Science.gov

Sample records for natural circulation calculations

  1. Independent review of SCDAP/RELAP5 natural circulation calculations

    SciTech Connect

    Martinez, G.M.; Gross, R.J.; Martinez, M.J.; Rightley, G.S.

    1994-01-01

    A review and assessment of the uncertainties in the calculated response of reactor coolant system natural circulation using the SCDAP/RELAP5 computer code were completed. The SCDAP/RELAP5 calculation modeled a station blackout transient in the Surry nuclear power plant and concluded that primary system depressurization from natural circulation induced primary system failure is more likely than previously thought.

  2. Thermalhydraulic calculation for boiling water reactor and its natural circulation component

    NASA Astrophysics Data System (ADS)

    Trianti, Nuri; Nurjanah, Su'ud, Zaki; Arif, Idam; Permana, Sidik

    2015-09-01

    Thermalhydraulic of reactor core is the thermal study on fluids within the core reactor, i.e. analysis of the thermal energy transfer process produced by fission reaction from fuel to the reactor coolant. This study include of coolant temperature and reactor power density distribution. The purposes of this analysis in the design of nuclear power plant are to calculate the coolant temperature distribution and the chimney height so natural circulation could be occurred. This study was used boiling water reactor (BWR) with cylinder type reactor core. Several reactor core properties such as linear power density, mass flow rate, coolant density and inlet temperature has been took into account to obtain distribution of coolant density, flow rate and pressure drop. The results of calculation are as follows. Thermal hydraulic calculations provide the uniform pressure drop of 1.1 bar for each channels. The optimum mass flow rate to obtain the uniform pressure drop is 217g/s. Furthermore, from the calculation it could be known that outlet temperature is 288°C which is the saturated fluid's temperature within the system. The optimum chimney height for natural circulation within the system is 14.88 m.

  3. Thermalhydraulic calculation for boiling water reactor and its natural circulation component

    SciTech Connect

    Trianti, Nuri Nurjanah,; Su’ud, Zaki; Arif, Idam; Permana, Sidik

    2015-09-30

    Thermalhydraulic of reactor core is the thermal study on fluids within the core reactor, i.e. analysis of the thermal energy transfer process produced by fission reaction from fuel to the reactor coolant. This study include of coolant temperature and reactor power density distribution. The purposes of this analysis in the design of nuclear power plant are to calculate the coolant temperature distribution and the chimney height so natural circulation could be occurred. This study was used boiling water reactor (BWR) with cylinder type reactor core. Several reactor core properties such as linear power density, mass flow rate, coolant density and inlet temperature has been took into account to obtain distribution of coolant density, flow rate and pressure drop. The results of calculation are as follows. Thermal hydraulic calculations provide the uniform pressure drop of 1.1 bar for each channels. The optimum mass flow rate to obtain the uniform pressure drop is 217g/s. Furthermore, from the calculation it could be known that outlet temperature is 288°C which is the saturated fluid’s temperature within the system. The optimum chimney height for natural circulation within the system is 14.88 m.

  4. Calculation of the Phenix end-of-life test in natural circulation with the CATHARE code

    SciTech Connect

    Maas, L.; Cocheme, F.

    2012-07-01

    The Inst. of Radiological Protection and Nuclear Safety (IRSN) acts as technical support to French public authorities. As such, IRSN is in charge of safety assessment of operating and under construction reactors, as well as future projects. In this framework, one current objective of IRSN is to evaluate the ability and accuracy of numerical tools to foresee consequences of accidents. One of the advantages pointed up for fast reactors cooled by heavy liquid metal is the possibility of decay heat removal based on natural convection. The promotion of this passive cooling mode in future safety demonstrations will involve the use of adapted and validated numerical codes. After the final shutdown of the Phenix sodium cooled fast reactor in 2009, a set of tests covering different areas was conducted for code validation, including a natural circulation test in the primary circuit. Experimental data were issued by CEA to organize a benchmark exercise in the frame of an IAEA Coordinated Research Project (CRP), with the objective to assess the system-codes capability in simulating the thermal-hydraulics behavior of sodium cooled fast reactors in such accidental conditions. IRSN participated to this benchmark with the CATHARE code. This code, co-developed by CEA, EDF, AREVA and IRSN and widely used for PWR safety studies, was recently extended for sodium applications. This paper presents the CATHARE modeling of the Phenix primary circuit and the results obtained. A relatively good agreement was found with available measurements considering the experimental uncertainties. This work stressed the local aspects of phenomena occurring during the natural convection establishment and the limits of a 0D/1D approach. (authors)

  5. Thermohydraulic model experiments and calculations on the transition from forced to natural circulation for pool-type fast reactors

    SciTech Connect

    Hoffmann, H.; Marten, K.; Weinberg, D.; Kamide, H.

    1990-01-01

    After a reactor scram, the decay heat removal (DHR) is of decisive importance for the safety of the plant. A fully passive DHR system based on natural circulation alone is independent of any power source. The DHE system consists of immersion coolers (ICs) installed in the hot plenum and connected to air coolers, each via intermediate circuits. During the postscram phase, the decay heat is to be removed by natural circulation from the core into the hot plenum and via the ICs and intermediate loops to the air coolers. The function of this DHR system is investigated and demonstrated in model tests with a geometry similar to the reactor, though on a different scale RAMONA is such a three-dimensional model set up on a 1:20 scale. It is operated with water. The steady-state tests for natural-circulation DHR operations have been conducted over a wide range of operational and geometric parameters. To study the transition from nominal to DHR conditions, experiments were defined to investigate the onset of natural circulation in the postscram phase (transient tests). The experiments were analyzed using the one-dimensional LEDHER code. LEDHER is a network analysis code for the long-term DHR of a fast reactor developed at Power Reactor and Nuclear Fuel Development Corporation in Japan. The results of the experiments and conclusions are summarized.

  6. Natural circulation under severe accident conditions

    SciTech Connect

    Pafford, D.J.; Hanson, D.J.; Tung, V.X.; Chmielewski, S.V.

    1992-01-01

    Research is being conducted to better understand natural circulation phenomena in mixtures of steam and noncondensibles and its influence on the temperature of the vessel internals and the hot leg, pressurizer surge line, and steam generator tubes. The temperature of these structures is important because their failure prior to reactor vessel lower head failure could reduce the likelihood of containment failure as a result of direct containment heating. Computer code calculations (MELPROG, SCDAP/RELAP5/MOD3) predict high fluid temperatures in the upper plenum resulting from in-vessel natural circulation. Using a simple model for the guide tube phenomena, high upper plenum temperatures are shown to be consistent with the relatively low temperatures that were deduced metallurgically from leadscrews removed from the TMI-2 upper plenum. Evaluation of the capabilities of the RELAP5/MOD3 computer code to predict natural circulation behavior was also performed. The code was used to model the Westinghouse natural circulation experimental facility. Comparisons between code calculations and results from experiments show good agreement.

  7. Natural circulation under severe accident conditions

    SciTech Connect

    Pafford, D.J.; Hanson, D.J.; Tung, V.X.; Chmielewski, S.V.

    1992-12-31

    Research is being conducted to better understand natural circulation phenomena in mixtures of steam and noncondensibles and its influence on the temperature of the vessel internals and the hot leg, pressurizer surge line, and steam generator tubes. The temperature of these structures is important because their failure prior to reactor vessel lower head failure could reduce the likelihood of containment failure as a result of direct containment heating. Computer code calculations (MELPROG, SCDAP/RELAP5/MOD3) predict high fluid temperatures in the upper plenum resulting from in-vessel natural circulation. Using a simple model for the guide tube phenomena, high upper plenum temperatures are shown to be consistent with the relatively low temperatures that were deduced metallurgically from leadscrews removed from the TMI-2 upper plenum. Evaluation of the capabilities of the RELAP5/MOD3 computer code to predict natural circulation behavior was also performed. The code was used to model the Westinghouse natural circulation experimental facility. Comparisons between code calculations and results from experiments show good agreement.

  8. Natural circulation reactor design safety analysis

    NASA Astrophysics Data System (ADS)

    Zheng, Dong

    2001-07-01

    This thesis study covers both global performance and local phenomena analyses focusing on natural circulation reactor design safety. Four important topics are included: the global SBWR design safety assessment, important local phenomena investigation, steady and transient natural circulation process study, and two-phase instability analysis. The conceptual design of the SBWR-200 is introduced in this thesis and the global performance of a natural circulation reactor is then assessed using PUMA integral test data and RELAP5 simulations. A safety assessment methodology is developed to evaluate the PUMA integral test data extrapolation and code scalability. The RELAP5 code simulation capability in low-pressure low-flow conditions is also validated. The study shows that the code is capable of predicting the global accident scenario in natural circulation reactors with reasonable accuracy, while failing to reproduce some safety related local phenomena. The natural circulation process is investigated in detail using PUMA separate effect natural circulation tests. The natural circulation flow rate and heat transfer rate have been modeled analytically and numerically. The work indicates that two-phase natural circulation has enough capability to remove decay power. However, the flow instability observed in two-phase natural circulation cases seriously challenges the feasibility of natural circulation reactor design. The instability is classified as a type of density wave instability induced by flashing. A detailed stability study is performed focusing on flashing induced instability under natural circulation condition. Various flashing phenomena have been studied and a mechanistic flashing model has been proposed and improved using a relaxation method. The developed relaxation flashing model can be applied to general two-phase non-equilibrium phenomena.

  9. Numerical Issues for Circulation Control Calculations

    NASA Technical Reports Server (NTRS)

    Swanson, Roy C., Jr.; Rumsey, Christopher L.

    2006-01-01

    Steady-state and time-accurate two-dimensional solutions of the compressible Reynolds-averaged Navier- Stokes equations are obtained for flow over the Lockheed circulation control (CC) airfoil and the General Aviation CC (GACC) airfoil. Numerical issues in computing circulation control flows such as the effects of grid resolution, boundary and initial conditions, and unsteadiness are addressed. For the Lockheed CC airfoil computed solutions are compared with detailed experimental data, which include velocity and Reynolds stress profiles. Three turbulence models, having either one or two transport equations, are considered. Solutions are obtained on a sequence of meshes, with mesh refinement primarily concentrated on the airfoil circular trailing edge. Several effects related to mesh refinement are identified. For example, sometimes sufficient mesh resolution can exclude nonphysical solutions, which can occur in CC airfoil calculations. Also, sensitivities of the turbulence models with mesh refinement are discussed. In the case of the GACC airfoil the focus is on the difference between steady-state and time-accurate solutions. A specific objective is to determine if there is self-excited vortex shedding from the jet slot lip.

  10. Code System for Calculating the Nonlinear Transient Behavior of a Natural Circulation U-Tube Steam Generator with Its Main Steam System.

    Energy Science and Technology Software Center (ESTSC)

    2000-04-20

    Version 00 The code is based on a non-linear theoretical model describing the steady-state and transient behavior of a vertical natural-circulation U-tube steam generator together with its main steam system. The steam generator is considered to consist of a heat exchange section, a top plenum, a down-comer region and a main steam system (with a sequence of relief and/or safety valves, isolation, bypass, turbine-trip and turbine-control valves and a steam turbine). Possible perturbations from outsidemore » can be: inlet water temperature, inlet water mass flow and system pressure on the primary side, feedwater temperature, feed-water mass flow and outlet steam mass flow disturbed by actions of the different valves within the main steam system on the secondary side.« less

  11. Cooling System Using Natural Circulation for Air Conditioning

    NASA Astrophysics Data System (ADS)

    Okazaki, Takashi; Seshimo, Yu

    In this paper, Cooling systems with natural circulation loop of refrigerants are reviewed. The cooling system can largely reduce energy consumption of a cooling system for the telecommunication base site. The cooling system consists of two refrigeration units; vapor compression refrigeration unit and sub-cooling unit with a natural-circulation loop. The experiments and calculations were carried out to evaluate the cycle performance of natural circulation loop with HFCs and CO2. The experimental results showed that the cooling capacity of R410A is approximately 30% larger than that of R407C at the temperature difference of 20K and the cooling capacity of CO2 was approximately 4-13% larger than that of R410A under the two-phase condition. On the other hand, the cooling capacity of CO2 was approximately 11% smaller than that of R410A under the supercritical condition. The cooling capacity took a maximum value at an amount of refrigerant and lineally increased as the temperature difference increases and the slightly increased as the height difference. The air intake temperature profile in the inlet of the heat exchangers makes the reverse circulation under the supercritical state and the driving head difference for the reverse circulation depends on the density change to temperature under the supercritical state. Also, a new fan control method to convert the reverse circulation into the normal circulation was reviewed.

  12. Severe accident natural circulation studies at the INEL

    SciTech Connect

    Bayless, P.D.; Brownson, D.A.; Dobbe, C.A.; Jones, K.R.; O`Brien, J.E.; Pafford, D.J.; Schlenker, L.D.; Tung, V.X.

    1995-02-01

    Severe accident natural circulation flows have been investigated at the Idaho National Engineering Laboratory to better understand these flows and their potential impacts on the progression of a pressurized water reactor severe accident. Parameters affecting natural circulation in the reactor vessel and hot legs were identified and ranked based on their perceived importance. Reviews of the scaling of the 1/7-scale experiments performed by Westinghouse were undertaken. RELAP5/MOD3 calculations of two of the experiments showed generally good agreement between the calculated and observed behavior. Analyses of hydrogen behavior in the reactor vessel showed that hydrogen stratification is not likely to occur, and that an initially stratified layer of hydrogen would quickly mix with a recirculating steam flow. An analysis of the upper plenum behavior in the Three Mile Island, Unit 2 reactor concluded that vapor temperatures could have been significantly higher than the temperatures seen by the control rod drive lead screws, supporting the premise that a strong natural circulation flow was likely present during the accident. SCDAP/RELAP5 calculations of a commercial pressurized water reactor severe accident without operator actions showed that the natural circulation flows enhance the likelihood of ex-vessel piping failures long before failure of the reactor vessel lower head.

  13. Quenching phenomena in natural circulation loop

    SciTech Connect

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  14. Numerical simulation of losses along a natural circulation helium loop

    NASA Astrophysics Data System (ADS)

    Knížat, Branislav; Urban, František; Mlkvik, Marek; RidzoÅ, František; Olšiak, Róbert

    2016-06-01

    A natural circulation helium loop appears to be a perspective passive method of a nuclear reactor cooling. When designing this device, it is important to analyze the mechanism of an internal flow. The flow of helium in the loop is set in motion due to a difference of hydrostatic pressures between cold and hot branch. Steady flow at a requested flow rate occurs when the buoyancy force is adjusted to resistances against the flow. Considering the fact that the buoyancy force is proportional to a difference of temperatures in both branches, it is important to estimate the losses correctly in the process of design. The paper deals with the calculation of losses in branches of the natural circulation helium loop by methods of CFD. The results of calculations are an important basis for the hydraulic design of both exchangers (heater and cooler). The analysis was carried out for the existing model of a helium loop of the height 10 m and nominal heat power 250 kW.

  15. Thermal hydraulic modeling of a natural circulation loop

    NASA Astrophysics Data System (ADS)

    Jiang, S. Y.; Wu, X. X.; Zhang, Y. J.; Jia, H. J.

    The experiment was carried out on the test loop HRTL-5, which simulates the geometry and system design of a 5MW nuclear heating reactor. The analysis was based on a one-dimensional two-phase flow drift model with conservation equations for mass, steam, energy and momentum. Clausius-Clapeyron equation was used for the calculation of flashing front in the riser. A set of ordinary equations, which describes the behavior of two-phase flow in the natural circulation system, was derived through integration of the above conservation equations for the subcooled boiling region, bulk boiling region in the heated section and for the riser. The method of time-domain was used for the calculation. Both static and dynamic results are presented. System pressure, inlet subcooling and heat flux are varied as input parameters. The results show that subcooled boiling in the heated section and void flashing in the riser have significant influence on the distribution of the void fraction, mass flow rate and flow instability of the system, especially at low pressure. The response of mass flow rate, after a small disturbance in the heat flux is shown, and based on it the instability map of the system is given through experiment and calculation. There exists three regions in the instability map of the investigated natural circulation system, namely, the stable two-phase flow region, the unstable bulk and subcooled boiling flow region and the stable subcooled boiling and single phase flow region. The mechanism of two-phase flow oscillation is interpreted.

  16. Decay Heat Removal by Natural Circulation of Vacuum Vessel Coolant for ITER

    NASA Astrophysics Data System (ADS)

    Iseli, M.; Bartels, H.-W.; Poucet, A.

    1997-06-01

    The decay heat-driven temperature transients of the in-vessel components following a postulated loss of all in-vessel cooling have been calculated. The resulting time-dependent heat load to the vacuum vessel is due to radiation from the backplate and convection of postulated steam between backplate and vacuum vessel. It is shown, that even for a failure of all in-vessel cooling and total loss of power, the ITER design can rely on passive decay heat removal by natural circulation in one of the two existing cooling loops of the vacuum vessel. A mathematical model describes the transient operating conditions and shows that the temperature established by natural circulation does not exceed 200°C at the maximum shut down heat load to the vacuum vessel. Therefore, no additional emergency cooling system is required if the existing heat exchanger is designed for natural circulation and a bypass is used during normal operation to maintain operation temperature.

  17. A probabilistic method of calculating circulation-induced trends

    NASA Astrophysics Data System (ADS)

    Brox Nilsen, Irene; Stagge, James Howard; Merete Tallaksen, Lena

    2015-04-01

    The water cycle in Europe has changed substantially over the past three decades. Increasing runoff is observed during winter and at northern latitudes in particular. Spring and summer months, as well as southern latitudes, are facing drier conditions. To understand what is driving large-scale changes in runoff, we look into changes in precipitation and temperature and link these to changes in atmospheric circulation. Previous studies have used the method of trend ratios (Cahynová and Huth, 2009) to attribute precipitation and temperature trends to changes in the frequency of circulation types. A trend ratio is the ratio of hypothetical trend, i.e., the trend that would result due to changes in circulation type frequency only, to the observed trend. However, the method of trend ratios has two drawbacks. First, if the observed trend is small, division by a very low value results in a meaningless trend ratio and thus requires a cut-off value to keep the trend ratio within meaningful boundaries. Second, the method does not allow a comparison of the observed trend to the spread of possible outcomes, because the method of hypothetical trends is based on a deterministic model. We propose a new, more robust method for detecting the importance of circulation-induced changes in explaining the observed trends, which has the benefit of being a non-parametric statistical test that assesses the entire range of hypothetical trends. Instead of creating a hypothetical series by replacing the observation on a given day with the long-term climatic mean of a certain month and circulation type (as in the existing trend ratio method), the new approach replaces the observation on a given day with a random sample from the distribution of the variable for the given month and circulation type. The method introduces the possibility to assign a rejection rate, thus allowing statistical significance to be assessed. We apply the method on time series of precipitation and temperature from the

  18. A study of natural circulation in the evaporator of a horizontal-tube heat recovery steam generator

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Pleshanov, K. A.; Sterkhov, K. V.

    2014-07-01

    Results obtained from investigations of stable natural circulation in an intricate circulation circuit with a horizontal layout of the tubes of evaporating surface having a negative useful head are presented. The possibility of making a shift from using multiple forced circulation organized by means of a circulation pump to natural circulation in vertical heat recovery steam generator is estimated. Criteria for characterizing the performance reliability and efficiency of a horizontal evaporator with negative useful head are proposed. The influence of various design solutions on circulation robustness is considered. With due regard of the optimal parameters, the most efficient and least costly methods are proposed for achieving more stable circulation in a vertical heat recovery steam generator when a shift is made from multiple forced to natural circulation. A procedure for calculating the circulation parameters and an algorithm for checking evaporator performance reliability are developed, and recommendations for the design of heat recovery steam generator, nonheated parts of natural circulation circuit, and evaporating surface are suggested.

  19. Liquid Fluoride Salt Experimentation Using a Small Natural Circulation Cell

    SciTech Connect

    Yoder Jr, Graydon L; Heatherly, Dennis Wayne; Williams, David F; Elkassabgi, Yousri M.; Caja, Joseph; Caja, Mario; Jordan, John; Salinas, Roberto

    2014-04-01

    A small molten fluoride salt experiment has been constructed and tested to develop experimental techniques for application in liquid fluoride salt systems. There were five major objectives in developing this test apparatus: Allow visual observation of the salt during testing (how can lighting be introduced, how can pictures be taken, what can be seen) Determine if IR photography can be used to examine components submerged in the salt Determine if the experimental configuration provides salt velocity sufficient for collection of corrosion data for future experimentation Determine if a laser Doppler velocimeter can be used to quantify salt velocities. Acquire natural circulation heat transfer data in fluoride salt at temperatures up to 700oC All of these objectives were successfully achieved during testing with the exception of the fourth: acquiring velocity data using the laser Doppler velocimeter. This paper describes the experiment and experimental techniques used, and presents data taken during natural circulation testing.

  20. FFTF operating experience with sodium natural circulation: slides included

    SciTech Connect

    Burke, T.M.; Additon, S.L.; Beaver, T.R.; Midgett, J.C.

    1981-01-01

    The Fast Flux Test Facility (FFTF) has been designed for passive, back-up, safety grade decay heat removal utilizing natural circulation of the sodium coolant. This paper discusses the process by which operator preparation for this emergency operating mode has been assured, in paralled with the design verification during the FFTF startup and acceptance testing program. Over the course of the test program, additional insights were gained through the testing program, through on-going plant analyses and through general safety evaluations performed throughout the nuclear industry. These insights led to development of improved operator training material for control of decay heat removal during both forced and natural circulation as well as improvements in the related plant operating procedures.

  1. Natural Circulation Patterns in the VHTR Air-Ingress Accident and Related Issues

    SciTech Connect

    Chang Ho Oh; Eung Soo Kim; Hyung Seok Kang

    2010-10-01

    A natural circulation pattern in a Very High Gas-Cooled Reactor during a hypothetical air-ingress accident has been investigated using computational fluid dynamic (CFD) methods in order to compare with the previous 1-D flow path model for the air-ingress analyses. The GT-MHR 600 MWt reactor was selected to be the reference design and modeled by a half symmetric 3-D geometry using FLUENT 6.3, a commercial CFD code. The simulation was carried out as steady-state calculations, and the boundary conditions were either assumed or provided from the 1-D GAMMA code results. Totally, 12 different cases have been estimated, and many notable findings and results have been obtained in this study. According to the simulations, the natural circulation pattern in the reactor was quite different from the previous 1-D assumptions. A large re-circulation flow with thermal stratification phenomena was clearly observed in the hot-leg and the lower plenum in the 3-D model. This re-circulation flow provided approximately an order faster air-ingress speed (0.46 m/s in superficial velocity) than previously predicted values by 1-D modeling (0.02~0.03 m/s). It indicates that the 1-D air-ingress modeling may significantly distort the air-ingress scenario and consequences. In addition, the complicated natural circulation pattern is eventually expected to lead to very complex graphite oxidations and corrosion patterns.

  2. Natural Circulation Patterns in the VHTR Air-Ingress Accident and Related Issues

    SciTech Connect

    Chang H. Oh; Eung S. Kim

    2012-08-01

    Natural circulation patterns in the VHTR during a hypothetical air-ingress accident have been investigated using computational fluid dynamic (CFD) methods in order to compare results from the previous 1-D model which was developed using GAMMA code for the air-ingress analyses. The GT-MHR 600 MWt reactor was selected to be the reference design and modeled by a half symmetric 3-D geometry using FLUENT 6.3, a commercial CFD code. CFD simulations were carried out as the steady-state calculation, and the boundary conditions were either assumed or provided from the 1-D GAMMA code results. Totally, 12 different cases have been reviewed, and many notable results have been obtained through in this work. According to the simulations, natural circulation patterns in the reactor were quite different from the previous 1-D assumptions. A large re-circulation flow with thermal stratification phenomena was clearly observed in the hot-leg and the lower plenum in the 3-D model. This re-circulation flow provided about an order faster air-ingress speed (0.46 m/s in superficial velocity) than previously predicted by 1-D modeling (0.02~0.03 m/s). It indicates that the 1-D air-ingress modeling may significantly distort the air-ingress scenario and consequences. In addition, complicated natural circulation patterns are eventually expected to result in very complex graphite oxidations and corrosion behaviors.

  3. Pattern of Circulation of Norovirus GII Strains during Natural Infection

    PubMed Central

    Fobisong, Cajetan; Tah, Ferdinand; Lindh, Magnus; Nkuo-Akenji, Theresia; Bergström, Tomas

    2014-01-01

    Norovirus (NoV) is considered a major cause of nonbacterial gastroenteritis among people of all ages worldwide, but the natural course of infection is incompletely known. In this study, the pattern of circulation of NoVs was studied among 146 children and 137 adults in a small community in southwestern Cameroon. The participants provided monthly fecal samples during a year. NoV RNA was detected in at least one sample from 82 (29%) of the participants. The partial VP1 region could be sequenced in 36 NoV GII-positive samples. Three different genotypes were identified (GII.1, GII.4, and GII.17), with each genotype circulating within 2 to 3 months and reappearing after a relapse period of 2 to 3 months. Most infections occurred once, and 2 episodes at most within a year were detected. No difference in the frequency of NoV infection between children and adults was recorded. The same genotype was detected for a maximum of 2 consecutive months in 3 children only, suggesting that a less than 30-day duration of viral shedding in natural infection was common. Reinfection within a year with the same genotype was not observed, consistent with short-term homotypic immune protection. The study revealed that NoV strains are circulating with a limited duration of viral shedding both in the individuals and the population as part of their natural infection. The results also provide evidence of cross-protective immunity of limited duration between genotypes of the same genogroup. PMID:25274996

  4. MODELING STRATEGIES TO COMPUTE NATURAL CIRCULATION USING CFD IN A VHTR AFTER A LOFA

    SciTech Connect

    Yu-Hsin Tung; Richard W. Johnson; Ching-Chang Chieng; Yuh-Ming Ferng

    2012-11-01

    A prismatic gas-cooled very high temperature reactor (VHTR) is being developed under the next generation nuclear plant program (NGNP) of the U.S. Department of Energy, Office of Nuclear Energy. In the design of the prismatic VHTR, hexagonal shaped graphite blocks are drilled to allow insertion of fuel pins, made of compacted TRISO fuel particles, and coolant channels for the helium coolant. One of the concerns for the reactor design is the effects of a loss of flow accident (LOFA) where the coolant circulators are lost for some reason, causing a loss of forced coolant flow through the core. In such an event, it is desired to know what happens to the (reduced) heat still being generated in the core and if it represents a problem for the fuel compacts, the graphite core or the reactor vessel (RV) walls. One of the mechanisms for the transport of heat out of the core is by the natural circulation of the coolant, which is still present. That is, how much heat may be transported by natural circulation through the core and upwards to the top of the upper plenum? It is beyond current capability for a computational fluid dynamic (CFD) analysis to perform a calculation on the whole RV with a sufficiently refined mesh to examine the full potential of natural circulation in the vessel. The present paper reports the investigation of several strategies to model the flow and heat transfer in the RV. It is found that it is necessary to employ representative geometries of the core to estimate the heat transfer. However, by taking advantage of global and local symmetries, a detailed estimate of the strength of the resulting natural circulation and the level of heat transfer to the top of the upper plenum is obtained.

  5. Study of natural circulation in a VHTR after a LOFA using different turbulence models

    SciTech Connect

    Yu-Hsin Tung; Yuh-Ming Ferng; Richard W. Johnson; Ching-Chang Chieng

    2013-10-01

    Natural convection currents in the core are anticipated in the event of the failure of the gas circulator in a prismatic gas-cooled very high temperature reactor (VHTR). The paths that the helium coolant takes in forming natural circulation loops and the effective heat transport are of interest. The heated flow in the reactor core is turbulent during normal operating conditions and at the beginning of the LOFA with forced convection, but the flow may significantly be slowed down after the event and laminarized with mixed convection. In the present study, the potential occurrence and effective heat transport of natural circulation are demonstrated using computational fluid dynamic (CFD) calculations with different turbulence models as well as laminar flow. Validations and recommendation on turbulence model selection are conducted. The study concludes that large loop natural convection is formed due to the enhanced turbulence levels by the buoyancy effect and the turbulent regime near the interface of upper plenum and flow channels increases the flow resistance for channel flows entering upper plenum and thus less heat can be removed from the core than the prediction by laminar flow assumption.

  6. Circulating natural killer cells in retired asbestos cement workers.

    PubMed

    Froom, P; Lahat, N; Kristal-Boneh, E; Cohen, C; Lerman, Y; Ribak, J

    2000-01-01

    The effect of past exposure to asbestos on natural killer (NK) cell number and activity is uncertain. We measured NK cell number and activity in 1052 retired asbestos workers without symptomatic lung disease, lung cancer, or mesothelioma and with a long latency period from exposure; results were compared with those for 100 healthy age-matched controls. The exposed workers showed a decreased NK cell activity and increased NK cell number, yielding a 10.8 higher odds ratio for low NK activity per cell compared with controls (95% confidence interval 6.4 to 18.4), which was due to both a decrease in NK cell activity and an increase in NK cell number. Asbestos exposure of 10 years or more increased the risk of low NK activity per cell. We conclude that exposure to asbestos is associated with diminished effectiveness of NK cells and a concomitant increase in the number of NK circulating cells. PMID:10652684

  7. Natural circulation in a liquid metal one-dimensional loop

    NASA Astrophysics Data System (ADS)

    Tarantino, M.; De Grandis, S.; Benamati, G.; Oriolo, F.

    2008-06-01

    A wide use of pure lead, as well as its alloys (such as lead-bismuth, lead-lithium), is foreseen in several nuclear-related fields: it is studied as coolant in critical and sub-critical nuclear reactors, as spallation target for neutron generation in several applications and for tritium generation in fusion systems. In this framework, a new facility named NAtural CIrculation Experiment (NACIE), has been designed at ENEA-Brasimone Research Centre. NACIE is a rectangular loop, made by stainless steel pipes. It consists mainly of a cold and hot leg and an expansion tank installed on the top of the loop. A fuel bundle simulator, made by three electrical heaters placed in a triangular lattice, is located in the lower part of the cold leg, while a tube in tube heat exchanger is installed in the upper part of the hot leg. The adopted secondary fluid is THT oil, while the foreseen primary fluid for the tests is lead-bismuth in eutectic composition (LBE). The aim of the facility is to carry out experimental tests of natural circulation and collect data on the heat transfer coefficient (HTC) for heavy liquid metal flowing through rod bundles. The paper is focused on the preliminary estimation of the LBE flow rate along the loop. An analytical methodology has been applied, solving the continuity, momentum and energy transport equations under appropriate hypothesis. Moreover numerical simulations have been performed. The FLUENT 6.2 CFD code has been utilized for the numerical simulations. The main results carried out from the pre-tests simulations are illustrated in the paper, and a comparison with the theoretical estimations is done.

  8. Transient boiling in two-phase helium natural circulation loops

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2014-01-01

    Two-phase helium natural circulation loops are used for cooling large superconducting magnets, as CMS for LHC. During normal operation or in the case of incidents, transients are exerted on the cooling system. Here a cooling system of this type is studied experimentally. Sudden power changes are operated on a vertical-heated-section natural convection loop, simulating a fast increase of heat deposition on magnet cooling pipes. Mass flow rate, heated section wall temperature and pressure drop variations are measured as a function of time, to assess the time behavior concerning the boiling regime according to the values of power injected on the heated section. The boiling curves and critical heat flux (CHF) values have been obtained in steady state. Temperature evolution has been observed in order to explore the operating ranges where heat transfer is deteriorated. Premature film boiling has been observed during transients on the heated section in some power ranges, even at appreciably lower values than the CHF. A way of attenuating these undesired temperature excursions has been identified through the application of high enough initial heating power.

  9. Design study of lead bismuth cooled fast reactors and capability of natural circulation

    SciTech Connect

    Oktamuliani, Sri Su’ud, Zaki

    2015-09-30

    A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation at inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.

  10. Design study of lead bismuth cooled fast reactors and capability of natural circulation

    NASA Astrophysics Data System (ADS)

    Oktamuliani, Sri; Su'ud, Zaki

    2015-09-01

    A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation at inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.

  11. Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactors

    SciTech Connect

    Abdullah, Ade Gafar; Su'ud, Zaki; Kurniadi, Rizal; Kurniasih, Neny; Yulianti, Yanti

    2010-12-23

    Natural circulation level optimization and the effect during loss of flow accident in the 250 MWt MOX fuelled small Pb-Bi Cooled non-refueling nuclear reactors (SPINNOR) have been performed. The simulation was performed using FI-ITB safety code which has been developed in ITB. The simulation begins with steady state calculation of neutron flux, power distribution and temperature distribution across the core, hot pool and cool pool, and also steam generator. When the accident is started due to the loss of pumping power the power distribution and the temperature distribution of core, hot pool and cool pool, and steam generator change. Then the feedback reactivity calculation is conducted, followed by kinetic calculation. The process is repeated until the optimum power distribution is achieved. The results show that the SPINNOR reactor has inherent safety capability against this accident.

  12. Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactors

    NASA Astrophysics Data System (ADS)

    Abdullah, Ade Gafar; Su'ud, Zaki; Kurniadi, Rizal; Kurniasih, Neny; Yulianti, Yanti

    2010-12-01

    Natural circulation level optimization and the effect during loss of flow accident in the 250 MWt MOX fuelled small Pb-Bi Cooled non-refueling nuclear reactors (SPINNOR) have been performed. The simulation was performed using FI-ITB safety code which has been developed in ITB. The simulation begins with steady state calculation of neutron flux, power distribution and temperature distribution across the core, hot pool and cool pool, and also steam generator. When the accident is started due to the loss of pumping power the power distribution and the temperature distribution of core, hot pool and cool pool, and steam generator change. Then the feedback reactivity calculation is conducted, followed by kinetic calculation. The process is repeated until the optimum power distribution is achieved. The results show that the SPINNOR reactor has inherent safety capability against this accident.

  13. System model of a natural circulation integral test facility

    NASA Astrophysics Data System (ADS)

    Galvin, Mark R.

    The Department of Nuclear Engineering and Radiation Health Physics (NE/RHP) at Oregon State University (OSU) has been developing an innovative modular reactor plant concept since being initiated with a Department of Energy (DoE) grant in 1999. This concept, the Multi-Application Small Light Water Reactor (MASLWR), is an integral pressurized water reactor (PWR) plant that utilizes natural circulation flow in the primary and employs advanced passive safety features. The OSU MASLWR test facility is an electrically heated integral effects facility, scaled from the MASLWR concept design, that has been previously used to assess the feasibility of the concept design safety approach. To assist in evaluating operational scenarios, a simulation tool that models the test facility and is based on both test facility experimental data and analytical methods has been developed. The tool models both the test facility electric core and a simulated nuclear core, allowing evaluation of a broad spectrum of operational scenarios to identify those scenarios that should be explored experimentally using the test facility or design-quality multi-physics tools. Using the simulation tool, the total cost of experimentation and analysis can be reduced by directing time and resources towards the operational scenarios of interest.

  14. Residual circulations calculated from satellite data: Their relations to observed temperature and ozone distributions

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Nash, Eric R.; Wu, Mao Fou; Rosenfield, Joan E.

    1990-01-01

    Monthly mean residual circulations were calculated from eight years of satellite data. The diabatic circulation is usually found to give a good approximation to the residual circulation, but this is not always the case. In particular, an example is shown at 60 deg S and 30 mbar where the diabatic and residual circulations show very different annual variations. Correlations between the vertical component of the residual circulation and temperature and ozone were computed. The computations indicate that yearly variations of temperatures in the tropics are under radiative control, except during stratospheric warmings. Interannual variations in seasonal mean temperatures are shown to be under dynamical control everywhere. Correlations between seasonal means of the vertical component of the residual circulation and ozone mixing ratios are consistent with what would be expected from the ozone variations being due to differences in the ozone transport, although transport effects cannot easily be distinguished from photochemical effects above the altitude of the ozone mixing ratio peak. Finally, variations in total ozone are examined in comparison with residual circulation variations. A one to two month phase lag is seen in the annual variation in the total ozone at 60 deg N with respect to the maximum downward residual motions. This phase lag is greater at 60 deg N than at 60 deg S. There is evidence at 60 deg S of a greater downward trend in the mean zonal ozone maxima than there is in the minima. A decreasing trend in the maximum descending motion is seen to accompany the ozone trend at 60 deg S.

  15. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    NASA Astrophysics Data System (ADS)

    Shi, Shanbin

    -hydraulic and nuclear coupled startup transients are performed to investigate the flow instabilities at low pressure and low power conditions. Two different power ramps are chosen to study the effect of power density on the flow instability. The experimental startup transient tests show the existence of three different flow instability mechanisms during the low pressure startup transients, i.e., flashing instability, condensation induced instability, and density wave oscillations. Flashing instability in the chimney section of the test loop and density wave oscillation are the main flow instabilities observed when the system pressure is below 0.5 MPa. They show completely different type of oscillations, i.e., intermittent oscillation and sinusoidal oscillation, in void fraction profile during the startup transients. In order to perform nuclear-coupled startup transients with void reactivity feedback, the Point Kinetics model is utilized to calculate the transient power during the startup transients. In addition, the differences between the electric resistance heaters and typical fuel element are taken into account. The reactor power calculated shows some oscillations due to flashing instability during the transients. However, the void reactivity feedback does not have significant influence on the flow instability during the startup procedure for the NMR-50. Further investigation of very small power ramp on the startup transients is carried out for the thermal-hydraulic startup transients. It is found that very small power density can eliminate the flashing oscillation in the single phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. Furthermore, initially pressurized startup procedure is investigated to eliminate the main flow instabilities. The results show that the pressurized startup procedure can suppress the flashing instability at low pressure and low power conditions. In order to have a deep understanding of natural

  16. Nature of counterflow and circulation in vortex separators

    NASA Astrophysics Data System (ADS)

    Shtern, Vladimir N.; Borissov, Anatoli A.

    2010-08-01

    This paper focuses on the physical mechanism of elongated counterflows occurring in vortex tubes and hydrocyclones. To this end, a new solution to the Navier-Stokes equations is obtained which describes a flow pattern consisting of two through-flows and the global meridional circulation. One of the through-flows has U-shape geometry. It is shown that swirl decay due to fluid-wall friction induces both the U-shape through-flow and the circulation. The circulation does not deteriorate particle separation. The solution illustrates how the swirl-induced pressure distribution drives the counterflow and results in the paradoxical centrifugal stratification where the high-density fluid located at the periphery is hot while the low-density fluid located near the axis is cold.

  17. Performance analysis of a Cooling System with Natural-Circulation Loop using CO2

    NASA Astrophysics Data System (ADS)

    Okazaki, Takashi

    The experiments and calculations were carried out to evaluate the cycle performance of natural circulation loop with CO2. The cooling capacity of CO2 was compared with that of R410A and the cooling capacity of reverse circulation observed under the supercritical condition was analyzed from a point of view of refrigerant flow direction. The experimental results showed that the cooling capacity of CO2 was approximately4∼13% larger than that of R410A under the two-phase condition at indoor temperature of 30°C. On the other hand, the cooling capacity of CO2 was approximately11% smaller than that of R410A under the supercritical condition at indoor temperature of 50°C. In addition, the cooling capacity with the counter-cross flow heat exchanger was approximately 40% larger than that with the parallel-cross flow heat exchanger under the supercritical condition at indoor temperature of 50°C. These experimental results agreed well with the calculated results.

  18. Natural Circulation of Lead-Bismuth in a One-Dimensional Loop: Experiments and Code Predictions

    SciTech Connect

    Agostini, P.; Bertacci, G.; Gherardi, G.; Bianchi, F.; Meloni, P.; Nicolini, D.; Ambrosini, W.; Forgione, F.; Fruttuoso, G.; Oriolo, F.

    2002-07-01

    The paper summarizes the results obtained by an experimental and computational study jointly performed by ENEA and University of Pisa. The study is aimed at assessing the capabilities of an available thermal-hydraulic system code in simulating natural circulation in a loop in which the working fluid is the eutectic lead-bismuth alloy as in the Italian proposal for Accelerator Driven System (ADS) reactor concepts. Experiments were performed in the CHEOPE facility installed at the ENEA Brasimone Research Centre and pre- and post-test calculations were run using a version of the RELAP5/Mod.3.2, purposely modified to account for Pb-Bi liquid alloy properties and behavior. The main results obtained by the experimental tests and by the code analyses are presented in the paper providing material to discuss the present predictive capabilities of transient and steady-state behavior in liquid Pb-Bi systems. (authors)

  19. FFTF primary system transition to natural circulation from low reactor power

    SciTech Connect

    Bouchey, G.D.; Additon, S.L.; Nutt, W.T.

    1980-01-01

    Plans for reactor and primary loop natural circulation testing in the Fast Flux Test Facility (FFTF) are summarized. Detailed pretest planning with an emphasis on understanding the implications of process noise and model uncertainties for model verification and test acceptance are discussed for a transition to natural circulation in the reactor core and primary heat transport loops from initial conditions of 5% of rated reactor power and 75% of full flow.

  20. NORTH PORTAL-HOT WATER CIRCULATION PUMP CALCULATION-SHOP BUILDING #5006

    SciTech Connect

    R. Blackstone

    1996-01-25

    The purpose of this design analysis and calculation is to size a circulating pump for the service hot water system in the Shop Building 5006, in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2). The method used for the calculation is based on Reference 5.2. This consists of determining the total heat transfer from the service hot water system piping to the surrounding environment. The heat transfer is then used to define the total pumping capacity based on a given temperature change in the circulating hot water as it flows through the closed loop piping system. The total pumping capacity is used to select a pump model from manufacturer's literature. This established the head generation for that capacity and particular pump model. The total length of all hot water supply and return piping including fittings is then estimated from the plumbing drawings which defines the pipe friction losses that must fit within the available pump head. Several iterations may be required before a pump can be selected that satisfies the head-capacity requirements.

  1. Natural Convection and Boiling for Cooling SRP Reactors During Loss of Circulation Conditions

    SciTech Connect

    Buckner, M.R.

    2001-06-26

    This study investigated natural convection and boiling as a means of cooling SRP reactors in the event of a loss of circulation accident. These studies show that single phase natural convection cooling of SRP reactors in shutdown conditions with the present piping geometry is probably not feasible.

  2. Natural circulating passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  3. Heat transfer in horizontal tubes during two phase natural circulation with presence of noncondensing gas

    NASA Astrophysics Data System (ADS)

    Alt, S.; Lischke, W.

    The condensation process of steam inside horizontal tubes during natural circulation gains in importance regarding the reactor safety research for existing and future nuclear power plants. Experimental investigations due to the condensation process were realized with the rig HORUS to study the behaviour of water-steam-gas mixtures in horizontal tubes. The paper includes statements regarding the flow and heat transfer conditions inside the tube and the temperature distribution inside the small tube wall. The experiments showed a blockade of the heat transfer area with Nitrogen which is connected with an increasing primary pressure followed by a compression of the Nitrogen and a reentry of steam into the tube. The experiments serve for the creation of an experimental data base. A model development for calculation of the heat transfer is described. The model was implemented in the German thermal-hydraulic code ATHLET. The comparison of calculated data and the measured parameters of HORUS rig show the code improvement for the simulation of noncondensing gases.

  4. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    NASA Astrophysics Data System (ADS)

    Shi, Shanbin

    -hydraulic and nuclear coupled startup transients are performed to investigate the flow instabilities at low pressure and low power conditions. Two different power ramps are chosen to study the effect of power density on the flow instability. The experimental startup transient tests show the existence of three different flow instability mechanisms during the low pressure startup transients, i.e., flashing instability, condensation induced instability, and density wave oscillations. Flashing instability in the chimney section of the test loop and density wave oscillation are the main flow instabilities observed when the system pressure is below 0.5 MPa. They show completely different type of oscillations, i.e., intermittent oscillation and sinusoidal oscillation, in void fraction profile during the startup transients. In order to perform nuclear-coupled startup transients with void reactivity feedback, the Point Kinetics model is utilized to calculate the transient power during the startup transients. In addition, the differences between the electric resistance heaters and typical fuel element are taken into account. The reactor power calculated shows some oscillations due to flashing instability during the transients. However, the void reactivity feedback does not have significant influence on the flow instability during the startup procedure for the NMR-50. Further investigation of very small power ramp on the startup transients is carried out for the thermal-hydraulic startup transients. It is found that very small power density can eliminate the flashing oscillation in the single phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. Furthermore, initially pressurized startup procedure is investigated to eliminate the main flow instabilities. The results show that the pressurized startup procedure can suppress the flashing instability at low pressure and low power conditions. In order to have a deep understanding of natural

  5. System Analysis for Decay Heat Removal in Lead-Bismuth-Cooled Natural-Circulation Reactors

    SciTech Connect

    Sakai, Takaaki; Enuma, Yasuhiro; Iwasaki, Takashi

    2004-03-15

    Decay heat removal analyses for lead-bismuth-cooled natural-circulation reactors are described in this paper. A combined multidimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural-circulation reactors. For the preliminary study, transient analysis has been performed for a 300-MW(thermal) lead-bismuth-cooled reactor designed by Argonne National Laboratory. In addition, decay heat removal characteristics of a 400-MW(electric) lead-bismuth-cooled natural-circulation reactor designed by the Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. The primary reactor auxiliary cooling system (PRACS) is prepared for the JNC concept to get sufficient heat removal capacity. During 2000 s after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 deg. C because the buoyancy force in a primary circulation path is temporarily reduced. However, the natural circulation is recovered by the PRACS system, and the outlet temperature decreases successfully.

  6. System Analysis for Decay Heat Removal in Lead-Bismuth Cooled Natural Circulated Reactors

    SciTech Connect

    Takaaki Sakai; Yasuhiro Enuma; Takashi Iwasaki; Kazuhiro Ohyama

    2002-07-01

    Decay heat removal analyses for lead-bismuth cooled natural circulation reactors are described in this paper. A combined multi-dimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural circulation reactors. For the preliminary study, transient analysis has been performed for a 100 MWe lead-bismuth-cooled reactor designed by Argonne National Laboratory (ANL). In addition, decay heat removal characteristics of a 400 MWe lead-bismuth-cooled natural circulation reactor designed by Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. PRACS (Primary Reactor Auxiliary Cooling System) is prepared for the JNC's concept to get sufficient heat removal capacity. During 2000 sec after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 Centigrade, because the buoyancy force in a primary circulation path is temporary reduced. However, the natural circulation is recovered by the PRACS system and the out let temperature decreases successfully. (authors)

  7. Self-sustained hydrodynamic oscillations in a natural-circulation two-phase-flow boiling loop

    NASA Technical Reports Server (NTRS)

    Jain, K. C.

    1969-01-01

    Results of an experimental and theoretical study of factors affecting self-sustaining hydrodynamic oscillations in boiling-water loops are reported. Data on flow variables, and the effects of geometry, subcooling and pressure on the development of oscillatory behavior in a natural-circulation two-phase-flow boiling loop are included.

  8. Design and measured performance of a solar chimney for natural circulation solar energy dryers

    SciTech Connect

    Ekechukwu, O.V.; Norton, B.

    1996-02-01

    An experimental solar chimney consisted of a cylindrical polyethylene-clad vertical chamber supported by steel framework and draped internally with a selectively absorbing surface. The performance of the chimney which was monitored extensively is reported. Issues related to the design and construction of solar chimneys for natural circulation solar energy dryers are discussed.

  9. Review of the natural circulation effect in the Vermont Yankee spent-fuel pool

    SciTech Connect

    Wheeler, C.L.

    1988-01-01

    A 7429-node, three-dimensional computer model of the Vermont Yankee spent-fuel pool was set up and run using the porous media model of the TEMPEST computer code. The results of this analysis show that natural circulation is sufficient to ensure adequate cooling, regardless of the loading pattern used or the orientation of the cooling system discharge nozzle.

  10. Nonuniform steam generator U-tube flow distribution during natural circulation tests in ROSA-IV large scale test facility

    SciTech Connect

    Kukita, Y.; Nakamura, H.; Tasaka, K. ); Chauliac, C. )

    1988-08-01

    Natural circulation experiments were conducted in a large-scale (1/48 scale in volume) full-height simulator of a Westinghouse-type pressurized water reactor. This facility has two steam generators each containing 141 full-size U-tubes of 9 different heights. Transition of the natural circulation mode was observed in the experiments as the primary of side mass inventory was decreased. Three major circulation modes were observed: single-phase liquid natural circulation, two-phase natural circulation, and reflux condensation. For all these circulation modes, and during the transitions between the modes, the mass flow distribution among the steam generator U-tubes was significantly nonuniform. The longer U-tubes indicated reversed flow at higher primary side mass inventories and also tended to empty earlier than the shorter U-tubes when the primary side mass inventory was decreased.

  11. Heat transfer to water from a vertical tube bundle under natural-circulation conditions. [PWR; BWR

    SciTech Connect

    Gruszczynski, M.J.; Viskanta, R.

    1983-01-01

    The natural circulation heat transfer data for longitudinal flow of water outside a vertical rod bundle are needed for developing correlations which can be used in best estimate computer codes to model thermal-hydraulic behavior of nuclear reactor cores under accident or shutdown conditions. The heat transfer coefficient between the fuel rod surface and the coolant is the key parameter required to predict the fuel temperature. Because of the absence of the required heat transfer coefficient data base under natural circulation conditions, experiments have been performed in a natural circulation loop. A seven-tube bundle having a pitch-to-diameter ratio of 1.25 was used as a test heat exchanger. A circulating flow was established in the loop, because of buoyancy differences between its two vertical legs. Steady-state and transient heat transfer measurements have been made over as wide a range of thermal conditions as possible with the system. Steady state heat transfer data were correlated in terms of relevant dimensionless parameters. Empirical correlations for the average Nusselt number, in terms of Reynolds number, Rayleigh number and the ratio of Grashof to Reynolds number are given.

  12. Single and two-phase natural circulation in Westinghouse pressurized water reactor simulators: Phenomena, analysis and scaling

    SciTech Connect

    Schultz, R.R.; Chapman, J.C.; Kukita, Y.; Motley, F.E.; Stumpf, H.; Chen, Y.S.; Tasaka, K.

    1987-01-01

    Natural circulation data obtained in the 1/48 scale W four loop PWR simulator - the Large Scale Test Facility (LSTF) are discussed and summarized. Core cooling modes, the primary fluid state, the primary loop mass flow and localized natural circulation phenomena occurring in the steam generator are presented. TRAC-PF1 LSTF model (using both a 1 U-tube and a 3 U-tube steam generator model) analyses of the LSTF natural circulation data including the SG recirculation patterns are presented and compared to the data. The LSTF data are then compared to similar natural circulation data obtained in the Primarkreislaufe (PKL) and the Semiscale facilities. Based on the 1/48 to 1/1705 scaling range which exists between the facilities, the implications of these data towrard natural circulation behavior in commercial plants are briefly discussed.

  13. Validation of a plant dynamics code for 4S - Test analysis of natural circulation behavior

    SciTech Connect

    Sebe, F.; Horie, H.; Matsumiya, H.; Fanning, T. H.

    2012-07-01

    A plant transient dynamics code for a sodium-cooled fast reactor was developed by Toshiba. The code is used to evaluate the safety performance of Super-Safe, Small, and Simple reactor (4S) for Anticipated Operational Occurrences (AOOs), Design Basis Accident (DBA) and Beyond DBA (BDBA). The code is currently undergoing verification and validation (V and V). As one of the validation, test analysis of the Shutdown Heat Removal Test (SHRT)-17 performed in the Experimental Breeder Reactor (EBR)-II was conducted. The SHRT-17 is protected loss of flow test. The purpose of this validation is to confirm capability of the code to simulate natural circulation behavior of the plant. As a result, good agreements are shown between the analytical results and the measured data which were available from instrumented subassembly. The detailed validation result of the natural circulation behavior is described in this paper. (authors)

  14. Enhancement of natural circulation type domestic solar hot water system performance by using a wind turbine

    NASA Astrophysics Data System (ADS)

    Ramasamy, K. K.; Srinivasan, P. S. S.

    2011-08-01

    Performance improvement of existing 200 litres capacity natural convection type domestic solar hot water system is attempted. A two-stage centrifugal pump driven by a vertical axis windmill having Savonius type rotor is added to the fluid loop. The windmill driven pump circulates the water through the collector. The system with necessary instrumentation is tested over a day. Tests on Natural Circulation System (NCS) mode and Wind Assisted System (WAS) mode are carried out during January, April, July and October, 2009. Test results of a clear day are reported. Daily average efficiency of 25-28 % during NCS mode and 33-37 % during WAS mode are obtained. With higher wind velocities, higher collector flow rates and hence higher efficiencies are obtained. In general, WAS mode provides improvements in efficiency when compared to NCS mode.

  15. Two-phase natural-circulation experiments in a test facility modeled after Three Mile Island Unit-2. Final report

    SciTech Connect

    Kiang, R.L.

    1981-10-01

    A series of natural circulation experiments was conducted in a test facility that was configured after the primary and the secondary cooling systems of TMI-2. Results support the feasibility of core residual heat removal by two-phase natural circulation. Tests with noncondensable gas in the primary system indicate that two-phase natural circulation is quite tolerant of the presence of noncondensable gas. The different modes of natural circulation were discovered. Mode 1, during which only saturated steam flows in the hot leg, accomplishes the heat removal via phase changes in the vessel and in the steam generator tubes. Mode 2, during which a percolating flow exists in the hot leg, removes the heat by means of a much faster circulation in the primary loop.

  16. An analytical and experimental investigation of natural circulation transients in a model pressurized water reactor

    SciTech Connect

    Massoud, M

    1987-01-01

    Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients.

  17. A Parametric Approach To Mirror Natural Frequency Calculations

    NASA Astrophysics Data System (ADS)

    Nowak, William J.

    1984-01-01

    A hybrid analytical/graphical method is presented to calculate the fundamental natural frequency of rectangular mirrors mounted at 3 points. A NASTRAN assisted parametric approach was used to calculate the characteristic roots of the plate vibration equation for mirrors with aspect ratios ranging from 1.0 x 1.0 to 10.0 x 1.0. Also considered were simply supported boundary conditions at three mirror corner points or at two corner points on one edge and one point along the opposite edge. Experimental varification within 6.0% was achieved for the extreme case tested with approximately a +2.0% average experimental error overall.

  18. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    SciTech Connect

    Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector

    2015-04-29

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  19. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    NASA Astrophysics Data System (ADS)

    Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector

    2015-04-01

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  20. Evaluation of circulating levels and renal clearance of natural amino acids in patients with Cushing's disease.

    PubMed

    Faggiano, A; Pivonello, R; Melis, D; Alfieri, R; Filippella, M; Spagnuolo, G; Salvatore, F; Lombardi, G; Colao, A

    2002-02-01

    Although the hypercortisolism-induced impairment of protein homeostasis is object of several studies, a detailed evaluation of the complete amino acid profile of patients with Cushing's syndrome (CS) has never been performed. The aim of the current open transversal controlled study was to evaluate serum and urinary concentrations as well as renal clearance of the complete series of natural amino acids and their relationship with glucose tolerance in patients with Cushing's disease (CD). Twenty patients with CD (10 active and 10 cured) and 20 sex- and age-matched healthy controls entered the study. Measurement of serum and urinary levels of the complete series of natural amino acids was performed in all patients analyzed by cationic exchange high performance liquid cromatography (HPLC) after 2 weeks of a standardized protein intake regimen. The renal clearance (renal excretion rate) of each amino acid was calculated on the basis of the serum and urinary concentrations of creatinine and the specific amino acid. Fasting glucose and insulin levels, glucose and insulin response to standard glucose load, insulinogenic and homeostasis model insulin resistance (Homa-R) indexes were also evaluated and correlated to the circulating levels and renal clearances of each amino acid. Significantly higher serum (p<0.01) and urinary (p<0.05) levels of alanine and cystine, lower serum and higher urinary levels of leucine, isoleucine and valine (p<0.05) and higher renal excretion rates of leucine, isoleucine and valine (p<0.01) were found in patients with active CD than in patients cured from the disease and in controls. No difference was found between cured patients and controls. Creatinine clearance was similar in active and cured patients and in controls. In patients with active CD, urinary cortisol levels were significantly correlated to urinary cystine levels (r=0.85; p<0.01) and renal excretion rate of leucine (r=-0.76; p<0.05), isoleucine (r=-0.76; p<0.05) and valine (r=-0

  1. Natural circulation loop using liquid nitrogen for cryo-detection system

    SciTech Connect

    Choi, Yeon Suk

    2014-01-29

    The natural circulation loop is designed for the cryogenic insert in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Sensitivity is the key parameter of a FTICR mass spectrometer and the cryo-cooling of the pre-amplifier can reduce the thermal noise level and thereby improve the signal-to-noise ratio. The pre-amplifier consisted of non-magnetic materials is thermally connected to the cooling loop which is passing through the flange maintaining ultra-high vacuum in the ion cell. The liquid nitrogen passes through inside of the loop to cool the pre-amplifier indirectly. At the end, a cryocooler is located to re-condense nitrogen vapor generated due to the heat from the pre-amplifier. The circulating fluid removes heat from the pre-amplifier and transports it to the cryocooler or heat sink. In this paper the natural circulation loop for cryogenic pre-amplifier is introduced for improving the sensitivity of cryo-detector. In addition, the initial cool-down of the system by a cryocooler is presented and the temperature of the radiation shield is discussed with respect to the thickness of shield and the thermal radiation load.

  2. Two-phase flow stability structure in a natural circulation system

    SciTech Connect

    Zhou, Zhiwei

    1995-09-01

    The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.

  3. Thermal hydraulic analysis of advanced Pb-Bi cooled NPP using natural circulation

    NASA Astrophysics Data System (ADS)

    Novitrian, Su'ud, Zaki; Waris, Abdul

    2012-06-01

    We present thermal hydraulic analysis for a low power advanced nuclear reactor cooled by lead-bismuth eutectic. In this work is to study the thermal hydraulic analysis of a low power SPINNOR (Small Power Reactor, Indonesia, No On-site Refuelling) reactor with 125 MWth which a design a core with very small volume and fuel column height, resulting in a negative coolant temperature coefficient and very low channel pressure drop. And also at full power the heat can be completely removed by natural circulation in the primary circuit, thus eliminating the needs for pumps.

  4. Calculation of a residual mean meridional circulation for a zonal-mean tracer transport model

    SciTech Connect

    Choi, W.K.; Rotman, D.A.; Wuebbles, D.J.

    1995-04-01

    Because of their computational advantages, zonally-averaged chemical-radiative-transport models are widely used to investigate the distribution of chemical species and their change due to the anthropogenic chemicals in the lower and middle atmosphere. In general, the Lagrangian-mean formulation would be ideal to treat transport due to the zonal mean circulation and eddies. However, the Lagrangian formulation is difficult to use in practical applications. The most widely-used formulation for treating global atmospheric dynamics in two-dimensional models is the transformed Eulerian mean (TEM) equations. The residual mean meridional circulation (RMMC) in the TEM system is used to advect tracers. In this study, the authors describe possible solution techniques for obtaining the RMMC in the LLNL two-dimensional chemical-radiative-transport model. In the first section, the formulation will be described. In sections 3 and 4, possible solution procedures will be described for a diagnostic and prognostic case, respectively.

  5. Human Circulating and Tissue-Resident CD56bright Natural Killer Cell Populations

    PubMed Central

    Melsen, Janine E.; Lugthart, Gertjan; Lankester, Arjan C.; Schilham, Marco W.

