Science.gov

Sample records for natural circulation flow

  1. Self-sustained hydrodynamic oscillations in a natural-circulation two-phase-flow boiling loop

    NASA Technical Reports Server (NTRS)

    Jain, K. C.

    1969-01-01

    Results of an experimental and theoretical study of factors affecting self-sustaining hydrodynamic oscillations in boiling-water loops are reported. Data on flow variables, and the effects of geometry, subcooling and pressure on the development of oscillatory behavior in a natural-circulation two-phase-flow boiling loop are included.

  2. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    SciTech Connect

    Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector

    2015-04-29

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  3. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    NASA Astrophysics Data System (ADS)

    Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector

    2015-04-01

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  4. Two-phase flow stability structure in a natural circulation system

    SciTech Connect

    Zhou, Zhiwei

    1995-09-01

    The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.

  5. Nonuniform steam generator U-tube flow distribution during natural circulation tests in ROSA-IV large scale test facility

    SciTech Connect

    Kukita, Y.; Nakamura, H.; Tasaka, K. ); Chauliac, C. )

    1988-08-01

    Natural circulation experiments were conducted in a large-scale (1/48 scale in volume) full-height simulator of a Westinghouse-type pressurized water reactor. This facility has two steam generators each containing 141 full-size U-tubes of 9 different heights. Transition of the natural circulation mode was observed in the experiments as the primary of side mass inventory was decreased. Three major circulation modes were observed: single-phase liquid natural circulation, two-phase natural circulation, and reflux condensation. For all these circulation modes, and during the transitions between the modes, the mass flow distribution among the steam generator U-tubes was significantly nonuniform. The longer U-tubes indicated reversed flow at higher primary side mass inventories and also tended to empty earlier than the shorter U-tubes when the primary side mass inventory was decreased.

  6. Two-phase flow instability and dryout in parallel channels in natural circulation

    SciTech Connect

    Duffey, R.B.; Rohatgi, U.S.; Hughes, E.D.

    1993-06-01

    The unique feature of parallel channel flows is that the pressure drop or driving head for the flow is maintained constant across any given channel by the flow in all the others, or by having a large downcomer or bypass in a natural circulation loop. This boundary condition is common in all heat exchangers, reactor cores and boilers, it is well known that the two-phase flow in parallel channels can exhibit both so-called static and dynamic instability. This leads to the question of the separability of the flow and pressure drop boundary conditions in the study of stability and dryout. For the areas of practical interest, the flow can be considered as incompressible. The dynamic instability is characterized by density (kinematic) or continuity waves, and the static instability by inertial (pressure drop) or manometric escalations. The static has been considered to be the zero-frequency or lowest mode of the dynamic case. We briefly review the status of the existing literature on both parallel channel static and dynamic instability, and the latest developments in theory and experiment. The difference between the two derivations lies in the retention of the time-dependent terms in the conservation equations. The effects and impact of design options are also discussed. Since dryout in parallel systems follows instability, it has been traditional to determine the dryout power for a parallel channel by testing a single channel with a given (inlet) flow boundary condition without particular regard for the pressure drop. Thus all modern dryout correlations are based on constant or fixed flow tests, a so-called hard inlet, and subchannel and multiple bundle effects are corrected for separately. We review the thinking that lead to this approach, and suggest that for all multiple channel and natural circulation systems close attention should be paid to the actual (untested) pressure drop conditions. A conceptual formulation is suggested as a basis for discussion.

  7. Survey of the literature applicable to two-phase natural circulation flows in the hot leg of a PWR: Final report

    SciTech Connect

    Valenzuela, J.A.; Crowley, C.J.; Wallis, G.B.

    1986-10-01

    This report reviews the two-phase flow literature relevant to the natural circulation flow in the hot leg of a pressurized water nuclear reactor during a small break loss of coolant accident. The phenomena of interest in two-phase naural circulation flows are numerous and complex. Three technical areas were identified for individual review in this report: gas-liquid flows in straight pipes; gas-liquid flows in bends; and two-phase natural circulation in reactor geometries. The literature has been surveyed, findings summarized, and suggestions have been made as to where the findings may influence thinking and model development for the reactor situation.

  8. Theoretical and computational analysis of flow oscillations in S-CO{sub 2} natural circulation loop

    SciTech Connect

    Smith, W. C.; Podowski, M. Z.

    2012-07-01

    The objective of this paper is to present a new model of natural-circulation loop cooled using fluids at slightly supercritical pressures. The modeling concept is based on the first principle time- and position-depended conservation equations, combined with analytic models of temperature and pressure-dependent fluid properties and a pressure control line connected to a pressurizer. Extensive parametric testing has been performed of the numerical solution method used in the analysis. The results of model predictions have been compared against other existing results, both theoretical and experimental. In particular, the model has been used in the analysis of a transient response of the SCO{sub 2} loop reported by Milone [1]. (authors)

  9. Natural circulation reactor design safety analysis

    NASA Astrophysics Data System (ADS)

    Zheng, Dong

    2001-07-01

    This thesis study covers both global performance and local phenomena analyses focusing on natural circulation reactor design safety. Four important topics are included: the global SBWR design safety assessment, important local phenomena investigation, steady and transient natural circulation process study, and two-phase instability analysis. The conceptual design of the SBWR-200 is introduced in this thesis and the global performance of a natural circulation reactor is then assessed using PUMA integral test data and RELAP5 simulations. A safety assessment methodology is developed to evaluate the PUMA integral test data extrapolation and code scalability. The RELAP5 code simulation capability in low-pressure low-flow conditions is also validated. The study shows that the code is capable of predicting the global accident scenario in natural circulation reactors with reasonable accuracy, while failing to reproduce some safety related local phenomena. The natural circulation process is investigated in detail using PUMA separate effect natural circulation tests. The natural circulation flow rate and heat transfer rate have been modeled analytically and numerically. The work indicates that two-phase natural circulation has enough capability to remove decay power. However, the flow instability observed in two-phase natural circulation cases seriously challenges the feasibility of natural circulation reactor design. The instability is classified as a type of density wave instability induced by flashing. A detailed stability study is performed focusing on flashing induced instability under natural circulation condition. Various flashing phenomena have been studied and a mechanistic flashing model has been proposed and improved using a relaxation method. The developed relaxation flashing model can be applied to general two-phase non-equilibrium phenomena.

  10. A study on the effect of various design parameters on the natural circulation flow rate of the ex-vessel core catcher cooling system of EU-APR1400

    SciTech Connect

    Rhee, B. W.; Ha, K. S.; Park, R. J.; Song, J. H.

    2012-07-01

    In this paper, a study on the effect of various design parameters such as the channel gap width, heat flux distribution, down-comer pipe size and two-phase flow slip ratio on the natural circulation flow rate is performed based on a physical model for a natural circulation flow along the flow path of the ex-vessel core catcher cooling system of an EU-APR1400, and these effects on the natural circulation flow rate are analyzed and compared with the minimum flow rate required for the safe operation of the system. (authors)

  11. Quenching phenomena in natural circulation loop

    SciTech Connect

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  12. A scaling study of the natural circulation flow of the ex-vessel core catcher cooling system of EU-APR1400 for designing a scale-down test facility for design verification

    SciTech Connect

    Rhee, B. W.; Ha, K. S.; Park, R. J.; Song, J. H.; Revankar, S. T.

    2012-07-01

    In this paper a scaling study on the steady state natural circulation flow along the flow path of the ex vessel core catcher cooling system of EU-APR1400 is described, and the scaling criteria for reproducing the same steady state thermalhydraulic characteristics of the natural circulation flow as a prototype core catcher cooling system in the scale-down test facility are derived in terms of the down-comer pipe diameter and orifice resistance. (authors)

  13. Laser anemometry measurements of natural circulation flow in a scale model PWR reactor system. [Pressurized Water Reactor

    NASA Technical Reports Server (NTRS)

    Kadambi, J. R.; Schneider, S. J.; Stewart, W. A.

    1986-01-01

    The natural circulation of a single phase fluid in a scale model of a pressurized water reactor system during a postulated grade core accident is analyzed. The fluids utilized were water and SF6. The design of the reactor model and the similitude requirements are described. Four LDA tests were conducted: water with 28 kW of heat in the simulated core, with and without the participation of simulated steam generators; water with 28 kW of heat in the simulated core, with the participation of simulated steam generators and with cold upflow of 12 lbm/min from the lower plenum; and SF6 with 0.9 kW of heat in the simulated core and without the participation of the simulated steam generators. For the water tests, the velocity of the water in the center of the core increases with vertical height and continues to increase in the upper plenum. For SF6, it is observed that the velocities are an order of magnitude higher than those of water; however, the velocity patterns are similar.

  14. Severe accident natural circulation studies at the INEL

    SciTech Connect

    Bayless, P.D.; Brownson, D.A.; Dobbe, C.A.; Jones, K.R.; O`Brien, J.E.; Pafford, D.J.; Schlenker, L.D.; Tung, V.X.

    1995-02-01

    Severe accident natural circulation flows have been investigated at the Idaho National Engineering Laboratory to better understand these flows and their potential impacts on the progression of a pressurized water reactor severe accident. Parameters affecting natural circulation in the reactor vessel and hot legs were identified and ranked based on their perceived importance. Reviews of the scaling of the 1/7-scale experiments performed by Westinghouse were undertaken. RELAP5/MOD3 calculations of two of the experiments showed generally good agreement between the calculated and observed behavior. Analyses of hydrogen behavior in the reactor vessel showed that hydrogen stratification is not likely to occur, and that an initially stratified layer of hydrogen would quickly mix with a recirculating steam flow. An analysis of the upper plenum behavior in the Three Mile Island, Unit 2 reactor concluded that vapor temperatures could have been significantly higher than the temperatures seen by the control rod drive lead screws, supporting the premise that a strong natural circulation flow was likely present during the accident. SCDAP/RELAP5 calculations of a commercial pressurized water reactor severe accident without operator actions showed that the natural circulation flows enhance the likelihood of ex-vessel piping failures long before failure of the reactor vessel lower head.

  15. Natural circulation under severe accident conditions

    SciTech Connect

    Pafford, D.J.; Hanson, D.J.; Tung, V.X.; Chmielewski, S.V.

    1992-01-01

    Research is being conducted to better understand natural circulation phenomena in mixtures of steam and noncondensibles and its influence on the temperature of the vessel internals and the hot leg, pressurizer surge line, and steam generator tubes. The temperature of these structures is important because their failure prior to reactor vessel lower head failure could reduce the likelihood of containment failure as a result of direct containment heating. Computer code calculations (MELPROG, SCDAP/RELAP5/MOD3) predict high fluid temperatures in the upper plenum resulting from in-vessel natural circulation. Using a simple model for the guide tube phenomena, high upper plenum temperatures are shown to be consistent with the relatively low temperatures that were deduced metallurgically from leadscrews removed from the TMI-2 upper plenum. Evaluation of the capabilities of the RELAP5/MOD3 computer code to predict natural circulation behavior was also performed. The code was used to model the Westinghouse natural circulation experimental facility. Comparisons between code calculations and results from experiments show good agreement.

  16. Natural circulation under severe accident conditions

    SciTech Connect

    Pafford, D.J.; Hanson, D.J.; Tung, V.X.; Chmielewski, S.V.

    1992-12-31

    Research is being conducted to better understand natural circulation phenomena in mixtures of steam and noncondensibles and its influence on the temperature of the vessel internals and the hot leg, pressurizer surge line, and steam generator tubes. The temperature of these structures is important because their failure prior to reactor vessel lower head failure could reduce the likelihood of containment failure as a result of direct containment heating. Computer code calculations (MELPROG, SCDAP/RELAP5/MOD3) predict high fluid temperatures in the upper plenum resulting from in-vessel natural circulation. Using a simple model for the guide tube phenomena, high upper plenum temperatures are shown to be consistent with the relatively low temperatures that were deduced metallurgically from leadscrews removed from the TMI-2 upper plenum. Evaluation of the capabilities of the RELAP5/MOD3 computer code to predict natural circulation behavior was also performed. The code was used to model the Westinghouse natural circulation experimental facility. Comparisons between code calculations and results from experiments show good agreement.

  17. IN SITU FLOW METERS AROUND A GROUNDWATER CIRCULATION WELL (ABSTRACT)

    EPA Science Inventory

    The primary benefit of groundwater circulation well (GCW) technology is the development of strong vertical flows surrounding the treatment well. The extent of significant vertical flow surrounding a circulation well is difficult to establish from traditional groundwater elevation...

  18. IN SITU FLOW METERS AROUND A GROUNDWATER CIRCULATION WELL (PAPER)

    EPA Science Inventory

    The primary benefit of groundwater circulation well (GCW) technology is the development of strong vertical flows surrounding the treatment well. The extent of significant vertical flow surrounding a circulation well is difficult to establish from traditional groundwater elevation...

  19. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  20. Numerical simulation of losses along a natural circulation helium loop

    NASA Astrophysics Data System (ADS)

    Knížat, Branislav; Urban, František; Mlkvik, Marek; RidzoÅ, František; Olšiak, Róbert

    2016-06-01

    A natural circulation helium loop appears to be a perspective passive method of a nuclear reactor cooling. When designing this device, it is important to analyze the mechanism of an internal flow. The flow of helium in the loop is set in motion due to a difference of hydrostatic pressures between cold and hot branch. Steady flow at a requested flow rate occurs when the buoyancy force is adjusted to resistances against the flow. Considering the fact that the buoyancy force is proportional to a difference of temperatures in both branches, it is important to estimate the losses correctly in the process of design. The paper deals with the calculation of losses in branches of the natural circulation helium loop by methods of CFD. The results of calculations are an important basis for the hydraulic design of both exchangers (heater and cooler). The analysis was carried out for the existing model of a helium loop of the height 10 m and nominal heat power 250 kW.

  1. Thermal hydraulic modeling of a natural circulation loop

    NASA Astrophysics Data System (ADS)

    Jiang, S. Y.; Wu, X. X.; Zhang, Y. J.; Jia, H. J.

    The experiment was carried out on the test loop HRTL-5, which simulates the geometry and system design of a 5MW nuclear heating reactor. The analysis was based on a one-dimensional two-phase flow drift model with conservation equations for mass, steam, energy and momentum. Clausius-Clapeyron equation was used for the calculation of flashing front in the riser. A set of ordinary equations, which describes the behavior of two-phase flow in the natural circulation system, was derived through integration of the above conservation equations for the subcooled boiling region, bulk boiling region in the heated section and for the riser. The method of time-domain was used for the calculation. Both static and dynamic results are presented. System pressure, inlet subcooling and heat flux are varied as input parameters. The results show that subcooled boiling in the heated section and void flashing in the riser have significant influence on the distribution of the void fraction, mass flow rate and flow instability of the system, especially at low pressure. The response of mass flow rate, after a small disturbance in the heat flux is shown, and based on it the instability map of the system is given through experiment and calculation. There exists three regions in the instability map of the investigated natural circulation system, namely, the stable two-phase flow region, the unstable bulk and subcooled boiling flow region and the stable subcooled boiling and single phase flow region. The mechanism of two-phase flow oscillation is interpreted.

  2. A heat exchanger between forced flow helium gas at 14 to 18 K andliquid hydrogen at 20 K circulated by natural convection

    SciTech Connect

    Green, M.A.; Ishimoto, S.; Lau, W.; Yang, S.

    2003-09-15

    The Muon Ionization Cooling Experiment (MICE) has three 350-mm long liquid hydrogen absorbers to reduce the momentum of 200 MeV muons in all directions. The muons are then re-accelerated in the longitudinal direction by 200 MHz RF cavities. The result is cooled muons with a reduced emittance. The energy from the muons is taken up by the liquid hydrogen in the absorber. The hydrogen in the MICE absorbers is cooled by natural convection to the walls of the absorber that are in turn cooled by helium gas that enters at 14 K. This report describes the MICE liquid hydrogen absorber and the heat exchanger between the liquid hydrogen and the helium gas that flows through passages in the absorber wall.

  3. Restoring Blood Flow Beats Exercise for Poor Leg Circulation

    MedlinePlus

    ... news/fullstory_158683.html Restoring Blood Flow Beats Exercise for Poor Leg Circulation Opening vessels could prevent ... restore blood flow may have greater benefits than exercise, preliminary research suggests. People with peripheral artery disease ( ...

  4. Independent review of SCDAP/RELAP5 natural circulation calculations

    SciTech Connect

    Martinez, G.M.; Gross, R.J.; Martinez, M.J.; Rightley, G.S.

    1994-01-01

    A review and assessment of the uncertainties in the calculated response of reactor coolant system natural circulation using the SCDAP/RELAP5 computer code were completed. The SCDAP/RELAP5 calculation modeled a station blackout transient in the Surry nuclear power plant and concluded that primary system depressurization from natural circulation induced primary system failure is more likely than previously thought.

  5. Analysis of vortical flow with axial swirl and toroidal circulation

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sukalyan

    2006-11-01

    Vortical flows with an axial swirl and a toroidal circulation can be observed in a wide range of fluid mechanical phenomena such as flow around rotary machines or natural vortices like tornadoes and hurricanes. These flows can be described by a general scalar equation if incompressible fluid and negligible viscous dissipation are assumed. We consider one of the simpler cases of this general formulation where the involved equation has a resemblance with the governing equation of the hydrogen problem. As a result, we obtain a quantization relation similar to the expression of quantized energies in an hydrogen atom. We solve the equation for two systems. First, we consider three- dimensional vortices confined between two parallel walls. Our examples include flows between two infinite plates, inside and outside of a vertical cylinder bounded at the ends by walls, and in an axially confined annular region. Then we also use our formulation to compute highly chaotic velocity fields with three-dimensional vortical structures which qualitatively mimic the features of physical flows. Hence, these solutions may be used in modeling of complicated flow systems.

  6. FFTF primary system transition to natural circulation from low reactor power

    SciTech Connect

    Bouchey, G.D.; Additon, S.L.; Nutt, W.T.

    1980-01-01

    Plans for reactor and primary loop natural circulation testing in the Fast Flux Test Facility (FFTF) are summarized. Detailed pretest planning with an emphasis on understanding the implications of process noise and model uncertainties for model verification and test acceptance are discussed for a transition to natural circulation in the reactor core and primary heat transport loops from initial conditions of 5% of rated reactor power and 75% of full flow.

  7. Pressure-flow relations in coronary circulation.

    PubMed

    Hoffman, J I; Spaan, J A

    1990-04-01

    The blood vessels that run on the surface of the heart and through its muscle are compliant tubes that can be affected by the pressures external to them in at least two ways. If the pressure outside these vessels is higher than the pressure at their downstream ends, the vessels may collapse and become Starling resistors or vascular waterfalls. If this happens, the flow through these vessels depends on their resistance and the pressure drop from their inflow to the pressure around them and is independent of the actual downstream pressure. In the first part of this review, the physics of collapsible tubes is described, and the possible occurrences of vascular waterfalls in the body is evaluated. There is good evidence that waterfall behavior is seen in collateral coronary arteries and in extramural coronary veins, but the evidence that intramural coronary vessels act like vascular waterfalls is inconclusive. There is no doubt that in systole there are high tissue pressures around the intramyocardial vessels, particularly in the subendocardial muscle of the left ventricle. The exact nature and values of the forces that act at the surface of the small intramural vessels, however, are still not known. We are not certain whether radial (compressive) or circumferential and longitudinal (tensile) stresses are the major causes of vascular compression; the role of collagen struts in modifying the reaction of vessel walls to external pressures is unknown but possibly important; direct examination of small subepicardial vessels has failed to show vascular collapse. One of the arguments in favor of intramyocardial vascular waterfalls has been that during a long diastole the flow in the left coronary artery decreases and reaches zero when coronary arterial pressure is still high: it can be as much as 50 mmHg in the autoregulating left coronary arterial bed and approximately 15-20 mmHg even when the vessels have been maximally dilated. These high zero flow pressures, especially

  8. Natural circulation in a liquid metal one-dimensional loop

    NASA Astrophysics Data System (ADS)

    Tarantino, M.; De Grandis, S.; Benamati, G.; Oriolo, F.

    2008-06-01

    A wide use of pure lead, as well as its alloys (such as lead-bismuth, lead-lithium), is foreseen in several nuclear-related fields: it is studied as coolant in critical and sub-critical nuclear reactors, as spallation target for neutron generation in several applications and for tritium generation in fusion systems. In this framework, a new facility named NAtural CIrculation Experiment (NACIE), has been designed at ENEA-Brasimone Research Centre. NACIE is a rectangular loop, made by stainless steel pipes. It consists mainly of a cold and hot leg and an expansion tank installed on the top of the loop. A fuel bundle simulator, made by three electrical heaters placed in a triangular lattice, is located in the lower part of the cold leg, while a tube in tube heat exchanger is installed in the upper part of the hot leg. The adopted secondary fluid is THT oil, while the foreseen primary fluid for the tests is lead-bismuth in eutectic composition (LBE). The aim of the facility is to carry out experimental tests of natural circulation and collect data on the heat transfer coefficient (HTC) for heavy liquid metal flowing through rod bundles. The paper is focused on the preliminary estimation of the LBE flow rate along the loop. An analytical methodology has been applied, solving the continuity, momentum and energy transport equations under appropriate hypothesis. Moreover numerical simulations have been performed. The FLUENT 6.2 CFD code has been utilized for the numerical simulations. The main results carried out from the pre-tests simulations are illustrated in the paper, and a comparison with the theoretical estimations is done.

  9. Nature of counterflow and circulation in vortex separators

    NASA Astrophysics Data System (ADS)

    Shtern, Vladimir N.; Borissov, Anatoli A.

    2010-08-01

    This paper focuses on the physical mechanism of elongated counterflows occurring in vortex tubes and hydrocyclones. To this end, a new solution to the Navier-Stokes equations is obtained which describes a flow pattern consisting of two through-flows and the global meridional circulation. One of the through-flows has U-shape geometry. It is shown that swirl decay due to fluid-wall friction induces both the U-shape through-flow and the circulation. The circulation does not deteriorate particle separation. The solution illustrates how the swirl-induced pressure distribution drives the counterflow and results in the paradoxical centrifugal stratification where the high-density fluid located at the periphery is hot while the low-density fluid located near the axis is cold.

  10. Cooling System Using Natural Circulation for Air Conditioning

    NASA Astrophysics Data System (ADS)

    Okazaki, Takashi; Seshimo, Yu

    In this paper, Cooling systems with natural circulation loop of refrigerants are reviewed. The cooling system can largely reduce energy consumption of a cooling system for the telecommunication base site. The cooling system consists of two refrigeration units; vapor compression refrigeration unit and sub-cooling unit with a natural-circulation loop. The experiments and calculations were carried out to evaluate the cycle performance of natural circulation loop with HFCs and CO2. The experimental results showed that the cooling capacity of R410A is approximately 30% larger than that of R407C at the temperature difference of 20K and the cooling capacity of CO2 was approximately 4-13% larger than that of R410A under the two-phase condition. On the other hand, the cooling capacity of CO2 was approximately 11% smaller than that of R410A under the supercritical condition. The cooling capacity took a maximum value at an amount of refrigerant and lineally increased as the temperature difference increases and the slightly increased as the height difference. The air intake temperature profile in the inlet of the heat exchangers makes the reverse circulation under the supercritical state and the driving head difference for the reverse circulation depends on the density change to temperature under the supercritical state. Also, a new fan control method to convert the reverse circulation into the normal circulation was reviewed.

  11. Study of natural circulation in a VHTR after a LOFA using different turbulence models

    SciTech Connect

    Yu-Hsin Tung; Yuh-Ming Ferng; Richard W. Johnson; Ching-Chang Chieng

    2013-10-01

    Natural convection currents in the core are anticipated in the event of the failure of the gas circulator in a prismatic gas-cooled very high temperature reactor (VHTR). The paths that the helium coolant takes in forming natural circulation loops and the effective heat transport are of interest. The heated flow in the reactor core is turbulent during normal operating conditions and at the beginning of the LOFA with forced convection, but the flow may significantly be slowed down after the event and laminarized with mixed convection. In the present study, the potential occurrence and effective heat transport of natural circulation are demonstrated using computational fluid dynamic (CFD) calculations with different turbulence models as well as laminar flow. Validations and recommendation on turbulence model selection are conducted. The study concludes that large loop natural convection is formed due to the enhanced turbulence levels by the buoyancy effect and the turbulent regime near the interface of upper plenum and flow channels increases the flow resistance for channel flows entering upper plenum and thus less heat can be removed from the core than the prediction by laminar flow assumption.

  12. Transient boiling in two-phase helium natural circulation loops

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2014-01-01

    Two-phase helium natural circulation loops are used for cooling large superconducting magnets, as CMS for LHC. During normal operation or in the case of incidents, transients are exerted on the cooling system. Here a cooling system of this type is studied experimentally. Sudden power changes are operated on a vertical-heated-section natural convection loop, simulating a fast increase of heat deposition on magnet cooling pipes. Mass flow rate, heated section wall temperature and pressure drop variations are measured as a function of time, to assess the time behavior concerning the boiling regime according to the values of power injected on the heated section. The boiling curves and critical heat flux (CHF) values have been obtained in steady state. Temperature evolution has been observed in order to explore the operating ranges where heat transfer is deteriorated. Premature film boiling has been observed during transients on the heated section in some power ranges, even at appreciably lower values than the CHF. A way of attenuating these undesired temperature excursions has been identified through the application of high enough initial heating power.

