoring study.

    PubMed

    Kierdorf, U; Kierdorf, H

    2000-01-01

    Bone fluoride concentrations were analyzed in 141 red deer antlers grown between the 17th/early 18th century and 1997, that originated from four study areas (Arnsberg, Bad Berleburg, Dämmerwald, Schmidtheim) in the federal state of North Rhine-Westphalia, Germany. Fluoride concentrations in the specimens ranged between 27.7 and 1, 392.1 mg F(-)/kg ash and varied significantly both between samples collected during different time-spans in the same area and between samples taken from different study areas over the same period. For antlers (n = 8) collected prior to 1860 in the study areas Arnsberg and Schmidtheim, values between 27.7 and 78.7 mg F(-)/kg ash were recorded. It is assumed that antler fluoride contents in this range are quite close to baseline levels for these regions, i.e., represent concentrations largely unaffected or only slightly influenced by fluoride from anthropogenic sources. With the onset and expansion of large-scale industrial activities, bone fluoride concentrations in the antler samples markedly increased over these baseline values, indicating fluoride deposition from industrial emissions into the red deer habitats. In the later 1980s and the 1990s, a pronounced decline in antler fluoride content was observed, which is attributed to the reduction of industrial fluoride discharges due to effective emission control programs. However, even the lowest fluoride values recorded for antlers grown in the 1990s (study area Schmidtheim, n = 10, range 158.5-367.3 mg F(-)/kg ash) clearly exceeded the concentrations found in the antlers collected prior to 1860, thereby indicating an additional fluoride burden from anthropogenic sources on the recent populations. The present study has corroborated the view that antlers are good indicators of fluoride exposure in deer. The facts that they grow during a seasonally fixed time-span and thus constitute relatively well "naturally standardized" samples and are often kept over long periods of time make antlers

  16. Geochemical controls of high fluoride groundwater in Umarkot Sub-District, Thar Desert, Pakistan.

    PubMed

    Rafique, Tahir; Naseem, Shahid; Ozsvath, David; Hussain, Riaz; Bhanger, Muhammad Iqbal; Usmani, Tanzil Haider

    2015-10-15

    Groundwater samples (n=152) were collected in the Thar Desert of the Umarkot Sub-District, Pakistan to evaluate the geochemical controls on the occurrence of high fluoride (F(-)) levels within the study area. Fluoride concentrations range from 0.06 to 44.4 mg/L, with mean and median values of 5.22 and 4.09 mg/L, respectively; and roughly 84% of the samples contain fluoride concentrations that exceed the 1.5mg/L drinking water standard set by WHO. The overall groundwater quality reflects the influences of silicate mineral weathering and evaporation. Fluoride originates from the weathering of minerals derived from Type-A granite and possibly anion exchange (OH(-) for F(-)) on clays and weathered micas under high pH conditions. High fluoride levels are associated with Na-HCO3 type water produced by calcite precipitation and/or base ion exchange. Depleted calcium levels in groundwater allow higher fluoride concentrations to occur before the solubility limit for fluoride is reached. PMID:26047861

  17. High Fluoride Dentifrices for Elderly and Vulnerable Adults: Does It Work and if So, Then Why?

    PubMed

    Ekstrand, Kim Rud

    2016-01-01

    The primary aim of this work is to present the available evidence that toothpastes containing >1,500 ppm fluoride (2,500-2,800 and 5,000 ppm F) provide an additional caries preventive effect on root caries lesions in elderly patients compared to traditional dentifrices (1,000-1,450 ppm F). The secondary aim of this paper is to discuss why high fluoride dentifrices in general should perform better than traditional F-containing toothpaste. When examining the few studies that have considered the preventive benefits of high fluoride products on root caries the relative risk appears to be around 0.5, and the risk can thus be halved by exchanging traditional F-containing toothpaste for toothpaste containing 5,000 ppm F. There is reasonable evidence that high fluoride dentifrices significantly increase the fluoride concentration in saliva during the day and the fluoride concentration in plaque compared to traditional F toothpaste. Furthermore, the use of toothpaste with 5,000 ppm F significantly reduces the amount of plaque accumulated, decreases the number of mutans streptococci and lactobacilli and possibly promotes calcium fluoride deposits to a higher degree than after the use of traditional F-containing toothpaste. PMID:27101401

  18. Active biomonitoring of airborne fluoride near an HF producing factory using standardised grass cultures

    NASA Astrophysics Data System (ADS)

    Franzaring, J.; Klumpp, A.; Fangmeier, A.