    2016-01-01

    Two human natural killer (NK) cell subsets are usually distinguished, displaying the CD56dimCD16+ and the CD56brightCD16−/+ phenotype. This distinction is based on NK cells present in blood, where the CD56dim NK cells predominate. However, CD56bright NK cells outnumber CD56dim NK cells in the human body due to the fact that they are predominant in peripheral and lymphoid tissues. Interestingly, within the total CD56bright NK cell compartment, a major phenotypical and functional diversity is observed, as demonstrated by the discovery of tissue-resident CD56bright NK cells in the uterus, liver, and lymphoid tissues. Uterus-resident CD56bright NK cells express CD49a while the liver- and lymphoid tissue-resident CD56bright NK cells are characterized by co-expression of CD69 and CXCR6. Tissue-resident CD56bright NK cells have a low natural cytotoxicity and produce little interferon-γ upon monokine stimulation. Their distribution and specific phenotype suggest that the tissue-resident CD56bright NK cells exert tissue-specific functions. In this review, we examine the CD56bright NK cell diversity by discussing the distribution, phenotype, and function of circulating and tissue-resident CD56bright NK cells. In addition, we address the ongoing debate concerning the developmental relationship between circulating CD56bright and CD56dim NK cells and speculate on the position of tissue-resident CD56bright NK cells. We conclude that distinguishing tissue-resident CD56bright NK cells from circulating CD56bright NK cells is a prerequisite for the better understanding of the specific role of CD56bright NK cells in the complex process of human immune regulation. PMID:27446091

  6. CFD analyses of natural circulation in the air-cooled reactor cavity cooling system

    SciTech Connect

    Hu, R.; Pointer, W. D.

    2013-07-01

    The Natural Convection Shutdown Heat Removal Test Facility (NSTF) is currently being built at Argonne National Laboratory, to evaluate the feasibility of the passive Reactor Cavity Cooling System (RCCS) for Next Generation Nuclear Plant (NGNP). CFD simulations have been applied to evaluate the NSTF and NGNP RCCS designs. However, previous simulations found that convergence was very difficult to achieve in simulating the complex natural circulation. To resolve the convergence issue and increase the confidence of the CFD simulation results, additional CFD simulations were conducted using a more detailed mesh and a different solution scheme. It is found that, with the use of coupled flow and coupled energy models, the convergence can be greatly improved. Furthermore, the effects of convection in the cavity and the effects of the uncertainty in solid surface emissivity are also investigated. (authors)

  7. A Transient Model of Induced Natural Circulation Thermal Cycling for Hydrogen Isotope Separation

    SciTech Connect

    SHADDAY, MARTIN

    2005-07-12

    The property of selective temperature dependence of adsorption and desorption of hydrogen isotopes by palladium is used for isotope separation. A proposal to use natural circulation of nitrogen to alternately heat and cool a packed bed of palladium coated beads is under active investigation, and a device consisting of two interlocking natural convection loops is being designed. A transient numerical model of the device has been developed to aid the design process. It is a one-dimensional finite-difference model, using the Boussinesq approximation. The thermal inertia of the pipe walls and other heat structures as well as the heater control logic is included in the model. Two system configurations were modeled and results are compared.

  8. Calculations of the time-averaged local heat transfer coefficients in circulating fluidized bed

    SciTech Connect

    Dai, T.H.; Qian, R.Z.; Ai, Y.F.

    1999-04-01

    The great potential to burn a wide variety of fuels and the reduced emission of pollutant gases mainly SO{sub x} and NO{sub x} have inspired the investigators to conduct research at a brisk pace all around the world on circulating fluidized bed (CFB) technology. An accurate understanding of heat transfer to bed walls is required for proper design of CFB boilers. To develop an optimum economic design of the boiler, it is also necessary to know how the heat transfer coefficient depends on different design and operating parameters. It is impossible to do the experiments under all operating conditions. Thus, the mathematical model prediction is a valuable method instead. Based on the cluster renewal theory of heat transfer in circulating fluidized beds, a mathematical model for predicting the time-averaged local bed-to-wall heat transfer coefficients is developed. The effects of the axial distribution of the bed density on the time-average local heat transfer coefficients are taken into account via dividing the bed into a series of sections along its height. The assumptions are made about the formation and falling process of clusters on the wall. The model predictions are in an acceptable agreement with the published data.

  9. Molecular electric moments calculated by using natural orbital functional theory.

    PubMed

    Mitxelena, Ion; Piris, Mario

    2016-05-28

    The molecular electric dipole, quadrupole, and octupole moments of a selected set of 21 spin-compensated molecules are determined employing the extended version of the Piris natural orbital functional 6 (PNOF6), using the triple-ζ Gaussian basis set with polarization functions developed by Sadlej, at the experimental geometries. The performance of the PNOF6 is established by carrying out a statistical analysis of the mean absolute errors with respect to the experiment. The calculated PNOF6 electric moments agree satisfactorily with the corresponding experimental data and are in good agreement with the values obtained by accurate ab initio methods, namely, the coupled-cluster single and doubles and multi-reference single and double excitation configuration interaction methods. PMID:27250280

  10. Molecular electric moments calculated by using natural orbital functional theory

    NASA Astrophysics Data System (ADS)

    Mitxelena, Ion; Piris, Mario

    2016-05-01

    The molecular electric dipole, quadrupole, and octupole moments of a selected set of 21 spin-compensated molecules are determined employing the extended version of the Piris natural orbital functional 6 (PNOF6), using the triple-ζ Gaussian basis set with polarization functions developed by Sadlej, at the experimental geometries. The performance of the PNOF6 is established by carrying out a statistical analysis of the mean absolute errors with respect to the experiment. The calculated PNOF6 electric moments agree satisfactorily with the corresponding experimental data and are in good agreement with the values obtained by accurate ab initio methods, namely, the coupled-cluster single and doubles and multi-reference single and double excitation configuration interaction methods.

  11. The Venus nitric oxide night airglow - Model calculations based on the Venus Thermospheric General Circulation Model

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; Gerard, J. C.; Stewart, A. I. F.; Fesen, C. G.

    1990-01-01

    The mechanism responsible for the Venus nitric oxide (0,1) delta band nightglow observed in the Pioneer Venus Orbiter UV spectrometer (OUVS) images was investigated using the Venus Thermospheric General Circulation Model (Dickinson et al., 1984), modified to include simple odd nitrogen chemistry. Results obtained for the solar maximum conditions indicate that the recently revised dark-disk average NO intensity at 198.0 nm, based on statistically averaged OUVS measurements, can be reproduced with minor modifications in chemical rate coefficients. The results imply a nightside hemispheric downward N flux of (2.5-3) x 10 to the 9th/sq cm sec, corresponding to the dayside net production of N atoms needed for transport.

  12. Review of pertinent thermal-hydraulic data for LMFBR core natural circulation analyses

    SciTech Connect

    Bishop, A. A.; Coffield, Jr., R. D.; Markley, R. A.

    1980-01-01

    A literature review and summary of significant data is presented relative to LMFBR core natural convection cooling analysis. First, a brief review of computer codes and respective input data needs is made, significant data areas are then addressed and data for verifying the code calculations are described. Recommendations and conclusions with regard to the data are included.

  13. [Physical and physiological principles of calculating vascular resistance in cardiovascular circulation].

    PubMed

    Hennig, E

    1992-01-01

    After reconstructive vascular surgery the quality of perfusion and the risk of failure can be predicted, if the distal outflow resistance of the graft is known. The laws of the hydrodynamics for the calculation of flow resistance in tubes are discussed with respect to their validity in the circulatory system. Because of great differences between the physiological realities and the physical assumption, and problems in monitoring some of the parameters of the equations, the calculation of the physiological vascular resistance according to the a.m. laws is not possible. With "Ohms law" of the hydrodynamic the calculation of the outflow resistance distal of a graft is possible if the flow through the bypass and the pressure losses in the outflow bed are known. Easier to perform is the measurement of the pressure-time integral generated by the injection of a standardized volume into the graft and the calculation of the outflow resistance with the help of a microprocessor. PMID:1529426

  14. Performance and stability analysis of gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems

    NASA Astrophysics Data System (ADS)

    Yoo, Yeon-Jong

    The purpose of this study is to investigate the performance and stability of the gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems. The target system is STAR-LM, which is a 400-MWt-class advanced lead-cooled fast reactor under development by Argonne National Laboratory and Oregon State University. The primary loop of STAR-LM relies on natural circulation to eliminate main circulation pumps for enhancement of passive safety. To significantly increase the natural circulation flow rate for the incorporation of potential future power uprates, the injection of noncondensable gas into the coolant above the core is envisioned ("gas lift pump"). Reliance upon gas-injection enhanced natural circulation raises the concern of flow instability due to the relatively high temperature change in the reactor core and the two-phase flow condition in the riser. For this study, the one-dimensional flow field equations were applied to each flow section and the mixture models of two-phase flow, i.e., both the homogeneous and drift-flux equilibrium models were used in the two-phase region of the riser. For the stability analysis, the linear perturbation technique based on the frequency-domain approach was used by employing the Nyquist stability criterion and a numerical root search method. It has been shown that the thermal power of the STAR-LM natural circulation system could be increased from 400 up to 1152 MW with gas injection under the limiting void fraction of 0.30 and limiting coolant velocity of 2.0 m/s from the steady-state performance analysis. As the result of the linear stability analysis, it has turned out that the STAR-LM natural circulation system would be stable even with gas injection. In addition, through the parametric study, it has been found that the thermal inertia effects of solid structures such as fuel rod and heat exchanger tube should be considered in the stability analysis model. The results of this study will be a part of the

  15. Theoretical and computational analysis of flow oscillations in S-CO{sub 2} natural circulation loop

    SciTech Connect

    Smith, W. C.; Podowski, M. Z.

    2012-07-01

    The objective of this paper is to present a new model of natural-circulation loop cooled using fluids at slightly supercritical pressures. The modeling concept is based on the first principle time- and position-depended conservation equations, combined with analytic models of temperature and pressure-dependent fluid properties and a pressure control line connected to a pressurizer. Extensive parametric testing has been performed of the numerical solution method used in the analysis. The results of model predictions have been compared against other existing results, both theoretical and experimental. In particular, the model has been used in the analysis of a transient response of the SCO{sub 2} loop reported by Milone [1]. (authors)

  16. The startup of the Dodewaard natural circulation boiling water reactor -- Experiences

    SciTech Connect

    Nissen, W.H.M.; Van Der Voet, J.; Karuza, J. )

    1994-07-01

    Because of its similarity to the simplified boiling water reactor (SBWR), the Dodewaard natural circulation boiling water reactor (BWR) is of special interest to further development of the SBWR design. It has become especially important to gain more insight into the Dodewaard BWR behavior during startup, paying special attention to its stability. Therefore, special instrumentation was used by means of which a series of measurements were taken during the two startups in February and June 1992. The results obtained from these measurements are used to deepen insight into the recirculation flow and the stability of the reactor during startup under conditions with a normal pressure/power trajectory. They have already shown a very early recirculation flow onset during low-power operation and no indication of reactor instability. Furthermore, they will be used as a basis for the research program investigating the reactor behavior under different pressure/power conditions, which is scheduled for next year.

  17. Natural circulation in a VVER reactor geometry: Experiments with the PACTEL facility and Cathare simulations

    SciTech Connect

    Raussi, P.; Kainulainen, S.; Kouhia, J.

    1995-09-01

    There are some 40 reactors based on the VVER design in use. Database available for computer code assessment for VVER reactors is rather limited. Experiments were conducted to study natural circulation behaviour in the PACTEL facility, a medium-scale integral test loop patterned after VVER pressurized water reactors. Flow behaviour over a range of coolant inventories was studied with a small-break experiment. In the small-break experiments, flow stagnation and system repressurization were observed when the water level in the upper plenum fell below the entrances to the hot legs. The cause was attributed to the hot leg loop seals, which are a unique feature of the VVER geometry. At low primary inventories, core cooling was achieved through the boiler-condenser mode. The experiment was simulated using French thermalhydraulic system code CATHARE.

  18. Conceptual design and thermal-hydraulic characteristics of natural circulation Boiling Water Reactors

    SciTech Connect

    Kataoka, Y.; Suzuki, H.; Murase, M. ); Horiuchi, T.; Miki, M. )

    1988-08-01

    A natural circulation boiling water reactor (BWR) with a rated capacity of 600 MW (electric) has been conceptually designed for small- and medium-sized light water reactors. The components and systems in the reactor are simplified by eliminating pumped recirculation systems and pumped emergency core cooling systems. Consequently, the volume of the reactor building is -- 50% of that for current BWRs with the same rated capacity; the construction period is also shorter. Its thermal-hydraulic characteristics, critical power ratio (CPR) and flow stability at steady state, decrease in the minimum CPR (..delta..MCPR) at transients, and the two-phase mixture level in the reactor pressure vessel (RPV) during accidents are investigated. The two-phase mixture level in the RPV during an accident does not decrease to lower than the top of the core; the core uncovery and heatup of fuel cladding would not occur during any loss-of-coolant accident.

  19. Circulation of images and graphic practices in Renaissance natural history: the example of Conrad Gessner.

    PubMed

    Egmond, Florike; Kusukawa, Sachiko

    2016-01-01

    Conrad Gessner's Historia animalium is a compilation of information from a variety of sources: friends, correspondents, books, broadsides, drawings, as well as his own experience. The recent discovery of a cache of drawings at Amsterdam originally belonging to Gessner has added a new dimension for research into the role of images in Gessner's study of nature. In this paper, we examine the drawings that were the basis of the images in the volume of fishes. We uncovered several cases where there were multiple copies of the same drawing of a fish (rather than multiple drawings of the samefish), which problematizes the notion of unique "original" copies and their copies. While we still know very little about the actual mechanism of, or people involved in, commissioning or generating copies of drawings, their very existence suggests that the images functioned as an important medium in the circulation of knowledge in the early modern period. PMID:27349032

  20. Two-phase flow instability and dryout in parallel channels in natural circulation

    SciTech Connect

    Duffey, R.B.; Rohatgi, U.S.; Hughes, E.D.

    1993-06-01

    The unique feature of parallel channel flows is that the pressure drop or driving head for the flow is maintained constant across any given channel by the flow in all the others, or by having a large downcomer or bypass in a natural circulation loop. This boundary condition is common in all heat exchangers, reactor cores and boilers, it is well known that the two-phase flow in parallel channels can exhibit both so-called static and dynamic instability. This leads to the question of the separability of the flow and pressure drop boundary conditions in the study of stability and dryout. For the areas of practical interest, the flow can be considered as incompressible. The dynamic instability is characterized by density (kinematic) or continuity waves, and the static instability by inertial (pressure drop) or manometric escalations. The static has been considered to be the zero-frequency or lowest mode of the dynamic case. We briefly review the status of the existing literature on both parallel channel static and dynamic instability, and the latest developments in theory and experiment. The difference between the two derivations lies in the retention of the time-dependent terms in the conservation equations. The effects and impact of design options are also discussed. Since dryout in parallel systems follows instability, it has been traditional to determine the dryout power for a parallel channel by testing a single channel with a given (inlet) flow boundary condition without particular regard for the pressure drop. Thus all modern dryout correlations are based on constant or fixed flow tests, a so-called hard inlet, and subchannel and multiple bundle effects are corrected for separately. We review the thinking that lead to this approach, and suggest that for all multiple channel and natural circulation systems close attention should be paid to the actual (untested) pressure drop conditions. A conceptual formulation is suggested as a basis for discussion.

  1. An investigation of natural circulation decay heat removal from an SP-100 reactor system for a lunar outpost

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Xue, Huimin

    1992-01-01

    A transient thermal-hydraulic model of the decay heat removal from a 550 kWe SP-100 power system for a lunar outpost has been developed and used to assess the coolability of the system by natural circulation after reactor shutdown. Results show that natural circulation of lithium coolant is sufficient to ensure coolability of the reactor core after shutdown. Further improvement of the decay heat removal capability of the system could be achieved by increasing the dimensions of the decay heat exchanger duct. A radiator area of 10-15 m2 would be sufficient to maintain the reactor core safely coolable by natural circulation after shutdown. Increasing the area of the decay heat rejection radiator or the diameter of the heat pipes in the guard vessel wall insignificantly affects the decay heat removal capability of the system.

  2. Thermodynamics of convective circulations

    NASA Astrophysics Data System (ADS)

    Adams, D. K.; Renno, N. O.

    2003-04-01

    The heat engine framework has proven successful for studies of atmospheric phenomena ranging from small to large scales. At large scales, the heat engine framework provides estimates of convective available potential energy, convective velocities, and fractional area covered by convection. At the smaller end of the spectrum, the framework provides estimates of the intensity of convective vortices such as dust devils and waterspouts. The heat engine framework sheds light on the basic physics of planetary atmospheres. In particular, it allows the calculation of their thermodynamic efficiency. Indeed, this is a fundamental number for atmospheric circulations because it quantifies the amount of heat that is converted into kinetic energy. As such, it is a valuable number not only for comparison of models with nature, but also for the intercomparison of models. In the present study, we generalize the heat engine framework to large-scale circulations, both open (e.g., the Hadley circulation) and closed (e.g., the general circulation) and apply it to an idealized global climate model to ascertain the thermodynamic efficiency of model circulations, both global and regional. Our results show that the thermodynamic efficiency is sensitive to model resolution and provides a baseline for minimum model resolution in climate studies. The value of the thermodynamic efficiency of convective circulations in nature is controversial. It has been suggested that both nature and numerical models are extremely irreversible. We show that both the global and the Hadley circulation of the idealized model are, to a first approximation, reversible.

  3. Stability analysis of a natural circulation lead-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Lu, Qiyue

    This dissertation is aimed at nuclear-coupled thermal hydraulics stability analysis of a natural circulation lead cooled fast reactor design. The stability concerns arise from the fact that natural circulation operation makes the system susceptible to flow instabilities similar to those observed in boiling water reactors. In order to capture the regional effects, modal expansion method which incorporates higher azimuthal modes is used to model the neutronics part of the system. A reduced order model is used in this work for the thermal-hydraulics. Consistent with the number of heat exchangers (HXs), the reactor core is divided into four equal quadrants. Each quadrant has its corresponding external segments such as riser, plenum, pipes and HX forming an equivalent 1-D closed loop. The local pressure loss along the loop is represented by a lumped friction factor. The heat transfer process in the HX is represented by a model for the coolant temperature at the core inlet that depends on the coolant temperature at the core outlet and the coolant velocity. Additionally, time lag effects are incorporated into this HX model due to the finite coolant speed. A conventional model is used for the fuel pin heat conduction to couple the neutronics and thermal-hydraulics. The feedback mechanisms include Doppler, axial/radial thermal expansion and coolant density effects. These effects are represented by a linear variation of the macroscopic cross sections with the fuel temperature. The weighted residual method is used to convert the governing PDEs to ODEs. Retaining the first and second modes, leads to six ODEs for neutronics, and five ODEs for the thermal-hydraulics in each quadrant. Three models are developed. These are: 1) natural circulation model with a closed coolant flow path but without coupled neutronics, 2) forced circulation model with constant external pressure drop across the heated channels but without coupled neutronics, 3) coupled system including neutronics with

  4. Calculating the hydraulic characteristics of two-phase-helium circulation systems

    NASA Astrophysics Data System (ADS)

    Gorbachev, S. P.

    1981-09-01

    An approximate analytical solution is obtained for calculating the pressure drop in the flows of a boiling two-phase liquid in a heated channel. The dependence of the maximum temperature in the channel on the rate of flow of the cryogenic fluid is determined.

  5. A model of the circulating blood for use in radiation dose calculations

    SciTech Connect

    Hui, T.E.; Poston, J.W. Sr.

    1987-01-01

    Over the last few years there has been a significant increase in the use of radionuclides in leukocyte, platelet, and erythrocyte imaging procedures. Radiopharmaceutical used in these procedures are confined primarily to the blood, have short half-lives, and irradiate the body as they move through the circulatory system. There is a need for a model, to describe the circulatory system in an adult human, which can be used to provide radiation absorbed dose estimates for these procedures. A simplified model has been designed assuming a static circulatory system and including major organs of the body. The model has been incorporated into the MIRD phantom and calculations have been completed for a number of exposure situations and radionuclides of clinical importance. The model will be discussed in detail and results of calculations using this model will be presented.

  6. A model of the circulating blood for use in radiation dose calculations

    SciTech Connect

    Hui, T.E.; Poston, J.W. Sr.

    1987-12-31

    Over the last few years there has been a significant increase in the use of radionuclides in leukocyte, platelet, and erythrocyte imaging procedures. Radiopharmaceutical used in these procedures are confined primarily to the blood, have short half-lives, and irradiate the body as they move through the circulatory system. There is a need for a model, to describe the circulatory system in an adult human, which can be used to provide radiation absorbed dose estimates for these procedures. A simplified model has been designed assuming a static circulatory system and including major organs of the body. The model has been incorporated into the MIRD phantom and calculations have been completed for a number of exposure situations and radionuclides of clinical importance. The model will be discussed in detail and results of calculations using this model will be presented.

  7. Steam condensation and liquid hold-up in steam generator U-tubes during oscillatory natural circulation

    SciTech Connect

    De Santi, G.F.; Mayinger, F.

    1990-01-01

    In many accident scenarios, natural circulation is an important heat transport mechanism for long-term cooling of light water reactors. In the event of a small pipe break, with subsequent loss of primary cooling fluid loss-of-coolant accident (LOCA), or under abnormal operating conditions, early tripping of the main coolant pumps can be actuated. Primary fluid flow will then progress from forced to natural convection. Understanding of the flow regimes and heat-removal mechanisms in the steam generators during the entire transient is of primary importance to safety analysis. Flow oscillations during two-phase natural circulation experiments for pressurized water reactors (PWRs) with inverted U-tube steam generators occur at high pressure and at a primary inventory range between two-phase circulation and reflex heat removal. This paper deals with the oscillatory flow behavior that was observed in the LOBI-MOD2 facility during the transition period between two-phase natural circulation and reflex condensation.

  8. NATCRCTR: One-dimensional thermal-hydraulics analysis code for natural-circulation TRIGA reactors

    SciTech Connect

    Feltus, M.A.; Rubinaccio, G.

    1996-12-31

    The Pennsylvania State University nuclear engineering department is evaluating the upgrade of the Reed College (Portland, Oregon) TRIGA reactor from 250 kW to 1 MW in two areas: thermal-hydraulics and steady-state neutronics analysis. This analysis was initiated as a cooperative effort between Penn State and Reed College as a training project for two International Atomic Energy Agency (IAEA) fellows from Ghana. The two Ghanaian IAEA fellows were assisted by G. Rubinaccio, an undergraduate, who undertook the task of writing the new computer programs for the thermal-hydraulic and physics evaluation as a three-credit special design project course. The Reed College TRIGA, which has a fixed graphite radial reflector, is cooled by natural circulation, without external cross-flow; whereas, the Penn State Breazeale Reactor has significant crossflow into its sides. To model the Reed TRIGA, the NATCRCTR program has been developed from first principles using the following assumptions: 1. The core is surrounded by the fixed reflector structure, which acts as a one-dimensional channel. 2. The core inlet temperature distribution is constant at the core bottom. 3. The axial heat flux distribution is a chopped cosine shape. 4. The heat transfer in the fuel is primarily in the radial directions. 5. A small gap between the fuel and cladding exists. The NATCRCTR code is used to find the peak centerline fuel, gap, and cladding surface temperatures, based on assumed flux and engineering peaking factors.

  9. An analysis of the high-latitude thermospheric wind pattern calculated by a thermospheric general circulation model. I - Momentum forcing

    NASA Technical Reports Server (NTRS)

    Killeen, T. L.; Roble, R. G.

    1984-01-01

    A diagnostic processor (DP) was developed for analysis of hydrodynamic and thermodynamic processes predicted by the NCAR thermospheric general circulation model (TGCM). The TGCM contains a history file on the projected wind, temperature and composition fields at each grid point for each hour of universal time. The DP assimilates the history file plus ion drag tensors and drift velocities, specific heats, coefficients of viscosity, and thermal conductivity and calculates the individual forcing terms for the momentum and energy equations for a given altitude. Sample momentum forcings were calculated for high latitudes in the presence of forcing by solar radiation and magnetospheric convection with a 60 kV cross-tail potential, i.e., conditions on Oct. 21, 1981. It was found that ion drag and pressure forces balance out at F region heights where ion drift velocities are small. The magnetic polar cap/auroral zone boundary featured the largest residual force or net acceleration. Diurnal oscillations were detected in the thermospheric convection, and geostrophic balance was dominant in the E layer.

  10. Thermohydraulic model experiments on the transition from forced to natural circulation for pool-type fast reactors

    SciTech Connect

    Hoffmann, H.; Marten, K.; Weinberg, D. )

    1992-09-01

    In this paper, thermohydraulic studies on the transition from forced to natural convection are carried out using the 1:20 scale RAMONA three-dimensional reactor model with water as the simulant fluid. In the investigations, a scram from 40% load operation of a fast reactor is simulated. The core mass flows and the core as well as the hot plenum temperatures are measured as a function of time for various core power levels, coastdown curves of the primary- and secondary-side pumps, and for various delay times for the start of the immersion coolers after a scram. These parameters influence the onset of the natural circulation in the reactor tank. The main result is that the longer the intermediate heat exchanger coolability is ensured and the later the immersion coolers start to operate, the higher is the natural-circulation flow and, hence, the lower are the core temperatures.

  11. Climatology and natural variability of the global hydrologic cycle in the GLA atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Mehta, V. M.; Sud, Y. C.; Walker, G. K.

    1994-01-01

    Time average climatology and low-frequency variabilities of the global hydrologic cycle (GHC) in the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) were investigated in the present work. A 730-day experiment was conducted with the GLA GCM forced by insolation, sea surface temperature, and ice-snow undergoing climatological annual cycles. Ifluences of interactive soil moisture on time average climatology and natural variability of the GHC were also investigated by conducting 365-day experiments with and without interactive soil moisture. Insolation, sea surface temperature, and ice-snow were fixed at their July levels in the latter two experiments. Results show that the model's time average hydrologic cycle variables for July in all three experiments agree reasonably well with observations. Except in the case of precipitable water, the zonal average climates of the annual cycle experiment and the two perpetual July experiments are alike, i.e., their differences are within limits of the natural variability of the model's climate. Statistics of various components of the GHC, i.e., water vapor, evaporation, and precipitation, are significantly affected by the presence of interactive soil moisture. A long-term trend is found in the principal empirical modes of variability of ground wetness, evaporation, and sensible heat. Dominant modes of variability of these quantities over land are physically consistent with one another and with land surface energy balance requirements. The dominant mode of precipitation variability is found to be closely related to organized convection over the tropical western Pacific Ocean. The precipitation variability has timescales in the range of 2 to 3 months and can be identified with the stationary component of the Madden-Julian Oscillation. The precipitation mode is not sensitive to the presence of interactive soil moisture but is closely linked to both the rotational and divergent components of atmospheric

  12. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  13. The Nature of Infinity in Quantum Field Calculations

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2011-05-01

    In many textbooks on Quantum Field Theory it has been noted that an infinity is taken a circle and the flux is calculated from the A field in that manner. There are of course many such examples of this sort of calculation using infinity as a circle. This author would like to point out that if the three dimensions of space are curved and the one dimension of time is not, in say a four space, infinity is the horizon, which is not a circle but rather a sphere; as long as space-time is curved uniformly, smoothly and has positive curvature. This author believes the math may be in error, since maps of the CMBR seem to indicate a ``Swiss-Cheese'' type of topology, wherein the Sphere at infinity (the Horizon of the Universe), has holes in it that can readily be seen. This author believes that these irregularities most certainly have a calculable effect on QED, QCD and Quantum Field Theory.

  14. The nature of chemical bonds from PNOF5 calculations.

    PubMed

    Matxain, Jon M; Piris, Mario; Uranga, Jon; Lopez, Xabier; Merino, Gabriel; Ugalde, Jesus M

    2012-06-18

    Natural orbital functional theory (NOFT) is used for the first time in the analysis of different types of chemical bonds. Concretely, the Piris natural orbital functional PNOF5 is used. It provides a localization scheme that yields an orbital picture which agrees very well with the empirical valence shell electron pair repulsion theory (VSEPR) and Bent's rule, as well as with other theoretical pictures provided by valence bond (VB) or linear combination of atomic orbitals-molecular orbital (LCAO-MO) methods. In this context, PNOF5 provides a novel tool for chemical bond analysis. In this work, PNOF5 is applied to selected molecules that have ionic, polar covalent, covalent, multiple (σ and π), 3c-2e, and 3c-4e bonds. PMID:22615195

  15. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  16. Overall results of and lessons learned from the IAEA CRP on sodium natural circulation test performed during the Phenix end-of-life experiments

    SciTech Connect

    Monti, S.; Toti, A.; Tenchine, D.; Pialla, D.

    2012-07-01

    In 2007, the International Atomic Energy Agency (IAEA) launched the Coordinated Research Project (CRP) 'Control Rod Withdrawal and Sodium Natural Circulation Tests Performed during the Phenix End-of-Life Experiments'. The overall purpose of the CRP, performed within the framework of the IAEA programme in support of innovative fast reactor technology development and deployment, is to improve the Member States' analytical capabilities in the various fields of research and design of sodium-cooled fast reactors through data and codes verification and validation. In particular the CRP, taking advantage of the End-of-Life set of experiments performed before the final shut-down of the French prototype fast breeder power reactor Phenix, aims at improving fast reactor simulation methods and design capabilities in the field of temperature and power distribution evaluation, as well as of the analysis of sodium natural circulation phenomena. The paper presents the overall results of the CRP, including blind calculations and post-test and sensitivity analyses carried out by the CRP participants, as well as lessons learned and recommendations for further future implementations to resolve open issues. (authors)

  17. Antimicrobial activity of various immunomodulators: independence from normal levels of circulating monocytes and natural killer cells. Technical report

    SciTech Connect

    Morahan, P.S.; Dempsey, W.L.; Volkman, A.; Connor, J.

    1986-01-01

    The effects of /sup 89/Sr treatment on the natural host resistance of CD-1 mice and the enhancement of resistance by immunomodulators to infection with Listeria monocytogenes or herpes simplex virus type 2 (HSV-2) were determined. In the CD-1 mouse, single-dose treatment with /sup 89/Sr caused a profound decrease in the number of circulating monocytes (Mo), lymphocytes, and polymorphonuclear leukocytes (PMN) within 1 week. There was also marked functional impairment of the Mo inflammatory response, as well as markedly decreased spontaneous and activatable cytoxicity by splenic natural killer (NK) cells. Despite this profound cellular suppression, there was no significant change in natural resistance of CD-1 mice to L. monocytogenes of HSV-2 infection. Furthermore, prophylactic treatment of mice with the biologic immunomodulator Corynebacterium parvum or the synthetic immunomodulators maleic anhydride-divinyl ether or avridine in liposomes resulted in comparable enhancement of resistance in /sup 89/Sr-treated and normal mice. These data indicate that natural and immunomodulator-enhanced resistance of CD-1 mice to microbail infections do not depend on normal levels of Mo, PMN, or NK cells. The resistance enhancement may rely on activated tissue macrophages. In contrast to the early changes in circulating leukocytes, the residenet peritoneal cell populations were not markedly altered until after day 30. There then was a distinct decline in lymphocytes and a gradual decline in activated tissue macrophages.

  18. The Essential Role of Circulating Thyroglobulin in Maintaining Dominance of Natural Regulatory T Cell Function to Prevent Autoimmune Thyroiditis.

    PubMed

    Kong, Y M; Brown, N K; Morris, G P; Flynn, J C

    2015-09-01

    Several key findings from the late 1960s to mid-1970s regarding thyroid hormone metabolism and circulating thyroglobulin composition converged with studies pertaining to the role of T lymphocytes in autoimmune thyroiditis. These studies cemented the foundation for subsequent investigations into the existence and antigenic specificity of thymus-derived natural regulatory T cells (nTregs). These nTregs prevented the development of autoimmune thyroiditis, despite the ever-present genetic predisposition, autoantigen (thyroglobulin), and thyroglobulin-reactive T cells. Guided by the hypothalamus-pituitary-thyroid axis as a fixed set-point regulator in thyroid hormone metabolism, we used a murine model and compared at key junctures the capacity of circulating thyroglobulin level (raised by thyroid-stimulating hormone or exogenous thyroglobulin administration) to strengthen self-tolerance and resist autoimmune thyroiditis. The findings clearly demonstrated an essential role for raised circulating thyroglobulin levels in maintaining the dominance of nTreg function and inhibiting thyroid autoimmunity. Subsequent identification of thyroglobulin-specific nTregs as CD4(+)CD25(+)Foxp3(+) in the early 2000s enabled the examination of probable mechanisms of nTreg function. We observed that whenever nTreg function was perturbed by immunotherapeutic measures, opportunistic autoimmune disorders invariably surfaced. This review highlights the step-wise progression of applying insights from endocrinologic and immunologic studies to advance our understanding of the clonal balance between natural regulatory and autoreactive T cells. Moreover, we focus on how tilting the balance in favor of maintaining peripheral tolerance could be achieved. Thus, murine autoimmune thyroiditis has served as a unique model capable of closely simulating natural physiologic conditions. PMID:26158397

  19. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies1[S

    PubMed Central

    Tsiantoulas, Dimitrios; Perkmann, Thomas; Afonyushkin, Taras; Mangold, Andreas; Prohaska, Thomas A.; Papac-Milicevic, Nikolina; Millischer, Vincent; Bartel, Caroline; Hörkkö, Sohvi; Boulanger, Chantal M.; Tsimikas, Sotirios; Fischer, Michael B.; Witztum, Joseph L.; Lang, Irene M.; Binder, Christoph J.

    2015-01-01

    Oxidation-specific epitopes (OSEs) present on apoptotic cells and oxidized low density lipoprotein (OxLDL) represent danger-associated molecular patterns that are recognized by different arcs of innate immunity, including natural IgM antibodies. Here, we investigated whether circulating microparticles (MPs), which are small membrane vesicles released by apoptotic or activated cells, are physiological carriers of OSEs. OSEs on circulating MPs isolated from healthy donors and patients with ST-segment elevation myocardial infarction (STE-MI) were characterized by flow cytometry using a panel of OSE-specific monoclonal antibodies. We found that a subset of MPs carry OSEs on their surface, predominantly malondialdehyde (MDA) epitopes. Consistent with this, a majority of IgM antibodies bound on the surface of circulating MPs were found to have specificity for MDA-modified LDL. Moreover, we show that MPs can stimulate THP-1 (human acute monocytic leukemia cell line) and human primary monocytes to produce interleukin 8, which can be inhibited by a monoclonal IgM with specificity for MDA epitopes. Finally, we show that MDA+ MPs are elevated at the culprit lesion site of patients with STE-MI. Our results identify a subset of OSE+ MPs that are bound by OxLDL-specific IgM. These findings demonstrate a novel mechanism by which anti-OxLDL IgM antibodies could mediate protective functions in CVD. PMID:25525116

  20. Survey of the literature applicable to two-phase natural circulation flows in the hot leg of a PWR: Final report

    SciTech Connect

    Valenzuela, J.A.; Crowley, C.J.; Wallis, G.B.

    1986-10-01

    This report reviews the two-phase flow literature relevant to the natural circulation flow in the hot leg of a pressurized water nuclear reactor during a small break loss of coolant accident. The phenomena of interest in two-phase naural circulation flows are numerous and complex. Three technical areas were identified for individual review in this report: gas-liquid flows in straight pipes; gas-liquid flows in bends; and two-phase natural circulation in reactor geometries. The literature has been surveyed, findings summarized, and suggestions have been made as to where the findings may influence thinking and model development for the reactor situation.

  1. Calculation of the effective dose from natural radioactivity in soil using MCNP code.

    PubMed

    Krstic, D; Nikezic, D

    2010-01-01

    Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this work. Calculations have been done for the most common natural radionuclides in soil (238)U, (232)Th series and (40)K. A ORNL human phantoms and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs. The effective dose was calculated according to ICRP 74 recommendations. Conversion factors of effective dose per air kerma were determined. Results obtained here were compared with other authors. PMID:20045343

  2. Ab initio no core configuration interaction calculations in the natural orbital basis

    NASA Astrophysics Data System (ADS)

    Constantinou, Chrysovalantis; Caprio, Mark A.; Vary, James P.; Maris, Pieter

    2015-10-01

    The natural orbital basis has been successfully used in the past in atomic and molecular structure calculations. The natural orbitals used in those calculations are calculated by diagonalizing the electron one-body density matrix. Here we develop natural orbitals for nuclear no-core configuration interaction (NCCI) calculations. A NCCI calculation using an initial single particle basis, such as the harmonic oscillator basis, must first be performed in order to obtain a one-body density matrix. The eigenvectors of the one-body density matrix are the natural orbitals, and the corresponding eigenvalues are the occupations of these natural orbitals in the nuclear wave function. According to these occupancies, the most important natural orbitals, in the sense of the most occupied, can then be selected and used in a NCCI calculation. We discuss ab initio nuclear NCCI calculations for light nuclei and assess their ability to provide faster convergence. Supported by the US DOE (under Grants DE-FG02-95ER-40934, DESC0008485 SciDAC/NUCLEI, and DE-FG02-87ER40371), and the US NSF (under Grant 0904782). Computational resources provided by NERSC (supported by US DOE Contract DE-AC02-05CH11231), and NDCRC.

  3. Natural variability of the climate as predicted by a simple ocean model with parameterized thermohaline circulation

    SciTech Connect

    Watts, R.G.; Li, S.

    1995-12-31

    Variability of the Earth`s climate can take place on many time scales as a result of internal features. This natural variability is important to humans since it affects such important human enterprises as agriculture, floods, droughts, etc. The authors investigate natural variability within a simple ocean model.

  4. Calculation of Post-Closure Natural Convection Heat and Mass Transfer in Yucca Mountain Drifts

    SciTech Connect

    S. Webb; M. Itamura

    2004-03-16

    Natural convection heat and mass transfer under post-closure conditions has been calculated for Yucca Mountain drifts using the computational fluid dynamics (CFD) code FLUENT. Calculations have been performed for 300, 1000, 3000, and 10,000 years after repository closure. Effective dispersion coefficients that can be used to calculate mass transfer in the drift have been evaluated as a function of time and boundary temperature tilt.

  5. Calculation of a residual mean meridional circulation for a zonal-mean tracer transport model: Revision 1

    SciTech Connect

    Choi, W.K.; Rotman, D.A.; Wuebbles, D.J.

    1995-01-01

    Because of their computational advantages, zonally-averaged chemical-radiative-transport models are widely used to investigate the distribution of chemical species and their change due to the anthropogenic chemicals in the lower and middle atmosphere. In general, the Lagrangian-mean formulation would be ideal to treat transport due to the zonal mean circulation and eddies. However, the Lagrangian formulation is difficult to use in practical applications. The most widely-used formulation for treating global atmospheric dynamics in two-dimensional models is the transformed Eulerian mean (TEM) equations. The residual mean meridional circulation (RMMC) in the TEM system is used to advect tracers. In this study, we describe possible solution techniques for obtaining the RMMC in the LLNL two-dimensional chemical-radiative-transport model. In the next section, the formulation will be described. In sections 3 and 4, possible solution procedures will be described for a diagnostic and prognostic case, respectively.

  6. Circulation of Coxiella burnetii in a Naturally Infected Flock of Dairy Sheep: Shedding Dynamics, Environmental Contamination, and Genotype Diversity

    PubMed Central

    Joulié, A.; Laroucau, K.; Bailly, X.; Prigent, M.; Gasqui, P.; Lepetitcolin, E.; Blanchard, B.; Rousset, E.; Sidi-Boumedine, K.

    2015-01-01

    Q fever is a worldwide zoonosis caused by Coxiella burnetii. Domestic ruminants are considered to be the main reservoir. Sheep, in particular, may frequently cause outbreaks in humans. Because within-flock circulation data are essential to implementing optimal management strategies, we performed a follow-up study of a naturally infected flock of dairy sheep. We aimed to (i) describe C. burnetii shedding dynamics by sampling vaginal mucus, feces, and milk, (ii) assess circulating strain diversity, and (iii) quantify barn environmental contamination. For 8 months, we sampled vaginal mucus and feces every 3 weeks from aborting and nonaborting ewes (n = 11 and n = 26, respectively); for lactating females, milk was obtained as well. We also sampled vaginal mucus from nine ewe lambs. Dust and air samples were collected every 3 and 6 weeks, respectively. All samples were screened using real-time PCR, and strongly positive samples were further analyzed using quantitative PCR. Vaginal and fecal samples with sufficient bacterial burdens were then genotyped by multiple-locus variable-number tandem-repeat analysis (MLVA) using 17 markers. C. burnetii burdens were higher in vaginal mucus and feces than in milk, and they peaked in the first 3 weeks postabortion or postpartum. Primiparous females and aborting females tended to shed C. burnetii longer and have higher bacterial burdens than nonaborting and multiparous females. Six genotype clusters were identified; they were independent of abortion status, and within-individual genotype diversity was observed. C. burnetii was also detected in air and dust samples. Further studies should determine whether the within-flock circulation dynamics observed here are generalizable. PMID:26253679

  7. Preserved Function of Circulating Invariant Natural Killer T Cells in Patients With Chronic Hepatitis B Virus Infection

    PubMed Central

    Zhu, Haoxiang; Zhang, Yongmei; Liu, Hongyan; Zhang, Yijun; Kang, Yaoyue; Mao, Richeng; Yang, Feifei; Zhou, Dapeng; Zhang, Jiming

    2015-01-01

    Abstract To date, the role of invariant natural killer T (iNKT) cells in chronic hepatitis B virus (HBV) infection is not fully understood. In previous reports, iNKT cells were identified by indirect methods. However, discrepancies regarding the prevalence and function of iNKT cells during HBV infection were observed. In this study, we have devised a direct, highly specific CD1d tetramer-based methodology to test whether patients with HBV infection have associated iNKT-cell defects. In our study, a total of 93 chronic HBV-infected patients and 30 healthy individuals (as control) were enrolled. The prevalence of iNKT cells, their cytokine producing capacity, and in vitro expansion were determined by flow cytometric analysis with CD1d tetramer staining. Our observation demonstrated that there was no significant difference in circulating CD1d-tetramer positive iNKT cell numbers between HBV-infected patients and healthy controls. The capacity of iNKT cells to produce IFN-γ or IL-4 as well as their in vitro expansion was also comparable between these 2 groups. However, among chronic HBV-infected patients, a decrease in iNKT cell-number was observed in chronic hepatitis B (CHB) and cirrhosis patients in comparison to that in immune tolerant (IT) patients. These results indicated that patients with chronic HBV infection may have normal prevalence and preserved function of circulating iNKT cells. And antiviral therapy with nucleot(s)ide analogue does not alter the frequency and function of circulating iNKT cells in chronic Hepatitis B patients.

  8. Circulation of Coxiella burnetii in a Naturally Infected Flock of Dairy Sheep: Shedding Dynamics, Environmental Contamination, and Genotype Diversity.

    PubMed

    Joulié, A; Laroucau, K; Bailly, X; Prigent, M; Gasqui, P; Lepetitcolin, E; Blanchard, B; Rousset, E; Sidi-Boumedine, K; Jourdain, E

    2015-10-01

    Q fever is a worldwide zoonosis caused by Coxiella burnetii. Domestic ruminants are considered to be the main reservoir. Sheep, in particular, may frequently cause outbreaks in humans. Because within-flock circulation data are essential to implementing optimal management strategies, we performed a follow-up study of a naturally infected flock of dairy sheep. We aimed to (i) describe C. burnetii shedding dynamics by sampling vaginal mucus, feces, and milk, (ii) assess circulating strain diversity, and (iii) quantify barn environmental contamination. For 8 months, we sampled vaginal mucus and feces every 3 weeks from aborting and nonaborting ewes (n=11 and n=26, respectively); for lactating females, milk was obtained as well. We also sampled vaginal mucus from nine ewe lambs. Dust and air samples were collected every 3 and 6 weeks, respectively. All samples were screened using real-time PCR, and strongly positive samples were further analyzed using quantitative PCR. Vaginal and fecal samples with sufficient bacterial burdens were then genotyped by multiple-locus variable-number tandem-repeat analysis (MLVA) using 17 markers. C. burnetii burdens were higher in vaginal mucus and feces than in milk, and they peaked in the first 3 weeks postabortion or postpartum. Primiparous females and aborting females tended to shed C. burnetii longer and have higher bacterial burdens than nonaborting and multiparous females. Six genotype clusters were identified; they were independent of abortion status, and within-individual genotype diversity was observed. C. burnetii was also detected in air and dust samples. Further studies should determine whether the within-flock circulation dynamics observed here are generalizable. PMID:26253679

  9. The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations

    NASA Astrophysics Data System (ADS)

    Cauquoin, A.; Jean-Baptiste, P.; Risi, C.; Fourré, É.; Stenni, B.; Landais, A.

    2015-10-01

    The description of the hydrological cycle in Atmospheric General Circulation Models (GCMs) can be validated using water isotopes as tracers. Many GCMs now simulate the movement of the stable isotopes of water, but here we present the first GCM simulations modelling the content of natural tritium in water. These simulations were obtained using a version of the LMDZ General Circulation Model enhanced by water isotopes diagnostics, LMDZ-iso. To avoid tritium generated by nuclear bomb testing, the simulations have been evaluated against a compilation of published tritium datasets dating from before 1950, or measured recently. LMDZ-iso correctly captures the observed tritium enrichment in precipitation as oceanic air moves inland (the so-called continental effect) and the observed north-south variations due to the latitudinal dependency of the cosmogenic tritium production rate. The seasonal variability, linked to the stratospheric intrusions of air masses with higher tritium content into the troposphere, is correctly reproduced for Antarctica with a maximum in winter. LMDZ-iso reproduces the spring maximum of tritium over Europe, but underestimates it and produces a peak in winter that is not apparent in the data. This implementation of tritium in a GCM promises to provide a better constraint on: (1) the intrusions and transport of air masses from the stratosphere, and (2) the dynamics of the modelled water cycle. The method complements the existing approach of using stable water isotopes.

  10. Natural circulation decay heat removal from an SP-100, 550 kWe power system for a lunar outpost

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.; Xue, Huimin

    1992-01-01

    This research investigated the decay heat removal from the SP-100 reactor core of a 550-kWe power system for a lunar outpost by natural circulation of lithium coolant. A transient model that simulates the decay heat removal loop (DHRL) of the power system was developed and used to assess the system's decay heat removal capability. The effects of the surface area of the decay heat rejection radiator, the dimensions of the decay heat exchanger (DHE) flow duct, the elevation of the DHE, and the diameter of the rise and down pipes in the DHRL on the decay heat removal capability were examined. Also, to determine the applicability of test results at earth gravity to actual system performance on the lunar surface, the effect of the gravity constant (1 g and 1/6 g) on the thermal behavior of the system after shutdown was investigated.

  11. Low Circulating Natural Killer Cell Counts are Associated With Severe Disease in Patients With Common Variable Immunodeficiency

    PubMed Central

    Ebbo, Mikael; Gérard, Laurence; Carpentier, Sabrina; Vély, Frédéric; Cypowyj, Sophie; Farnarier, Catherine; Vince, Nicolas; Malphettes, Marion; Fieschi, Claire; Oksenhendler, Eric; Schleinitz, Nicolas; Vivier, Eric

    2016-01-01

    Natural Killer (NK) cells have been shown to exert antiviral and antitumoural activities. Nevertheless most available data are derived from mouse models and functions of these cells in human remain unclear. To evaluate the impact of low circulating NK cell counts and to provide some clues to the role of NK cells in natural conditions, we studied a large cohort of patients with common variable immunodeficiency (CVID) included in a multicenter cohort of patients with primary hypogammaglobulinaemia. Patients were classified into three groups on the basis of their NK cell counts: severe and mild NK cell lymphopenia (< 50 and 50–99 × 106/L respectively), and normal NK cell counts (> 100 × 106/L). Clinical events were analyzed and compared between these three groups of patients. During study period, 457 CVID patients were included: 99 (21.7%) with severe NK cell lymphopenia, 118 (25.8%) with mild NK cell lymphopenia and 240 (52.5%) with normal NK cell counts. Non-infectious complications (57% vs. 36% and 35%), and, particularly, granulomatous complications (25.3% vs. 13.6% and 8.8%), were more frequent in patients with severe NK cell lymphopenia than in other groups. Invasive infections (68.7% vs. 60.2% and 48.8%), including bacteraemia (22.2% vs. 5.9% and 8.3%) and infectious pneumonia (63.6% vs. 59.3% and 44.2%), were also more frequent in this population. However, no difference was observed for viral infections and neoplasms. Low circulating NK cell counts are associated with more severe phenotypes of CVID, which may indicate a protective role of these immune cells against severe bacterial infections and other complications and non-redundant immune functions when the adaptive immune response is not optimal. PMID:27211564

  12. Investigations on natural circulation in reactor models and shutdown heat removal systems for LMFBRs (liquid metal fast breeder reactors)

    SciTech Connect

    Hoffmann, H.; Weinberg, D.; Marten, K. ); Ieda, Yoshiaki )

    1989-11-01

    For sodium-cooled pool-type reactors, studies have been undertaken to remove the decay heat by natural convection alone, as in the case of failure of all power supplies. For this purpose, four immersion coolers (ICs), two each installed at a 180-deg circumferential position with respect to the others, are arranged within the reactor tank. They are connected with natural-drift air coolers through independent intermediate circuits. The primary sodium in the tank as well as the secondary sodium in the intermediate loop circulate by natural convection. The general functioning of this passive shutdown decay heat removal (DHR) system is demonstrated in 1:20 and 1:5 scale test models using water as a simulant fluid for sodium. The model design is based on the thermohydraulics similarity criteria. In the RAMONA three-dimensional 1:20 scale model, experiments were carried out to clarify the steady-state in-vessel thermohydraulics for different parameter combinations (core power, radial power distribution across the core, DHR by 2 or 4 ICs in operation, above-core structure geometry and position, different IC designs). For all mentioned parameters, temperatures and their fluctuations were measured and used to indicate isotherms and lines of identical temperature fluctuations. The flow patterns were observed visually. The experiments were recalculated by an updated version of the single-phase three-dimensional thermohydraulics code COMMIX.

  13. Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments

    SciTech Connect

    Jose Reyes

    2005-02-14

    In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

  14. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia--the impact of new circulating fluidized bed technology.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-03-01

    Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated - two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides and for (40)K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ((210)Pb and (40)K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ((238)U, (226)Ra, (210)Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, (226)Ra and (228)Ra. A part of (226)Ra input activity, unlike (228)Ra, was undetectable in the

  15. Determination of absolute configuration of natural products: theoretical calculation of electronic circular dichroism as a tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of absolute configuration (AC) is one of the most challenging features in the structure elucidation of chiral natural products, especially those with complex structures. With revolutionary advancements in the area of quantum chemical calculations of chiroptical spectroscopy over the pa...

  16. Comparison of ocean surface solar irradiance in the GLA General Circulation Model and satellite-based calculations

    NASA Technical Reports Server (NTRS)

    Chertock, Beth; Sud, Y. C.

    1993-01-01

    A global, 7-year satellite-based record of ocean surface solar irradiance (SSI) is used to assess the realism of ocean SSI simulated by the nine-layer Goddard Laboratory for Atmospheres (GLA) General Circulation Model (GCM). January and July climatologies of net SSI produced by the model are compared with corresponding satellite climatologies for the world oceans between 54 deg N and 54 deg S. This comparison of climatologies indicates areas of strengths and weaknesses in the GCM treatment of cloud-radiation interactions, the major source of model uncertainty. Realism of ocean SSI is also important for applications such as incorporating the GLA GCM into a coupled ocean-atmosphere GCM. The results show that the GLA GCM simulates too much SSI in the extratropics and too little in the tropics, especially in the summer hemisphere. These discrepancies reach magnitudes of 60 W/sq m and more. The discrepancies are particularly large in the July case off the western coast of North America. Positive and negative discrepancies in SSI are shown to be consistent with discrepancies in planetary albedo.

  17. Comparison of ocean surface solar irradiance in the GLA General Circulation Model and satellite-based calculations

    SciTech Connect

    Chertock, B. ); Sud, Y.C. )

    1993-03-01

    A global, 7-year satellite-based record of ocean surface solar irradiance (SSI) is used to assess the realism of ocean SSI simulated by the nine-layer Goddard Laboratory for Atmospheres (GLA) General Circulation Model (GCM). January and July climatologies of net SSI produced by the model are compared with corresponding satellite climatologies for the world oceans between 54[degrees]N and 54[degrees]S. This comparison of climatologies indicates areas of strengths and weaknesses in the GCM treatment of cloud-radiation interactions, the major source of model uncertainty. Realism of ocean SSI is also important for applications such as incorporating the GLA GCM into a coupled ocean-atmosphere GCM. The results show that the GLA GCM simulates too much SSI in the extratropics and too little in the tropics, especially in the summer hemisphere. These discrepancies reach magnitudes of 60 W m[sup [minus]2] and more. The discrepancies are particularly large in the July case off the western coast of North America. In this region of persistent marine stratus, the GCM climatological values exceed the satellite climatological values by as much as 131 W m[sup [minus]2]. Positive and negative discrepancies in SSI are shown to be consistent with discrepancies in planetary albedo.

  18. A new method of calculating electrical conductivity with applications to natural waters

    NASA Astrophysics Data System (ADS)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.; Ball, James W.

    2012-01-01

    A new method is presented for calculating the electrical conductivity of natural waters that is accurate over a large range of effective ionic strength (0.0004-0.7 mol kg-1), temperature (0-95 °C), pH (1-10), and conductivity (30-70,000 μS cm-1). The method incorporates a reliable set of equations to calculate the ionic molal conductivities of cations and anions (H+, Li+, Na+, K+, Cs+, NH4+, Mg2+, Ca2+, Sr2+, Ba2+, F-, Cl-, Br-, SO42-, HCO3-, CO32-, NO3-, and OH-), environmentally important trace metals (Al3+, Cu2+, Fe2+, Fe3+, Mn2+, and Zn2+), and ion pairs (HSO4-, NaSO4-, NaCO3-, and KSO4-). These equations are based on new electrical conductivity measurements for electrolytes found in a wide range of natural waters. In addition, the method is coupled to a geochemical speciation model that is used to calculate the speciated concentrations required for accurate conductivity calculations. The method was thoroughly tested by calculating the conductivities of 1593 natural water samples and the mean difference between the calculated and measured conductivities was -0.7 ± 5%. Many of the samples tested were selected to determine the limits of the method and include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. Transport numbers were calculated and H+, Na+, Ca2+, Mg2+, NH4+, K+, Cl-, SO42-, HCO3-, CO32-, F-, Al3+, Fe2+, NO3-, and HSO4-substantially contributed (>10%) to the conductivity of at least one of the samples. Conductivity imbalance in conjunction with charge imbalance can be used to identify whether a cation or an anion measurement is likely in error, thereby providing an additional quality assurance/quality control constraint on water analyses.

  19. A new method of calculating electrical conductivity with applications to natural waters

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.; Ball, James W.

    2012-01-01

    A new method is presented for calculating the electrical conductivity of natural waters that is accurate over a large range of effective ionic strength (0.0004–0.7 mol kg-1), temperature (0–95 °C), pH (1–10), and conductivity (30–70,000 μS cm-1). The method incorporates a reliable set of equations to calculate the ionic molal conductivities of cations and anions (H+, Li+, Na+, K+, Cs+, NH4+, Mg2+, Ca2+, Sr2+, Ba2+, F-, Cl-, Br-, SO42-, HCO3-, CO32-, NO3-, and OH-), environmentally important trace metals (Al3+, Cu2+, Fe2+, Fe3+, Mn2+, and Zn2+), and ion pairs (HSO4-, NaSO4-, NaCO3-, and KSO4-). These equations are based on new electrical conductivity measurements for electrolytes found in a wide range of natural waters. In addition, the method is coupled to a geochemical speciation model that is used to calculate the speciated concentrations required for accurate conductivity calculations. The method was thoroughly tested by calculating the conductivities of 1593 natural water samples and the mean difference between the calculated and measured conductivities was -0.7 ± 5%. Many of the samples tested were selected to determine the limits of the method and include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. Transport numbers were calculated and H+, Na+, Ca2+, Mg2+, NH4+, K+, Cl-, SO42-, HCO3-, CO32-, F-, Al3+, Fe2+, NO3-, and HSO4- substantially contributed (>10%) to the conductivity of at least one of the samples. Conductivity imbalance in conjunction with charge imbalance can be used to identify whether a cation or an anion measurement is likely in error, thereby providing an additional quality assurance/quality control constraint on water analyses.

  20. Absence of circulating natural killer (NK) cells in a child with erythrophagocytic lymphohistiocytosis lacking NK cell activity

    SciTech Connect

    Kawai, H.; Komiyama, A.; Aoyama, K.; Miyagawa, Y.; Akabane, T.

    1988-06-01

    A 5-year-old girl who was diagnosed as having erythrophagocytic lymphohistiocytosis died at age 9 years. Peripheral lymphocytes from the patient persistently lacked natural killer (NK) cell activity during the 4-year observation period: the percent lysis values as measured by a 4-hr /sup 51/Cr release assay at a 40:1 effector:target ratio were below 1.0% against K562 and Molt-4 cells as compared with the normal lymphocyte value (mean +/- SD) of 46.2% +/- 5.8% and 43.9% +/- 6.7%, respectively. The patient's lymphocytes never developed NK cell activity by their incubation with target cells for longer time periods or by their stimulation with interferon-alpha, interleukin-2, or polyinosinic-polycytidilic acid. Single cell-in-agarose assay showed the absence of target-binding cells (TBCs): TBC numbers were below 0.3% as compared with the normal lymphocyte value of 8.1% +/- 1.3% (mean +/- SD). Flow cytometry showed a marked decrease in Leu-7+ cells (1.7%) and the absence of Leu-11+ cells (0.4%) in the peripheral blood. These results first demonstrate a case of erythrophagocytic lymphohistiocytosis in which there is the lack of NK cell activity due to the absence of circulating NK cells.

  1. Laser anemometry measurements of natural circulation flow in a scale model PWR reactor system. [Pressurized Water Reactor

    NASA Technical Reports Server (NTRS)

    Kadambi, J. R.; Schneider, S. J.; Stewart, W. A.

    1986-01-01

    The natural circulation of a single phase fluid in a scale model of a pressurized water reactor system during a postulated grade core accident is analyzed. The fluids utilized were water and SF6. The design of the reactor model and the similitude requirements are described. Four LDA tests were conducted: water with 28 kW of heat in the simulated core, with and without the participation of simulated steam generators; water with 28 kW of heat in the simulated core, with the participation of simulated steam generators and with cold upflow of 12 lbm/min from the lower plenum; and SF6 with 0.9 kW of heat in the simulated core and without the participation of the simulated steam generators. For the water tests, the velocity of the water in the center of the core increases with vertical height and continues to increase in the upper plenum. For SF6, it is observed that the velocities are an order of magnitude higher than those of water; however, the velocity patterns are similar.

  2. The impact of horizontal resolution of density field on the calculation of the Atlantic meridional overturning circulation at 34°S

    NASA Astrophysics Data System (ADS)

    Stepanov, Vladimir N.; Iovino, Doroteaciro; Masina, Simona; Storto, Andrea; Cipollone, Andrea

    2016-06-01

    The Atlantic meridional overturning circulation and meridional heat transport (hereafter the AMOC and MHT) at 34°S as simulated by global 1/16° eddy-rich (henceforth GLOB16) and ¼° eddy-permitting (GLOB4) models are compared with observational estimates. Three different methods are used for calculating the modeled AMOC: the first method (MOCmod) is based on simulated velocity fields, while the second (MOCob) relies on the same assumptions as available observed-derived estimates. The third method (MOCob2) is also based on hydrostatic and geostrophic relationships, but relative to a barotropic circulation instead of the definition of velocity at a specific reference depth. All methods correctly reproduce the time-mean GLOB16 AMOC strength, but the value of the non-Ekman component of the GLOB16 AMOC is only about 75% of the observed-derived estimate. The GLOB16 MHT is also significantly less than observation value (slightly more than 60% of the observed). However, the mean AMOC and MHT values at 34°S obtained with coarser resolution GLOB4 model are comparable with the observed-derived estimates. Possible causes for the differences between the eddy-rich model and observational data are studied. It is shown that the density field from the eddy-rich model has high temporal variability along 34°S with spatial scale of about two hundred km that can be due to mesoscale variations, caused by Agulhas "leakage." This results in the decrease of the mean meridional geostrophic velocity, which leads to smaller values of the AMOC and MHT in GLOB16: subsampling GLOB16 density on ¼° or ½° longitude grid along 34°S for MOCob calculation significantly increases the AMOC values. The findings in this paper provide guidance in understanding AMOC and MHT dissimilarities between observation-based estimates and eddy-rich ocean models at 34°S.