  13. Natural Circulation Patterns in the VHTR Air-Ingress Accident and Related Issues

    SciTech Connect

    Chang Ho Oh; Eung Soo Kim; Hyung Seok Kang

    2010-10-01

    A natural circulation pattern in a Very High Gas-Cooled Reactor during a hypothetical air-ingress accident has been investigated using computational fluid dynamic (CFD) methods in order to compare with the previous 1-D flow path model for the air-ingress analyses. The GT-MHR 600 MWt reactor was selected to be the reference design and modeled by a half symmetric 3-D geometry using FLUENT 6.3, a commercial CFD code. The simulation was carried out as steady-state calculations, and the boundary conditions were either assumed or provided from the 1-D GAMMA code results. Totally, 12 different cases have been estimated, and many notable findings and results have been obtained in this study. According to the simulations, the natural circulation pattern in the reactor was quite different from the previous 1-D assumptions. A large re-circulation flow with thermal stratification phenomena was clearly observed in the hot-leg and the lower plenum in the 3-D model. This re-circulation flow provided approximately an order faster air-ingress speed (0.46 m/s in superficial velocity) than previously predicted values by 1-D modeling (0.02~0.03 m/s). It indicates that the 1-D air-ingress modeling may significantly distort the air-ingress scenario and consequences. In addition, the complicated natural circulation pattern is eventually expected to lead to very complex graphite oxidations and corrosion patterns.

  14. Two-phase natural-circulation experiments in a test facility modeled after Three Mile Island Unit-2. Final report

    SciTech Connect

    Kiang, R.L.

    1981-10-01

    A series of natural circulation experiments was conducted in a test facility that was configured after the primary and the secondary cooling systems of TMI-2. Results support the feasibility of core residual heat removal by two-phase natural circulation. Tests with noncondensable gas in the primary system indicate that two-phase natural circulation is quite tolerant of the presence of noncondensable gas. The different modes of natural circulation were discovered. Mode 1, during which only saturated steam flows in the hot leg, accomplishes the heat removal via phase changes in the vessel and in the steam generator tubes. Mode 2, during which a percolating flow exists in the hot leg, removes the heat by means of a much faster circulation in the primary loop.

  15. Multiple model identification of a cold flow circulating fluidized bed

    SciTech Connect

    Panday, Rupen; Famouri, P.; Woerner, B.D.; Turton, R.; •Ludlow, J.C.; Shadle, L.J.; Boyle, E.J.

    2008-05-13

    Solids circulation rate is an important parameter that is essential to the control and improved performance of a circulating fluidized bed system. The present work focuses on the identification of a cold flow circulating fluidized bed using a multiple model identification technique that considers the given set-up as a nonlinear dynamic system and predicts the solids circulation rate as a function of riser aeration, move air flow rate, and total riser pressure drop. The predictor model obtained from this technique is trained on glass beads data sets in which riser aeration and move air flow are varied randomly one at a time. The global linear state space model obtained from the N4SID algorithm is trained on the same data set and the prediction results of solids circulation rate from both these algorithms are tested against data obtained at operating conditions different from the training data. The comparison between the two methods shows that the prediction results obtained from the multiple model technique are better than those obtained from the global linear model. The number of local models is increased from two to five and two third order state space models are sufficient for the present sets of data.

  16. Stabilization of the Circulation Flow of the Cryogenic Distillation Column

    NASA Astrophysics Data System (ADS)

    Juromskiy, V. M.

    Two-circuit system of automatic stabilization of the hydrodynamics of the cryogenic distillation column is considered. Control system eliminates flooding/depletion of column in long-term mode of operation when the accuracy of stabilization of the circulation flow is better than 1%.

  17. System model of a natural circulation integral test facility

    NASA Astrophysics Data System (ADS)

    Galvin, Mark R.

    The Department of Nuclear Engineering and Radiation Health Physics (NE/RHP) at Oregon State University (OSU) has been developing an innovative modular reactor plant concept since being initiated with a Department of Energy (DoE) grant in 1999. This concept, the Multi-Application Small Light Water Reactor (MASLWR), is an integral pressurized water reactor (PWR) plant that utilizes natural circulation flow in the primary and employs advanced passive safety features. The OSU MASLWR test facility is an electrically heated integral effects facility, scaled from the MASLWR concept design, that has been previously used to assess the feasibility of the concept design safety approach. To assist in evaluating operational scenarios, a simulation tool that models the test facility and is based on both test facility experimental data and analytical methods has been developed. The tool models both the test facility electric core and a simulated nuclear core, allowing evaluation of a broad spectrum of operational scenarios to identify those scenarios that should be explored experimentally using the test facility or design-quality multi-physics tools. Using the simulation tool, the total cost of experimentation and analysis can be reduced by directing time and resources towards the operational scenarios of interest.

  18. Single and two-phase natural circulation in Westinghouse pressurized water reactor simulators: Phenomena, analysis and scaling

    SciTech Connect

    Schultz, R.R.; Chapman, J.C.; Kukita, Y.; Motley, F.E.; Stumpf, H.; Chen, Y.S.; Tasaka, K.

    1987-01-01

    Natural circulation data obtained in the 1/48 scale W four loop PWR simulator - the Large Scale Test Facility (LSTF) are discussed and summarized. Core cooling modes, the primary fluid state, the primary loop mass flow and localized natural circulation phenomena occurring in the steam generator are presented. TRAC-PF1 LSTF model (using both a 1 U-tube and a 3 U-tube steam generator model) analyses of the LSTF natural circulation data including the SG recirculation patterns are presented and compared to the data. The LSTF data are then compared to similar natural circulation data obtained in the Primarkreislaufe (PKL) and the Semiscale facilities. Based on the 1/48 to 1/1705 scaling range which exists between the facilities, the implications of these data towrard natural circulation behavior in commercial plants are briefly discussed.

  19. Monitoring circulating apoptotic cells by in-vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Wei, Xunbin; Tan, Yuan; Chen, Yun; Zhang, Li; Li, Yan; Liu, Guangda; Wu, Bin; Wang, Chen

    2008-02-01

    Chemotherapies currently constitute one main venue of cancer treatment. For a large number of adult and elderly patients, however, treatment options are poor. These patients may suffer from disease that is resistant to conventional chemotherapy or may not be candidates for curative therapies because of advanced age or poor medical conditions. To control disease in these patients, new therapies must be developed that are selectively targeted to unique characteristics of tumor cell growth and metastasis. A reliable early evaluation and prediction of response to the chemotherapy is critical to its success. Chemotherapies induce apoptosis in tumor cells and a portion of such apoptotic cancer cells may be present in the circulation. However, the fate of circulating tumor cells is difficult to assess with conventional methods that require blood sampling. We report the in situ measurement of circulating apoptotic cells in live animals using in vivo flow cytometry, a novel method that enables real-time detection and quantification of circulating cells without blood extraction. Apoptotic cells are rapidly cleared from the circulation with a half-life of ~10 minutes. Real-time monitoring of circulating apoptotic cells can be useful for detecting early changes in disease processes, as well as for monitoring response to therapeutic intervention.

  20. Natural Circulation Patterns in the VHTR Air-Ingress Accident and Related Issues

    SciTech Connect

    Chang H. Oh; Eung S. Kim

    2012-08-01

    Natural circulation patterns in the VHTR during a hypothetical air-ingress accident have been investigated using computational fluid dynamic (CFD) methods in order to compare results from the previous 1-D model which was developed using GAMMA code for the air-ingress analyses. The GT-MHR 600 MWt reactor was selected to be the reference design and modeled by a half symmetric 3-D geometry using FLUENT 6.3, a commercial CFD code. CFD simulations were carried out as the steady-state calculation, and the boundary conditions were either assumed or provided from the 1-D GAMMA code results. Totally, 12 different cases have been reviewed, and many notable results have been obtained through in this work. According to the simulations, natural circulation patterns in the reactor were quite different from the previous 1-D assumptions. A large re-circulation flow with thermal stratification phenomena was clearly observed in the hot-leg and the lower plenum in the 3-D model. This re-circulation flow provided about an order faster air-ingress speed (0.46 m/s in superficial velocity) than previously predicted by 1-D modeling (0.02~0.03 m/s). It indicates that the 1-D air-ingress modeling may significantly distort the air-ingress scenario and consequences. In addition, complicated natural circulation patterns are eventually expected to result in very complex graphite oxidations and corrosion behaviors.

  1. An analytical and experimental investigation of natural circulation transients in a model pressurized water reactor

    SciTech Connect

    Massoud, M

    1987-01-01

    Natural Circulation phenomena in a simulated PWR was investigated experimentally and analytically. The experimental investigation included determination of system characteristics as well as system response to the imposed transient under symmetric and asymmetric operations. System characteristics were used to obtain correlation for heat transfer coefficient in heat exchangers, system flow resistance, and system buoyancy heat. Asymmetric transients were imposed to study flow oscillation and possible instability. The analytical investigation encompassed development of mathematical model for single-phase, steady-state and transient natural circulation as well as modification of existing model for two-phase flow analysis of phenomena such as small break LOCA, high pressure coolant injection and pump coast down. The developed mathematical model for single-phase analysis was computer coded to simulate the imposed transients. The computer program, entitled ''Symmetric and Asymmetric Analysis of Single-Phase Flow (SAS),'' were employed to simulate the imposed transients. It closely emulated the system behavior throughout the transient and subsequent steady-state. Modifications for two-phase flow analysis included addition of models for once-through steam generator and electric heater rods. Both programs are faster than real time. Off-line, they can be used for prediction and training applications while on-line they serve for simulation and signal validation. The programs can also be used to determine the sensitivity of natural circulation behavior to variation of inputs such as secondary distribution and power transients.

  2. Ultrasonic Doppler blood flow meter for extracorporeal circulation

    NASA Astrophysics Data System (ADS)

    Dantas, Ricardo G.; Costa, Eduardo T.; Maia, Joaquim M.; Nantes Button, Vera L. d. S.

    2000-04-01

    In cardiac surgeries it is frequently necessary to carry out interventions in internal heart structures, and where the blood circulation and oxygenation are made by artificial ways, out of the patient's body, in a procedure known as extracorporeal circulation (EC). During this procedure, one of the most important parameters, and that demands constant monitoring, is the blood flow. In this work, an ultrasonic pulsed Doppler blood flowmeter, to be used in an extracorporeal circulation system, was developed. It was used a 2 MHz ultrasonic transducer, measuring flows from 0 to 5 liters/min, coupled externally to the EC arterial line destined to adults perfusion (diameter of 9.53 mm). The experimental results using the developed flowmeter indicated a maximum deviation of 3.5% of full scale, while the blood flow estimator based in the rotation speed of the peristaltic pump presented deviations greater than 20% of full scale. This ultrasonic flowmeter supplies the results in a continuous and trustworthy way, and it does not present the limitations found in those flowmeters based in other transduction methods. Moreover, due to the fact of not being in contact with the blood, it is not disposable and it does not need sterilization, reducing operational costs and facilitating its use.

  3. MODELING STRATEGIES TO COMPUTE NATURAL CIRCULATION USING CFD IN A VHTR AFTER A LOFA

    SciTech Connect

    Yu-Hsin Tung; Richard W. Johnson; Ching-Chang Chieng; Yuh-Ming Ferng

    2012-11-01

    A prismatic gas-cooled very high temperature reactor (VHTR) is being developed under the next generation nuclear plant program (NGNP) of the U.S. Department of Energy, Office of Nuclear Energy. In the design of the prismatic VHTR, hexagonal shaped graphite blocks are drilled to allow insertion of fuel pins, made of compacted TRISO fuel particles, and coolant channels for the helium coolant. One of the concerns for the reactor design is the effects of a loss of flow accident (LOFA) where the coolant circulators are lost for some reason, causing a loss of forced coolant flow through the core. In such an event, it is desired to know what happens to the (reduced) heat still being generated in the core and if it represents a problem for the fuel compacts, the graphite core or the reactor vessel (RV) walls. One of the mechanisms for the transport of heat out of the core is by the natural circulation of the coolant, which is still present. That is, how much heat may be transported by natural circulation through the core and upwards to the top of the upper plenum? It is beyond current capability for a computational fluid dynamic (CFD) analysis to perform a calculation on the whole RV with a sufficiently refined mesh to examine the full potential of natural circulation in the vessel. The present paper reports the investigation of several strategies to model the flow and heat transfer in the RV. It is found that it is necessary to employ representative geometries of the core to estimate the heat transfer. However, by taking advantage of global and local symmetries, a detailed estimate of the strength of the resulting natural circulation and the level of heat transfer to the top of the upper plenum is obtained.

  4. Liquid Fluoride Salt Experimentation Using a Small Natural Circulation Cell

    SciTech Connect

    Yoder Jr, Graydon L; Heatherly, Dennis Wayne; Williams, David F; Elkassabgi, Yousri M.; Caja, Joseph; Caja, Mario; Jordan, John; Salinas, Roberto

    2014-04-01

    A small molten fluoride salt experiment has been constructed and tested to develop experimental techniques for application in liquid fluoride salt systems. There were five major objectives in developing this test apparatus: Allow visual observation of the salt during testing (how can lighting be introduced, how can pictures be taken, what can be seen) Determine if IR photography can be used to examine components submerged in the salt Determine if the experimental configuration provides salt velocity sufficient for collection of corrosion data for future experimentation Determine if a laser Doppler velocimeter can be used to quantify salt velocities. Acquire natural circulation heat transfer data in fluoride salt at temperatures up to 700oC All of these objectives were successfully achieved during testing with the exception of the fourth: acquiring velocity data using the laser Doppler velocimeter. This paper describes the experiment and experimental techniques used, and presents data taken during natural circulation testing.

  5. FFTF operating experience with sodium natural circulation: slides included

    SciTech Connect

    Burke, T.M.; Additon, S.L.; Beaver, T.R.; Midgett, J.C.

    1981-01-01

    The Fast Flux Test Facility (FFTF) has been designed for passive, back-up, safety grade decay heat removal utilizing natural circulation of the sodium coolant. This paper discusses the process by which operator preparation for this emergency operating mode has been assured, in paralled with the design verification during the FFTF startup and acceptance testing program. Over the course of the test program, additional insights were gained through the testing program, through on-going plant analyses and through general safety evaluations performed throughout the nuclear industry. These insights led to development of improved operator training material for control of decay heat removal during both forced and natural circulation as well as improvements in the related plant operating procedures.

  6. Heat transfer to water from a vertical tube bundle under natural-circulation conditions. [PWR; BWR

    SciTech Connect

    Gruszczynski, M.J.; Viskanta, R.

    1983-01-01

    The natural circulation heat transfer data for longitudinal flow of water outside a vertical rod bundle are needed for developing correlations which can be used in best estimate computer codes to model thermal-hydraulic behavior of nuclear reactor cores under accident or shutdown conditions. The heat transfer coefficient between the fuel rod surface and the coolant is the key parameter required to predict the fuel temperature. Because of the absence of the required heat transfer coefficient data base under natural circulation conditions, experiments have been performed in a natural circulation loop. A seven-tube bundle having a pitch-to-diameter ratio of 1.25 was used as a test heat exchanger. A circulating flow was established in the loop, because of buoyancy differences between its two vertical legs. Steady-state and transient heat transfer measurements have been made over as wide a range of thermal conditions as possible with the system. Steady state heat transfer data were correlated in terms of relevant dimensionless parameters. Empirical correlations for the average Nusselt number, in terms of Reynolds number, Rayleigh number and the ratio of Grashof to Reynolds number are given.

  7. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    NASA Astrophysics Data System (ADS)

    Shi, Shanbin

    The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal

  8. Flow cytometric analysis of circulating microparticles in plasma.

    PubMed

    Orozco, Aaron F; Lewis, Dorothy E

    2010-06-01

    Microparticles, which include exosomes, micro-vesicles, apoptotic bodies and apoptotic microparticles, are small (0.05 - 3 mum in diameter), membranous vesicles that can contain DNA, RNA, miRNA, intracellular proteins and express extracellular surface markers from the parental cells. They can be secreted from intracellular multivesicular bodies or released from the surface of blebbing membranes. Circulating microparticles are abundant in the plasma of normal individuals and can be derived from circulating blood cells such as platelets, red blood cells and leukocytes as well as from tissue sources, such as endothelial and placental tissues. Elevated levels of microparticles are associated with various diseases such as thrombosis (platelet microparticles), congestive heart failure (endothelial microparticles), breast cancer patients (leukocyte microparticles) and women with preeclampsia (syncytiotrophoblast microparticles). Although microparticles can be detected by microscopy, enzyme-linked immunoassays and functional assays, flow cytometry is the preferred method because of the ability to quantitate (fluorescent bead- or flow rate-based method) and because of polychromatic capabilities. However, standardization of pre-analytical and analytical modus operandi for isolating, enumerating and fluorescent labeling of microparticles remains a challenge. The primary focus of this article is to review the preliminary steps required to optimally study circulating in vivo microparticles which include: 1) centrifugation speed used, 2) quantitation of microparticles before antibody labeling, 3) levels of fluorescence intensity of antibody-labeled microparticles, 4) polychromatic flow cytometric analysis of microparticle sub-populations and 5) use of polyclonal antibodies designed for Western blotting for flow cytometry. These studies determine a roadmap to develop microparticles as biomarkers for a variety of conditions. PMID:20235276

  9. Circulation system for flowing uranium hexafluoride cavity reactor experiments

    NASA Technical Reports Server (NTRS)

    Jaminet, J. F.; Kendall, J. S.

    1976-01-01

    Research related to determining the feasibility of producing continuous power from fissile fuel in the gaseous state is presented. The development of three laboratory-scale flow systems for handling gaseous UF6 at temperatures up to 500 K, pressure up to approximately 40 atm, and continuous flow rates up to approximately 50g/s is presented. A UF6 handling system fabricated for static critical tests currently being conducted is described. The system was designed to supply UF6 to a double-walled aluminum core canister assembly at temperatures between 300 K and 400 K and pressure up to 4 atm. A second UF6 handling system designed to provide a circulating flow of up to 50g/s of gaseous UF6 in a closed-loop through a double-walled aluminum core canister with controlled temperature and pressure is described. Data from flow tests using UF6 and UF6/He mixtures with this system at flow rates up to approximately 12g/s and pressure up to 4 atm are presented. A third UF6 handling system fabricated to provide a continuous flow of UF6 at flow rates up to 5g/s and at pressures up to 40 atm for use in rf-heated, uranium plasma confinement experiments is described.

  10. Pattern of Circulation of Norovirus GII Strains during Natural Infection

    PubMed Central

    Fobisong, Cajetan; Tah, Ferdinand; Lindh, Magnus; Nkuo-Akenji, Theresia; Bergström, Tomas

    2014-01-01

    Norovirus (NoV) is considered a major cause of nonbacterial gastroenteritis among people of all ages worldwide, but the natural course of infection is incompletely known. In this study, the pattern of circulation of NoVs was studied among 146 children and 137 adults in a small community in southwestern Cameroon. The participants provided monthly fecal samples during a year. NoV RNA was detected in at least one sample from 82 (29%) of the participants. The partial VP1 region could be sequenced in 36 NoV GII-positive samples. Three different genotypes were identified (GII.1, GII.4, and GII.17), with each genotype circulating within 2 to 3 months and reappearing after a relapse period of 2 to 3 months. Most infections occurred once, and 2 episodes at most within a year were detected. No difference in the frequency of NoV infection between children and adults was recorded. The same genotype was detected for a maximum of 2 consecutive months in 3 children only, suggesting that a less than 30-day duration of viral shedding in natural infection was common. Reinfection within a year with the same genotype was not observed, consistent with short-term homotypic immune protection. The study revealed that NoV strains are circulating with a limited duration of viral shedding both in the individuals and the population as part of their natural infection. The results also provide evidence of cross-protective immunity of limited duration between genotypes of the same genogroup. PMID:25274996

  11. Performance and stability analysis of gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems

    NASA Astrophysics Data System (ADS)

    Yoo, Yeon-Jong

    The purpose of this study is to investigate the performance and stability of the gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems. The target system is STAR-LM, which is a 400-MWt-class advanced lead-cooled fast reactor under development by Argonne National Laboratory and Oregon State University. The primary loop of STAR-LM relies on natural circulation to eliminate main circulation pumps for enhancement of passive safety. To significantly increase the natural circulation flow rate for the incorporation of potential future power uprates, the injection of noncondensable gas into the coolant above the core is envisioned ("gas lift pump"). Reliance upon gas-injection enhanced natural circulation raises the concern of flow instability due to the relatively high temperature change in the reactor core and the two-phase flow condition in the riser. For this study, the one-dimensional flow field equations were applied to each flow section and the mixture models of two-phase flow, i.e., both the homogeneous and drift-flux equilibrium models were used in the two-phase region of the riser. For the stability analysis, the linear perturbation technique based on the frequency-domain approach was used by employing the Nyquist stability criterion and a numerical root search method. It has been shown that the thermal power of the STAR-LM natural circulation system could be increased from 400 up to 1152 MW with gas injection under the limiting void fraction of 0.30 and limiting coolant velocity of 2.0 m/s from the steady-state performance analysis. As the result of the linear stability analysis, it has turned out that the STAR-LM natural circulation system would be stable even with gas injection. In addition, through the parametric study, it has been found that the thermal inertia effects of solid structures such as fuel rod and heat exchanger tube should be considered in the stability analysis model. The results of this study will be a part of the

  12. Design study of lead bismuth cooled fast reactors and capability of natural circulation

    SciTech Connect

    Oktamuliani, Sri Su’ud, Zaki

    2015-09-30

    A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation at inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.

  13. Design study of lead bismuth cooled fast reactors and capability of natural circulation

    NASA Astrophysics Data System (ADS)

    Oktamuliani, Sri; Su'ud, Zaki

    2015-09-01

    A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation at inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.

  14. Linear system identification of a cold flow circulating fluidized bed

    SciTech Connect

    Panday, R; Woerner, B D; Ludlow, J C; Shadle, L J; Boyle, E J

    2009-02-01

    Knowledge of the solids circulation rate (SCR) is essential to the control and improved performance of a circulating fluidized bed system. In the present work, the noise model is derived using the prediction error method considering process and measurement noises acting on the cold flow circulating fluidized bed (CFCFB) with a cork particulate material. The outputs of the initial model are the total pressure drop across the riser, the pressure drop across the crossover, the pressure drop across the primary cyclone, the total pressure drop across the stand-pipe, the pressure drop across the loop seal, and the SCR. The stochastic estimate of SCR is determined from the noise model using the stochastic pressure drop estimates. The deterministic estimate is obtained through the inputs taken as move air flow, riser aeration, and loop seal fluidization air that are all independent variables of the given setup and under the control of the user. The theory has been developed to convert a complete blackbox model to a grey box model through the output-to-state transformation such that both the models of the CFCFB consists of all these output variables as the states of the system, and only pressure drops across the system as the output measurements. Thus, the final models do not include any fictitious terms and they are defined only in terms of physical parameters of the given system. Both components of SCR are separately analysed. The combined SCR response of both the noise model and deterministic model is compared with the validation data set of this state variable in terms of modelfit, and the results are shown.

  15. Cold-Flow Circulating Fluidized-Bed Identification

    SciTech Connect

    Parviz Famouri

    2005-07-01

    In a variety of industrial applications, the use of a circulating fluidized bed (CFB) provides various advantages, such as reducing environmental pollution and increasing process efficiency. The application of circulating fluidized bed technology contributes to the improvement of gas-solid contact, reduction of the cross-sectional area with the use of higher superficial velocities, the use of the solids circulation rate as an additional control variable, and superior radial mixing, Grace et al. [1]. In order to improve raw material usage and utility consumption, optimization and control of CFB is very important, and an accurate, real time model is required to describe and quantify the process. Currently there is no accepted way to construct a reliable model for such a complex CFB system using traditional methods, especially at the pilot or industrial scale. Three major obstacles in characterizing the system are: 1) chaotic nature of the system; 2) non-linearity of the system, and 3) number of immeasurable unknowns internal to the system,[2]. Advanced control theories and methods have the ability to characterize the system, and can overcome all three of these obstacles. These methods will be discussed in this report.

  16. Validation of a plant dynamics code for 4S - Test analysis of natural circulation behavior

    SciTech Connect

    Sebe, F.; Horie, H.; Matsumiya, H.; Fanning, T. H.

    2012-07-01

    A plant transient dynamics code for a sodium-cooled fast reactor was developed by Toshiba. The code is used to evaluate the safety performance of Super-Safe, Small, and Simple reactor (4S) for Anticipated Operational Occurrences (AOOs), Design Basis Accident (DBA) and Beyond DBA (BDBA). The code is currently undergoing verification and validation (V and V). As one of the validation, test analysis of the Shutdown Heat Removal Test (SHRT)-17 performed in the Experimental Breeder Reactor (EBR)-II was conducted. The SHRT-17 is protected loss of flow test. The purpose of this validation is to confirm capability of the code to simulate natural circulation behavior of the plant. As a result, good agreements are shown between the analytical results and the measured data which were available from instrumented subassembly. The detailed validation result of the natural circulation behavior is described in this paper. (authors)

  17. Enhancement of natural circulation type domestic solar hot water system performance by using a wind turbine

    NASA Astrophysics Data System (ADS)

    Ramasamy, K. K.; Srinivasan, P. S. S.

    2011-08-01

    Performance improvement of existing 200 litres capacity natural convection type domestic solar hot water system is attempted. A two-stage centrifugal pump driven by a vertical axis windmill having Savonius type rotor is added to the fluid loop. The windmill driven pump circulates the water through the collector. The system with necessary instrumentation is tested over a day. Tests on Natural Circulation System (NCS) mode and Wind Assisted System (WAS) mode are carried out during January, April, July and October, 2009. Test results of a clear day are reported. Daily average efficiency of 25-28 % during NCS mode and 33-37 % during WAS mode are obtained. With higher wind velocities, higher collector flow rates and hence higher efficiencies are obtained. In general, WAS mode provides improvements in efficiency when compared to NCS mode.