    In order to study the pollution gradient in the vicinity of an HF producing factory, a biomonitoring programme was performed employing VDI standardised grass cultures. Specimen plants of Lolium multiflorum cv. Lema were exposed at 11 sites over five monthly periods and the biomass produced was used for subsequent F-analyses. Meteorological data from the study region confirmed that wind direction accounted for changes in the pollution pattern over periods of time. Fluoride concentrations in the grass cultures, however, were unrelated to temperature and precipitation sums during the exposures. The biomass production of the grass cultures proved to be unrelated to these parameters as well but, with the enhanced growth of the plants, the fluoride concentrations were lower due to the dilution of the element with higher biomass accumulation. Because the contribution of particulate fluoride was unknown, both the washed grass cultures and the washing water were analysed in order to determine the amount of external fluoride. Washing reduced the fluoride concentrations by 22% on average, indicating that most of the element was internal fluoride stemming from stomatal uptake. Larger amounts of fluoride, however, could be washed off from grass cultures exposed at sites close to the factory indicating that dust emissions played a greater role at these locations. Because particulate emissions were supposed to arise from CaF 2 and the waste-product anhydrite, grass cultures were also analysed for calcium and sulphur. While calcium concentrations were generally high but unrelated to fluoride, sulphur concentrations showed a slight relationship to the F-concentrations determined in the unwashed plants. Latter findings indicate the co-deposition of the two elements as surface bound, external loads, but bioindication could not clarify to what extent both elements were partitioned in the gas-to-particle phase. We therefore recommend using the grass culture method in air quality

  19. Fluoride absorption by the root and foliar tissues of the horse-bean (calicole) and lupin (calcifuge)

    SciTech Connect

    Garrec, J.P.; Letourneur, L.

    1981-01-01

    In the root and foliar tissues of calcicole (horse-bean) and calcifuge (lupin) plants, absorption of fluoride, at least in weak concentrations, does not appear to be related to the metabolism of these plants. Nevertheless the comparison of these two tissues highlights clearly the differences in absorption of fluoride in the two species. Absorption appears to be slower and of longer duration in calcifuge plants whereas between the two tissues, absorption is essentially quantitative, the foliar tissues always showing higher levels of fluoride than the roots. On the other hand, fluoride is only weakly attached to the tissues since most of it can be easily exsorbed into the water. Our data disclose a great similarity in the absorption mechanism of fluoride and calcium ions in calcicole and calcifuge plants.

  20. Separation of cyclotron-produced 44Sc from a natural calcium target using a dipentyl pentylphosphonate functionalized extraction resin

    PubMed Central

    Valdovinos, H.F.; Hernandez, R.; Barnhart, T.E.; Graves, S.; Cai, W.; Nickles, R.J.

    2014-01-01

    Significant interest in 44Sc as a radioactive synthon to label small molecules for positron emission tomography (PET) imaging has been recently observed. Despite the efforts of several research groups, the ideal 44Sc production and separation method remains elusive. Herein, we propose a novel separation method to obtain 44Sc from the proton irradiation of calcium targets based on extraction chromatography, which promises to greatly simplify current production methodologies. Using the commercially available Uranium and Tetravalent Actinides (UTEVA) extraction resin we were able to rapidly (< 20 min) recover > 80% of the activity generated at end of bombardment (EoB) in small ~1 M HCl fractions (400 μL). The chemical purity of the 44Sc eluates was evaluated through chelation with DOTA and DTPA, and by trace metal analysis using microwave induced plasma atomic emission spectrometry. The distribution coefficients (Kd) of Sc(III) and Ca(II) in UTEVA were determined in HCl medium in a range of concentrations from zero to 12.1 M The 44Sc obtained with our method proved to be suitable for the direct labeling of small biomolecules for PET imaging, with excellent specific activities and radiochemical purity. PMID:25464172