  3. Natural Variability during Snowfall: Observations of Snowflake Microstructure and Calculations of Corresponding Snowfall Scattering Properties

    NASA Astrophysics Data System (ADS)

    Gergely, M.; Garrett, T. J.

    2015-12-01

    Significant progress has been achieved in approximating snowflakes and ice-cloud particles by increasingly more realistic and detailed shape models and in calculating associated scattering properties crucial to snowfall remote sensing. The applied approximations of the snowflake microstructure applied for the scattering calculations, however, are still based on few available field measurement data, often integrated over many individual snow storms, and only include several microstructural properties that cannot fully capture the natural variability during snowfall, e.g. different degrees of riming or aggregate snowflakes formed from more than one distinct ice crystal habit. In this study, (i) the natural variability of key microstructural properties during snowfall is quantified for individual snow storms based on high-resolution multi-view snowflake imaging data collected with the Multi-Angle Snowflake Camera (MASC) at Alta ski area (Alta, UT), and (ii) the corresponding variability in snowflake scattering properties is calculated. In addition to snowflake size, orientation and aspect ratio, 'particle complexity' (specifying snowflake perimeter and brightness variations in the MASC snowflake images) is included in the presented approach, yielding a quantitative and objective measure of characteristic snowflake microstructure, including crystal habit and degree of riming, important for realistically modelling snowfall scattering properties. The aim is to present an analysis of the impact of the observed natural microstructural variability on the derived snowflake scattering properties and ultimately on the snowfall radar reflectivity integrated over the obtained variability of snowflake microstructure and scattering properties.

  4. A Non-Heating Experimental Study on the Two-Phase Natural Circulation through the Annular Gap between Reactor Vessel and Insulation under External Vessel Cooling

    SciTech Connect

    Ha, K.S.; Park, R.J.; Cho, Y.R.; Kim, S.B.; Kim, H.D.; Kim, H.M.; Kim, K.Y.

    2004-07-01

    To improve the margin for IVR in high-power reactors, some design improvements of the vessel/insulation configuration to increase the heat removal rate by two-phase natural circulation have been proposed. To observe and evaluate the two-phase natural circulation phenomena through the gap between the reactor vessel and the insulation in the APR1400 under external reactor vessel cooling, the T-HERMES program has been performed, that is, the THERMES- SCALE, T-HERMES-SMALL, HERMES-HALF, and T-HERMES-CFD studies. In this paper, the HERMES-HALF study, which is one of the T-HERMES programs, is introduced. The HERMES-HALF is a non-heating experimental study on the two-phase natural circulation through the annular gap between the reactor vessel and the insulation. The objectives of this HERMES-HALF study are to observe and evaluate the two-phase natural circulation phenomena through the gap between the reactor vessel and the insulation in the APR1400. For these purposes, a half-scaled experimental facility is prepared utilizing the results of a scaling analysis to simulate the APR1400 reactor and insulation system. The behaviors of the boiling-induced two-phase natural circulation flow in the insulation gap are observed, and the liquid mass flow rates driven by the natural circulation loop and void fraction distribution are measured. And numerical analyses of the HERMES-HALF experiments using CFX-5.6 code have also been performed by solving unsteady, three-dimensional Reynolds-averaged Navier-Stokes equations for multiphase flows with the zero equation turbulence model. By the experimental flow observation and numerical predictions, weak recirculation flows in the near region of the shear key are observed. The void fraction monotonically increases from the water inlet to the shear key region. There exists a short decrease of the void fraction after passing through the shear key due to geometrical expansion and the recirculation flow caused by the shear key. The variation of

  5. Algorithms for calculating the dynamics of biocapacity and ecological footprint for natural and artificial ecosystems

    NASA Astrophysics Data System (ADS)

    Shuvaev, Andrey; Pechurkin, Nickolay

    Calculations of the dynamics of biological capacity (BC) and the ecological footprint (EF) is necessary to quantify the predictions and options to both natural and artificial ecosystems at different levels of the hierarchy. The magnitude of the BC as characteristic of the potential possibilities of the system is determined according to the integrated monitoring of physiological state, or photosynthetic activity, "green area" of the ecosystem. The quantity of the EF is defined as the amount required in the functioning of the system, including the production of the required products and degradation disposal unit. In our study we consider an example of the algorithm for calculating the dynamics of BC and EF for the quantification of the Krasnoyarsk Territory loaded as the natural ecosystem. The main burden was determined by EF, non-utilized emissions of carbon dioxide in the operation of energy businesses in the region. To verify the relevant calculations for BC processed data to ground and space monitor vegetation core areas of the province. In particular, the net primary production is calculated on the basis of the relative normalized vegetation index - NDVI (Normalized Difference Vegetation Index) based on satellite data A comparative evaluation of the contribution of each of the ways to generate energy (thermal and hydro ) in environmental load was made. A comparison of natural ecosystems and loaded specially created life-support systems in space and on the dynamics of BC/EF gives perspective to quantify the predictions and options for development of systems of different levels of the hierarchy. This work was supported by the Russian Foundation for Basic Research, project number 13-06-00060.

  6. GROUND WATER ISSUE - CALCULATION AND USE OF FIRST-ORDER RATE CONSTANTS FOR MONITORED NATURAL ATTENUATION STUDIES

    EPA Science Inventory

    This issue paper explains when and how to apply first-order attenuation rate constant calculations in monitored natural attenuation (MNA) studies. First-order attenuation rate constant calculations can be an important tool for evaluating natural attenuation processes at ground-wa...

  7. Numerical calculation of the drag force induced by natural convection of spheres at low Grashof numbers

    SciTech Connect

    Dudek, D.; Fletcher, T.H.

    1987-02-01

    When a heated solid sphere is introduced into an ambient fluid, a natural convective flow occurs which results in a drag force on the sphere. This study involves the numerical calculation of both the steady-state and the transient natural convective drag force around spheres at low Grashof numbers. Numerical techniques are taken from Geoola and Cornish. An empirical expression is suggested for the total drag coefficient for Grashof numbers ranging from 4 x 10/sup -4/ to 0.5 and Prandtl number = 0.72: log C/sub DT/ = 1.25 + 0.31 log Gr - 0.097(log Gr)/sup 2/. The dimensionless time required to reach 90% of the steady-state drag force can be approximated by the second-order polynomial: log t/sub 90%/ = 1.32 - log Gr - 0.11(Gr)/sup 2/.

  8. On the Effectiveness of Nature-Inspired Metaheuristic Algorithms for Performing Phase Equilibrium Thermodynamic Calculations

    PubMed Central

    Fateen, Seif-Eddeen K.; Bonilla-Petriciolet, Adrian

    2014-01-01

    The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design. PMID:24967430

  9. On the effectiveness of nature-inspired metaheuristic algorithms for performing phase equilibrium thermodynamic calculations.

    PubMed

    Fateen, Seif-Eddeen K; Bonilla-Petriciolet, Adrian

    2014-01-01

    The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design. PMID:24967430

  10. UHF natural orbitals for defining and starting MC-SCF calculations

    NASA Astrophysics Data System (ADS)

    Pulay, Peter; Hamilton, Tracy P.

    1988-04-01

    A simple way of generating starting orbitals for multiconfigurational SCF calculations (particularly of the CAS type) is to use the natural orbitals of the unrestricted Hartree-Fock wave function. Significant fractional occupancy of a UHF natural orbital indicates that the orbital should be included in the active space; this is illustrated for symmetrically stretched water, for NO, N2O4, and for the transition state on the Me3CO→Me2CO+CH3 reaction surface. Average natural orbitals should be used if there are several UHF solutions for the same state; this restores symmetry broken at the the UHF level. Configuration selection based on fractional occupation appears to be the basis for a reliable automated procedure. The UHF natural orbitals provide good starting orbitals for the two-configuration SCF and for the 4×4 CAS wave function in stretched F2, H2O2, and C2H6, methane, water, in twisted ethylene, in ozone, and for various CAS wave functions in the first asynchronous transition state of the HCNO+H2C2 1,3-cycloaddition. Comparison is made with the extended Hartree-Fock method.

  11. TRAC-PF1 post-test predictions for the Semiscale Natural-Circulation Tests S-NC-2 and S-NC-6. [PWR

    SciTech Connect

    Booker, C.P.

    1983-01-01

    The TRAC prediction are compared to the data for the Semiscale natural-circular Tests S-NC-2B and S-NC-6. S-NC-2B is a baseline test covering single- and two-phase natural circulation as well as reflux; here TRAC compares quite well with the experiment results for mass flow. For Test S-NC-6, which is a reflux test with various amounts of nitrogen injected into the system, the TRAC prediction of the reflux rate is close to the experiment value with no nitrogen in the system. Ultimately, the maximum reflux rate predicted by TRAC is about 20% higher than the data.

  12. A study on the effect of various design parameters on the natural circulation flow rate of the ex-vessel core catcher cooling system of EU-APR1400

    SciTech Connect

    Rhee, B. W.; Ha, K. S.; Park, R. J.; Song, J. H.

    2012-07-01

    In this paper, a study on the effect of various design parameters such as the channel gap width, heat flux distribution, down-comer pipe size and two-phase flow slip ratio on the natural circulation flow rate is performed based on a physical model for a natural circulation flow along the flow path of the ex-vessel core catcher cooling system of an EU-APR1400, and these effects on the natural circulation flow rate are analyzed and compared with the minimum flow rate required for the safe operation of the system. (authors)

  13. Nature of adsorption on TiC(111) investigated with density-functional calculations

    NASA Astrophysics Data System (ADS)

    Ruberto, Carlo; Lundqvist, Bengt I.

    2007-06-01

    Extensive density-functional calculations are performed for chemisorption of atoms in the three first periods (H, B, C, N, O, F, Al, Si, P, S, and Cl) on the polar TiC(111) surface. Calculations are also performed for O on TiC(001), for full O(1×1) monolayer on TiC(111), as well as for bulk TiC and for the clean TiC(111) and (001) surfaces. Detailed results concerning atomic structures, energetics, and electronic structures are presented. For the bulk and the clean surfaces, previous results are confirmed. In addition, detailed results are given on the presence of C-C bonds in the bulk and at the surface, as well as on the presence of a Ti-based surface resonance (TiSR) at the Fermi level and of C-based surface resonances (CSR’s) in the lower part of the surface upper valence band. For the adsorption, adsorption energies Eads and relaxed geometries are presented, showing great variations characterized by pyramid-shaped Eads trends within each period. An extraordinarily strong chemisorption is found for the O atom, 8.8eV /adatom. On the basis of the calculated electronic structures, a concerted-coupling model for the chemisorption is proposed, in which two different types of adatom-substrate interactions work together to provide the obtained strong chemisorption: (i) adatom-TiSR and (ii) adatom-CSR’s. This model is used to successfully describe the essential features of the calculated Eads trends. The fundamental nature of this model, based on the Newns-Anderson model, should make it apt for general application to transition-metal carbides and nitrides and for predictive purposes in technological applications, such as cutting-tool multilayer coatings and MAX phases.

  14. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    NASA Astrophysics Data System (ADS)

    Sakitani, Katsumi; Honda, Hiroshi

    Experimental and theoretical studies were made of the heat transfer characteristics of a latent heat storage unit used for a natural circulation cooling /latent heat storage system. Heating and cooling curves of the latent heat storage unit undergoing solid-liquid phase change of a PCM (lauric acid) was obtained by using anatural circulation loop of R22 which consisted of an electrically heated evaporater, a water cooled condenser and the latent heat storage unit. The latent heat storage unit showed a heat transfer performance which was high enough for practical use. An approximate theoretical analysis was conducted to investigate transient behavior of the latent heat storage unit. Predictions of the refrigerant and outer surface temperatures during the melting process were in fair agreement with the experimental data, whereas that of the refrigerant temperature during the solidification process was considerably lower than the measurement.

  15. Four-Component Relativistic DFT Calculations of (13)C Chemical Shifts of Halogenated Natural Substances.

    PubMed

    Casella, Girolamo; Bagno, Alessandro; Komorovsky, Stanislav; Repisky, Michal; Saielli, Giacomo

    2015-12-14

    We have calculated the (13)C NMR chemical shifts of a large ensemble of halogenated organic molecules (81 molecules for a total of 250 experimental (13)C NMR data at four different levels of theory), ranging from small rigid organic compounds, used to benchmark the performance of various levels of theory, to natural substances of marine origin with conformational degrees of freedom. Carbon atoms bonded to heavy halogen atoms, particularly bromine and iodine, are known to be rather challenging when it comes to the prediction of their chemical shifts by quantum methods, due to relativistic effects. In this paper, we have applied the state-of-the-art four-component relativistic density functional theory for the prediction of such NMR properties and compared the performance with two-component and nonrelativistic methods. Our results highlight the necessity to include relativistic corrections within a four-component description for the most accurate prediction of the NMR properties of halogenated organic substances. PMID:26541625

  16. A scaling study of the natural circulation flow of the ex-vessel core catcher cooling system of EU-APR1400 for designing a scale-down test facility for design verification

    SciTech Connect

    Rhee, B. W.; Ha, K. S.; Park, R. J.; Song, J. H.; Revankar, S. T.

    2012-07-01

    In this paper a scaling study on the steady state natural circulation flow along the flow path of the ex vessel core catcher cooling system of EU-APR1400 is described, and the scaling criteria for reproducing the same steady state thermalhydraulic characteristics of the natural circulation flow as a prototype core catcher cooling system in the scale-down test facility are derived in terms of the down-comer pipe diameter and orifice resistance. (authors)

  17. A short-term increase of the postoperative naturally circulating dendritic cells subsets in flurbiprofen-treated patients with esophageal carcinoma undergoing thoracic surgery

    PubMed Central

    Chai, Xiao-qing; Shu, Shu-hua; Zhang, Xiao-lin; Xie, Yan-hu; Wei, Xin; Wu, Yu-jing; Wei, Wei

    2016-01-01

    The present study evaluated whether flurbiprofen increased the naturally circulating dendritic cells (DCs) subsets in patients with esophageal squamous cell carcinoma (ESCC) undergoing esophageal resection. Compared to healthy donors (n=20), the significantly depressed percentages of plasmacytoid DCs (pDCs), CD1c+ myeloid DCs (mDCs), and CD141+ mDCs among ESCC patients (n=60) were confirmed. Flurbiprofen was administered before skin incision and at the end of operation in group F (n=30), as well as placebo in group C (n=30). The postoperative suppressed percentages of pDCs, CD1c+ mDCs, and CD141+ mDCs increased significantly following the perioperative treatment with flurbiprofen. Flurbiprofen also significantly stimulated the postoperative IFN-f and IL-17 production, but inhibited the immunosuppressive IL-10 and TGF-β levels. Furthermore, flurbiprofen exerted a similar analgesic effect and brought a significantly less sufentanil consumption compared to group C. Taken together, flurbiprofen provided a short-term increase of postoperative naturally circulating DCs in ESCC patients. PMID:26959879

  18. Steady state boiling crisis in a helium vertically heated natural circulation loop - Part 1: Critical heat flux, boiling crisis onset and hysteresis

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2016-01-01

    Experiments were conducted on a 2-m high two-phase helium natural circulation loop operating at 4.2 K and 1 atm. The same loop was used in two experiments with different heated section internal diameter (10 and 6 mm). The power applied on the heated section wall was controlled in increasing and decreasing sequences, and temperature along the section, mass flow rate and pressure drop evolutions were recorded. The values of critical heat flux (CHF) were found at different positions of the test section, and the post-CHF regime was studied. The predictions of CHF by existing correlations were good in the downstream portion of the section, however CHF anomalies have been observed near the entrance, in the low quality region. In resonance with this, the re-wetting of the surface has distinct hysteresis behavior in each of the two CHF regions. Furthermore, hydraulics effects of crisis, namely on friction, were studied (Part 2). This research is the starting point to future works addressing transients conducing to boiling crisis in helium natural circulation loops.

  19. Parameter Calculation Technique for the Waste Treatment Facilities Using Naturally-Aerated Blocks in the Bog Ecosystems

    NASA Astrophysics Data System (ADS)

    Akhmed-Ogly, K. V.; Savichev, O. G.; Tokarenko, O. G.; Pasechnik, E. Yu; Reshetko, M. V.; Nalivajko, N. G.; Vlasova, M. V.

    2014-08-01

    Technique for the domestic wastewater treatment in the small residential areas and oil and gas facilities of the natural and man-made systems including a settling tank for mechanical treatment and a biological pond with peat substrate and bog vegetation for biological treatment has been substantiated. Technique for parameters calculation of the similar natural and man-made systems has been developed. It was proven that effective treatment of wastewater can be performed in Siberia all year round.

  20. Lung Circulation.

    PubMed

    Suresh, Karthik; Shimoda, Larissa A

    2016-01-01

    The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed. © 2016 American Physiological Society. Compr Physiol 6:897-943, 2016. PMID:27065170

  1. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    NASA Astrophysics Data System (ADS)

    Sakitani, Katsumi; Honda, Hiroshi

    Experiments were performed to investigate feasibility of using organic materials as a PCM for a latent heat storage unit of a natural circulation cooling/latent heat storage system. This system was designed to cool a shelter accommodating telecommunication equipment located in subtropical deserts or similar regions without using a power source. Taking into account practical considerations and the results of various experiments regarding the thermodynamic properties, thermal degradation, and corrosiveness to metals, lauric acid and iron was selected for the PCM and the latent heat storage unit material, respectively. Cyclic heating and cooling of the latent heat storage unit undergoing solid-liquid phase change was repeated for more than 430 days. The results showed that the heating-cooling curve was almost unchanged between the early stage and the 1,870th cycle. It was concluded that the latent heat storage unit could be used safely for more than ten years as a component of the cooling system.

  2. Langmuir circulation driving sediment entrainment into newly formed ice: Tank experiment results with application to nature (Lake Hattie, United States; Kara Sea, Siberia)

    NASA Astrophysics Data System (ADS)

    Dethleff, Dirk; Kempema, E. W.

    2007-02-01

    Langmuir circulation (Lc) was generated under freezing conditions in saltwater tank experiments through surface wind stress and cross-waves interacting with subsurface return flow. Fine-grained sediments distributed in the tank prior to frazil crystal formation were aligned in parallel streaks in Lc bottom convergence zones. Downwelling at Lc surface convergence zones aligned floating frazil in wind-parallel rows, and individual crystals rotated on helical paths down to the tank bottom and up again to the surface. The crystals interacted with suspended particles in the water column, and with sediment on the tank bottom, preferentially collecting fine-grained particles and enhancing their entrainment into new ice. Evidence includes higher sediment concentrations in ice and ice-interstitial water (ice pore water) as compared to the tank water. Both tank ice and ice interstitial water contain more silt-sized particles than tank water suspension load and tank bottom sediment. Sand is reduced in the ice, and clay is about the same concentration in all samples. This points to preferential entrainment of fine particles in newly formed ice supported by Lc-driven circulation. Comparable results of Lc-supported ice particle entrainment were found in Lake Hattie. Comparison of ice sediment from tank experiments run with Kara Sea material to ice particles from the natural Kara setting showed both types of ice sediment have very similar grain size distributions and mineralogical compositions. Results from experiments and nature help to better understand the potentially Lc-driven entrainment of sediment into ice formed in shallow freezing waters.

  3. Phenotypic Features of Circulating Leukocytes from Non-human Primates Naturally Infected with Trypanosoma cruzi Resemble the Major Immunological Findings Observed in Human Chagas Disease

    PubMed Central

    Mattoso-Barbosa, Armanda Moreira; Perdigão-de-Oliveira, Marcelo; Costa, Ronaldo Peres; Elói-Santos, Silvana Maria; Gomes, Matheus de Souza; do Amaral, Laurence Rodrigues; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Dick, Edward J.; Hubbard, Gene B.; VandeBerg, Jane F.; VandeBerg, John L.

    2016-01-01

    Background Cynomolgus macaques (Macaca fascicularis) represent a feasible model for research on Chagas disease since natural T. cruzi infection in these primates leads to clinical outcomes similar to those observed in humans. However, it is still unknown whether these clinical similarities are accompanied by equivalent immunological characteristics in the two species. We have performed a detailed immunophenotypic analysis of circulating leukocytes together with systems biology approaches from 15 cynomolgus macaques naturally infected with T. cruzi (CH) presenting the chronic phase of Chagas disease to identify biomarkers that might be useful for clinical investigations. Methods and Findings Our data established that CH displayed increased expression of CD32+ and CD56+ in monocytes and enhanced frequency of NK Granzyme A+ cells as compared to non-infected controls (NI). Moreover, higher expression of CD54 and HLA-DR by T-cells, especially within the CD8+ subset, was the hallmark of CH. A high level of expression of Granzyme A and Perforin underscored the enhanced cytotoxicity-linked pattern of CD8+ T-lymphocytes from CH. Increased frequency of B-cells with up-regulated expression of Fc-γRII was also observed in CH. Complex and imbricate biomarker networks demonstrated that CH showed a shift towards cross-talk among cells of the adaptive immune system. Systems biology analysis further established monocytes and NK-cell phenotypes and the T-cell activation status, along with the Granzyme A expression by CD8+ T-cells, as the most reliable biomarkers of potential use for clinical applications. Conclusions Altogether, these findings demonstrated that the similarities in phenotypic features of circulating leukocytes observed in cynomolgus macaques and humans infected with T. cruzi further supports the use of these monkeys in preclinical toxicology and pharmacology studies applied to development and testing of new drugs for Chagas disease. PMID:26808481

  4. General contraction of Gaussian basis sets. Part 2: Atomic natural orbitals and the calculation of atomic and molecular properties

    NASA Technical Reports Server (NTRS)

    Almloef, Jan; Taylor, Peter R.

    1989-01-01

    A recently proposed scheme for using natural orbitals from atomic configuration interaction (CI) wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outmost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital (ANO) sets.

  5. General contraction of Gaussian basis sets. II - Atomic natural orbitals and the calculation of atomic and molecular properties

    NASA Technical Reports Server (NTRS)

    Almlof, Jan; Taylor, Peter R.

    1990-01-01

    A recently proposed scheme for using natural orbitals from atomic configuration interaction wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outermost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital sets.

  6. Crystal structure and theoretical calculations of Julocrotine, a natural product with antileishmanial activity

    NASA Astrophysics Data System (ADS)

    Moreira, Rafael Y. O.; Brasil, Davi S. B.; Alves, Cláudio N.; Guilhon, Giselle M. S. P.; Santos, Lourivaldo S.; Arruda, Mara S. P.; Müller, Adolfo H.; Barbosa, Patrícia S.; Abreu, Alcicley S.; Silva, Edilene O.; Rumjanek, Victor M.; Souza, Jaime, Jr.; da Silva, Albérico B. F.; Santos, Regina H. De A.

    Julocrotine, N-(2,6-dioxo-1-phenethyl-piperidin-3-yl)-2-methyl-butyramide, is a potent antiproliferative agent against the promastigote and amastigote forms of Leishmania amazonensis (L.). In this work, the crystal structure of Julocrotine was solved by X-ray diffraction, and its geometrical parameters were compared with theoretical calculations at the B3LYP and HF level of theory. IR and NMR spectra also have been obtained and compared with theoretical calculations. IR absorptions calculated with the B3LYP level of theory employed together with the 6-311G+(d,p) basis set, are close to those observed experimentally. Theoretical NMR calculations show little deviation from experimental results. The results show that the theory is in accordance with the experimental data.0

  7. CALCULATING CONTINGENCIES IN NATURAL ENVIRONMENTS: ISSUES IN THE APPLICATION OF SEQUENTIAL ANALYSIS

    PubMed Central

    McComas, Jennifer J; Moore, Timothy; Dahl, Norm; Hartman, Ellie; Hoch, John; Symons, Frank

    2009-01-01

    Analysis and interpretation of behavior–environment relations are increasingly being conducted with data that have been derived descriptively. This paper provides an overview of the logic that underlies a sequential analytic approach to the analysis of descriptive data. Several methods for quantifying sequential relations are reviewed along with their strengths and weaknesses. Data from descriptive analyses are used to illustrate key points. Issues germane to contingency analysis in natural environments are discussed briefly. It is concluded that the conceptual distinctions among contiguity, contingency, and dependency are critical if the logic of sequential analysis is to be extended successfully to a behavior-analytic account of reinforcement in natural environments. PMID:19949534

  8. In Oregon, the EPA calculates nature's worth now and in the future

    EPA Science Inventory

    Ecosystem services are the many life-sustaining benefits we receive from nature — clean air and water, food and fiber production, greenhouse gas regulation, maintenance of biodiversity, etc. These ecosystem services are vital to our well-being, yet they are limited and often tak...

  9. Calculation of indoor effective dose factors in ORNL phantoms series due to natural radioactivity in building materials.

    PubMed

    Krstic, D; Nikezic, D

    2009-10-01

    In this paper the effective dose in the age-dependent ORNL phantoms series, due to naturally occurring radionuclides in building materials, was calculated. The absorbed doses for various organs or human tissues have been calculated. The MCNP-4B computer code was used for this purpose. The effective dose was calculated according to ICRP Publication 74. The obtained values of dose conversion factors for a standard room are: 1.033, 0.752 and 0.0538 nSv h-1 per Bq kg-1 for elements of the U and Th decay series and for the K isotope, respectively. The values of effective dose agreed generally with those found in the literature, although the values estimated here for elements of the U series were higher in some cases. PMID:19741358

  10. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.

    SciTech Connect

    Moisseytsev, A.; Sienicki, J. J.

    2007-03-08

    STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal

  11. Paradigm Shift in Dendritic Cell-Based Immunotherapy: From in vitro Generated Monocyte-Derived DCs to Naturally Circulating DC Subsets

    PubMed Central

    Wimmers, Florian; Schreibelt, Gerty; Sköld, Annette E.; Figdor, Carl G.; De Vries, I. Jolanda M.

    2014-01-01

    Dendritic cell (DC)-based immunotherapy employs the patients’ immune system to fight neoplastic lesions spread over the entire body. This makes it an important therapy option for patients suffering from metastatic melanoma, which is often resistant to chemotherapy. However, conventional cellular vaccination approaches, based on monocyte-derived DCs (moDCs), only achieved modest response rates despite continued optimization of various vaccination parameters. In addition, the generation of moDCs requires extensive ex vivo culturing conceivably hampering the immunogenicity of the vaccine. Recent studies, thus, focused on vaccines that make use of primary DCs. Though rare in the blood, these naturally circulating DCs can be readily isolated and activated thereby circumventing lengthy ex vivo culture periods. The first clinical trials not only showed increased survival rates but also the induction of diversified anti-cancer immune responses. Upcoming treatment paradigms aim to include several primary DC subsets in a single vaccine as pre-clinical studies identified synergistic effects between various antigen-presenting cells. PMID:24782868

  12. Successful Antiparasitic Treatment for Cysticercosis is Associated with a Fast and Marked Reduction of Circulating Antigen Levels in a Naturally Infected Pig Model.

    PubMed

    Gonzalez, Armando E; Bustos, Javier A; Garcia, Hector H; Rodriguez, Silvia; Zimic, Mirko; Castillo, Yesenia; Praet, Nicolas; Gabriël, Sarah; Gilman, Robert H; Dorny, Pierre

    2015-12-01

    Taenia solium cysticercosis is a common parasitic infection of humans and pigs. We evaluated the posttreatment evolution of circulating parasite-specific antigen titers in 693 consecutive blood samples from 50 naturally infected cysticercotic pigs, which received different regimes of antiparasitic drugs (N = 39, 7 groups), prednisone (N = 5), or controls (N = 6). Samples were collected from baseline to week 10 after treatment, when pigs were euthanized and carefully dissected at necropsy. Antigen levels decreased proportionally to the efficacy of treatment and correlated with the remaining viable cysts at necropsy (Pearson's p = 0.67, P = 0.000). A decrease of 5 times in antigen levels (logarithmic scale) compared with baseline was found in 20/26 pigs free of cysts at necropsy, compared with 1/24 of those who had persisting viable cysts (odds ratio [OR] = 76.7, 95% confidence interval [CI] = 8.1-3308.6, P < 0.001). Antigen monitoring reflects the course of infection in the pig. If a similar correlation exists in infected humans, this assay may provide a minimally invasive and easy monitoring assay to assess disease evolution and efficacy of antiparasitic treatment in human neurocysticercosis. PMID:26392159

  13. Exposure to naturally circulating androgens during foetal life incurs direct reproductive costs in female spotted hyenas, but is prerequisite for male mating.

    PubMed Central

    Drea, C M; Place, N J; Weldele, M L; Coscia, E M; Licht, P; Glickman, S E

    2002-01-01

    Among all extant mammals, only the female spotted hyena (Crocuta crocuta) mates and gives birth through the tip of a peniform clitoris. Clitoral morphology is modulated by foetal exposure to endogenous, maternal androgens. First births through this organ are prolonged and remarkably difficult, often causing death in neonates. Additionally, mating poses a mechanical challenge for males, as they must reach an anterior position on the female's abdomen and then achieve entry at the site of the retracted clitoris. Here, we report that interfering with the actions of androgens prenatally permanently modifies hyena urogenital anatomy, facilitating subsequent parturition in nulliparous females who, thereby, produce live cubs. By contrast, comparable, permanent anatomical changes in males probably preclude reproduction, as exposure to prenatal anti-androgens produces a penis that is too short and has the wrong shape necessary for insertion during copulation. These data demonstrate that the reproductive costs of clitoral delivery result from exposure of the female foetus to naturally circulating androgens. Moreover, the same androgens that render an extremely unusual and laborious process even more reproductively costly in the female are apparently essential to the male's physical ability to reproduce with a normally masculinized female. PMID:12396496

  14. CFD Calculation of Internal Natural Convection in the Annulus between Horizontal Concentric Cylinders

    SciTech Connect

    N.D. Francis, Jr; M.T. Itamura; S.W. Webb; D.L. James

    2002-10-01

    The objective of this heat transfer and fluid flow study is to assess the ability of a computational fluid dynamics (CFD) code to reproduce the experimental results, numerical simulation results, and heat transfer correlation equations developed in the literature for natural convection heat transfer within the annulus of horizontal concentric cylinders. In the literature, a variety of heat transfer expressions have been developed to compute average equivalent thermal conductivities. However, the expressions have been primarily developed for very small inner and outer cylinder radii and gap-widths. In this comparative study, interest is primarily focused on large gap widths (on the order of half meter or greater) and large radius ratios. From the steady-state CFD analysis it is found that the concentric cylinder models for the larger geometries compare favorably to the results of the Kuehn and Goldstein correlations in the Rayleigh number range of about 10{sup 5} to 10{sup 8} (a range that encompasses the laminar to turbulent transition). For Rayleigh numbers greater than 10{sup 8}, both numerical simulations and experimental data (from the literature) are consistent and result in slightly lower equivalent thermal conductivities than those obtained from the Kuehn and Goldstein correlations.

  15. Calculating the Optimum Angle of Filament-Wound Pipes in Natural Gas Transmission Pipelines Using Approximation Methods.

    PubMed

    Reza Khoshravan Azar, Mohammad; Emami Satellou, Ali Akbar; Shishesaz, Mohammad; Salavati, Bahram

    2013-04-01

    Given the increasing use of composite materials in various industries, oil and gas industry also requires that more attention should be paid to these materials. Furthermore, due to variation in choice of materials, the materials needed for the mechanical strength, resistance in critical situations such as fire, costs and other priorities of the analysis carried out on them and the most optimal for achieving certain goals, are introduced. In this study, we will try to introduce appropriate choice for use in the natural gas transmission composite pipelines. Following a 4-layered filament-wound (FW) composite pipe will consider an offer our analyses under internal pressure. The analyses' results will be calculated for different combinations of angles 15 deg, 30 deg, 45 deg, 55 deg, 60 deg, 75 deg, and 80 deg. Finally, we will compare the calculated values and the optimal angle will be gained by using the Approximation methods. It is explained that this layering is as the symmetrical. PMID:24891748

  16. 57Fe Mössbauer spectroscopy, X-ray single-crystal diffractometry, and electronic structure calculations on natural alexandrite

    NASA Astrophysics Data System (ADS)

    Weber, Sven-Ulf; Grodzicki, Michael; Lottermoser, Werner; Redhammer, Günther J.; Tippelt, Gerold; Ponahlo, Johann; Amthauer, Georg

    2007-09-01

    Natural alexandrite Al2BeO4:Cr from Malyshevo near Terem Tschanka, Sverdlovsk, Ural, Russia, has been characterized by 57Fe Mössbauer spectroscopy, electron microprobe, X-ray single-crystal diffractometry and by electronic structure calculations in order to determine oxidation state and location of iron. The sample contains 0.3 wt% of total iron oxide. The 57Fe Mössbauer spectrum can be resolved into three doublets. Two of them with hyperfine parameters typical for octahedrally coordinated high-spin Fe3+ and Fe2+, respectively, are assigned to iron substituting for Al in the octahedral M2-site. The third doublet is attributed to Fe3+ in hematite. Electronic structure calculations in the local spin density approximation are in reasonable agreement with experimental data provided that expansion and/or distortion of the coordination octahedra are presumed upon iron substitution. The calculated hyperfine parameters of Fe3+ are almost identical for the M1 and M2 positions, but the calculated ligand-field splitting is by far too large for high-spin Fe3+ on M1.

  17. Calculation of absorbed dose around a facility for disposing of low activity natural radioactive waste (C3-dump).

    PubMed

    Jansen, J T M; Zoetelief, J

    2005-01-01

    A C3-dump is a facility for disposing of low activity natural radioactive waste containing the uranium series 238U, the thorium series 232Th and 40K. Only the external radiation owing to gamma rays, X-rays and annihilation photons is considered in this study. For two situations--the semi-infinite slab and the tourist geometry--the conversion coefficients from specific activity to air kerma rate at 1 m above the relevant level are calculated. In the first situation the waste material is in contact with the air but in the tourist geometry it is covered with a 1.35 m thick layer. For the calculations, the Monte Carlo radiation transport code MCNP is used. The yield and photon energy for each radionuclide are according to the database of Oak Ridge National Laboratory. For the tourist situation, the depth-dose distribution through the covering layer is calculated and extrapolated to determine the exit dose. PMID:16604673

  18. TROPICAL METEOROLOGY & Climate: Hadley Circulation

    SciTech Connect

    Lu, Jian; Vecchi, Gabriel A.

    2015-01-30

    The Hadley circulation, a prominent circulation feature characterized by rising air near the Equator and sinking air in the subtropics, defines the position of dry subtropical areas and is a fundamental regulator of the earth’s energy and momentum budgets. The character of the Hadley circulation, and its related precipitation regimes, exhibits variation and change in response to both climate variability and radiative forcing changes. The strength and position of the Hadley circulation change from year to year paced by El Niño and La Niña events. Over the last few decades of the twentieth century, the Hadley cell has expanded poleward in both hemispheres, with changes in atmospheric composition (including stratospheric ozone depletion and greenhouse gas increases) thought to have contributed to its expansion. This article introduces the basic phenomenology and driving mechanism of the Hadley circulation and discusses its variations under both natural and anthropogenic climate forcings.

  19. MELCOR 1.8.5 Simulation of TMI-2 Phase 2 With an Enhanced 2-Dimensional In-Vessel Natural Circulation Model

    SciTech Connect

    Gauntt, Randall O.; Ross, Kyle; Wagner, Kenneth

    2002-07-01

    Phase 2 of the TMI-2 accident (core uncover and melting) is revisited with the latest release of MELCOR (i.e., Version 1.8.5). An enhanced multi-ring multi-level hydro nodalization of the reactor core and upper plenum was developed to permit calculation of natural convection heat transfer between the core and upper internals. Uncertainties in boundary and initial conditions are investigated with particular attention given to the distribution of liquid in the RCS at the beginning of Phase 2 and to the histories of pressure and level in the steam generators. Special attention given to modeling the boiler sides of the once-through steam generators is presented. The modeling is designed to capture the rapid condensation of RCS vapor that would result from spraying cold auxiliary feedwater directly onto the upper portion of a voided steam generator tube bundle. Presentation of key Phase-2 accident signatures including fuel temperatures and hydrogen generation are presented. Comparisons are made between MELCOR calculations, TMI-2 data, and SCDAP/RELAP simulations. A largely improved MELCOR simulation of TMI-2 Phase 2 is obtained. (authors)

  20. NIR surface enhanced Raman spectroscopy and bands assignment by DFT calculations of non-natural β-amino acids

    NASA Astrophysics Data System (ADS)

    Iliescu, T.; Maniu, D.; Chis, V.; Irimie, F. D.; Paizs, Cs.; Tosa, M.

    2005-04-01

    FT-Raman and NIR surface-enhanced Raman (SER) spectroscopies have been applied to the vibrational characterization of non-natural β-amino acids, 3-amino-3-(furan-2yl)-propionic acid and 3-amino-3-[(5-benzothiazole-2yl)-furan-2yl]-propionic acid. Semiempirical and density-functional theory (DFT) calculations on both amino acids in their zwitterionic forms have been performed in order to find the optimized structure and to compute the vibrational spectra. The NIR SER spectra in silver hydrosol and Ag-coated filter paper have been recorded, compared and analyzed. Good SER spectra were obtained at the pH values where dipolar ion structures are present proving the chemisorption of β-amino acid molecules on the silver surface via positively charged NH3+ group. The carboxylate anion of both β-amino acids are parallel oriented, whereas the plane of rings is oriented perpendicular to the silver surface.

  1. Estimated uncertainty of calculated liquefied natural gas density from a comparison of NBS and Gaz de France densimeter test facilities

    SciTech Connect

    Siegwarth, J.D.; LaBrecque, J.F.; Roncier, M.; Philippe, R.; Saint-Just, J.

    1982-12-16

    Liquefied natural gas (LNG) densities can be measured directly but are usually determined indirectly in custody transfer measurement by using a density correlation based on temperature and composition measurements. An LNG densimeter test facility at the National Bureau of Standards uses an absolute densimeter based on the Archimedes principle, while a test facility at Gaz de France uses a correlation method based on measurement of composition and density. A comparison between these two test facilities using a portable version of the absolute densimeter provides an experimental estimate of the uncertainty of the indirect method of density measurement for the first time, on a large (32 L) sample. The two test facilities agree for pure methane to within about 0.02%. For the LNG-like mixtures consisting of methane, ethane, propane, and nitrogen with the methane concentrations always higher than 86%, the calculated density is within 0.25% of the directly measured density 95% of the time.

  2. Ocean circulation

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew F.; Rahmstorf, Stefan

    The ocean moderates the Earth's climate due to its vast capacity to store and transport heat; the influence of the large-scale ocean circulation on changes in climate is considered in this chapter. The ocean experiences both buoyancy forcing (through heating/cooling and evaporation/precipitation) and wind forcing. Almost all ocean forcing occurs at the surface, but these changes are communicated throughout the entire depth of the ocean through the meridional overturning circulation (MOC). In a few localized regions, water become sufficiently dense to penetrate thousands of meters deep, where it spreads, providing a continuous source of deep dense water to the entire ocean. Dense water returns to the surface and thus closes the MOC, either through density modification due to diapycnal mixing or by upwelling along sloping isopycnals across the Southern Ocean. Determination of the relative contributions of these two processes in the MOC remains an active area of research. Observations obtained primarily from isotopic compositions in ocean sediments provide substantial evidence that the structure of the MOC has changed significantly in the past. Indeed, large and abrupt changes to the Earth's climate during the past 120,000 years can be linked to either a reorganization or a complete collapse of the MOC. Two of the more dramatic instances of abrupt change include Dansgaard-Oeschger events, abrupt warmings that could exceed 10°C over a period as short as a few decades, and Heinrich events, which are associated with massive freshwater fluxes due to rapid iceberg discharges into the North Atlantic. Numerical models of varying complexity that have captured these abrupt transitions all underscore that the MOC is a highly nonlinear system with feedback loops, multiple equilibria, and hysteresis effects. Prediction of future abrupt shifts in the MOC or "tipping points" remains uncertain. However, the inferred behavior of the MOC during glacial climates suggests that

  3. Dispensing with the DVD Circulation Dilemma

    ERIC Educational Resources Information Center

    Ellis, Mark

    2008-01-01

    Richmond Public Library (RPL) is a four-branch suburban library with the highest per capita circulation of any comparable library in Canada. While DVDs naturally fit into RPL's emphasis on popular material, circulating them using the standard model proved problematic: Long hold queues built up, DVDs idled on the hold shelves, and the circulation…

  4. Structural determination of complex natural products by quantum mechanical calculations of (13)C NMR chemical shifts: development of a parameterized protocol for terpenes.

    PubMed

    de Albuquerque, Ana Carolina Ferreira; Ribeiro, Daniel Joras; de Amorim, Mauro Barbosa

    2016-08-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most important tools for determining the structures of organic molecules. Despite the advances made in this technique, revisions of erroneously established structures for natural products are still commonly published in the literature. In this context, the prediction of chemical shifts through ab initio and density functional theory (DFT) calculations has become a very powerful tool for assisting with the structural determination of complex organic molecules. In this work, we present the development of a protocol for (13)C chemical shift calculations of terpenes, a class of natural products that are widely distributed among plant species and are very important due to their biological and pharmacological activities. This protocol consists of GIAO-DFT calculations of chemical shifts and the application of a parameterized scaling factor in order to ensure accurate structural determination of this class of natural products. The application of this protocol to a set of five terpenes yielded accurate calculated chemical shifts, showing that this is a very attractive tool for the calculation of complex organic structures such as terpenes. PMID:27424297

  5. Natural Circulation in the Blanket Heat Removal System During a Loss-of-Pumping Accident (LOFA) Based on Initial Conceptual Design

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    A transient natural convection model of the APT blanket primary heat removal (HR) system was developed to demonstrate that the blanket could be cooled for a sufficient period of time for long term cooling to be established following a loss-of-flow accident (LOFA). The particular case of interest in this report is a complete loss-of-pumping accident. For the accident scenario in which pumps are lost in both the target and blanket HR systems, natural convection provides effective cooling of the blanket for approximately 68 hours, and, if only the blanket HR systems are involved, natural convection is effective for approximately 210 hours. The heat sink for both of these accident scenarios is the assumed stagnant fluid and metal on the secondary sides of the heat exchangers.

  6. Satellite Altimetry, Ocean Circulation, and Data Assimilation

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng

    1999-01-01

    Ocean circulation is a critical factor in determining the Earth's climate. Satellite altimetry has been proven a powerful technique for measuring the height of the sea surface for the study of global ocean circulation dynamics. A major objective of my research is to investigate the utility of altimeter data for ocean circulation studies. The 6 years' data record of TOPEX/POSEIDON have been analyzed to study the spatial and temporal characteristics of large-scale ocean variability. A major result obtained in 1998 is the discovery of large-scale oscillations in sea level with a period of 25 days in the Argentine Basin of the South Atlantic Ocean (see diagram). They exhibit a dipole pattern with counterclockwise rotational propagation around the Zapiola Rise (centered at 45S and 317E), a small seamount in the abyssal plain of the basin. The peak-to-trough amplitude is about 10 cm over a distance of 500-1000 km. The amplitude of these oscillations has large seasonal-to-interannual variations. The period and rotational characteristics of these oscillations are remarkably similar to the observations made by two current meters deployed near the ocean bottom in the region. What TOPEX/POSEIDON has detected apparently are manifestations of the movement of the entire water column (barotropic motion). The resultant transport variation is estimated to be about 50 x 10(exp 6) cubic M/S, which is about 50% of the total water transport in the region. Preliminary calculations suggest that these oscillations are topographically trapped waves. A numerical model of the South Atlantic is used to investigate the nature of and causes for these waves. A very important property of sea surface height is that it is directly related to the surface geostrophic velocity, which is related to deep ocean circulation through the density field. Therefore altimetry observations are not only useful for determining the surface circulation but also for revealing information about the deep ocean. Another

  7. How to calculate the spatial distribution of ecosystem services--natural attenuation as example from The Netherlands.

    PubMed

    van Wijnen, H J; Rutgers, M; Schouten, A J; Mulder, C; de Zwart, D; Breure, A M

    2012-01-15

    Maps play an important role during the entire process of spatial planning and bring ecosystem services to the attention of stakeholders' negotiation more easily. As example we show the quantification of the ecosystem service 'natural attenuation of pollutants', which is a service necessary to keep the soil clean for production of safe food and provision of drinking water, and to provide a healthy habitat for soil organisms to support other ecosystem services. A method was developed to plot the relative measure of the natural attenuation capacity of the soil in a map. Several properties of Dutch soils were related to property-specific reference values and subsequently combined into one proxy for the natural attenuation of pollutants. This method can also be used to map other ecosystem services and to ultimately integrate suites of ecosystem services in one map. PMID:21724241

  8. National Stormwater Calculator: A desktop tool that helps users control runoff to promote the natural movement of water

    EPA Science Inventory

    The primary focus of the National Stormwater Calculator (SWC) is to inform site developers on how well they can meet a desired stormwater retention target, but it can also be used by landscapers and homeowners. The SWC shows users how land use decisions and low impact development...

  9. Estimated human excretion rates of natural estrogens calculated from their concentrations in raw municipal wastewater and its application.

    PubMed

    Liu, Ze-Hua; Lu, Gui-Ning; Yin, Hua; Dang, Zhi

    2015-06-01

    Natural estrogens are important endocrine disrupting compounds (EDCs), which may pose adverse effects on our environment. To avoid time-consuming sample preparation and chemical analysis, estimation of their concentrations in municipal wastewater based on their human urine/feces excretion rates has been generally adopted. However, the data of excretion rates available are very limited and show significant difference among countries. In the context of increasing reporting on the concentrations of natural estrogens in municipal wastewater around the world, this study presented a simple method to estimate their human excretion rates based on the concentrations of natural estrogens in raw sewage. The estimated human excretion rates of natural estrogens among ten countries were obtained, which totally covered over 33 million population. Among these, Brazilians had the largest excretion rates with estrone (E1) and 17β-estradiol (E2) as 236.9 and 60 μg/day/P, respectively, while Iran had the lowest value of 2 μg/day/P for E1 and 0.5 μg/day/P for E2. The average estimated human excretion rates of E1, E2, and estriol (E3) are 17.3, 6.4, and 39.7 μg/day/P, respectively. When the estimated human excretion rates obtained were applied for prediction, the predicted results showed better accuracies than those based on human urinary/feces excretion rates. The method in this study is simple, cost-effective and time-saving, which may be widely applied. PMID:25801372

  10. Circulating glioma biomarkers

    PubMed Central

    Kros, Johan M.; Mustafa, Dana M.; Dekker, Lennard J.M.; Sillevis Smitt, Peter A.E.; Luider, Theo M.; Zheng, Ping-Pin

    2015-01-01

    Validated biomarkers for patients suffering from gliomas are urgently needed for standardizing measurements of the effects of treatment in daily clinical practice and trials. Circulating body fluids offer easily accessible sources for such markers. This review highlights various categories of tumor-associated circulating biomarkers identified in blood and cerebrospinal fluid of glioma patients, including circulating tumor cells, exosomes, nucleic acids, proteins, and oncometabolites. The validation and potential clinical utility of these biomarkers is briefly discussed. Although many candidate circulating protein biomarkers were reported, none of these have reached the required validation to be introduced for clinical practice. Recent developments in tracing circulating tumor cells and their derivatives as exosomes and circulating nuclear acids may become more successful in providing useful biomarkers. It is to be expected that current technical developments will contribute to the finding and validation of circulating biomarkers. PMID:25253418

  11. WATEQF; a FORTRAN IV version of WATEQ : a computer program for calculating chemical equilibrium of natural waters

    USGS Publications Warehouse

    Plummer, L. Niel; Jones, Blair F.; Truesdell, Alfred Hemingway

    1976-01-01

    WATEQF is a FORTRAN IV computer program that models the thermodynamic speciation of inorganic ions and complex species in solution for a given water analysis. The original version (WATEQ) was written in 1973 by A. H. Truesdell and B. F. Jones in Programming Language/one (PL/1.) With but a few exceptions, the thermochemical data, speciation, coefficients, and general calculation procedure of WATEQF is identical to the PL/1 version. This report notes the differences between WATEQF and WATEQ, demonstrates how to set up the input data to execute WATEQF, provides a test case for comparison, and makes available a listing of WATEQF. (Woodard-USGS)

  12. A heat exchanger between forced flow helium gas at 14 to 18 K andliquid hydrogen at 20 K circulated by natural convection

    SciTech Connect

    Green, M.A.; Ishimoto, S.; Lau, W.; Yang, S.

    2003-09-15

    The Muon Ionization Cooling Experiment (MICE) has three 350-mm long liquid hydrogen absorbers to reduce the momentum of 200 MeV muons in all directions. The muons are then re-accelerated in the longitudinal direction by 200 MHz RF cavities. The result is cooled muons with a reduced emittance. The energy from the muons is taken up by the liquid hydrogen in the absorber. The hydrogen in the MICE absorbers is cooled by natural convection to the walls of the absorber that are in turn cooled by helium gas that enters at 14 K. This report describes the MICE liquid hydrogen absorber and the heat exchanger between the liquid hydrogen and the helium gas that flows through passages in the absorber wall.

  13. Assessment of RELAP5/MOD2 against a pressurizer spray valve inadverted fully opening transient and recovery by natural circulation in Jose Cabrera Nuclear Station

    SciTech Connect

    Arroyo, R.; Rebollo, L.

    1993-06-01

    This document presents the comparison between the simulation results and the plant measurements of a real event that took place in JOSE CABRERA nuclear power plant in August 30th, 1984. The event was originated by the total, continuous and inadverted opening of the pressurizer spray valve PCV-400A. JOSE CABRERA power plant is a single loop Westinghouse PWR belonging to UNION ELECTRICA FENOSA, S.A. (UNION FENOSA), an Spanish utility which participates in the International Code Assessment and Applications Program (ICAP) as a member of UNIDAD ELECTRICA, S.A. (UNESA). This is the second of its two contributions to the Program: the first one was an application case and this is an assessment one. The simulation has been performed using the RELAP5/MOD2 cycle 36.04 code, running on a CDC CYBER 180/830 computer under NOS 2.5 operating system. The main phenomena have been calculated correctly and some conclusions about the 3D characteristics of the condensation due to the spray and its simulation with a 1D tool have been got.

  14. Breaking tolerance to self, circulating natural killer cells expressing inhibitory KIR for non-self HLA exhibit effector function after T cell-depleted allogeneic hematopoietic cell transplantation.

    PubMed

    Yu, Junli; Venstrom, Jeffrey M; Liu, Xiao-Rong; Pring, James; Hasan, Reenat S; O'Reilly, Richard J; Hsu, Katharine C

    2009-04-16

    Alloreactive natural killer (NK) cells are an important influence on hematopoietic stem cell transplantation (HSCT) outcome. In HLA-mismatched HSCT, alloreactivity occurs when licensed donor NK cells expressing inhibitory killer Ig-like receptors (KIR) for donor MHC class I ligands recognize the lack of the class I ligands in the mismatched recipient ("missing self"). Studies in HLA-matched HSCT, however, have also demonstrated improved outcome in patients lacking class I ligands for donor inhibitory KIR ("missing ligand"), indicating that classically nonlicensed donor NK cells expressing KIR for non-self MHC class I ligands may exhibit functional competence in HSCT. We examined NK function in 16 recipients of T cell-depleted allografts from HLA-identical or KIR-ligand matched donors after myeloablative therapy. After HSCT, nonlicensed NK cells expressing inhibitory KIR for non-self class I exhibit robust intracellular IFN-gamma and cytotoxic response to target cells lacking cognate ligand, gradually becoming tolerized to self by day 100. These findings could not be correlated with cytokine environment or phenotypic markers of NK development, nor could they be attributed to non-KIR receptors such as CD94/NKG2A. These findings confirm that NK alloreactivity can occur in HLA-matched HSCT, where tolerance to self is either acquired by the stem cell-derived NK cell after exiting the bone marrow or where tolerance to self can be temporarily overcome. PMID:19179302

  15. Apparatus Circulates Sterilizing Gas

    NASA Technical Reports Server (NTRS)

    Cross, John H.; Schwarz, Ray P.

    1991-01-01

    Apparatus circulates sterilizing gas containing ethylene oxide and chlorofluorocarbon through laboratory or medical equipment. Confines sterilizing gas, circulating it only through parts to be treated. Consists of two units. One delivers ethylene oxide/chlorofluorocarbon gas mixture and removes gas after treatment. Other warms, humidifies, and circulates gas through equipment to be treated. Process provides reliable sterilization with negligible residual toxicity from ethylene oxide. Particularly suitable for sterilization of interiors of bioreactors, heart/lung machines, dialyzers, or other equipment including complicated tubing.

  16. Reconnaissance estimates of natural recharge to desert basins in Nevada, U.S.A., by using chloride-balance calculations

    USGS Publications Warehouse

    Dettinger, M.D.

    1989-01-01

    A chloride-balance method for estimating average natural recharge to groundwater basins in the Basin and Range Province of the western United States may be a useful alternative or complement to current techniques. The chloride-balance method, as presented in this paper, equates chloride in recharge water and runoff to chloride deposited in mountainous recharge-source areas by precipitation and dry fallout. Given estimates of annual precipitation on these source areas and chloride concentrations of bulk precipitation and recharge water, the rate of recharge can be estimated providing that: (1) no other major sources of chloride exist; (2) direct runoff to discharge areas in the basin is small or can otherwise be taken in account in the balance; and (3) the recharge sources for the basin are correctly delineated. The estimates are sensitive to the estimated rate of input of chloride from the atmosphere; this is the greatest data need for future applications of the method. Preliminary applications of the method to sixteen basins in Nevada, including Las Vegas Valley, indicate that the method can be a useful tool for hydrologists and resource managers. Correlation coefficients between recharge efficiencies for the basins - estimated on the basis of recharge estimates that use the chloride-balance method and two other currently used techniques - range from 0.54 to 0.95, depending on assumptions about where the method may be applied. ?? 1989.

  17. Resonant-convergent PCM response theory for the calculation of second harmonic generation in makaluvamines A-V: pyrroloiminoquinone marine natural products from poriferans of genus Zyzzya.

    PubMed

    Milne, Bruce F; Norman, Patrick

    2015-05-28

    The first-order hyperpolarizability, β, has been calculated for a group of marine natural products, the makaluvamines. These compounds possess a common cationic pyrroloiminoquinone structure that is substituted to varying degrees. Calculations at the MP2 level indicate that makaluvamines possessing phenolic side chains conjugated with the pyrroloiminoquinone moiety display large β values, while breaking this conjugation leads to a dramatic decrease in the calculated hyperpolarizability. This is consistent with a charge-transfer donor-π-acceptor (D-π-A) structure type, characteristic of nonlinear optical chromophores. Dynamic hyperpolarizabilities calculated using resonance-convergent time-dependent density functional theory coupled to polarizable continuum model (PCM) solvation suggest that significant resonance enhancement effects can be expected for incident radiation with wavelengths around 800 nm. The results of the current work suggest that the pyrroloiminoquinone moiety represents a potentially useful new chromophore subunit, in particular for the development of molecular probes for biological imaging. The introduction of solvent-solute interactions in the theory is conventionally made in a density matrix formalism, and the present work will provide detailed account of the approximations that need to be introduced in wave function theory and our program implementation. The program implementation as such is achieved by a mere combination of existing modules from previous developments, and it is here only briefly reviewed. PMID:25584854

  18. Four port circulator

    NASA Astrophysics Data System (ADS)

    Oress, V. V.; Naumov, I. A.; Stolyarov, A. K.

    1981-12-01

    The circulator is a waveguide slotted bridge, at the center of which, along the axis of symmetry, is a set of toroidal ferrites arranged on a dielectric sleeve. As a result of this design, the overall dimensions of the circulator are reduced and the tuning of the circulator is simplified. An experimental model of a four port circulator was constructed in the 3-cm range of waves, with the direct losses of not over 1 dB and decouplings of not less than 19 dB in all the channels.

  19. Midlatitudes precipitation and the global atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Pauluis, O.; Czaja, A.; Korty, R.; Laliberte, F.

    2008-12-01

    The global atmospheric circulation transports energy from the equatorial regions to higher latitudes. Due to the turbulent nature of the flow, describing a 'mean' circulation depends strongly on the averaging method and coordinates system. When averaged in isentropic coordinates, the circulation appears as a single overturning cell with a poleward flow of high entropy air and return flow at lower entropy. However, the entropy of a parcel of moist air is not uniquely defined, and different expression for the entropy yield different mean circulations. Here, the global circulation in the NCEP/NCAR Reanalysis is computed on surfaces of constant potential temperature, or dry isentropes, and on surfaces of constant equivalent potential temperature, or moist isentropes. The two analyses are qualitatively similar but differ quantitatively in that the circulation on moist isentropes is between 1.5 and 3 times larger than the circulation on dry isentropes. It is shown that the additional mass transport on moist isentropes corresponds to a poleward flow of warm, moist air near the Earth's surface that moves from the subtropics into the midlatitudes and rises in the upper troposphere within the stormtracks. In the subtropics, this flow is characterized by a low potential temperature but a much higher equivalent potential temperature. It does not appear in the circulation on dry isentropes, as it is hidden by the presence of a larger equatorward flow of drier air at same potential temperature. However, as the equivalent potential temperature in this low-level poleward flow is close to the potential temperature of the air near the tropopause, it is included in the total circulation on moist isentropes. The thermodynamic properties of this low-level poleward flow indicates that these poleward moving air parcels should ascend into the upper troposphere within the midlatitude stormtracks. Based on these findings, we propose a revised version of the global circulation. We argue that

  20. Isotopic constraints on the nature and circulation of deep mantle C-H-O-N fluids: Carbon and nitrogen systematics within ultra-deep diamonds from Kankan (Guinea)

    NASA Astrophysics Data System (ADS)

    Palot, M.; Pearson, D. G.; Stern, R. A.; Stachel, T.; Harris, J. W.

    2014-08-01

    their formation in the lower mantle by fluids that originate either from mantle or subducted carbon sources. A carbon flux from subducted oceanic lithospheric mantle may be important in the latter case. The strictly positive δ15N signatures found both in KK-200B (δ13C > 0‰) and KK-204 (δ13C slightly negative) illustrate that surficial carbon and nitrogen are potentially recycled as deep as the asthenosphere/transition zone and the lower mantle. Calculations of the diffusive relaxation of carbon isotope heterogeneity indicate that these ultra-deep diamonds may have a relatively young age and/or experienced rapid vertical movement to shallower mantle conditions, possibly by plume-related mantle.

  1. On the Method of Efficient Ice Cold Energy Storage Using a Heat Transfer of Direct Contact Phase Change and a Natural Circulation of a Working Medium in an Enclosure

    NASA Astrophysics Data System (ADS)

    Utaka, Yoshio; Saito, Akio; Nakata, Naoki

    The objectives of this report are to propose a new method of the high performance cold energy storage using ice as a phase change material and to clarify the heat transfer characteristics of the apparatus of ice cold energy storage based on the proposed principle. A working medium vapor layer a water layer and a working medium liquid layer stratified in this order from the top were kept in an enclosure composed of a condenser, an evaporator and a condensate receiver-and-return tube. The direct contact heat transfers between water or ice and a working medium in an enclosure were applied for realizing the high performance cold energy storage and release. In the storage and release processes, water changes the phase between the liquid and the solid, and the working medium cnanges between the vapor and the liquid with a natural circulation. Experimental apparatus was manufactured and R12 and R114 were selected as working media in the thermal energy storage enclosure. It was confirmed by the measurements that the efficient formation and melting of ice were achieved. Then, th e heat transfer characteristics were clarified for the effects of the initial water height, the initial height of woking medium liquid layer and the inlet coolant temperature.