  18. Modeling and simulation of circulating tumor cells in flow

    NASA Astrophysics Data System (ADS)

    Lee, Angela Meeyoun

    In this thesis, we mathematically model and computationally simulate several aspects associated with the dynamics of circulating tumor cells in the bloodstream. We focus on physical processes that initiate cancer metastasis, such as intravasation and the subsequent diffusion of thrombin by the expression of tissue factor (TF) on the surface of the circulating tumor cells that are of epithelial origin. In Part I, we develop a low-dimensional parametric deformation model of a cancer cell under shear flow. The surface deformation of MDA-MB-213 cells is imaged using DIC microscopy imaging techniques until the cell releases into the flow. We post-process the time sequence of images using an Active Shape Model (ASM) to obtain the principal components of deformation, which are then used as parameters in an empirical constitutive equation to model the cell deformations as a function of the fluid normal and shear forces imparted. The cell surface is modeled as a 2D Gaussian interface with three active parameters: height, x-width, and y-width. Fluid forces are calculated on the cell surface by discretizing the surface with regularized Stokeslets, and the flow is driven by a stochastically fluctuating pressure gradient. The Stokeslet strengths are obtained so that viscous boundary conditions are enforced on the surface of the cell and the surrounding plate. We show that the low-dimensional model is able to capture the principal deformations of the cell reasonably well and argue that Active Shape Models can be exploited further as a useful tool to bridge the gap between experiments, models, and numerical simulations in this biological setting. In Part II, we describe a mathematical and computational model for diffusion-limited procoagulant circulating tumor cells (CTCs) in flow. We first build a model based on an exact formulation of Green's function solutions for domains with a blood vessel wall and for closed domains. Time-dependent gradient trackers are used to highlight

  19. Natural Laminar Flow Flight Experiment

    NASA Technical Reports Server (NTRS)

    Steers, L. L.

    1981-01-01

    A supercritical airfoil section was designed with favorable pressure gradients on both the upper and lower surfaces. Wind tunnel tests were conducted in the Langley 8 Foot Transonic Pressure Tunnel. The outer wing panels of the F-111 TACT airplane were modified to incorporate partial span test gloves having the natural laminar, flow profile. Instrumentation was installed to provide surface pressure data as well as to determine transition location and boundary layer characteristics. The flight experiment encompassed 19 flights conducted with and without transition fixed at several locations for wing leading edge sweep angles which varied from 10 to 26 at Mach numbers from 0.80 to 0.85 and altitudes of 7620 meters and 9144 meters. Preliminary results indicate that a large portion of the test chord experienced laminar flow.

  20. Circulation times of cancer cells by in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Li, Yan; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2012-03-01

    Liver cancer is one of the most common malignancies in the world, with approximately 1,000,000 cases reported every year. Hepatocellular carcinoma may metastasize to lung, bones, kidney, and many other organs. Surgical resection, liver transplantation, chemotherapy and radiation therapy are the foundation of current HCC therapies. However the outcomes are poor: the survival rate is almost zero for metastatic HCC patients. Molecular mechanisms of HCC metastasis need to be understood better and new therapies must be developed. A recently developed "in vivo flow cytometer" combined with real-time confocal fluorescence imaging are used to assess spreading and the circulation kinetics of liver tumor cells. The in vivo flow cytometer has the capability to detect and quantify continuously the number and flow characteristics of fluorescently labeled cells in vivo in real time without extracting blood sample. We have measured the depletion kinetics of two related human HCC cell lines, high-metastatic HCCLM3 cells and low-metastatic HepG2 cells, which were from the same origin and obtained by repetitive screenings in mice. >60% HCCLM3 cells are depleted within the first hour. Interestingly, the low-metastatic HepG2 cells possess noticeably slower depletion kinetics. In comparison, <40% HepG2 cells are depleted within the first hour. The differences in depletion kinetics might provide insights into early metastasis processes.

  1. Mechanical axial flow blood pump to support cavopulmonary circulation.

    PubMed

    Throckmorton, A L; Kapadia, J; Madduri, D

    2008-11-01

    We are developing a collapsible, percutaneously inserted, axial flow blood pump to support the cavopulmonary circulation in infants with a failing single ventricle physiology. An initial design of the impeller for this axial flow blood pump was performed using computational fluid dynamics analysis, including pressure-flow characteristics, scalar stress estimations, blood damage indices, and fluid force predictions. A plastic prototype was constructed for hydraulic performance testing, and these experimental results were compared with the numerical predictions. The numerical predictions and experimental findings of the pump performance demonstrated a pressure generation of 2-16 mm Hg for 50-750 ml/min over 5,500-7,500 RPM with deviation found at lower rotational speeds. The axial fluid forces remained below 0.1 N, and the radial fluid forces were determined to be virtually zero due to the centered impeller case. The scalar stress levels remained below 250 Pa for all operating conditions. Blood damage analysis yielded a mean residence time of the released particles, which was found to be less than 0.4 seconds for both flow rates that were examined, and a maximum residence time was determined to be less than 0.8 seconds. We are in the process of designing a cage with hydrodynamically shaped filament blades to act as a diffuser and optimizing the impeller blade shape to reduce the flow vorticity at the pump outlet. This blood pump will improve the clinical treatment of patients with failing Fontan physiology and provide a unique catheter-based therapeutic approach as a bridge to recovery or transplantation. PMID:19089799

  2. Natural gas flow through critical nozzles

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1969-01-01

    Empirical method for calculating both the mass flow rate and upstream volume flow rate through critical flow nozzles is determined. Method requires knowledge of the composition of natural gas, and of the upstream pressure and temperature.

  3. Circulating natural killer cells in retired asbestos cement workers.

    PubMed

    Froom, P; Lahat, N; Kristal-Boneh, E; Cohen, C; Lerman, Y; Ribak, J

    2000-01-01

    The effect of past exposure to asbestos on natural killer (NK) cell number and activity is uncertain. We measured NK cell number and activity in 1052 retired asbestos workers without symptomatic lung disease, lung cancer, or mesothelioma and with a long latency period from exposure; results were compared with those for 100 healthy age-matched controls. The exposed workers showed a decreased NK cell activity and increased NK cell number, yielding a 10.8 higher odds ratio for low NK activity per cell compared with controls (95% confidence interval 6.4 to 18.4), which was due to both a decrease in NK cell activity and an increase in NK cell number. Asbestos exposure of 10 years or more increased the risk of low NK activity per cell. We conclude that exposure to asbestos is associated with diminished effectiveness of NK cells and a concomitant increase in the number of NK circulating cells. PMID:10652684

  4. Steam condensation and liquid hold-up in steam generator U-tubes during oscillatory natural circulation

    SciTech Connect

    De Santi, G.F.; Mayinger, F.

    1990-01-01

    In many accident scenarios, natural circulation is an important heat transport mechanism for long-term cooling of light water reactors. In the event of a small pipe break, with subsequent loss of primary cooling fluid loss-of-coolant accident (LOCA), or under abnormal operating conditions, early tripping of the main coolant pumps can be actuated. Primary fluid flow will then progress from forced to natural convection. Understanding of the flow regimes and heat-removal mechanisms in the steam generators during the entire transient is of primary importance to safety analysis. Flow oscillations during two-phase natural circulation experiments for pressurized water reactors (PWRs) with inverted U-tube steam generators occur at high pressure and at a primary inventory range between two-phase circulation and reflex heat removal. This paper deals with the oscillatory flow behavior that was observed in the LOBI-MOD2 facility during the transition period between two-phase natural circulation and reflex condensation.

  5. Thermalhydraulic calculation for boiling water reactor and its natural circulation component

    NASA Astrophysics Data System (ADS)

    Trianti, Nuri; Nurjanah, Su'ud, Zaki; Arif, Idam; Permana, Sidik

    2015-09-01

    Thermalhydraulic of reactor core is the thermal study on fluids within the core reactor, i.e. analysis of the thermal energy transfer process produced by fission reaction from fuel to the reactor coolant. This study include of coolant temperature and reactor power density distribution. The purposes of this analysis in the design of nuclear power plant are to calculate the coolant temperature distribution and the chimney height so natural circulation could be occurred. This study was used boiling water reactor (BWR) with cylinder type reactor core. Several reactor core properties such as linear power density, mass flow rate, coolant density and inlet temperature has been took into account to obtain distribution of coolant density, flow rate and pressure drop. The results of calculation are as follows. Thermal hydraulic calculations provide the uniform pressure drop of 1.1 bar for each channels. The optimum mass flow rate to obtain the uniform pressure drop is 217g/s. Furthermore, from the calculation it could be known that outlet temperature is 288°C which is the saturated fluid's temperature within the system. The optimum chimney height for natural circulation within the system is 14.88 m.

  6. Thermalhydraulic calculation for boiling water reactor and its natural circulation component

    SciTech Connect

    Trianti, Nuri Nurjanah,; Su’ud, Zaki; Arif, Idam; Permana, Sidik

    2015-09-30

    Thermalhydraulic of reactor core is the thermal study on fluids within the core reactor, i.e. analysis of the thermal energy transfer process produced by fission reaction from fuel to the reactor coolant. This study include of coolant temperature and reactor power density distribution. The purposes of this analysis in the design of nuclear power plant are to calculate the coolant temperature distribution and the chimney height so natural circulation could be occurred. This study was used boiling water reactor (BWR) with cylinder type reactor core. Several reactor core properties such as linear power density, mass flow rate, coolant density and inlet temperature has been took into account to obtain distribution of coolant density, flow rate and pressure drop. The results of calculation are as follows. Thermal hydraulic calculations provide the uniform pressure drop of 1.1 bar for each channels. The optimum mass flow rate to obtain the uniform pressure drop is 217g/s. Furthermore, from the calculation it could be known that outlet temperature is 288°C which is the saturated fluid’s temperature within the system. The optimum chimney height for natural circulation within the system is 14.88 m.

  7. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    NASA Astrophysics Data System (ADS)

    Shi, Shanbin

    The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal

  8. Effects of flow speed and circulation interval on water quality and zooplankton in a pond-ditch circulation system.

    PubMed

    Ma, Lin; He, Feng; Sun, Jian; Huang, Tao; Xu, Dong; Zhang, Yi; Wu, Zhenbin

    2015-07-01

    A pond-ditch circulation system (PDCS) shows great promises for ecological restoration of rural contaminated water in southern China. In this study, the optimal flow speed, circulation interval, and their combination for the system were investigated for higher pollutant removal efficiency and lower costs in three separate experiments: I, II, and III, respectively. In each experiment, there are three PDCSs (S1, S2, and S3) with different water circulation speeds or circulation intervals, respectively. The results demonstrated that in experiment I, total nitrogen (TN) removal rates, species numbers, and diversity indexes of zooplankton in S1 with a flow speed of 3.6 L/h were significantly higher than those in S2 (7.2 L/h) and S3 (10.2 L/h), respectively. Similarly, in experiment II, S3 circulating every other 4 h had significantly higher TN reduction rates, species numbers, and diversity indexes than S1 and S2 circulating every other 1 and 2 h, respectively. In experiment III, water qualities in S1 (circulation of 3.6 L/h + interval of 4 h) were better than those in S2 (7.2 L/h + 4 h) and S3 (10.2 L/h + 6 h), respectively. Together, circulation at every other 4 h (3.6 L/h) is probably the optimal operating condition for the PDCS in remediating rural contaminated water. PMID:25693828

  9. Detection of circulating breast cancer cells using photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kiran

    According to the American Cancer Society, more than 200,000 new cases of breast cancer are expected to be diagnosed this year. Moreover, about 40,000 women died from breast cancer last year alone. As breast cancer progresses in an individual, it can transform from a localized state to a metastatic one with multiple tumors distributed through the body, not necessarily contained within the breast. Metastasis is the spread of cancer through the body by circulating tumor cells (CTCs) which can be found in the blood and lymph of the diagnosed patient. Diagnosis of a metastatic state by the discovery of a secondary tumor can often come too late and hence, significantly reduce the patient's chance of survival. There is a current need for a CTC detection method which would diagnose metastasis before the secondary tumor occurs or reaches a size resolvable by current imaging systems. Since earlier detection would improve prognosis, this study proposes a method of labeling of breast cancer cells for detection with a photoacoustic flow cytometry system as a model for CTC detection in human blood. Gold nanoparticles and fluorescent polystyrene nanoparticles are proposed as contrast agents for T47D, the breast cancer cell line of choice. The labeling, photoacoustic detection limit, and sensitivity are first characterized and then applied to a study to show detection from human blood.

  10. Performance analysis of a Cooling System with Natural-Circulation Loop using CO2

    NASA Astrophysics Data System (ADS)

    Okazaki, Takashi

    The experiments and calculations were carried out to evaluate the cycle performance of natural circulation loop with CO2. The cooling capacity of CO2 was compared with that of R410A and the cooling capacity of reverse circulation observed under the supercritical condition was analyzed from a point of view of refrigerant flow direction. The experimental results showed that the cooling capacity of CO2 was approximately4∼13% larger than that of R410A under the two-phase condition at indoor temperature of 30°C. On the other hand, the cooling capacity of CO2 was approximately11% smaller than that of R410A under the supercritical condition at indoor temperature of 50°C. In addition, the cooling capacity with the counter-cross flow heat exchanger was approximately 40% larger than that with the parallel-cross flow heat exchanger under the supercritical condition at indoor temperature of 50°C. These experimental results agreed well with the calculated results.

  11. Thermohydraulic model experiments on the transition from forced to natural circulation for pool-type fast reactors

    SciTech Connect

    Hoffmann, H.; Marten, K.; Weinberg, D. )

    1992-09-01

    In this paper, thermohydraulic studies on the transition from forced to natural convection are carried out using the 1:20 scale RAMONA three-dimensional reactor model with water as the simulant fluid. In the investigations, a scram from 40% load operation of a fast reactor is simulated. The core mass flows and the core as well as the hot plenum temperatures are measured as a function of time for various core power levels, coastdown curves of the primary- and secondary-side pumps, and for various delay times for the start of the immersion coolers after a scram. These parameters influence the onset of the natural circulation in the reactor tank. The main result is that the longer the intermediate heat exchanger coolability is ensured and the later the immersion coolers start to operate, the higher is the natural-circulation flow and, hence, the lower are the core temperatures.

  12. The startup of the Dodewaard natural circulation boiling water reactor -- Experiences

    SciTech Connect

    Nissen, W.H.M.; Van Der Voet, J.; Karuza, J. )

    1994-07-01

    Because of its similarity to the simplified boiling water reactor (SBWR), the Dodewaard natural circulation boiling water reactor (BWR) is of special interest to further development of the SBWR design. It has become especially important to gain more insight into the Dodewaard BWR behavior during startup, paying special attention to its stability. Therefore, special instrumentation was used by means of which a series of measurements were taken during the two startups in February and June 1992. The results obtained from these measurements are used to deepen insight into the recirculation flow and the stability of the reactor during startup under conditions with a normal pressure/power trajectory. They have already shown a very early recirculation flow onset during low-power operation and no indication of reactor instability. Furthermore, they will be used as a basis for the research program investigating the reactor behavior under different pressure/power conditions, which is scheduled for next year.

  13. Natural circulation in a VVER reactor geometry: Experiments with the PACTEL facility and Cathare simulations

    SciTech Connect

    Raussi, P.; Kainulainen, S.; Kouhia, J.

    1995-09-01

    There are some 40 reactors based on the VVER design in use. Database available for computer code assessment for VVER reactors is rather limited. Experiments were conducted to study natural circulation behaviour in the PACTEL facility, a medium-scale integral test loop patterned after VVER pressurized water reactors. Flow behaviour over a range of coolant inventories was studied with a small-break experiment. In the small-break experiments, flow stagnation and system repressurization were observed when the water level in the upper plenum fell below the entrances to the hot legs. The cause was attributed to the hot leg loop seals, which are a unique feature of the VVER geometry. At low primary inventories, core cooling was achieved through the boiler-condenser mode. The experiment was simulated using French thermalhydraulic system code CATHARE.

  14. Detection, isolation, and capture of circulating breast cancer cells with photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kiran; Njoroge, Martin; Goldschmidt, Benjamin S.; Gaffigan, Brian; Rood, Kyle; Viator, John A.

    2013-03-01

    According to the CDC, breast cancer is the most common cancer and the second leading cause of cancer related deaths among women. Metastasis, or the presence of secondary tumors caused by the spread of cancer cells via the circulatory or lymphatic systems, significantly worsens the prognosis of any breast cancer patient. In this study, a technique is developed to detect circulating breast cancer cells in human blood using a photoacoustic flow cytometry method. A Q-switched laser with a 5 ns pulse at 532 nm is used to interrogate thousands of cells with one pulse as they flow through the beam path. Cells which are pigmented, either naturally or artificially, emit an ultrasound wave as a result of the photoacoustic (PA) effect. Breast cancer cells are targeted with chromophores through immunochemistry in order to provide pigment. After which, the device is calibrated to demonstrate a single-cell detection limit. Cultured breast cancer cells are added to whole blood to reach a biologically relevant concentration of about 25-45 breast cancer cells per 1 mL of blood. An in vitro photoacoustic flow cytometer is used to detect and isolate these cells followed by capture with the use of a micromanipulator. This method can not only be used to determine the disease state of the patient and the response to therapy, it can also be used for genetic testing and in vitro drug trials since the circulating cell can be captured and studied.

  15. Extracting energy from natural flow

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.; Wilhold, G. A.

    1980-01-01

    Three concepts for extracting energy from wind, waterflow, and tides utilize flow instability to generate usable energy. Proposed converters respond to vortex excitation motion, galloping or plunging motion, and flutter. Fluid-flow instability is more efficient in developing lift than is direct flow.

  16. CFD analyses of natural circulation in the air-cooled reactor cavity cooling system

    SciTech Connect

    Hu, R.; Pointer, W. D.

    2013-07-01

    The Natural Convection Shutdown Heat Removal Test Facility (NSTF) is currently being built at Argonne National Laboratory, to evaluate the feasibility of the passive Reactor Cavity Cooling System (RCCS) for Next Generation Nuclear Plant (NGNP). CFD simulations have been applied to evaluate the NSTF and NGNP RCCS designs. However, previous simulations found that convergence was very difficult to achieve in simulating the complex natural circulation. To resolve the convergence issue and increase the confidence of the CFD simulation results, additional CFD simulations were conducted using a more detailed mesh and a different solution scheme. It is found that, with the use of coupled flow and coupled energy models, the convergence can be greatly improved. Furthermore, the effects of convection in the cavity and the effects of the uncertainty in solid surface emissivity are also investigated. (authors)

  17. Improvement of continuous solid circulation rate measurement in a cold flow circulating fluidized bed

    SciTech Connect

    Ludlow, J.C.; Monazam, E.R.; Shadle, L.J.

    2008-03-10

    A method is described to independently estimate the solids velocity and voidage in the moving bed portion of the NETL circulating fluidized bed (CFB). These quantities are used by a device that continuously measures the solids circulation rate. The device is based on the use of a rotating Spiral vane installed in the standpipe of a circulating fluid bed (CFB). Correlations were developed from transient experiments and steady state mass balance data to correct the solids velocity and solids fraction in the standpipe as a function of standpipe aeration rate. A set of statisticallydesigned experiments was used to establish the need for these corrections and to verify the accuracy of solid circulation rate measurements after correction. The differences between the original and corrected measurements were quantitatively compared.

  18. A continuum model for pressure-flow relationship in human pulmonary circulation.

    PubMed

    Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T

    2011-06-01

    A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation. PMID:21608412

  19. Natural Elements Method for Free Surface Flow

    NASA Astrophysics Data System (ADS)

    Darbani, M.; Ouahsine, A.; Villon, P.

    2009-09-01

    The Natural Element Method (NEM) is used to simulate a 2D shallow water flow in presence of free surface and a varying bathymetry. This meshless method used a fully Lagrangian formulation and natural neighbors, which remain a very striking problem related the boundary conditions. The method was succefully used to simulate dam-break flows by solving the fully nonlinear Shallow Water Equations (SWE) and by using an implicit scheme under a transient flow and the Coriolis effect.

  20. Relationship between volume flow and velocity in the cerebral circulation1

    PubMed Central

    Rowan, J. O.; Harper, A. M.; Miller, J. D.; Tedeschi, G. M.; Jennett, W. B.

    1970-01-01

    The relationship between the velocity of the cerebral circulation and the cerebral blood flow was explored at varying levels of PaCO2, systemic arterial pressure, intracranial pressure, and perfusion pressure, using radioisotope techniques in baboons. Only at low flow rates did velocity increase with flow, and then non-linearly; at high rates velocity increased progressively less. Changes in flow are reflected by changes in velocity in such restricted circumstances that mean circulation time is a very unreliable indication of cerebral blood flow. PMID:5497874

  1. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  2. Conceptual design and thermal-hydraulic characteristics of natural circulation Boiling Water Reactors

    SciTech Connect

    Kataoka, Y.; Suzuki, H.; Murase, M. ); Horiuchi, T.; Miki, M. )

    1988-08-01

    A natural circulation boiling water reactor (BWR) with a rated capacity of 600 MW (electric) has been conceptually designed for small- and medium-sized light water reactors. The components and systems in the reactor are simplified by eliminating pumped recirculation systems and pumped emergency core cooling systems. Consequently, the volume of the reactor building is -- 50% of that for current BWRs with the same rated capacity; the construction period is also shorter. Its thermal-hydraulic characteristics, critical power ratio (CPR) and flow stability at steady state, decrease in the minimum CPR (..delta..MCPR) at transients, and the two-phase mixture level in the reactor pressure vessel (RPV) during accidents are investigated. The two-phase mixture level in the RPV during an accident does not decrease to lower than the top of the core; the core uncovery and heatup of fuel cladding would not occur during any loss-of-coolant accident.

  3. Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactors

    SciTech Connect

    Abdullah, Ade Gafar; Su'ud, Zaki; Kurniadi, Rizal; Kurniasih, Neny; Yulianti, Yanti

    2010-12-23

    Natural circulation level optimization and the effect during loss of flow accident in the 250 MWt MOX fuelled small Pb-Bi Cooled non-refueling nuclear reactors (SPINNOR) have been performed. The simulation was performed using FI-ITB safety code which has been developed in ITB. The simulation begins with steady state calculation of neutron flux, power distribution and temperature distribution across the core, hot pool and cool pool, and also steam generator. When the accident is started due to the loss of pumping power the power distribution and the temperature distribution of core, hot pool and cool pool, and steam generator change. Then the feedback reactivity calculation is conducted, followed by kinetic calculation. The process is repeated until the optimum power distribution is achieved. The results show that the SPINNOR reactor has inherent safety capability against this accident.

  4. Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactors

    NASA Astrophysics Data System (ADS)

    Abdullah, Ade Gafar; Su'ud, Zaki; Kurniadi, Rizal; Kurniasih, Neny; Yulianti, Yanti

    2010-12-01

    Natural circulation level optimization and the effect during loss of flow accident in the 250 MWt MOX fuelled small Pb-Bi Cooled non-refueling nuclear reactors (SPINNOR) have been performed. The simulation was performed using FI-ITB safety code which has been developed in ITB. The simulation begins with steady state calculation of neutron flux, power distribution and temperature distribution across the core, hot pool and cool pool, and also steam generator. When the accident is started due to the loss of pumping power the power distribution and the temperature distribution of core, hot pool and cool pool, and steam generator change. Then the feedback reactivity calculation is conducted, followed by kinetic calculation. The process is repeated until the optimum power distribution is achieved. The results show that the SPINNOR reactor has inherent safety capability against this accident.

  5. In Vivo Monitoring of Multiple Circulating Cell Populations Using Two-photon Flow Cytometry

    PubMed Central

    Tkaczyk, Eric R.; Zhong, Cheng Frank; Ye, Jing Yong; Myc, Andrzej; Thomas, Thommey; Cao, Zhengyi; Duran-Struuck, Raimon; Luker, Kathryn E.; Luker, Gary D.; Norris, Theodore B.; Baker, James R.

    2008-01-01

    To detect and quantify multiple distinct populations of cells circulating simultaneously in the blood of living animals, we developed a novel optical system for two-channel, two-photon flow cytometry in vivo. We used this system to investigate the circulation dynamics in live animals of breast cancer cells with low (MCF-7) and high (MDA-MB-435) metastatic potential, showing for the first time that two different populations of circulating cells can be quantified simultaneously in the vasculature of a single live mouse. We also non-invasively monitored a population of labeled, circulating red blood cells for more than two weeks, demonstrating that this technique can also quantify the dynamics of abundant cells in the vascular system for prolonged periods of time. These data are the first in vivo application of multichannel flow cytometry utilizing two-photon excitation, which will greatly enhance our capability to study circulating cells in cancer and other disease processes. PMID:19221581

  6. Dimensional analysis of natural debris flows

    NASA Astrophysics Data System (ADS)

    Zhou, Gordon; Ouyang, Chaojun

    2015-04-01

    Debris flows occur when masses of poorly sorted sediment, agitated and saturated with water, surge down slopes in response to gravitational attraction. They are of great concern because they often cause catastrophic disasters due to the long run-out distance and large impact forc-es. Different from rock avalanches and sediment-laden water floods, both solid and fluid phases affected by multiple parameters can influence the motion of debris flows and govern their rheological properties. A dimensional analysis for a systematic study of the governing parameters is presented in this manuscript. Multiple dimensionless numbers with clear physical meanings are critically reviewed. Field data on natural debris flows are available here based on the fifty years' observation and measurement in the Jiangjia Gully, which is located in the Dongchuan City, Yunnan Province of China. The applications of field data with the dimensional analysis for studying natural debris flows are demonstrated. Specific values of dimensionless numbers (e.g., modified Savage Number, Reynolds number, Friction number) for classifying flowing regimes of natural debris flows on the large scales are obtained. Compared to previous physical model tests conducted mostly on small scales, this study shows that the contact friction between particles dominates in natural debris flows. In addition, the solid inertial stress due to particle collisions and the pore fluid viscous shear stress play key roles in governing the dynamic properties of debris flows and the total normal stress acting on the slope surfaces. The channel width as a confinement to the flows can affect the solids discharge per unit width significantly. Furthermore, a dimensionless number related to pore fluid pressure dissipation is found for distinguishing surge flows and continuous flows in field satisfactorily. It indicates that for surge debris flows, the high pore fluid pressures generated in granular body dissipate quite slowly and may

  7. Self-Evaporation Phenornenon of Water Accornpanied by a Circulation Flow in a Vessel

    NASA Astrophysics Data System (ADS)

    Ogoshi, Hidemasa; Aizawa, Kazuo

    Characteristics of the self-evaporation of hot water in a vertical vessel with internal baffles were investigated experimentally by using a visual hot model. The experiment apparatus was designed by modeling Ruths' varying pressure steam accumulator, and consisted of a vertical straight vessel (100mm in diameter and 1500mm in height) and internal baffles such as a straight pipe (60mm in diameter) and tapered tubes which were installed concentric to the vessel. Self-evaporation experiments were executed under vacuum pressure conditions. It was found that a permanent circulation of hot water was naturally induced in the vessel macroscopically, and nucleation took place within the upper part of the internal baffles near the water surface along this water circulation. Self-evaporation could go on steadily and the temperature uniformity in hot water layer could be improved remarkably in comparison with the case with no internal baffles. In this case, large portion of the self-evaporation of hot water resulted from the hydraulic pressure loss during the upward flow motion in the inner pipe.