  1. Calcium supplement: humanity's double-edged sword.

    PubMed

    Bunyaratavej, Narong; Buranasinsup, Shutipen

    2011-10-01

    The principle aim of the present study is to investigate the dark side of calcium, pollutions in calcium preparation especially lead (Pb), mercury (Hg) and cadmium (Cd). The collected samples were the different calcium salts in the market and 18 preparations which were classified into 3 groups: Calcium carbonate salts, Chelated calcium and natural-raw calcium. All samples were analyzed for lead, cadmium and mercury by inductively Coupled Plasma Mass Spectrometry (ICP-MS) technique, in house method based on AOAC (2005) 999.10 by ICP-MS. The calcium carbonate and the natural-raw calcium in every sample contained lead at 0.023-0.407 mg/kg of calcium powder. Meanwhile, the natural-raw calcium such as oyster, coral and animal bone showed amount of lead at 0.106-0.384 mg/kg with small amounts of mercury and cadmium. The chelated calcium such as calcium gluconate, calcium lactate and calcium citrate are free of lead. PMID:22338928

  2. Molten fluoride fuel salt chemistry

    SciTech Connect

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Fission product behavior is described along with processing experience. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior, processing and recycle of the fuel components is a necessary factor if future systems are to be established.

  3. Strontium-90 fluoride data sheet

    SciTech Connect

    Fullam, H.T.

    1981-06-01

    This report is a compilation of available data and appropriate literature references on the properties of strontium-90 fluoride and nonradioactive strontium fluoride. The objective of the document is to compile in a single source pertinent data to assist potential users in the development, licensing, and use of /sup 90/SrF/sub 2/-fueled radioisotope heat sources for terrestrial power conversion and thermal applications. The report is an update of the Strontium-90 Fluoride Data Sheet (BNWL-2284) originally issued in April 1977.

  4. Fluorides in groundwater and its impact on health.

    PubMed

    Shailaja, K; Johnson, Mary Esther Cynthia

    2007-04-01

    Fluoride is a naturally occurring toxic mineral present in drinking water and causes yellowing of teeth, tooth problems etc. Fluorspar, Cryolite and Fluorapatite are the naturally occurring minerals, from which fluoride finds its path to groundwater through infiltration. In the present study two groundwater samples, Station I and Station II at Hyderabad megacity, the capital of Andhra Pradesh were investigated for one year from January 2001 to December 2001. The average fluoride values were 1.37 mg/l at Station I and 0.91 mg/l at Station II. The permissible limit given by BIS (1983) 0.6-1.2 mg/l and WHO (1984) 1.5 mg/l for fluoride in drinking water. The groundwaters at Station I exceeded the limit while at Station II it was within the limits. The study indicated that fluoride content of 0.5 mg/l is sufficient to cause yellowing of teeth and dental problems. PMID:17915775

  5. Reducing Exposure to High Fluoride Drinking Water in Estonia—A Countrywide Study

    PubMed Central

    Indermitte, Ene; Saava, Astrid; Karro, Enn

    2014-01-01

    Fluoride is a naturally occurring contaminant in groundwater in Estonia. There are several regions in Estonia with fluoride contents in public water supplies as high as 7 mg/L. Long-term exposure to high-fluoride drinking water may have several adverse health effects, primarily dental fluorosis. The opportunities for exposure reduction rely highly on water treatment technologies. Since 2004 public water suppliers in Estonia have made efforts to diminish fluoride content in drinking water systems. A follow-up study on a country level was carried out in 2004–2012 to analyze the changes in population exposure to excessive (over 1.5 mg/L) fluoride in drinking water and to get information about the reduction methods applied by public water supplies (PWS) to optimize the fluoride levels in public water system. The results showed that bigger PWS have been more effective in fluoride reduction measures than small PWS. The main methods used to lower the fluoride content were reverse osmosis technology and replacement of water sources with new ones (new drilled wells). As a result of all the measures taken the overall high-fluoride exposure has been reduced substantially (82%). PMID:24637908

  6. Fluorination utilizing thermodynamically unstable fluorides and fluoride salts thereof

    DOEpatents

    Bartlett, Neil; Whalen, J. Marc; Chacon, Lisa

    2000-12-12

    A method for fluorinating a carbon compound or cationic carbon compound utilizes a fluorination agent selected from thermodynamically unstable nickel fluorides and salts thereof in liquid anhydrous hydrogen fluoride. The desired carbon compound or cationic organic compound to undergo fluorination is selected and reacted with the fluorination agent by contacting the selected organic or cationic organic compound and the chosen fluorination agent in a reaction vessel for a desired reaction time period at room temperature or less.