  2. Interannual variability of the Adriatic Sea circulation

    NASA Astrophysics Data System (ADS)

    Beg Paklar, Gordana; Sepic, Jadranka; Grbec, Branka; Dzoic, Tomislav; Kovac, Zarko; Ivatek-Sahdan, Stjepan

    2016-04-01

    The Regional Ocean Modeling System (ROMS) was implemented in order to reproduce interannual variability of the Adriatic Sea circulation. Simulations and model result analysis were performed for a three-year period from 1st January 2011 to 31st December 2013. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and Mediterranean circulation imposed at the southern open boundary. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Model results were compared with available CTD and ADCP measurements and discussed in the light of the climatological circulation and thermohaline properties of the Adriatic Sea and its coastal areas. Interannual variability in the Adriatic circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the Otranto Strait. Basic features of the Adriatic circulation - basin-wide cyclonic circulation with several embedded smaller cyclonic gyres around main pits - are well reproduced by ROMS model. Modelled temperatures and salinities are within corresponding seasonal intervals, although measured profiles generally indicate stronger stratification than modelled ones. Summer circulation in 2011 with current reversal obtained along the eastern Adriatic coast was related to the sampling results of the early fish stages as well as to ARGO drifter movements. Simulated fields from the Adriatic scale model were used to prescribe the initial and open boundary conditions for the interannual simulation in the middle Adriatic coastal domain.

  3. Circulation around a "skirted" island

    NASA Astrophysics Data System (ADS)

    Iacono, R.; Napolitano, E.; Pedlosky, J.; Helfrich, K.

    2009-04-01

    Assessing the role of planetary scale islands in the dynamics of the ocean circulation is both of intrinsic fluid mechanical interest and of practical importance. Until now, investigations of this problem have idealized the island as an interior "hole" in the oceanic basin whose boundaries are vertical walls. Here we take up the question of the effect of topography in the region bounding the island. We represent topography as a simple continental slope "skirt" in which the depth of the ocean linearly varies from zero at the island to the full (and constant) ocean depth at some distance both east and west of the island, which we otherwise idealize as a thin linear barrier oriented north-south. In addition to providing a possibly more realistic representation of the island topography, the presence of the skirt also introduces fundamental changes in the dynamics. When the depth change is strong enough the isolines of potential vorticity will tend to wrap around the island and close on themselves. When this closure happens a free geostrophic mode is possible in which the motion can freely circulate along the closed potential vorticity contours and the nature of the circulation alters dramatically. We study the circulation around the "skirted" island with a forced, dissipative shallow water numerical model, whose results are compared to those of laboratory experiments made with the sliced-cylinder device. We also develop an approximate analytic theory, in the linear limit, that to a large measure clarifies and explains key features of the numerical experiments with weak and moderate forcing. We conclude with a survey of results from strongly nonlinear experiments that exhibit rich time-dependent dynamics.

  4. Molecular structure, Normal Coordinate Analysis, harmonic vibrational frequencies, Natural Bond Orbital, TD-DFT calculations and biological activity analysis of antioxidant drug 7-hydroxycoumarin

    NASA Astrophysics Data System (ADS)

    Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T.

    2013-01-01

    In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis of Umbelliferone also known as 7-hydroxycoumarin (7HC). The optimized geometric bond lengths and bond angles obtained by computation (monomer and dimmer) shows good agreement with experimental XRD data. Harmonic frequencies of 7HC were determined and analyzed by DFT utilizing 6-311+G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The change in electron density (ED) in the σ* and π* antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra. Microbial activity of studied compounds was tested against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Psuedomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Shigella flexneri, Salmonella typhi and Enterococcus faecalis.

  5. Ocean circulation and climate change

    NASA Astrophysics Data System (ADS)

    Hasselmann, Klaus

    1991-09-01

    Recent numerical simulations using global ocean circulation models are reviewed together with model experiments involving further important climate sub-systems with which the ocean interacts: the atmosphere, the air-sea interface and the global carbon cycle. A common feature of all ocean circulation experiments considered is the strong sensitivity of the circulation to relatively minor changes in surface forcing, particularly to the buoyancy fluxes in regions of deep water formation in high latitudes. This may explain some of the well-known deficiencies of past global ocean circulation simulations. The strong sensitivity may also have been the cause of rapid climate changes observed in paleoclimatic records and can lead further to significant natural climate variability on the time scales of a few hundred years through the stochastic forcing of the ocean by atmospheric weather variability. Gobal warming computations using two different coupled ocean-atmosphere models for the "business-as-usual" scenario of the Intergovernmental Panel on Climate Change yield a significantly stronger warming delay due to the heat uptake by the oceans in the Southern Ocean than estimated on the basis of box-diffusion models. Recent advances in surface wave modelling, illustrated by a comparison of wave height fields derived from the WAM model and the GEOSAT altimeter, hold promise for the development of an improved representation of ocean-atmosphere coupling based on an explicit description of the dynamical processes at the air-sea interface. Global carbon cycle simulations with a three dimensional carbon cycle model tuned to reproduce past variations of carbon cycle indices show a significant impact of variations in the ocean circulation on the CO2 concentration in the atmosphere and thereby on climate. The series of experiments suggest that for the study of climate in the time scale range from 10-Ocean circulation and climate change

    NASA Astrophysics Data System (ADS)

    Hasselmann, Klaus

    1991-08-01

    Recent numerical simulations using global ocean circulation models are reviewed together with model experiments involving further important climate sub-systems with which the ocean interacts: the atmosphere, the air-sea interface and the global carbon cycle. A common feature of all ocean circulation experiments considered is the strong sensitivity of the circulation to relatively minor changes in surface forcing, particularly to the buoyancy fluxes in regions of deep water formation in high latitudes. This may explain some of the well-known deficiencies of past global ocean circulation simulations. The strong sensitivity may also have been the cause of rapid climate changes observed in paleoclimatic records and can lead further to significant natural climate variability on the time scales of a few hundred years through the stochastic forcing of the ocean by atmospheric weather variability. Gobal warming computations using two different coupled ocean-atmosphere models for the "business-as-usual" scenario of the Intergovernmental Panel on Climate Change yield a significantly stronger warming delay due to the heat uptake by the oceans in the Southern Ocean than estimated on the basis of box-diffusion models. Recent advances in surface wave modelling, illustrated by a comparison of wave height fields derived from the WAM model and the GEOSAT altimeter, hold promise for the development of an improved representation of ocean-atmosphere coupling based on an explicit description of the dynamical processes at the air-sea interface. Global carbon cycle simulations with a three dimensional carbon cycle model tuned to reproduce past variations of carbon cycle indices show a significant impact of variations in the ocean circulation on the CO2 concentration in the atmosphere and thereby on climate. The series of experiments suggest that for the study of climate in the time scale range from 10-Planetary circulations in the presence of transient and self-induced heating

    NASA Technical Reports Server (NTRS)

    Salby, Murry L.; Garcia, Rolando R.

    1993-01-01

    The research program focuses on large-scale circulations and their interaction with the global convective pattern. An 11-year record of global cloud imagery and contemporaneous fields of motion and temperature have been used to investigate organized convection and coherent variability of the tropical circulation operating on intraseasonal time scales. This study provides a detailed portrait of tropical variability associated with the so-called Madden-Julian Oscillation (MJO). It reveals the nature, geographical distribution, and seasonality of discrete convective signal, which is a measure of feedback between the circulation and the convective pattern. That discrete spectral behavior has been evaluated in light of natural variability of the ITCZ associated with climatological convection. A composite signature of the MJO, based on cross-covariance statistics of cloud cover, motion, and temperature, has been constructed to characterize the lifecycle of the disturbance in terms of these properties. The composite behavior has also been used to investigate the influence the MJO exerts on the zonal-mean circulation and the involvement of the MJO in transfers of momentum between the atmosphere and the solid Earth. The aforementioned observational studies have led to the production of two animations. One reveals the convective signal in band-pass filtered OLR and compares it to climatological convection. The other is a 3-dimensional visualization of the composite lifecycle of the MJO. With a clear picture of the MJO in hand, feedback between the circulation and the convective pattern can be diagnosed meaningfully in numerical simulations. This process is being explored in calculations with the linearized primitive equations on the sphere in the presence of realistic stability and shear. The numerical framework represents climatological convection as a space-time stochastic process and wave-induced convection in terms of the vertically-integrated moisture flux convergence

  6. Ocean circulation using altimetry

    NASA Technical Reports Server (NTRS)

    Minster, Jean-Francois; Brossier, C.; Gennero, M. C.; Mazzega, P.; Remy, F.; Letraon, P. Y.; Blanc, F.

    1991-01-01

    Our group has been very actively involved in promoting satellite altimetry as a unique tool for observing ocean circulation and its variability. TOPEX/POSEIDON is particularly interesting as it is optimized for this purpose. It will probably be the first instrument really capable of observing the seasonal and interannual variability of subtropical and polar gyres and the first to eventually document the corresponding variability of their heat flux transport. The studies of these phenomena require data of the best quality, unbiased extraction of the signal, mixing of these satellite data with in situ measurements, and assimilation of the whole set into a dynamic description of ocean circulation. Our group intends to develop responses to all these requirements. We will concentrate mostly on the circulation of the South Atlantic and Indian Oceans: This will be done in close connection with other groups involved in the study of circulation of the tropical Atlantic Ocean, in the altimetry measurements (in particular, those of the tidal issue), and in the techniques of data assimilation in ocean circulation models.

  7. Optical rankine vortex and anomalous circulation of light.

    PubMed

    Swartzlander, Grover A; Hernandez-Aranda, Raul I

    2007-10-19

    Rankine vortex characteristics of a partially coherent optical vortex are explored using classical and physical optics. Unlike a perfectly coherent vortex mode, the circulation is not quantized. Excess circulation is predicted owing to the wave nature of composite vortex fields. Based on these findings, we propose a vortex stellar interferometer. PMID:17995253

  8. Optical Rankine Vortex and Anomalous Circulation of Light

    SciTech Connect

    Swartzlander, Grover A. Jr.; Hernandez-Aranda, Raul I.

    2007-10-19

    Rankine vortex characteristics of a partially coherent optical vortex are explored using classical and physical optics. Unlike a perfectly coherent vortex mode, the circulation is not quantized. Excess circulation is predicted owing to the wave nature of composite vortex fields. Based on these findings, we propose a vortex stellar interferometer.

  9. Optical Rankine Vortex and Anomalous Circulation of Light

    NASA Astrophysics Data System (ADS)

    Swartzlander, Grover A., Jr.; Hernandez-Aranda, Raul I.

    2007-10-01

    Rankine vortex characteristics of a partially coherent optical vortex are explored using classical and physical optics. Unlike a perfectly coherent vortex mode, the circulation is not quantized. Excess circulation is predicted owing to the wave nature of composite vortex fields. Based on these findings, we propose a vortex stellar interferometer.

  10. On the North Atlantic circulation

    SciTech Connect

    Schmitz, W.J. Jr.; McCartney, M.S. )

    1993-02-01

    A summary for North Atlantic circulation is proposed to replace the circulation scheme hypothesized by Worthington in 1976. Divergences from the previous model are in thermohaline circulation, cross-equatorical transport and Florida Current sources, flow in the eastern Atlantic, circulation in the Newfoundland Basin, slope water currents, and flow pattern near the Bahamas. The circulation patterns presented here are consistent with the majority of of published accounts of flow components. 77 refs., 14 figs., 3 tabs.

  11. Atlantic circulation keeps turning.

    PubMed

    Gross, Michael

    2012-10-23

    Two major research projects that are running out in November have investigated the Atlantic circulation system that includes the Gulf Stream and come to the conclusion that there is no immediate risk of it shutting down, allaying fears that were raised seven years ago. Yet a better understanding of the interaction between ocean circulation and climate change is still needed, so two new research projects are going to continue this work and extend it to the implications for fisheries and urban environments. Michael Gross reports. PMID:23256201

  12. Extravascular circulation of plasma proteins.

    PubMed

    Szabó, G; Magyar, Z

    1982-01-01

    The escape of radioiodinated serum albumin (RISA) from the circulation and lymphatic albumin transport was investigated in anaesthetized rabbits. The fraction of RISA escaping each hour from the circulation was 0.0932 +/- 0.0075, lymphatic albumin transport in the thoracic duct was 0.0389 +/- 0.0026 in the hepatic lymph trunk 0.0115 +/- 0.016, in the intestinal trunk 0.0122 +/- 0.0037 and in the renal lymphatics 0.0185 +/- 0.0021. About 78% of the lymph and 91% of albumin transported by the thoracic duct originated from the abdominal and renal lymphatics. The ratio of albumin escape from the circulation versus lymphatic return was 2.36. From the first slopes of the lymphatic RISA activity curves the albumin escape rates were calculated and found to be 1.89 in the liver, 2.32 in the kidney, 0.69 in the intestine and 0.20 g h-1 kg-1 tissue weight in the leg (skin). The lymph vessels returned 17% of the escaped albumin, from the liver about 12% from the intestines and almost all from the kidneys. A very strong correlation (r = 0.996) was found between lymph to plasma albumin concentration ratios and the first slopes of the RISA equilibration curves, proving that protein concentration in the lymph is determined by the rate of protein escape from the capillaries and that the rates obtained from the first slopes of the RISA cpm/g albumin in lymph per RISA cpm/g albumin in plasma equilibration curves are a measure of capillary permeability to protein. PMID:7184306

  13. Ocean circulation modeling by use of radar altimeter data

    NASA Technical Reports Server (NTRS)

    Olbers, Dirk; Alpers, W.; Hasselmann, K.; Maier-Reimer, E.; Kase, R.; Krauss, W.; Siedler, G.; Willebrand, J.; Zahel, W.

    1991-01-01

    The project will investigate the use of radar altimetry (RA) data in the determination of the ocean circulation models. RA data will be used to verify prognostic experiments of the steady state and seasonal cycle of large-scale circulation models and the statistical steady state of eddy-resolving models. The data will serve as initial and update conditions in data assimilation experiments and as constraints in inverse calculations. The aim of the project is a better understanding of ocean physics, the determination and mapping of ocean currents, and a contribution to the establishment of ocean circulation models for climate studies. The goal of the project is to use satellite radar altimetry data for improving our knowledge of ocean circulation both in a descriptive sense and through the physics that govern the circulation state. The basic tool is a series of ocean circulation models. Depending on the model, different techniques will be applied to incorporate the RA data.

  14. Portable oven air circulator

    DOEpatents

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  15. Arctic circulation regimes.

    PubMed

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  16. Circulation Aide Training Manual.

    ERIC Educational Resources Information Center

    Bergeson, Alan O.

    This training manual provides instruction on shelving and other duties for student assistants in the learning resources center at the College of Dupage, located in Illinois. It is noted that prospective student circulation aides are required to read the manual and pass a written test on policies and procedures before they are allowed to shelve…

  17. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  18. Seasonal variations in the frequency of atmospheric circulation types in European regions

    NASA Astrophysics Data System (ADS)

    Cahynova, Monika; Huth, Radan

    2010-05-01

    We propose two versions of an "index of seasonality" to study the annual course in the relative frequency of circulation types in several objective and subjective classifications from the COST733 database. The objective classifications have been developed for twelve European regions (domains D00-D11) in the period 1957-2002 and have fixed numbers of types (9, 18, and 27). Both indices are based on the long-term monthly relative frequency of individual circulation types. For each type we indicate the months with the highest and the lowest relative frequency and calculate their difference (range). The first index - "average seasonality" - is an average of the ranges of all types within a given classification. It is anti-correlated with the number of types - a higher number of types means a lower average seasonality. The second index - "maximum seasonality" - only takes into account the circulation type with the highest range (that is, the type with the most pronounced annual course). This index removes the dependence on the number of circulation types in some of the used classifications. Seasonal variations in the relative frequency of circulation types based on the two indices are generally the highest in the eastern Mediterranean (D11) and in whole Europe (D00). The lowest seasonality is found over the British Isles (D04) and Iceland (D01). There are large differences in the seasonality in the individual classifications, because the degree to which the classification identifies the natural seasonal circulation patterns strongly depends on the classification algorithm used. The research is conducted within the COST733 Action "Harmonisation and Applications of Weather Types Classifications for European Regions". The Czech participation in it is supported by the Ministry of Education, Youth, and Sports of the Czech Republic, contract OC115.

  1. The aerodynamics of circulation control

    NASA Technical Reports Server (NTRS)

    Wood, N. J.

    1981-01-01

    Two dimensional subsonic wind tunnel tests were conducted on a 20% thickness: chord ratio circulation controlled elliptic aerofoil section equipped with forward and reverse blowing slots. Overall performance measurements were made over a range of trailing edge blowing momentum coefficients from 0 to 0.04; some included the effect of leading edge blowing. A detailed investigation of the trailing edge wall jet, using split film probes, hot wire probes and total head tubes, provided measurements of mean velocity components, Reynolds normal and shear stresses, and radial static pressure. The closure of the two dimensional angular momentum and continuity equations was examined using the measured data, with and without correction, and the difficulty of obtaining a satisfactory solution illustrated. Suggestions regarding the nature of the flow field which should aid the understanding of Coanda effect and the theoretical solution of highly curved wall jet flows are presented.

  2. Pseudo Random Classification of Circulation Patterns - Comparison to Deliberate Methods

    NASA Astrophysics Data System (ADS)

    Philipp, Andreas

    2010-05-01

    Classification of circulations patterns, e.g. of sea level pressure patterns, can be done by many different methods, e.g. by cluster analysis, methods based on eigenvalues or those based on the leader algorithm like the Lund classification. However none of these methods can give clear advice on the problem of appropriate numbers of classes and even though the number is decided different methods lead to different results. High efforts are made to find methods leading to indisbutable results. However, doubts on the classifiability of tropospheric circulation states have been raised recently and the existence of natural groups of similar patterns within the circulation data, which might be caused by circulation regimes, are questionable. If those groups or clusters exist, methods which are designed to find them, in particular cluster analysis, should be superior to classification schemes based on pseudo random definition of classes. In order to prove this assumption, a classification method called "random centroids" has been designed, for each class choosing one single circulation pattern using a random number generator and assigning all remaining patterns to them according to the minimum Euclidean distance. Evaluation metrics like the "explained cluster variance" for pressure, temperature and precipitation are calculated in order to compare those pseudo random classifications to classifications provided by the cost733cat dataset including many different classification catalogs for various methods (COST Action 733 "Harmonisation and Applications of Weather Type Classifications for European regions"). By running the randomcent method 1000 times the empirical probability density function of the evaluation metrics can be established and provides information about the probability for the established deliberate methods to be better than random classifications. The results show that most of the classifications fail to succeed the 95th percentile of the empirical probability

  3. A comparative Study of Circulation Patterns at Active Lava Lakes

    NASA Astrophysics Data System (ADS)

    Lev, Einat; Oppenheimer, Clive; Spampinato, Letizia; Hernandez, Pedro; Unglert, Kathi

    2016-04-01

    Lava lakes present a rare opportunity to study magma dynamics in a large scaled-up "crucible" and provide a unique natural laboratory to ground-truth dynamic models of magma circulation. The persistence of lava lakes allows for long-term observations of flow dynamics and of lava properties, especially compared to surface lava flows. There are currently five persistent lava lakes in the world: Halemaumau in Kilauea (Hawaii, USA), Erta Ale (Ethiopia), Nyiragongo (Congo), Erebus (Antarctica), and Villarica (Chile). Marum and Benbow craters of Ambrym volcano (Vanuatu) and Masaya (Nicaragua) have often hosted lava lakes as well. We use visible-light and thermal infrared time-lapse and video footage collected at all above lakes (except Villarica, where the lake is difficult to observe), and compare the circulation patterns recorded. We calculate lake surface motion from the footage using the optical flow method (Lev et al., 2012) to produce 2D velocity fields. We mined both the surface temperature field and the surface velocity field for patterns using machine learning techniques such as "self-organizing maps (SOMs)" and "principle component analysis (PCA)". We use automatic detection technique to study the configuration of crustal plates at the lakes' surface. We find striking differences among the lakes, in flow direction, flow speed, frequency of changes in flow direction and speed, location and consistency of upwelling and downwelling, and crustal plate configuration. We relate the differences to lake size, shallow conduit geometry, lava viscosity, crystal and gas content, and crust integrity.

  4. Persistent fetal circulation.

    PubMed

    Saucier, P H

    1980-01-01

    A review of persistent fetal circulation, which involves the presence of a right to left extrapulmonary shunt that is sustained into neonatal life, is presented. Clinical signs exhibited by the infant often resemble those of respiratory distress. Treatment is accomplished with hyperventilation and/or pharmacologically with tolazoline which, in addition to the usual attention to the overall condition of the infant, requires intensive monitoring by the nurse. PMID:6898712

  5. Ocean circulation studies

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J.

    1984-01-01

    Remotely sensed signatures of ocean surface characteristics from active and passive satellite-borne radiometers in conjunction with in situ data were utilized to examine the large scale, low frequency circulation of the world's oceans. Studies of the California Current, the Gulf of California, and the Kuroshio Extension Current in the western North Pacific were reviewed briefly. The importance of satellite oceanographic tools was emphasized.

  6. Lost circulation in geothermal wells: survey and evaluation of industry experience

    SciTech Connect

    Goodman, M.A.

    1981-07-01

    Lost circulation during drilling and completion of geothermal wells can be a severe problem, particularly in naturally fractured and/or vugular formations. Geothermal and petroleum operators, drilling service companies, and independent consultants were interviewed to assess the lost circulation problem in geothermal wells and to determine general practices for preventing lost circulation. This report documents the results and conclusions from the interviews and presents recommendations for needed research. In addition, a survey was also made of the lost circulation literature, of currently available lost circulation materials, and of existing lost circulation test equipment.

  7. General circulation of the ocean

    SciTech Connect

    Abarbanel, H.D.I.; Young, W.R.

    1986-01-01

    This book is an analysis of the geophysics of ocean circulation and its interaction with the atmosphere. It reviews the new concepts and models which have emerged in the last five years, as well as classical theories and observations. The contributions cover topics such as: the observational basis for large-scale circulation, including surface and deep circulation and subtropical gyres; thermocline theories; inverse methods for ocean circulation; baroclinic theories of the wind-driven circulation; and single layer models. This volume sets the current research literature in context, and suggests promising avenues for future study.

  8. Transients in a circulating fluidized bed boiler

    NASA Astrophysics Data System (ADS)

    Baskakov, A. P.; Munts, V. A.; Pavlyuk, E. Yu.

    2013-11-01

    Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for calculating the time constants of unsteady processes are obtained.

  9. World Ocean Circulation Experiment

    NASA Technical Reports Server (NTRS)

    Clarke, R. Allyn

    1992-01-01

    The oceans are an equal partner with the atmosphere in the global climate system. The World Ocean Circulation Experiment is presently being implemented to improve ocean models that are useful for climate prediction both by encouraging more model development but more importantly by providing quality data sets that can be used to force or to validate such models. WOCE is the first oceanographic experiment that plans to generate and to use multiparameter global ocean data sets. In order for WOCE to succeed, oceanographers must establish and learn to use more effective methods of assembling, quality controlling, manipulating and distributing oceanographic data.

  10. Computational chemistry of natural products: a comparison of the chemical reactivity of isonaringin calculated with the M06 family of density functionals.

    PubMed

    Glossman-Mitnik, Daniel

    2014-07-01

    The M06 family of density functionals has been assessed for the calculation of the molecular structure and properties of the Isonaringin flavonoid that can be an interesting material for dye-sensitized solar cells (DSSC). The chemical reactivity descriptors have been calculated through chemical reactivity theory within DFT (CR-DFT). The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices and the dual descriptor f ((2))(r). A comparison between the descriptors calculated through vertical energy values and those arising from the Janak's theorem approximation have been performed in order to check for the validity of the last procedure. PMID:24992989

  11. Numerical calculations of two dimensional, unsteady transonic flows with circulation

    NASA Technical Reports Server (NTRS)

    Beam, R. M.; Warming, R. F.

    1974-01-01

    The feasibility of obtaining two-dimensional, unsteady transonic aerodynamic data by numerically integrating the Euler equations is investigated. An explicit, third-order-accurate, noncentered, finite-difference scheme is used to compute unsteady flows about airfoils. Solutions for lifting and nonlifting airfoils are presented and compared with subsonic linear theory. The applicability and efficiency of the numerical indicial function method are outlined. Numerically computed subsonic and transonic oscillatory aerodynamic coefficients are presented and compared with those obtained from subsonic linear theory and transonic wind-tunnel data.

  12. Code System to Calculate Fluid Circulation Patterns Near Jets.

    Energy Science and Technology Software Center (ESTSC)

    2002-01-18

    Version 00 Distribution is restricted to the United States Only. ORSMAC predicts the temperatures occurring in the immediate vicinity (the near field) of a hot water discharge from a power plant. ORSMAC numerically solves the differential equations governing the conservation of mass, momentum, and energy in a two-dimensional vertical plane containing the power plant discharge. The model allows arbitrary discharge angle and can accommodate either quiescent or cross-flowing ambient conditions.

  13. Circulation of Stars

    NASA Astrophysics Data System (ADS)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  14. Radiology of liver circulation

    SciTech Connect

    Hermine, C.L.

    1985-01-01

    This book proposes that careful evaluation of the arterioportogram is the cornerstone in assessing portal flow obstruction, being the most consistent of all observations including liver histology, portal venous pressure, size and number of portosystemic collaterals, and wedged hepatic venous pressure. Very brief chapters cover normal hepatic circulation and angiographic methods. Contrast volumes and flow rates for celiac, hepatic, and superior mesenteric injection are given, with the timing for venous phase radiographs. In the main body of the text, portal obstruction is divided very simply into presinusoidal (all proximal causes) and postsinusoidal (all distal causes, including Budd-Chiari). Changes are discussed regarding the splenic artery and spleen; hepatic artery and its branches; portal flow rate and direction; and arterioportal shunting and portosystemic collateral circulation in minimal, moderate, severe, and very severe portal obstruction and in recognizable entities such as prehepatic portal and hepatic venous obstructions. The major emphasis in this section is the recognition and understanding of flow changes by which level and severity of obstruction are assessed (not simply the anatomy of portosystemic collateral venous flow). Excellent final chapters discuss the question of portal hypertension without obstruction, and the contribution of arterioportography to the treatment of portal hypertension, again with an emphasis on hemodynamics before and after shunt surgery. There is a fascinating final chapter on segmental intrahepatic obstruction without portal hypertension that explains much of the unusual contrast enhancement sometimes seen in CT scanning of hepatic mass lesions.

  15. Ab initio calculations on the structure and nature of the hydrogen bonded complex H2S ṡṡṡ HF

    NASA Astrophysics Data System (ADS)

    Singh, U. Chandra; Kollman, Peter A.

    1984-01-01

    Ab initio calculations employing an extended basis set and correlation energy estimates at the MP2 (second order Möller-Plesset) level have been used to estimate the binding energy, minimum energy S ...F distance, and minimum energy bisector angle θ (angle between the twofold axis of H2S and the S ...F line) for the hydrogen bonded complex H2S ... HF. The calculated distance and bisector angle θ are in reasonable agreement with experiment; the calculated binding energy can be used to provide a good estimate of the (as yet unknown) experimental value. Morokuma component analyses and simple electrostatic (molecular mechanics) calculations have been carried out on the complex as a function of bisector angle and they demonstrated that, despite suggestions to the contrary, the H2S ... HF bisector angle is predominantly determined by the electrostatic energy.

  16. Walker circulation in a transient climate

    NASA Astrophysics Data System (ADS)

    Plesca, Elina; Grützun, Verena; Buehler, Stefan A.

    2016-04-01

    response (temperature change by the time of CO2 doubling), which in turn might be related to a decreased ocean heat uptake. This uncertainty across the models we attribute to the multitude of factors controlling ocean and atmosphere heat exchange, both at global and regional scales, as well as to the present capabilities of GCMs in simulating this exchange. References: England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta, A. S., McPhaden, M. J., Purich, A., and Santoso, A., 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change 4 (3): 222-227. Ma, J., and Xie, S. P., 2013. Regional Patterns of Sea Surface Temperature Change: A Source of Uncertainty in Future Projections of Precipitation and Atmospheric Circulation*. Journal of Climate, 26 (8): 2482-2501

  17. Lost Circulation Technology Development Status

    SciTech Connect

    Glowka, David A.; Schafer, Diane M.; Loeppke, Glen E.; Scott, Douglas D.; Wernig, Marcus D.; Wright, Elton K.

    1992-03-24

    Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the U.S. Department of Energy. The goal of the program is to reduce lost circulation costs by 30-50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April, 1991-March, 1992.

  18. Global ocean circulation by altimetry

    NASA Technical Reports Server (NTRS)

    Wunsch, Carl; Haidvogel, D.

    1991-01-01

    The overall objectives of this project are to determine the general circulation of the oceans and many of its climate and biochemical consequences through the optimum use of altimetry data from TOPEX/POSEIDON and related missions. Emphasis is on the global-scale circulation, as opposed to the regional scale, but some more local studies will be carried out. Because of funding limitations, the primary initial focus will be on the time-dependent global-scale circulation rather than the mean; eventually, the mean circulation must be dealt with as well.

  19. Modeling ocean circulation

    SciTech Connect

    Semtner, A.J.

    1995-09-08

    Ocean numerical models have become quite realistic over the past several years as a result of improved methods, faster computers, and global data sets. Models now treat basin-scale to global domains while retaining the fine spatial scales that are important for modeling the transport of heat, salt, and other properties over vast distances. Simulations are reproducing observed satellite results on the energetics of strong currents and are properly showing diverse aspects of thermodynamic and dynamic ocean responses ranging from deep-water production of El Nino. Now models can represent not only currents but also the consequences for climate, biology, and geo-chemistry over time spans for months to decades. However, much remains to be understood from models about ocean circulation on longer time scales, including the evolution of the dominant water masses, the predictability of climate, and the ocean`s influence on global change. 34 refs., 6 figs.

  20. Ocean General Circulation Models

    SciTech Connect

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  1. PULMONARY CIRCULATION AT EXERCISE

    PubMed Central

    NAEIJE, R; CHESLER, N

    2012-01-01

    The pulmonary circulation is a high flow and low pressure circuit, with an average resistance of 1 mmHg.min.L−1 in young adults, increasing to 2.5 mmHg.min.L−1 over 4–6 decades of life. Pulmonary vascular mechanics at exercise are best described by distensible models. Exercise does not appear to affect the time constant of the pulmonary circulation or the longitudinal distribution of resistances. Very high flows are associated with high capillary pressures, up to a 20–25 mmHg threshold associated with interstitial lung edema and altered ventilation/perfusion relationships. Pulmonary artery pressures of 40–50 mmHg, which can be achieved at maximal exercise, may correspond to the extreme of tolerable right ventricular afterload. Distension of capillaries that decrease resistance may be of adaptative value during exercise, but this is limited by hypoxemia from altered diffusion/perfusion relationships. Exercise in hypoxia is associated with higher pulmonary vascular pressures and lower maximal cardiac output, with increased likelihood of right ventricular function limitation and altered gas exchange by interstitial lung edema. Pharmacological interventions aimed at the reduction of pulmonary vascular tone have little effect on pulmonary vascular pressure-flow relationships in normoxia, but may decrease resistance in hypoxia, unloading the right ventricle and thereby improving exercise capacity. Exercise in patients with pulmonary hypertension is associated with sharp increases in pulmonary artery pressure and a right ventricular limitation of aerobic capacity. Exercise stress testing to determine multipoint pulmonary vascular pressures-flow relationships may uncover early stage pulmonary vascular disease. PMID:23105961

  2. Greenland Meltwater and Arctic Circulation Regimes

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, D. S.; Proshutinsky, A. Y.; Timmermans, M. L.; Myers, P. G.; Platov, G.

    2015-12-01

    Between 1948 and 1996, wind-driven components of ice drift and surface ocean currents experienced a well-pronounced decadal variability alternating between anticyclonic and cyclonic circulation regimes. During cyclonic regimes, low sea level atmospheric pressure dominated over the Arctic Ocean driving sea ice and the upper ocean clockwise; the Arctic atmosphere was relatively warm and humid and freshwater flux from the Arctic Ocean toward the sub-Arctic seas was intensified. During anticylonic circulation regimes, high sea level pressure dominated over the Arctic driving sea ice and ocean counter-clockwise; the atmosphere was cold and dry and the freshwater flux from the Arctic to the sub-Arctic seas was reduced. Since 1997, however, the Arctic system has been dominated by an anticyclonic circulation regime with a set of environmental parameters that are atypical for these regimes. Of essential importance is to discern the causes and consequences of the apparent break-down in the natural decadal variability of the Arctic climate system, and specifically: Why has the well-pronounced decadal variability observed in the 20th century been replaced by relatively weak interannual changes under anticyclonic circulation regime conditions in the 21st century? We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from Greenland impact environmental conditions and interrupt their decadal variability. In order to test this hypothesis, numerical experiments with several FAMOS (Forum for Arctic Modeling & Observational Synthesis) ice-ocean coupled models have been conducted. In these experiments, Greenland melt freshwater is tracked by passive tracers being constantly released along the Greenland coast. Propagation pathways and time scales of Greenland meltwater within the sub-Arctic seas are discussed.

  3. Results of theoretical and experimental studies of hydrodynamics of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors

    NASA Astrophysics Data System (ADS)

    Ryabov, G. A.; Folomeev, O. M.; Sankin, D. A.; Melnikov, D. A.

    2015-02-01

    Problems of the calculation of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors (polygeneration systems for the production of electricity, heat, and useful products and chemical cycles of combustion and gasification of solid fuels)are considered. A method has been developed for the calculation of circulation loop of fuel particles with respect to boilers with circulating fluidized bed (CFB) and systems with interconnected reactors with fluidized bed (FB) and CFB. New dependences for the connection between the fluidizing agent flow (air, gas, and steam) and performance of reactors and for the whole system (solids flow rate, furnace and cyclone pressure drops, and bed level in the riser) are important elements of this method. Experimental studies of hydrodynamics of circulation loops on the aerodynamic unit have been conducted. Experimental values of pressure drop of the horizontal part of the L-valve, which satisfy the calculated dependence, have been obtained.

  4. Miniature Gas-Circulating Machine

    NASA Technical Reports Server (NTRS)

    Swift, Walter L.; Valenzuela, Javier A.; Sixsmith, Herbert; Nutt, William E.

    1993-01-01

    Proposed gas-circulating machine consists essentially of centrifugal pump driven by induction motor. Noncontact bearings suppress wear and contamination. Used to circulate helium (or possibly hydrogen or another gas) in regeneration sorption-compressor refrigeration system aboard spacecraft. Also proves useful in terrestrial applications in which long life, reliability, and low contamination essential.

  5. Constraining the North Atlantic circulation with tritium data

    NASA Technical Reports Server (NTRS)

    Memery, Laurent; Wunsch, Carl

    1990-01-01

    The North Atlantic circulation derived from an inverse calculation by singular-value decomposition is tested against the historical record of tritium. A forward calculation of the tritium transient is performed using the circulation model, published estimates of atmospheric injection rates, and plausible estimates of the tracer history at the open boundaries of the model. The results do not agree with observations of the interior distributions of tritium. Consideration is given to the possibility of improving the agreement by modifying the atmospheric injection rates and the initial estimates of open boundary time histories, treating the boundary conditions as control variables.

  6. Nature of the band gap of halide perovskites ABX3 (A = CH3NH3, Cs; B = Sn, Pb; X = Cl, Br, I): First-principles calculations

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Xu, Run; Xu, Hai-Tao; Hong, Feng; Xu, Fei; Wang, Lin-Jun

    2015-11-01

    The electronic structures of cubic structure of ABX3(A=CH3NH3, Cs; B=Sn, Pb; X=Cl, Br, I) are analyzed by density functional theory using the Perdew-Burke-Ernzerhof exchange-correlation functional and using the Heyd-Scuseria-Ernzerhof hybrid functional. The valence band maximum (VBM) is found to be made up by an antibonding hybridization of B s and X p states, whereas bands made up by the π antibonding of B p and X p states dominates the conduction band minimum (CBM). The changes of VBM, CBM, and band gap with ion B and X are then systematically summarized. The natural band offsets of ABX3 are partly given. We also found for all the ABX3 perovskite materials in this study, the bandgap increases with an increasing lattice parameter. This phenomenon has good consistency with the experimental results. Project supported by the National Natural Science Foundation of China (Grant No. 11375112).

  7. Persistent fetal circulation

    PubMed Central

    D’cunha, Chrysal; Sankaran, Koravangattu

    2001-01-01

    Persistent fetal circulation (PFC), also known as persistent pulmonary hypertension of the newborn, is defined as postnatal persistence of right-to-left ductal or atrial shunting, or both in the presence of elevated right ventricular pressure. It is a relatively rare condition that is usually seen in newborns with respiratory distress syndrome, overwhelming sepsis, meconium and other aspiration syndromes, intrauterine hypoxia and ischemia, and/or neonatal hypoxia and ischemia. This condition causes severe hypoxemia, and, as a result, has significant morbidity and mortality. Improved antenatal and neonatal care; the use of surfactant; continuous monitoring of oxygenation, blood pressure and other vital functions; and early recognition and intervention have made this condition even more rare. In modern neonatal intensive care units, anticipation and early treatment of PFC and its complications in sick newborns are commonplace. Thus, severe forms of PFC are only seen on isolated occasions. Consequently, it is even more imperative to revisit PFC compared with the time when there were occasional cases of PFC seen in neonatal intensive care units, and to discuss evolving treatment and management issues that pertain to this syndrome. PMID:20084150

  8. Temperature field study of hot water circulation pump shaft system

    NASA Astrophysics Data System (ADS)

    Liu, Y. Y.; Kong, F. Y.; Daun, X. H.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    In the process of engineering application under the condition of hot water circulation pump, problems of stress concentration caused by the temperature rise may happen. In order to study the temperature field in bearing and electric motor chamber of the hot water circulation pump and optimize the structure, in present paper, the model of the shaft system is created through CREO. The model is analyzed by ANSYS workbench, in which the thermal boundary conditions are applied to calculate, which include the calorific values from the bearings, the thermal loss from electric motor and the temperature from the transporting medium. From the result, the finite element model can reflect the distribution of thermal field in hot water circulation pump. Further, the results show that the maximum temperature locates in the bearing chamber.The theoretical guidance for the electric motor heat dissipation design of the hot water circulation pump can be achieved.

  9. Circulating Adiponectin and Risk of Endometrial Cancer

    PubMed Central

    Zheng, Qiaoli; Wu, Haijian; Cao, Jiang

    2015-01-01

    Background Adiponectin is an insulin-sensitizing hormone produced by adipocytes. It has been suggested to be involved in endometrial tumorigenesis. Published data have shown inconsistent results for the association between circulating adiponectin levels and endometrial cancer. In this study, we conducted a meta-analysis to evaluate the predictive value of circulating adiponectin levels on the development of endometrial cancer. Methods PubMed, Embase, ISI web of knowledge, and Cochrane databases were searched for all eligible studies, and the summary relative risk (SRR) was calculated. Additionally, we performed dose-response analysis with eight eligible studies. Results A total of 1,955 cases and 3,458 controls from 12 studies were included. The SRR for the ‘highest’ vs ‘lowest’ adiponectin levels indicated high adiponectin level reduced the risk of endometrial cancer [SRR = 0.40, 95% confidence interval (CI), 0.33–0.66]. Results from the subgroup analyses were consistent with the overall analysis. The SRR for each 1 µg/ml increase of adiponectin indicated a 3% reduction in endometrial cancer risk (95% CI: 2%–4%), and a 14% reduction for each increase of 5 µg/ml (95% CI: 9%–19%). No evidence of publication bias was found. Conclusions This meta-analysis demonstrates that low level of circulating adiponectin is a risk factor for endometrial cancer. PMID:26030130

  10. Tropical climate change control of the lower stratospheric circulation

    NASA Astrophysics Data System (ADS)

    Lin, Pu; Ming, Yi; Ramaswamy, V.

    2015-02-01

    The behavior of the Brewer-Dobson circulation is investigated using a suite of global climate model simulations with different forcing agents, in conjunction with observation-based analysis. We find that the variations in the Brewer-Dobson circulation are strongly correlated with those in the tropical mean surface temperature through changes in the upper tropospheric temperature and zonal winds. This correlation is seen on both interannual and multidecadal time scales, and holds for natural and forced variations alike. The circulation change is relatively insensitive to the spatial pattern of the forcings. Consistent changes in the Brewer-Dobson circulation with respect to those in the tropical mean surface temperature prevail across time scales and forcings, and constitute an important attribution element of the atmospheric adjustment to global climate change.

  11. Multiple Circulating Cytokines Are Coelevated in Chronic Obstructive Pulmonary Disease.

    PubMed

    Selvarajah, Senthooran; Todd, Ian; Tighe, Patrick J; John, Michelle; Bolton, Charlotte E; Harrison, Timothy; Fairclough, Lucy C

    2016-01-01

    Inflammatory biomarkers, including cytokines, are associated with COPD, but the association of particular circulating cytokines with systemic pathology remains equivocal. To investigate this, we developed a protein microarray system to detect multiple cytokines in small volumes of serum. Fourteen cytokines were measured in serum from never-smokers, ex-smokers, current smokers, and COPD patients (GOLD stages 1-3). Certain individual circulating cytokines (particularly TNFα and IL-1β) were significantly elevated in concentration in the serum of particular COPD patients (and some current/ex-smokers without COPD) and may serve as markers of particularly significant systemic inflammation. However, numerous circulating cytokines were raised such that their combined, but not individual, elevation was significantly associated with severity of disease, and these may be further indicators of, and contributors to, the systemic inflammatory manifestations of COPD. The coelevation of numerous circulating cytokines in COPD is consistent with the insidious development, chronic nature, and systemic comorbidities of the disease. PMID:27524865

  12. Multiple Circulating Cytokines Are Coelevated in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Todd, Ian; John, Michelle; Bolton, Charlotte E.; Harrison, Timothy

    2016-01-01

    Inflammatory biomarkers, including cytokines, are associated with COPD, but the association of particular circulating cytokines with systemic pathology remains equivocal. To investigate this, we developed a protein microarray system to detect multiple cytokines in small volumes of serum. Fourteen cytokines were measured in serum from never-smokers, ex-smokers, current smokers, and COPD patients (GOLD stages 1–3). Certain individual circulating cytokines (particularly TNFα and IL-1β) were significantly elevated in concentration in the serum of particular COPD patients (and some current/ex-smokers without COPD) and may serve as markers of particularly significant systemic inflammation. However, numerous circulating cytokines were raised such that their combined, but not individual, elevation was significantly associated with severity of disease, and these may be further indicators of, and contributors to, the systemic inflammatory manifestations of COPD. The coelevation of numerous circulating cytokines in COPD is consistent with the insidious development, chronic nature, and systemic comorbidities of the disease. PMID:27524865

  13. The Gastrointestinal Circulation: Physiology and Pathophysiology.

    PubMed

    Granger, D Neil; Holm, Lena; Kvietys, Peter

    2015-07-01

    The gastrointestinal (GI) circulation receives a large fraction of cardiac output and this increases following ingestion of a meal. While blood flow regulation is not the intense phenomenon noted in other vascular beds, the combined responses of blood flow, and capillary oxygen exchange help ensure a level of tissue oxygenation that is commensurate with organ metabolism and function. This is evidenced in the vascular responses of the stomach to increased acid production and in intestine during periods of enhanced nutrient absorption. Complimenting the metabolic vasoregulation is a strong myogenic response that contributes to basal vascular tone and to the responses elicited by changes in intravascular pressure. The GI circulation also contributes to a mucosal defense mechanism that protects against excessive damage to the epithelial lining following ingestion of toxins and/or noxious agents. Profound reductions in GI blood flow are evidenced in certain physiological (strenuous exercise) and pathological (hemorrhage) conditions, while some disease states (e.g., chronic portal hypertension) are associated with a hyperdynamic circulation. The sacrificial nature of GI blood flow is essential for ensuring adequate perfusion of vital organs during periods of whole body stress. The restoration of blood flow (reperfusion) to GI organs following ischemia elicits an exaggerated tissue injury response that reflects the potential of this organ system to generate reactive oxygen species and to mount an inflammatory response. Human and animal studies of inflammatory bowel disease have also revealed a contribution of the vasculature to the initiation and perpetuation of the tissue inflammation and associated injury response. PMID:26140727

  14. When Prostate Cancer Circulates in the Bloodstream

    PubMed Central

    Vlaeminck-Guillem, Virginie

    2015-01-01

    Management of patients with prostate cancer is currently based on imperfect clinical, biological, radiological and pathological evaluation. Prostate cancer aggressiveness, including metastatic potential, remains difficult to accurately estimate. In an attempt to better adapt therapeutics to an individual (personalized medicine), reliable evaluation of the intrinsic molecular biology of the tumor is warranted, and particularly for all tumor sites (primary tumors and secondary sites) at any time of the disease progression. As a consequence of their natural tendency to grow (passive invasion) or as a consequence of an active blood vessel invasion by metastase-initiating cells, tumors shed various materials into the bloodstream. Major efforts have been recently made to develop powerful and accurate methods able to detect, quantify and/or analyze all these circulating tumor materials: circulating tumors cells, disseminating tumor cells, extracellular vesicles (including exosomes), nucleic acids, etc. The aim of this review is to summarize current knowledge about these circulating tumor materials and their applications in translational research. PMID:26854164

  15. [Cancer stemness and circulating tumor cells].

    PubMed

    Saito, Tomoko; Mimori, Koshi

    2015-05-01

    The principle concept of cancer stem cells (CSCs) giving rise to the carcinogenesis, relapse or metastasis of malignancy is broadly recognized. On the other hand, circulating tumor cells (CTCs) also plays important roles in relapse or metastasis of malignancy, and there has been much focused on the association between CSCs and CTCs in cancer cases. The technical innovations for detection of CTCs enabled us to unveil the nature of CTCs. We now realize that CTCs isolated by cell surface antibodies, such as DCLK1, LGR5 indicated CSC properties, and CTCs with epitherial-mesenchymal transition(EMT) phenotype showed characteristics of CSCs. PMID:25985635

  16. First step to investigate nature of electronic states and transport in flower-like MoS2: Combining experimental studies with computational calculations.

    PubMed

    Pandey, Kavita; Yadav, Pankaj; Singh, Deobrat; Gupta, Sanjeev K; Sonvane, Yogesh; Lukačević, Igor; Kim, Joondong; Kumar, Manoj

    2016-01-01

    In the present paper, the nature of electronic states and transport properties of nanostructured flower-like molybdenum disulphide grown by hydrothermal route has been studied. The band structure, electronic nature of charge, thermodynamics and the limit of phonon scattering through density functional theory (DFT) has also been studied. The band tail states, dynamics of trap states and transport of carriers was investigated through intensive impedance spectroscopy analysis. The direct fingerprint of density and band tail state is analyzed from the capacitance plot as capacitance reflects the capability of a semiconductor to accept or release the charge carriers with a corresponding change in its Fermi potential levels. A recently introduced infrared photo-carrier radiometry and density functional perturbation theory (DFPT) techniques have been used to determine the temperature dependence of carrier mobility in flower type-MoS2. The present study illustrates that a large amount of trapped charges leads to an underestimation of the measured effective mobility and the potential of the material. Thus, a continuous engineering effort is required to improve the quality of fabricated nanostructures for its potential applications. PMID:27615369

  17. A Method for Calculating the Heat Required for Windshield Thermal Ice Prevention Based on Extensive Flight Tests in Natural Icing Conditions

    NASA Technical Reports Server (NTRS)

    Jones, Alun R; Holdaway, George H; Steinmetz, Charles P

    1947-01-01

    An equation is presented for calculating the heat flow required from the surface of an internally heated windshield in order to prevent the formation of ice accretions during flight in specified icing conditions. To ascertain the validity of the equation, comparison is made between calculated values of the heat required and measured values obtained for test windshields in actual flights in icing conditions. The test windshields were internally heated and provided data applicable to two common types of windshield configurations; namely the V-type and the type installed flush with the fuselage contours. These windshields were installed on a twin-engine cargo airplane and the icing flights were conducted over a large area of the United States during the winters of 1945-46 and 1946-47. In addition to the internally heated windshield investigation, some test data were obtained for a windshield ice-prevention system in which heated air was discharged into the windshield boundary layer. The general conclusions resulting from this investigation are as follows: 1) The amount of heat required for the prevention of ice accretions on both flush- and V-type windshields during flight in specified icing conditions can be calculated with a degree of accuracy suitable for design purposes. 2) A heat flow of 2000 to 2500 Btu per hour per square foot is required for complete and continuous protection of a V-type windshield in fight at speeds up to 300 miles per hour in a moderate cumulus icing condition. For the same degree of protection and the same speed range, a value of 1000 Btu per hour per square foot suffices in a moderate stratus icing condition. 3) A heat supply of 1000 Btu per hour per square foot is adequate for a flush windshield located well aft of the fuselage stagnation region, at speeds up to 300 miles per hour, for flight in both stratus and moderate cumulus icing conditions. 4) The external air discharge system of windshield thermal ice prevention is thermally

  18. Shaping Meridional Circulation in Solar and Stellar Convection Zones

    NASA Astrophysics Data System (ADS)

    Featherstone, N. A.; Miesch, M. S.

    2014-12-01

    Meridional circulations play a crucial role in mediating the angular momentum transport within stellar convection zones and, likely, in determining the nature and timing of their dynamos. The length of the solar cycle, for instance, is thought to depend intimately on the transport of magnetic fields by the meridional circulations in the convection zone. We present a series of 3-D nonlinear simulations of solar-like convection, carried out using the Anelastic Spherical Harmonic (ASH) code that are designed to provide insight into those processes responsible for driving and shaping the meridional circulations established within stellar convection zones. These 3-D models have been constructed in such a way as to span the transition between regimes of solar-like differential rotation (fast equator, slow poles) and regimes of so-called ``anti-solar'' differential rotation (slow equator, fast poles). Solar-like states of differential rotation are characterized by multiple cells of meridional circulation in depth at low latitudes, whereas anti-solar states of differential rotation are characterized by a single cell of circulation within each hemisphere. We demonstrate that the transition from single-celled to multi-celled meridional circulation profiles in these two different regimes is directly linked to a change in the nature of the convective Reynolds stress. These results suggest that if convection in the Sun is strongly rotationally-constrained, a multi-cellular meridional circulation profile may well be expected. Transitional regimes do exist, however, and we conclude by examining a simulation wherein convection that is only marginally rotationally constrained can drive both mono-cellular meridional circulation and solar-like differential rotation.

  19. Stereochemistry of Complex Marine Natural Products by Quantum Mechanical Calculations of NMR Chemical Shifts: Solvent and Conformational Effects on Okadaic Acid

    PubMed Central

    Domínguez, Humberto J.; Crespín, Guillermo D.; Santiago-Benítez, Adrián J.; Gavín, José A.; Norte, Manuel; Fernández, José J.; Hernández Daranas, Antonio

    2014-01-01

    Marine organisms are an increasingly important source of novel metabolites, some of which have already inspired or become new drugs. In addition, many of these molecules show a high degree of novelty from a structural and/or pharmacological point of view. Structure determination is generally achieved by the use of a variety of spectroscopic methods, among which NMR (nuclear magnetic resonance) plays a major role and determination of the stereochemical relationships within every new molecule is generally the most challenging part in structural determination. In this communication, we have chosen okadaic acid as a model compound to perform a computational chemistry study to predict 1H and 13C NMR chemical shifts. The effect of two different solvents and conformation on the ability of DFT (density functional theory) calculations to predict the correct stereoisomer has been studied. PMID:24402177

  20. Calculations of an effective solid angle including self-absorption correction applied to gamma-ray spectrometry analysis of natural samples

    NASA Astrophysics Data System (ADS)

    Fraczkiewicz, R.; Walkowiak, W.

    1992-09-01

    A new method is presented for determination of uranium and thorium contents in solid samples by gamma-ray spectrometry. The analytical procedure involved determination of uranium via the 63.288 keV gamma emission of its daughter 234Th and thorium on the basis of 238.578 keV 212Pb peak. The radiochemical equilibrium was assumed. Geometry effects and exact self-absorption were taken into account by measurements of sample linear absorption coefficients and calculation of effective solid angle. IAEA standards were used for determination of detector efficiency. The method provides reliable analytical measurements even for samples much different from standard reference materials in density and gamma absorption.

  1. Microcomputer Backup to Online Circulation.

    ERIC Educational Resources Information Center

    Intner, Sheila

    1981-01-01

    Describes the usage and advantages of microcomputers as an alternative to manual processing when the Great Neck Library minicomputer-based automated circulation system goes down for maintenance or repair. (RAA)

  2. LLNL Ocean General Circulation Model

    Energy Science and Technology Software Center (ESTSC)

    2005-12-29

    The LLNL OGCM is a numerical ocean modeling tool for use in studying ocean circulation over a wide range of space and time scales, with primary applications to climate change and carbon cycle science.

  3. Design Construction and Operation of a Supercritical Carbon Dioxide (sCO2) Loop for Investigation of Dry Cooling and Natural Circulation Potential for Use in Advanced Small Modular Reactors Utilizing sCO2 Power Conversion Cycles.

    SciTech Connect

    Middleton, Bobby D.; Rodriguez, Salvador B.; Carlson, Matthew David

    2015-11-01

    This report outlines the work completed for a Laboratory Directed Research and Development project at Sandia National Laboratories from October 2012 through September 2015. An experimental supercritical carbon dioxide (sCO 2 ) loop was designed, built, and o perated. The experimental work demonstrated that sCO 2 can be uti lized as the working fluid in an air - cooled, natural circulation configuration to transfer heat from a source to the ultimate heat sink, which is the surrounding ambient environment in most ca ses. The loop was also operated in an induction - heated, water - cooled configuration that allows for measurements of physical parameters that are difficult to isolate in the air - cooled configuration. Analysis included the development of two computational flu id dynamics models. Future work is anticipated to answer questions that were not covered in this project.

  4. The Nature of Allosteric Inhibition in Glutamate Racemase: discovery and characterization of a cryptic inhibitory pocket using atomistic MD simulations and pKa calculations

    PubMed Central

    Whalen, Katie L.; Tussey, Kenneth B.; Blanke, Steven R.; Spies, M. Ashley

    2011-01-01

    Enzyme inhibition via allostery, in which the ligand binds remotely from the active site, is a poorly understood phenomenon, and represents a significant challenge to structure-based drug design. Dipicolinic acid (DPA), a major component of Bacillus spores, is shown to inhibit glutamate racemase from Bacillus anthracis, a monosubstrate/monoproduct enzyme, in a novel allosteric fashion. Glutamate racemase has long been considered an important drug target for its integral role in bacterial cell wall synthesis. The DPA binding mode was predicted via multiple docking studies and validated via site-directed mutagenesis at the binding locus, while the mechanism of inhibition was elucidated with a combination of Blue Native PAGE, molecular dynamics simulations, free energy and pKa calculations. Inhibition by DPA not only reveals a novel cryptic binding site, but also represents a form of allosteric regulation that exploits the interplay between enzyme conformational changes, fluctuations in the pKa values of buried residues and catalysis. The potential for future drug development is discussed. PMID:21395329

  5. MEMS Calculator

    National Institute of Standards and Technology Data Gateway

    SRD 166 MEMS Calculator (Web, free access)   This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.

  6. The global residual mean circulation in the middle atmosphere for the northern winter period

    NASA Technical Reports Server (NTRS)

    Gille, John C.; Lyjak, Lawrence V.; Smith, Anne K.

    1987-01-01

    The residual mean circulation (rmc) has been calculated from the transformed thermodynamic equation using LIMS (Limb Infrared Monitor of the Stratosphere) data for the 100-0.1 mb region. For discussion, it has been divided into two components: the diabatic circulation, associated with the diabatic heating, and the transient circulation, more directly connected to eddy activity. The slowly varying diabatic circulation reveals an equator-to-pole circulation at lower levels in the stratosphere, usually overlain by a summer-to-winter pole circulation. However, there are strong seasonal variations, so that the pole-to-pole circulation fills the entire region at the December solstice, while the equator-to-pole circulation extends to above 0.1 mb at the equinoxes. The transient circulation is characterized by rapid variations and small vertical and horizontal scales. Though generally smaller than the diabatic circulation, it can dominate in the lower stratosphere during disturbed conditions. This circulation is consistent with the transformed momentum equation in the lower stratosphere (where drag is expected to be small) during undisturbed periods. It suggests a large drag due to small-scale waves (such as gravity waves) in the mesosphere, although the magnitudes are uncertain. The downward propagation of the semiannual oscillation causes the rmc in the tropics to vary, and it is capable of creating the equatorial water vapor maximum above 10 mb.

  7. Characterization of quantum circulant networks having perfect state transfer

    NASA Astrophysics Data System (ADS)

    Bašić, Milan

    2013-01-01

    In this paper we answer the question of when circulant quantum spin networks with nearest-neighbor couplings can give perfect state transfer. The network is described by a circulant graph G, which is characterized by its circulant adjacency matrix A. Formally, we say that there exists a perfect state transfer (PST) between vertices {a,bin V(G)} if | F( τ) ab | = 1, for some positive real number τ, where F( t) = exp(i At). Saxena et al. (Int J Quantum Inf 5:417-430, 2007) proved that | F( τ) aa | = 1 for some {ain V(G)} and {tauin {R}^+} if and only if all eigenvalues of G are integer (that is, the graph is integral). The integral circulant graph ICG n ( D) has the vertex set Z n = {0, 1, 2, . . . , n - 1} and vertices a and b are adjacent if {gcd(a-b,n)in D} , where {D subseteq {d : d mid n, 1 ≤ d < n}} . These graphs are highly symmetric and have important applications in chemical graph theory. We show that ICG n ( D) has PST if and only if {nin 4{N}} and {D=widetilde{D_3} \\cup D_2\\cup 2D_2\\cup 4D_2|cup {n/2^a}} , where {widetilde{D_3}={din D | n/din 8{N}}, D_2= {din D | n/din 8{N}+4}{setminus}{n/4}} and {ain{1,2}} . We have thus answered the question of complete characterization of perfect state transfer in integral circulant graphs raised in Angeles-Canul et al. (Quantum Inf Comput 10(3&4):0325-0342, 2010). Furthermore, we also calculate perfect quantum communication distance (distance between vertices where PST occurs) and describe the spectra of integral circulant graphs having PST. We conclude by giving a closed form expression calculating the number of integral circulant graphs of a given order having PST.

  8. LUX Cryogenics and Circulation

    NASA Astrophysics Data System (ADS)

    Bradley, Adam

    2012-10-01

    LUX is a new dark matter direct detection experiment being carried out at the Sanford Underground Research Facility, at the renewed Homestake mine in Lead, SD. The detector's large size supports effective internal shielding from natural radioactivity of the surrounding materials and environment. The LUX detector consists of a cylindrical vessel containing 350 kg of liquid xenon (LXe) cooled down and maintained at 175-K operating temperature using a novel cryogenic system. We report the efficiency of our thermosyphon-based cooling system, as well as the efficiency of a unique internal heat exchanger with standard gas phase purification using a heated getter, which allows for very high flow purification without requiring large cooling power. Such systems are required for multi-ton scale up.

  9. Equatorial zonal circulations: Historical perspectives

    NASA Astrophysics Data System (ADS)

    Hastenrath, Stefan

    2007-04-01

    The changing perceptions on zonal circulations in the equatorial belt are traced for (a) stratospheric wind regimes, and (b) vertical-zonal circulation cells in the troposphere. (a) Observations from the Krakatoa eruption 1883 and Berson's 1908 expedition to East Africa, along with later soundings over Batavia (Jakarta) led to the notion of "Krakatoa easterlies" around 30 km (10 mb) and "Berson westerlies" around 20 km (50 mb). Prompted by contrary observations since the late 1950s, this dogma was replaced by the notion of easterlies alternating with westerlies in the equatorial stratosphere at a rhythm of about 26 months. (b) Stimulated by Bjerknes' postulate of a "Walker circulation" along the Pacific Equator, a multitude of such cells have been hypothesized at other longitudes, in part from zonal contrasts of temperature and cloudiness. Essential for the diagnosis of equatorial zonal circulation cells is the continuity following the flow between the centers of ascending and subsiding motion. Evaluation of the recent NCEP-NCAR and ECMWF Reanalysis upper-air datasets reveals equatorial zonal circulation cells over the Pacific all year round, over the Atlantic only in boreal winter, and over the Indian Ocean only in autumn, all being seasons and oceanic longitudes with strong zonal flow in the lower troposphere.