  8. Stability analysis of a natural circulation lead-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Lu, Qiyue

    This dissertation is aimed at nuclear-coupled thermal hydraulics stability analysis of a natural circulation lead cooled fast reactor design. The stability concerns arise from the fact that natural circulation operation makes the system susceptible to flow instabilities similar to those observed in boiling water reactors. In order to capture the regional effects, modal expansion method which incorporates higher azimuthal modes is used to model the neutronics part of the system. A reduced order model is used in this work for the thermal-hydraulics. Consistent with the number of heat exchangers (HXs), the reactor core is divided into four equal quadrants. Each quadrant has its corresponding external segments such as riser, plenum, pipes and HX forming an equivalent 1-D closed loop. The local pressure loss along the loop is represented by a lumped friction factor. The heat transfer process in the HX is represented by a model for the coolant temperature at the core inlet that depends on the coolant temperature at the core outlet and the coolant velocity. Additionally, time lag effects are incorporated into this HX model due to the finite coolant speed. A conventional model is used for the fuel pin heat conduction to couple the neutronics and thermal-hydraulics. The feedback mechanisms include Doppler, axial/radial thermal expansion and coolant density effects. These effects are represented by a linear variation of the macroscopic cross sections with the fuel temperature. The weighted residual method is used to convert the governing PDEs to ODEs. Retaining the first and second modes, leads to six ODEs for neutronics, and five ODEs for the thermal-hydraulics in each quadrant. Three models are developed. These are: 1) natural circulation model with a closed coolant flow path but without coupled neutronics, 2) forced circulation model with constant external pressure drop across the heated channels but without coupled neutronics, 3) coupled system including neutronics with

  9. Flow regime study of a light material in an industrial scale cold flow circulating fluidized bed

    SciTech Connect

    Mei, J.S.; Monazam, E.R.; Shadle, L.J.

    2006-06-15

    A series of experiments was conducted in the 0.3 meter diameter circulating fluidized bed test facility at the National Energy Technology Laboratory (NETL) of the U. S. Department of Energy. The particle used in this study was a coarse, light material, cork, which has a particle density of 189 kg/m{sup 3} and a mean diameter of 812 {mu}m. Fluidizing this material in ambient air approximates the same gas-solids density ratio as coal and coal char in a pressurized gasifier. The purpose of this study is twofold. First, this study is to provide a better understanding on the fundamentals of flow regimes and their transitions. The second purpose of this study is to generate reliable data to validate the mathematical models, which are currently under development at NETL. This paper presents and discusses the data, which covered operating flow regime from dilute phase, fast fluidization, and to dense phase transport by varying the solid flux, G{sub s}. at a constant gas velocity, U{sub g}. Data are presented by mapping the flow regime for coarse cork particles in a {Delta}P/{Delta} L-G{sub s}-U{sub g} plot. A stable operation can be obtained at a fixed riser gas velocity higher than the transport velocity e.g., at U{sub g} = 3.2 m/s, even though the riser is operated within the fast fluidization flow regime. Depending upon the solids influx, the riser can also be operated at dilute phase or dense phase flow regimes. Experimental data were compared to empirical correlations in published literature for flow regime boundaries as well as solids, fractions in the upper dilute and the lower dense regions for fast fluidization flow regime. Comparisons of measured data with these empirical correlations show rather poor agreements. These discrepancies, however, are not surprising since the correlations for these transitions were derived from experimental data of comparative heavier materials such as sands, FCC, iron ore etc.

  10. Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans.

    PubMed

    Erzurum, S C; Ghosh, S; Janocha, A J; Xu, W; Bauer, S; Bryan, N S; Tejero, J; Hemann, C; Hille, R; Stuehr, D J; Feelisch, M; Beall, C M

    2007-11-01

    The low barometric pressure at high altitude causes lower arterial oxygen content among Tibetan highlanders, who maintain normal levels of oxygen use as indicated by basal and maximal oxygen consumption levels that are consistent with sea level predictions. This study tested the hypothesis that Tibetans resident at 4,200 m offset physiological hypoxia and achieve normal oxygen delivery by means of higher blood flow enabled by higher levels of bioactive forms of NO, the main endothelial factor regulating blood flow and vascular resistance. The natural experimental study design compared Tibetans at 4,200 m and U.S. residents at 206 m. Eighty-eight Tibetan and 50 U.S. resident volunteers (18-56 years of age, healthy, nonsmoking, nonhypertensive, not pregnant, with normal pulmonary function) participated. Forearm blood flow, an indicator of systemic blood flow, was measured noninvasively by using plethysmography at rest, after breathing supplemental oxygen, and after exercise. The Tibetans had more than double the forearm blood flow of low-altitude residents, resulting in greater than sea level oxygen delivery to tissues. In comparison to sea level controls, Tibetans had >10-fold-higher circulating concentrations of bioactive NO products, including plasma and red blood cell nitrate and nitroso proteins and plasma nitrite, but lower concentrations of iron nitrosyl complexes (HbFeIINO) in red blood cells. This suggests that NO production is increased and that metabolic pathways controlling formation of NO products are regulated differently among Tibetans. These findings shift attention from the traditional focus on pulmonary and hematological systems to vascular factors contributing to adaptation to high-altitude hypoxia. PMID:17971439

  11. Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans

    PubMed Central

    Erzurum, S. C.; Ghosh, S.; Janocha, A. J.; Xu, W.; Bauer, S.; Bryan, N. S.; Tejero, J.; Hemann, C.; Hille, R.; Stuehr, D. J.; Feelisch, M.; Beall, C. M.

    2007-01-01

    The low barometric pressure at high altitude causes lower arterial oxygen content among Tibetan highlanders, who maintain normal levels of oxygen use as indicated by basal and maximal oxygen consumption levels that are consistent with sea level predictions. This study tested the hypothesis that Tibetans resident at 4,200 m offset physiological hypoxia and achieve normal oxygen delivery by means of higher blood flow enabled by higher levels of bioactive forms of NO, the main endothelial factor regulating blood flow and vascular resistance. The natural experimental study design compared Tibetans at 4,200 m and U.S. residents at 206 m. Eighty-eight Tibetan and 50 U.S. resident volunteers (18–56 years of age, healthy, nonsmoking, nonhypertensive, not pregnant, with normal pulmonary function) participated. Forearm blood flow, an indicator of systemic blood flow, was measured noninvasively by using plethysmography at rest, after breathing supplemental oxygen, and after exercise. The Tibetans had more than double the forearm blood flow of low-altitude residents, resulting in greater than sea level oxygen delivery to tissues. In comparison to sea level controls, Tibetans had >10-fold-higher circulating concentrations of bioactive NO products, including plasma and red blood cell nitrate and nitroso proteins and plasma nitrite, but lower concentrations of iron nitrosyl complexes (HbFeIINO) in red blood cells. This suggests that NO production is increased and that metabolic pathways controlling formation of NO products are regulated differently among Tibetans. These findings shift attention from the traditional focus on pulmonary and hematological systems to vascular factors contributing to adaptation to high-altitude hypoxia. PMID:17971439

  12. Identifying natural flow regimes using fish communities

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Tsai, Wen-Ping; Wu, Tzu-Ching; Chen, Hung-kwai; Herricks, Edwin E.

    2011-10-01

    SummaryModern water resources management has adopted natural flow regimes as reasonable targets for river restoration and conservation. The characterization of a natural flow regime begins with the development of hydrologic statistics from flow records. However, little guidance exists for defining the period of record needed for regime determination. In Taiwan, the Taiwan Eco-hydrological Indicator System (TEIS), a group of hydrologic statistics selected for fisheries relevance, is being used to evaluate ecological flows. The TEIS consists of a group of hydrologic statistics selected to characterize the relationships between flow and the life history of indigenous species. Using the TEIS and biosurvey data for Taiwan, this paper identifies the length of hydrologic record sufficient for natural flow regime characterization. To define the ecological hydrology of fish communities, this study connected hydrologic statistics to fish communities by using methods to define antecedent conditions that influence existing community composition. A moving average method was applied to TEIS statistics to reflect the effects of antecedent flow condition and a point-biserial correlation method was used to relate fisheries collections with TEIS statistics. The resulting fish species-TEIS (FISH-TEIS) hydrologic statistics matrix takes full advantage of historical flows and fisheries data. The analysis indicates that, in the watersheds analyzed, averaging TEIS statistics for the present year and 3 years prior to the sampling date, termed MA(4), is sufficient to develop a natural flow regime. This result suggests that flow regimes based on hydrologic statistics for the period of record can be replaced by regimes developed for sampled fish communities.

  13. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  14. Flow Cytometric Identification of Fibrocytes in the Human Circulation.

    PubMed

    Hu, Xinyuan; DeBiasi, Erin M; Herzog, Erica L

    2015-01-01

    Because the incidence of organ fibrosis increases with age, various fibrosing disorders are projected to account for significant increases in morbidity, mortality, and healthcare costs in the years to come. Treatments for these diseases are scarce and better understanding of the immunopathogenesis of fibrosis and its relationship to aging are sorely needed. One area of interest in this field is the role that fibrocytes might play in the development of tissue remodeling and fibrosis. Fibrocytes are mesenchymal progenitor cells presumed to be of monocyte origin that possess the tissue remodeling properties of tissue resident fibroblasts such as extracellular matrix production and α-SMA-related contractile properties, as well as the immunologic functions typically attributed to macrophages including production of cytokines and chemokines, antigen presentation, regulation of leukocyte trafficking, and modulation of angiogenesis. Fibrocytes could participate in the development of age-related fibrosing disorders through any or all of these functions. This chapter presents methods that have been developed for the study of circulating human fibrocytes. Protocols for the quantification of fibrocytes in the human circulation will be presented along with discussion of the technical challenges that are frequently encountered in this field. It is hoped that this information will facilitate further investigation of the relationship between fibrocytes, aging, and fibrosis, and perhaps uncover new areas of study in these difficult-to-treat and deadly diseases. PMID:26420706

  15. Turbulent jet flow in a duct with a circulation zone

    NASA Astrophysics Data System (ADS)

    Glebov, G. A.; Petrov, V. N.

    An approximation method is proposed for calculating flows resulting from the interaction between a turbulent jet and a slipstream inside a duct, including the case where a back stream is formed near the wall. In accordance with the approach proposed here, the velocity profile in the mixing region is determined using the well known method of the polynomial approximation of the Reynolds shear stress profile in the duct cross-sections. The flow parameters are then determined using integral equations of flow rate and momentum. The results obtained using the approximation method are found to be in good agreement with experiment data.

  16. Turbulent jet flow in a channel with a circulation region

    NASA Astrophysics Data System (ADS)

    Glebov, G. A.; Petrov, V. N.

    1985-01-01

    An approximation method is proposed for calculating flows resulting from the interaction between a turbulent jet and a slipstream inside a duct, including the case where a back stream is formed near the wall. In accordance with the approach proposed here, the velocity profile in the mixing region is determined using the well known method of the polynomial approximation of the Reynolds shear stress profile in the duct cross-sections. The flow parameters are then determined using integral equations of flow rate and momentum. The results obtained using the approximation method are found to be in good agreement with experiment data.

  17. Compact counter-flow cooling system with subcooled gravity-fed circulating liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu.; Radovinsky, A.; Zhukovsky, A.; Sasaki, A.; Watanabe, H.; Kawahara, T.; Hamabe, M.; Yamaguchi, S.

    2010-11-01

    A liquid nitrogen (LN2) is usually used to keep the high-temperature superconducting (HTS) cable low temperature. A pump is utilized to circulate LN2 inside the cryopipes. In order to minimize heat leakage, a thermal siphon circulation scheme can be realized instead. Here, we discuss the effectiveness of thermal siphon with counter-flow circulation loop composed of cryogen flow channel and inner cable channel. The main feature of the system is the existence of essential parasitic heat exchange between upwards and downwards flows. Feasibility of the proposed scheme for cable up to 500 m in length has been investigated numerically. Calculated profiles of temperature and pressure show small differences of T and p in the inner and the outer flows at the same elevation, which allows not worrying about mechanical stability of the cable. In the case under consideration the thermal insulating properties of a conventional electrical insulating material (polypropylene laminated paper, PPLP) appear to be sufficient. Two interesting effects were disclosed due to analysis of subcooling of LN2. In case of highly inclined siphon subcooling causes significant increase of temperature maximum that can breakup of superconductivity. In case of slightly inclined siphon high heat flux from outer flow to inner flow causes condensation of nitrogen gas in outer channel. It leads to circulation loss. Results of numerical analyses indicate that counter-flow thermosiphon cooling system is a promising way to increase performance of short-length power transmission (PT) lines, but conventional subcooling technique should be applied carefully.

  18. Vortex flow in nature and technology

    NASA Astrophysics Data System (ADS)

    Lugt, H. J.

    The occurrence and characteristics of vortices in flows are explored comprehensively, including historical observations and representations dated several millenia BC. Attention is given to the development of the scientific concept of vortices, and the basic concepts and kinematics of vortices are reviewed, as are the properties of simple vortices. The genesis and behavior of vorticity is traced through separation, instability, and turbulence. Fluid flow in a rotating system is explored, as are stratification in the ocean and atmosphere, circulations in the atmosphere, ocean, and earth, and the features of single vortices in the atmosphere and oceans. Hurrican formations are investigated, together with extraterrestrial vortices in planetary atmospheres, stars, and galaxies. A plethora of photographs and illustrations is presented, including drawings by Leonardo da Vinci.

  19. Options for Cryogenic Load Cooling with Forced Flow Helium Circulation

    SciTech Connect

    Peter Knudsen, Venkatarao Ganni, Roberto Than

    2012-06-01

    Cryogenic pumps designed to circulate super-critical helium are commonly deemed necessary in many super-conducting magnet and other cooling applications. Acknowledging that these pumps are often located at the coldest temperature levels, their use introduces risks associated with the reliability of additional rotating machinery and an additional load on the refrigeration system. However, as it has been successfully demonstrated, this objective can be accomplished without using these pumps by the refrigeration system, resulting in lower system input power and improved reliability to the overall cryogenic system operations. In this paper we examine some trade-offs between using these pumps vs. using the refrigeration system directly with examples of processes that have used these concepts successfully and eliminated using such pumps

  20. Options for cryogenic load cooling with forced flow helium circulation

    NASA Astrophysics Data System (ADS)

    Knudsen, Peter; Ganni, Venkatarao; Than, Roberto

    2012-06-01

    Cryogenic pumps designed to circulate super-critical helium are commonly deemed necessary in many super-conducting magnet and other cooling applications. Acknowledging that these pumps are often located at the coldest temperature levels, their use introduces risks associated with the reliability of additional rotating machinery and an additional load on the refrigeration system. However, as it has been successfully demonstrated, this objective can be accomplished without using these pumps by the refrigeration system, resulting in lower system input power and improved reliability to the overall cryogenic system operations. In this paper we examine some trade-offs between using these pumps vs. using the refrigeration system directly with examples of processes that have used these concepts successfully and eliminated using such pumps

  1. Natural Convection and Boiling for Cooling SRP Reactors During Loss of Circulation Conditions

    SciTech Connect

    Buckner, M.R.

    2001-06-26

    This study investigated natural convection and boiling as a means of cooling SRP reactors in the event of a loss of circulation accident. These studies show that single phase natural convection cooling of SRP reactors in shutdown conditions with the present piping geometry is probably not feasible.

  2. Chaotic dynamics in circulation with Tohoku University vibrating flow pump.

    PubMed

    Nitta, S; Yambe, T; Kobayashi, S; Hashimoto, H; Yoshizawa, M; Mastuki, H; Tabayashi, K; Takeda, H

    1999-01-01

    For the development of a totally implantable ventricular assist system (VAS), we have been developing the vibrating flow pump (VFP), which can generate oscillated blood flow with a relative high frequency (10-50 Hz) for a totally implantable system. In this study, the effects of left ventricular assistance with this unique oscillated blood flow were analyzed by the use of nonlinear mathematics for evaluation as the whole circulatory regulatory system, not as the decomposed parts of the system. Left heart bypasses using the VFP from the left atrium to the descending aorta were performed in chronic animal experiments using healthy adult goats. The ECG, arterial blood pressure, VFP pump flow, and the flow of the descending aorta were recorded in the data recorder during awake conditions and analyzed in a personal computer system through an A-D convertor. By the use of nonlinear mathematics, time series data were embedded into the phase space, the Lyapunov numerical method, fractal dimension analysis, and power spectrum analysis were performed to evaluate nonlinear dynamics. During left ventricular assistance with the VFP, Mayer wave fluctuations were decreased in the power spectrum, the fractal dimension of the hemodynamics was significantly decreased, and peripheral vascular resistance was significantly decreased. These results suggest that nonlinear dynamics, which mediate the cardiovascular dynamics, may be affected during left ventricular (LV) bypass with oscillated flow. The decreased power of the Mayer wave in the spectrum caused the limit cycle attractor of the hemodynamics and decreased peripheral resistance. Decreased sympathetic discharges may be the origin of the decreased Mayer wave and fractal dimension. These nonlinear dynamic analyses may be useful to design optimal VAS control. PMID:9950190

  3. Natural circulating passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  4. An experimental investigation of circulation control flow fields using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.

    1982-01-01

    Experiments are presented which were conducted on flow fields produced by a circulation control airfoil utilizing the Coanda effect at the trailing edge. The application of holographic interferometry to obtain both visualization and quantitative data on the flow field about a circulation control airfoil at transonic flow speed is covered. A brief description of the flow model and measurement techniques is given. The data reduction procedure, results, and interpretation are presented. The results have provided a good deal of information on the character of the flow field, particularly in the neighborhood of the trailing edge. As to the airfoil design, it is apparent that improved performance can be achieved if jet detachment is delayed. Another design improvement would involve the development of an optimum trailing-edge shape for the expected operating Mach and Reynolds number ranges.

  5. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin

    2015-03-01

    Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.

  6. Decay Heat Removal by Natural Circulation of Vacuum Vessel Coolant for ITER

    NASA Astrophysics Data System (ADS)

    Iseli, M.; Bartels, H.-W.; Poucet, A.

    1997-06-01

    The decay heat-driven temperature transients of the in-vessel components following a postulated loss of all in-vessel cooling have been calculated. The resulting time-dependent heat load to the vacuum vessel is due to radiation from the backplate and convection of postulated steam between backplate and vacuum vessel. It is shown, that even for a failure of all in-vessel cooling and total loss of power, the ITER design can rely on passive decay heat removal by natural circulation in one of the two existing cooling loops of the vacuum vessel. A mathematical model describes the transient operating conditions and shows that the temperature established by natural circulation does not exceed 200°C at the maximum shut down heat load to the vacuum vessel. Therefore, no additional emergency cooling system is required if the existing heat exchanger is designed for natural circulation and a bypass is used during normal operation to maintain operation temperature.

  7. System Analysis for Decay Heat Removal in Lead-Bismuth-Cooled Natural-Circulation Reactors

    SciTech Connect

    Sakai, Takaaki; Enuma, Yasuhiro; Iwasaki, Takashi

    2004-03-15

    Decay heat removal analyses for lead-bismuth-cooled natural-circulation reactors are described in this paper. A combined multidimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural-circulation reactors. For the preliminary study, transient analysis has been performed for a 300-MW(thermal) lead-bismuth-cooled reactor designed by Argonne National Laboratory. In addition, decay heat removal characteristics of a 400-MW(electric) lead-bismuth-cooled natural-circulation reactor designed by the Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. The primary reactor auxiliary cooling system (PRACS) is prepared for the JNC concept to get sufficient heat removal capacity. During 2000 s after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 deg. C because the buoyancy force in a primary circulation path is temporarily reduced. However, the natural circulation is recovered by the PRACS system, and the outlet temperature decreases successfully.

  8. System Analysis for Decay Heat Removal in Lead-Bismuth Cooled Natural Circulated Reactors

    SciTech Connect

    Takaaki Sakai; Yasuhiro Enuma; Takashi Iwasaki; Kazuhiro Ohyama

    2002-07-01

    Decay heat removal analyses for lead-bismuth cooled natural circulation reactors are described in this paper. A combined multi-dimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural circulation reactors. For the preliminary study, transient analysis has been performed for a 100 MWe lead-bismuth-cooled reactor designed by Argonne National Laboratory (ANL). In addition, decay heat removal characteristics of a 400 MWe lead-bismuth-cooled natural circulation reactor designed by Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. PRACS (Primary Reactor Auxiliary Cooling System) is prepared for the JNC's concept to get sufficient heat removal capacity. During 2000 sec after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 Centigrade, because the buoyancy force in a primary circulation path is temporary reduced. However, the natural circulation is recovered by the PRACS system and the out let temperature decreases successfully. (authors)

  9. Study on the flow characteristics and the wastewater treatment performance in modified internal circulation reactor.

    PubMed

    Wang, Jiade; Xu, Weijun; Yan, Jingjia; Yu, Jianming

    2014-12-01

    A modified internal circulation (MIC) reactor with an external circulation system was proposed and the performance of treating dyeing wastewater using both MIC and typical IC reactor were compared. Utilization of the external circulation system in the MIC reactor could dramatically improve the mixing intensity of the biomass with the wastewater and resulted in better performance. The COD removal efficiency, biogas production, volatile fatty acids and effluent color were approximately 87%, 98 L d−1, 180 mg L−1 and 100 times, respectively, in the MIC reactor with a hydraulic retention time of 5 h and organic loading rate of 15 kg COD m−3 d−1. The hydrodynamics of the MIC reactor under different flows rate of external circulation were also analyzed using computational fluid dynamics (CFD) method. The optimal flow rate of external circulation was 12 L min−1, which resulted in a corresponding up-flow velocity of 40 m h−1. The consistency of the result between experiment and simulation validated the scientificity of CFD technique applied to numerical simulation of the MIC reactor. PMID:25461928

  10. Numerical calculations of two dimensional, unsteady transonic flows with circulation

    NASA Technical Reports Server (NTRS)

    Beam, R. M.; Warming, R. F.

    1974-01-01

    The feasibility of obtaining two-dimensional, unsteady transonic aerodynamic data by numerically integrating the Euler equations is investigated. An explicit, third-order-accurate, noncentered, finite-difference scheme is used to compute unsteady flows about airfoils. Solutions for lifting and nonlifting airfoils are presented and compared with subsonic linear theory. The applicability and efficiency of the numerical indicial function method are outlined. Numerically computed subsonic and transonic oscillatory aerodynamic coefficients are presented and compared with those obtained from subsonic linear theory and transonic wind-tunnel data.

  11. Heat transfer in horizontal tubes during two phase natural circulation with presence of noncondensing gas

    NASA Astrophysics Data System (ADS)

    Alt, S.; Lischke, W.

    The condensation process of steam inside horizontal tubes during natural circulation gains in importance regarding the reactor safety research for existing and future nuclear power plants. Experimental investigations due to the condensation process were realized with the rig HORUS to study the behaviour of water-steam-gas mixtures in horizontal tubes. The paper includes statements regarding the flow and heat transfer conditions inside the tube and the temperature distribution inside the small tube wall. The experiments showed a blockade of the heat transfer area with Nitrogen which is connected with an increasing primary pressure followed by a compression of the Nitrogen and a reentry of steam into the tube. The experiments serve for the creation of an experimental data base. A model development for calculation of the heat transfer is described. The model was implemented in the German thermal-hydraulic code ATHLET. The comparison of calculated data and the measured parameters of HORUS rig show the code improvement for the simulation of noncondensing gases.

  12. NATCRCTR: One-dimensional thermal-hydraulics analysis code for natural-circulation TRIGA reactors

    SciTech Connect

    Feltus, M.A.; Rubinaccio, G.