  7. On the nature and origin of the calcium asymmetry arising during gravitropic response in etiolated pea epicotyls

    NASA Technical Reports Server (NTRS)

    Migliaccio, F.; Galston, A. W.

    1987-01-01

    Seven day old etiolated pea epicotyls were loaded symmetrically with 3H-indole 3-acetic acid (IAA) or 45Ca2+, then subjected to 1.5 hours of 1g gravistimulation. Epidermal peels taken from top and bottom surfaces after 90 minutes showed an increase in IAA on the lower side and of Ca2+ on the upper side. Inhibitors of IAA movement (TIBA, 9-hydroxyfluorene carboxylic acid) block the development of both IAA and Ca2+ asymmetries, but substances known to interfere with normal Ca2+ transport (nitrendipine, nisoldipine, Bay K 8644, A 23187) do not significantly alter either IAA or Ca2+ asymmetries. These substances, however, are active in modifying both Ca2+ uptake and efflux through oat and pea leaf protoplast membranes. We conclude that the 45Ca2+ fed to pea epicotyls occurs largely in the cell wall, and that auxin movement is primary and Ca2+ movement secondary in gravitropism. We hypothesize that apoplastic Ca2+ changes during graviresponse because it is displaced by H+ secreted through auxin-induced proton release. This proposed mechanism is supported by localized pH experiments, in which filter paper soaked in various buffers was applied to one side of a carborundum-abraded epicotyls. Buffer at pH 3 increases calcium loss from the side to which it is applied, whereas pH 7 buffer decreases it. Moreover, 10 micromolar IAA and 1 micromolar fusicoccin, which promote H+ efflux, increase Ca2+ release from pea epicotyl segments, whereas cycloheximide, which inhibits H+ efflux, has the reverse effect. We suggest that Ca2+ does not redistribute actively during gravitropism: the asymmetry arises because of its release from the wall adjacent to the region of high IAA concentration, proton secretion, and growth. Thus, the asymmetric distribution of Ca2+ appears to be a consequence of growth stimulation, not a critical step in the early phase of the graviresponse.

  8. THE EFFECT OF CALCIUM AND OTHER IONS ON THE AUTOCATALYTIC FORMATION OF TRYPSIN FROM TRYPSINOGEN.

    PubMed

    McDonald, M R; Kunitz, M

    1941-09-20

    Crystalline trypsinogen is completely transformed into trypsin by means of trypsin in the presence of calcium salts. The process follows the course of a pure autocatalytic unimolecular reaction. In the absence of calcium salts, the autocatalytic formation of trypsin from trypsinogen is complicated by the transformation of part of the trypsinogen into an inert protein which cannot be changed into trypsin by any known means. Salts increase or decrease the rate of both reactions so that the ultimate amount of trypsin formed varies with the nature and concentration of the salt used. With equivalent concentrations of salt the percentage of trypsinogen changed into trypsin is greatest in the presence of calcium ion followed in order by strontium; magnesium and sodium; rubidium, ammonium, lithium, and potassium; caesium and barium. With the anions the largest percentage of trypsinogen transformed into trypsin was found with the acetate, sulfate, oxalate, citrate, tartrate, fluoride, and chloride ions followed in order by bromide, nitrate, and iodide. The formation of inert protein is completely suppressed by concentrations of calcium ion greater than 0.02 M. PMID:19873258

  9. Do Fluoride Ions Protect Teeth?

    ERIC Educational Resources Information Center

    Parkin, Christopher

    1998-01-01

    Begins with the procedure and results from an investigation on the effect of fluoride on the reaction between eggshell (substitute teeth) and dilute ethanoic acid. Describes an elegantly modified and improvised apparatus. (DDR)

  10. Fluoride glass: Crystallization, surface tension

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1988-01-01

    Fluoride glass was levitated acoustically in the ACES apparatus on STS-11, and the recovered sample had a different microstructure from samples cooled in a container. Further experiments on levitated samples of fluoride glass are proposed. These include nucleation, crystallization, melting observations, measurement of surface tension of molten glass, and observation of bubbles in the glass. Ground experiments are required on sample preparation, outgassing, and surface reactions. The results should help in the development and evaluation of containerless processing, especially of glass, in the development of a contaminent-free method of measuring surface tensions of melts, in extending knowledge of gas and bubble behavior in fluoride glasses, and in increasing insight into the processing and properties of fluoride glasses.