  10. Application of remote sensing to study nearshore circulation. [and the continental shelf

    NASA Technical Reports Server (NTRS)

    Zeigler, J.; Lobecker, R.; Stauble, D.; Welch, C.; Haas, L.; Fang, C. S.

    1974-01-01

    The research to use remote sensing techniques for studying the continental shelf is reported. The studies reported include: (1) nearshore circulation in the vincinity of a natural tidal inlet; (2) identification of indicators of biological activity; (3) remote navigation system for tracking free drifting buoys; (4) experimental design of an estuaring tidal circulation; and (5) Skylab support work.

  11. Using Attribute Sampling to Assess the Accuracy of a Library Circulation System.

    ERIC Educational Resources Information Center

    Kiger, Jack E.; Wise, Kenneth

    1995-01-01

    Discusses how to use attribute sampling to assess the accuracy of a library circulation system. Describes the nature of sampling, sampling risk, and nonsampling error. Presents nine steps for using attribute sampling to determine the maximum percentage of incorrect records in a circulation system. (AEF)

  12. CFD Analysis of Circulation Control Airfoils Using Fluent

    NASA Technical Reports Server (NTRS)

    McGowan, Gregory; Gopalarathnam, Ashok

    2005-01-01

    In an effort to validate computational fluid dynamics procedures for calculating flows around circulation control airfoils, the commercial flow solver FLUENT was utilized to study the flow around a general aviation circulation control airfoil. The results were compared to experimental and computational fluid dynamics results conducted at the NASA Langley Research Center. The current effort was conducted in three stages: 1. A comparison of the results for free-air conditions to those from experiments. 2. A study of wind-tunnel wall effects. and 3. A study of the stagnation-point behavior.

  13. [Circulating nucleic acids and infertility].

    PubMed

    Scalici, E; Mullet, T; Ferrières Hoa, A; Gala, A; Loup, V; Anahory, T; Belloc, S; Hamamah, S

    2015-09-01

    Circulating nucleic acids (cell-free DNA and microRNAs) have for particularity to be easily detectable in the biological fluids of the body. Therefore, they constitute biomarkers of interest in female and male infertility care. Indeed, in female, they can be used to detect ovarian reserve disorders (polycystic ovary syndrome and low functional ovarian reserve) as well as to assess follicular microenvironment quality. Moreover, in men, their expression levels can vary in case of spermatogenesis abnormalities. Finally, circulating nucleic acids have also the ability to predict successfully the quality of in vitro embryo development. Their multiple contributions during assisted reproductive technology (ART) make of them biomarkers of interest, for the development of new diagnostic and/or prognostic tests, applied to our specialty. Circulating nucleic acids would so offer the possibility of personalized medical care for infertile couples in ART. PMID:26298813

  14. Noise Reduction Through Circulation Control

    NASA Technical Reports Server (NTRS)

    Munro, Scott E.; Ahuja, K. K.; Englar, Robert J.

    2005-01-01

    Circulation control technology uses tangential blowing around a rounded trailing edge or a leading edge to change the force and moment characteristics of an aerodynamic body. This technology has been applied to circular cylinders, wings, helicopter rotors, and even to automobiles for improved aerodynamic performance. Only limited research has been conducted on the acoustic of this technology. Since wing flaps contribute to the environmental noise of an aircraft, an alternate blown high lift system without complex mechanical flaps could prove beneficial in reducing the noise of an approaching aircraft. Thus, in this study, a direct comparison of the acoustic characteristics of high lift systems employing a circulation control wing configuration and a conventional wing flapped configuration has been made. These results indicate that acoustically, a circulation control wing high lift system could be considerably more acceptable than a wing with conventional mechanical flaps.

  15. Circulating a Good Service Model at Its Core: Circulation!

    ERIC Educational Resources Information Center

    Hernandez, Edmee Sofia; Germain, Carol Anne, Ed.

    2009-01-01

    Circulation is the library's tireless foot soldier: it serves as the front gate to the library's services and resources. This service point is where most patrons enter and leave; and experience their first and last impressions--impressions that linger. In an age when academic libraries are facing meager budgets and declining usage statistics, this…

  16. Detection of Circulating Tumor Cells

    PubMed Central

    Terstappen, Leon W. M. M.

    2014-01-01

    The increasing number of treatment options for patients with metastatic carcinomas has created an accompanying need for methods to determine if the tumor will be responsive to the intended therapy and to monitor its effectiveness. Ideally, these methods would be noninvasive and provide quantitative real-time analysis of tumor activity in a variety of carcinomas. Assessment of circulating tumor cells shed into the blood during metastasis may satisfy this need. Here we review the CellSearch technology used for the detection of circulating tumor cells and discuss potential future directions for improvements. PMID:25133014

  17. Estuarine circulation in the Taranto Seas.

    PubMed

    Pascalis, Francesca De; Petrizzo, Antonio; Ghezzo, Michol; Lorenzetti, Giuliano; Manfè, Giorgia; Alabiso, Giorgio; Zaggia, Luca

    2016-07-01

    The Taranto basin is a shallow water marine system in the South of Italy characterized by the presence of a lagoon environment together with a semi-enclosed bay connected to the Ionian Sea. This marine system experienced over the last few decades strong biochemical pollution and environmental degradation, and it is considered a hotspot study site for economic, ecological and scientific reasons. The aim of this study was to examine, on an annual temporal scale and with high spatial resolution, the main hydrodynamical processes and transport scales of the system by means of a 3D finite element numerical model application, adopting the most realistic forcing available. The model allowed us to assess the role played by baroclinic terms in the basin circulation, describing its estuarine nature. In particular, the main features of water circulation, salinity and temperature distribution, water renewal time and bottom stress were investigated. Our results allowed us to equate this system dynamic to that of a weakly stratified estuary, identifying the main driving sources of this mechanism. The vertical stratification over the whole year was proved to be stable, leading to a dual circulation flowing out on the surface, mainly through Porta Napoli channel, and inflowing on the bottom mainly through Navigabile channel. This process was responsible also for the renewal time faster on the bottom of the Mar Piccolo basin than the surface. Due to the great importance of the Taranto basin for what concerns sediment pollution, also the effect of currents in terms of bottom stress was investigated, leading to the conclusion that only in the inlets area the values of bottom stress can be high enough to cause erosion. PMID:26408109

  18. Seawater bicarbonate removal during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

    2013-12-01

    High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

  19. FLT3 ligand administration after hematopoietic cell transplantation increases circulating dendritic cell precursors that can be activated by CpG oligodeoxynucleotides to enhance T-cell and natural killer cell function.

    PubMed

    Chen, Wei; Chan, Anissa S H; Dawson, Amanda J; Liang, Xueqing; Blazar, Bruce R; Miller, Jeffrey S

    2005-01-01

    Dendritic cells (DCs) are key effectors in innate immunity and play critical roles in triggering adaptive immune responses. FLT3 ligand (FLT3-L) is essential for DC development from hematopoietic progenitors. In a phase I clinical trial, we demonstrated that immunotherapy with subcutaneous injection of FLT3-L is safe and well tolerated in cancer patients recovering from autologous hematopoietic cell transplantation (HCT). FLT3-L administration significantly increased the frequency and absolute number of blood DC precursors without affecting other mature cell lineages during the 6-week course of FLT3-L therapy. After 14 days of FLT3-L administration, the number of blood CD11c + DCs, plasmacytoid DCs (PDCs), and CD14 + monocytes increased by 5.3-, 2.9-, 3.8-fold, respectively, and was maintained at increased levels throughout FLT3-L therapy. FLT3-L-increased blood DCs in HCT patients were immature and had modest enhancing effects on in vitro T-cell proliferation to antigens and natural killer (NK) cell function. The addition of type B CpG oligodeoxynucleotides (ODNs) to peripheral blood mononuclear cells obtained from HCT patients receiving FLT3-L therapy induced rapid maturation of both CD11c + DCs and PDCs and enhanced T-cell proliferative responses. In addition, CpG ODN induced potent activation of NK cells from FLT3-L-treated patients with increased surface CD69 expression and augmented cytotoxicity. CpG ODN-induced activation of NK cells was primarily via an indirect mechanism through PDCs. These findings suggest that FLT3-L mobilization of DC precursors followed by a specific DC stimulus such as CpG ODN may provide a novel strategy to manipulate antitumor immunity in patients after HCT. PMID:15625541

  20. Numerical modelling of geothermal and reflux circulation in Enewetak Atoll: Implications for dolomitization

    USGS Publications Warehouse

    Jones, G.; Whitaker, F.; Smart, P.; Sanford, W.

    2000-01-01

    Two types of regional-scale seawater circulation have been proposed to explain the formation of Enewetak Atoll dolomites: geothermal and reflux circulation. We have used a finite element groundwater flow model to examine the pattern, magnitude and dynamic interaction of these two different circulation mechanisms in Enewetak Atoll. Geothermal circulation is concentrated around the atoll-margin whereas refluxing mesosaline brines flow from the atoll interior towards the margin to restrict and eventually shut off geothermal circulation. Refluxing brines of 36-80??? can account for the salinity signature recorded in dolomite fluid inclusions. Distributions of fluid flux and Mg mass-balance calculations suggest that both geothermal and reflux circulation mechanisms could account for the observed distribution of dolomite in Enewetak Atoll. Furthermore, the atoll interior may be extensively dolomitized as observed in other atolls. (C) 2000 Elsevier Science B.V. All rights reserved.Two types of regional-scale seawater circulation have been proposed to explain the formation of Enewetak Atoll dolomites: geothermal and reflux circulation. We have used a finite element groundwater flow model to examine the pattern, magnitude and dynamic interaction of these two different circulation mechanisms in Enewetak Atoll. Geothermal circulation is concentrated around the atoll-margin whereas refluxing mesosaline brines flow from the atoll interior towards the margin to restrict and eventually shut off geothermal circulation. Refluxing brines of 36-80 per mil can account for the salinity signature recorded in dolomite fluid inclusions. Distributions of fluid flux and Mg mass-balance calculations suggest that both geothermal and reflux circulation mechanisms could account for the observed distribution of dolomite in Enewetak Atoll. Furthermore, the atoll interior may be extensively dolomitized as observed in other atolls.

  1. Neural Control of the Circulation

    ERIC Educational Resources Information Center

    Thomas, Gail D.

    2011-01-01

    The purpose of this brief review is to highlight key concepts about the neural control of the circulation that graduate and medical students should be expected to incorporate into their general knowledge of human physiology. The focus is largely on the sympathetic nerves, which have a dominant role in cardiovascular control due to their effects to…

  2. Automated Circulation. SPEC Kit 43.

    ERIC Educational Resources Information Center

    Association of Research Libraries, Washington, DC. Office of Management Studies.

    Of the 64 libraries responding to a 1978 Association of Research Libraries (ARL) survey, 37 indicated that they used automated circulation systems; half of these were commercial systems, and most were batch-process or combination batch process and online. Nearly all libraries without automated systems cited lack of funding as the reason for not…

  3. The relationship of maternal characteristics and circulating progesterone concentrations with reproductive outcome in the bottlenose dolphin (Tursiops truncatus) after artificial insemination, with and without ovulation induction, and natural breeding.

    PubMed

    O'Brien, J K; Robeck, T R

    2012-08-01

    Bottlenose dolphins (Tursiops truncatus) undergoing natural breeding and artificial insemination (AI) were examined to characterize serum progesterone concentrations and determine relationships among age, parity, and reproductive outcome. Progesterone profiles of five cycle types (n = 119 total cycles from 54 animals) were characterized as follows: (i) conception and production of a live term calf (conceptive-term, n = 73); (ii) conception and abortion after Day 60 (conceptive-abortion, n = 12); (iii) unknown conception status with prolonged, elevated progesterone and absence of a fetus (conceptive-unknown, n = 14); (iv) conception failure with normal luteal phase progesterone concentrations (non-conceptive, n = 14, AI cycles only); and (v) conception failure with progesterone insufficiency occuring after spontaneous ovulation or owing to premature ovulation induction using GnRH (non-conceptive-PI, n = 6, AI cycles only). By Day 21 post-insemination (PI), progesterone concentrations were similar (P > 0.05) among conceptive-term, conceptive-abortion and conceptive-unknown, and higher (P < 0.05) for conceptive-term than non-conceptive and non-conceptive-PI cycles. Progesterone concentrations of known conceptive cycles peaked by Week 7 PI (P < 0.05) and remained elevated for the remainder of pregnancy (Weeks 8 up to 54, ≥ 5 days pre-partum). During midpregnancy (Days 121-240), conceptive-term cycles had higher (P > 0.05) progesterone concentrations than conceptive-abortion and unknown conception status cycles. Parity was not associated with reproductive outcome based on cycle type (P > 0.05). Age of females in conceptive-unknown (26.5 ± 10.1 yrs) and conceptive-abortion (22.1 ± 9.4 yrs) groups was higher (P < 0.05) than in conceptive-term (15.7 ± 7.2 yrs). The conceptive-unknown cycle type possibly represents undetected early embryonic loss occurring before Day 60 PI. Length of gestation using known conception dates was 376.1 ± 11.0 days and the range of this

  4. Circulating Tumor Cells Measurements in Hepatocellular Carcinoma

    PubMed Central

    Chiappini, Franck

    2012-01-01

    Liver cancer is the fifth most common cancer in men and the seventh in women. During the past 20 years, the incidence of HCC has tripled while the 5-year survival rate has remained below 12%. The presence of circulating tumor cells (CTC) reflects the aggressiveness nature of a tumor. Many attempts have been made to develop assays that reliably detect and enumerate the CTC during the development of the HCC. In this case, the challenges are (1) there are few markers specific to the HCC (tumor cells versus nontumor cells) and (2) they can be used to quantify the number of CTC in the bloodstream. Another technical challenge consists of finding few CTC mixed with million leukocytes and billion erythrocytes. CTC detection and identification can be used to estimate prognosis and may serve as an early marker to assess antitumor activity of treatment. CTC can also be used to predict progression-free survival and overall survival. CTC are an interesting source of biological information in order to understand dissemination, drug resistance, and treatment-induced cell death. Our aim is to review and analyze the different new methods existing to detect, enumerate, and characterize the CTC in the peripheral circulation of patients with HCC. PMID:22690340

  5. ENDEMIC ORTHOPOXVIRUS CIRCULATING IN PROCYONIDS IN MEXICO.

    PubMed

    Gallardo-Romero, Nadia F; Aréchiga-Ceballos, Nidia; Emerson, Ginny L; Martínez-Martínez, Flor O; Doty, Jeffrey B; Nakazawa, Yoshinori J; Rendón-Franco, Emilio; Muñoz-García, Claudia I; Villanueva-García, Claudia; Ramírez-Cid, Citlali; Gama-Campillo, Lilia M; Gual-Sill, Fernando; Aguilar-Setién, Álvaro; Carroll, Darin S

    2016-07-01

    Limited serosurveillance studies suggested that orthopoxviruses (OPXV) are widespread in the US (e.g., Raccoonpox virus, Skunkpox virus, Volepox virus) and Brazil (Vaccinia virus); however, their animal reservoir(s) remain unconfirmed. Mexican mammal diversity includes several species related to those in which evidence for OPXV infections has been found (Oryzomys, Peromyscus, Microtus, and Procyonidae). The presence of these groups of mammals in Mexico and the evidence of their possible involvement in the maintenance of OPXV in nature suggest the same or similar OPXV are circulating in Mexico. We tested 201 sera from 129 procyonids via modified enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) to estimate OPXV antibody prevalence in these animals. We detected a prevalence of 16.67% in Nasua narica (white-nosed coati), 35% in Procyon lotor (raccoon), and 30.4% in Bassariscus astutus (ring-tailed cat) when tested by either ELISA or WB. Western blot results presented protein bands consistent with the size of some OPXV immunodominant bands (14, 18, 32, 36, and 62 kDa). These results support the hypothesis that OPXV circulate in at least three genera of Procyonidae in Central and Southeast Mexico. PMID:27224209

  6. Predictive models of circulating fluidized bed combustors

    SciTech Connect

    Gidaspow, D.

    1992-07-01

    Steady flows influenced by walls cannot be described by inviscid models. Flows in circulating fluidized beds have significant wall effects. Particles in the form of clusters or layers can be seen to run down the walls. Hence modeling of circulating fluidized beds (CFB) without a viscosity is not possible. However, in interpreting Equations (8-1) and (8-2) it must be kept in mind that CFB or most other two phase flows are never in a true steady state. Then the viscosity in Equations (8-1) and (8-2) may not be the true fluid viscosity to be discussed next, but an Eddy type viscosity caused by two phase flow oscillations usually referred to as turbulence. In view of the transient nature of two-phase flow, the drag and the boundary layer thickness may not be proportional to the square root of the intrinsic viscosity but depend upon it to a much smaller extent. As another example, liquid-solid flow and settling of colloidal particles in a lamella electrosettler the settling process is only moderately affected by viscosity. Inviscid flow with settling is a good first approximation to this electric field driven process. The physical meaning of the particulate phase viscosity is described in detail in the chapter on kinetic theory. Here the conventional derivation resented in single phase fluid mechanics is generalized to multiphase flow.

  7. Tracers of Past Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Lynch-Stieglitz, J.

    2003-12-01

    Information about how the ocean circulated during the past is useful in understanding changes in ocean and atmospheric chemistry, changes in the fluxes of heat and freshwater between the ocean and atmosphere, and changes in global wind patterns. The circulation of surface waters in the ocean leaves an imprint on sea surface temperature, and is also inextricably linked to the patterns of oceanic productivity. Much valuable information about past ocean circulation has been inferred from reconstructions of surface ocean temperature and productivity, which are covered in separate chapters. Here the focus is on the geochemical tracers that are used to infer the flow patterns and mixing of subsurface water masses.Several decades ago it was realized that chemistry of the shells of benthic foraminifera (carbon isotope and Cd/Ca ratios) carried an imprint of the nutrient content of deep-water masses (Shackleton, 1977; Broecker, 1982; Boyle, 1981). This led rapidly to the recognition that the water masses in the Atlantic Ocean were arrayed differently during the last glacial maximum than they are today, and the hypothesis that the glacial arrangement reflected a diminished contribution of low-nutrient North Atlantic deep water (NADW) ( Curry and Lohmann, 1982; Boyle and Keigwin, 1982). More detailed spatial reconstructions indicated a shallow nutrient-depleted water mass overlying a more nutrient-rich water mass in the glacial Atlantic. These findings spurred advances not only in geochemistry but in oceanography and climatology, as workers in these fields attempted to simulate the inferred glacial circulation patterns and assess the vulnerability of the modern ocean circulation to changes such as observed for the last ice age.While the nutrient distributions in the glacial Atlantic Ocean were consistent with a diminished flow of NADW, they also could have reflected an increase in inflow from the South Atlantic and/or a shallower yet undiminished deep-water mass. Clearly

  8. In vivo acoustic and photoacoustic focusing of circulating cells

    NASA Astrophysics Data System (ADS)

    Galanzha, Ekaterina I.; Viegas, Mark G.; Malinsky, Taras I.; Melerzanov, Alexander V.; Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Zharov, Vladimir P.

    2016-03-01

    In vivo flow cytometry using vessels as natural tubes with native cell flows has revolutionized the study of rare circulating tumor cells in a complex blood background. However, the presence of many blood cells in the detection volume makes it difficult to count each cell in this volume. We introduce method for manipulation of circulating cells in vivo with the use of gradient acoustic forces induced by ultrasound and photoacoustic waves. In a murine model, we demonstrated cell trapping, redirecting and focusing in blood and lymph flow into a tight stream, noninvasive wall-free transportation of blood, and the potential for photoacoustic detection of sickle cells without labeling and of leukocytes targeted by functionalized nanoparticles. Integration of cell focusing with intravital imaging methods may provide a versatile biological tool for single-cell analysis in circulation, with a focus on in vivo needleless blood tests, and preclinical studies of human diseases in animal models.

  9. In vivo acoustic and photoacoustic focusing of circulating cells

    PubMed Central

    Galanzha, Ekaterina I.; Viegas, Mark G.; Malinsky, Taras I.; Melerzanov, Alexander V.; Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Zharov, Vladimir P.

    2016-01-01

    In vivo flow cytometry using vessels as natural tubes with native cell flows has revolutionized the study of rare circulating tumor cells in a complex blood background. However, the presence of many blood cells in the detection volume makes it difficult to count each cell in this volume. We introduce method for manipulation of circulating cells in vivo with the use of gradient acoustic forces induced by ultrasound and photoacoustic waves. In a murine model, we demonstrated cell trapping, redirecting and focusing in blood and lymph flow into a tight stream, noninvasive wall-free transportation of blood, and the potential for photoacoustic detection of sickle cells without labeling and of leukocytes targeted by functionalized nanoparticles. Integration of cell focusing with intravital imaging methods may provide a versatile biological tool for single-cell analysis in circulation, with a focus on in vivo needleless blood tests, and preclinical studies of human diseases in animal models. PMID:26979811

  10. Isotopic composition of precipitation during different atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Brenčič, Mihael; Kononova, Nina; Vreča, Polona

    2016-04-01

    Precipitation generating processes depend on atmospheric circulation patterns and consequently it is expected that its water stable isotopic composition of hydrogen and oxygen is related to them. Precipitation generated at similar atmospheric circulation patterns should have similar empirical distribution of δ2H and δ18O values. There are several approaches in which atmospheric circulation patterns are classified as elementary air circulation mechanisms - ECM; in our approach we have applied Dzerdzeevskii classification. Two types of models of relation between ECM and isotopic composition of precipitation are proposed; first is based on the linear combination of δ2H and δ18O values with precipitation amount weighted average (Brenčič et al., 2015) and the second new one is based on the multiple regression approach. Both approaches make possible also to estimate empirical distributions' dispersion parameters. Application of the models is illustrated on the precipitation records from Ljubljana and Portorož GNIP stations, Slovenia. Estimated values of the parameters for empirical distributions of δ2H and δ18O of each ECM subtype have shown that calculated estimates are reasonable. Brenčič, M., Kononova, N.K., Vreča, P., 2015: Relation between isotopic composition of precipitation and atmospheric circulation patterns. Journal of Hydrology 529, 1422-1432: doi: 10.1016/j.jhydrol.2015.08.040

  11. Helicobacter pylori infection and circulating ghrelin levels - A systematic review

    PubMed Central

    2011-01-01

    Background The nature of the association between ghrelin, an orexigenic hormone produced mainly in the stomach, and Helicobacter pylori (H pylori), a bacterium that colonises the stomach, is still controversial. We examined available evidence to determine whether an association exists between the two; and if one exists, in what direction. Methods We reviewed original English language studies on humans reporting circulating ghrelin levels in H pylori infected and un-infected participants; and circulating ghrelin levels before and after H pylori eradication. Meta-analyses were conducted for eligible studies by combining study specific estimates using the inverse variance method with weighted average for continuous outcomes in a random effects model. Results Seventeen out of 27 papers that reported ghrelin levels in H pylori positive and negative subjects found lower circulating ghrelin levels in H pylori positive subjects; while 10 found no difference. A meta-analysis of 19 studies with a total of 1801 participants showed a significantly higher circulating ghrelin concentration in H pylori negative participants than in H pylori positive participants (Effect estimate (95%CI) = -0.48 (-0.60, -0.36)). However, eradicating H pylori did not have any significant effect on circulating ghrelin levels (Effect estimate (95% CI) = 0.08 (-0.33, 0.16); Test for overall effect: Z = 0.67 (P = 0.5)). Conclusions We conclude that circulating ghrelin levels are lower in H pylori infected people compared to those not infected; but the relationship between circulating ghrelin and eradication of H pylori is more complex. PMID:21269467

  12. Changes in large-scale air circulation and connection with climate variables in Romania

    NASA Astrophysics Data System (ADS)

    Stefan, Sabina; Barbu, Nicu

    2016-04-01

    The aim of this paper is the analysis of the relationship between climate variables (seasonal mean air temperature - T2m, and seasonal amount of precipitation - PP) and large-scale air circulation. In order to achieve this, the air circulation types were derived from GrossWetterTypen (GWT) and WetterLagenKlassifikation (WLK) Catalogues developed within COST733 framework. Daily air circulation types are divided into 18 groups according to the GWT Catalogue and in 40 groups according to the WLK Catalogue and for each type winter (DJF) and summer (JJA) occurrence frequency were calculated. To this end the Pearson correlation coefficient between climate variables and circulation type's frequency were computed. The results reveals that in wintertime the GWT circulation types captures better than WLK circulation types the T2m variability in time that for summer the WLK circulation types captures better than GWT circulation types. This is due to the seasonal variability of the horizontal extension of air masses. We found that the T2m is positive correlated to anticyclonic circulation types and negative correlated with cyclonic types and the PP is correlated to the cyclonic circulation and negative correlated to anticyclonic ones. Additionally, the trend significance of the climate variables as well as air circulation types have been analysed with the non-parametric Mann-Kendall test. The changes of the trends were detected by employing the non-parametric Pettit test. From the trend analysis we can state that some of the anticyclonic circulation types presents upward tendency and some of the cyclonic circulation presents downward tendency. This is an important results because explain the upward trend of the T2m and the downward trend of the PP.

  13. Quasi-axisymmetric circulation and superrotation in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Mayr, H. G.; Harris, I.

    1983-05-01

    Atmospheric superrotation is ubiquitous in the solar system, and numerous theoretical models have been proposed to describe the effect. However, no model is fully accepted. Problems are primarily related to an understanding of the angular momentum and the energy budgets. In connection with the present investigation, attention is given to hybrid models, where three-dimensional models may describe eddy processes and two-dimensional symmetric models may describe the global scale circulation in the framework of a viscous medium. It is believed that the concept of an axisymmetric circulation is still useful. It is the main purpose of the current investigation to explore some of the properties of the circulation in planetary atmospheres. It is assumed that the eddy transports are downgradient or diffusive in nature. Energy and momentum are perceived to cascade from the global scale circulation driven by the sun to the smaller scale eddies which in turn determine the diffusive properties. A numerical model of the Venusian circulation is presented, and results are discussed for different conditions of static stability.

  14. WBGT Calculator

    Energy Science and Technology Software Center (ESTSC)

    2000-05-22

    This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulatemore » the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.« less

  15. WBGT Calculator

    SciTech Connect

    Hunter, Charles H.

    2000-05-22

    This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulate the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.

  16. Thermohaline circulation and its box models simulation

    NASA Astrophysics Data System (ADS)

    Bazyura, Kateryna; Polonsky, Alexander; Sannikov, Viktor

    2014-05-01

    cases of using linear and nonlinear seawater state equation. In the frame of four-box model it is shown that: 1) The occurrence of the thermohaline catastrophe, which is likely happened at Younger Dryas period or developed as Heinrich events in the past, is improbable in modern climate epoch. 2) Choice of nonlinear seawater equitation of state leads to stabilization of warm mode of THC, which corresponds to modern climate state. 3) Typical white noise in heat and freshwater fluxes leads to generation of multidecadal oscillations of volume transport. Time-scale of these oscillations coincides with Atlantic Multidecadal oscillation periodicity. So, it is shown that that recent climate is characterized by quasi-periodical stable multidecadal THC warm regime. Stocker, T. F., 2000: Past and future reorganisations in the climate system. Quat. Sci.Rev, Vol. 19, P.301-319. Clark U., 2002: The role of the thermohaline circulation in abrupt climate change. Nature. Vol. 415, P.863-869. Rahmstorf S., 2002: Ocean circulation and climate during the past 120000 years. Nature. Vol. 419, P.207-214. Alley, R. B. & Clark, P. U., 1999: The deglaciation of the Northern Hemisphere: a global perspective. Annu.Rev. Earth Planet. Sci. Vol. 27, P.149-182. Griffies S.M., Tziperman E., 1995: A linear thermohaline oscillator driven by stochastic atmospheric forcing. Journal of Climate. Vol. 8. P. 2440-2453.

  17. Circulation of HRSV in Belgium: from multiple genotype circulation to prolonged circulation of predominant genotypes.

    PubMed

    Houspie, Lieselot; Lemey, Philippe; Keyaerts, Els; Reijmen, Eva; Vergote, Valentijn; Vankeerberghen, Anne; Vaeyens, Freya; De Beenhouwer, Hans; Van Ranst, Marc

    2013-01-01

    Molecular surveillance of HRSV in Belgium for 15 consecutive seasons (1996-2011) revealed a shift from a regular 3-yearly cyclic pattern, into a yearly alternating periodicity where HRSV-B is replaced by HRSV-A. Phylogenetic analysis for HRSV-A demonstrated the stable circulation of GA2 and GA5, with GA2 being dominant over GA5 during 5 consecutive seasons (2006-2011). We also identified 2 new genotype specific amino acid mutations of the GA2 genotype (A122 and Q156) and 7 new GA5 genotype specific amino acid mutations (F102, I108, T111, I125, D161, S191 and L217). Several amino acid positions, all located in the second hypervariable region of HRSV-A were found to be under positive selection. Phylogenetic analysis of HRSV-B showed the circulation of GB12 and GB13, where GB13 represented 100% of the isolated strains in 4 out of 5 consecutive seasons (2007-2011). Amino acids under positive selection were all located in the aminoterminal hypervariable region of HRSV-B, except one amino acid located in the conserved region. The genotype distribution within the HRSV-B subgroup has evolved from a co-circulation of multiple genotypes to the circulation of a single predominant genotype. The Belgian GB13 strains circulating since 2006, all clustered under the BAIV branch and contained several branch specific amino acid substitutions. The demographic history of genotypes GA2, GA5 and GB13 demonstrated a decrease in the total GA2 and GA5 population size, coinciding with the global expansion of the GB13 population. The emergence of the GB13 genotype resulted in a newly established balance between the predominant genotypes. PMID:23577109

  18. First principles calculations of the structure and V L-edge X-ray absorption spectra of V2O5 using local pair natural orbital coupled cluster theory and spin-orbit coupled configuration interaction approaches.

    PubMed

    Maganas, Dimitrios; Roemelt, Michael; Hävecker, Michael; Trunschke, Annette; Knop-Gericke, Axel; Schlögl, Robert; Neese, Frank

    2013-05-21

    A detailed study of the electronic and geometric structure of V2O5 and its X-ray spectroscopic properties is presented. Cluster models of increasing size were constructed in order to represent the surface and the bulk environment of V2O5. The models were terminated with hydrogen atoms at the edges or embedded in a Madelung field. The structure and interlayer binding energies were studied with dispersion-corrected local, hybrid and double hybrid density functional theory as well as the local pair natural orbital coupled cluster method (LPNO-CCSD). Convergence of the results with respect to cluster size was achieved by extending the model to up to 20 vanadium centers. The O K-edge and the V L2,3-edge NEXAFS spectra of V2O5 were calculated on the basis of the newly developed Restricted Open shell Configuration Interaction with Singles (DFT-ROCIS) method. In this study the applicability of the method is extended to the field of solid-state catalysis. For the first time excellent agreement between theoretically predicted and experimentally measured vanadium L-edge NEXAFS spectra of V2O5 was achieved. At the same time the agreement between experimental and theoretical oxygen K-edge spectra is also excellent. Importantly, the intensity distribution between the oxygen K-edge and vanadium L-edge spectra is correctly reproduced, thus indicating that the covalency of the metal-ligand bonds is correctly described by the calculations. The origin of the spectral features is discussed in terms of the electronic structure using both quasi-atomic jj coupling and molecular LS coupling schemes. The effects of the bulk environment driven by weak interlayer interactions were also studied, demonstrating that large clusters are important in order to correctly calculate core level absorption spectra in solids. PMID:23575467

  19. All-glass vacuum tube collector heat transfer model used in forced-circulation solar water heating system

    SciTech Connect

    Li, Zhiyong; Chen, Chao; Luo, Hailiang; Zhang, Ye; Xue, Yaning

    2010-08-15

    The aim of this paper is to establish the heat transfer model of all-glass vacuum tube collector used in forced-circulation solar water heating system. In this model, the simplified heat transfer of collector is composed of the natural convection in single glass tube and forced flow in manifold header. Thus the heat balance equation of water in single tube and the heat balance equation of water in manifold header have been established. The flow equation is also built by analyzing the friction and buoyancy in tube. Through solved these equations the relationship between the collector average temperature, the outlet temperature and natural convection flow rate have been obtained. From this relationship and energy balance equation of collector, the collector outlet temperature can be calculated. The validated experiments of this model were carried out in winter of Beijing. (author)

  20. Spaceborne studies of ocean circulation

    NASA Technical Reports Server (NTRS)

    Patzert, W. C.

    1984-01-01

    The history and near-term future of ocean remote sensing to study ocean circulation are examined. Seasat provided the first-ever global data sets of sea surface topography (altimeter) and marine winds (scatterometer) and laid the foundation for the next generation of satellite missions planned for the late 1980s. The future missions are the next generation of altimeter and scatterometer to be flown aboard TOPEX (TOPography EXperiment) and NROSS (Navy Remote Sensing System), respectively. The data from these satellites will be coordinated with measurements made at sea to determine the driving forces of ocean circulation and to study the oceans' role in climate variability. The significance of such studies to such matters as climatic changes, fisheries, commerce, waste disposal, and national defense is noted.

  1. Conservation of circulation in magnetohydrodynamics

    PubMed

    Bekenstein; Oron

    2000-10-01

    We demonstrate at both the Newtonian and (general) relativistic levels the existence of a generalization of Kelvin's circulation theorem (for pure fluids) that is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices. PMID:11089118

  2. Monsoon circulation and atmospheric ozone

    NASA Astrophysics Data System (ADS)

    Khrgian, A. Kh.; Nguyen, Van Thang

    1991-01-01

    The effect of the Indonesian-Australian winter monsoon, proceeding from the Asian continent to the south, on the atmospheric ozone is examined. It is shown that large-scale atmospheric circulation phenomena caused by monsoons in the tropical regions of Australia and in south-eastern Asia can cause significant falls in atmospheric ozone concentrations. The common occurrence of such phenomena might explain the higher-than-average incidence of skin cancer in Australia.

  3. Blood circulation under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Kopanev, V. I.; Yazdovskiy, V. I.

    1975-01-01

    Biomedical data obtained on men and animals during weightlessness conditions establish instabilities in pulse rate and blood circulation that smooth out in proportion to adaptation to the weightless condition. The unusual slowness of recovery of pulse rate to initial values after space flight stress is attributed to biological simulation of hormonal shifts and discharge of humoral substances into the blood that prevent a rapid recovery of some biological indicators to initial values.

  4. Circulation of Prince William Sound

    NASA Technical Reports Server (NTRS)

    Muench, R. D. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Visual examination of the available ERTS-1 and NASA NP-3 aircraft imagery has suggested that sediment-laden plumes from rivers may be useful in tracking surface circulation over the regions where these plumes retain their visible identities. Plumes of ice derived from tidewater glaciers are highly visible on the ERTS-1 imagery, but are generally of too small an areal extent to be useful in tracing surface circulation. Shore-fast ice is also highly visible on the ERTS-1 data. Practical scientific results include a corroboration of the westward flow just offshore in the Gulf of Alaska with inflow through Hinchinbrook Entrance into Prince William Sound. The tracer in this case was the Copper River Plume, which originates at the mouth of the Copper River east of Prince William Sound. A single partial image of Port Valdez, in northeastern Prince William Sound, suggests by the visible suspended sediment distribution that surface circulation there was cyclonic, as deduced previously from oceanographic baseline data. Surf along the shoreline of the Gulf of Alaska is highly visible on ERTS-1 imagery.

  5. Understanding and Portraying the Global Atmospheric Circulation.

    ERIC Educational Resources Information Center

    Harrington, John, Jr.; Oliver, John E.

    2000-01-01

    Examines teaching models of atmospheric circulation and resultant surface pressure patterns, focusing on the three-cell model and the meaning of meridional circulation as related to middle and high latitudes. Addresses the failure of the three-cell model to explain seasonal variations in atmospheric circulation. Suggests alternative models. (CMK)

  6. Encoders for block-circulant LDPC codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2009-01-01

    Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.

  7. Early concepts and charts of ocean circulation

    NASA Astrophysics Data System (ADS)

    Peterson, R. G.; Stramma, L.; Kortum, G.

    in the 1860s and 1870s (i.e. Lightning; Porcupine; Challenger; Gazelle; Vøringen), as well as mounting evidence for the existence of a deep and global thermohaline circulation (Carpenter; Prestwich). The dynamical method for calculating geostrophic flow in the atmosphere (Guldberg and Mohn) and a precursor to our present formulation for quantizing surface wind stress (Zöppritz) were introduced in the 1870s. On a regional scale for the Norwegian Sea, the dynamical method was applied to marine measurements made at depth to yield a three-dimensional view of flow patterns (Mohn). Further insight into the deep circulation came slowly, but with ever increasing numbers of observations being made at and near the surface, the upper-layer circulation in non-polar latitudes was approximately described by the late 1880s (Krümmel).

  8. The Circulation of Newly Formed Deep Water in the Atlantic

    NASA Astrophysics Data System (ADS)

    Rhein, M.; Kieke, D.; Steinfeldt, R.

    2012-04-01

    The circulation of newly formed deep water masses (Labrador Sea Water, LSW, and Denmark Strait Overflow Water, DSOW) is examined by discussing the distribution of two parameters (age τ and fraction F of young water) calculated from the chlorofluorocarbon data measured between 1980 and 2005 in the Atlantic. Compared to previous studies, a much larger data set was used with an improved gridding procedure, allowing to resolve the distributions in more detail.

  9. Circulating follistatin in relation to energy metabolism.

    PubMed

    Hansen, Jakob Schiøler; Plomgaard, Peter

    2016-09-15

    Recently, substantial evidence has emerged that the liver contributes significantly to the circulating levels of follistatin and that circulating follistatin is tightly regulated by the glucagon-to-insulin ratio. Both observations are based on investigations of healthy subjects. These novel findings challenge the present view of circulating follistatin in human physiology, being that circulating follistatin is a result of spill-over from para/autocrine actions in various tissues and cells. Follistatin as a liver-derived protein under the regulation of glucagon-to-insulin ratio suggests a relation to energy metabolism. In this narrative review, we attempt to reconcile the existing findings on circulating follistatin with the novel concept that circulating follistatin is a liver-derived molecule regulated by the glucagon-to-insulin ratio. The picture emerging is that conditions associated with elevated levels of circulating follistatin have a metabolic denominator with decreased insulin sensitivity and/or hyperglucagoneimia. PMID:27264073

  10. Matrix-free constructions of circulant and block circulant preconditioners

    SciTech Connect

    Yang, Chao; Ng, Esmond G.; Penczek, Pawel A.

    2001-12-01

    A framework for constructing circulant and block circulant preconditioners (C) for a symmetric linear system Ax=b arising from certain signal and image processing applications is presented in this paper. The proposed scheme does not make explicit use of matrix elements of A. It is ideal for applications in which A only exists in the form of a matrix vector multiplication routine, and in which the process of extracting matrix elements of A is costly. The proposed algorithm takes advantage of the fact that for many linear systems arising from signal or image processing applications, eigenvectors of A can be well represented by a small number of Fourier modes. Therefore, the construction of C can be carried out in the frequency domain by carefully choosing its eigenvalues so that the condition number of C{sup T} AC can be reduced significantly. We illustrate how to construct the spectrum of C in a way such that the smallest eigenvalues of C{sup T} AC overlaps with those of A extremely well while the largest eigenvalues of C{sup T} AC are smaller than those of A by several orders of magnitude. Numerical examples are provided to demonstrate the effectiveness of the preconditioner on accelerating the solution of linear systems arising from image reconstruction application.

  11. Conveying Global Circulation Patterns in HDTV

    NASA Astrophysics Data System (ADS)

    Gardiner, N.; Janowiak, J.; Kinzler, R.; Trakinski, V.

    2006-12-01

    The American Museum of Natural History has partnered with the National Centers for Environmental Prediction (NCEP) to educate general audiences about weather and climate using high definition video broadcasts built from half-hourly global mosaics of infrared (IR) data from five geostationary satellites. The dataset being featured was developed by NCEP to improve precipitation estimates from microwave data that have finer spatial resolution but poorer temporal coverage. The IR data span +/-60 degrees latitude and show circulation patterns at sufficient resolution to teach informal science center visitors about both weather and climate events and concepts. Design and editorial principles for this media program have been guided by lessons learned from production and annual updates of visualizations that cover eight themes in both biological and Earth system sciences. Two formative evaluations on two dates, including interviews and written surveys of 480 museum visitors ranging in age from 13 to over 60, helped refine the design and implementation of the weather and climate program and demonstrated that viewers understood the program's initial literacy objectives, including: (1) conveying the passage of time and currency of visualized data; (2) geographic relationships inherent to atmospheric circulation patterns; and (3) the authenticity of visualized data, i.e., their origin from earth-orbiting satellites. Surveys also indicated an interest and willingness to learn more about weather and climate principles and events. Expanded literacy goals guide ongoing, biweekly production and distribution of global cloud visualization pieces that reach combined audiences of approximately 10 million. Two more rounds of evaluation are planned over the next two years to assess the effectiveness of the media program in addressing these expanded literacy goals.

  12. Circulation in Enewetak Atoll lagoon

    SciTech Connect

    Atkinson, M.; Smith, S.V.; Stroup, E.D.

    1981-11-01

    Currents at Enewetak Atoll, Marshall Islands, were measured on the reef margins, in the channels, and in the lagoon. Lagoon circulation is dominated by wind-driven downwind surface flow and an upwind middepth return flow. This wind-driven flow has the characteristics of an Ekman spiral in an enclosed sea. Lagoon flushing is accomplished primarily by surf-driven water input over the windward (eastern) reefs and southerly drift out the South Channel. Mean water residence time is 1 month, while water entering the northern portion of the atoll takes about 4 months to exit.

  13. Trend Analysis and Detection of Changes in the Stratospheric Circulation

    NASA Technical Reports Server (NTRS)

    Oman, Luke; Douglass, A. R.; Rodriquez, J. M.; Stolarski, R. S.; Waugh, D. W.

    2010-01-01

    Increases in the circulation of the stratosphere appear to be a robust result of climate change in chemistry-climate models over decadal time scales. To date observations have yet to show a significant change in this circulation. It is important for the design of future observational missions to identify suitable atmospheric constituents and to determine the accuracy and length of record needed to identify a significant trend that can be attributed to circulation change. First, we determine what atmospheric variables can be used as proxies for stratospheric circulation changes. A few examples are changes in tropical lower stratospheric ozone, phase lag of the water vapor tape recorder, CO2, and SF6. Then, using both the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM) and observations from satellites and balloon soundings, we calculate the number of years needed to detect a significant trend, taking into account observational uncertainty. Model simulations will be evaluated to see how well they represent observed variability. In addition, the impacts of autocorrelation among the output or data and gaps in the observational record will be discussed.

  14. Are flood occurrences in Europe linked to specific atmospheric circulation types?

    NASA Astrophysics Data System (ADS)

    Prudhomme, C.; Genevier, M.

    2009-04-01

    N* of CTi using historical frequencies of occurrence. N* represents the number of days preceding a flood when the atmospheric conditions could significantly influence flood production processes, and could be interpreted as an upper limit of the concentration time of the basin. This evaluates the persistence of an atmospheric circulation type CTi prior to a flood event, and the associated level of significance. The indicators are calculated at-site and discussed regionally. Results show significant links with two circulation types related to Cyclonic Westerly (Wz) and the Low over the British Isles (TB), while the anticyclonic north-westerly type (Nea) systematically doesn't occur before any flood event. References Barredo, J.I., 2007. Major flood disasters in Europe: 1950-2005. Natural Hazards and Earth System Sciences, 42 doi: 10.1007/s11069-006-9065-2: 125-148. Hess, P. and Brezowsky, H., 1977. Katalog der Grobwetterlagen Europas 1881-1976. 3 verbesserte und ergäntze Auflage. Ber Dt. Wetterd. 15 (113). James, P.M., 2007. An objective classification method for Hess and Brezowsky Grosswetterlagen over Europe. Theoretical and Applied Climatology, 88(1): 17-42.

  15. Nature and structure of aluminum surface sites grafted on silica from a combination of high-field aluminum-27 solid-state NMR spectroscopy and first-principles calculations.

    PubMed

    Kerber, Rachel Nathaniel; Kermagoret, Anthony; Callens, Emmanuel; Florian, Pierre; Massiot, Dominique; Lesage, Anne; Copéret, Christophe; Delbecq, Françoise; Rozanska, Xavier; Sautet, Philippe

    2012-04-18

    The determination of the nature and structure of surface sites after chemical modification of large surface area oxides such as silica is a key point for many applications and challenging from a spectroscopic point of view. This has been, for instance, a long-standing problem for silica reacted with alkylaluminum compounds, a system typically studied as a model for a supported methylaluminoxane and aluminum cocatalyst. While (27)Al solid-state NMR spectroscopy would be a method of choice, it has been difficult to apply this technique because of large quadrupolar broadenings. Here, from a combined use of the highest stable field NMR instruments (17.6, 20.0, and 23.5 T) and ultrafast magic angle spinning (>60 kHz), high-quality spectra were obtained, allowing isotropic chemical shifts, quadrupolar couplings, and asymmetric parameters to be extracted. Combined with first-principles calculations, these NMR signatures were then assigned to actual structures of surface aluminum sites. For silica (here SBA-15) reacted with triethylaluminum, the surface sites are in fact mainly dinuclear Al species, grafted on the silica surface via either two terminal or two bridging siloxy ligands. Tetrahedral sites, resulting from the incorporation of Al inside the silica matrix, are also seen as minor species. No evidence for putative tri-coordinated Al atoms has been found. PMID:22440230

  16. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2015-07-01

    The natural abundance of 14C in total CO2 dissolved in seawater (DIC) is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, which is the time elapsed since a body of water has been in contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with ageing, i.e. the time component of circulation, and one associated with a "preformed 14C-age". The latter quantity exists because of the slow and incomplete atmosphere-ocean equilibration of 14C particularly in high latitudes where many water masses form. In the ocean's interior, preformed 14C-age behaves like a passive tracer. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. Here, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age. Between models, the variability of preformed 14C-age can also be considerable (factor of 2), related to the combination of physical model parameters, which influence circulation dynamics or gas exchange. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation, the choice of the gas-exchange constant from within the currently accepted range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age, it could easily impair the evaluation and tuning of a model's circulation on global and regional

  17. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2014-10-01

    The natural abundance of 14C in total CO2 dissolved in seawater is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, the time elapsed since a body of water had contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with aging, i.e. the time component of circulation and one associated with a "preformed 14C-age". This latter quantity exists because of the slow and incomplete atmosphere/ocean equilibration of 14C in particular in high latitudes where many water masses form. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability, e.g. in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. In the Atlantic, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age alone. Between models the variability of age can also be considerable (factor of 2), related to the combinations of physical model parameters, which influence circulation dynamics, and gas exchange in the models. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation exercise, the choice of the gas exchange constant from within the current range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age it could easily impair the evaluation and tuning of a models circulation on global and regional scales. Based on the results of this study, we propose that considering

  18. Intestinal circulation during inhalation anesthesia

    SciTech Connect

    Tverskoy, M.; Gelman, S.; Fowler, K.C.; Bradley, E.L.

    1985-04-01

    This study was designed to evaluate the influence of inhalational agents on the intestinal circulation in an isolated loop preparation. Sixty dogs were studied, using three intestinal segments from each dog. Selected intestinal segments were pumped with aortic blood at a constant pressure of 100 mmHg. A mixture of /sub 86/Rb and 9-microns spheres labeled with /sup 141/Ce was injected into the arterial cannula supplying the intestinal loop, while mesenteric venous blood was collected for activity counting. A very strong and significant correlation was found between rubidium clearance and microsphere entrapment (r = 0.97, P less than 0.0001). Nitrous oxide anesthesia was accompanied by a higher vascular resistance (VR), lower flow (F), rubidium clearance (Cl-Rb), and microspheres entrapment (Cl-Sph) than pentobarbital anesthesia, indicating that the vascular bed in the intestinal segment was constricted and flow (total and nutritive) decreased. Halothane, enflurane, and isoflurane anesthesia were accompanied by a much lower arteriovenous oxygen content difference (AVDO/sub 2/) and oxygen uptake than pentobarbital or nitrous oxide. Compared with pentobarbital, enflurane anesthesia was not accompanied by marked differences in VR, F, Cl-Rb, and Cl-Sph; halothane at 2 MAC decreased VR and increased F and Cl-Rb while isoflurane increased VR and decreased F. alpha-Adrenoceptor blockade with phentolamine (1 mg . kg-1) abolished isoflurane-induced vasoconstriction, suggesting that the increase in VR was mediated via circulating catecholamines.

  19. A flux-transport dynamo with a multi-cell meridional circulation

    NASA Astrophysics Data System (ADS)

    Bonanno, A.; Elstner, D.; Belvedere, G.; Rüdiger, G.

    2005-04-01

    We discuss the effect of a non-trivial meridional circulation pattern on a flux-transport type of solar dynamo. The critical value of the turbulent helicity and the periods are calculated as a function of the meridional flow strength. We found that the dynamo mechanism is mainly determined by the global topology of the meridional flow. In particular the equatorwards migration in the butterfly diagram can be easily obtained by the combined action of two cells of meridional circulation.

  20. Wind-induced variability of estuarine circulation in a tidally energetic inlet with curvature

    NASA Astrophysics Data System (ADS)

    Purkiani, Kaveh; Becherer, Johannes; Klingbeil, Knut; Burchard, Hans

    2016-05-01

    In numerous studies, the functioning of estuarine circulation has been investigated, under idealized conditions, by means of numerical models. This has led to a deep understanding of the theory of estuarine residual flows. However, the question as to how estuarine circulation is established in real estuaries, in response to their topographical and forcing characteristics, remains. The present study uses a highly accurate three-dimensional numerical model simulation to calculate estuarine circulation in a curved, tidally energetic channel of the Wadden Sea in the southeastern North Sea. The specific momentum balance of this curved inlet shows an approximate pressure-gradient—frictional balance in the longitudinal direction and a pressure gradient—centrifugal balance in the lateral direction. A local Wedderburn number is introduced to quantify the varying contributions of wind stress and gravitational forcing on estuarine circulation. A total exchange flow (TEF) analysis is combined with an analysis of the intensity of the vertical overturning circulation to understand the dynamics of estuarine exchange in this inlet. The results show how established forcing mechanisms of residual circulation, such as horizontal buoyancy gradients and wind stress, act in a combined way. In general, the strength of estuarine circulation is always positively correlated with wind stress, with frequent reversals of residual flow for wind stress directed toward higher buoyancy. Only during calm weather conditions are longitudinal and lateral estuarine circulation highly correlated with the respective buoyancy gradients.

  1. Alcohol Calorie Calculator

    MedlinePlus

    ... Alcohol Calorie Calculator Weekly Total 0 Calories Alcohol Calorie Calculator Find out the number of beer and ... Calories College Alcohol Policies Interactive Body Calculators Alcohol Calorie Calculator Alcohol Cost Calculator Alcohol BAC Calculator Alcohol ...

  2. Novel unilateral circuits for MMIC circulators

    NASA Astrophysics Data System (ADS)

    Hara, Shinji; Tokumitsu, Tsuneo; Aikawa, Masayoshi

    1990-10-01

    A circuit which is equivalent to a four-port circulator with one port terminated, called a quasi-circulator (QC), is proposed. The QC can replace a conventional circulator even though it is not a complete circulator. Examples of novel three-port unilateral circuit modules, called QC modules, which are the main part of the QC are presented to realize very wideband circulators in MMIC form without using ferrite materials and external magnets. The modules are composed of an active out-of-phase divider and an active in-phase combiner or an active in-phase divider and an active out-of-phase combiner. The modules have many variations. All are very small and operate over a very wide frequency range. Two types of QC modules that have very broadband operation up to X or Ku band are demonstrated. A QC is also demonstrated. It is shown how an active circulator is realized by QC modules.

  3. A blood circulation model for reference man

    SciTech Connect

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    1999-01-01

    This paper describes a dynamic blood circulation model that predicts the movement and gradual dispersal of a bolus of material in the circulation after its intravascular injection into an adult human. The main purpose of the model is to improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The total blood volume is partitioned into the blood contents of 24 separate organs or tissues, right heart chambers, left heart chambers, pulmonary circulation, arterial outflow to the systemic tissues (aorta and large arteries), and venous return from the systemic tissues (large veins). As a compromise between physical reality and computational simplicity, the circulation of blood is viewed as a system of first-order transfers between blood pools, with the delay time depending on the mean transit time across the pool. The model allows consideration of incomplete, tissue-dependent extraction of material during passage through the circulation and return of material from tissues to plasma.

  4. Circulation of Venus upper mesosphere.

    NASA Astrophysics Data System (ADS)

    Zasova, Ludmila; Gorinov, Dmitry; Shakun, Alexey; Altieri, Francesca; Migliorini, Alessandra; Piccioni, Giuseppe; Drossart, Pierre

    2014-05-01

    Observation of the O2 1.27 μm airglow intensity distribution on the night side of Venus is one of the methods of study of the circulation in upper mesosphere 90-100 km. VIRTIS-M on board Venus Express made these observations in nadir and limb modes in Southern and Northern hemispheres respectively. Global map of the O2 night glow is published (Piccioni et al. 2009). In this work we use for analysis only data, obtained with exposure > 3 s to avoid high noisy data. It was found that intensity of emission decreases to poles and to terminators (similar to Piccioni et al.2009) in both hemispheres, which gives evidence for existence of SS-AS circulation with transport of the air masses through poles and terminators with ascending/descending flows at SS/AS areas. However, asymmetry of distribution of intensity of airglow is observed in both hemispheres. Global map for southern hemisphere (from nadir data) has good statistics at φ > 10-20° S and pretty poor at low latitude. Maximum emission is shifted from midnight by 1 - 2 hours to the evening (22-23h) and deep minimum of emission is found at LT=2-4 h at φ > 20° S. This asymmetry is extended up to equatorial region, however statistic is poor there. No evident indication for existence of the Retrograde Zonal Superrotation (RZS) is found: maximum emission in this case, which is resulting from downwards flow, should be shifted to the morning. The thermal tides, gravity waves are evidently influence on the night airglow distribution. VIRTIS limb observations cover the low northern latitudes and they are more sparse at higher latitudes. Intensity of airglow at φ = 0 - 20° N shows wide maximum, which is shifted by 1- 2 h from midnight to morning terminator. This obviously indicates that observed O2 night glow distribution in low North latitudes is explained by a superposition of SS-AS flow and RZS circulation at 95-100 km. This behavior is similar to the NO intensity distribution, obtained by SPICAV.

  5. A reliable method to concentrate circulating DNA.

    PubMed

    Bryzgunova, Olga; Bondar, Anna; Morozkin, Evgeniy; Mileyko, Vladislav; Vlassov, Valentin; Laktionov, Pavel

    2011-01-15

    Concentration of circulating DNA probes is required to increase the amount of DNA involved in subsequent study (by polymerase chain reaction, sequencing, and microarray). This work was dedicated to the comparison of five different methods used for concentration of DNA circulating in blood. Precipitation of circulating DNA with acetone in the presence of triethylamine provides minimal DNA loss, high reproducibility, and at least three times higher DNA yield in comparison with the standard ethanol protocol. PMID:20828533

  6. Linear thermal circulator based on Coriolis forces.

    PubMed

    Li, Huanan; Kottos, Tsampikos

    2015-02-01

    We show that the presence of a Coriolis force in a rotating linear lattice imposes a nonreciprocal propagation of the phononic heat carriers. Using this effect we propose the concept of Coriolis linear thermal circulator which can control the circulation of a heat current. A simple model of three coupled harmonic masses on a rotating platform permits us to demonstrate giant circulating rectification effects for moderate values of the angular velocities of the platform. PMID:25768443

  7. Arctic Ocean circulation during the anoxic Eocene Azolla event

    NASA Astrophysics Data System (ADS)

    Speelman, Eveline; Sinninghe Damsté, Jaap; März, Christian; Brumsack, Hans; Reichart, Gert-Jan

    2010-05-01

    through seawater inflow). Excess vanadium accumulation during the Azolla event (80 ppm), basin volume and surface area, average vanadium sea (1.8 ppb) and river water (1.0 ppb) concentrations, together indicate that an inflow of Nordic Sea water of 0.2 Sv is needed to sustain vanadium levels. The same calculation using molybdenum gives an inflow of only 0.02 Sv. These low inflow rates imply Arctic Ocean (deep) water residence times of 2000 - 20000 years, respectively. Based on climate modeling we calculated a summed net amount of precipitation for the Eocene Arctic Basin (Precipitation - Evaporation + Runoff) of 0.46 Sv. Together these notions indicate that a compensating inflow of saline North Atlantic water occurred, accompanied by an outflow of more fresh waters, resulting in a bi-directional, two-layer flow through the (proto-) Fram Strait. Consequently, the limited exchange of water through the Fram Strait implies that a relatively low export productivity would have been sufficient to render Arctic bottom waters anoxic. Jakobsson, M., Backman, J., Rudels, B., Nycander, J., Frank, M., Mayer, L., Jokat, W., Sangiorgi, F., O'Regan, M., Brinkhuis, H., King, J., Moran, K. (2007). The early Miocene onset of a ventilated circulation regimen in the Arctic Ocean. Nature 447, 986-990.

  8. Meridional Circulation and Global Solar Oscillations

    NASA Astrophysics Data System (ADS)

    Roth, M.; Stix, M.

    2008-09-01

    We investigate the influence of large-scale meridional circulation on solar p-modes by quasi-degenerate perturbation theory, as proposed by Lavely & Ritzwoller, 1992 (Roy. Soc. Lon. Phil. Trans. Ser. A, 339, 431). As an input flow we use various models of stationary meridional circulation obeying the continuity equation. This flow perturbs the eigenmodes of an equilibrium model of the Sun. We derive the signatures of the meridional circulation in the frequency multiplets of solar p modes. In most cases the meridional circulation leads to negative average frequency shifts of the multiplets. Further possibly observable effects are briefly discussed.

  9. Meridional Circulation and Global Solar Oscillations

    NASA Astrophysics Data System (ADS)

    Roth, M.; Stix, M.

    2008-09-01

    We investigate the influence of large-scale meridional circulation on solar p modes by quasi-degenerate perturbation theory, as proposed by Lavely and Ritzwoller ( Roy. Soc. Lond. Phil. Trans. Ser. A 339, 431, 1992). As an input flow we use various models of stationary meridional circulation obeying the continuity equation. This flow perturbs the eigenmodes of an equilibrium model of the Sun. We derive the signatures of the meridional circulation in the frequency multiplets of solar p modes. In most cases the meridional circulation leads to negative average frequency shifts of the multiplets. Further possibly observable effects are briefly discussed.

  10. A blood circulation model for reference man

    SciTech Connect

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    1996-12-31

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86.

  11. A brief etymology of the collateral circulation.

    PubMed

    Faber, James E; Chilian, William M; Deindl, Elisabeth; van Royen, Niels; Simons, Michael

    2014-09-01

    It is well known that the protective capacity of the collateral circulation falls short in many individuals with ischemic disease of the heart, brain, and lower extremities. In the past 15 years, opportunities created by molecular and genetic tools, together with disappointing outcomes in many angiogenic trials, have led to a significant increase in the number of studies that focus on: understanding the basic biology of the collateral circulation; identifying the mechanisms that limit the collateral circulation's capacity in many individuals; devising methods to measure collateral extent, which has been found to vary widely among individuals; and developing treatments to increase collateral blood flow in obstructive disease. Unfortunately, accompanying this increase in reports has been a proliferation of vague terms used to describe the disposition and behavior of this unique circulation, as well as the increasing misuse of well-ensconced ones by new (and old) students of collateral circulation. With this in mind, we provide a brief glossary of readily understandable terms to denote the formation, adaptive growth, and maladaptive rarefaction of collateral circulation. We also propose terminology for several newly discovered processes that occur in the collateral circulation. Finally, we include terms used to describe vessels that are sometimes confused with collaterals, as well as terms describing processes active in the general arterial-venous circulation when ischemic conditions engage the collateral circulation. We hope this brief review will help unify the terminology used in collateral research. PMID:25012127

  12. Numerical simulation and prediction of coastal ocean circulation

    SciTech Connect

    Chen, P.