    1996-12-31

    The Pennsylvania State University nuclear engineering department is evaluating the upgrade of the Reed College (Portland, Oregon) TRIGA reactor from 250 kW to 1 MW in two areas: thermal-hydraulics and steady-state neutronics analysis. This analysis was initiated as a cooperative effort between Penn State and Reed College as a training project for two International Atomic Energy Agency (IAEA) fellows from Ghana. The two Ghanaian IAEA fellows were assisted by G. Rubinaccio, an undergraduate, who undertook the task of writing the new computer programs for the thermal-hydraulic and physics evaluation as a three-credit special design project course. The Reed College TRIGA, which has a fixed graphite radial reflector, is cooled by natural circulation, without external cross-flow; whereas, the Penn State Breazeale Reactor has significant crossflow into its sides. To model the Reed TRIGA, the NATCRCTR program has been developed from first principles using the following assumptions: 1. The core is surrounded by the fixed reflector structure, which acts as a one-dimensional channel. 2. The core inlet temperature distribution is constant at the core bottom. 3. The axial heat flux distribution is a chopped cosine shape. 4. The heat transfer in the fuel is primarily in the radial directions. 5. A small gap between the fuel and cladding exists. The NATCRCTR code is used to find the peak centerline fuel, gap, and cladding surface temperatures, based on assumed flux and engineering peaking factors.

  13. DETECTION OF EQUATORWARD MERIDIONAL FLOW AND EVIDENCE OF DOUBLE-CELL MERIDIONAL CIRCULATION INSIDE THE SUN

    SciTech Connect

    Zhao Junwei; Bogart, R. S.; Kosovichev, A. G.; Hartlep, Thomas; Duvall, T. L. Jr.

    2013-09-10

    Meridional flow in the solar interior plays an important role in redistributing angular momentum and transporting magnetic flux inside the Sun. Although it has long been recognized that the meridional flow is predominantly poleward at the Sun's surface and in its shallow interior, the location of the equatorward return flow and the meridional flow profile in the deeper interior remain unclear. Using the first 2 yr of continuous helioseismology observations from the Solar Dynamics Observatory/Helioseismic Magnetic Imager, we analyze travel times of acoustic waves that propagate through different depths of the solar interior carrying information about the solar interior dynamics. After removing a systematic center-to-limb effect in the helioseismic measurements and performing inversions for flow speed, we find that the poleward meridional flow of a speed of 15 m s{sup -1} extends in depth from the photosphere to about 0.91 R{sub Sun }. An equatorward flow of a speed of 10 m s{sup -1} is found between 0.82 and 0.91 R{sub Sun} in the middle of the convection zone. Our analysis also shows evidence of that the meridional flow turns poleward again below 0.82 R{sub Sun }, indicating an existence of a second meridional circulation cell below the shallower one. This double-cell meridional circulation profile with an equatorward flow shallower than previously thought suggests a rethinking of how magnetic field is generated and redistributed inside the Sun.

  14. An investigation of the physical factors controlling the sense of secondary flow circulation within submarine meanders

    NASA Astrophysics Data System (ADS)

    Darby, S. E.; Dorrell, R. M.; Peakall, J.; Sumner, E.; Parsons, D. R.; Wynn, R.

    2012-12-01

    Motivated by the symposium held at the 2011 AGU on "Submarine Channel Systems: Flow Dynamics and Sedimentary Deposits", we have undertaken a holistic investigation into the factors affecting secondary flow circulation within submarine meander bends. In both subaerial and submarine meander bends, fluid flow travels in a helical spiral, as centrifugal and hydrostatic forces balance the turbulent shear stress within the flow. Understanding the sense of the secondary flow circulation is important because the near bed orientation of the fluid flow vector strongly affects sediment transport and meander bend morphodynamic evolution, the patterns of surface grain size sorting and, ultimately it controls the character of the sedimentary deposits produced. The study we present here uses a simplified analytical model, considering the fundamental interconnectedness of the principle physical forces driving the rotational flow within submarine meanders. This holistic radial flow model, which incorporates centrifugal and Coriolis forces, the radial pressure gradient and the baroclinicity of the flow, is formulated using existing empirical models. The analytical model is validated using experimental data and used to highlight the influence of the principal physical forces acting on the flow. Previous analytical studies have considered a temporally constant, two-dimensional, rotationally invariant, framework that leads to vanishing material flux conditions when applied to flows within bounded channels. However, with reference to experimental studies, we show that a three-dimensional flow framework, with non-zero material fluxes, is required to capture the rotational structure of flow within submarine meanders. Given this three-dimensional model, we present phase-space diagrams indicating the variation of the generic vertical structure of rotational flow within submarine meanders are presented. These phase-space analyses allow a system wide discussion of secondary flow structure

  15. Subsonic natural-laminar-flow airfoils

    NASA Technical Reports Server (NTRS)

    Somers, Dan M.

    1992-01-01

    An account is given of the development history of natural laminar-flow (NLF) airfoil profiles under guidance of an experimentally well-verified theoretical method for the design of airfoils suited to virtually all subcritical applications. This method, the Eppler Airfoil Design and Analysis Program, contains a conformal-mapping method for airfoils having prescribed velocity-distribution characteristics, as well as a panel method for the analysis of potential flow about given airfoils and a boundary-layer method. Several of the NLF airfoils thus obtained are discussed.

  16. Design and measured performance of a solar chimney for natural circulation solar energy dryers

    SciTech Connect

    Ekechukwu, O.V.; Norton, B.

    1996-02-01

    An experimental solar chimney consisted of a cylindrical polyethylene-clad vertical chamber supported by steel framework and draped internally with a selectively absorbing surface. The performance of the chimney which was monitored extensively is reported. Issues related to the design and construction of solar chimneys for natural circulation solar energy dryers are discussed.

  17. Review of the natural circulation effect in the Vermont Yankee spent-fuel pool

    SciTech Connect

    Wheeler, C.L.

    1988-01-01

    A 7429-node, three-dimensional computer model of the Vermont Yankee spent-fuel pool was set up and run using the porous media model of the TEMPEST computer code. The results of this analysis show that natural circulation is sufficient to ensure adequate cooling, regardless of the loading pattern used or the orientation of the cooling system discharge nozzle.

  18. The natural flow wing-design concept

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1992-01-01

    A wing-design study was conducted on a 65 degree swept leading-edge delta wing in which the wing geometry was modified to take advantage of the naturally occurring flow that forms over a slender wing in a supersonic flow field. Three-dimensional nonlinear analysis methods were used in the study which was divided into three parts: preliminary design, initial design, and final design. In the preliminary design, the wing planform, the design conditions, and the near-conical wing-design concept were derived, and a baseline standard wing (conventional airfoil distribution) and a baseline near-conical wing were chosen. During the initial analysis, a full-potential flow solver was employed to determine the aerodynamic characteristics of the baseline standard delta wing and to investigate modifications to the airfoil thickness, leading-edge radius, airfoil maximum-thickness position, and wing upper to lower surface asymmetry on the baseline near-conical wing. The final design employed an Euler solver to analyze the best wing configurations found in the initial design and to extend the study of wing asymmetry to develop a more refined wing. Benefits resulting from each modification are discussed, and a final 'natural flow' wing geometry was designed that provides an improvement in aerodynamic performance compared with that of a baseline conventional uncambered wing, linear-theory cambered wing, and near-conical wing.

  19. Vertical air circulation in a low-speed lateral flow wind turbine with rotary blades

    NASA Astrophysics Data System (ADS)

    Cheboxarov, Vik. V.; Cheboxarov, Val. V.

    2008-01-01

    The model of a large-scale lateral flow wind turbine with rotary blades is presented and the conditions of numerical aerodynamic investigation of this turbine are described. The results of numerical experiments show that air flowing past the turbine exhibits a considerable vertical (axial) circulation, which increases the power coefficient of the turbine. In the inner space of the turbine, two stable vortices are formed through which retarded streams partly leave the turbine upon flowing past the windward side, to be replaced by faster streams from adjacent layers of air.

  20. An Active Flow Circulation Controlled Flap Concept for General Aviation Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Viken, Sally A.; Washburn, Anthony E.; Jenkins, Luther N.; Cagle, C. Mark

    2002-01-01

    A recent focus on revolutionary aerodynamic concepts has highlighted the technology needs of general aviation and personal aircraft. New and stringent restrictions on these types of aircraft have placed high demands on aerodynamic performance, noise, and environmental issues. Improved high lift performance of these aircraft can lead to slower takeoff and landing speeds that can be related to reduced noise and crash survivability issues. Circulation Control technologies have been around for 65 years, yet have been avoided due to trade offs of mass flow, pitching moment, perceived noise etc. The need to improve the circulation control technology for general aviation and personal air-vehicle applications is the focus of this paper. This report will describe the development of a 2-D General Aviation Circulation Control (GACC) wing concept that utilizes a pulsed pneumatic flap.

  1. Wave-mean flow interaction in the NCAR stratospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Boville, B. A.

    1985-01-01

    A version of the NCAR General Circulation Model has been developed which extends from the surface into the mesosphere. The model was forced by climatological January sea surface temperatures and insolation and gives a fairly reasonable simulation of the troposphere and stratosphere. The transformed Eulerian formation is used to examine the interaction of the eddies with the mean flow in the winter hemisphere. The essence of the transformed Eulerian formation is an attempt to distinguish between the mean meridional circulation driven by diabatic heating and that driven by eddies. The net effect of eddies can then be determined, and is given by the Eliassen-Palm (EP) flux divergence. In practice, this method works reasonably well but is far from perfect. For instance, in the absence of eddy forcing, the winter stratosphere would go to radiative equilibrium and there would be no diabatic heating to drive a mean meridional circulation.

  2. Synergistic protein secretion by mesenchymal stromal cells seeded in 3D scaffolds and circulating leukocytes in physiological flow.

    PubMed

    Ballotta, Virginia; Smits, Anthal I P M; Driessen-Mol, Anita; Bouten, Carlijn V C; Baaijens, Frank P T

    2014-11-01

    Mesenchymal stromal cells (MSC) play an important role in natural wound healing via paracrine and juxtacrine signaling to immune cells. The aim of this study was to identify the signaling factors secreted by preseeded cells in a biomaterial and their interaction with circulating leukocytes, in the presence of physiological biomechanical stimuli exerted by the hemodynamic environment (i.e. strain and shear flow). Electrospun poly(ε-caprolactone)-based scaffolds were seeded with human peripheral blood mononuclear cells (PBMC) or MSC. Protein secretion was analyzed under static conditions and cyclic strain. Subsequently, the cross-talk between preseeded cells and circulating leukocytes was addressed by exposing the scaffolds to a suspension of PBMC in static transwells and in pulsatile flow. Our results revealed that PBMC exposed to the scaffold consistently secreted a cocktail of immunomodulatory proteins under all conditions tested. Preseeded MSC, on the other hand, secreted the trophic factors MCP-1, VEGF and bFGF. Furthermore, we observed a synergistic upregulation of CXCL12 gene expression and a synergistic increase in bFGF protein production by preseeded MSC exposed to PBMC in pulsatile flow. These findings identify CXCL12 and bFGF as valuable targets for the development of safe and effective acellular instructive grafts for application in in situ cardiovascular regenerative therapies. PMID:25112932

  3. Nearfield Flow Topology of a Rounded Wingtip Subject to Circulation Control

    NASA Astrophysics Data System (ADS)

    Edstrand, Adam; Cattafesta, Louis

    2014-11-01

    Trailing vortices are an adverse byproduct of lift causing induced drag, accounting for 40% of the total drag on aircraft, and impose a wake hazard on trailing aircraft (Spalart 1998). The metric used to quantify the wake hazard is the average maximum swirl velocity measured in a velocity snapshot. Circulation control uses tangential blowing along a rounded surface, causing the flow to wrap around the surface. This control methodology is extended to a NACA 0012 wingtip by blowing tangentially over a rounded wingtip to control the circulation of the trailing vortex. Stereo particle image velocimetry measurements are acquired along the chord and downstream of the wingtip to characterize the effects of circulation control on vortex formation and evolution. Compared to the baseline case, the vortex core develops along the upper surface of the airfoil further upstream. This upstream development causes more rapid spatial growth of the vortex, resulting with a larger, less intense vortex than the baseline case. However, the circulation, five chords downstream of the leading edge, increases rather than decreases. This increase implies that favorable control of the circulation does not occur. However, there is a 30% reduction in the wake hazard metric due to the increased vortex size. ONR Grant N00014010824 and NSF PIRE Grant OISE-0968313.

  4. A Non-Heating Experimental Study on the Two-Phase Natural Circulation through the Annular Gap between Reactor Vessel and Insulation under External Vessel Cooling

    SciTech Connect

    Ha, K.S.; Park, R.J.; Cho, Y.R.; Kim, S.B.; Kim, H.D.; Kim, H.M.; Kim, K.Y.

    2004-07-01

    To improve the margin for IVR in high-power reactors, some design improvements of the vessel/insulation configuration to increase the heat removal rate by two-phase natural circulation have been proposed. To observe and evaluate the two-phase natural circulation phenomena through the gap between the reactor vessel and the insulation in the APR1400 under external reactor vessel cooling, the T-HERMES program has been performed, that is, the THERMES- SCALE, T-HERMES-SMALL, HERMES-HALF, and T-HERMES-CFD studies. In this paper, the HERMES-HALF study, which is one of the T-HERMES programs, is introduced. The HERMES-HALF is a non-heating experimental study on the two-phase natural circulation through the annular gap between the reactor vessel and the insulation. The objectives of this HERMES-HALF study are to observe and evaluate the two-phase natural circulation phenomena through the gap between the reactor vessel and the insulation in the APR1400. For these purposes, a half-scaled experimental facility is prepared utilizing the results of a scaling analysis to simulate the APR1400 reactor and insulation system. The behaviors of the boiling-induced two-phase natural circulation flow in the insulation gap are observed, and the liquid mass flow rates driven by the natural circulation loop and void fraction distribution are measured. And numerical analyses of the HERMES-HALF experiments using CFX-5.6 code have also been performed by solving unsteady, three-dimensional Reynolds-averaged Navier-Stokes equations for multiphase flows with the zero equation turbulence model. By the experimental flow observation and numerical predictions, weak recirculation flows in the near region of the shear key are observed. The void fraction monotonically increases from the water inlet to the shear key region. There exists a short decrease of the void fraction after passing through the shear key due to geometrical expansion and the recirculation flow caused by the shear key. The variation of

  5. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies1[S

    PubMed Central

    Tsiantoulas, Dimitrios; Perkmann, Thomas; Afonyushkin, Taras; Mangold, Andreas; Prohaska, Thomas A.; Papac-Milicevic, Nikolina; Millischer, Vincent; Bartel, Caroline; Hörkkö, Sohvi; Boulanger, Chantal M.; Tsimikas, Sotirios; Fischer, Michael B.; Witztum, Joseph L.; Lang, Irene M.; Binder, Christoph J.

    2015-01-01

    Oxidation-specific epitopes (OSEs) present on apoptotic cells and oxidized low density lipoprotein (OxLDL) represent danger-associated molecular patterns that are recognized by different arcs of innate immunity, including natural IgM antibodies. Here, we investigated whether circulating microparticles (MPs), which are small membrane vesicles released by apoptotic or activated cells, are physiological carriers of OSEs. OSEs on circulating MPs isolated from healthy donors and patients with ST-segment elevation myocardial infarction (STE-MI) were characterized by flow cytometry using a panel of OSE-specific monoclonal antibodies. We found that a subset of MPs carry OSEs on their surface, predominantly malondialdehyde (MDA) epitopes. Consistent with this, a majority of IgM antibodies bound on the surface of circulating MPs were found to have specificity for MDA-modified LDL. Moreover, we show that MPs can stimulate THP-1 (human acute monocytic leukemia cell line) and human primary monocytes to produce interleukin 8, which can be inhibited by a monoclonal IgM with specificity for MDA epitopes. Finally, we show that MDA+ MPs are elevated at the culprit lesion site of patients with STE-MI. Our results identify a subset of OSE+ MPs that are bound by OxLDL-specific IgM. These findings demonstrate a novel mechanism by which anti-OxLDL IgM antibodies could mediate protective functions in CVD. PMID:25525116

  6. Innovative Flow Cytometry Allows Accurate Identification of Rare Circulating Cells Involved in Endothelial Dysfunction

    PubMed Central

    Boraldi, Federica; Bartolomeo, Angelica; De Biasi, Sara; Orlando, Stefania; Costa, Sonia; Cossarizza, Andrea; Quaglino, Daniela

    2016-01-01

    Introduction Although rare, circulating endothelial and progenitor cells could be considered as markers of endothelial damage and repair potential, possibly predicting the severity of cardiovascular manifestations. A number of studies highlighted the role of these cells in age-related diseases, including those characterized by ectopic calcification. Nevertheless, their use in clinical practice is still controversial, mainly due to difficulties in finding reproducible and accurate methods for their determination. Methods Circulating mature cells (CMC, CD45-, CD34+, CD133-) and circulating progenitor cells (CPC, CD45dim, CD34bright, CD133+) were investigated by polychromatic high-speed flow cytometry to detect the expression of endothelial (CD309+) or osteogenic (BAP+) differentiation markers in healthy subjects and in patients affected by peripheral vascular manifestations associated with ectopic calcification. Results This study shows that: 1) polychromatic flow cytometry represents a valuable tool to accurately identify rare cells; 2) the balance of CD309+ on CMC/CD309+ on CPC is altered in patients affected by peripheral vascular manifestations, suggesting the occurrence of vascular damage and low repair potential; 3) the increase of circulating cells exhibiting a shift towards an osteoblast-like phenotype (BAP+) is observed in the presence of ectopic calcification. Conclusion Differences between healthy subjects and patients with ectopic calcification indicate that this approach may be useful to better evaluate endothelial dysfunction in a clinical context. PMID:27560136

  7. Detection of circulating immune complexes by Raji cell assay: comparison of flow cytometric and radiometric methods

    SciTech Connect

    Kingsmore, S.F.; Crockard, A.D.; Fay, A.C.; McNeill, T.A.; Roberts, S.D.; Thompson, J.M.

    1988-01-01

    Several flow cytometric methods for the measurement of circulating immune complexes (CIC) have recently become available. We report a Raji cell flow cytometric assay (FCMA) that uses aggregated human globulin (AHG) as primary calibrator. Technical advantages of the Raji cell flow cytometric assay are discussed, and its clinical usefulness is evaluated in a method comparison study with the widely used Raji cell immunoradiometric assay. FCMA is more precise and has greater analytic sensitivity for AHG. Diagnostic sensitivity by the flow cytometric method is superior in systemic lupus erythematosus (SLE), rheumatoid arthritis, and vasculitis patients: however, diagnostic specificity is similar for both assays, but the reference interval of FCMA is narrower. Significant correlations were found between CIC levels obtained with both methods in SLE, rheumatoid arthritis, and vasculitis patients and in longitudinal studies of two patients with cerebral SLE. The Raji cell FCMA is recommended for measurement of CIC levels to clinical laboratories with access to a flow cytometer.

  8. A study of natural circulation in the evaporator of a horizontal-tube heat recovery steam generator

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Pleshanov, K. A.; Sterkhov, K. V.

    2014-07-01

    Results obtained from investigations of stable natural circulation in an intricate circulation circuit with a horizontal layout of the tubes of evaporating surface having a negative useful head are presented. The possibility of making a shift from using multiple forced circulation organized by means of a circulation pump to natural circulation in vertical heat recovery steam generator is estimated. Criteria for characterizing the performance reliability and efficiency of a horizontal evaporator with negative useful head are proposed. The influence of various design solutions on circulation robustness is considered. With due regard of the optimal parameters, the most efficient and least costly methods are proposed for achieving more stable circulation in a vertical heat recovery steam generator when a shift is made from multiple forced to natural circulation. A procedure for calculating the circulation parameters and an algorithm for checking evaporator performance reliability are developed, and recommendations for the design of heat recovery steam generator, nonheated parts of natural circulation circuit, and evaporating surface are suggested.

  9. Assessment of left heart and pulmonary circulation flow dynamics by a new pulsed mock circulatory system

    NASA Astrophysics Data System (ADS)

    Tanné, David; Bertrand, Eric; Kadem, Lyes; Pibarot, Philippe; Rieu, Régis

    2010-05-01

    We developed a new mock circulatory system that is able to accurately simulate the human blood circulation from the pulmonary valve to the peripheral systemic capillaries. Two independent hydraulic activations are used to activate an anatomical-shaped left atrial and a left ventricular silicon molds. Using a lumped model, we deduced the optimal voltage signals to control the pumps. We used harmonic analysis to validate the experimental pulmonary and systemic circulation models. Because realistic volumes are generated for the cavities and the resulting pressures were also coherent, the left atrium and left ventricle pressure-volume loops were concordant with those obtained in vivo. Finally we explored left atrium flow pattern using 2C-3D+T PIV measurements. This gave a first overview of the complex 3D flow dynamics inside realistic left atrium geometry.

  10. Flight research on natural laminar flow applications

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Obara, Clifford J.

    1992-01-01

    Natural laminar flow (NLF) is clearly one of the most potentially attractive drag reduction technologies by virtue of its relative simplicity. NLF is achieved passively, that is, by design of surface shapes to produce favorable pressure gradients. However, it is not without its challenges and limitations. This chapter describes the significant challenges to achieving and maintaining NLF and documents certain of the limitations for practical applications. A brief review of the history and of more recent NLF flight experiments is given, followed by a summary of lessons learned which are pertinent to future applications. The chapter also summarizes important progress in test techniques, particularly in flow visualization and hot-film techniques for boundary-layer measurements in flight.

  11. Natural laminar flow hits smoother air

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1985-01-01

    Natural laminar flow (NLF) may be attained in aircraft with lower cost, weight, and maintenance penalties than active flow laminarization by means of a slot suction system. A high performance general aviation jet aircraft possessing a moderate degree of NLF over wing, fuselage, empennage and engine nacelles will accrue a 24 percent reduction in total aircraft drag in the cruise regime. NASA-Langley has conducted NLF research centered on the use of novel airfoil profiles as well as composite and milled aluminum alloy construction methods which minimize three-dimensional aerodynamic surface roughness and waviness. It is noted that higher flight altitudes intrinsically reduce unit Reynolds numbers, thereby minimizing turbulence for a given cruise speed.

  12. Evaluation of groundwater flow patterns around a dual-screened groundwater circulation well.

    PubMed

    Johnson, Richard L; Simon, Michelle A

    2007-08-15

    Dual-screened groundwater circulation wells (GCWs) can be used to remove contaminant mass and to mix reagents in situ. GCWs are so named because they force water in a circular pattern between injection and extraction screens. The radial extent, flux and direction of the effective flow of this circulation cell are difficult to measure or predict. The objective of this study is to develop a robust protocol for assessing GCW performance. To accomplish this, groundwater flow patterns surrounding a GCW are assessed using a suite of tools and data, including: hydraulic head, in situ flow velocity, measured hydraulic conductivity data from core samples, chemical tracer tests, contaminant distribution data, and numerical flow and transport models. The hydraulic head data show patterns that are consistent with pumping on a dual-screened well, however, many of the observed changes are smaller than expected. In situ thermal perturbation flow sensors successfully measured horizontal flow, but vertical flow could not be determined with sufficient accuracy to be useful in mapping flow patterns. Two types of chemical tracer tests were utilized at the site and showed that much of the flow occurs within a few meters of the GCW. Flow patterns were also assessed based on changes in contaminant (trichloroethylene, TCE) concentrations over time. The TCE data clearly showed treated water moving away from the GCW at shallow and intermediate depths, but the circulation of that water back to the well, except very close to the well, was less clear. Detailed vertical and horizontal hydraulic conductivities were measured on 0.3 m-long sections from a continuous core from the GCW installation borehole. The measured vertical and horizontal hydraulic conductivity data were used to construct numerical flow and transport models, the results of which were compared to the head, velocity and concentration data. Taken together, the field data and modeling present a fairly consistent picture of flow

  13. Analysis of gas/particles flow in the riser of a circulating fluidized bed

    SciTech Connect

    Arastoopour, H.; Benyahia, S.

    1999-07-01

    Computational fluid dynamics (CFD) packages (CFX and Fluent) governing equations were modified using kinetic theory for cohesive and non-cohesive particles of different sizes, and used to simulate 2-dimensional and 3-dimensional transient gas/particle flow behavior using FCC particles in the riser section of a circulating fluidized bed. The calculated solid flux velocity and pressure drop agreed reasonably well with the experimental data obtained using laser doppler anemometer and large-scale experiments.

  14. On a sparse pressure-flow rate condensation of rigid circulation models.

    PubMed

    Schiavazzi, D E; Hsia, T Y; Marsden, A L

    2016-07-26

    Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol׳ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219

  15. Fine-grid simulations of gas-solids flow in a circulating fluidized bed

    SciTech Connect

    Benyahia, S.

    2012-01-01

    This research note demonstrates that more accurate predictions of a two-fluid model for the riser section of a circulating fluidized bed are obtained as the grid size is equally refined along all the directions of the gas-particle flow. However, two-fluid simulations of large-scale fluidized beds with such a fine mesh are currently computationally prohibitive. Alternatively,subgrid models can significantly reduce the simulation time of multiphase flow by using coarse mesh, whereas maintaining a high level of accuracy.

  16. Design optimization of natural laminar flow bodies in compressible flow

    NASA Technical Reports Server (NTRS)

    Dodbele, Simha S.

    1992-01-01

    An optimization method has been developed to design axisymmetric body shapes such as fuselages, nacelles, and external fuel tanks with increased transition Reynolds numbers in subsonic compressible flow. The new design method involves a constraint minimization procedure coupled with analysis of the inviscid and viscous flow regions and linear stability analysis of the compressible boundary-layer. In order to reduce the computer time, Granville's transition criterion is used to predict boundary-layer transition and to calculate the gradients of the objective function, and linear stability theory coupled with the e(exp n)-method is used to calculate the objective function at the end of each design iteration. Use of a method to design an axisymmetric body with extensive natural laminar flow is illustrated through the design of a tiptank of a business jet. For the original tiptank, boundary layer transition is predicted to occur at a transition Reynolds number of 6.04 x 10(exp 6). For the designed body shape, a transition Reynolds number of 7.22 x 10(exp 6) is predicted using compressible linear stability theory coupled with the e(exp n)-method.

  17. Label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling; Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Gao, Wenyuan; Tang, Shuo; Wei, Xunbin

    2016-03-01

    Melanoma is a malignant tumor of melanocytes. Melanoma cells have high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC), which is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. We have developed in vitro experiments to prove the ability of PAFC system of detecting photoacoustic signals from melanoma cells. For in vivo experiments, we have constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells, B16F10 with subcutaneous injection. PA signals are detected in the blood vessels of mouse ears in vivo. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The processing methods have a great potential for analyzing signals accurately and rapidly. By counting circulating melanoma cells termly, we obtain the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation.

  18. Control of respiration-driven retrograde flow in the subdiaphragmatic venous return of the Fontan circulation

    PubMed Central

    Vukicevic, M; Conover, T; Jaeggli, M; Zhou, J; Pennati, G; Hsia, TY; Figliola, RS

    2014-01-01

    Respiration influences the subdiaphragmatic venous return in the total cavopulmonary connection (TCPC) of the Fontan circulation whereby both the inferior vena cava (IVC) and hepatic vein flows can experience retrograde motion. Controlling retrograde flows could improve patient outcomes. Using a patient-specific model within a Fontan mock circulatory system with respiration, we inserted a valve into the IVC to examine its effects on local hemodynamics while varying retrograde volumes by changing vascular impedances. A bovine valved conduit reduced IVC retrograde flow to within 3% of antegrade flow in all cases. The valve closed only under conditions supporting retrograde flow and its effects on local hemodynamics increased with larger retrograde volume. Liver and TCPC pressures improved only while the valve leaflets were closed while cycle-averaged pressures improved only slightly (italic>1 mm Hg). Increased pulmonary vascular resistance raised mean circulation pressures but the valve functioned and cardiac output improved and stabilized. Power loss across the TCPC improved by 12–15% (pbold>0.05) with a valve. The effectiveness of valve therapy is dependent on patient vascular impedance. PMID:24814833

  19. Design of gas circulation system in the high power fast axial flow CO2 laser

    NASA Astrophysics Data System (ADS)

    Huang, Hongyan; Wang, Youqing; Li, Qing; Jia, Xinting

    2009-08-01

    Increasing the output power of the fast axial flow CO2 laser requires a proportional growth of the mass flow with the laser power for convective cooling of the active laser medium. The previous research on high power CO2 laser was mostly focused on gas discharge. However, little attention was focused on the gas circulation system, which is also an essential technology to ensure the long time stable work of the high power fast axial flow CO2 laser. Based on the analysis of the characteristics of the 7 KW fast axial flow CO2 laser, expounded the important role of the gas circulation system, and then analyzed the parameters, the structure and the design of the system. After that, this paper compared various types of blowers and heat exchangers, chose magnetic levitation radial turbine blower and rectangle finned heat exchanger, in light of the prominent performance and compact structure. Further more, this paper also supplied the methods of the blower and heat exchanger selection and design. The results indicate that the magnetic levitation radial turbine blower and rectangle finned heat exchanger which have been chosen are suitable to the 7 kW fast axial flow CO2 laser.

  20. Control of respiration-driven retrograde flow in the subdiaphragmatic venous return of the Fontan circulation.

    PubMed

    Vukicevic, Marija; Conover, Timothy; Jaeggli, Michael; Zhou, Jian; Pennati, Giancarlo; Hsia, Tain-Yen; Figliola, Richard S

    2014-01-01

    Respiration influences the subdiaphragmatic venous return in the total cavopulmonary connection (TCPC) of the Fontan circulation whereby both the inferior vena cava (IVC) and hepatic vein flows can experience retrograde motion. Controlling retrograde flows could improve patient outcomes. Using a patient-specific model within a Fontan mock circulatory system with respiration, we inserted a valve into the IVC to examine its effects on local hemodynamics while varying retrograde volumes by changing vascular impedances. A bovine valved conduit reduced IVC retrograde flow to within 3% of antegrade flow in all cases. The valve closed only under conditions supporting retrograde flow and its effects on local hemodynamics increased with larger retrograde volume. Liver and TCPC pressures improved only when the valve leaflets were closed whereas cycle-averaged pressures improved only slightly (<1 mm Hg). Increased pulmonary vascular resistance raised mean circulation pressures, but the valve functioned and cardiac output improved and stabilized. Power loss across the TCPC improved by 12%-15% (p < 0.05) with a valve. The effectiveness of valve therapy is dependent on patient vascular impedance. PMID:24814833

  1. Prognostic residual mean flow in an ocean general circulation model and its relation to prognostic Eulerian mean flow

    SciTech Connect

    Saenz, Juan A.; Chen, Qingshan; Ringler, Todd

    2015-05-19

    Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWA framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.

  2. Prognostic residual mean flow in an ocean general circulation model and its relation to prognostic Eulerian mean flow

    DOE PAGESBeta

    Saenz, Juan A.; Chen, Qingshan; Ringler, Todd

    2015-05-19

    Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore » framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less

  3. Macrolide antibiotics removal using a circulating TiO2-coated paper photoreactor: parametric study and hydrodynamic flow characterization.

    PubMed

    Ounnar, Amel; Bouzaza, Abdelkrim; Favier, Lidia; Bentahar, Fatiha

    2016-01-01

    The present work investigates the photocatalytic degradation efficiency of biorecalcitrant macrolide antibiotics in a circulating tubular photoreactor. As target pollutants, spiramycin (SPM) and tylosin (TYL) were considered in this study. The photoreactor leads to the use of an immobilized titanium dioxide on non-woven paper under artificial UV-lamp irradiation. Maximum removal efficiency was achieved at the optimum conditions of natural pH, low pollutant concentration and a 0.35 L min(-1) flow rate. A Langmuir-Hinshelwood model was used to fit experimental results and the model constants were determined. Moreover, the total organic carbon analysis reveals that SPM and TYL mineralization is not complete. In addition, the study of the residence time distribution allowed us to investigate the flow regime of the reactor. Electrical energy consumption for photocatalytic degradation of macrolides using circulating TiO2-coated paper photoreactor was lower compared with some reported photoreactors used for the elimination of pharmaceutic compounds. A repetitive reuse of the immobilized catalyst was also studied in order to check its photoactivity performance. PMID:27232398

  4. Conservative solute approximation to the transport of a remedial reagent in a vertical circulation flow field

    NASA Astrophysics Data System (ADS)

    Chen, Jui-Sheng; Jang, Cheng-Shin; Cheng, Chung-Ting; Liu, Chen-Wuing

    2010-09-01

    SummaryThis study presents a novel mathematical model for describing the transport of the remedial reagent in a vertical circulation flow field in an anisotropic aquifer. To develop the mathematical model, the radial and vertical components of the pore water velocity are calculated first by using an analytical solution for steady-state drawdown distribution near a vertical circulation well. Next, the obtained radial and vertical components of the pore water velocity are then incorporated into a three-dimensional axisymmetrical advection-dispersion equation in cylindrical coordinates from which to build the reagent transport equation. The Laplace transform finite difference technique is applied to solve the three-dimensional axisymmetrical advection-dispersion equation with spatial variable-dependent coefficients. The developed mathematical model is used to investigate the effects of various parameters such as hydraulic conductivity anisotropy, longitudinal and transverse dispersivities, the placement of the extraction and injection screened intervals of the vertical circulation well and the injection modes on the transport regime of the remedial reagent. Results show that those parameters have different degrees of impacts on the distribution of the remedial reagent. The mathematical model provides an effective tool for designing and operating an enhanced groundwater remediation in an anisotropic aquifer using the vertical circulation well technology.

  5. Studying the role of macrophages in circulating prostate cancer cells by in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Cui, Xiaojun; Guo, Jin; Gu, Zhengqin; Wei, Xunbin

    2012-12-01

    Metastasis is a very complicated multi-step process and accounts for the low survival rate of the cancerous patients. To metastasize, the malignant cells must detach from the primary tumor and migrate to secondary sites in the body through either blood or lymph circulation. Macrophages appear to be directly involved in tumor progression and metastasis. However, the role of macrophages in affecting cancer metastasis has not been fully elucidated. Here, we have utilized an emerging technique, namely in vivo flow cytometry (IVFC) to study the depletion kinetics of circulating prostate cancer cells in mice and how depletion of macrophages by the liposome-encapsulated clodronate affects the depletion kinetics. Our results show different depletion kinetics of PC-3 cells between macrophage-deficient group and the control group. The number of circulating tumor cells (CTCs) in macrophage-deficient group decreases in a slower manner compared to the control mice group. The differences in depletion kinetics indicate that the absence of macrophages facilitates the stay of prostate cancer cells in circulation. We speculate that macrophages might be able to arrest, phagocytose and digest PC-3 cells. Therefore, the phagocytosis may mainly contribute to the depletion kinetic differences. The developed methods here would be useful to study the relationship between macrophages and tumor metastasis in small animal cancer model.

  6. Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets.

    PubMed

    Park, Emily S; Jin, Chao; Guo, Quan; Ang, Richard R; Duffy, Simon P; Matthews, Kerryn; Azad, Arun; Abdi, Hamidreza; Todenhöfer, Tilman; Bazov, Jenny; Chi, Kim N; Black, Peter C; Ma, Hongshen

    2016-04-01

    Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label-free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells. This mechanism leverages the deformation of single cells through tapered micrometer scale constrictions using oscillatory flow in order to generate a ratcheting effect that produces distinct flow paths for CTCs, leukocytes, and erythrocytes. A label-free separation of circulating tumor cells from whole blood is demonstrated, where target cells can be separated from background cells based on deformability despite their nearly identical size. In doping experiments, this microfluidic device is able to capture >90% of cancer cells from unprocessed whole blood to achieve 10(4) -fold enrichment of target cells relative to leukocytes. In patients with metastatic castration-resistant prostate cancer, where CTCs are not significantly larger than leukocytes, CTCs can be captured based on deformability at 25× greater yield than with the conventional CellSearch system. Finally, the CTCs separated using this approach are collected in suspension and are available for downstream molecular characterization. PMID:26917414

  7. Simulations of Flow Circulations and Atrazine Concentrations in a Midwest U.S. Reservoir

    NASA Astrophysics Data System (ADS)

    Zhao, Xianggui; Gu, Roy R.; Guo, Chuling; Wang, Kui; Li, Shijie

    Atrazine is the most commonly used herbicide in the spring for pre-emergent weed control in the corn cropping area in the Midwestern United States. A frequent high level of herbicide concentrations in reservoirs is a great concern for public health and aquatic ecosystems. In this study, a two-dimensional hydrodynamics and toxic contaminant transport model was applied to Saylorville Reservoir, Iowa, USA. The model simulates physical, chemical, and biological processes and predicts unsteady vertical and longitudinal distributions of a toxic chemical. Model results were validated by measured temperatures and atrazine concentrations. Simulated flow velocities, water temperatures, and chemical concentrations demonstrated that the spatial variation of atrazine concentrations was largely affected by seasonal flow circulation patterns in the reservoir. In particular, the simulated fate and transport of atrazine showed the effect of flow circulation on spatial distribution of atrazine during summer months as the river flow formed an underflow within the reservoir and resulted in greater concentrations near the surface of the reservoir. Atrazine concentrations in the reservoir peaked around the end of May and early June. A thorough understanding of the fate and transport of atrazine in the reservoir can assist in developing operation and pollution prevention strategies with respect to timing, amount, and depth of withdrawal. The responses of atrazine transport to various boundary conditions provide useful information in assessing environmental impact of alternative upstream watershed management practices on the quality of reservoir water.

  8. Tomographic Diffuse Fluorescence Flow Cytometry for Enumeration of Rare Circulating Cells in Vitro and in Vivo

    NASA Astrophysics Data System (ADS)

    Zettergren, Eric William

    2011-12-01

    Accurate quantification of circulating cell populations is important in many areas of preclinical and clinical biomedical research including the study of metastasized cancers, T-Lymphotocyes and hematopoietic stem cells. Normally this is done either by extraction and analysis of small blood samples or more recently using microscopy-based in vivo fluorescence flow cytometry. In this thesis, a new technological approach to this problem is described using detection of diffuse fluorescent light from relatively large blood vessels in vivo. The 'tomographic diffuse fluorescence flow cytometer' (TDFFC) uses modulated lasers to illuminate a mouse limb and an array of optical fibers coupled to a high-sensitivity photomultiplier tube array operating in photon counting mode to detect weak fluorescence signals from cells. It is first demonstrated that the TDFFC instrument is capable of detecting fluorescent microspheres and Vybrant-DiD labeled cells with excellent accuracy in an optical flow phantom with similar size, optical properties, linear flow rates and autofluorescence as a mouse limb. Preliminary data demonstrating that the TDFFC is capable of detecting circulating cells in nude mice in vivo is also shown. Finally, a number of methods for performing coarse tomographic localization of fluorescent cells within the cross-section of a mouse limb using TDFFC data sets are described, and the feasibility of this approach is demonstrated using in vitro data sets. In principle, this device would allow interrogation of the whole blood volume of a mouse in minutes, with several orders of magnitude sensitivity improvement compared with current approaches.

  9. Natural circulation loop using liquid nitrogen for cryo-detection system

    SciTech Connect

    Choi, Yeon Suk

    2014-01-29

    The natural circulation loop is designed for the cryogenic insert in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Sensitivity is the key parameter of a FTICR mass spectrometer and the cryo-cooling of the pre-amplifier can reduce the thermal noise level and thereby improve the signal-to-noise ratio. The pre-amplifier consisted of non-magnetic materials is thermally connected to the cooling loop which is passing through the flange maintaining ultra-high vacuum in the ion cell. The liquid nitrogen passes through inside of the loop to cool the pre-amplifier indirectly. At the end, a cryocooler is located to re-condense nitrogen vapor generated due to the heat from the pre-amplifier. The circulating fluid removes heat from the pre-amplifier and transports it to the cryocooler or heat sink. In this paper the natural circulation loop for cryogenic pre-amplifier is introduced for improving the sensitivity of cryo-detector. In addition, the initial cool-down of the system by a cryocooler is presented and the temperature of the radiation shield is discussed with respect to the thickness of shield and the thermal radiation load.

  10. Observation of Oil Flow Characteristics in Rolling Piston Rotary Compressor for Reducing Oil Circulation Rate

    NASA Astrophysics Data System (ADS)

    Song, S. j.; Noh, K. Y.; Min, B. C.; Yang, J. S.; Choi, G. M.; Kim, D. J.

    2015-08-01

    The oil circulation rate (OCR) of the rolling piston rotary compressor is a significant factor which affects the performance of refrigeration system. The increase of oil discharge causes decreasing of the heat transfer efficiency in the heat exchanger, pressure drop and lack of oil in lubricate part in compressor. In this study, the internal flow of compressor was visualized to figure out the oil droplet flow characteristics. The experiments and Computational Fluid Dynamics (CFD) simulations were conducted in various frequency of compressor to observe the effect of operation frequency on oil droplet flow characteristics for reducing OCR. In situ, measurement of oil droplet diameter and velocity were conducted by using high speed image visualization and Particle Image Velocimetry (PIV). The flow paths were dominated by copper wire parts driving the motor which was inserted in compressor. In order to verify the reliability of CFD simulation, the tendency of oil flow characteristics in each flow path and the compressor operating conditions were applied in CFD simulation. For reducing OCR, the structure such as vane, disk and ring is installed in the compressor to restrict the main flow path of oil particle. The effect of additional structure for reducing OCR was evaluated using CFD simulation and the results were discussed in detail.

  11. Natural circulation decay heat removal from an SP-100, 550 kWe power system for a lunar outpost

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.; Xue, Huimin

    1992-01-01

    This research investigated the decay heat removal from the SP-100 reactor core of a 550-kWe power system for a lunar outpost by natural circulation of lithium coolant. A transient model that simulates the decay heat removal loop (DHRL) of the power system was developed and used to assess the system's decay heat removal capability. The effects of the surface area of the decay heat rejection radiator, the dimensions of the decay heat exchanger (DHE) flow duct, the elevation of the DHE, and the diameter of the rise and down pipes in the DHRL on the decay heat removal capability were examined. Also, to determine the applicability of test results at earth gravity to actual system performance on the lunar surface, the effect of the gravity constant (1 g and 1/6 g) on the thermal behavior of the system after shutdown was investigated.

  12. Modeling studies of the coastal circulation off northern California: Statistics and patterns of wintertime flow

    NASA Astrophysics Data System (ADS)

    Pullen, Julie; Allen, J. S.

    2001-11-01

    We conduct modeling studies of the coastal circulation off northern California in the vicinity of the Eel River (40.6°N, the site of the 1995-2000 Strata Formation on Margins (STRATAFORM) marine geology observational program) using a series of nested hydrostatic primitive equation models to aid in the understanding of the shelf flow field that receives and transports sediments during the winter floods. The basic objectives of our numerical studies are to model the continental shelf and slope flow and to understand the dominant dynamical processes. We simulate the shelf and slope flow surrounding Cape Mendocino during 100 days in winter 1996-1997 using a 3 km resolution model embedded in a 9 km resolution regional model of the North Pacific Ocean (the Naval Research Laboratory's Pacific West Coast (PWC) model). The validity of the model simulations is assessed by comparison with current measurements from a STRATAFORM shelf tripod outfitted with an acoustic Doppler current profiler and with satellite altimetry. Good agreement is found between the amplitude and time variability of the 3 km resolution modeled and observed alongshore currents on the shelf. The 3 km resolution model outperforms the 9 km resolution PWC model. Using statistical maps of flow variables, strong alongshore variability in wintertime flow is documented. The role of the forcing supplied by wind and river runoff in establishing this flow asymmetry between regions north and south of Cape Mendocino is examined using empirical orthogonal functions. The evolution of a robust anticyclonic eddy over the shelf and slope adjacent to Cape Mendocino is described. The eddy forms when strong poleward winds weaken and reverse direction during winter storms. The important role of alongshore pressure gradients in the shelf circulation is documented.

  13. Flow Forecasting via Artificial Neural Networks - A Study for Input Variables conditioned on atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Panagoulia, D.; Trichakis, I.; Tsekouras, G. J.

    2012-04-01

    The paper compares the performance of different structures of Artificial Neural Networks (ANNs) for flow forecasting of the next day in the Mesochora catchment in Northwestern Greece with respect to different input variables. The input variables are historical data of previous days, such as: (a) flows, (b) temperatures conditioned on atmospheric circulation, and (c) rainfalls conditioned on atmospheric circulation too. The training algorithm is the stochastic training back-propagation process with decreasing functions of learning rate and momentum term, for which a calibration process is conducted regarding the crucial parameters values, such as the number of neurons, the kind of activation functions, the initial values and time parameters of learning rate and momentum term etc. The performance of each structure has been evaluated by different criterions, such as (i) the root mean square error (RMSE), (ii) the correlation index (R), (iii) the mean absolute percentage error (MAPE), (iv) the mean percentage error (MPE), (v) the mean percentage error (ME), (vi) the percentage volume in errors (VE), (vii) the percentage error in peak (MF), (viii) the normalized mean bias error (NMBE), (ix) the normalized root mean bias error (NRMSE), (x) the Nash-Sutcliffe model efficiency coefficient (E), (xi) the modified Nash-Sutcliffe model efficiency coefficient (E1), (xii) the threshold statistics (TSp%) for a level of absolute relative error of p% (=1%, 2%, 5%, 25%, 50% and 100%). Here, the calibration process has been based on the voting analysis of the (i) to (xi) criterions. The time period of long-term falling flow (1972-77) is divided in two sets: one for ANN training with the 80% of data and the other for ANN parameters' calibration with the 20% data. The test set for the final verification of behaviour of ANN structures encompasses the following long-term time period with falling flow (1987-92). From the aforementioned analysis the nonlinear behaviour between forecasted

  14. EFFECTS OF INITIAL FLOW ON CLOSE-IN PLANET ATMOSPHERIC CIRCULATION

    SciTech Connect

    Thrastarson, Heidar Th.; Cho, James Y-K. E-mail: J.Cho@qmul.ac.u

    2010-06-10

    We use a general circulation model to study the three-dimensional (3D) flow and temperature distributions of atmospheres on tidally synchronized extrasolar planets. In this work, we focus on the sensitivity of the evolution to the initial flow state, which has not received much attention in 3D modeling studies. We find that different initial states lead to markedly different distributions-even under the application of strong forcing (large day-night temperature difference with a short 'thermal drag time') that may be representative of close-in planets. This is in contrast with the results or assumptions of many published studies. In general, coherent jets and vortices (and their associated temperature distributions) characterize the flow, and they evolve differently in time, depending on the initial condition. If the coherent structures reach a quasi-stationary state, their spatial locations still vary. The result underlines the fact that circulation models are currently unsuitable for making quantitative predictions (e.g., location and size of a 'hot spot') without better constrained, and well-posed, initial conditions.

  15. Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation.

    PubMed

    Qureshi, M Umar; Vaughan, Gareth D A; Sainsbury, Christopher; Johnson, Martin; Peskin, Charles S; Olufsen, Mette S; Hill, N A

    2014-10-01

    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281-1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of 'large' arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the 'smaller' arteries and veins of radii ≥ 50 μm. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung. PMID:24610385

  16. Secondary flow structure in a model curved artery: 3D morphology and circulation budget analysis

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2015-11-01

    In this study, we examined the rate of change of circulation within control regions encompassing the large-scale vortical structures associated with secondary flows, i.e. deformed Dean-, Lyne- and Wall-type (D-L-W) vortices at planar cross-sections in a 180° curved artery model (curvature ratio, 1/7). Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) experiments were performed independently, under the same physiological inflow conditions (Womersley number, 4.2) and using Newtonian blood-analog fluids. The MRV-technique performed at Stanford University produced phase-averaged, three-dimensional velocity fields. Secondary flow field comparisons of MRV-data to PIV-data at various cross-sectional planes and inflow phases were made. A wavelet-decomposition-based approach was implemented to characterize various secondary flow morphologies. We hypothesize that the persistence and decay of arterial secondary flow vortices is intrinsically related to the influence of the out-of-plane flow, tilting, in-plane convection and diffusion-related factors within the control regions. Evaluation of these factors will elucidate secondary flow structures in arterial hemodynamics. Supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE). The MRV data were acquired at Stanford University in collaboration with Christopher Elkins and John Eaton.

  17. Flow Regime Study in a High Density Circulating Fluidized Bed Riser with an Abrupt Exit

    SciTech Connect

    Mei, J.S.; Shadle, L.J.; Yue, P.C.; Monazam, E.R.

    2007-01-01

    Flow regime study was conducted in a 0.3 m diameter, 15.5 m height circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U.S. Department of Energy. Local particle velocities were measured at various radial positions and riser heights using an optical fiber probe. On-line measurement of solid circulating rate was continuously recorded by the Spiral. Glass beads of mean diameter 61 μm and particle density of 2,500 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 3 to 7.6 m/s and solid mass flux from 20 to 550 kg/m2-s. At a constant riser gas velocity, transition from fast fluidization to dense suspension upflow (DSU) regime started at the bottom of the riser with increasing solid flux. Except at comparatively low riser gas velocity and solid flux, the apparent solid holdup at the top exit region was higher than the middle section of the riser. The solid fraction at this top region could be much higher than 7% under high riser gas velocity and solid mass flux. The local particle velocity showed downward flow near the wall at the top of the riser due to its abrupt exit. This abrupt geometry reflected the solids and, therefore, caused solid particles traveling downward along the wall. However, at location below, but near, the top of the riser the local particle velocities were observed flowing upward at the wall. Therefore, DSU was identified in the upper region of the riser with an abrupt exit while the fully developed region, lower in the riser, was still exhibiting core-annular flow structure. Our data were compared with the flow regime boundaries proposed by Kim et al. [1] for distinguishing the dilute pneumatic transport, fast fluidization, and DSU.

  18. Diurnal Variations of Circulating Extracellular Vesicles Measured by Nano Flow Cytometry

    PubMed Central

    Tigges, John; Toxavidis, Vasilis; Camacho, Virginia; Felton, Edward J.; Khoory, Joseph; Kreimer, Simion; Ivanov, Alexander R.; Mantel, Pierre-Yves; Jones, Jennifer; Akuthota, Praveen; Das, Saumya; Ghiran, Ionita

    2016-01-01

    The identification of extracellular vesicles (EVs) as intercellular conveyors of biological information has recently emerged as a novel paradigm in signaling, leading to the exploitation of EVs and their contents as biomarkers of various diseases. However, whether there are diurnal variations in the size, number, and tissue of origin of blood EVs is currently not known, and could have significant implications when using EVs as biomarkers for disease progression. Currently available technologies for the measurement of EV size and number are either time consuming, require specialized equipment, or lack sufficient accuracy across a range of EV sizes. Flow cytometry represents an attractive alternative to these methods; however, traditional flow cytometers are only capable of measuring particles down to 500 nm, which is significantly larger than the average and median sizes of plasma EVs. Utilizing a Beckman Coulter MoFlo XDP flow cytometer with NanoView module, we employed nanoscale flow cytometry (termed nanoFCM) to examine the relative number and scatter distribution of plasma EVs at three different time points during the day in 6 healthy adults. Analysis of liposomes and plasma EVs proved that nanoFCM is capable of detecting biologically-relevant vesicles down to 100 nm in size. With this high resolution configuration, we observed variations in the relative size (FSC/SSC distributions) and concentration (proportions) of EVs in healthy adult plasma across the course of a day, suggesting that there are diurnal variations in the number and size distribution of circulating EV populations. The use of nanoFCM provides a valuable tool for the study of EVs in both health and disease; however, additional refinement of nanoscale flow cytometric methods is needed for use of these instruments for quantitative particle counting and sizing. Furthermore, larger scale studies are necessary to more clearly define the diurnal variations in circulating EVs, and thus further inform

  19. Pressure distributions and oil-flow patterns for a swept circulation-control wing

    NASA Technical Reports Server (NTRS)

    Keener, Earl R.; Sanderfer, Dwight T.; Wood, Norman J.