    1992-01-01

    Numerical simulation and prediction of coastal ocean circulation have been conducted in three cases. 1. A process-oriented modeling study is conducted to study the interaction of a western boundary current (WBC) with coastal water, and its responses to upstream topographic irregularities. It is hypothesized that the interaction of propagating WBC frontal waves and topographic Rossby waves are responsible for upstream variability. 2. A simulation of meanders and eddies in the Norwegian Coastal Current (NCC) for February and March of 1988 is conducted with a newly developed nested dynamic interactive model. The model employs a coarse-grid, large domain to account for non-local forcing and a fine-grid nested domain to resolve meanders and eddies. The model is forced by wind stresses, heat fluxes and atmospheric pressure corresponding Feb/March of 1988, and accounts for river/fjord discharges, open ocean inflow and outflow, and M[sub 2] tides. The simulation reproduced fairly well the observed circulation, tides, and salinity features in the North Sea, Norwegian Trench and NCC region in the large domain and fairly realistic meanders and eddies in the NCC in the nested region. 3. A methodology for practical coastal ocean hindcast/forecast is developed, taking advantage of the disparate time scales of various forcing and considering wind to be the dominant factor in affecting density fluctuation in the time scale of 1 to 10 days. The density field obtained from a prognostic simulation is analyzed by the empirical orthogonal function method (EOF), and correlated with the wind; these information are then used to drive a circulation model which excludes the density calculation. The method is applied to hindcast the circulation in the New York Bight for spring and summer season of 1988. The hindcast fields compare favorably with the results obtained from the prognostic circulation model.

  13. Uranus atmospheric dynamics and circulation

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Beebe, Reta F.; Conrath, Barney J.; Hinson, David P.; Ingersoll, Andrew P.

    1991-01-01

    The observations, models, and theories relevant to the atmospheric dynamics and meteorology of Uranus are discussed. The available models for the large-scale heat transport and atmospheric dynamics as well as diagnostic interpretations of the Voyager data are reviewed. Some pertinent ideas and questions regarding the global circulation balance are considered, partly in comparison with other planetary atmospheres. The available data indicate atmospheric rotation at midlatitudes nearly 200 m/s faster than that of the planetary magnetic field. Analysis of the dynamical deformation of the shape and size of isobaric surfaces measured by the Voyager radio-occultation experiment suggests a subrotating equator at comparable altitudes. Infrared temperature retrievals above the cloud deck indicate a smaller equator-to-pole contrast than expected for purely radiative-convective equilibrium, but show local variations implying a latitudinally correlated decrease with altitude in the cloud-tracked wind.

  14. Inflammatory response and extracorporeal circulation.

    PubMed

    Kraft, Florian; Schmidt, Christoph; Van Aken, Hugo; Zarbock, Alexander

    2015-06-01

    Patients undergoing cardiac surgery with extracorporeal circulation (EC) frequently develop a systemic inflammatory response syndrome. Surgical trauma, ischaemia-reperfusion injury, endotoxaemia and blood contact to nonendothelial circuit compounds promote the activation of coagulation pathways, complement factors and a cellular immune response. This review discusses the multiple pathways leading to endothelial cell activation, neutrophil recruitment and production of reactive oxygen species and nitric oxide. All these factors may induce cellular damage and subsequent organ injury. Multiple organ dysfunction after cardiac surgery with EC is associated with an increased morbidity and mortality. In addition to the pathogenesis of organ dysfunction after EC, this review deals with different therapeutic interventions aiming to alleviate the inflammatory response and consequently multiple organ dysfunction after cardiac surgery. PMID:26060024

  15. Circulating system simplifies dry scrubbing

    SciTech Connect

    Morrison, S.Q.; Jorgensen, C.

    1995-10-01

    This article describes a circulating dry scrubber, based on fluid-bed absorption process, which demonstrates high SO{sub 2} removal with minimal O and M requirements. Unlike other dry scrubbers, this one involves dry reagent and results in dry products. Before construction can begin on a new coal-fired plant, a rigorous set of permit requirements must be satisfied. When the Roanoke Valley Energy Facility, Weldon, NC, began the permitting process for their proposed 44-MW pulverized-coal (p-c)-fired Unit 2, the facility permit limited not only SO{sub 2} emissions (0.187 lb SO{sub 2}/million Btu) but also the removal efficiency of the flue-gas desulfurization process (93%) and the maximum amount of sulfur in the coal (1.6%).

  16. Plasma Circulation in the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Fok, Mei-Ching; Delcourt, D. C.; Slinker, S.; Fedder, J. A.; Buenfil, M.

    2006-01-01

    We investigate the global structure and dynamics of plasma circulation produced by prototypical solar wind disturbances of the interplanetary magnetic field and dynamic pressure. We track the global circulation and energization of solar wind, polar wind, and auroral wind plasmas throughout the magnetosphere, until they precipitate or escape into the downstream solar wind. We use the full equations of motion of the plasma ions within fields produced by a global MHD simulation of the dynamic solar wind interaction. We use the dynamic hot plasma density and Poynting energy flux specified at the inner boundary of the MHD simulation as drivers of conjugate ion outflow fluxes using local empirical relations obtained from the FAST and Polar missions. Birkeland currents computed by the MHD code are used to derive a field-parallel potential drop from a Knight-like relation [as modified by Lyons and Evans, 1980]. This potential drop is applied to each ion as an initial bulk energy, added to a thermal heating driven by the locally incident Poynting flux. The solar wind pressure increase case (B(sub Y) = 5; B(sub z) = 0 nT) produces an immediate substorm owing to compression of pre-existing plasmas. The SB(sub z), interval (embedded in NB(sub z)) produces a substorm after about one hour of development. Both disturbances enhance the auroral wind flux and heavy ion pressure of the magnetosphere substantially, with complex dynamic structuring by auroral acceleration vortexes and dynamic reconnection. Comparisons are made with observations during disturbed periods including the Halloween 2003 super-storm and other periods.

  17. The Seasonal Variability of the South Indian Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Matano, R. P.; Beier, E. J.; Strub, P. T.

    2006-07-01

    This article compares the seasonal variability patterns of the South Indian Ocean circulation derived from a global, eddy-permitting, numerical model and altimeter observations. The seasonal variability of the Indian Ocean circulation is driven by the inflow from the Indonesian Passages and by the local wind forcing. Our analysis indicates that the influence of the Indonesian throughflow is confined to the easternmost portion of the basin, while the influence of the wind stress forcing is important everywhere. Model and observations indicates that, between ~105°E and 75°E, the seasonal variability is characterized by the southwestward propagation of an annual wave in a lapse of ~4 months. Preliminary calculations using Pathfinder data also indicates that, in the western region, there are seasonal perturbations that originates in the tropics and propagates poleward through the Mozambique Channel.

  18. A fully-implicit model of the global ocean circulation

    NASA Astrophysics Data System (ADS)

    Weijer, Wilbert; Dijkstra, Henk A.; Öksüzoğlu, Hakan; Wubs, Fred W.; de Niet, Arie C.

    2003-12-01

    With the recent developments in the solution methods for large-dimensional nonlinear algebraic systems, fully-implicit ocean circulation models are now becoming feasible. In this paper, the formulation of such a three-dimensional global ocean model is presented. With this implicit model, the sensitivity of steady states to parameters can be investigated efficiently using continuation methods. In addition, the implicit formulation allows for much larger time steps than can be used with explicit models. To demonstrate current capabilities of the implicit global ocean model, we use a relatively low-resolution (4° horizontally and 12 levels vertically) version. For this configuration, we present: (i) an explicit calculation of the bifurcation diagram associated with hysteresis behavior of the ocean circulation and (ii) the scaling behavior of the Atlantic meridional overturning versus the magnitude of the vertical mixing coefficient of heat and salt.

  19. Core Cracking and Hydrothermal Circulation Profoundly Affect Ceres' Geophysical Evolution

    NASA Astrophysics Data System (ADS)

    Neveu, Marc; Desch, Steven J.; Castillo-Rogez, Julie C.

    2014-11-01

    The dwarf planet (1)Ceres is about to be visited by the Dawn spacecraft [1]. In addition to a recent report of water vapor emission [2], observations and models of Ceres suggest that its evolution was shaped by interactions between liquid water and silicate rock [3,4].Hydrothermal processes in a heated core require both fractured rock and liquid. Using a new core cracking model coupled to a thermal evolution code [5], we find volumes of fractured rock always large enough for significant interaction to occur. Therefore, liquid persistence is key. It is favored by antifreezes such as ammonia [4], by silicate dehydration which releases liquid, and by hydrothermal circulation itself, which enhances heat transport into the hydrosphere. The heating effect from silicate hydration seems minor. Hydrothermal circulation can profoundly affect Ceres' evolution: it prevents core dehydration via “temperature resets”, global cooling events lasting ~50 Myr, followed by ~1 Gyr periods during which Ceres' interior is nearly isothermal and its hydrosphere largely liquid. Whether Ceres has experienced such extensive hydrothermalism may be determined through examination of its present-day structure. A large, fully hydrated core (radius 420 km) suggests that extensive hydrothermal circulation prevented core dehydration. A small, dry core (radius 350 km) suggests early dehydration from short-lived radionuclides, with shallow hydrothermalism at best. Intermediate structures with a partially dehydrated core seem ambiguous, compatible both with late partial dehydration without hydrothermal circulation, and with early dehydration with extensive hydrothermal circulation. Thus, gravity measurements by the Dawn orbiter [1] could help discriminate between scenarios for Ceres' evolution.References:[1] Russell C. T. & Raymond C. A. (2011) Sp. Sci. Rev. 163, 3-23.[2] Küppers M. et al. (2014) Nature 505, 525-527.[3] Rivkin A. et al. (2011) Sp. Sci. Rev. 163, 95-116.[4] Castillo-Rogez J. C. & Mc

  20. Vascular impedance analysis in human pulmonary circulation.

    PubMed

    Zhou, Qinlian; Gao, Jian; Huang, Wei; Yen, Michael

    2006-01-01

    Vascular impedance is determined by morphometry and mechanical properties of the vascular system, as well as the rheology of the blood. The interactions between all these factors are complicated and difficult to investigate solely by experiments. A mathematical model representing the entire system of human pulmonary circulation was constructed based on experimentally measured morphometric and elasticity data of the vessels. The model consisted of 16 orders of arteries and 15 orders of veins. The pulmonary arteries and veins were considered as elastic tubes and their impedance was calculated based on Womersley's theory. The flow in capillaries was described by the "sheet-flow" theory. The model yielded an impedance modulus spectrum that fell steeply from a high value at 0 Hz to a minimum around 1.5 Hz. At about 4 Hz, it reached a second high and then oscillated around a relatively small value at higher frequencies. Characteristic impedance was 27.9 dyn-sec/cm5. Influence of variations in vessel geometry and elasticity on impedance spectra was analyzed. Simulation results showed good agreement with experimental measurements. PMID:16817653

  1. Global atmospheric circulation statistics: Four year averages

    NASA Technical Reports Server (NTRS)

    Wu, M. F.; Geller, M. A.; Nash, E. R.; Gelman, M. E.

    1987-01-01

    Four year averages of the monthly mean global structure of the general circulation of the atmosphere are presented in the form of latitude-altitude, time-altitude, and time-latitude cross sections. The numerical values are given in tables. Basic parameters utilized include daily global maps of temperature and geopotential height for 18 pressure levels between 1000 and 0.4 mb for the period December 1, 1978 through November 30, 1982 supplied by NOAA/NMC. Geopotential heights and geostrophic winds are constructed using hydrostatic and geostrophic formulae. Meridional and vertical velocities are calculated using thermodynamic and continuity equations. Fields presented in this report are zonally averaged temperature, zonal, meridional, and vertical winds, and amplitude of the planetary waves in geopotential height with zonal wave numbers 1-3. The northward fluxes of sensible heat and eastward momentum by the standing and transient eddies along with their wavenumber decomposition and Eliassen-Palm flux propagation vectors and divergences by the standing and transient eddies along with their wavenumber decomposition are also given. Large interhemispheric differences and year-to-year variations are found to originate in the changes in the planetary wave activity.

  2. Abundances anomalies and meridional circulation in horizontal branch stars

    NASA Astrophysics Data System (ADS)

    Quievy, D.; Charbonneau, P.; Michaud, G.; Richer, J.

    2009-06-01

    Context: Photospheric chemical abundances on the horizontal branch (HB) show some striking variations with effective temperature (T_eff). The most straightforward explanation is that these anomalies develop through diffusion processes, in particular gravitational settling and radiative levitation. However, the abrupt disappearance of strong abundance anomalies as one moves below about 11 000 K on the HB suggests that another factor plays an important role. Aims: We test an extension to the HB of the diffusion model for main-sequence HgMn stars, where strong anomalies can only develop in the slower rotators. In these rotators the gravitational settling of helium leads to the disappearance of its superficial convection zone, so that chemical separation by radiative levitation can occur all the way to the photosphere. Methods: More specifically, we calculate the critical rotational velocity at which He settling is prevented by rotationally-induced meridional circulation, in a suite of stellar models spanning the zero-age HB. Helium settling serves as the measure of the atomic diffusion of all species. Results: Our abundance evolution calculations show that, for models with T_eff less than about 11 500 K, corresponding to stars typically observed with the same metal composition as giants, meridional circulation is efficient enough to suppress He settling for rotational velocities, in good agreement with observed values. Once the meridional circulation profile of a star rotating as a near rigid body has been adopted, no adjustable parameter is involved. Conclusions: The T_eff dependence of abundance anomalies observed on the HB can be explained by atomic diffusion transport if one introduces the competition of meridional circulation with the observed T_eff dependence of rotation velocity of HB stars.

  3. Equilibrium calculations of firework mixtures

    SciTech Connect

    Hobbs, M.L.; Tanaka, Katsumi; Iida, Mitsuaki; Matsunaga, Takehiro

    1994-12-31

    Thermochemical equilibrium calculations have been used to calculate detonation conditions for typical firework components including three report charges, two display charges, and black powder which is used as a fuse or launch charge. Calculations were performed with a modified version of the TIGER code which allows calculations with 900 gaseous and 600 condensed product species at high pressure. The detonation calculations presented in this paper are thought to be the first report on the theoretical study of firework detonation. Measured velocities for two report charges are available and compare favorably to predicted detonation velocities. However, the measured velocities may not be true detonation velocities. Fast deflagration rather than an ideal detonation occurs when reactants contain significant amounts of slow reacting constituents such as aluminum or titanium. Despite such uncertainties in reacting pyrotechnics, the detonation calculations do show the complex nature of condensed phase formation at elevated pressures and give an upper bound for measured velocities.

  4. TI-59 Drilling engineering manual. [Texas Instruments-59 Calculator Programs

    SciTech Connect

    Chenevert, M.E.; Hollo, R.

    1981-01-01

    Twenty-seven drilling engineering programs to be used with the Texas Instruments 59 programmable calculator are given, with step-by-step explanations on how to input these on the calculator. Programs for basic drilling engineering, drilling fluid viscosity and circulation, hydrostatic pressure due to gas, surge and swab pressure, and well control are given. (JMT)

  5. Sensitivity of Martian circulation to obliquity changes

    NASA Astrophysics Data System (ADS)

    Segschneider, J.; Grieger, B.; Lunkeit, F.; Kirk, E.

    2003-04-01

    The obliquity of the Martian rotation axis varies between 15 and 35 degrees with main periods of 125 kyr and 1.3 My. This is thought to have similar impact on the Martian climate as the Milancovic cycles on Earth. The northern layered terrains indicate that climate cycles of yet unknown nature have led to varying accumulation and ablation rates. This study aims at investigating the impact of orbital changes on the Martian atmospheric circulation, while an accompanying study (CR5.05) aims at exploring the internal dynamics of the ice sheet. Here, PUMA, the Portable University Model of the Atmosphere, is used in the Martian set-up to perform sensitivity studies for minimum and maximum obliquity. PUMA is a spectral model with sigma co-ordinates that solves the dynamical equations for vorticity and divergence. Additional modules compute radiative transfers, the soil temperature and heat fluxes between the surface and the atmosphere. So far PUMA has been sucesfully used for modelling of the terrestial climate. As a first step towards a more complete simulation of the evolution of the Martian climate, simulations over one Martian year for minimum and maximum obliquity will be shown.

  6. Numerical analysis of seawater circulation in carbonate platforms: I. Geothermal convection

    USGS Publications Warehouse

    Sanford, W.E.; Whitaker, F.F.; Smart, P.L.; Jones, G.

    1998-01-01

    Differences in fluid density between cold ocean water and warm ground water can drive the circulation of seawater through carbonate platforms. The circulating water can be the major source of dissolved constituents for diagenetic reactions such as dolomitization. This study was undertaken to investigate the conditions under which such circulation can occur and to determine which factors control both the flux and the patterns of fluid circulation and temperature distribution, given the expected ranges of those factors in nature. Results indicate that the magnitude and distribution of permeability within a carbonate platform are the most important parameters. Depending on the values of horizontal and vertical permeability, heat transport within a platform can occur by one of three mechanisms: conduction, forced convection, or free convection. Depth-dependent relations for porosity and permeability in carbonate platforms suggest circulation may decrease rapidly with depth. The fluid properties of density and viscosity are controlled primarily by their dependency on temperature. The bulk thermal conductivity of the rocks within the platform affects the conductive regime to some extent, especially if evaporite minerals are present within the section. Platform geometry has only a second-order effect on circulation. The relative position of sealevel can create surface conditions that range from exposed (with a fresh-water lens present) to shallow water (with hypersaline conditions created by evaporation in constricted flow conditions) to submerged or drowned (with free surface water circulation), but these boundary conditions and associated ocean temperature profiles have only a second-order effect on fluid circulation. Deep, convective circulation can be caused by horizon tal temperature gradients and can occur even at depths below the ocean bottom. Temperature data from deep holes in the Florida and Bahama platforms suggest that geothermal circulation is actively

  7. Downhole material injector for lost circulation control

    DOEpatents

    Glowka, David A.

    1994-01-01

    Apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

  8. Downhole material injector for lost circulation control

    DOEpatents

    Glowka, D.A.

    1991-01-01

    This invention is comprised of an apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

  9. Downhole material injector for lost circulation control

    DOEpatents

    Glowka, D.A.

    1994-09-06

    Apparatus and method are disclosed for simultaneously and separately emplacing two streams of different materials through a drill string in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drill string at the desired downhole location and harden only after mixing for control of a lost circulation zone. 6 figs.

  10. Laptop Circulation at Eastern Washington University

    ERIC Educational Resources Information Center

    Munson, Doris; Malia, Elizabeth

    2008-01-01

    In 2001, Eastern Washington University's Libraries began a laptop circulation program with seventeen laptops. Today, there are 150 laptops in the circulation pool, as well as seventeen digital cameras, eleven digital handycams, and thirteen digital projectors. This article explains how the program has grown to its present size, the growing pains…

  11. Public Library Automation Report: Circulation [and] Appendix.

    ERIC Educational Resources Information Center

    Gotanda, Masae; And Others

    An online circulation system--ULISYS (the Universal Library System Ltd.) manufactured by Digital Equipment Corporation (DEC)--is being installed in the Hawaii State Library, Kaneohe Regional Library, Kailua Community Library and Waimanalo Community/School Library. These libraries are the first users of a statewide online circulation system…

  12. Simulating the three-dimensional circulation and hydrography of Halifax Harbour using a multi-nested coastal ocean circulation model

    NASA Astrophysics Data System (ADS)

    Shan, Shiliang; Sheng, Jinyu; Thompson, Keith Richard; Greenberg, David Alexander

    2011-07-01

    Halifax Harbour is located on the Atlantic coast of Nova Scotia, Canada. It is one of the world's largest, ice-free natural harbours and of great economic importance to the region. A good understanding of the physical processes controlling tides, flooding, transport and dispersion, and hydrographic variability is required for pollution control and sustainable development of the Harbour. For the first time, a multi-nested, finite difference coastal ocean circulation model is used to reconstruct the three-dimensional circulation and hydrography of the Harbour and its variability on timescales of hours to months for 2006. The model is driven by tides, wind and sea level pressure, air-sea fluxes of heat, and terrestrial buoyancy fluxes associated with river and sewage discharge. The predictive skill of the model is assessed by comparing the model simulations with independent observations of sea level from coastal tide gauges and currents from moored instruments. The simulated hydrography is also compared against a new monthly climatology created from all available temperature and salinity observations made in the Harbour over the last century. It is shown that the model can reproduce accurately the main features of the observed tides and storm surge, seasonal mean circulation and hydrography, and wind driven variations. The model is next used to examine the main physical processes controlling the circulation and hydrography of the Harbour. It is shown that non-linear interaction between tidal currents and complex topography occurs over the Narrows. The overall circulation can be characterized as a two-layer estuarine circulation with seaward flow in the thin upper layer and landward flow in the broad lower layer. An important component of this estuarine circulation is a relatively strong, vertically sheared jet situated over a narrow sill connecting the inner Harbour to the deep and relatively quiescent Bedford Basin. Local wind driven variability is strongest in

  13. Wind-driven circulation in Titan's seas

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya; Lorenz, Ralph D.

    2015-01-01

    Circulation in Titan's seas forced by wind is simulated by an ocean circulation model using surface wind data predicted by a global circulation model. Wind-driven circulation is insignificant throughout much of the annual cycle but becomes significant from late spring to late summer, when the wind stress becomes strong. The large-scale circulation in summer is predominantly southward near the sea surface and northward near the sea bottom. The sea surface current can get as fast as 5 cms-1 in some areas. Titan's rotation affects the vertical structure of sea currents in the form of an Ekman spiral if the wind is strong. The maximum wind setup at the shores is of the same order of magnitude as the tidal range. Wind stirring may reduce thermal stratification in summer but may be unable to destroy stratification of methane-rich liquids on top of ethane-rich liquids that can result from imbalances between evaporation and precipitation.

  14. Wind-driven circulation in Titan's seas

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya; Lorenz, Ralph D.

    2015-04-01

    Circulation in Titan's seas forced by wind is simulated by an ocean circulation model using surface wind data predicted by a global circulation model. Wind-driven circulation is insignificant throughout much of the annual cycle, but becomes significant from late spring to late summer, when the wind stress becomes strong. The large-scale circulation in summer is predominantly southward near the sea surface and northward near the sea bottom. The sea surface current can get as fast as 5 cms-1 in some areas. Titan's rotation affects the vertical structure of sea currents in the form of an Ekman spiral if the wind is strong. The maximum wind set-up at the shores is of the same order of magnitude as the tidal range. Wind stirring may reduce thermal stratification in summer, but may be unable to destroy stratification of methane-rich liquids on top of ethane-rich liquids that can result from imbalances between evaporation and precipitation.

  15. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models

    SciTech Connect

    Held, I.M. ); Suarez, M.J. )

    1994-10-01

    A benchmark calculation is proposed for evaluating the dynamical cores of atmospheric general circulation models independently of the physical parameterizations. The test focuses on the long-term statistical properties of a fully developed general circulation; thus, it is particularly appropriate for intercomparing the dynamics used in climate models. To illustrate the use of this benchmark, two very different atmospheric dynamical cores - one spectral, one finite difference - are compared. It is found that the long-term statistics produced by the two models are very similar. Selected results from these calculations are presented to initiate the intercomparison. 17 refs., 4 figs.

  16. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Held, Isaac M.; Suarez, Max J.

    1994-01-01

    A benchmark calculation is proposed for evaluating the dynamical cores of atmospheric general circulation models (GCMs) independently of the physical parameterizations. The test focuses on the long-term statistical properties of a fully developed general circulation; thus, it is particularly appropriate for intercomparing the dynamics used in climate models. To illustrate the use of this benchmark, two very different atmospheric dynamical cores--one spectral, one finite difference--are compared. It is found that the long-term statistics produced by the two models are very similar. Selected results from these calculations are presented to initiate the intercomparison.

  17. An investigation of anticyclonic circulation in the southern Gulf of Riga during the spring period

    NASA Astrophysics Data System (ADS)

    Soosaar, Edith; Maljutenko, Ilja; Raudsepp, Urmas; Elken, Jüri

    2014-04-01

    Previous studies of the gulf-type Region of Freshwater Influence (ROFI) have shown that circulation near the area of freshwater inflow sometimes becomes anticyclonic. Such a circulation is different from basic coastal ocean buoyancy-driven circulation where an anticyclonic bulge develops near the source and a coastal current is established along the right hand coast (in the northern hemisphere), resulting in the general cyclonic circulation. The spring (from March to June) circulation and spreading of river discharge water in the southern Gulf of Riga (GoR) in the Baltic Sea was analyzed based on the results of a 10-year simulation (1997-2006) using the General Estuarine Transport Model (GETM). Monthly mean currents in the upper layer of the GoR revealed a double gyre structure dominated either by an anticyclonic or cyclonic gyre in the near-head southeastern part and corresponding cyclonic/anticyclonic gyre in the near-mouth northwestern part of the gulf. Time series analysis of PCA and vorticity, calculated from velocity data and model sensitivity tests, showed that in spring the anticyclonic circulation in the upper layer of the southern GoR is driven primarily by the estuarine type density field. This anticyclonic circulation is enhanced by easterly winds but blocked or even reversed by westerly winds. The estuarine type density field is maintained by salt flux in the northwestern connection to the Baltic Proper and river discharge in the southern GoR.

  18. An investigation of anticyclonic circulation in the southern Gulf of Riga during the spring period

    NASA Astrophysics Data System (ADS)

    Soosaar, Edith; Maljutenko, Ilja; Raudsepp, Urmas; Elken, Jüri

    2015-04-01

    Previous studies of the gulf-type Region of Freshwater Influence (ROFI) have shown that circulation near the area of freshwater inflow sometimes becomes anticyclonic. Such a circulation is different from basic coastal ocean buoyancy-driven circulation where an anticyclonic bulge develops near the source and a coastal current is established along the right hand coast (in the northern hemisphere), resulting in the general cyclonic circulation. The spring (from March to June) circulation and spreading of river discharge water in the southern Gulf of Riga (GoR) in the Baltic Sea was analyzed based on the results of a 10-year simulation (1997-2006) using the General Estuarine Transport Model (GETM). Monthly mean currents in the upper layer of the GoR revealed a double gyre structure dominated either by an anticyclonic or cyclonic gyre in the near-head southeastern part and corresponding cyclonic/anticyclonic gyre in the near-mouth northwestern part of the gulf. Time series analysis of PCA and vorticity, calculated from velocity data and model sensitivity tests, showed that in spring the anticyclonic circulation in the upper layer of the southern GoR is driven primarily by the estuarine type density field. This anticyclonic circulation is enhanced by easterly winds but blocked or even reversed by westerly winds. The estuarine type density field is maintained by salt flux in the northwestern connection to the Baltic Proper and river discharge in the southern GoR.

  19. Estimation of the circulation distribution on a rotor blade from detailed near wake velocities

    NASA Astrophysics Data System (ADS)

    Mast, E. H. M.; Vermeer, L. J.; van Bussel, G. J. W.

    2004-07-01

    The circulation distribution over a blade of a wind turbine model is estimated by use of a vortex model, which is matched with measured wake properties. With near wake velocities and the Biot-Savart law an optimization scheme is constructed to estimate the circulation distribution over the blade using a polynomial function series to approximate the circulation distribution. The velocities resulting from the calculated distribution are compared with the measured data, and deviations are discussed and explained. The vortex model offers insight into how the measured velocities can be separated into induced velocities of the different parts of the vortex system, such as the influence of the tip vortex. The sensitivity of the vortex model to its most uncertain parameters is tested. Finally the circulation distribution obtained with the vortex model is compared with the circulation distribution obtained through application of a blade element momentum (BEM) code. The BEM results show an underestimation of the circulation near the root and an overestimation of the circulation near the tip with respect to the vortex model results. Copyright

  20. From the discovery of the circulation of the blood to the first steps in hemorheology: part 1.

    PubMed

    Martins e Silva, J

    2009-11-01

    In this article (the first of two on the subject) a brief historical review is presented of the prevailing ideas on the nature of the blood and its circulation from antiquity to the 16th century, when the problem was solved by William Harvey. On the basis of vivisection of various types of animals, Harvey constructed a general and logical model for the whole systemic circulation, which contradicted previous concepts, mainly those that had been put forward by Galen fourteen centuries before. The influence that Galen still exercised on virtually all areas of medicine justified Harvey's hesitations and scruples, forcing him to delay publishing his conclusions for thirteen years. It also explains the controversy with fellow physicians on the subject, which continued until his death. However, through careful observation and painstaking investigation, Harvey demonstrated clearly that the heart was the central organ of the circulatory system, on which depended the propulsion of the blood to the arteries and its subsequent return by different vessels, the veins, to its starting point. The blood coming from the heart was different from that which returned to the organ, the difference (in color and fluidity) being attributed to the presence of constituents which nourished the organism it irrigated. Harvey characterized blood pulsation as the result of the arteries filling with arterial blood during each heart contraction. He demonstrated that the arterial blood left the heart by contraction of the left ventricle, which happened simultaneously with contraction of the right ventricle and, in both, after the contraction of the atria. He confirmed that blood passed through the lung circulation from the right ventricle to the left atrium and from there to the left ventricle. By calculating the volume of blood pumped daily by the heart, Harvey reasoned that the blood could not be consumed by the body and would have to circulate continually through the heart and vascular network

  1. RF power recovery feedback circulator

    DOEpatents

    Sharamentov, Sergey I.

    2011-03-29

    A device and method for improving the efficiency of RF systems having a Reflective Load. In the preferred embodiment, Reflected Energy from a superconducting resonator of a particle accelerator is reintroduced to the resonator after the phase of the Reflected Energy is aligned with the phase of the Supply Energy from a RF Energy Source. In one embodiment, a Circulator is used to transfer Reflected Energy from the Reflective Load into a Phase Adjuster which aligns the phase of the Reflected Energy with that of the Supply Energy. The phase-aligned energy is then combined with the Supply Energy, and reintroduced into the Reflective Load. In systems having a constant phase shift, the Phase Adjuster may be designed to shift the phase of the Reflected Energy by a constant amount using a Phase Shifter. In systems having a variety (variable) phase shifts, a Phase Shifter controlled by a phase feedback loop comprising a Phase Detector and a Feedback Controller to account for the various phase shifts is preferable.

  2. Numerical Modeling of Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  3. Circulating microparticles: square the circle

    PubMed Central

    2013-01-01

    Background The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes. PMID:23607880

  4. Slow and Steady: Ocean Circulation. The Influence of Sea Surface Height on Ocean Currents

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa

    2000-01-01

    The study of ocean circulation is vital to understanding how our climate works. The movement of the ocean is closely linked to the progression of atmospheric motion. Winds close to sea level add momentum to ocean surface currents. At the same time, heat that is stored and transported by the ocean warms the atmosphere above and alters air pressure distribution. Therefore, any attempt to model climate variation accurately must include reliable calculations of ocean circulation. Unlike movement of the atmosphere, movement of the ocean's waters takes place mostly near the surface. The major patterns of surface circulation form gigantic circular cells known as gyres. They are categorized according to their general location-equatorial, subtropical, subpolar, and polar-and may run across an entire ocean. The smaller-scale cell of ocean circulation is known' as an eddy. Eddies are much more common than gyres and much more difficult to track in computer simulations of ocean currents.

  5. Dominance-related seasonal song production is unrelated to circulating testosterone in a subtropical songbird.

    PubMed

    York, Jenny E; Radford, Andrew N; de Vries, Bonnie; Groothuis, Ton G; Young, Andrew J

    2016-07-01

    Circulating testosterone (T) is widely considered to play a key role in the production of sexual displays by male vertebrates. While numerous studies support a role for circulating T in promoting the production of song in male birds, this understanding is based primarily on evidence from seasonally breeding northern temperate species, leaving it unclear whether this mechanism generalizes to other regions of the world. Here we investigate whether variation in circulating levels of T can explain the marked within- and among-individual variation in male song performance observed in a subtropical population of the year-round territorial white-browed sparrow weaver (Plocepasser mahali mahali). Our findings reveal that both circulating T and male song production peaked at a similar time point, halfway through the population-level breeding season. However, while dominant males were more likely to sing and sang for longer than subordinate males, within-group paired comparisons revealed no dominance-related differences in circulating T. Moreover, comparisons both among and within individual dominant males revealed that song duration, syllable rate and proportion of time spent singing were all unrelated to circulating T. Together, our findings suggest that natural variation in male song production, at least in this population of white-browed sparrow weavers, is achieved principally through mechanisms other than variation in circulating T concentration. More widely, our results are in line with the view that male song production is not exclusively regulated by gonadally synthesized steroids. PMID:27179883

  6. A new circulation type classification based upon Lagrangian air trajectories

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre; Sprenger, Michael; Wernli, Heini; Durán-Quesada, Ana María; Lorenzo, Maria Nieves; Gimeno, Luis

    2014-10-01

    A new classification method of the large-scale circulation characteristic for a specific target area (NW Iberian Peninsula) is presented, based on the analysis of 90-h backward trajectories arriving in this area calculated with the 3-D Lagrangian particle dispersion model FLEXPART. A cluster analysis is applied to separate the backward trajectories in up to five representative air streams for each day. Specific measures are then used to characterise the distinct air streams (e.g., curvature of the trajectories, cyclonic or anticyclonic flow, moisture evolution, origin and length of the trajectories). The robustness of the presented method is demonstrated in comparison with the Eulerian Lamb weather type classification. A case study of the 2003 heatwave is discussed in terms of the new Lagrangian circulation and the Lamb weather type classifications. It is shown that the new classification method adds valuable information about the pertinent meteorological conditions, which are missing in an Eulerian approach. The new method is climatologically evaluated for the five-year time period from December 1999 to November 2004. The ability of the method to capture the inter-seasonal circulation variability in the target region is shown. Furthermore, the multi-dimensional character of the classification is shortly discussed, in particular with respect to inter-seasonal differences. Finally, the relationship between the new Lagrangian classification and the precipitation in the target area is studied.

  7. Circulating Omentin-1 and Chronic Painful Temporomandibular Disorder

    PubMed Central

    Harmon, Jennifer B.; Sanders, Anne E.; Wilder, Rebecca S.; Essick, Greg K.; Slade, Gary D.; Hartung, Jane E.; Nackley, Andrea G.

    2016-01-01

    AIMS The biological basis for painful temporomandibular disorder (TMD) remains unclear. An emerging literature implicates circulating inflammatory cytokines in the development of pain sensitivity and painful TMD. One newly discovered anti-inflammatory adipokine, omentin-1, has decreased expression in several inflammatory conditions including osteoarthritis. The aim of this study was to investigate the relationship between omentin-1 levels and painful TMD. METHODS Using a case-control design, chronic painful TMD cases (n=90) and TMD-free controls (n=54) were selected participants in the multisite OPPERA study (Orofacial Pain: Prospective Evaluation and Risk Assessment). Painful TMD case status was determined by examiner using established Research Diagnostic Criteria for TMD. Levels of omentin-1 were measured in stored blood plasma samples using an enzyme-linked immunosorbent assay. Binary logistic regression calculated the odds ratios (ORs) and 95% confidence limits (CLs) for the association between omentin-1 and painful TMD. Models adjusted for study site, age, sex, and body mass index (BMI). RESULTS The unadjusted association between omentin-1 and chronic painful TMD was statistically non-significant (P=.072) Following adjustment of the negative confounding bias of covariates, odds of painful decreased 36% per standard deviation increase in circulating omentin-1 (adjusted OR=0.64, 95% CL: 0.43, 0.96. P=.031). CONCLUSION Circulating levels of omentin-1 were significantly lower in painful TMD cases than controls, suggesting that painful TMD pain is mediated by inflammatory pathways. PMID:27472522

  8. Use of the gamma-ray back-scattering technique to monitor corrosion in a circulating rig

    SciTech Connect

    Dawoud, U.M.

    1995-09-01

    The gamma back-scattering technique (GBST) was used to monitor general corrosion in situ in a steel tube installed in a circulating rig. The circulating aggressive environment was 1 wt% hydrochloric acid (HCl, pH = 0.8) at a flow rate corresponding to Reynolds number (Re) = 7,675. The final wall thickness of the steel tube resulting from accelerated corrosion as measured by GBST was 1.7 mm vs an original wall thickness of 2.8 mm. This method was compared with the standard ultrasonic technique, which agave a final thickness of 1.8 mm. The theoretical thickness calculated from weight loss and the change of tube diameter was 1.92 mm. The percentage of error against the theoretical thickness was 11.5% for GBST and 6% for the ultrasonic method. The small extra error in the GBST could be acceptable in certain situations in view of its ease of use, noncontact, and nondestructive nature.

  9. Serum Uric Acid Predicts Declining of Circulating Proangiogenic Mononuclear Progenitor Cells in Chronic Heart Failure Patients

    PubMed Central

    Berezin, Alexander E.; Kremzer, Alexander A.; Samura, Tatyana A.; Berezina, Tatyana A.; Martovitskaya, Yulia V.

    2014-01-01

    Introduction: Serum uric acid (SUA) is considered a marker for natural progression of chronic heart failure (CHF) mediated cardiovascular remodelling. CHF associates with declining of circulating mononuclear progenitor cells (MPCs). The objective of this study was to evaluate the interrelationship between SUA concentrations and proangiogenic MPCs in ischemic CHF patients. Methods: The study population was structured retrospectively after determining the coronary artery disease (CAD) by contrast-enhanced spiral computed tomography angiography in 126 subjects with symptomatic ischemic mild-to-severe CHF and 128 CAD subjects without CHF. Baseline biomarkers were measured in all patients. Cox proportional multivariate hazard ratio was calculated for predictors of MPCs declining in both CHF and non-CHF patient population predictors of MPCs declining in CHF subjects were examined in stepwise logistic regression. C-statistics, integrated discrimination indices (IDI) and net-reclassification improvement were utilized for prediction performance analyses. Results: Cox proportional adjusted hazard ratio analyses for CD14+CD309+ and CD14+CD309+Tie2+ MPCs by SUA has shown that the higher quartiles (Q3 and Q4) of SUA compared to the lower quartiles (Q1 and Q2) are associated with increased risks of depletion of both CD14+CD309+ and CD14+CD309+Tie2+ MPCs. The addition of Q4 SUA to the ABC model improved the relative IDI by 13.8% for depletion of CD14+CD309+ MPCs and by 14.5% for depletion of CD14+CD309+Tie2+ MPCs. Conclusion: Circulating levels of proangiogenic MPCs are declined progressively depending on the levels of SUA in the HF subjects with CHF. We suggest that even mild elevations of SUA might be used to predict of relative depletion of proangiogenic MPCs among chronic HF patients. PMID:25320662

  10. Surface Lander Missions to Mars: Support via Analysis of the NASA Ames Mars General Circulation Model

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Bridger, Alison F.C.; Haberle, Robert M.

    1997-01-01

    We have characterized the near-surface martian wind environment as calculated with a set of numerical simulations carried out with the NASA Ames Mars General Circulation Model (Mars GCM). These wind environments are intended to offer future spacecraft missions to the martian surface a data base from which to choose those locations which meet the mission's criteria for minimal near surface winds to enable a successful landing. We also became involved in the development and testing of the wind sensor which is currently onboard the Mars-bound Pathfinder lander. We began this effort with a comparison of Mars GCM produced winds with those measured by the Viking landers during their descent through the martian atmosphere and their surface wind measurements during the 3+ martian year lifetime of the mission. Unexpected technical difficulties in implementing the sophisticated Planetary Boundary Layer (PBL) scheme of Haberle et al. (1993) within the Mars GCM precluded our carrying out this investigation with the desired improvement to the model's treatment of the PBL. Thus, our results from this effort are not as conclusive as we had anticipated. As it turns out, similar difficulties have been experienced by other Mars modelling groups in attempting to implement very similar PBL routines into their GCMs (Mars General Circulation Model Intercomparison Workshop, held at Oxford University, United Kingdom, July 22-24, 1996; organized by J. Murphy, J. Hollingsworth, M. Joshi). These problems, which arise due to the nature of the time stepping in each of the models, are near to being resolved at the present. The model discussions which follow herein are based upon results using the existing, less sophisticated PBL routine. We fully anticipate implementing the tools we have developed in the present effort to investigate GCM results with the new PBL scheme implemented, and thereafter producing the technical document detailing results from the analysis tools developed during this

  11. SpaceX Dragon Air Circulation System

    NASA Technical Reports Server (NTRS)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  12. Venous waterfalls in coronary circulation.

    PubMed

    Gosselin, R E; Kaplow, S M

    1991-03-21

    Several studies of flow through collapsible tubing deformed by external pressures have led to a concept known as the "vascular waterfall". One hallmark of this state is a positive zero-flow pressure intercept (Pe) in flow-pressure curves. This intercept is commonly observed in the coronary circulation, but in blood-perfused beating hearts a vascular waterfall is not the only putative cause. To restrict the possibilities, we have measured flow-pressure curves in excised non-beating rabbit hearts in which the coronary arteries were perfused in a non-pulsatile way with a newtonian fluid (Ringers solution) containing potent vasodilator drugs. Under these circumstances, vascular waterfalls are believed to be the only tenable explanation for Pe. In physical terms the waterfall is a region where the vessel is in a state of partial collapse with a stabilized intraluminal fluid pressure (Pw). It is argued that the most probable site of this collapse was the intramural veins just before they reached the epicardial surface. In accord with the waterfall hypothesis, Pe increased as the heart became more edematous, but flow-pressure curves also became flatter, implying multiple waterfalls with differing Pws, leading to complete collapse of some of the venous channels. The principal compressive force is believed to have been the interstitial fluid pressure as registered through a needle (Pn) implanted in the left ventricular wall, but a small additional force (Ps) was probably due to swelling of interstitial gels. A method is presented for estimating Ps and Pw. Unlike rubber tubing, blood vessels are both collapsible and porous. Apparently because of increased capillary filtration, Pn was found to increase linearly with the perfusion pressure. Thus, Pw was not the same at all points on the flow-pressure curve. This finding has interesting implications with respect to the concept of coronary resistance. PMID:2062096

  13. Tropospheric circulation during the early twentieth century Arctic warming

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Brönnimann, Stefan; Compo, Gilbert P.

    2016-06-01

    The early twentieth century Arctic warming (ETCAW) between 1920 and 1940 is an exceptional feature of climate variability in the last century. Its warming rate was only recently matched by recent warming in the region. Unlike recent warming largely attributable to anthropogenic radiative forcing, atmospheric warming during the ETCAW was strongest in the mid-troposphere and is believed to be triggered by an exceptional case of natural climate variability. Nevertheless, ultimate mechanisms and causes for the ETCAW are still under discussion. Here we use state of the art multi-member global circulation models, reanalysis and reconstruction datasets to investigate the internal atmospheric dynamics of the ETCAW. We investigate the role of boreal winter mid-tropospheric heat transport and circulation in providing the energy for the large scale warming. Analyzing sensible heat flux components and regional differences, climate models are not able to reproduce the heat flux evolution found in reanalysis and reconstruction datasets. These datasets show an increase of stationary eddy heat flux and a decrease of transient eddy heat flux during the ETCAW. Moreover, tropospheric circulation analysis reveals the important role of both the Atlantic and the Pacific sectors in the convergence of southerly air masses into the Arctic during the warming event. Subsequently, it is suggested that the internal dynamics of the atmosphere played a major role in the formation in the ETCAW.

  14. Circulating Peptidome to Indicate the Tumor-resident Proteolysis

    PubMed Central

    Deng, Zaian; Li, Yaojun; Fan, Jia; Wang, Guohui; Li, Yan; Zhang, Yaou; Cai, Guoping; Shen, Haifa; Ferrari, Mauro; Hu, Tony Y.

    2015-01-01

    Tumor-resident proteases (TRPs) are regarded as informative biomarkers for staging cancer progression and evaluating therapeutic efficacy. Currently in the clinic, measurement of TRP is dependent on invasive biopsies, limiting their usefulness as monitoring tools. Here we identified circulating peptides naturally produced by TRPs, and evaluated their potential to monitor the efficacy of anti-tumor treatments. We established a mouse model for ovarian cancer development and treatment by orthotopic implantation of the human drug-resistant ovarian cancer cell line HeyA8-MDR, followed by porous silicon particle- or multistage vector (MSV) - enabled EphA2 siRNA therapy. Immunohistochemistry staining of tumor tissue revealed decreased expression of matrix metallopeptidase 9 (MMP-9) in mice exhibiting positive responses to MSV-EphA2 siRNA treatment. We demonstrated, via an ex vivo proteolysis assay, that C3f peptides can act as substrates of MMP-9, which cleaves C3f at L1311-L1312 into two peptides (SSATTFRL and LWENGNLLR). Importantly, we showed that these two C3f-derived fragments detected in serum were primarily generated by tumor-resident, but not blood-circulating, MMP-9. Our results suggested that the presence of the circulating fragments specially derived from the localized cleavage in tumor microenvironment can be used to evaluate therapeutic efficacy of anti-cancer treatment, assessed through a relatively noninvasive and user-friendly proteomics approach. PMID:25788424

  15. Cold-Flow Circulating Fluidized-Bed Identification

    SciTech Connect

    Parviz Famouri

    2005-07-01

    In a variety of industrial applications, the use of a circulating fluidized bed (CFB) provides various advantages, such as reducing environmental pollution and increasing process efficiency. The application of circulating fluidized bed technology contributes to the improvement of gas-solid contact, reduction of the cross-sectional area with the use of higher superficial velocities, the use of the solids circulation rate as an additional control variable, and superior radial mixing, Grace et al. [1]. In order to improve raw material usage and utility consumption, optimization and control of CFB is very important, and an accurate, real time model is required to describe and quantify the process. Currently there is no accepted way to construct a reliable model for such a complex CFB system using traditional methods, especially at the pilot or industrial scale. Three major obstacles in characterizing the system are: 1) chaotic nature of the system; 2) non-linearity of the system, and 3) number of immeasurable unknowns internal to the system,[2]. Advanced control theories and methods have the ability to characterize the system, and can overcome all three of these obstacles. These methods will be discussed in this report.

  16. Transport of very short-lived halocarbons from the Indian Ocean to the stratosphere through the Asian monsoon circulation

    NASA Astrophysics Data System (ADS)

    Fiehn, Alina; Hepach, Helmke; Atlas, Elliot; Quack, Birgit; Tegtmeier, Susann; Krüger, Kirstin

    2016-04-01

    Halogenated organic compounds are naturally produced in the ocean and emitted to the atmosphere. The halogenated very short-lived substances (VSLS), such as bromoform, have atmospheric lifetimes of less than half a year. When VSLS reach the stratosphere, they enhance ozone depletion and thus impact the climate. During boreal summer, the Asian monsoon circulation transfers air masses from the Asian troposphere to the global stratosphere. Still, the extent to which VSLS from the Indian Ocean contribute to the stratospheric halogen burden and their exact origin is unclear. Here we show that the monsoon circulation transports VSLS from the Indian Ocean to the stratosphere. During the research cruises SO234-2 and SO235 in July-August 2014 onboard RV SONNE, we measured oceanic and atmospheric concentrations of bromoform (tropical lifetime at 10 km = 17 days), dibromomethane (150 days) and methyl iodide (3.5 days) in the subtropical and tropical West Indian Ocean and calculated their emission strengths. We use the Langrangian transport model FLEXPART driven by ERA-Interim meteorological fields to investigate the transport of oceanic emissions in the atmosphere. We analyze the direct contribution of observed bromoform emissions to the stratospheric halogen budget with forward trajectories. Furthermore, we investigate the connection between the Asian monsoon anticyclone and the oceanic source regions using backward trajectories. The West Indian Ocean is a strong source region of VSLS to the atmosphere and the monsoon transport is fast enough for bromoform to reach the stratosphere. However, the main source regions for the entrainment of oceanic air masses through the Asian monsoon anticyclone are the West Pacific and Bay of Bengal as well as the Arabian Sea. Our findings indicate that changes in emission or circulation in this area due to climate change can directly affect the stratospheric halogen burden and thus the ozone layer.

  17. Encoders for block-circulant LDPC codes

    NASA Technical Reports Server (NTRS)

    Andrews, Kenneth; Dolinar, Sam; Thorpe, Jeremy

    2005-01-01

    In this paper, we present two encoding methods for block-circulant LDPC codes. The first is an iterative encoding method based on the erasure decoding algorithm, and the computations required are well organized due to the block-circulant structure of the parity check matrix. The second method uses block-circulant generator matrices, and the encoders are very similar to those for recursive convolutional codes. Some encoders of the second type have been implemented in a small Field Programmable Gate Array (FPGA) and operate at 100 Msymbols/second.

  18. Plateau effects on diurnal circulation patterns

    SciTech Connect

    Reiter, E.R.; Tang, M.

    1984-04-01

    The diurnal variation of 850 mb heights, the detailed distribution of which could be assessed by the inclusion of surface data, and of resultant winds over, and in the vicinity of, the Great Basin reveals clearly a plateau-wind circulation during summer. This circulation reverses between day and night and appears to include the low-level jet stream over Texas and Oklahoma, as well as the time of occurrence of thunderstorms. This plateau circulation system interacts with local mountain-valley breeze systems. The thickness of the daytime inflow and nighttime outflow layer over the plateau is approximately 2 km. 19 references, 11 figures, 1 table.

  19. The discovery of pulmonary circulation: From Imhotep to William Harvey

    PubMed Central

    ElMaghawry, Mohamed; Zanatta, Alberto; Zampieri, Fabio

    2014-01-01

    In his quest to comprehend his existence, Man has long been exploring his outer world (macro-cosmos), as well as his inner world (micro-cosmos). In modern times, monmental advances in the fields of physics, chemistry, and other natural sciences have reflected on how we understand the anatomy and physiology of the human body and circulation. Yet, humanity took a long and winding road to reach what we acknowledge today as solid facts of cardiovascular physiology. In this article, we will review some of the milestones along this road. PMID:25405183

  20. HENRY'S LAW CALCULATOR

    EPA Science Inventory

    On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...

  1. Pregnancy Weight Gain Calculator

    MedlinePlus

    ... Newsroom Dietary Guidelines Communicator’s Guide Pregnancy Weight Gain Calculator You are here Home / Online Tools Pregnancy Weight Gain Calculator Print Share Pregnancy Weight Gain Calculator Pregnancy Weight Gain Calculator Pregnancy Weight Gain Intro ...

  2. Snow Hydrology in a General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-08-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas.The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snow pack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter.Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  3. Snow hydrology in a general circulation model

    NASA Technical Reports Server (NTRS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-01-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  4. Enceladus' Interior: A Liquid Circulation Model

    NASA Astrophysics Data System (ADS)

    Matson, Dennis L.; Johnson, Torrence; Lunine, Jonathan; Castillo-Rogez, Julie

    We are studying a model for Enceladus' interior in which the water, gas, dust and heat are supplied to the plumes by a relatively deeply circulating brine solution. Data indicates such a source for the erupting material. On the basis of ammonia in the plume gas Waite et al. [1] suggested that the jets might originate from a liquid water region under Enceladus' icy surface. Postberg et al. [2] noted that the presence of ". . . grains that are rich in sodium salts (0.5-2 percent by mass). . . can arise only if the plumes originate from liquid water." Waite et al. [1] also regard the some of the plume chemicals as evidence for interactions with an ice layer presumably overlying the liquid water reservoir. They suggest that this could be in the form of dissociation of clathrate hydrates [3]. Additionally, there is a large heat flow of more than 15 GW [4, 5] coming out of Enceladus' south polar region. We consider a model that brings heat and chemical species up to the surface from a reservoir or "ocean" located below the ice crust that may be many tens of kilometers thick. Water transits to the surface via vertical conduits. The Cassini INMS data suggest that the water has a relatively large gas content of order a few percent. As the water travels upward and the pressure is released, exolving gases form bubbles. Since the bubbly liquid is less dense than the ice, it moves upward. (This part of the model is a variant of the "Perrier Ocean" Europa model of Crawford and Stevenson [6]. A similar model was studied for Ganymede by Murchie and Head [7].) Postberg et al. [2] model the plume eruptions that result from the water, gases, salts, and other chemicals that our circulation model provides. In the near-surface reservoir feeding the plumes, bubbles reaching the surface of the water pop and throw a very fine spray. Some of these very small droplets of brine exit with the plume gas and provide the observed salt-rich dust particles [2]. Much of the water-borne heat is

  5. Another hint for a changing stratospheric circulation after 2001

    NASA Astrophysics Data System (ADS)

    Boenisch, H.; Engel, A.; Hoor, P.

    2009-04-01

    Aircraft data were used to study interannual changes of extratropical lower stratospheric tracer-tracer correlations. The focus is on the time periods before and after 2001 between which a remarkable step-like decrease of stratospheric water vapour has occurred (Randel et al., 2006). This feature associated with a cooling of temperatures near the tropical tropopause, and a decrease in tropical ozone at about the same time has been linked by Randel et al. (2006) to an increased stratospheric upwelling circulation in the tropics (the so-called Brewer-Dobson circulation) caused by enhanced wave driving after 2000 (Dhomse et al., 2006). Analysis of the extratropical tracer-tracer correlations shows different slopes before and after 2000. These changes could be explained by an enhanced horizontal tracer transport from the tropical lower stratosphere into the extratropics, taking into account that mean age of air has remained constant over the last 3 decades in the midlatitude stratosphere above 30 hPa (Engel et al., 2009). We will present a comparison of in-situ measured tracer-tracer correlations in the extratropical lower stratosphere before and after 2001 and discuss implications for a changing stratospheric circulation. References: Dhomse, S., Weber, M., and Burrows, J.: The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor, Atmos. Chem. Phys., 8, 471-480, 2008. Engel, A., T. Möbius, H. Bönisch, U. Schmidt, R. Heinz, I. Levin, E. Atlas, S. Aoki, T. Nakazawa, S. Sugawara, F. Moore, D. Hurst, J. Elkins, S. Schauffler, A. Andrews, and K. Boering (2009), Age of stratospheric air unchanged within uncertainties over the past 30 years, Nature Geosci., 2, 28-31. Randel, W. J., F. Wu, H. Vömel, G. E. Nedoluha, and P. Forster (2006), Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer-Dobson circulation, J. Geophys. Res., 111, D12312, doi:10.1029/2005JD006744.

  6. Doppler optical coherence tomography of retinal circulation.

    PubMed

    Tan, Ou; Wang, Yimin; Konduru, Ranjith K; Zhang, Xinbo; Sadda, SriniVas R; Huang, David

    2012-01-01

    Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R(2)>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the

  7. Sedimentary response to ocean gateway circulation changes

    NASA Astrophysics Data System (ADS)

    Heinze, Christoph; Crowley, Thomas J.

    1997-12-01

    Previous modeling studies suggested that changes in ocean gateways may have exerted a dramatic influence on the ocean circulation. In this pilot study we extend those results to examining the potential ramifications of circulation changes on the sedimentary record. A version of the Hamburg carbon cycle/sediment model is used in these sensitivity experiments. Results indicate that internal reorganization of the ocean circulation can potentially cause very large regional changes in lysocline depth (1500-3000 m) and opal deposition. These shifts are sometimes comparable in magnitude to those imposed by changes in external forcing (e.g., climate, sea level, and weathering). Comparisons of the model response with the geologic record indicate some significant levels of first-order agreement. This exercise suggests that opportunities now exist for physically based modeling of past sediment responses to circulation and climate changes.

  8. Al-Akhawayni's description of pulmonary circulation.

    PubMed

    Yarmohammadi, Hassan; Dalfardi, Behnam; Rezaian, Jafar; Ghanizadeh, Ahmad

    2013-10-01

    Since antiquity, heart function and the mechanism of blood circulation within the human body have been the focus of attention of scientists from different parts of the world. Over the passage of time, the theories and works of these scientists have resulted in the achievement of today's knowledge of circulation. The medieval Persian scholar, Al-Akhawayni Bukhari (?-983AD), is among the physicians who investigated both the anatomy and the physiology of the human body. Al-Akhawayni describes the mechanism of pulmonary circulation in his only extant book, "Hidayat al-Muta`llemin fi al-Tibb" (A Scholar's Guide to Medicine) with which he made a contribution to the development of knowledge regarding this mechanism in the medicine of the Islamic world. In this paper, Al-Akhawayni's viewpoints on anatomy and the function of the heart, its related vessels, and also pulmonary circulation will be briefly discussed. PMID:23890868

  9. Global warming and changes in ocean circulation

    SciTech Connect

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  10. TECHNOLOGY OVERVIEW: CIRCULATING FLUIDIZED-BED COMBUSTION

    EPA Science Inventory

    The report summarizes the current technical status of circulating fluidized-bed combustion (CFBC). Companies that are involved in investigating this technology and/or developing commercial systems are discussed, along with system descriptions and available cost information. CFBC ...

  11. Control of a Circulating Fluidized Bed

    SciTech Connect

    Shim, Hoowang; Rickards, Gretchen; Famouri, Parviz; Turton, Richard; Sams, W. Neal; Koduro, Praveen; Patankar, Amol; Davari, Assad; Lawson, Larry; Boyle, Edward J.

    2001-11-06

    Two methods for optimally controlling the operation of a circulating fluidized bed are being investigated, neural network control and Kalman filter control. The neural network controls the solids circulation rate by adjusting the flow of move air in the non-mechanical valve. Presented is the method of training the neural network from data generated by the circulating fluidized bed (CFB), the results of a sensitivity study indicating that adjusting the move air can control solids flow, and the results of controlling solids circulation rate. The Kalman filter approach uses a dynamic model and a measurement model of the standpipe section of the CFB. Presented are results showing that a Kalman filter can successfully find the standpipe bed height.

  12. Estuarine turbidity, flushing, salinity, and circulation

    NASA Technical Reports Server (NTRS)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  13. An online educational atmospheric global circulation model

    NASA Astrophysics Data System (ADS)

    Navarro, T.; Schott, C.; Forget, F.

    2015-10-01

    As part of online courses on exoplanets of Observatoire de Paris, an online tool designed to vizualise outputs of the Laboratoire de Métérologie Dynamique (LMD) Global Circulation Model (GCM) for various atmospheric circulation regimes has been developed. It includes the possibility for students to visualize 1D and 2D plots along with animations of atmospheric quantities such as temperature, winds, surface pressure, mass flux, etc... from a state-of-the-art model.

  14. Global thermohaline circulation. Part 2: Sensitivity with interactive atmospheric transports

    SciTech Connect

    Wang, X.; Stone, P.H.; Marotzke, J.

    1999-01-01

    A hybrid coupled ocean-atmospheric model is used to investigate the stability of the thermohaline circulation (THC) to an increase in the surface freshwater forcing in the presence of interactive meridional transports in the atmosphere. The ocean component is the idealized global general circulation model used in Part 1. The atmospheric model assumes fixed latitudinal structure of the heat and moisture transports, and the amplitudes are calculated separately for each hemisphere from the large-scale sea surface temperature (SST) and SST gradient, using parameterizations based on baroclinic stability theory. The ocean-atmosphere heat and freshwater exchanges are calculated as residuals of the steady-state atmospheric budgets. Owing to the ocean component`s weak heat transport, the model has too strong a meridional SST gradient when driven with observed atmospheric meridional transports. When the latter are made interactive, the conveyor belt circulation collapses. A flux adjustment is introduced in which the efficiency of the atmospheric transports is lowered to match the too low efficiency of the ocean component. The feedbacks between the THC and both the atmospheric heat and moisture transports are positive, whether atmospheric transports are interactive in the Northern Hemisphere, the Southern Hemisphere, or both. However, the feedbacks operate differently in the northern and southern Hemispheres, because the Pacific THC dominates in the Southern Hemisphere, and deep water formation in the two hemispheres is negatively correlated. The feedbacks in the two hemisphere do not necessarily reinforce each other because they have opposite effects on low-latitude temperatures. The model is qualitatively similar in stability to one with conventional additive flux adjustment, but quantitatively more stable.

  15. Wall-to-suspension heat transfer in circulating fluidized beds

    SciTech Connect

    Wirth, K.E.

    1995-12-31

    The wall-to-suspension heat transfer in circulating fluidized beds depends on the fluid mechanics immediately near the wall and on the thermal properties of the gas used. Experimental investigations of circulating fluidized beds of low dimensionless pressure gradients with different solid particles like bronze, glass and polystyrene at ambient temperatures showed no influence of the conductivity and the heat capacity of the solids on the heat transfer coefficient. Consequently the heat transfer coefficient in the form of the dimensionless Nusselt number can be described by the dimensionless numbers which characterize the gas-solid-flow near the wall. These numbers are the Archimedes number and the pressure drop-number. The last number relates the cross-sectional average solids concentration to the solids concentration at minimum fluidization condition. With the aid of a model of segregated vertical gas-solid flow, the flow pattern in the wall region can be calculated and thus the wall heat transfer which depends only on heat conduction in the gas and on the convective heat transfer by the gas. With elevated suspension temperatures, radiation contributes additionally to the heat transfer. When the solids concentration is low, the effect of the radiation on the heat transfer is high. Increasing solids concentration results in a decrease of the radiation effect due to the wall being shielded from the radiation of the hot particles in the core region by the cold solids clusters moving down the wall. A simple correlation is presented for calculating the wall-to-suspension heat transfer in circulating fluidized beds.

  16. Computer simulation of the cooling effect due to circulation in four geothermal well models

    SciTech Connect

    Duda, L.E.

    1984-11-01

    Computer calculations of wellbore transient temperatures, using the geothermal wellbore thermal simulator code GEOTEMP2, were made on four well models. The well models studied were from the Baca geothermal area, the East Mesa geothermal area, and a shallow and a deep well from the Salton Sea geothermal area. Calculations for one day of water circulation followed by one day of shut-in at flow rates of 100, 250, 500, and 1000 gpm were made to investigate the cooling effects produced by the circulation. Additional calculations were made using the Baca and Salton Sea well models. In the former, the effect on the cooling due to different soil thermal conductivity values and different circulating fluids (a high viscosity mud and air) were investigated. In the latter, the number of casings in the wellbore and the diameter of the tubing were notified. Plots of the calculated temperatures as a function of circulation and shut-in time and depth are given for each case.

  17. The geochemical behavior of natural radionuclides in coastal waters: A modeling study for the Huelva estuary

    NASA Astrophysics Data System (ADS)

    Periáñez, Raúl; Hierro, Almudena; Bolívar, Juan Pedro; Vaca, Federico

    2013-10-01

    A numerical model to study the behavior and distribution of natural radionuclides in sediments of an estuary (Odiel and Tinto rivers, SW Spain) affected by acid mine drainage and industrial activities has been developed. The model solves water circulation due to tides and river stream flows. The dispersion model includes uptake/release reactions of radionuclides between the dissolved phase and bed sediments in a dynamic way, using kinetic transfer coefficients. Seasonal pH and chlorinity distributions are simulated, and a formulation has been developed to consider these seasonal variations on kinetic coefficients. Calculated concentrations of 226Ra and 238U in sediments have been compared with measurements from four seasonal sampling campaigns. Numerical experiments have been carried out to study the relative significance of the different radionuclides sources into the estuary as well as the effect of the two components of water circulation (tides are river flows) on radionuclide dispersion patterns.

  18. Classification of circulation type sequences applied to snow avalanches over the eastern Pyrenees (Andorra and Catalonia)

    NASA Astrophysics Data System (ADS)

    Esteban, Pere; Beck, Christoph; Philipp, Andreas

    2010-05-01

    Using data associated with accidents or damages caused by snow avalanches over the eastern Pyrenees (Andorra and Catalonia) several atmospheric circulation type catalogues have been obtained. For this purpose, different circulation type classification methods based on Principal Component Analysis (T-mode and S-mode using the extreme scores) and on optimization procedures (Improved K-means and SANDRA) were applied . Considering the characteristics of the phenomena studied, not only single day circulation patterns were taken into account but also sequences of circulation types of varying length. Thus different classifications with different numbers of types and for different sequence lengths were obtained using the different classification methods. Simple between type variability, within type variability, and outlier detection procedures have been applied for selecting the best result concerning snow avalanches type classifications. Furthermore, days without occurrence of the hazards were also related to the avalanche centroids using pattern-correlations, facilitating the calculation of the anomalies between hazardous and no hazardous days, and also frequencies of occurrence of hazardous events for each circulation type. Finally, the catalogues statistically considered the best results are evaluated using the avalanche forecaster expert knowledge. Consistent explanation of snow avalanches occurrence by means of circulation sequences is obtained, but always considering results from classifications with different sequence length. This work has been developed in the framework of the COST Action 733 (Harmonisation and Applications of Weather Type Classifications for European regions).

  19. Application of circulation classifications from the COST733 collection to the detection of solar and geomagnetic effects on tropospheric circulation over Europe in winter

    NASA Astrophysics Data System (ADS)

    Huth, Radan; Cahynová, Monika; Kyselý, Jan

    2010-05-01

    Many studies of circulation classifications are biased by the fact that they are based on a single classification only; that is, their results are affected by the properties of a particular classification to an unknown extent. A large number of circulation classifications produced and collected in the COST733 database allows such a bias to be removed. As an example, we examine effects of solar activity variations on the frequency of circulation types, making use of more than sixty objective classifications for each of 12 domains, defined over Europe. To determine the solar effects, winter months (December to March) are divided into three classes according to the mean monthly solar activity, within which the frequencies of occurrence of circulation types are calculated. Circulation types coming from any classification with significant differences in frequency between high and low solar activity are identified. Current results generally confirm results of a previous study based on a single classification only (subjective Hess-Brezowsky) that (a) westerly types are more frequent under high than low solar activity; (b) northerly types are more frequent under low than high activity, and (iii) easterly and anticyclonic types are more frequent under low than moderate solar activity; the opposite holds for cyclonic types. The research is supported by the Ministry of Education, Youth, and Sports of the Czech Republic under contract OC115 and the Grant Agency of the Czech Academy of Sciences, project A300420805.

  20. Thermohaline residual circulation of the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Burchard, Hans; Badewien, Thomas H.

    2015-12-01

    In this study, we present estuarine circulation driven by horizontal density gradients generated by spatially homogeneous surface buoyancy fluxes over sloping bathymetry as a dynamical feature in the coastal zone being potentially relevant for cross-coastal transports. A combination of downward buoyancy flux (net precipitation, net heating) together with tidal mixing may generate a classical estuarine circulation with landward near-bottom residual currents. The Wadden Sea of the south-eastern North Sea is a prototype for such a coastal regime. It is characterised by extensive inter-tidal flats along the coast separated from the open sea by barrier islands. Here, we present long-term observations from the Wadden Sea covering the years 2006-2011. We investigated the statistics of the density gradients. Typical values for the landward density gradient were ∂ x ρ≈-3ṡ10-5 kg m-4 and maximum values were ∂ x ρ≈-6.5ṡ10-5 kg m-4. The magnitude of the density gradient resulted from the magnitude of the salinity gradient, with some modifications by the positive (towards the coast, in spring) or negative (towards the sea, in autumn) temperature gradient. To explain the generation of estuarine circulation by the surface buoyancy flux, we construct an analytical model representing the geometry and dynamics of a Wadden Sea Basin. With downward buoyancy flux, a weak classical estuarine circulation due to gravitational forcing results, whereas upward buoyancy flux drives inverse estuarine circulation. Finally, a two-dimensional (vertical-longitudinal) numerical model was set up for the idealised geometry, including tidally asymmetric turbulent mixing. This results in significantly stronger estuarine circulation due to the presence of tidal straining. The model assesses the circulation due to neutral and upward surface buoyancy fluxes. We conclude that these mechanisms may be important in many coastal areas and may substantially contribute to coast-to-sea exchange in

  1. Tectonic control on past circulation of the Mediterranean Sea: A model study of the Late Miocene

    NASA Astrophysics Data System (ADS)

    Meijer, P. Th.; Slingerland, R.; Wortel, M. J. R.

    2004-03-01

    We examine the effect of Late Miocene paleogeography on the circulation and water properties of the Mediterranean Sea by using an ocean circulation model. Results obtained for the past are compared to a control experiment with the present-day geometry. To focus on paleogeography, atmospheric forcing is always based on the present-day climatology. We seek insight that allows us to test ideas based on observations and to formulate new working hypotheses. The Late Miocene is examined first, since it represents an important stage in the evolution of the Mediterranean. The present-day model reproduces the main aspects of the surface to intermediate depth circulation and water properties. The model does not capture the deep circulation known to occur at present in both subbasins. When the subbasins are reconstructed to their Late Miocene shape (keeping intervening sills at present-day levels) the overall nature of the surface/intermediate depth circulation proves unaffected. The model, however, predicts intense deep circulation in the eastern Mediterranean, most likely due to the greater surface area of the reconstructed Adriatic Sea. Using the first paleoexperiment as a starting point several additional paleogeographical aspects are examined.

  2. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash.

    PubMed

    Okada, Takashi; Suzuki, Masaru

    2013-11-30

    In some gasification-melting plants, generated melting furnace fly ash is returned back to the melting furnace for converting the ash to slag. This study investigated the effect of such ash circulation in the gasification-melting system on the concentration and leachability of lead in the melting furnace fly ash. The ash circulation in the melting process was simulated by a thermodynamic calculation, and an elemental analysis and leaching tests were performed on a melting furnace fly ash sample collected from the gasification-melting plant with the ash circulation. It was found that by the ash circulation in the gasification-melting, lead was highly concentrated in the melting furnace fly ash to the level equal to the fly ash from the ash-melting process. The thermodynamic calculation predicted that the lead volatilization by the chlorination is promoted by the ash circulation resulting in the high lead concentration. In addition, the lead extraction from the melting furnace fly ash into a NaOH solution was also enhanced by the ash circulation, and over 90% of lead in the fly ash was extracted in 5 min when using 0.5 mol l(-1) NaOH solution with L/S ratio of 10 at 100 °C. Based on the results, a combination of the gasification-melting with the ash circulation and the NaOH leaching method is proposed for the high efficient lead recovery. PMID:24121545

  3. Automation and the Service Attitudes of ARL Circulation Managers.

    ERIC Educational Resources Information Center

    Martin, James R.

    1981-01-01

    Reports the results of a survey of academic library circulation managers to identify the degree of circulation automation and to discover their attitudes toward the circulation role, service issues, and user demands. The survey found a depressed state of circulation development and support in ARL libraries. (RAA)

  4. Relationship between the large-scale air circulation and frequency of very warm days in Romania

    NASA Astrophysics Data System (ADS)

    Stefan, Sabina; Barbu, Nicu; Baciu, Madalina

    2015-04-01

    In this work is investigated the relationship between the large-scale air circulation and frequency of very warm days (frequency of days with maximum temperature greater or equal to 90th percentile - FrTmax90). This analysis is conducted for summer and winter over the period 1962-2010. Daily temperature data recorded at 85 Romanian meteorological stations with complete observations over the study period were used to calculate the FrTmax90 for summer and winter. Daily air circulation types computed by using two objective catalogues, namely GWT (GrossWetter-Typen) and WLK (WetterLargenKlassifikation) from COST733Action were used to calculate the air circulation frequency for summer and winter. NCEP/NCAR gridded reanalysis data sets were used. For the GWT catalogue the sea level pressure data sets were used to classify the air circulation in the 18 types. In the case of the WLK catalogue the geopotential height at 925 and 500 hPa, zonal and meridional components of wind vector at 700 hPa and precipitable water content for the entire atmospheric column were used to classify the air circulation in the 40 types. For winter were obtained 4 clusters and for summer 8 clusters of FrTmax90 by using a clusterization method. These clusters present homogeneity related to the FrTmax90. The Pearson correlation coefficient (R) is calculated between the FrTmax90 and the air circulation types. The results show that correlation coefficients are greatest in winter than in summer for the GWT catalogue compared to the WLK catalogue. The greatest correlation coefficients was obtained during winter for southwestern-anticyclones (SW[A]) circulation type for all the 4 clusters according to the GWT catalogue. The northwestern-anticyclones-wet (NW-AAW) circulation type presents the greatest correlation coefficient only for the cluster 3 according to the WLK catalogue. We can note that these results depend on the both large-scale air circulation and orography (the Carpathians).

  5. Retinal oxygenation via the choroidal circulation.

    PubMed Central

    Landers, M B

    1978-01-01

    The possibility of supplying normal amounts of oxygen to the inner layers of the retina by diffusion from the choroid in the presence of retinal arterial obstruction was studied in cats and rhesus monkeys. While the animals were under general anesthesia, an oxygen electrode was placed in the vitreous cavity immediately adjacent to the retina, and a retinal artery blocker probe was used to occlude various segments of the retina blood supply. The inspired oxygen concentration was alternated between 20% and 100%. The choroidal circulation was intermittently occluded by elevating the intraocular pressure. In all animals it was possible to return the oxygen tension of the innermost retina to normal concentrations or above while the retinal arterial circulation alone was occluded, by having the animal breathe 100% oxygen at one atmosphere pressure. This could not be done when the intraocular pressure was elevated to 85 mm Hg, occluding the choroidal as well as the retinal circulation. The electroretinogram and the visually evoked response were recorded in cats while the retinal circulation was occluded and the inspired oxygen concentration changed from 20% to 100% at one atmosphere pressure. The electroretinogram and the visually evoked response were extinguished by occluding the retinal circulation while the animal was breathing 20% oxygen, and these responses were returned to normal by changing to a 100% inspired oxygen concentration. Images FIGURE 6 PMID:112752

  6. West Virginia State College, Drain-Jordan Library, Circulation Department Manual of Circulation Desk Procedures.

    ERIC Educational Resources Information Center

    Brooks, Monica A.

    This manual is designed to prepare and aid the staff for expected duties working at the circulation desk at Drain-Jordan Library at West Virginia State College. The manual is divided into sections to help with a quick review of procedures and policies. Topics discussed include an overview of the circulation department; patron registration;…

  7. Distillation Calculations with a Programmable Calculator.

    ERIC Educational Resources Information Center

    Walker, Charles A.; Halpern, Bret L.

    1983-01-01

    Describes a three-step approach for teaching multicomponent distillation to undergraduates, emphasizing patterns of distribution as an aid to understanding the separation processes. Indicates that the second step can be carried out by programmable calculators. (A more complete set of programs for additional calculations is available from the…

  8. Nature/culture/seawater.

    PubMed

    Helmreich, Stefan

    2011-01-01

    Seawater has occupied an ambiguous place in anthropological categories of "nature" and "culture." Seawater as nature appears as potentiality of form and uncontainable flux; it moves faster than culture - with culture frequently figured through land-based metaphors - even as culture seeks to channel water's (nature's) flow. Seawater as culture manifests as a medium of pleasure, sustenance, travel, disaster. I argue that, although seawater's qualities in early anthropology were portrayed impressionistically, today technical, scientific descriptions of water's form prevail. For example, processes of globalization - which may also be called "oceanization" - are often described as "currents," "flows," and "circulations." Examining sea-set ethnography, maritime anthropologies, and contemporary social theory, I propose that seawater has operated as a “theory machine” for generating insights about human cultural organization. I develop this argument with ethnography from the Sargasso Sea and in the Sea Islands. I conclude with a critique of appeals to water's form in social theory. PMID:21560270

  9. Proceedings of the Circulation-Control Workshop, 1986

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N. (Compiler)

    1987-01-01

    A Circulation Control Workshop was held at NASA Ames by respresentatives of academia, industry, and government. A total of 32 papers were given in six technical sessions covering turbulence, circulation control airfoil theory, circulation control airfoil wing experiments, circulation control rotor theory, x-wing technology, fixed wing technology, and other concepts. The last session of the workshop was devoted to circulation control research planning.

  10. Heinrich events induced by oceanic circulation changes

    NASA Astrophysics Data System (ADS)

    Alvarez-Solas, Jorge; Robinson, Alexander; Montoya, Marisa; Banderas, Rubén; Ritz, Catherine

    2014-05-01

    Proxy data reveal the existence of episodes of increased deposition of ice-rafted debris in the North Atlantic Ocean during the last glacial period. These are interpreted as massive iceberg discharges mainly from the Laurentide Ice Sheet. Although these have long been attributed to self-sustained ice sheet oscillations, growing evidence points to an active role of the oceanic circulation. Here, we present simulations of the last glacial period carried out with a hybrid ice sheet-ice shelf model forced by an oceanic warming index derived from proxy data that accounts for the impact of past ocean circulation changes on ocean temperatures. The model generates a time series of iceberg calving that closely agrees with ice-rafted debris records over the past 80 ka. Our results indicate that oceanic circulation variations were responsible for the enigmatic ice purges of the last ice age through the control that ice shelves exert on the dynamics of the inland ice sheet

  11. Generic melt circulation technology for metals recovery

    NASA Astrophysics Data System (ADS)

    Warner, Noel A.

    2008-10-01

    To overcome limitations in current technology and to open the door to breakthroughs in the extraction and recycling of metals, melt circulation within closed loops is proposed. The general features of generic melt circulation technology, particularly for massive reductions in energy consumption, are highlighted. Reference is made to the recently published paper on lower-energy primary aluminum. More detailed attention is then focused on coproduction of steel and titanium metal directly from ilmenite concentrates. The energy consumption is projected to be less than one third of the best available technology (Kroll process). Next, new copper smelting concepts based on melt circulation are introduced because current advanced processes are judged to be, without exception, energy inefficient.

  12. Cryogenic hydrogen circulation system of neutron source

    SciTech Connect

    Qiu, Y. N.; Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y.; Zhang, P.; Wang, G. P.

    2014-01-29

    Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

  13. Recycle device for circulating fluidized bed boilers

    SciTech Connect

    Wang, Q.; Luo, Z.Y.; Li, X.T.; Cheng, F.; Ni, M.J.; Cen, K.

    1997-12-31

    Because the pressure at the outlet of a separator is lower than that at an inlet of a furnace, a recycle device is one of the most important components of circulating fluidized bed boilers for handling circulating ash. Although it has been extensively used in circulating fluidized bed boilers, its properties have not yet been well understood. Many experiments have been conducted for a kind of recycle device and the operational properties were obtained. The experimental results show that the structure of the recycle device and aeration conditions have a strong influence on the solid flow rate and operational stability of the recycle device. The authors will discuss the effect of the major parameters, such as opening and aeration air at different locations, on solids flow rate. The operational considerations will be given in this paper.

  14. MAGNETICALLY CONTROLLED CIRCULATION ON HOT EXTRASOLAR PLANETS

    SciTech Connect

    Batygin, Konstantin; Stanley, Sabine; Stevenson, David J.

    2013-10-10

    Through the process of thermal ionization, intense stellar irradiation renders hot Jupiter atmospheres electrically conductive. Simultaneously, lateral variability in the irradiation drives the global circulation with peak wind speeds of the order of ∼km s{sup –1}. In turn, the interactions between the atmospheric flows and the background magnetic field give rise to Lorentz forces that can act to perturb the flow away from its purely hydrodynamical counterpart. Using analytical theory and numerical simulations, we show here that significant deviations away from axisymmetric circulation are unstable in presence of a non-negligible axisymmetric magnetic field. Specifically, our results suggest that dayside-to-nightside flows, often obtained within the context of three-dimensional circulation models, only exist on objects with anomalously low magnetic fields, while the majority of highly irradiated exoplanetary atmospheres are entirely dominated by zonal jets.

  15. Reconstructing Ocean Circulation using Coral (triangle)14C Time Series

    SciTech Connect

    Kashgarian, M; Guilderson, T P

    2001-02-23

    the invasion of fossil fuel CO{sub 2} and bomb {sup 14}C into the atmosphere and surface oceans. Therefore the {Delta}{sup 14}C data that are produced in this study can be used to validate the ocean uptake of fossil fuel CO2 in coupled ocean-atmosphere models. This study takes advantage of the quasi-conservative nature of {sup 14}C as a water mass tracer by using {Delta}{sup 14}C time series in corals to identify changes in the shallow circulation of the Pacific. Although the data itself provides fundamental information on surface water mass movement the true strength is a combined approach which is greater than the individual parts; the data helps uncover deficiencies in ocean circulation models and the model results place long {Delta}{sup 14}C time series in a dynamic framework which helps to identify those locations where additional observations are most needed.

  16. Subwavelength ultrasonic circulator based on spatiotemporal modulation

    NASA Astrophysics Data System (ADS)

    Fleury, Romain; Sounas, Dimitrios L.; Alù, Andrea

    2015-05-01

    Enabling efficient nonreciprocal acoustic devices is challenging, yet very desirable for a variety of applications, including acoustic imaging, underwater communications, energy concentration and harvesting, signal processing, and noise control. We discuss the theory and design of a fully linear compact acoustic circulator based on spatiotemporal modulation of the effective acoustic index, providing a compact and practical way to realize large sound circulation at any desired frequency. Our proposal enables tunable isolation levels of over 40 dB, with insertion losses as low as 0.3 dB, in a noise-free, integrable, frequency scalable device whose total size does not exceed λ /6 .

  17. Blowing Circulation Control on a Seaplane Airfoil

    NASA Astrophysics Data System (ADS)

    Guo, B. D.; Liu, P. Q.; Qu, Q. L.

    2011-09-01

    RANS simulations are presented for blowing circulation control on a seaplane airfoil. Realizable k-epsilon turbulent model and pressure-based coupled algorithm with second-order discretization were adopted to simulate the compressible flow. Both clear and simple flap configuration were simulated with blowing momentum coefficient Cμ = 0, 0.15 and 0.30. The results show that blowing near the airfoil trailing edge could enhance the Coanda effect, delay the flow separation, and increase the lift coefficient dramatically. The blowing circulation control is promising to apply to taking off and landing of an amphibious aircraft or seaplane.

  18. The circulation of the Mozambique channel

    NASA Astrophysics Data System (ADS)

    Sætre, Roald; Da Silva, António Jorge

    1984-05-01

    Based on hydrographic data from 1977 to 1980 off the coast of Mozambique and historical data from the Mozambique Channel, the general circulation pattern of the area is described. The circulation pattern is characterized by the influence of three anticyclonic gyres covering the northern, the central, and the southern parts of the channel. Additionally, smaller cyclonic eddies are observed, of which some probably are topographically induced. The results strongly indicate that in the upper 1000 m the role of the Mozambique Current as one of the tributaries to the Agulhas Current is of minor significance and draw into question the concept of the Mozambique Current as a continuous one.

  19. Hepatosplanchnic circulation in cirrhosis and sepsis

    PubMed Central

    Prin, Meghan; Bakker, Jan; Wagener, Gebhard

    2015-01-01

    Hepatosplanchnic circulation receives almost half of cardiac output and is essential to physiologic homeostasis. Liver cirrhosis is estimated to affect up to 1% of populations worldwide, including 1.5% to 3.3% of intensive care unit patients. Cirrhosis leads to hepatosplanchnic circulatory abnormalities and end-organ damage. Sepsis and cirrhosis result in similar circulatory changes and resultant multi-organ dysfunction. This review provides an overview of the hepatosplanchnic circulation in the healthy state and in cirrhosis, examines the signaling pathways that may play a role in the physiology of cirrhosis, discusses the physiology common to cirrhosis and sepsis, and reviews important issues in management. PMID:25759525

  20. Measurement of cardiac output from dynamic pulmonary circulation time CT

    SciTech Connect

    Yee, Seonghwan; Scalzetti, Ernest M.

    2014-06-15

    Purpose: To introduce a method of estimating cardiac output from the dynamic pulmonary circulation time CT that is primarily used to determine the optimal time window of CT pulmonary angiography (CTPA). Methods: Dynamic pulmonary circulation time CT series, acquired for eight patients, were retrospectively analyzed. The dynamic CT series was acquired, prior to the main CTPA, in cine mode (1 frame/s) for a single slice at the level of the main pulmonary artery covering the cross sections of ascending aorta (AA) and descending aorta (DA) during the infusion of iodinated contrast. The time series of contrast changes obtained for DA, which is the downstream of AA, was assumed to be related to the time series for AA by the convolution with a delay function. The delay time constant in the delay function, representing the average time interval between the cross sections of AA and DA, was determined by least square error fitting between the convoluted AA time series and the DA time series. The cardiac output was then calculated by dividing the volume of the aortic arch between the cross sections of AA and DA (estimated from the single slice CT image) by the average time interval, and multiplying the result by a correction factor. Results: The mean cardiac output value for the six patients was 5.11 (l/min) (with a standard deviation of 1.57 l/min), which is in good agreement with the literature value; the data for the other two patients were too noisy for processing. Conclusions: The dynamic single-slice pulmonary circulation time CT series also can be used to estimate cardiac output.

  1. A computational study of circulating large tumor cells traversing microvessels.

    PubMed

    Kojić, Nikola; Milošević, Miljan; Petrović, Dejan; Isailović, Velibor; Sarioglu, A Fatih; Haber, Daniel A; Kojić, Miloš; Toner, Mehmet

    2015-08-01

    Circulating tumor cells (CTCs) are known to be a harbinger of cancer metastasis. The CTCs are known to circulate as individual cells or as a group of interconnected cells called CTC clusters. Since both single CTCs and CTC clusters have been detected in venous blood samples of cancer patients, they needed to traverse at least one capillary bed when crossing from arterial to venous circulation. The diameter of a typical capillary is about 7µm, whereas the size of an individual CTC or CTC clusters can be greater than 20µm and thus size exclusion is believed to be an important factor in the capillary arrest of CTCs - a key early event in metastasis. To examine the biophysical conditions needed for capillary arrest, we have developed a custom-built viscoelastic solid-fluid 3D computational model that enables us to calculate, under physiological conditions, the maximal CTC diameter that will pass through the capillary. We show that large CTCs and CTC clusters can successfully cross capillaries if their stiffness is relatively small. Specifically, under physiological conditions, a 13µm diameter CTC passes through a 7µm capillary only if its stiffness is less than 500Pa and conversely, for a stiffness of 10Pa the maximal passing diameter can be as high as 140µm, such as for a cluster of CTCs. By exploring the parameter space, a relationship between the capillary blood pressure gradient and the CTC mechanical properties (size and stiffness) was determined. The presented computational platform and the resulting pressure-size-stiffness relationship can be employed as a tool to help study the biomechanical conditions needed for capillary arrest of CTCs and CTC clusters, provide predictive capabilities in disease progression based on biophysical CTC parameters, and aid in the rational design of size-based CTC isolation technologies where CTCs can experience large deformations due to high pressure gradients. PMID:26093786

  2. A computational study of circulating large tumor cells traversing microvessels

    PubMed Central

    Kojić, Nikola; Milošević, Miljan; Petrović, Dejan; Isailović, Velibor; Sarioglu, A. Fatih; Haber, Daniel A.; Kojić, Miloš; Toner, Mehmet

    2016-01-01

    Circulating tumor cells (CTCs) are known to be a harbinger of cancer metastasis. The CTCs are known to circulate as individual cells or as a group of interconnected cells called CTC clusters. Since both single CTCs and CTC clusters have been detected in venous blood samples of cancer patients, they needed to traverse at least one capillary bed when crossing from arterial to venous circulation. The diameter of a typical capillary is about 7 μm, whereas the size of an individual CTC or CTC clusters can be greater than 20 μm and thus size exclusion is believed to be an important factor in the capillary arrest of CTCs – a key early event in metastasis. To examine the biophysical conditions needed for capillary arrest, we have developed a custom-built viscoelastic solid–fluid 3D computational model that enables us to calculate, under physiological conditions, the maximal CTC diameter that will pass through the capillary. We show that large CTCs and CTC clusters can successfully cross capillaries if their stiffness is relatively small. Specifically, under physiological conditions, a 13 μm diameter CTC passes through a 7 μm capillary only if its stiffness is less than 500 Pa and conversely, for a stiffness of 10 Pa the maximal passing diameter can be as high as 140 μm, such as for a cluster of CTCs. By exploring the parameter space, a relationship between the capillary blood pressure gradient and the CTC mechanical properties (size and stiffness) was determined. The presented computational platform and the resulting pressure–size–stiffness relationship can be employed as a tool to help study the biomechanical conditions needed for capillary arrest of CTCs and CTC clusters, provide predictive capabilities in disease progression based on biophysical CTC parameters, and aid in the rational design of size-based CTC isolation technologies where CTCs can experience large deformations due to high pressure gradients. PMID:26093786

  3. Autistic Savant Calendar Calculators.

    ERIC Educational Resources Information Center

    Patti, Paul J.

    This study identified 10 savants with developmental disabilities and an exceptional ability to calculate calendar dates. These "calendar calculators" were asked to demonstrate their abilities, and their strategies were analyzed. The study found that the ability to calculate dates into the past or future varied widely among these calculators. Three…

  4. Programmable calculator stress analysis

    SciTech Connect

    Van Gulick, L.A.

    1983-01-01

    Advanced programmable alphanumeric calculators are well suited for closed-form calculation of pressure-vessel stresses. They offer adequate computing power, portability, special programming features, and simple interactive execution procedures. Representative programs that demonstrate calculator capabilities are presented. Problems treated are stress and strength calculations in thick-walled pressure vessels and the computation of stresses near head/pressure-vessel junctures.

  5. Circulating Monocytes Are Not a Major Reservoir of HIV-1 in Elite Suppressors▿

    PubMed Central

    Spivak, Adam M.; Salgado, Maria; Rabi, S. Alireza; O'Connell, Karen A.; Blankson, Joel N.

    2011-01-01

    Circulating HIV-1-infected monocytes have been identified in patients on highly active antiretroviral therapy and may represent an important barrier to viral eradication. The nature of these cells in HIV-1-infected patients who maintain undetectable viral loads and preserved CD4+ T cell counts without antiretroviral therapy (known as elite controllers or elite suppressors [ES]) is unknown. We describe here infrequent recovery of proviral HIV-1 DNA from circulating monocytes relative to CD4+ T cells in ES, despite permissiveness of these cells to HIV-1 viral entry ex vivo. Thus, monocytes do not appear to be a major reservoir of HIV-1 in ES. PMID:21795348

  6. Available potential energy of the daily coastal circulation at Zadar (Croatia)

    NASA Astrophysics Data System (ADS)

    Trošić, T.; Šinik, N.; Trošić, Ž.

    2006-08-01

    The aim of this study is the evaluation of the sea breeze speed on the basis of its energy. Energetics of the sea breeze can be studied by means of the available potential energy (APE). Part of this energy is transformed into the kinetic energy of the sea breeze. Some similarity exists between the large scale processes of the circulation and the small coastal air circulation due to the fact that both circulations are triggered by the same physics, i.e., solenoidal activity of the baroclinic atmosphere. To evaluate the sea breeze speed, APE was calculated by use of the Lorenz’s equation (1955), and which is possible if the coastal circulation is considered to be a closed system in a hydrostatic equilibrium. For calculations and verifications hourly sea-surface temperatures, near-ground air temperatures and wind speed measurements, as well as the radio-sounding measurements at 12 UTC were used at the Zadar station (ϕ = 44° 08' N, λ = 15° 13' E), which is situated in the central part of the eastern Adriatic coast. Two days with an undisturbed sea breeze circulation were extracted using the methods for minimizing other atmospheric influences. Calculated hourly near ground sea breeze speeds obtained in this way were higher than the measured ones. With the assumption that some of the APE is transformed into the kinetic energy it is possible to obtain characteristic speed of the developed sea breeze with small discrepancies to the near-ground measurements. If 6.6% of the mean daily near ground APE was taken to be transformed to the mean daily kinetic sea breeze energy on the 29th and 4.2% on the 30th September 2002, the best agreement was obtained with the mean daily measured near ground sea breeze speed. This range of values can be attributed to inability to extract precise values for the lapse-rate needed in the APE sea breeze calculations. Results show similarities to the general circulation of the atmosphere, since about 10% of the APE is transformed to the

  7. Circulating microRNA Profiles during the Bovine Oestrous Cycle

    PubMed Central

    Ioannidis, Jason; Donadeu, F. Xavier

    2016-01-01

    Up to 50% of ovulations go undetected in modern dairy herds due to attenuated oestrus behavior and a lack of high-accuracy methods for detection of fertile oestrus. This significantly reduces overall herd productivity and constitutes a high economic burden to the dairy industry. MicroRNAs (miRNAs) are ubiquitous regulators of gene expression during both health and disease and they have been shown to regulate different reproductive processes. Extracellular miRNAs are stable and can provide useful biomarkers of tissue function; changes in circulating miRNA profiles have been reported during menstrual cycles. This study sought to establish the potential of circulating miRNAs as biomarkers of oestrus in cattle. We collected plasma samples from 8 Holstein-Friesian heifers on days Days 0, 8 and 16 of an oestrous cycle and analysed small RNA populations on each Day using two independent high-throughput approaches, namely, Illumina sequencing (n = 24 samples) and Qiagen PCR arrays (n = 9 sample pools, 3–4 samples / pool). Subsequently, we used RT-qPCR (n = 24 samples) to validate the results of high-throughput analyses, as well as to establish the expression profiles of additional miRNAs previously reported to be differentially expressed during reproductive cycles. Overall, we identified four miRNAs (let-7f, miR-125b, miR-145 and miR-99a-5p), the plasma levels of which distinctly increased (up to 2.2-fold, P < 0.05) during oestrus (Day 0) relative to other stages of the cycle (Days 8 and 16). Moreover, we identified several hundred different isomiRs and established their relative abundance in bovine plasma. In summary, our results reveal the dynamic nature of plasma miRNAs during the oestrous cycle and provide evidence of the feasibility of using circulating miRNAs as biomarkers of reproductive function in livestock in the future. PMID:27340826

  8. Examination of Physical Processes Influencing Coastal Circulation over the Inner Scotian Shelf using a Five-Level Nested-Grid Ocean Circulation Model

    NASA Astrophysics Data System (ADS)

    Sheng, J.

    2008-12-01

    A multiply nested-grid ocean circulation modeling system was developed for coastal waters of the Inner Scotian Shelf (ISS) by coupling a limited-area coastal circulation model to an operational shelf circulation model known as Dalcoast. The nested-grid system has five relocatable, dynamically-downscaling five sub- components. The outermost sub-component of the system has a coarse horizontal resolution of (1/12)o for simulating storm surges and two-dimensional barotropic shelf waves over the eastern Canadian shelf (ECS) from Labrador Shelf to the Gulf of Maine, and the innermost sub-component has a fine horizontal resolution of about ~180 m for simulating three-dimensional circulation and hydrographic distributions over Lunenburg Bay of Nova Scotia in the default setup. The nested-grid system is driven by meteorological and astronomical forcing. The meteorological forcing includes sea level air pressures, wind stress and surface heat/freshwater fluxes converted from the 3 hourly weather forecasts produced by the Meteorological Service of Canada. The astronomical forcing is the tidal sea levels and depth-mean currents produced by WebTide based on pre-calculated harmonic constants of five major tidal constitutes over the ECS. In this study, the nested-grid system is used to investigate main physical processes affecting the three-dimensional (3D) circulation and hydrographic distributions over the ISS in June and July 2006. Model results demonstrate that the coastal circulation and hydrographic distributions over the study region are affected significantly by tides, local wind forcing, remotely generated coastal waves during the study period.

  9. Regional climates in the GISS global circulation model - Synoptic-scale circulation

    NASA Technical Reports Server (NTRS)

    Hewitson, B.; Crane, R. G.

    1992-01-01

    A major weakness of current general circulation models (GCMs) is their perceived inability to predict reliably the regional consequences of a global-scale change, and it is these regional-scale predictions that are necessary for studies of human-environmental response. For large areas of the extratropics, the local climate is controlled by the synoptic-scale atmospheric circulation, and it is the purpose of this paper to evaluate the synoptic-scale circulation of the Goddard Institute for Space Studies (GISS) GCM. A methodology for validating the daily synoptic circulation using Principal Component Analysis is described, and the methodology is then applied to the GCM simulation of sea level pressure over the continental United States (excluding Alaska). The analysis demonstrates that the GISS 4 x 5 deg GCM Model II effectively simulates the synoptic-scale atmospheric circulation over the United States. The modes of variance describing the atmospheric circulation of the model are comparable to those found in the observed data, and these modes explain similar amounts of variance in their respective datasets. The temporal behavior of these circulation modes in the synoptic time frame are also comparable.

  10. Strengthening of the Walker circulation under globalwarming in an aqua-planet general circulation model simulation

    NASA Astrophysics Data System (ADS)

    Li, Tim; Zhang, Lei; Murakami, Hiroyuki

    2015-11-01

    Most climate models project a weakening of theWalker circulation under global warming scenarios. It is argued, based on a global averaged moisture budget, that this weakening can be attributed to a slower rate of rainfall increase compared to that of moisture increase, which leads to a decrease in ascending motion. Through an idealized aqua-planet simulation in which a zonal wavenumber-1 SST distribution is prescribed along the equator, we find that the Walker circulation is strengthened under a uniform 2-K SST warming, even though the global mean rainfall-moisture relationship remains the same. Further diagnosis shows that the ascending branch of the Walker cell is enhanced in the upper troposphere but weakened in the lower troposphere. As a result, a "double-cell" circulation change pattern with a clockwise (anti-clockwise) circulation anomaly in the upper (lower) troposphere forms, and the upper tropospheric circulation change dominates. The mechanism for the formation of the "double cell" circulation pattern is attributed to a larger (smaller) rate of increase of diabatic heating than static stability in the upper (lower) troposphere. The result indicates that the future change of the Walker circulation cannot simply be interpreted based on a global mean moisture budget argument.

  11. Orientation and circulation of vortices in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Gao, Qi; Ortiz-Dueñas, Cecilia; Longmire, Ellen

    2007-11-01

    The strengths of individual vortices are important in determining the generation and development of surrounding vortices in turbulent boundary layers. The dual-plane PIV data at z^+ = 110 and z/δ = 0.53 in a turbulent boundary layer at Reτ=1160 obtained by Ganapathisubramani et al. (2006) were investigated. 3D swirl strength was used to identify vortex cores. The eigenvector of the velocity gradient tensor was used to determine the orientation of each core, and the resulting eigenvector direction was compared with the average vorticity direction. Circulation of the cores was calculated using the vorticity vector only and using the vorticity vector projected onto the eigenvector. The probability distribution of the angle between the eigenvector and the vorticity vector indicated a peak at 15-20 degrees. The eigenvector angle distributions indicate that at z^+=110, more hairpin legs cross the measurement plane while at z/δ = 0.53, more heads are evident. Details of the orientation and circulation distributions will be discussed in the presentation.

  12. Two-dimensional model for circulating fluidized-bed reactors

    SciTech Connect

    Schoenfelder, H.; Kruse, M.; Werther, J.

    1996-07-01

    Circulating fluidized bed reactors are widely used for the combustion of coal in power stations as well as for the cracking of heavy oil in the petroleum industry. A two-dimensional reactor model for circulating fluidized beds (CFB) was studied based on the assumption that at every location within the riser, a descending dense phase and a rising lean phase coexist. Fluid mechanical variables may be calculated from one measured radial solids flux profile (upward and downward). The internal mass-transfer behavior is described on the basis of tracer gas experiments. The CFB reactor model was tested against data from ozone decomposition experiments in a CFB cold flow model (15.6-m height, 0.4-m ID) operated in the ranges 2.5--4.5 m/s and 9--45 kg/(m{sup 2}{center_dot}s) of superficial gas velocity and solids mass flux, respectively. Based on effective reaction rate constants determined from the ozone exit concentration, the model was used to predict the spatial reactant distribution within the reactor. Model predictions agreed well with measurements.

  13. A parallel coupled oceanic-atmospheric general circulation model

    SciTech Connect

    Wehner, M.F.; Bourgeois, A.J.; Eltgroth, P.G.; Duffy, P.B.; Dannevik, W.P.

    1994-12-01

    The Climate Systems Modeling group at LLNL has developed a portable coupled oceanic-atmospheric general circulation model suitable for use on a variety of massively parallel (MPP) computers of the multiple instruction, multiple data (MIMD) class. The model is composed of parallel versions of the UCLA atmospheric general circulation model, the GFDL modular ocean model (MOM) and a dynamic sea ice model based on the Hiber formulation extracted from the OPYC ocean model. The strategy to achieve parallelism is twofold. One level of parallelism is accomplished by applying two dimensional domain decomposition techniques to each of the three constituent submodels. A second level of parallelism is attained by a concurrent execution of AGCM and OGCM/sea ice components on separate sets of processors. For this functional decomposition scheme, a flux coupling module has been written to calculate the heat, moisture and momentum fluxes independent of either the AGCM or the OGCM modules. The flux coupler`s other roles are to facilitate the transfer of data between subsystem components and processors via message passing techniques and to interpolate and aggregate between the possibly incommensurate meshes.

  14. Standpipe models for diagnostics and control of a circulating fluidized bed

    SciTech Connect

    Ludlow, James C.; Panday, Rupen

    2013-01-01

    Two models for a Circulating Fluidized Bed (CFB) standpipe were formulated, implemented and validated to estimate critical CFB operational parameters. The first model continuously estimates standpipe bed height using incremental pressure measurements within the standpipe. The second model estimates variations in the void fraction along the standpipe using the Ergun equation in conjunction with the overall pressure drop across the bed, solids circulation rate and the standpipe aeration flows introduced at different locations of the pipe. The importance of different standpipe parameters obtained from these models is discussed in terms of successful operation of the overall CFB system. Finally, the applications of these models are shown in improving the solids circulation rate measurement and in calculating riser inventory.

  15. Characterization of calculation of in-situ retardation factors of contaminant transport using naturally-radionuclides and rock/water interaction occurring U-Series disequilibria timescales. 1997 annual progress report

    SciTech Connect

    Roback, R.; Murrel, M.; Goldstein, S.; Ku, T.L.; Luo, S.

    1997-01-01

    'The research is directed toward a quantitative assessment of contaminant transport rates in fracture-rock systems using uranium-series radionuclides. Naturally occurring uranium-and thorium-series radioactive disequilibria will provide information on the rates of adsorption-desorption and transport of radioactive contaminants as well as on fluid transport and rock dissolution in a natural setting. This study will also provide an improved characterization of preferential flow and contaminant transport at the Idaho Environmental and Engineering Lab. (INEEL) site. To a lesser extent, the study will include rocks in the unsaturated zone. The authors will produce a realistic model of radionuclide migration under unsaturated and saturated field conditions at the INEEL site, taking into account the retardation processes involved in the rock/water interaction. The major tasks are to (1) determine the natural distribution of U, Th, Pa and Ra isotopes in rock minerals. sorbed phases on the rocks, and in fluids from both saturated and unsaturated zones at the site, and (2) study rock/water interaction processes using U/Th series disequilibrium and a statistical analysis-based model for the Geologic heterogeneity plays an important role in transporting contaminants in fractured rocks. Preferential flow paths in the fractured rocks act as a major pathway for transport of radioactive contaminants in groundwaters. The weathering/dissolution of rock by groundwater also influences contaminant mobility. Thus, it is important to understand the hydrogeologic features of the site and their impact on the migration of radioactive contaminants. In this regard, quantification of the rock weathering/dissolution rate and fluid residence time from the observed decay-series disequilibria will be valuable. By mapping the spatial distribution of the residence time of groundwater in fractured rocks, the subsurface preferential flow paths (with high rock permeability and short fluid residence

  16. A new look at cerebrospinal fluid circulation

    PubMed Central

    2014-01-01

    According to the traditional understanding of cerebrospinal fluid (CSF) physiology, the majority of CSF is produced by the choroid plexus, circulates through the ventricles, the cisterns, and the subarachnoid space to be absorbed into the blood by the arachnoid villi. This review surveys key developments leading to the traditional concept. Challenging this concept are novel insights utilizing molecular and cellular biology as well as neuroimaging, which indicate that CSF physiology may be much more complex than previously believed. The CSF circulation comprises not only a directed flow of CSF, but in addition a pulsatile to and fro movement throughout the entire brain with local fluid exchange between blood, interstitial fluid, and CSF. Astrocytes, aquaporins, and other membrane transporters are key elements in brain water and CSF homeostasis. A continuous bidirectional fluid exchange at the blood brain barrier produces flow rates, which exceed the choroidal CSF production rate by far. The CSF circulation around blood vessels penetrating from the subarachnoid space into the Virchow Robin spaces provides both a drainage pathway for the clearance of waste molecules from the brain and a site for the interaction of the systemic immune system with that of the brain. Important physiological functions, for example the regeneration of the brain during sleep, may depend on CSF circulation. PMID:24817998

  17. Improving Circulation Services through Staff Involvement

    ERIC Educational Resources Information Center

    Kisby, Cynthia M.; Kilman, Marcus D.

    2007-01-01

    The Circulation Services Department at the University of Central Florida Libraries reports on leadership and training initiatives that resulted in a number of service-enhancing projects implemented by a highly motivated and involved staff. Key elements in reinvigorating the department included a change in leadership philosophy, increased…

  18. Pneumatic system structure for circulation control aircraft

    NASA Technical Reports Server (NTRS)

    Krauss, Timothy A. (Inventor); Roman, Stephan (Inventor); Beurer, Robert J. (Inventor)

    1986-01-01

    A plenum for a circulation control rotor aircraft which surrounds the rotor drive shaft (18) and is so constructed that the top (32), outer (38) and bottom (36) walls through compressed air is admitted are fixed to aircraft structure and the inner wall (34) through which air passes to rotor blades (14) rotates with the drive shaft and rotor blades.

  19. A Classroom Demonstration of Thermohaline Circulation.

    ERIC Educational Resources Information Center

    Dudley, Walter C.

    1984-01-01

    Density-driven deep circulation is important in influencing geologic processes ranging from the dissolution of biogenic siliceous and calcareous sediments to the formation of erosional unconformities. A technique for dynamically demonstrating this process using an aquarium to enhance student understanding is described. (BC)

  20. A paleoceanographic circulation and chemistry model

    SciTech Connect

    Southam, J.R. )

    1990-01-09

    We have developed a 3-D circulation and tracer field model for paleoceanographic applications. The development of the model was motivated by the desire to explore Cretaceous Oceanic Anoxic Events and ocean chemistry during glacial and interglacial modes of circulation. The bulk of paleoceanographic data is the consequences of biological processes operating in ancient oceans. This type of data represents the response to environmental conditions and can be used to reconstruct water mass properties. To infer both wind driven and thermohaline components of circulation in ancient oceans requires a model which relates circulation and water mass properties. With this motivation in mind we have formulated a model which satisfies the following criteria: (1) geostrophically balanced interior, (2) multiple sites for deep water production, (3) deep water production described by entraining plumes, (4) high vertical resolution in both velocity and property fields, (5) meridional varibility in wind stress and evaporation-precipitation rate, (6) applicable to basin scale where exchange with adjacent oceans described by flux conditions, and (7) the chemistry is coupled through the flux of particulate carbon sinking through the interior.

  1. Detecting holocene changes in thermohaline circulation.

    PubMed

    Keigwin, L D; Boyle, E A

    2000-02-15

    Throughout the last glacial cycle, reorganizations of deep ocean water masses were coincident with rapid millennial-scale changes in climate. Climate changes have been less severe during the present interglacial, but evidence for concurrent deep ocean circulation change is ambiguous. PMID:10677463

  2. Minimal modeling of the extratropical general circulation

    NASA Technical Reports Server (NTRS)

    O'Brien, Enda; Branscome, Lee E.

    1989-01-01

    The ability of low-order, two-layer models to reproduce basic features of the mid-latitude general circulation is investigated. Changes in model behavior with increased spectral resolution are examined in detail. Qualitatively correct time-mean heat and momentum balances are achieved in a beta-plane channel model which includes the first and third meridional modes. This minimal resolution also reproduces qualitatively realistic surface and upper-level winds and mean meridional circulations. Higher meridional resolution does not result in substantial changes in the latitudinal structure of the circulation. A qualitatively correct kinetic energy spectrum is produced when the resolution is high enough to include several linearly stable modes. A model with three zonal waves and the first three meridional modes has a reasonable energy spectrum and energy conversion cycle, while also satisfying heat and momentum budget requirements. This truncation reproduces the basic mechanisms and zonal circulation features that are obtained at higher resolution. The model performance improves gradually with higher resolution and is smoothly dependent on changes in external parameters.

  3. Variability in deep ocean circulation from GRACE

    NASA Astrophysics Data System (ADS)

    Boening, C.; Watkins, M. M.

    2015-12-01

    Although nearly impossible to observe on a global scale, total water mass transport and inter-basin exchange are central to understanding long-term changes in ocean circulation. Of particular interest are changes in the Meridional Overturning Circulation (MOC) as they pose potential impacts in continental climtae. However, in-situ observations are limited in space and time preventing a holistic view of current variability. The representation of long-term transports in ocean models is highly dependent on the atmospheric forcing fields, which may misrepresent real interannual variability. The bottom pressure observations from the Gravity Recovery And Climate Experiment (GRACE) provide for the first time the ability to observe this global water mass transport. Here, we present the first near-global maps of variability in the depth-independent ocean circulation derived from advanced analysis of GRACE data. We find that significant variability on annual to decadal time scales exists in the deep large-scale circulation, some of which are related to the Southern Annular Mode forcing dominating Southern Ocean variability.

  4. THE ESC COMPUTERIZED CIRCULATION SYSTEM MODEL II.

    ERIC Educational Resources Information Center

    SHAWVER, W.; STRAIN, P.M.

    A NEW CIRCULATION SYSTEM NOW IN USE AT THE ELECTRONICS SYSTEMS CENTER (ESC) LIBRARY, PART OF INTERNATIONAL BUSINESS MACHINES CORPORATION, IS BASED UPON A PREVIOUS SYSTEM WHICH USED TABULATING CARDS, UNIT RECORD MACHINES, AND A SMALL COMPUTER. THE NEW SYSTEM IS A TRANSACTION CARD SYSTEM, IN WHICH ONE BASIC TYPE OF CARD FORMAT IS USED FOR CHARGING,…

  5. Programming Circulation Factors in K-12 Facilities.

    ERIC Educational Resources Information Center

    Hall, Michael E.; Fanning, Ronald H.

    This paper provides architects and educational planners with data on the necessary space requirements for restrooms, mechanical rooms, custodial spaces, food service, construction enclosure space, and circulation and corridor space, as well as an ongoing indication of necessary building area per student. It offers itemized data to illustrate…

  6. A Circulation Model for Busy Public Libraries.

    ERIC Educational Resources Information Center

    Bagust, A.

    1983-01-01

    Develops stochastic model of library borrowing using Negative Binomial distribution applied to circulation data obtained from Huddersfield Public Library. Evidence concerning process of popularity decay is presented and method is given by which relegation tests can be constructed to maintain optimum turnover. Eight references and statistical…

  7. Aquifer-Circulating Water Curtain Cultivation System To Recover Groundwater Level And Temperature

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Ko, K.; Chon, C.; Oh, S.

    2011-12-01

    Groundwater temperature, which generally ranges 14 to 16 degree of Celsius all year long, can be said to be 'constant' compared to the amplitude of daily variation of air temperature or surface water. Water curtain cultivating method utilizes this 'constant' groundwater temperature to warm up the inside of greenhouse during winter night by splash groundwater on the roof of inner greenhouse. The area of water curtain cultivation system have increased up to 107.5 square kilometers as of 2006 since when it is first introduced to South Korea in 1984. Groundwater shortage problem became a great issue in a concentrated water curtain cultivation area because the pumped and splashed groundwater is abandoned to nearby stream and natural recharge rate is reduced by greenhouses. The amount of groundwater use for water curtain cultivation system in South Korea is calculated to be 587 million cubic meters which is 35% of national agricultural use of groundwater. A new water curtain cultivation system coupled with aquifer circulating of the splashed groundwater and greenhouse roof-top rainwater harvesting is developed and applied to field site in Nonsan-si, Chungnam province to minimize groundwater shortage problem and recover groundwater level. The aquifer circulating water curtain cultivation system is consist of a pumping well and a injection well of 80 m deep, groundwater transfer and splashing system, recovery tank and rainwater collecting waterway. The distance between injection and pumping well is 15 m and an observation well is installed in the middle of the wells. To characterize hydrogeological properties of this site, hydraulic test such as pumping tests and tracer tests with dye tracer, thermal tracer and ion tracer. Once the integrated system is constructed in this site, hydraulic head in all the wells and temperature of air, recovery tank and groundwater in all the wells are monitored during the operation for 3months in winter season. Hydraulic test and tracer

  8. Blood transcriptomes reveal novel parasitic zoonoses circulating in Madagascar's lemurs.

    PubMed

    Larsen, Peter A; Hayes, Corinne E; Williams, Cathy V; Junge, Randall E; Razafindramanana, Josia; Mass, Vanessa; Rakotondrainibe, Hajanirina; Yoder, Anne D

    2016-01-01

    Zoonotic diseases are a looming threat to global populations, and nearly 75% of emerging infectious diseases can spread among wildlife, domestic animals and humans. A 'One World, One Health' perspective offers us an ideal framework for understanding and potentially mitigating the spread of zoonoses, and the island of Madagascar serves as a natural laboratory for conducting these studies. Rapid habitat degradation and climate change on the island are contributing to more frequent contact among humans, livestock and wildlife, increasing the potential for pathogen spillover events. Given Madagascar's long geographical isolation, coupled with recent and repeated introduction of agricultural and invasive species, it is likely that a number of circulating pathogens remain uncharacterized in lemur populations. Thus, it is imperative that new approaches be implemented for de novo pathogen discovery. To this end, we used non-targeted deep sequencing of blood transcriptomes from two species of critically endangered wild lemurs (Indri indri and Propithecus diadema) to characterize blood-borne pathogens. Our results show several undescribed vector-borne parasites circulating within lemurs, some of which may cause disease in wildlife, livestock and humans. We anticipate that advanced methods for de novo identification of unknown pathogens will have broad utility for characterizing other complex disease transmission systems. PMID:26814226

  9. Reduced circulating endothelial progenitor cells in reversible cerebral vasoconstriction syndrome

    PubMed Central

    2014-01-01

    Background The pathophysiology of reversible cerebral vasoconstriction syndrome (RCVS) remains elusive. Endothelial dysfunction might play a role, but direct evidence is lacking. This study aimed to explore whether patients with RCVS have a reduced level of circulating circulating endothelial progenitor cells (EPCs) to repair the dysfunctional endothelial vasomotor control. Methods We prospectively recruited 24 patients with RCVS within one month of disease onset and 24 healthy age- and sex-matched controls. Flow cytometry was used to quantify the numbers of circulating EPCs, defined as KDR+CD133+, CD34+CD133+, and CD34+KDR+ double-positive mononuclear cells. The Lindegaard index, an index of vasoconstriction, was calculated by measuring the mean flow velocity of middle cerebral arteries and distal extracranial internal carotid arteries via color-coded sonography on the same day as blood drawing. A Lindegaard index of 2 was chosen as the cutoff value for significant vasoconstriction of middle cerebral arteries based on our previous study. Results Patients with RCVS had a reduced number of CD34+KDR+ cells (0.009 ± 0.006% vs. 0.014 ± 0.010%, p = 0.031) but not KDR+CD133+ cells or CD34+CD133+ EPCs, in comparison with controls. The number of CD34+KDR+ cells was inversely correlated with the Lindegaard index (rs = -0.418, p = 0.047). Of note, compared to controls, patients with a Lindegaard index > 2 (n = 13) had a reduced number of CD34+KDR+ cells (0.007 ± 0.005% vs. 0.014 ± 0.010%, p = 0.010), but those with a Lindegaard index ≤ 2 did not. Conclusions Patients with RCVS had reduced circulating CD34+KDR+ EPCs, which were correlated with the severity of vasoconstriction. Endothelial dysfunction might contribute to the pathogenesis of RCVS. PMID:25466718

  10. Molecular Dynamics Calculations

    NASA Technical Reports Server (NTRS)

    1996-01-01

    winning videos in a competition held at the meeting of the American Physical Society's Division of Fluid Dynamics, held in Atlanta, Georgia, in November 1994. Of great interest was the result that in every shock there were a few high-speed precursor particles racing ahead of the shock, carrying information about its impending arrival. Most recently, Dr. Woo has been applying molecular dynamics techniques to the problem of determining the drag produced by the space station truss structure as it flies through the thin residual atmosphere of low-Earth orbit. This problem is made difficult by the complex structure of the truss and by the extreme supersonic nature of the flow. A fully filled section of the truss has already been examined, and drag predictions have been made. Molecular dynamics techniques promise to make realistic drag calculations possible even for very complex partially filled truss segments flying at arbitrary angles.

  11. Observations of the summer Red Sea circulation

    NASA Astrophysics Data System (ADS)

    Sofianos, Sarantis S.; Johns, William E.

    2007-06-01

    Aiming at exploring and understanding the summer circulation in the Red Sea, a cruise was conducted in the basin during the summer of 2001 involving hydrographic, meteorological, and direct current observations. The most prominent feature, characteristic of the summer circulation and exchange with the Indian Ocean, is a temperature, salinity, and oxygen minimum located around a depth of 75 m at the southern end of the basin, associated with Gulf of Aden Intermediate Water inflowing from the Gulf of Aden during the summer season as an intruding subsurface layer. Stirring and mixing with ambient waters lead to marked increases in temperature (from 16.5 to almost 33°C) and salinity (from 35.7 to more than 38 psu) in this layer by the time it reaches midbasin. The observed circulation presents a very vigorous pattern with strong variability and intense features that extend the width of the basin. A permanent cyclone, detected in the northern Red Sea, verifies previous observations and modeling studies, while in the central sector of the basin a series of very strong anticyclones were observed with maximum velocities exceeding 1 m/s. The three-layer flow pattern, representative of the summer exchange between the Red Sea and the Gulf of Aden, is observed in the strait of Bab el Mandeb. In the southern part of the basin the layer flow is characterized by strong banking of the inflows and outflows against the coasts. Both surface and intermediate water masses involved in the summer Red Sea circulation present prominent spatial variability in their characteristics, indicating that the eddy field and mixing processes play an important role in the summer Red Sea circulation.

  12. The Congo basin zonal overturning circulation

    NASA Astrophysics Data System (ADS)

    Neupane, Naresh

    2016-06-01

    The Gulf of Guinea in the equatorial Atlantic is characterized by the presence of strong subsidence at certain times of the year. This subsidence appears in June and becomes well established from July to September. Since much of theWest African monsoon flow originates over the Gulf, Guinean subsidence is important for determining moisture sources for the monsoon. Using reanalysis products, I contribute to a physical understanding of what causes this seasonal subsidence, and how it relates to precipitation distributions across West Africa. There is a seasonal zonal overturning circulation above the Congo basin and the Gulf of Guinea in the ERA-Interim, ERA-40, NCEP2, and MERRA reanalyses. The up-branch is located in the Congo basin around 20°E. Mid-tropospheric easterly flows constitute the returning-branch and sinking over the Gulf of Guinea forms the down-branch, which diverges at 2°W near the surface, with winds to the east flowing eastward to complete the circulation. This circulation is driven by surface temperature differences between the eastern Gulf and Congo basin. Land temperatures remain almost uniform, around 298 K, throughout a year, but the Guinean temperatures cool rapidly from 294 K in May to about 290 K in August. These temperature changes increase the ocean/land temperature contrast, up to 8 K, and drive the circulation. I hypothesize that when the overturning circulation is anomalously strong, the northward moisture transport and Sahelian precipitation are also strong. This hypothesis is supported by ERA-Interim and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record) data.