    1987-01-01

    Pressure distributions and photographs of oil flow patterns are presented for a circulation control wing. The model was an aspect ratio four semispan wing mounted on the side wall of the NASA Ames Transonic Wind Tunnel. The airfoil was a 20 percent thick ellipse, modified with circular leading and trailing edges of 4 percent radius, and had a 25.4 cm constant chord. This configuration does not represent a specific wing design, but is generic. A full span, tangetial, rearward blowing, circulation control slot was incorporated ahead of the trailing edge on the upper surface. The wing was tested at Mach numbers from 0.3 to 0.75 at sweep angle of 0 to 45 deg with internal to external pressure ratios of 1.0 to 3.0. Lift and pitching momemt coefficients were obtained from measured pressure distributions at five span stations. When the conventional corrections resulting from sweep angle are applied to the lift and moment of circulation control sections, no additional corrections are necessary to account for changes in blowing efficiency. This is demonstrated for an aft sweep angle of 45 deg. An empirical technique for estimating the downwash distribution of a swept wing was validated.

  20. Role of macrophages in circulating prostate cancer cells studied by in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Guo, Jin; Gu, Zhengqin; Wei, Xunbin

    2013-02-01

    Macrophages appear to be directly involved in cancer progression and metastasis. However, the role of macrophages in influencing tumor metastasis has not been fully understood. Here, we have used an emerging technique, namely in vivo flow cytometry (IVFC) to study the depletion kinetics of circulating prostate cancer cells in mice and how depletion of macrophages by the liposome-encapsulated clodronate affects the depletion kinetics. Our results show different depletion kinetics of PC-3 prostate cancer cells between macrophage-deficient group and the control group. The number of circulating tumor cells (CTCs) in macrophage-deficient group decreases in a slower manner compared to the control mice group. The differences in depletion kinetics indicate that the absence of macrophages might facilitate the stay of prostate tumor cells in circulation. We speculate that macrophages might be able to arrest, phagocytose and digest PC-3 cancer cells. Therefore, the phagocytosis may mainly contribute to the differences in depletion kinetics. The developed methods here would be useful to study the relationship between macrophages and cancer metastasis in small animal tumor model.

  1. Preserved Function of Circulating Invariant Natural Killer T Cells in Patients With Chronic Hepatitis B Virus Infection

    PubMed Central

    Zhu, Haoxiang; Zhang, Yongmei; Liu, Hongyan; Zhang, Yijun; Kang, Yaoyue; Mao, Richeng; Yang, Feifei; Zhou, Dapeng; Zhang, Jiming

    2015-01-01

    Abstract To date, the role of invariant natural killer T (iNKT) cells in chronic hepatitis B virus (HBV) infection is not fully understood. In previous reports, iNKT cells were identified by indirect methods. However, discrepancies regarding the prevalence and function of iNKT cells during HBV infection were observed. In this study, we have devised a direct, highly specific CD1d tetramer-based methodology to test whether patients with HBV infection have associated iNKT-cell defects. In our study, a total of 93 chronic HBV-infected patients and 30 healthy individuals (as control) were enrolled. The prevalence of iNKT cells, their cytokine producing capacity, and in vitro expansion were determined by flow cytometric analysis with CD1d tetramer staining. Our observation demonstrated that there was no significant difference in circulating CD1d-tetramer positive iNKT cell numbers between HBV-infected patients and healthy controls. The capacity of iNKT cells to produce IFN-γ or IL-4 as well as their in vitro expansion was also comparable between these 2 groups. However, among chronic HBV-infected patients, a decrease in iNKT cell-number was observed in chronic hepatitis B (CHB) and cirrhosis patients in comparison to that in immune tolerant (IT) patients. These results indicated that patients with chronic HBV infection may have normal prevalence and preserved function of circulating iNKT cells. And antiviral therapy with nucleot(s)ide analogue does not alter the frequency and function of circulating iNKT cells in chronic Hepatitis B patients.

  2. Thermal hydraulic analysis of advanced Pb-Bi cooled NPP using natural circulation

    NASA Astrophysics Data System (ADS)

    Novitrian, Su'ud, Zaki; Waris, Abdul

    2012-06-01

    We present thermal hydraulic analysis for a low power advanced nuclear reactor cooled by lead-bismuth eutectic. In this work is to study the thermal hydraulic analysis of a low power SPINNOR (Small Power Reactor, Indonesia, No On-site Refuelling) reactor with 125 MWth which a design a core with very small volume and fuel column height, resulting in a negative coolant temperature coefficient and very low channel pressure drop. And also at full power the heat can be completely removed by natural circulation in the primary circuit, thus eliminating the needs for pumps.

  3. Hydrodynamic flow regimes, gas holdup, and liquid circulation in airlift reactors

    SciTech Connect

    Abashar, M.E.; Narsingh, U.; Rouillard, A.E.; Judd, R.

    1998-04-01

    This study reports an experimental investigation into the hydrodynamic behavior of an external-loop airlift reactor (ALR) for the air-water system. Three distinct flow regimes are identified--namely homogeneous, transition, and heterogeneous regimes. The transition between homogeneous and heterogeneous flow is observed to occur over a wide range rather than being merely a single point as has been previously reported in the literature. A gas holdup correlation is developed for each flow regime. The correlations fit the experimental gas holdup data with very good accuracy (within {+-}5%). It would appear, therefore, that a deterministic equation to describe each flow regime is likely to exist in ALRs. This equation is a function of the reactor geometry and the system`s physical properties. New data concerning the axial variation of gas holdup is reported in which a minimum value is observed. This phenomenon is discussed and an explanation offered. Discrimination between two sound theoretical models--namely model 1 (Chisti et al., 1988) and model 2 (Garcia Calvo, 1989)--shows that model 1 predicts satisfactorily the liquid circulation velocity with an error of less than {+-} 10%. The good predictive features of model 1 may be due to the fact that it allows for a significant energy dissipation by wakes behind bubbles. Model 1 is now further improved by the new gas holdup correlations which are derived for the three different flow regimes.

  4. Experimental and modeling study of global circulation by bent rod precession in low Reynolds number flows

    NASA Astrophysics Data System (ADS)

    Camassa, Roberto; Martindale, J. D.; McLaughlin, Richard; Vicci, Leandra; Zhao, Longhua; UNC Joint Fluids Lab Team

    2013-11-01

    The precessing motion of a bent rod over a plane in viscous dominated regimes can generate global fluid flow structures in the form of recirculating tori. Such motion can play an important role in the development of multicellular organisms, where primary cilia are the main agent for the embryonic forms of nutrient circulation. Results from an experimental investigation using PIV techniques to analyze the flow field will be presented and compared with a first principle theory based on slender body approximations. While good qualitative agreement can be achieved with Blake images enforcing the no-slip condition at the plane, quantitative agreement requires a more sophisticated approach, which will be outlined. We acknowledge funding received from the following NSF grants: RTG DMS-0943851 and DMS-1009750.

  5. TRAC-PF1 post-test predictions for the Semiscale Natural-Circulation Tests S-NC-2 and S-NC-6. [PWR

    SciTech Connect

    Booker, C.P.

    1983-01-01

    The TRAC prediction are compared to the data for the Semiscale natural-circular Tests S-NC-2B and S-NC-6. S-NC-2B is a baseline test covering single- and two-phase natural circulation as well as reflux; here TRAC compares quite well with the experiment results for mass flow. For Test S-NC-6, which is a reflux test with various amounts of nitrogen injected into the system, the TRAC prediction of the reflux rate is close to the experiment value with no nitrogen in the system. Ultimately, the maximum reflux rate predicted by TRAC is about 20% higher than the data.

  6. In vivo flow cytometry of circulating clots using negative phototothermal and photoacoustic contrasts

    PubMed Central

    Galanzha, Ekaterina I.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Keyrouz, Salah G.; Mehta, Jawahar L.; Zharov, Vladimir P.

    2012-01-01

    Conventional photothermal (PT) and photoacousic (PA) imaging, spectroscopy, and cytometry are preferentially based on positive PT/PA effects, when signals are above background. Here, we introduce PT/PA technique based on detection of negative signals below background. Among various new applications, we propose label-free in vivo flow cytometry of circulating clots. No method has been developed for the early detection of clots of different compositions as a source of severe thromboembolisms including ischemia at strokes and myocardial dysfunction at heart attack. When a low-absorbing, platelet-rich clot passes a laser-irradiated vessel volume, a transient decrease in local absorption results in an ultrasharp negative PA hole in blood background. Using this phenomenon alone or in combination with positive contrasts, we demonstrated identification of white, red and mixed clots on a mouse model of myocardial infarction and human blood. The concentration and size of clots were measured with threshold down to few clots in the entire circulation with size as low as 20 µm. This multiparameter diagnostic platform using portable personal high-speed flow cytometer with negative dynamic contrast mode has potential to real-time defining risk factors for cardiovascular diseases, and for prognosis and prevention of stroke or use clot count as a marker of therapy efficacy. Possibility for label-free detection of platelets, leukocytes, tumor cells or targeting them by negative PA probes (e.g., nonabsorbing beads or bubbles) is also highlighted. PMID:21976458

  7. Studying depletion kinetics of circulating prostate cancer cells by in vivo flow cytometer

    NASA Astrophysics Data System (ADS)

    Liu, Guangda; Gu, Zhengqin; Guo, Jin; Li, Yan; Chen, Yun; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2011-03-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. During this time, the tumor produces little or no symptoms or outward signs. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. A real- time quantitative monitoring of circulating prostate cancer cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  8. Depletion kinetics of circulating prostate cancer cells studied by in vivo flow cytometer

    NASA Astrophysics Data System (ADS)

    Liu, Guangda; Guo, Jin; Li, Yan; Chen, Yun; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2010-11-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. During this time, the tumor produces little or no symptoms or outward signs. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal nearinfrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. A real- time quantitative monitoring of circulating prostate cancer cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  9. Large-eddy simulations of flow around a circulation control airfoil

    NASA Astrophysics Data System (ADS)

    Hahn, Seonghyeon; Shariff, Karim

    2008-11-01

    Circulation control, proposed in NASA's Cruise Efficient Short Take-off and Landing (CESTOL) concept, has the potential to increase air-traffic throughput and reduce the noise footprint. Circulation control obtains a substantial increase in lift coefficient by using a wall-jet that blows tangentially on a rounded (Coanda) surface deflected at the trailing edge. The flow has proven to be difficult to reliably predict using Reynolds-averaged models. We undertake large-eddy simulations to better understand underlying mechanisms and create a database for modelers. Simulations are patterned after Novak et al.'s (1987) experiment, which, despite its faults, is the best documented to date. A Reynolds number of 10̂6 and two cases with low and high blowing are considered using Stanford's unstructured solver CDP. The upper surface begins with laminar to turbulent transition following a region of weak shear stress. Then strong favorable pressure gradient as the jet slot is approached leads to a raised log-law. There exists a region over the Coanda surface where the mean flow development collapses very well in wall-jet similarity coordinates, indicating that a portion of the near-wall region maintains classical wall-jet characteristics. At the present time, the lower surface has delayed transition due to lack of tripping in the simulations and considerable discrepancies with the experiments for second-order statistics.

  10. Investigations on natural circulation in reactor models and shutdown heat removal systems for LMFBRs (liquid metal fast breeder reactors)

    SciTech Connect

    Hoffmann, H.; Weinberg, D.; Marten, K. ); Ieda, Yoshiaki )

    1989-11-01

    For sodium-cooled pool-type reactors, studies have been undertaken to remove the decay heat by natural convection alone, as in the case of failure of all power supplies. For this purpose, four immersion coolers (ICs), two each installed at a 180-deg circumferential position with respect to the others, are arranged within the reactor tank. They are connected with natural-drift air coolers through independent intermediate circuits. The primary sodium in the tank as well as the secondary sodium in the intermediate loop circulate by natural convection. The general functioning of this passive shutdown decay heat removal (DHR) system is demonstrated in 1:20 and 1:5 scale test models using water as a simulant fluid for sodium. The model design is based on the thermohydraulics similarity criteria. In the RAMONA three-dimensional 1:20 scale model, experiments were carried out to clarify the steady-state in-vessel thermohydraulics for different parameter combinations (core power, radial power distribution across the core, DHR by 2 or 4 ICs in operation, above-core structure geometry and position, different IC designs). For all mentioned parameters, temperatures and their fluctuations were measured and used to indicate isotherms and lines of identical temperature fluctuations. The flow patterns were observed visually. The experiments were recalculated by an updated version of the single-phase three-dimensional thermohydraulics code COMMIX.

  11. Human Circulating and Tissue-Resident CD56bright Natural Killer Cell Populations

    PubMed Central

    Melsen, Janine E.; Lugthart, Gertjan; Lankester, Arjan C.; Schilham, Marco W.

    2016-01-01

    Two human natural killer (NK) cell subsets are usually distinguished, displaying the CD56dimCD16+ and the CD56brightCD16−/+ phenotype. This distinction is based on NK cells present in blood, where the CD56dim NK cells predominate. However, CD56bright NK cells outnumber CD56dim NK cells in the human body due to the fact that they are predominant in peripheral and lymphoid tissues. Interestingly, within the total CD56bright NK cell compartment, a major phenotypical and functional diversity is observed, as demonstrated by the discovery of tissue-resident CD56bright NK cells in the uterus, liver, and lymphoid tissues. Uterus-resident CD56bright NK cells express CD49a while the liver- and lymphoid tissue-resident CD56bright NK cells are characterized by co-expression of CD69 and CXCR6. Tissue-resident CD56bright NK cells have a low natural cytotoxicity and produce little interferon-γ upon monokine stimulation. Their distribution and specific phenotype suggest that the tissue-resident CD56bright NK cells exert tissue-specific functions. In this review, we examine the CD56bright NK cell diversity by discussing the distribution, phenotype, and function of circulating and tissue-resident CD56bright NK cells. In addition, we address the ongoing debate concerning the developmental relationship between circulating CD56bright and CD56dim NK cells and speculate on the position of tissue-resident CD56bright NK cells. We conclude that distinguishing tissue-resident CD56bright NK cells from circulating CD56bright NK cells is a prerequisite for the better understanding of the specific role of CD56bright NK cells in the complex process of human immune regulation. PMID:27446091

  12. Computer program for natural gas flow through nozzles

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1972-01-01

    Subroutines, FORTRAN 4 type, were developed for calculating isentropic natural gas mass flow rate through nozzle. Thermodynamic functions covering compressibility, entropy, enthalpy, and specific heat are included.

  13. A Transient Model of Induced Natural Circulation Thermal Cycling for Hydrogen Isotope Separation

    SciTech Connect

    SHADDAY, MARTIN

    2005-07-12

    The property of selective temperature dependence of adsorption and desorption of hydrogen isotopes by palladium is used for isotope separation. A proposal to use natural circulation of nitrogen to alternately heat and cool a packed bed of palladium coated beads is under active investigation, and a device consisting of two interlocking natural convection loops is being designed. A transient numerical model of the device has been developed to aid the design process. It is a one-dimensional finite-difference model, using the Boussinesq approximation. The thermal inertia of the pipe walls and other heat structures as well as the heater control logic is included in the model. Two system configurations were modeled and results are compared.

  14. On the Pathways of the Return Flow of the Meridional Overturning Circulation in the Tropical Atlantic

    NASA Technical Reports Server (NTRS)

    Jochum, Markus

    2002-01-01

    A numerical model of the tropical Atlantic ocean is used to investigate the upper layer pathways of the Meridional Overturning Circulation (MOC) in the tropical Atlantic. The main focus of this thesis is on those parts of the tropical circulation that are thought to be important for the MOC return flow, but whose dynamics have not been understood yet. It is shown how the particular structure of the tropical gyre and the MOO act to inhibit the flow of North Atlantic water into the equatorial thermocline. As a result, the upper layers of the tropical Atlantic are mainly fed by water from the South Atlantic. The processes that carry the South Atlantic water across the tropical Atlantic into the North Atlantic as part of the MOO are described here, and three processes that were hitherto not understood are explained as follows: The North Brazil Current rings are created as the result of the reflection of Rossby waves at the South American coast. These Rossby waves are generated by the barotropically unstable North Equatorial Countercurrent. The deep structure of the rings can be explained by merger of the wave's anticyclones with the deeper intermediate eddies that are generated as the intermediate western boundary current crosses the equator. The bands of strong zonal velocity in intermediate depths along the equator have hitherto been explained as intermediate currents. Here, an alternative interpretation of the observations is offered: The Eulerian mean flow along the equator is negligible and the observations are the signature of strong seasonal Rossby waves. The previous interpretation of the observations can then be explained as aliasing of the tropical wave field. The Tsuchyia Jets are driven by the Eliassen-Palm flux of the tropical instability waves. The equatorial current system with its strong shears is unstable and generates tropical instability waves.

  15. Superior Mesenteric Arterial Flow Pattern is Associated with Major Adverse Events in Adults with Fontan Circulation.

    PubMed

    Mori, Makoto; Shioda, Kayoko; Elder, Robert W; Pernetz, Maria A; Rodriguez, Fred H; Rangosch, Alicia; Kogon, Brian E; Book, Wendy M

    2016-08-01

    Factors contributing to the failure of Fontan circulation in adults are poorly understood. Reduced superior mesenteric arterial (SMA) flow has been identified in pediatric Fontan patients with protein-losing enteropathy. SMA flow has not been profiled in an adult Fontan population and its association with adverse events is unknown. We aimed to examine associations between SMA flow patterns and adverse events in adult Fontan patients. We performed a retrospective review of adult Fontan patients who underwent echocardiograms between 2008 and 2014. SMA Doppler data included peak systolic and end-diastolic velocity and velocity time integral (VTI). Systolic/diastolic (S/D) ratio and resistive index were calculated. The relationship between SMA flow parameters and major adverse events (death or transplantation) was examined using proportional hazard Cox regression analyses. Kaplan-Meyer analysis was conducted to construct survival curve of patients with and without adverse events. 91 post-Fontan adult patients (76 % systemic left ventricle, 20 % atriopulmonary Fontan, mean age 27.9 years) were analyzed. Adverse events occurred in nine patients (death = 4, transplant = 5). When compared with the non-event group, the event group had increased end-diastolic velocity [hazard ratio (HR) 1.5, 95 % confidence interval (CI) 1.1-1.8; p = 0.002], increased systolic VTI (HR 1.5, 95 % CI 1.1-2.2, p = 0.02), increased diastolic VTI (HR 1.7, 95 % CI 1.2-2.4, p = 0.004), decreased S/D velocity ratio (HR 0.32, 95 % CI 0.14-0.71, p = 0.006), decreased S/D VTI ratio (HR 0.76, 95 % CI 0.61-0.97, p = 0.02), and decreased resistive index (HR 0.29, 95 % CI 0.14-0.60, p = 0.0007). Increased end-diastolic velocity and VTI in mesenteric arterial flow, with lower systolic/diastolic ratio and resistive index, were associated with death and need for heart transplant in adult Fontan patients. The mesenteric hyperemic flow was also associated with clinical signs of portal

  16. The formation of alteration rims in basaltic lava flows upon hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Thien, Bruno; Driesner, Thomas; Kosakowski, Georg; Kulik, Dmitrii

    2016-04-01

    We investigated fossil hydrothermal systems in the North of the Reykjavik peninsula (Iceland), in order to better understand water-rock interactions occurring during hydrothermal fluid circulation. The observation of a lava flow formation showed that the basalt is practically not altered, except in zones of a few cm thickness around the largest fractures (i.e. alteration rims). XRD analysis and observations of polished thin sections by optical microscope evidenced a severe alteration of the protolith in the alteration rim. Secondary minerals mostly consist in pyrite, calcite and chlorite, indicating a temperature of 250°C during the hydrothermal event. The presence of pyrite and calcite in the alteration rim and their absence in the rest of the rock suggest that the fluid contained significant amount of volcanic gasses H2S and CO2 and probably followed an ascending path. Most of the calcite is located in fractures that have been formed after the precipitation of the other secondary minerals. This observation, coupled with fluid inclusions analysis, indicates a second hydrothermal event that happened at lower temperature and pressure. We reproduced those observations by using a geochemical reactive transport model (OpenGeoSys-GEM code). The purpose was to decipher how diffusion and mineral reaction kinetics (protolith dissolution and secondary minerals precipitation) influence the alteration, and to establish the time duration of the hydrothermal circulation.

  17. 3D Structure and Internal Circulation of Pancake Vortices in Rotating Stratified Flows

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Pedram; Marcus, Philip; Aubert, Oriane; Le Bars, Michael; Le Gal, Patrice

    2011-11-01

    Jovian vortices, Atlantic meddies, and vortices of the protoplanetrary disks are examples of weakly-forced or unforced long-lived vortices in rotating stratified flows. Knowing the 3D structure and internal circulation of these vortices is essential in understanding their physics, which is not well-understood. For example, the aspect ratio of these vortices has been long thought to be f / N where f is the Coriolis parameter and N is the Brunt-Vaisala frequency. However, our recent theoretical and experimental study has shown that the aspect ratio in fact depends not only on f and N but also on the Rossby number and density mixing inside the vortex. The new scaling law also agrees with the available measurements of the meddies and Jupiter's Great Red Spot. High resolution 3D numerical simulations of the Navier-Stokes equation are carried out to confirm this new scaling law for a slowly (viscously) decaying anticyclonic vortex in which the Rossby number and stratification inside the vortex evolve in time. For a wide range of parameters and different distributions of density anomaly, the secondary circulations within the vortices are studied. The effect of a non-uniform background stratification is investigated, and the small cyclonic vortices that form above and below the anticyclone are studied.

  18. Studying circulating prostate cancer cells by in-vivo flow cytometer

    NASA Astrophysics Data System (ADS)

    Guo, Jin; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2012-03-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. We have measured the depletion kinetics of cancer cells with different metastatic potential. Interestingly, more invasive PC-3 prostate cancer cells are depleted faster from the circulation than LNCaP cells.

  19. Studying circulating prostate cancer cells by in-vivo flow cytometer

    NASA Astrophysics Data System (ADS)

    Guo, Jin; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2011-11-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. We have measured the depletion kinetics of cancer cells with different metastatic potential. Interestingly, more invasive PC-3 prostate cancer cells are depleted faster from the circulation than LNCaP cells.

  20. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry

    PubMed Central

    He, Wei; Wang, Haifeng; Hartmann, Lynn C.; Cheng, Ji-Xin; Low, Philip S.

    2007-01-01

    Quantitation of circulating tumor cells (CTCs) constitutes an emerging tool for the diagnosis and staging of cancer, assessment of response to therapy, and evaluation of residual disease after surgery. Unfortunately, no existing technology has the sensitivity to measure the low numbers of tumor cells (<1 CTC per ml of whole blood) that characterize minimal levels of disease. We present a method, intravital flow cytometry, that noninvasively counts rare CTCs in vivo as they flow through the peripheral vasculature. The method involves i.v. injection of a tumor-specific fluorescent ligand followed by multiphoton fluorescence imaging of superficial blood vessels to quantitate the flowing CTCs. Studies in mice with metastatic tumors demonstrate that CTCs can be quantitated weeks before metastatic disease is detected by other means. Analysis of whole blood samples from cancer patients further establishes that human CTCs can be selectively labeled and quantitated when present at ≈2 CTCs per ml, opening opportunities for earlier assessment of metastatic disease. PMID:17601776

  1. Numerical steady flow solutions of the lower leg venous circulation: effects of external compression

    NASA Astrophysics Data System (ADS)

    Fullana, J.-M.; Flaud, P.

    2007-06-01

    We present a numerical model used to compute steady flow solutions of the venous circulation of the leg. The network topology is based on clinical data and the flow is assumed to be steady, incompressible, and one-dimensional. We develop a non Newtonian approach to a one-dimensional flow because the blood viscosity depends on the velocity profile, and we demonstrate theoretically the pertinence of a phenomenological law of equivalent viscosity. Clinical experiments observe hemodynamical variables (i.e. venous pressure, venous area, blood velocity) only at the accessible places. In contrast the numerical model results are not limited to particular locations but can be evaluated on every point of the network. It provides important help to the definition of a clinical protocol. The model was designed to quantify a compression level of elastic compression stockings and to plan clinical studies. We validate the numerical approach using a published clinical trial, where the diameter of superficial and deep veins were measured at different compression pressures. We show also that the viscosity variations in a bed-rest position as a consequence of the application of a European Class II compression stockings. These variations could prevent the hyper-coagulability and the stasis of the blood.

  2. Studying circulation times of liver cancer cells by in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Liu, G.; Li, Y.; Fan, Z.; Guo, J.; Tan, X.; Wei, X.

    2011-02-01

    Hepatocellular carcinoma (HCC) may metastasize to lung kidney and many other organs. The survival rate is almost zero for metastatic HCC patients. Molecular mechanisms of HCC metastasis need to be understood better and new therapies must be developed. A recently developed "in vivo flow cytometer" combined with real-time confocal fluorescence imaging are used to assess spreading and the circulation kinetics of liver tumor cells. The in vivo flow cytometer has the capability to detect and quantify continuously the number and flow characteristics of fluorescently labeled cells in vivo in real time without extracting blood sample. We have measured the depletion kinetics of two related human HCC cell lines high-metastatic HCCLM3 cells and low-metastatic HepG2 cells which were from the same origin and obtained by repetitive screenings in mice. >60% HCCLM3 cells are depleted within the first hour. Interestingly the low-metastatic HepG2 cells possess noticeably slower depletion kinetics. In comparison <40% HepG2 cells are depleted within the first hour. The differences in depletion kinetics might provide insights into early metastasis processes.