  13. Circulation factors affecting precipitation over Bulgaria

    NASA Astrophysics Data System (ADS)

    Nojarov, Peter

    2015-09-01

    The objective of this paper is to determine the influence of circulation factors on precipitation in Bulgaria. The study succeeds investigation on the influence of circulation factors on air temperatures in Bulgaria, as the focus here is directed toward precipitation amounts. Circulation factors are represented through two circulation indices, showing west-east or south-north transport of air masses over Bulgaria and four teleconnection indices (patterns)—North Atlantic Oscillation, East Atlantic, East Atlantic/Western Russia, and Scandinavian. Omega values at 700-hPa level show vertical motions in the atmosphere. Annual precipitation trends are mixed and not statistically significant. A significant decrease of precipitation in Bulgaria is observed in November due to the strengthening of the eastward transport of air masses (strengthening of EA teleconnection pattern) and anticyclonal weather (increase of descending motions in the atmosphere). There is also a precipitation decrease in May and June due to the growing influence of the Azores High. An increase of precipitation happens in September. All this leads to a redistribution of annual precipitation course, but annual precipitation amounts remain the same. However, this redistribution has a negative impact on agriculture and winter ski tourism. Zonal circulation has a larger influence on precipitation in Bulgaria compared to meridional. Eastward transport throughout the year leads to lower than the normal precipitation, and vice versa. With regard to the four teleconnection patterns, winter precipitation in Bulgaria is determined mainly by EA/WR teleconnection pattern, spring and autumn by EA teleconnection pattern, and summer by SCAND teleconnection pattern.

  14. Effects of Microtopography on Overmarsh Circulation

    NASA Astrophysics Data System (ADS)

    Sullivan, J. C.; Torres, R.; Garrett, A.

    2013-12-01

    Authors: J.C. Sullivan, R. Torres, A.J. Garrett In this study we systematically degrade a high-resolution, high precision salt marsh DEM and characterize the effects of DEM smoothing on overmarsh circulation. The question driving this effort is: How much topographic detail is needed to accurately simulate salt marsh circulation? The hydrodynamic model Delft3D was applied to data from a previous dye-tracer study in a 2 km2 semi-enclosed salt marsh basin at Skidaway Institute of Oceanography near Savannah, Georgia, USA. Overmarsh circulation was simulated for each smoothed DEM over a 5 day period corresponding to spring tide conditions. Results show that flood and ebb pathways differ significantly, but this effect is less apparent as the DEM is smoothed. Also, the flushing time (Tf) decreases with smoothing leading to greater dilution of a dye tracer with each tidal cycle. Observations at the macro, meso and micro scale show that flood and ebb flows become stronger through a consistent set of flow paths, including intertidal creeks, and differences in overmarsh circulation are more apparent in low marsh and channel head areas. This work shows that accurate representation of overmarsh circulation requires that the DEM resolve creek and low lying marsh structures at a spatial scale of 2-4m, but not necessarily the smallest tidal creeks (< 1m in width and depth). The next phase of this work will be to incorporate spatial variations in vegetation cover using RULLI (Remote Ultra Low-Light Imaging) remote sensing technology developed by the Department of Energy.

  15. Internal circulating fluidized bed incineration system and design algorithm.

    PubMed

    Tian, W D; Wei, X L; Li, J; Sheng, H Z

    2001-04-01

    The internal circulating fluidized bed (ICFB) system is characterized with fast combustion, low emission, uniformity of bed temperature and controllability of combustion process. It is a kind of novel clean combustion system, especially for the low-grade fuels, such as municipal solid waste (MSW). The experimental systems of ICFB with and without combustion were designed and set up in this paper. A series of experiments were carried out for further understanding combustion process and characteristics of several design parameters for MSW. Based on the results, a design routine for the ICFB system was suggested for the calculation of energy balance, airflow rate, heat transfer rate, and geometry arrangement. A test system with ICFB combustor has been set up and the test results show that the design of the ICFB system is successful. PMID:11590739

  16. Destabilization of the thermohaline circulation by atmospheric transports: An analytic solution

    SciTech Connect

    Krasovskiy, Y.P.; Stone, P.H.

    1998-07-01

    The four-box coupled atmosphere-ocean model of Marotzke is solved analytically, by introducing the approximation that the effect of oceanic heat advection on ocean temperatures is small (but not negligible) compared to the effect of surface heat fluxes. The solutions are written in a form that displays how the stability of the thermohaline circulation depends on the relationship between atmospheric meridional transports of heat and moisture and the meridional temperature gradient. In the model, these relationships are assumed to be power laws with different exponents allowed for the dependence of the transports of heat and moisture on the gradient. The approximate analytic solutions are in good agreement with Marotzke`s exact numerical solutions, but show more generally how the destabilization of the thermohaline circulation depends on the sensitivity of the atmospheric transports to the meridional temperature gradient. The solutions are also used to calculate how the stability of the thermohaline circulation is changed if model errors are corrected by using conventional flux adjustments. Errors like those common in GCMs destabilize the model`s thermohaline circulation, even if conventional flux adjustments are used. However, the resulting errors in the magnitude of the critical perturbations necessary to destabilize the thermohaline circulation can be corrected by modifying transport efficiencies instead.

  17. On the sensitivity of a residual circulation model to differences in input temperature data

    NASA Technical Reports Server (NTRS)

    Guthrie, Paul D.; Jackman, Charles H.; Rosenfield, Joan E.; Kucsera, Tom L.

    1990-01-01

    The residual mean circulation (RMC) formulation of zonally averaged transport in the middle atmosphere produces a circulation which depends on the distributions of net diabatic heating and temperature. Such circulations are from two temperature data sets, using the same radiative transfer code (Rosenfield et al. 1987). These circulations are then used to transport N2O in a photochemical model. The circulations and the resulting N2O distributions are notably different during the Northern Hemisphere winter, with that based on the NMC temperatures producing too much upward transport in the tropical stratosphere, as judged by comparison with the stratospheric and mesoscale sounder data. The experiment demonstrates that model calculations, in general, and perturbation assessments, in particular, are likely to be quite sensitive to the choice of input temperature data (where this is not computed self-consistently). It also reveals what appears to be a seasonally dependent bias in NMC zonally averaged temperatures with respect to those obtained from the LIMS instrument during 1978/1979.

  18. Evaluating the deep-ocean circulation of a global ocean model using carbon isotopic ratios

    NASA Astrophysics Data System (ADS)

    Paul, André; Dutkiewicz, Stephanie; Gebbie, Jake; Losch, Martin; Marchal, Olivier

    2016-04-01

    We study the sensitivity of a global three-dimensional biotic ocean carbon-cycle model to the parameterizations of gas exchange and biological productivity as well as to deep-ocean circulation strength, and we employ the carbon isotopic ratios δ13C and Δ14C of dissolved inorganic carbon for a systematic evaluation against observations. Radiocarbon (Δ14C) in particular offers the means to assess the model skill on a time scale of 100 to 1000 years relevant to the deep-ocean circulation. The carbon isotope ratios are included as tracers in the MIT general circulation model (MITgcm). The implementation involves the fractionation processes during photosynthesis and air-sea gas exchange. We present the results of sixteen simulations combining two different parameterizations of the piston velocity, two different parameterizations of biological productivity (including the effect of iron fertilization) and four different overturning rates. These simulations were first spun up to equilibrium (more than 10,000 years of model simulation) and then continued from AD 1765 to AD 2002. For the model evaluation, we followed the OCMIP-2 (Ocean Carbon-Cycle Model Intercomparision Project phase two) protocol, comparing the results to GEOSECS (Geochemical Ocean Sections Survey) and WOCE (World Ocean Circulation Experiment) δ13C and natural Δ14C data in the world ocean. The range of deep natural Δ14C (below 1000 m) for our single model (MITgcm) was smaller than for the group of different OCMIP-2 models. Furthermore, differences between different model parameterizations were smaller than for different overturning rates. We conclude that carbon isotope ratios are a useful tool to evaluate the deep-ocean circulation. Since they are also available from deep-sea sediment records, we postulate that the simulation of carbon isotope ratios in a global ocean model will aid in estimating the deep-ocean circulation and climate during present and past.

  19. A Thermospheric Circulation Model for Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Koskinen, T. T.; Aylward, A. D.; Smith, C. G. A.; Miller, S.

    2007-05-01

    Several models of extrasolar giant planet (EGP) atmospheres have been developed recently. Many of them are one-dimensional or concentrate on the lower or middle atmosphere. Three-dimensional hydrodynamic models are needed to study the horizontal variations in temperature and composition of EGP atmospheres. Circulation models for the upper atmosphere are particularly important as they can be used to study the thermal structure due to stellar irradiation, radiative cooling, and atmospheric circulation in the thermospheres of close-in EGPs and hence the rate of evaporation of their atmospheres. We present a generic gas giant model that is capable of generating three-dimensional, self-consistent global simulations of stable EGP thermospheres at different orbital distances. Calculations performed by this model indicate that IR emissions from H+3 ions may play a significant role in cooling the thermospheres of EGPs at least in the range of 0.2-1 AU from a solar-type host star. In this range thermal dissociation of H2 is negligible and ion densities are small compared to the overall neutral density. Inside 0.2 AU thermal dissociation and dissociative photoionization of H2 may prevent the effective formation of H+3. In the absence of radiative cooling from H+3 the upper atmospheres reach temperatures well above 10,000 K within ~0.5 AU. In this case the upper thermospheres are entirely converted into atomic hydrogen and the temperatures are high enough for significant atmospheric loss to take place. Our model is capable of calculating the IR signal strengths for various vibrational transitions of H+3 based on the thermal state and the composition of the atmosphere. Potential detection of such signals would thus provide a validation of some of our results.

  20. Diversity of Planetary Atmospheric Circulations and Climates in a Simplified General Circulation Model

    NASA Astrophysics Data System (ADS)

    Wang, Yixiong; Read, Peter

    2014-04-01

    The parametric dependence of terrestrial planetary atmospheric circulations and climates on characteristic parameters is studied. A simplified general circulation model-PUMA is employed to investigate the dynamic effects of planetary rotation rate and equator-to-pole temperature difference on the circulation and climate of terrestrial planetary atmospheres. Five different types of circulation regime are identified by mapping the experimental results in a 2-D parameter space defined by thermal Rossby number and frictional Taylor number. The effect of the transfer and redistribution of radiative energy is studied by building up a new two-band semi-gray radiative-convective scheme, which is capable of modelling greenhouse and anti-greenhouse effects while keeping the tunable parameters as few as possible. The results will provide insights into predicting the habitability of terrestrial exoplanets.

  1. Improvement of continuous solid circulation rate measurement in a cold flow circulating fluidized bed

    SciTech Connect

    Ludlow, J.C.; Monazam, E.R.; Shadle, L.J.

    2008-03-10

    A method is described to independently estimate the solids velocity and voidage in the moving bed portion of the NETL circulating fluidized bed (CFB). These quantities are used by a device that continuously measures the solids circulation rate. The device is based on the use of a rotating Spiral vane installed in the standpipe of a circulating fluid bed (CFB). Correlations were developed from transient experiments and steady state mass balance data to correct the solids velocity and solids fraction in the standpipe as a function of standpipe aeration rate. A set of statisticallydesigned experiments was used to establish the need for these corrections and to verify the accuracy of solid circulation rate measurements after correction. The differences between the original and corrected measurements were quantitatively compared.

  2. A general circulation model study of atmospheric carbon monoxide

    NASA Technical Reports Server (NTRS)

    Pinto, J. P.; Rind, D.; Russell, G. L.; Lerner, J. A.; Hansen, J. E.; Yung, Y. L.; Hameed, S.

    1983-01-01

    The carbon monoxide cycle is studied by incorporating the known and hypothetical sources and sinks in a tracer model that uses the winds generated by a general circulation model. Photochemical production and loss terms, which depend on OH radical concentrations, are calculated in an interactive fashion. The computed global distribution and seasonal variations of CO are compared with observations to obtain constraints on the distribution and magnitude of the sources and sinks of CO, and on the tropospheric abundance of OH. The simplest model that accounts for available observations requires a low latitude plant source of about 1.3 x 10 to the 15th g/yr, in addition to sources from incomplete combustion of fossil fuels and oxidation of methane. The globally averaged OH concentration calculated in the model is 750,000/cu cm. Models that calculate globally averaged OH concentrations much lower than this nominal value are not consistent with the observed variability of CO. Such models are also inconsistent with measurements of CO isotopic abundances, which imply the existence of plant sources.

  3. Sensitivity of Age-of-Air Calculations to the Choice of Advection Scheme

    NASA Technical Reports Server (NTRS)

    Eluszkiewicz, Janusz; Hemler, Richard S.; Mahlman, Jerry D.; Bruhwiler, Lori; Takacs, Lawrence L.

    2000-01-01

    -Lagrangian dynamics employed in the MACCM3. This type of dynamical core (employed with a 60-min time step) is likely to reduce SLT's interpolation errors that are compounded by the short-term variability characteristic of the explicit centered-difference dynamics employed in the SKYHI model (time step of 3 min). In the extreme case of a very slowly varying circulation, the choice of advection scheme has no effect on two-dimensional (latitude-height) age-of-air calculations, owing to the smooth nature of the transport circulation in 2D models. These results suggest that nondiffusive schemes may be the preferred choice for multiyear simulations of tracers not overly sensitive to the requirement of monotonicity (this category includes many greenhouse gases). At the same time, age-of-air calculations offer a simple quantitative diagnostic of a scheme's long-term diffusive properties and may help in the evaluation of dynamical cores in multiyear integrations. On the other hand, the sensitivity of the computed ages to the model numerics calls for caution in using age of air as a diagnostic of a GCM's large-scale circulation field.

  4. Wall jet analysis for circulation control aerodynamics. Part 2: Zonal modeling concepts for wall jet/potential flow coupling

    NASA Technical Reports Server (NTRS)

    Dvorak, Frank A.; Dash, Sanford M.

    1987-01-01

    Work currently in progress to update an existing transonic circulation control airfoil analysis method is described. Existing methods suffer from two dificiencies: the inability to predict the shock structure of the underexpanded supersonic jets; and the insensitivity of the calculation to small changes in the Coanda surface geometry. A method developed for the analysis of jet exhaust plumes in supersonic flow is being modified for the case of the underexpanded wall jet. In the subsonic case, the same wall jet model was modified to include the calculation of the normal pressure gradient. This model is currently being coupled with the transonic circulation control airfoil analysis.

  5. Calculators In Class

    ERIC Educational Resources Information Center

    Denman, Theresa

    1974-01-01

    Calculators are fast becoming accepted as needed household appliances. Certainly, children in school now will, as adults, look on calculators as being as necessary to everyday life as telephones. (Author)

  6. Personal Finance Calculations.

    ERIC Educational Resources Information Center

    Argo, Mark

    1982-01-01

    Contains explanations and examples of mathematical calculations for a secondary level course on personal finance. How to calculate total monetary cost of an item, monthly payments, different types of interest, annual percentage rates, and unit pricing is explained. (RM)

  7. Calculating drug doses.

    PubMed

    2016-09-01

    Numeracy and calculation are key skills for nurses. As nurses are directly accountable for ensuring medicines are prescribed, dispensed and administered safely, they must be able to understand and calculate drug doses. PMID:27615351

  8. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming.

    PubMed

    Tokinaga, Hiroki; Xie, Shang-Ping; Deser, Clara; Kosaka, Yu; Okumura, Yuko M

    2012-11-15

    Global mean sea surface temperature (SST) has risen steadily over the past century, but the overall pattern contains extensive and often uncertain spatial variations, with potentially important effects on regional precipitation. Observations suggest a slowdown of the zonal atmospheric overturning circulation above the tropical Pacific Ocean (the Walker circulation) over the twentieth century. Although this change has been attributed to a muted hydrological cycle forced by global warming, the effect of SST warming patterns has not been explored and quantified. Here we perform experiments using an atmospheric model, and find that SST warming patterns are the main cause of the weakened Walker circulation over the past six decades (1950-2009). The SST trend reconstructed from bucket-sampled SST and night-time marine surface air temperature features a reduced zonal gradient in the tropical Indo-Pacific Ocean, a change consistent with subsurface temperature observations. Model experiments with this trend pattern robustly simulate the observed changes, including the Walker circulation slowdown and the eastward shift of atmospheric convection from the Indonesian maritime continent to the central tropical Pacific. Our results cannot establish whether the observed changes are due to natural variability or anthropogenic global warming, but they do show that the observed slowdown in the Walker circulation is presumably driven by oceanic rather than atmospheric processes. PMID:23151588

  9. Wind effect on the Atlantic meridional overturning circulation via sea ice and vertical diffusion

    NASA Astrophysics Data System (ADS)

    Yang, Haijun; Wang, Kun; Dai, Haijin; Wang, Yuxing; Li, Qing

    2016-06-01

    Effects of wind and fresh water on the Atlantic meridional overturning circulation (AMOC) are investigated using a fully coupled climate model. The AMOC can change significantly when perturbed by either wind stress or freshwater flux in the North Atlantic. This study focuses on wind stress effect. Our model results show that the wind forcing is crucial in maintaining the AMOC. Reducing wind forcing over the ocean can cause immediately weakening of the vertical salinity diffusion and convection in the mid-high latitudes Atlantic, resulting in an enhancement of vertical salinity stratification that restrains the deep water formation there, triggering a slowdown of the thermohaline circulation. As the thermohaline circulation weakens, the sea ice expands southward and melts, providing the upper ocean with fresh water that weakens the thermohaline circulation further. The wind perturbation experiments suggest a positive feedback between sea-ice and thermohaline circulation strength, which can eventually result in a complete shutdown of the AMOC. This study also suggests that sea-ice variability may be also important to the natural AMOC variability on decadal and longer timescales.

  10. Circulating Packet Threshold Logic To Implement Msd Logic Modules

    NASA Astrophysics Data System (ADS)

    Flannery, David L.; Vail, L. Maugh; Gustafson, Steven C.

    1986-03-01

    Threshold logic element designs in circulating packet form are presented for the implementation of addition and subtraction using modified sign digit (MSD) arithmetic. This arithmetic is attractive for digital optical computing due to its inherent parallelism and pipelining characteristics, which capitalize on natural strengths of optics. To illustrate application of these concepts, a design for CORDIC rotation modules to accomplish the complex Givens rotations required for systolic array QU matrix factorization is presented. This design accomplishes QU factorization using only threshold logic elements and bit-shift operations in a systolic configuration. Although implementable in principle by either electronic or optical means, the design is amenable to optical implementation because it involves high levels of parallelism and interconnections.

  11. Influence of seasonal circulation on flushing of the Irish Sea.

    PubMed

    Dabrowski, T; Hartnett, M; Olbert, A I

    2010-05-01

    We applied a three-dimensional general ocean and coastal circulation model to the Irish Sea in order to determine water renewal time scales in the region. The model was forced with meteorological data for 1995, a year with relatively warm summer and when extensive hydrographic surveys were conducted in the Irish Sea. We investigated intra-annual variability in the rates of net flow through the Irish Sea and carried out several flushing simulations based on conservative tracer transport. The results indicate that the net northward flow of 2.50 km(3)/d is seasonally highly variable and under certain conditions is reversed to southward. The variability in obtained residence times is high; baroclinic effects are significant. Obtained results point at the importance of spatial and temporal consideration for transport of pollutants in the shelf seas. Implications for management are numerous and involve activities such as transport, fishing, use of resources, nature conservation, monitoring, tourism and recreation. PMID:20018331

  12. (CO sub 2 uptake in an Ocean Circulation Model)

    SciTech Connect

    Siegenthaler, U.C.

    1990-11-06

    The traveler collaborated with Drs. J. L. Sarmiento and J. C. Orr of the Program in Atmospheric Sciences at Princeton University to finish the article A Perturbation Simulation of CO{sub 2} Uptake in an Ocean Circulation Model,'' which has been submitted to the Journal of Geophysical Research for publication. With F. Joos, a graduate student from the University of Bern, the traveler started writing a journal article describing a box model of the global carbon cycle that is an extension of the one-dimensional box-diffusion model. The traveler further collaborated with F. Joos and Dr. J. L. Sarmiento on modeling the potential enhancement of oceanic CO{sub 2} uptake by fertilizing the southern ocean with iron. A letter describing the results is currently being written for the journal Nature.

  13. Calculators, Computers, and Classrooms.

    ERIC Educational Resources Information Center

    Higgins, Jon L.; Kirschner, Vicky

    Suggestions for using four-function calculators, programmable calculators, and microcomputers are considered in this collection of 36 articles. The first section contains articles considering general implications for mathematics curricula implied by the freedom calculators offer students from routine computation, enabling them to focus on results…

  14. Numerical Calculation of Heat Transfer Distribution in a 600Mwe Supercritical Circulating Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, W. K.; Wu, Y. X.; Yang, H. R.; Nie, L.; Huo, S. S.

    The water wall heat transfer and heat flux distribution in a 600MWe supercritical CFB boiler with water-cooled panel in the furnace was numerically studied. The water wall was made of smooth tube membrane. The solid suspension density ρ, heat flux q and heat transfer coefficient K distribution in the furnace were predicted at rated boiler load (100%BMCR), 75% of turbine heat acceptance load (75% THA) and 50% THA. The results show that for a large-scale CFB boiler, the convection is the main part of heat transfer in the lower furnace, and radiation is the main in the upper lower. The ρ, q and K have the similar axial and radial distributions. Their radial distributions depend on the position of the water wall and boiler load, and show a peak value in the corner. The ρ is a sensitive to K. With increasing of the height in furnace, ρ decreases, thereby the q and K decrease. The radial distributions of q and K are similar at different height. The study shows that the three-dimensional model is valid to predict the heat transfer in the furnace of the 600MWe supercritical CFB boiler.

  15. Warm World Ocean Thermohaline Circulation Model

    NASA Astrophysics Data System (ADS)

    Zimov, N.; Zimov, S. A.

    2014-12-01

    Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic, filling the ocean interior with cold and heavy water. However, ocean circulation diminished during the last glaciation and consequently the downwelling of the cold. Therefore interior ocean water temperatures must have been affected by other mechanisms which are negligible in the current state. We propose that the submergence of highly saline water from warm seas with high rates of evaporation (like the Red or Mediterranean Sea) was a major factor controlling ocean circulation during the last glaciation. Even today, waters in these poorly connected seas are the heaviest waters in the World ocean (1.029 g/cm3). The second mechanism affecting ocean temperature is the geothermal heat flux. With no heat exchange between the atmosphere and the ocean, geothermal heat flux through the ocean floor is capable of increasing ocean temperature by tens of degrees C over a 100 thousand year glacial cycle. To support these hypotheses we present an ocean box model that describes thermohaline circulation in the World Ocean. According to the model parameters, all water circulation is driven by the water density gradient. Boxes include high-latitude seas, high salinity seas, surface ocean, glaciers, and rift and lateral zones of the ocean interior. External heat sources are radiative forcing, affected by Milankovich cycles, and geothermal heat flux. Additionally this model accounts for the heat produced by organic rain decay. Taking all input parameters close to currently observed values, the model manages to recreate the glacial-interglacial cycles. During the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior ocean accumulates heat while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal

  16. Circulation patterns in active lava lakes

    NASA Astrophysics Data System (ADS)

    Redmond, T. C.; Lev, E.

    2014-12-01

    Active lava lakes provide a unique window into magmatic conduit processes. We investigated circulation patterns of 4 active lava lakes: Kilauea's Halemaumau crater, Mount Erebus, Erta Ale and Nyiragongo, and in an artificial "lava lake" constructed at the Syracuse University Lava Lab. We employed visual and thermal video recordings collected at these volcanoes and use computer vision techniques to extract time-dependent, two-dimensional surface velocity maps. The large amount of data available from Halemaumau enabled us to identify several characteristic circulation patterns. One such pattern is a rapid acceleration followed by rapid deceleration, often to a level lower than the pre-acceleration level, and then a slow recovery. Another pattern is periodic asymmetric peaks of gradual acceleration and rapid deceleration, or vice versa, previously explained by gas pistoning. Using spectral analysis, we find that the dominant period of circulation cycles at approximately 30 minutes, 3 times longer than the dominant period identified previously for Mount Erebus. Measuring a complete surface velocity field allowed us to map and follow locations of divergence and convergence, therefore upwelling and downwelling, thus connecting the surface flow with that at depth. At Nyiragongo, the location of main upwelling shifts gradually, yet is usually at the interior of the lake, for Erebus it is usually along the perimeter yet often there is catastrophic downwelling at the interior; For Halemaumau upwelling/downwelling position is almost always on the perimeter. In addition to velocity fields, we developed an automated tool for counting crustal plates at the surface of the lava lakes, and found a correlation, and a lag time, between changes if circulation vigor and the average size of crustal plates. Circulation in the artificial basaltic lava "lake" was limited by its size and degree of foaming, yet we measured surface velocities and identify patterns. Maximum surface velocity

  17. O2 adsorption on MO2 (M=Ru, Ir, Sn) films supported on rutile TiO2(110) by DFT calculations: Probing the nature of metal oxide-support interaction.

    PubMed

    Xu, Xianglan; Sun, Xiongfei; Sun, Baozhen; Peng, Honggen; Liu, Wenming; Wang, Xiang

    2016-07-01

    To explore metal oxide-support interaction and its effect on O2 adsorption, periodic DFT calculations were used to explore the most preferred O2 molecular and dissociative adsorption on stoichiometric (MO2) and defective (MO2-x) (M=Ru, Ir, Sn) films supported on rutile TiO2(110), and compared with that on pure surfaces without TiO2(110) support. For defective RuO2-x films, it is revealed that the TiO2(110) support and the film thickness have an evident impact on the O2 adsorbed species. On the contrary, the two factors show little influence for defective IrO2-x and SnO2-x films. The analyses for Bader charge and density of states indicate that the reducibility change of the unsaturated surface Ru atoms, which are adjacent to the bridge oxygen vacancies, is responsible for this O2 adsorption alteration. These results provide insights into the oxide-oxide interaction, and its effect on the properties of supported oxide catalysts. PMID:27060230

  18. How Do Calculators Calculate Trigonometric Functions?

    ERIC Educational Resources Information Center

    Underwood, Jeremy M.; Edwards, Bruce H.

    How does your calculator quickly produce values of trigonometric functions? You might be surprised to learn that it does not use series or polynomial approximations, but rather the so-called CORDIC method. This paper will focus on the geometry of the CORDIC method, as originally developed by Volder in 1959. This algorithm is a wonderful…

  19. Tidal circulation alteration for salt marsh mosquito control

    NASA Astrophysics Data System (ADS)

    Resh, Vincent H.; Balling, Steven S.

    1983-01-01

    Mosquito control ditches designed to increase tidal circulation are widely used as a physical control alternative to insecticidal applications The impact of such ditching on Pacific Coast marshlands was largely unknown before this five-year study of impact in two types of San Francisco Bay salt marshes, a Salicornia virginica (pickleweed) monoculure and a mixed vegetation marsh Results of our studies suggest that ditches cause less environmental disturbance than insecticidal applications The article describes the following environmental consequences of ditching for mosquito control: increased tidal flushing of soils occurs adjacent to ditches compared with that in the open marsh, thereby reducing ground water and soil surface salinities and water table height; primary productivity of S. virginica, as determined by both the harvest method and infrared photographic analysis, is higher directly adjacent to ditches than in the open marsh, distribution of selected arthropod populations is similar at ditches and natural channels, although arthropod community response differs seasonally; aquatic invertebrate biomass is similar within ditched and natural ponds, but diversity is lower in ditched habitats, ditching increases fish diversity and density by improving fish access from tidal channels; ditches provide additional salt marsh song sparrow habitat, although ditches are less preferred than natural channels or sloughs. Management criteria can be used to design ditches that provide effective mosquito control and reduced environmental impact

  20. IN SITU FLOW METERS AROUND A GROUNDWATER CIRCULATION WELL (ABSTRACT)

    EPA Science Inventory

    The primary benefit of groundwater circulation well (GCW) technology is the development of strong vertical flows surrounding the treatment well. The extent of significant vertical flow surrounding a circulation well is difficult to establish from traditional groundwater elevation...

  1. IN SITU FLOW METERS AROUND A GROUNDWATER CIRCULATION WELL (PAPER)

    EPA Science Inventory

    The primary benefit of groundwater circulation well (GCW) technology is the development of strong vertical flows surrounding the treatment well. The extent of significant vertical flow surrounding a circulation well is difficult to establish from traditional groundwater elevation...

  2. EVALUATION OF AERATION/CIRCULATION AS A LAKE RESTORATION TECHNIQUE

    EPA Science Inventory

    Artificial circulation and hypolimnetic aeration are management techniques for oxygenating eutrophic lakes subject to water quality problems, algal blooms, and fishkills. Artificial circulation is achieved by injecting diffused air into lower waters, by mechanial pumping of water...

  3. Anti-cyclonic circulation driven by the estuarine circulation in a gulf type ROFI

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Sanford, L. P.; Nakatsuji, K.; Sugiyama, Y.

    1997-08-01

    Baroclinic residual circulation processes are examined in gulf type Regions Of Freshwater Influence (ROFIs), which have large rivers discharging into a rounded head wider than the Rossby internal deformation radius. Theoretical and observational investigations concentrate on Ise Bay, Japan, with supporting data from Osaka Bay and Tokyo Bay. Simplified analytical solutions are derived to describe the primary features of the circulation. Three dimensional residual current data collected using moored current meters and shipboard acoustic doppler current profilers (ADCPs), satellite imagery and density structure data observed using STDs, are presented for comparison to the theoretical predictions. There are three key points to understanding the resulting circulation in gulf type ROFIs. First, there are likely to be three distinct water masses: the river plume, a brackish upper layer, and a higher salinity lower layer. Second, baroclinic processes in gulf type ROFIs are influenced by the Earth's rotation at first order. Residual currents are quasi-geostrophic and potential vorticity is approximately conserved. Third, the combined effects of a classical longitudinal estuarine circulation and the Earth's rotation are both necessary to produce the resulting circulation. Anti-cyclonic vorticity is generated in the upper layer by the horizontal divergence associated with upward entrainment, which is part of the estuarine circulation. The interaction between anti-cyclonic vorticity and horizontal divergence results in two regions of qualitatively different circulation, with gyre-like circulation near the bay head and uniformly seaward anti-cyclonicly sheared flow further towards the mouth. The stagnation point separating the two regions is closer to (further away from) the bay head for stronger (weaker) horizontal divergence, respectively. The vorticity and spin-up time of this circulation are-(ƒ-ω 1)/2 and h/2w 0, respectively, where ƒ is the Coriolis parameter, ω 1 is

  4. Hydrothermal circulation in fast spread ocean crust - where and how much? Insight from ODP Hole 1256D

    NASA Astrophysics Data System (ADS)

    Harris, M.; Coggon, R. M.; Smith-Duque, C. E.; Teagle, D. A. H.

    2014-12-01

    Understanding and quantifying hydrothermal circulation is critical to testing models of the accretion of lower ocean crust and quantifying global geochemical cycles. However, our understanding is principally limited by a lack of direct observations from intact ocean crust. Key questions remain about the magnitude of hydrothermal fluid fluxes, the nature and distribution of fluid pathways and their global variability. ODP Hole 1256D in the eastern equatorial Pacific samples a complete section of 15 Myr old upper ocean crust down to the dike/gabbro transition zone. A high spatial resolution Sr isotope profile is integrated with wireline studies, volcanostratigraphy, petrography and mineral geochemistry to document fluid pathways and develop a model for the evolving hydrothermal system during volcanic construction of the crust. Major off-axis fluid conduits in the volcanic sequence are restricted to the flow margins of two anomalously thick (>25 m) massive flows, indicating that massive flows act as a permeability barrier for fluid flow. Dike margins are pathways for both recharge and discharge hydrothermal fluids. Sub-horizontal channeling of high temperature fluids at the dike/gabbro boundary is a common attribute of most cartoons of mid ocean ridge hydrothermal systems. Hole 1256D provides the first in situ observations of the dike/gabbro transition zone and records lateral fluid transport along intrusive boundaries. The time-integrated fluid flux in the sheeted dikes of Hole 1256D calculated using Sr isotope mass balance is ~1.8 x 106 kg/m2. This is similar to fluid fluxes from other studies (Hole 504B, Pito Deep, Hess Deep) despite large variations in the thickness and Sr isotope profiles of the sheeted dike complexes, suggesting that hydrothermal fluid fluxes are remarkably uniform and independent of the local structure of the crust. This fluid flux is not large enough to completely remove the heat flux from crystallizing and cooling the lower crust and requires

  5. Potential acoustic benefits of circulation control rotors

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Cheeseman, I. C.

    1978-01-01

    The fundamental aeroacoustic mechanisms responsible for noise generation on a rotating blade are theoretically examined. Their contribution to the overall rotor sound pressure level is predicted. Results from a theory for airfoil trailing edge noise are presented. Modifications and extensions to other source theories are described where it is necessary to account for unique aspects of circulation control (CC) aerodynamics. The circulation control rotor (CCR), as embodied on an X-wing vertical takeoff and landing (VTOL) aircraft, is used as an example for computational purposes, although many of the theoretical results presented are generally applicable to other CC applications (such as low speed rotors, propellers, compressors, and fixed wing aircraft). Using the analytical models, it is shown that the utilization CC aerodynamics theoretically makes possible unprecedented advances in rotor noise reduction. For the X-wing VTOL these reductions appear to be feasible without incurring significant attendant performance and weight penalties.

  6. Modeling mesoscale circulation of the Black Sea

    NASA Astrophysics Data System (ADS)

    Korotenko, K. A.

    2015-11-01

    An eddy-resolving (1/30)° version of the DieCAST low-dissipative model, adapted to the Black Sea circulation, is presented. Under mean climatological forcing, the model realistically reproduces major dominant large-scale and mesoscale structures of seasonal sea circulation, including the Rim Current, coastal anticyclonic eddies, mushroom currents, etc. Due to its extremely low dissipation and high resolution, the model makes it possible to trace the development of the baroclinic instability along the Turkish and Caucasian coasts, reproduce mesoscale structures generated by this mechanism, and assess the scales of these structures. The model also realistically reproduces short-term effects of bora winds on the evolution of subsurface layer structures.

  7. Ice sheet collapse affects ocean circulation

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-06-01

    As Earth's climate warms and ice melts, freshwater input to oceans could weaken the large-scale Atlantic meridional overturning circulation, which acts as an important conveyor of heat and has significant effects on climate. Green et al. used an intermediate complexity climate model to study how freshwater input to oceans can affect the meridional overturning circulation. They applied their model to the collapse of the Barents ice sheet about 140,000 years ago—the first study of this kind for the time period—which resulted in a huge influx of freshwater to the North Atlantic Ocean as large icebergs calved off of the ice sheet. (Paleoceanography, doi:10.1029/ 2010PA002088, 2011)

  8. Cognitive problems related to vertebrobasilar circulation.

    PubMed

    Koçer, Abdulkadir

    2015-01-01

    Neurodegenerative disorders are characterized by decreased regional cerebral blood flow. Supporting this concept, both cognitive training exercises and physical activity promote blood flow increase and correlate with healthy cognitive aging. The terminal branches of the posterior circulation supply blood to areas of the brain, such as the thalamus, hippocampus, occipital lobe, and cerebellum, involved with important intellectual functions, particularly recent memory, visual-spatial functioning, and visuomotor adaptations. Amnesia and visual agnosia may be a complication of not only posterior circulation infarctions but also vertebrobasilar insufficiency (VBI) without accompanying structural infarcts. The cognitive impairment maybe a manifestation of transient attacks and may persist beyond resolution of symptoms related to ischemia. Early recognition of cognitive deficits in the VBI patient is important because several recent reports show stent placements or medical treatment may improve cognition. PMID:26738337

  9. Predictive models for circulating fluidized bed combustors

    SciTech Connect

    Gidaspow, D.

    1989-11-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. The purpose of these models is to help American industry, such as Combustion Engineering, design and scale-up CFB combustors that are capable of burning US Eastern high sulfur coals with low SO{sub x} and NO{sub x} emissions. In this report, presented as a technical paper, solids distributions and velocities were computed for a PYROFLOW circulating fluidized bed system. To illustrate the capability of the computer code an example of coal-pyrite separation is included, which was done earlier for a State of Illinois project. 24 refs., 20 figs., 2 tabs.

  10. Blood circulation under conditions of weightlessness

    NASA Technical Reports Server (NTRS)

    Kastyan, I. I.; Kopanev, V. I.

    1980-01-01

    Experimental materials and published data on the problem of blood circulation in man and animals under conditions of short and long term weightlessness are summarized. The data obtained allow the conclusion, that when humans spent 5 days in a weightless state their blood circulation was not essentially distributed. Some features of the functioning of the cardiovascular system are pointed out: delay of adaptation rate, increase in lability, etc. There is a discussion of the physiological mechanisms for the direct and indirect effect of weightlessness. The direct effect comprise the complex of reactions caused by the significant fall in hydrostatic pressure and the indirect embraces all the reactions arising in the organism resulting from disturbance of the systematic character of the analyzers that take part in the analysis of space realtions and the body's orientation in space.

  11. Genetically Encoded Voltage Indicators in Circulation Research

    PubMed Central

    Kaestner, Lars; Tian, Qinghai; Kaiser, Elisabeth; Xian, Wenying; Müller, Andreas; Oberhofer, Martin; Ruppenthal, Sandra; Sinnecker, Daniel; Tsutsui, Hidekazu; Miyawaki, Atsushi; Moretti, Alessandra; Lipp, Peter

    2015-01-01

    Membrane potentials display the cellular status of non-excitable cells and mediate communication between excitable cells via action potentials. The use of genetically encoded biosensors employing fluorescent proteins allows a non-invasive biocompatible way to read out the membrane potential in cardiac myocytes and other cells of the circulation system. Although the approaches to design such biosensors date back to the time when the first fluorescent-protein based Förster Resonance Energy Transfer (FRET) sensors were constructed, it took 15 years before reliable sensors became readily available. Here, we review different developments of genetically encoded membrane potential sensors. Furthermore, it is shown how such sensors can be used in pharmacological screening applications as well as in circulation related basic biomedical research. Potentials and limitations will be discussed and perspectives of possible future developments will be provided. PMID:26370981

  12. Circulation Control in NASA's Vehicle Systems

    NASA Technical Reports Server (NTRS)

    Rich, Paul; McKinley, Bob; Jones, Greg

    2005-01-01

    Specific to the application of any technology to a vehicle, such as circulation control, it is important to understand the process that NASA is using to set its direction in research and development. To see how circulation control fits into any given NASA program requires the reader to understand NASA's Vehicle Systems (VS) Program. The VS Program recently celebrated its first year of existence with an annual review - an opportunity to look back on accomplishments, solicit feedback, expand national advocacy and support for the program, and recognize key contributions. Since its formation last year, Vehicle Systems has coordinated seven existing entities in a streamlined aeronautics research effort. It invests in vehicle technologies to protect the environment, make air travel more accessible and affordable for Americans, enable exploration through new aerospace missions, and augment national security. This past year has seen a series of valuable partnerships with industry, academia, and government agencies to make crucial aeronautics advances and assure America s future in flight.

  13. Abyssal circulation in the Somali Basin

    NASA Astrophysics Data System (ADS)

    Dengler, M.; Quadfasel, D.; Schott, F.; Fischer, J.

    The bottom and deep circulation in the Somali Basin are investigated on the basis of hydrographic and direct velocity profiles from three shipboard surveys carried out during the southwest monsoon in 1995 and of velocity time series from the WOCE mooring array ICM7. The inflow of bottom water into the Somali Basin through the Amirante Passage drives a thermohaline circulation, which may be modulated by the monsoon wind forcing. Details of the abyssal circulation have been discussed controversially. Deep velocity records from the mooring array in the northern Somali Basin are dominated by fluctuations with periods of 30-50 days and amplitudes above 5 cm s -1. Despite this strong variability annual record averages indicate the existence of a deep western boundary current (DWBC) below 3000 m at the base of the continental slope south of Socotra Island as part of a cyclonic bottom circulation. The southwestward DWBC transport off Socotra Island is estimated to 2±1.3 Sv. The bottom and deep water exchange between the Somali and Arabian Basin north of 7°N is estimated from two cross-basin geostrophic velocity sections referenced by vertically averaged LADCP currents. For the bottom water, an eastward transport into the Arabian Basin of 1.4±0.5 Sv and 2.1±0.6 Sv was determined in June and August, respectively, while for the deep-water layer above 3500 m eastward transports of 3.6±2.3 Sv in June and 4.0±2.4 Sv in August were obtained.

  14. Direct-Circulation Stirling-Cycle Refrigerator

    NASA Technical Reports Server (NTRS)

    Ellison, Woody; Kohuth, Randall, Sr.

    1995-01-01

    In proposed cryogenic system, cold working fluid (helium) circulated directly from Stirling-cycle refrigerator machinery through loop of tubing to provide 15 W of cooling power at temperature of 80 K to scientific instruments or other devices located at some distance from machinery. (Separation of cooled devices from machinery may be dictated by engineering requirements including, need to isolate cooled devices from vibrations of machinery.) Advantages include less complexity, smaller size, lighter weight, and lower power consumption.

  15. Reconfigurable Josephson Circulator/Directional Amplifier

    NASA Astrophysics Data System (ADS)

    Sliwa, K. M.; Hatridge, M.; Narla, A.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2015-10-01

    Circulators and directional amplifiers are crucial nonreciprocal signal routing and processing components involved in microwave read-out chains for a variety of applications. They are particularly important in the field of superconducting quantum information, where the devices also need to have minimal photon losses to preserve the quantum coherence of signals. Conventional commercial implementations of each device suffer from losses and are built from very different physical principles, which has led to separate strategies for the construction of their quantum-limited versions. However, as recently theoretically, by establishing simultaneous pairwise conversion and/or gain processes between three modes of a Josephson-junction-based superconducting microwave circuit, it is possible to endow the circuit with the functions of either a phase-preserving directional amplifier or a circulator. Here, we experimentally demonstrate these two modes of operation of the same circuit. Furthermore, in the directional amplifier mode, we show that the noise performance is comparable to standard nondirectional superconducting amplifiers, while in the circulator mode, we show that the sense of circulation is fully reversible. Our device is far simpler in both modes of operation than previous proposals and implementations, requiring only three microwave pumps. It offers the advantage of flexibility, as it can dynamically switch between modes of operation as its pump conditions are changed. Moreover, by demonstrating that a single three-wave process yields nonreciprocal devices with reconfigurable functions, our work breaks the ground for the development of future, more complex directional circuits, and has excellent prospects for on-chip integration.

  16. Cluster Dynamics in a Circulating Fluidized Bed

    SciTech Connect

    Guenther, C.P.; Breault, R.W.

    2006-11-01

    A common hydrodynamic feature in industrial scale circulating fluidized beds is the presence of clusters. The continuous formation and destruction of clusters strongly influences particle hold-up, pressure drop, heat transfer at the wall, and mixing. In this paper fiber optic data is analyzed using discrete wavelet analysis to characterize the dynamic behavior of clusters. Five radial positions at three different axial locations under five different operating were analyzed using discrete wavelets. Results are summarized with respect to cluster size and frequency.

  17. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  18. Reducing mode circulating fluid bed combustion

    DOEpatents

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  19. Cardiac arrest equipment to support circulation.

    PubMed

    Aldridge, Matthew; Jevon, Phil

    Cardiac arrest trolleys must be equipped with all the instruments and medication needed to deal with an acute adult cardiac arrest. Nurses must not only be familiar with these contents but also know how to use, check and maintain them. This first part of this two-part series looked at equipment to aid airway and breathing; this second part focuses on circulation. Note that drug doses mentioned here relate to the adult patient and will be different for children. PMID:25223000

  20. The protein corona of circulating PEGylated liposomes.

    PubMed

    Palchetti, Sara; Colapicchioni, Valentina; Digiacomo, Luca; Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; La Barbera, Giorgia; Laganà, Aldo

    2016-02-01

    Following systemic administration, liposomes are covered by a 'corona' of proteins, and preserving the surface functionality is challenging. Coating the liposome surface with polyethylene glycol (PEG) is the most widely used anti-opsonization strategy, but it cannot fully preclude protein adsorption. To date, protein binding has been studied following in vitro incubation to predict the fate of liposomes in vivo, while dynamic incubation mimicking in vivo conditions remains largely unexplored. The main aim of this investigation was to determine whether shear stress, produced by physiologically relevant dynamic flow, could influence the liposome-protein corona. The corona of circulating PEGylated liposome was thoroughly compared with that formed by incubation in vitro. Systematic comparison in terms of size, surface charge and quantitative composition was made by dynamic light scattering, microelectrophoresis and nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). Size of coronas formed under static vs. dynamic incubation did not appreciably differ from each other. On the other side, the corona of circulating liposomes was more negatively charged than its static counterpart. Of note, the variety of protein species in the corona formed in a dynamic flow was significantly wider. Collectively, these results demonstrated that the corona of circulating PEGylated liposomes can be considerably different from that formed in a static fluid. This seems to be a key factor to predict the biological activity of a liposomal formulation in a physiological environment. PMID:26607013

  1. Circulation in a Short Cylindrical Couette System

    SciTech Connect

    Akira Kageyama; Hantao Ji; Jeremy Goodman

    2003-07-08

    In preparation for an experimental study of magnetorotational instability (MRI) in liquid metal, we explore Couette flows having height comparable to the gap between cylinders, centrifugally stable rotation, and high Reynolds number. Experiments in water are compared with numerical simulations. The flow is very different from that of an ideal, infinitely long Couette system. Simulations show that endcaps co-rotating with the outer cylinder drive a strong poloidal circulation that redistributes angular momentum. Predicted toroidal flow profiles agree well with experimental measurements. Spin-down times scale with Reynolds number as expected for laminar Ekman circulation; extrapolation from two-dimensional simulations at Re less than or equal to 3200 agrees remarkably well with experiment at Re approximately equal to 106. This suggests that turbulence does not dominate the effective viscosity. Further detailed numerical studies reveal a strong radially inward flow near both endcaps. After turning vertically along the inner cylinder, these flows converge at the midplane and depart the boundary in a radial jet. To minimize this circulation in the MRI experiment, endcaps consisting of multiple, differentially rotating rings are proposed. Simulations predict that an adequate approximation to the ideal Couette profile can be obtained with a few rings.

  2. Tropical atmospheric circulations with humidity effects

    PubMed Central

    Hsia, Chun-Hsiung; Lin, Chang-Shou; Ma, Tian; Wang, Shouhong

    2015-01-01

    The main objective of this article is to study the effect of the moisture on the planetary scale atmospheric circulation over the tropics. The modelling we adopt is the Boussinesq equations coupled with a diffusive equation of humidity, and the humidity-dependent heat source is modelled by a linear approximation of the humidity. The rigorous mathematical analysis is carried out using the dynamic transition theory. In particular, we obtain mixed transitions, also known as random transitions, as described in Ma & Wang (2010 Discrete Contin. Dyn. Syst. 26, 1399–1417. (doi:10.3934/dcds.2010.26.1399); 2011 Adv. Atmos. Sci. 28, 612–622. (doi:10.1007/s00376-010-9089-0)). The analysis also indicates the need to include turbulent friction terms in the model to obtain correct convection scales for the large-scale tropical atmospheric circulations, leading in particular to the right critical temperature gradient and the length scale for the Walker circulation. In short, the analysis shows that the effect of moisture lowers the magnitude of the critical thermal Rayleigh number and does not change the essential characteristics of dynamical behaviour of the system. PMID:25568615

  3. Acoustic streaming and Sun's meridional circulation

    NASA Astrophysics Data System (ADS)

    Valverde, Jose Manuel

    2016-09-01

    A vast number of physical processes involving oscillations of a bounded viscous fluid are relevantly influenced by acoustic streaming. When this happens a steady circulation of fluid develops in a thin boundary adjacent to the interface. Some examples are refracted sound waves, a fluid inside a spherical cavity undergoing torsional oscillations or a pulsating liquid droplet. Steady streaming around circular interfaces consists of a hemispherically symmetric recirculation of fluid from the equatorial plane to the polar axes closely resembling the meridional circulation pattern observed in the Sun's convection zone that determines the solar cycle. In this paper, it is argued that the acoustic pulsations exhibited by the Sun would lead to acoustic streaming in the boundary of the convection zone. A simple estimation using a typical dominant frequency of 3 mHz and the observed surface oscillation amplitude yields a steady streaming velocity us ∼ 10 m s‑1, which is on the order of the meridional circulation velocity observed in the Sun's convection zone.

  4. Ocean circulation on the North Australian Shelf

    NASA Astrophysics Data System (ADS)

    Schiller, Andreas

    2011-07-01

    The ocean circulation on Australia's Northern Shelf is dominated by the Monsoon and influenced by large-scale interannual variability. These driving forces exert an ocean circulation that influences the deep Timor Sea Passage of the Indonesian Throughflow, the circulation on the Timor and Arafura Shelves and, further downstream, the Leeuwin Current. Seasonal maxima of northeastward (southwestward) volume transports on the shelf are almost symmetric and exceed 10 6 m 3/s in February (June). The associated seasonal cycle of vertical upwelling from June to August south of 8.5°S and between 124°E and 137.5°E exceeds 1.5×10 6 m 3/s across 40 m depth. During El Niño events, combined anomalies from the seasonal means of high regional wind stresses and low inter-ocean pressure gradients double the northeastward volume transport on the North Australian Shelf to 1.5×10 6 m 3/s which accounts for 20% of the total depth-integrated transport across 124°E and reduce the total transport of the Indonesian Throughflow. Variability of heat content on the shelf is largely determined by Pacific and Indian Ocean equatorial wind stress anomalies with some contribution from local wind stress forcing.

  5. The seasonal variability of the circulation in the South Indian Ocean: Model and observations

    NASA Astrophysics Data System (ADS)

    Matano, R. P.; Beier, E. J.; Strub, P. T.

    2008-11-01

    This article compares the seasonal variability patterns of the South Indian Ocean circulation derived from a global, eddy-permitting, numerical model and altimeter observations. The seasonal variability of the Indian Ocean circulation is driven by the inflow from the Indonesian Passages and by the local wind forcing. Our analysis indicates that the influence of the Indonesian throughflow is confined to the easternmost portion of the basin, while the influence of the wind stress forcing is important everywhere. Model and observations indicate that, between ~ 105°E and 75°E, the seasonal variability is characterized by the southwestward propagation of an annual wave over a period of ~ 4 months. Preliminary calculations using Pathfinder data also indicate that, in the western region, there are seasonal perturbations that originate in the tropics and propagate poleward through the Mozambique Channel. Our calculations, however, did not find the connections between the tropical and the Agulhas Current variability suggested by earlier modeling studies.

  6. Near-surface circulation in the South China Sea during the winter monsoon

    NASA Astrophysics Data System (ADS)

    Centurioni, L. R.; Niiler, P. N.; Lee, D.-K.

    2009-03-01

    Original velocity measurements at 15 m depth from Surface Velocity Program drifters are used to calculate the circulation in the South China Sea during the Winter Monsoon. The Ekman currents are computed with a new method and subtracted from drifter's velocity to calculate the residual circulation, which is approximately in geostrophic balance. The Ekman flow is nearly zonal and comparable to the zonal geostrophic flow in the northern basin. The geostrophic flow is cyclonic and extends into the southern Luzon Strait. Strong jets occur south of Hainan, off Vietnam and, to the south, off peninsular Malaysia. The Vietnam jet is concentrated inshore of the 200 m isobath, with mean speeds in excess of 1 m s-1. The onshore Ekman transport and pumping velocity computed from the wind stress curl offer a qualitative explanation of the existence and behavior of such jets.

  7. 40 CFR 230.23 - Current patterns and water circulation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Current patterns and water circulation... Potential Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.23 Current patterns and water circulation. (a) Current patterns and water circulation are the physical movements...

  8. 40 CFR 230.23 - Current patterns and water circulation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Current patterns and water circulation... Potential Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.23 Current patterns and water circulation. (a) Current patterns and water circulation are the physical movements...

  9. 40 CFR 230.23 - Current patterns and water circulation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Current patterns and water circulation... Potential Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.23 Current patterns and water circulation. (a) Current patterns and water circulation are the physical movements...

  10. 40 CFR 230.23 - Current patterns and water circulation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Current patterns and water circulation... Potential Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.23 Current patterns and water circulation. (a) Current patterns and water circulation are the physical movements...

  11. 40 CFR 230.23 - Current patterns and water circulation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Current patterns and water circulation... Potential Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.23 Current patterns and water circulation. (a) Current patterns and water circulation are the physical movements...

  12. 19 CFR 207.63 - Circulation of draft questionnaires.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Circulation of draft questionnaires. 207.63... SUBSIDIZED EXPORTS TO THE UNITED STATES Five-Year Reviews § 207.63 Circulation of draft questionnaires. (a) The Director shall circulate draft questionnaires to the parties for comment in each full review....

  13. Computer-aided design of stripline ferrite junction circulators

    NASA Technical Reports Server (NTRS)

    Uzdy, Z.

    1980-01-01

    A general design procedure is presented for stripline Y-junction circulators employing solid dielectric between ground planes. The resonator design and impedance matching are derived in a form suitable for computer evaluation. The procedure is applicable to cases where either the circulator bandwidth or the ground plane spacing is specified. An experimental S-band switching circulator design illustrates the technique.

  14. Hadley circulations for zonally averaged heating centered off the equator

    NASA Technical Reports Server (NTRS)

    Lindzen, Richard S.; Hou, Arthur Y.

    1988-01-01

    Consistent with observations, it is found that moving peak heating even 2 deg off the equator leads to profound asymmetries in the Hadley circulation, with the winter cell amplifying greatly and the summer cell becoming negligible. It is found that the annually averaged Hadley circulation is much larger than the circulation forced by the annually averaged heating.

  15. Use of JANAF Tables in Equilibrium Calculations and Partition Function Calculations for an Undergraduate Physical Chemistry Course

    ERIC Educational Resources Information Center

    Cleary, David A.

    2014-01-01

    The usefulness of the JANAF tables is demonstrated with specific equilibrium calculations. An emphasis is placed on the nature of standard chemical potential calculations. Also, the use of the JANAF tables for calculating partition functions is examined. In the partition function calculations, the importance of the zero of energy is highlighted.

  16. Elevated Levels of Circulating DNA in Cardiovascular Disease Patients: Metagenomic Profiling of Microbiome in the Circulation

    PubMed Central

    Dinakaran, Vasudevan; Rathinavel, Andiappan; Pushpanathan, Muthuirulan; Sivakumar, Ramamoorthy; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2014-01-01

    Cardiovascular diseases (CVDs) are the leading cause of death worldwide. An expanding body of evidence supports the role of human microbiome in the establishment of CVDs and, this has gained much attention recently. This work was aimed to study the circulating human microbiome in CVD patients and healthy subjects. The levels of circulating cell free DNA (circDNA) was higher in CVD patients (n = 80) than in healthy controls (n = 40). More specifically, the relative levels of circulating bacterial DNA and the ratio of 16S rRNA/β-globin gene copy numbers were higher in the circulation of CVD patients than healthy individuals. In addition, we found a higher circulating microbial diversity in CVD patients (n = 3) in comparison to healthy individuals (n = 3) by deep shotgun sequencing. At the phylum level, we observed a dominance of Actinobacteria in CVD patients, followed by Proteobacteria, in contrast to that in healthy controls, where Proteobacteria was predominantly enriched, followed by Actinobacteria. The circulating virome in CVD patients was enriched with bacteriophages with a preponderance of Propionibacterium phages, followed by Pseudomonas phages and Rhizobium phages in contrast to that in healthy individuals, where a relatively greater abundance of eukaryotic viruses dominated by Lymphocystis virus (LCV) and Torque Teno viruses (TTV) was observed. Thus, the release of bacterial and viral DNA elements in the circulation could play a major role leading to elevated circDNA levels in CVD patients. The increased circDNA levels could be either the cause or consequence of CVD incidence, which needs to be explored further. PMID:25133738

  17. Investigation of Northeastern North America Coastal Circulation Using a Nested Regional Circulation Hindcast Model

    NASA Astrophysics Data System (ADS)

    Chen, K.; He, R.

    2008-12-01

    A regional coastal circulation model was used to hindcast circulation over the middle Atlantic Bight (MAB) and Gulf of Maine (GOM) shelf from November 2003 to June 2008. Realistic atmospheric forcing, tidal harmonics and real-time river runoff data were used to drive the hindcast. In addition, this regional model was nested inside the data assimilative global HYCOM, which provides dynamically consistent and numerically accurate its initial and open boundary conditions. Model hindcast solutions were gauged against in situ observations, including coastal sea levels, satellite altimeter sea surface height, mooring observed temperature and salinity time series, glider hydrographic transects, and long term means of depth-averaged current analysis. Such data/model comparisons show the nested regional model is skillful in capturing major regional shelf circulation variability, lending confidence for using 4-year of time and space continuous hindcast fields (January 2004-December 2007) to depict shelf- wide circulation dynamics, along- and cross-shelf transport and the associated momentum balances. Model hindcast solutions confirm the existence of the equatorward shelf circulation with gradually decreased alongshore transport from north to south. Mean alongshelf current is characterized by a strong shelf-break jet, whereas the cross-shelf current is characterized by complex convergence and divergence on the shelf. Mean cross-shelf transports were estimated along 200-m isobath. Momentum balance analyses further nonlinear advection, stress and diffusion term all contribute to the ageostrophic circulation in the along- isobath directions, whereas in the across-isobath direction, the nonlinear advection is predominate. Our nested regional circulation model was also coupled with a 11-component ecosystem model. Some preliminary bio-physical modeling result will also be presented.

  18. Circulating interleukin-6 and rheumatoid arthritis

    PubMed Central

    Li, Bing; Xiao, Yu; Xing, Dan; Ma, Xin-long; Liu, Jun

    2016-01-01

    Abstract Interleukin-6 (IL-6), as a pleiotropic cytokine, has been demonstrated to be closely associated with the pathogenisis of rheumatoid arthritis (RA). However, whether this association is causal or not remains unclear, because of the multifactorial role of IL-6 and related confounding factors. We aimed to evaluate the causal relevance between circulating IL-6 levels and the risk of RA through meta-analytical Mendelian randomization approach. IL-6 gene -174G/C variant was selected as an instrument in this Mendelian randomization meta-analysis. Article identification and data collection were conducted in duplicate and independently by 2 authors. The STATA software was used for data analysis. In total, 15 and 5 articles on the association of the -174G/C variant with RA risk and circulating IL-6 level, respectively, were included. The overall analysis showed that C allelic and GC+CC genotype were significantly with 1.59-fold (95% CI: 1.19–2.14) and 1.63-fold (95% CI: 1.17–2.26) increased risk of developing RA, respectively. Asian populations showed stronger association with 4.55-fold (95% CI: 1.62–12.75), 1.84-fold (95% CI: 1.13–2.99), and 4.69-fold (95% CI: 1.68–13.14) increased RA risk in carriers of -174C allelic, CC, and GC+CC genotype, respectively. Carriers of GC+CC genotype showed significant reduction in the circulating IL-6 level compared with GG carriers (WMD = −0.77; 95% CI: −1.16 to −0.38; P = 0.000) in overall populations. Mendelian randomization presented 6% and 22% increased risk of RA with 0.1 pg/mL reduction of circulating IL-6 level in overall and Asian populations, respectively. This Mendelian randomization meta-analysis demonstrated that the long-term genetically reduced circulating IL-6 level might be causally related to a higher risk of RA, especially in Asian populations. PMID:27281095

  19. CT-perfusion imaging of the human brain: advanced deconvolution analysis using circulant singular value decomposition.

    PubMed

    Wittsack, H J; Wohlschläger, A M; Ritzl, E K; Kleiser, R; Cohnen, M; Seitz, R J; Mödder, U

    2008-01-01

    According to indicator dilution theory tissue time-concentration curves have to be deconvolved with arterial input curves in order to get valid perfusion results. Our aim was to adapt and validate a deconvolution method originating from magnetic resonance techniques and apply it to the calculation of dynamic contrast enhanced computed tomography perfusion imaging. The application of a block-circulant matrix approach for singular value decomposition renders the analysis independent of tracer arrival time to improve the results. PMID:18029143

  20. Analysis of gas/particles flow in the riser of a circulating fluidized bed

    SciTech Connect

    Arastoopour, H.; Benyahia, S.

    1999-07-01

    Computational fluid dynamics (CFD) packages (CFX and Fluent) governing equations were modified using kinetic theory for cohesive and non-cohesive particles of different sizes, and used to simulate 2-dimensional and 3-dimensional transient gas/particle flow behavior using FCC particles in the riser section of a circulating fluidized bed. The calculated solid flux velocity and pressure drop agreed reasonably well with the experimental data obtained using laser doppler anemometer and large-scale experiments.