  3. Study on the flow in the pipelines of the support system of circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Meng, L.; Yang, J.; Zhou, L. J.; Wang, Z. W.; Zhuang, X. H.

    2013-12-01

    In the support system of Circulating Fluidized Bed (Below referred to as CFB) of thermal power plant, the pipelines of primary wind are used for transporting the cold air to the boiler, which is important in controlling and combustion effect. The pipeline design will greatly affect the energy loss of the system, and accordingly affect the thermal power plant economic benefits and production environment. Three-dimensional numerical simulation is carried out for the pipeline internal flow field of a thermal power plant in this paper. Firstly three turbulence models were compared and the results showed that the SST k-ω model converged better and the energy losses predicted were closer to the experimental results. The influence of the pipeline design form on the flow characteristics are analysed, then the optimization designs of the pipeline are proposed according to the energy loss distribution of the flow field, in order to reduce energy loss and improve the efficiency of tunnel. The optimization plan turned out to be efficacious; about 36% of the pressure loss is reduced.

  4. Flow of a circulating tumor cell and red blood cells in microvessels

    NASA Astrophysics Data System (ADS)

    Takeishi, Naoki; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji

    2015-12-01

    Quantifying the behavior of circulating tumor cells (CTCs) in the blood stream is of fundamental importance for understanding metastasis. Here, we investigate the flow mode and velocity of CTCs interacting with red blood cells (RBCs) in various sized microvessels. The flow of leukocytes in microvessels has been described previously; a leukocyte forms a train with RBCs in small microvessels and exhibits margination in large microvessels. Important differences in the physical properties of leukocytes and CTCs result from size. The dimensions of leukocytes are similar to those of RBCs, but CTCs are significantly larger. We investigate numerically the size effects on the flow mode and the cell velocity, and we identify similarities and differences between leukocytes and CTCs. We find that a transition from train formation to margination occurs when (R -a ) /tR≈1 , where R is the vessel radius, a is the cell radius, and tR is the thickness of RBCs, but that the motion of RBCs differs from the case of leukocytes. Our results also show that the velocities of CTCs and leukocytes are larger than the average blood velocity, but only CTCs move faster than RBCs for microvessels of R /a ≈1.5 -2.0 . These findings are expected to be useful not only for understanding metastasis, but also for developing microfluidic devices.

  5. Patient-specific computational modeling of blood flow in the pulmonary arterial circulation.

    PubMed

    Kheyfets, Vitaly O; Rios, Lourdes; Smith, Triston; Schroeder, Theodore; Mueller, Jeffrey; Murali, Srinivas; Lasorda, David; Zikos, Anthony; Spotti, Jennifer; Reilly, John J; Finol, Ender A

    2015-07-01

    Computational fluid dynamics (CFD) modeling of the pulmonary vasculature has the potential to reveal continuum metrics associated with the hemodynamic stress acting on the vascular endothelium. It is widely accepted that the endothelium responds to flow-induced stress by releasing vasoactive substances that can dilate and constrict blood vessels locally. The objectives of this study are to examine the extent of patient specificity required to obtain a significant association of CFD output metrics and clinical measures in models of the pulmonary arterial circulation, and to evaluate the potential correlation of wall shear stress (WSS) with established metrics indicative of right ventricular (RV) afterload in pulmonary hypertension (PH). Right Heart Catheterization (RHC) hemodynamic data and contrast-enhanced computed tomography (CT) imaging were retrospectively acquired for 10 PH patients and processed to simulate blood flow in the pulmonary arteries. While conducting CFD modeling of the reconstructed patient-specific vasculatures, we experimented with three different outflow boundary conditions to investigate the potential for using computationally derived spatially averaged wall shear stress (SAWSS) as a metric of RV afterload. SAWSS was correlated with both pulmonary vascular resistance (PVR) (R(2)=0.77, P<0.05) and arterial compliance (C) (R(2)=0.63, P<0.05), but the extent of the correlation was affected by the degree of patient specificity incorporated in the fluid flow boundary conditions. We found that decreasing the distal PVR alters the flow distribution and changes the local velocity profile in the distal vessels, thereby increasing the local WSS. Nevertheless, implementing generic outflow boundary conditions still resulted in statistically significant SAWSS correlations with respect to both metrics of RV afterload, suggesting that the CFD model could be executed without the need for complex outflow boundary conditions that require invasively obtained

  6. Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate.

    PubMed

    Fallahpour, Noushin; Yuan, Songhu; Rajic, Ljiljana; Alshawabkeh, Akram N

    2016-02-01

    Palladium-catalytic hydrodechlorination of trichloroethylene (TCE) by cathodic H2 produced from water electrolysis has been tested. For a field in-well application, the flow rate is generally high. In this study, the performance of Pd-catalytic hydrodechlorination of TCE using cathodic H2 is evaluated under high flow rate (1 L min(-1)) in a circulated column system, as expected to occur in practice. An iron anode supports reduction conditions and it is used to enhance TCE hydrodechlorination. However, the precipitation occurs and high flow rate was evaluated to minimize its adverse effects on the process (electrode coverage, clogging, etc.). Under the conditions of 1 L min(-1) flow, 500 mA current, and 5 mg L(-1) initial TCE concentration, removal efficacy using iron anodes (96%) is significantly higher than by mixed metal oxide (MMO) anodes (66%). Two types of cathodes (MMO and copper foam) in the presence of Pd/Al2O3 catalyst under various currents (250, 125, and 62 mA) were used to evaluate the effect of cathode materials on TCE removal efficacy. The similar removal efficiencies were achieved for both cathodes, but more precipitation generated with copper foam cathode (based on the experiments done by authors). In addition to the well-known parameters such as current density, electrode materials, and initial TCE concentration, the high velocities of groundwater flow can have important implications, practically in relation to the flush out of precipitates. For potential field application, a cost-effective and sustainable in situ electrochemical process using a solar panel as power supply is being evaluated. PMID:26344148

  7. Flow behaviors in a high-flux circulating fluidized bed - article no. A79

    SciTech Connect

    Wang, X.F.; Jin, B.S.; Zhong, W.Q.; Zhang, M.Y.; Huang, Y.J.; Duan, F.

    2008-07-01

    A high-flux circulating fluidized bed coal gasifier cold model which consists of a vertical riser (0.06m-I.D. x 5m-high), two downcomers (0.04m-I.D. x 3.5m-high and 0.1m-I.D. x 3m-high), an inertial separator, a cyclone and two solid feeding devices were established. Geldart group B particles with mean diameters of 140 {mu} m and densities of 2700 kg/m{sup 3} were used as bed materials. Flow behaviors were investigated with the solid mass flux ranges from 108 to 395 kg/m{sup 2} and the superficial gas velocity ranges from 7.6 to 10.2 m/s. The pressure drop, apparent solids holdups, average slip velocity and solids-to-air mass flow ratio under different operating conditions were obtained. The results showed that the riser total pressure drop increased sharply with bed height in the low elevation but slowly in the high elevation, since the solids holdup was higher in the low region than that in the high region. The solids holdup increased with the increasing of solids mass flux while it decreased with increasing superficial gas velocity. A dense suspension upflow flow (DSU) structure was found only existing in the low elevation while the rest upper region was still in the dilute phase, and the length of DSU flow structure increased with solids mass flux. The average slip velocity was found to be the strong function of apparent solids holdup; increasing apparent solids holdup leads to the increase of slip velocity. The riser total pressure drop and apparent solids holdup increase with the solids-to-air mass flow ratio.

  8. Natural laminar flow airfoil analysis and trade studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An analysis of an airfoil for a large commercial transport cruising at Mach 0.8 and the use of advanced computer techniques to perform the analysis are described. Incorporation of the airfoil into a natural laminar flow transport configuration is addressed and a comparison of fuel requirements and operating costs between the natural laminar flow transport and an equivalent turbulent flow transport is addressed.

  9. Three-dimensional circulation dynamics of along-channel flow in stratified estuaries

    NASA Astrophysics Data System (ADS)

    Musiak, Jeffery Daniel

    Estuaries are vital because they are the major interface between humans and the oceans and provide valuable habitat for a wide range of organisms. Therefore it is important to model estuarine circulation to gain a better comprehension of the mechanics involved and how people effect estuaries. To this end, this dissertation combines analysis of data collected in the Columbia River estuary (CRE) with novel data processing and modeling techniques to further the understanding of estuaries that are strongly forced by riverflow and tides. The primary hypothesis tested in this work is that the three- dimensional (3-D) variability in along-channel currents in a strongly forced estuary can be largely accounted for by including the lateral variations in density and bathymetry but neglecting the secondary, or lateral, flow. Of course, the forcing must also include riverflow and oceanic tides. Incorporating this simplification and the modeling ideas put forth by others with new modeling techniques and new ideas on estuarine circulation will allow me to create a semi-analytical quasi 3-D profile model. This approach was chosen because it is of intermediate complexity to purely analytical models, that, if tractable, are too simple to be useful, and 3-D numerical models which can have excellent resolution but require large amounts of time, computer memory and computing power. Validation of the model will be accomplished using velocity and density data collected in the Columbia River Estuary and by comparison to analytical solutions. Components of the modeling developed here include: (1) development of a 1-D barotropic model for tidal wave propagation in frictionally dominated systems with strong topography. This model can have multiple tidal constituents and multiply connected channels. (2) Development and verification of a new quasi 3-D semi-analytical velocity profile model applicable to estuarine systems which are strongly forced by both oceanic tides and riverflow. This model

  10. Circulation of images and graphic practices in Renaissance natural history: the example of Conrad Gessner.

    PubMed

    Egmond, Florike; Kusukawa, Sachiko

    2016-01-01

    Conrad Gessner's Historia animalium is a compilation of information from a variety of sources: friends, correspondents, books, broadsides, drawings, as well as his own experience. The recent discovery of a cache of drawings at Amsterdam originally belonging to Gessner has added a new dimension for research into the role of images in Gessner's study of nature. In this paper, we examine the drawings that were the basis of the images in the volume of fishes. We uncovered several cases where there were multiple copies of the same drawing of a fish (rather than multiple drawings of the samefish), which problematizes the notion of unique "original" copies and their copies. While we still know very little about the actual mechanism of, or people involved in, commissioning or generating copies of drawings, their very existence suggests that the images functioned as an important medium in the circulation of knowledge in the early modern period. PMID:27349032

  11. Natural Circulation of Lead-Bismuth in a One-Dimensional Loop: Experiments and Code Predictions

    SciTech Connect

    Agostini, P.; Bertacci, G.; Gherardi, G.; Bianchi, F.; Meloni, P.; Nicolini, D.; Ambrosini, W.; Forgione, F.; Fruttuoso, G.; Oriolo, F.

    2002-07-01

    The paper summarizes the results obtained by an experimental and computational study jointly performed by ENEA and University of Pisa. The study is aimed at assessing the capabilities of an available thermal-hydraulic system code in simulating natural circulation in a loop in which the working fluid is the eutectic lead-bismuth alloy as in the Italian proposal for Accelerator Driven System (ADS) reactor concepts. Experiments were performed in the CHEOPE facility installed at the ENEA Brasimone Research Centre and pre- and post-test calculations were run using a version of the RELAP5/Mod.3.2, purposely modified to account for Pb-Bi liquid alloy properties and behavior. The main results obtained by the experimental tests and by the code analyses are presented in the paper providing material to discuss the present predictive capabilities of transient and steady-state behavior in liquid Pb-Bi systems. (authors)

  12. An investigation of natural circulation decay heat removal from an SP-100 reactor system for a lunar outpost

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Xue, Huimin

    1992-01-01

    A transient thermal-hydraulic model of the decay heat removal from a 550 kWe SP-100 power system for a lunar outpost has been developed and used to assess the coolability of the system by natural circulation after reactor shutdown. Results show that natural circulation of lithium coolant is sufficient to ensure coolability of the reactor core after shutdown. Further improvement of the decay heat removal capability of the system could be achieved by increasing the dimensions of the decay heat exchanger duct. A radiator area of 10-15 m2 would be sufficient to maintain the reactor core safely coolable by natural circulation after shutdown. Increasing the area of the decay heat rejection radiator or the diameter of the heat pipes in the guard vessel wall insignificantly affects the decay heat removal capability of the system.

  13. On subsonic compressible flows by a method of correspondence II : application of methods to studies of flow with circulation about a circular cylinder

    NASA Technical Reports Server (NTRS)

    GELBART ABE; Bartnoff, Shepard

    1947-01-01

    A general method for studying the flow of a compressible fluid around a closed body was discussed in Part I of this report. Here, application is made to the specific case in which the linearized equation of state is used. For a given incompressible flow around a specific profile, a corresponding compressible flow is found. The flow at infinity remains unchanged. Detailed studies are made of the flow with circulation around a unit circle, and velocity distributions are found for a wide range of Mach number and angle of attack. Comparisons are made with other methods.

  14. Code System for Calculating the Nonlinear Transient Behavior of a Natural Circulation U-Tube Steam Generator with Its Main Steam System.

    Energy Science and Technology Software Center (ESTSC)

    2000-04-20

    Version 00 The code is based on a non-linear theoretical model describing the steady-state and transient behavior of a vertical natural-circulation U-tube steam generator together with its main steam system. The steam generator is considered to consist of a heat exchange section, a top plenum, a down-comer region and a main steam system (with a sequence of relief and/or safety valves, isolation, bypass, turbine-trip and turbine-control valves and a steam turbine). Possible perturbations from outsidemore » can be: inlet water temperature, inlet water mass flow and system pressure on the primary side, feedwater temperature, feed-water mass flow and outlet steam mass flow disturbed by actions of the different valves within the main steam system on the secondary side.« less

  15. Mean circulation and high-frequency flow amplification in the Sable Gully

    NASA Astrophysics Data System (ADS)

    Greenan, Blair J. W.; Petrie, Brian D.; Cardoso, Diana A.

    2014-06-01

    The Sable Gully, a broad, shelf break submarine canyon approximately 40 km east of Sable Island on the eastern Scotian Shelf, separates Banquereau and Sable Island Banks. Unique among canyons on the eastern Canadian continental shelf because of its depth, steep slopes and extension far onto the shelf, its ecological significance and increasing human pressures led to its designation in 2004 under Canada's Oceans Act as the first Marine Protected Area (MPA) in the Atlantic Region. To improve the state of knowledge of the Gully MPA, a multi-disciplinary field program was carried out in 2006-07; the physical oceanographic component consisted of the deployment (April 2006) and recovery (August 2007) of four current meter moorings and CTD surveys. Analysis of this 16-month mooring deployment demonstrates that the mean circulation above the canyon rim (~200 m) is characterized by a southwestward flow that appears unaffected by the canyon topography. There is also some indication of the existence of an eddy at rim depth. Below 500 m, the circulation is dominated by an upcanyon flow (of order 0.02 m s-1) at the mooring array (halfway between the canyon head and mouth). The mean, 200 m-bottom transport towards the head of the Gully was estimated as 35,500 m3 s-1, implying an upwelling velocity of 1.7×10-4 m s-1 (14 m d-1) over the area. Results also show bottom-intensified tidal flows and non-linear constituents due to the interaction of K1, O1, M2 and S2 components along the thalweg of the canyon; the strong overtides and compound tides observed in the Gully make it unique among canyons. Further analyses provide evidence of enhanced mixing in the Gully (Kv~180×10-4 m2 s-1), which is approximately 20 times that observed on the adjoining Scotian Shelf. Total variance of the currents in the Gully is about 2.5 times greater than that observed on the nearby continental slope with an equivalent water depth.

  16. Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in vivo detection and killing of circulating cancer stem cells

    PubMed Central

    Kim, Jin-Woo; Zharov, Vladimir P.

    2010-01-01

    In vivo multicolor photoacoustic (PA) flow cytometry for ultra-sensitive molecular detection of the CD44+ circulating tumor cells (CTCs) is demonstrated on a mouse model of human breast cancer. Targeting of CTCs with stem-like phenotype, which are naturally shed from parent tumors, was performed with functionalized gold and magnetic nanoparticles. Results in vivo were verified in vitro with a multifunctional microscope, which integrates PA, photothermal (PT), fluorescent and transmission modules. Magnet-induced clustering of magnetic nanoparticles in individual cells significantly amplified PT and PA signals. The novel noninvasive platform, which integrates multispectral PA detection and PT therapy with a potential for multiplex targeting of many cancer biomarkers using multicolor nanoparticles, may prospectively solve grand challenges in cancer research for diagnosis and purging of undetectable yet tumor-initiating cells in circulation before they form metastasis. PMID:19957272

  17. Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in-vivo detection and killing of circulating cancer stem cells.

    PubMed

    Galanzha, Ekaterina I; Kim, Jin-Woo; Zharov, Vladimir P

    2009-12-01

    In-vivo multicolor photoacoustic (PA) flow cytometry for ultrasensitive molecular detection of the CD44+ circulating tumor cells (CTCs) is demonstrated on a mouse model of human breast cancer. Targeting of CTCs with stem-like phenotype, which are naturally shed from parent tumors, was performed with functionalized gold and magnetic nanoparticles. Results in vivo were verified in vitro with a multifunctional microscope, which integrates PA, photothermal (PT), fluorescent and transmission modules. Magnet-induced clustering of magnetic nanoparticles in individual cells significantly amplified PT and PA signals. The novel noninvasive platform, which integrates multispectral PA detection and PT therapy with a potential for multiplex targeting of many cancer biomarkers using multicolor nanoparticles, may prospectively solve grand challenges in cancer research for diagnosis and purging of undetectable yet tumor-initiating cells in circulation before they form metastasis. PMID:19957272

  18. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo.

    PubMed

    Galanzha, Ekaterina I; Zharov, Vladimir P

    2013-01-01

    Despite progress in detecting circulating tumor cells (CTCs), existing assays still have low sensitivity (1-10 CTC/mL) due to the small volume of blood samples (5-10 mL). Consequently, they can miss up to 103-104 CTCs, resulting in the development of barely treatable metastasis. Here we analyze a new concept of in vivo CTC detection with enhanced sensitivity (up to 102-103 times) by the examination of the entire blood volume in vivo (5 L in adults). We focus on in vivo photoacoustic (PA) flow cytometry (PAFC) of CTCs using label-free or targeted detection, photoswitchable nanoparticles with ultrasharp PA resonances, magnetic trapping with fiber-magnetic-PA probes, optical clearance, real-time spectral identification, nonlinear signal amplification, and the integration with PAFC in vitro. We demonstrate PAFC's capability to detect rare leukemia, squamous carcinoma, melanoma, and bulk and stem breast CTCs and its clusters in preclinical animal models in blood, lymph, bone, and cerebrospinal fluid, as well as the release of CTCs from primary tumors triggered by palpation, biopsy or surgery, increasing the risk of metastasis. CTC lifetime as a balance between intravasation and extravasation rates was in the range of 0.5-4 h depending on a CTC metastatic potential. We introduced theranostics of CTCs as an integration of nanobubble-enhanced PA diagnosis, photothermal therapy, and feedback through CTC counting. In vivo data were verified with in vitro PAFC demonstrating a higher sensitivity (1 CTC/40 mL) and throughput (up to 10 mL/min) than conventional assays. Further developments include detection of circulating cancer-associated microparticles, and super-rsesolution PAFC beyond the diffraction and spectral limits. PMID:24335964

  19. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo

    PubMed Central

    Galanzha, Ekaterina I.; Zharov, Vladimir P.

    2013-01-01

    Despite progress in detecting circulating tumor cells (CTCs), existing assays still have low sensitivity (1–10 CTC/mL) due to the small volume of blood samples (5–10 mL). Consequently, they can miss up to 103–104 CTCs, resulting in the development of barely treatable metastasis. Here we analyze a new concept of in vivo CTC detection with enhanced sensitivity (up to 102–103 times) by the examination of the entire blood volume in vivo (5 L in adults). We focus on in vivo photoacoustic (PA) flow cytometry (PAFC) of CTCs using label-free or targeted detection, photoswitchable nanoparticles with ultrasharp PA resonances, magnetic trapping with fiber-magnetic-PA probes, optical clearance, real-time spectral identification, nonlinear signal amplification, and the integration with PAFC in vitro. We demonstrate PAFC’s capability to detect rare leukemia, squamous carcinoma, melanoma, and bulk and stem breast CTCs and its clusters in preclinical animal models in blood, lymph, bone, and cerebrospinal fluid, as well as the release of CTCs from primary tumors triggered by palpation, biopsy or surgery, increasing the risk of metastasis. CTC lifetime as a balance between intravasation and extravasation rates was in the range of 0.5–4 h depending on a CTC metastatic potential. We introduced theranostics of CTCs as an integration of nanobubble-enhanced PA diagnosis, photothermal therapy, and feedback through CTC counting. In vivo data were verified with in vitro PAFC demonstrating a higher sensitivity (1 CTC/40 mL) and throughput (up to 10 mL/min) than conventional assays. Further developments include detection of circulating cancer-associated microparticles, and super-resolution PAFC beyond the diffraction and spectral limits. PMID:24335964

  20. [Elective cerebral arteriovenous malformation treatment with onyx after coil embolization of ruptured, flow-realeted aneurysm of the posterior circulation].

    PubMed

    Poncyljusz, Wojciech; Falkowski, Aleksander; Rać, Monika; Sagan, Leszek; Kojder, Ireneusz

    2012-01-01

    Intracranial arteriovenous posterior circulation malformation was planned to embolize by onyx injection after acute coil embolization of ruptured flow-realeted aneurysm of posterior cerebral artery. Control angiography revealed completely embolized malformation with normal vessel patency at the end of procedure. There were no adverse events related to this procedure and no neurologic deficit at the discharge. PMID:23276020

  1. Rockford Public Library's Circulation Services: A Work Flow Analysis and Spacial Analysis Study with Recommendations and Comments.

    ERIC Educational Resources Information Center

    Titus, Elizabeth; Grant, Wallace

    The purpose of this project was to perform an analysis of the Rockford Public Library (Illinois) circulation services department and provide recommendations leading to customer service improvement, better space utilization, and improved departmental work flow. Based on an analysis of input from individual interviews with staff, review of…

  2. Circulating but not immobilized N-deglycosylated von Willebrand factor increases platelet adhesion under flow conditions

    PubMed Central

    Fallah, M. A.; Huck, V.; Niemeyer, V.; Desch, A.; Angerer, J. I.; McKinnon, T. A. J.; Wixforth, A.; Schneider, S. W.; Schneider, M. F.

    2013-01-01

    The role of von Willebrand factor (VWF) as a shear stress activated platelet adhesive has been related to a coiled-elongated shape conformation. The forces dominating this transition have been suggested to be controlled by the proteins polymeric architecture. However, the fact that 20% of VWF molecular weight originates from glycan moieties has so far been neglected in these calculations. In this study, we present a systematic experimental investigation on the role of N-glycosylation for VWF mediated platelet adhesion under flow. A microfluidic flow chamber with a stenotic compartment that allows one to mimic various physiological flow conditions was designed for the efficient analysis of the adhesion spectrum. Surprisingly, we found an increase in platelet adhesion with elevated shear rate, both qualitatively and quantitatively fully conserved when N-deglycosylated VWF (N-deg-VWF) instead of VWF was immobilized in the microfluidic channel. This has been demonstrated consistently over four orders of magnitude in shear rate. In contrast, when N-deg-VWF was added to the supernatant, an increase in adhesion rate by a factor of two was detected compared to the addition of wild-type VWF. It appears that once immobilized, the role of glycans is at least modified if not—as found here for the case of adhesion—negated. These findings strengthen the physical impact of the circulating polymer on shear dependent platelet adhesion events. At present, there is no theoretical explanation for an increase in platelet adhesion to VWF in the absence of its N-glycans. However, our data indicate that the effective solubility of the protein and hence its shape or conformation may be altered by the degree of glycosylation and is therefore a good candidate for modifying the forces required to uncoil this biopolymer. PMID:24404057

  3. Detection and quantification of circulating immature platelets: agreement between flow cytometric and automated detection.

    PubMed

    Ibrahim, Homam; Nadipalli, Srinivas; Usmani, Saba; DeLao, Timothy; Green, LaShawna; Kleiman, Neal S

    2016-07-01

    Immature platelets-also termed reticulated platelets (RP)-are platelets newly released into the circulation, and have been associated with a variety of pathological thrombotic events. They can be assessed by flow cytometry after staining with thiazole orange (TO) or by using a module added to a fully automated analyzer that is currently in wide clinical use and expressed as a fraction of the total platelet count (IPF). We sought to assess the correlation and agreement between these two methods. IPF was measured using Sysmex XE 2100-and at the same time point- we used TO staining and flow cytometry to measure RP levels. Two different gates were used for the flow cytometry method, 1 and 0.5 %. Measurements from the automated analyzer were then compared separately to measurements performed using each gate. Agreement between methods was assessed using Bland-Altman method. Pearson's correlation coefficient was also calculated. 129 subjects were enrolled and stratified into 5 groups: (1) Healthy subjects, (2) End stage renal disease, (3) Chronic stable coronary artery disease, (4) Post Coronary artery bypass surgery, (5) Peripheral thrombocytopenia. Median IPF levels were increased for patients in groups 2, 3, 4 and 5 (4.0, 4.7, 4.3, and 8.3 % respectively) compared to healthy subjects (2.5 %) p = 0.0001. Although the observed correlation between the two methods tended to be good in patients with high IPF values (i.e., group 5), the overall observed correlation was poor (Pearson's correlation coefficient r = 0.27). Furthermore, there was poor agreement between the two methods in all groups. Despite the good correlation that was observed between the two methods at higher IPF values, the lack of agreement was significant. PMID:26831482

  4. Exploring a deep meridional flow hypothesis for a circulation dominated solar dynamo model

    NASA Astrophysics Data System (ADS)

    Guerrero, G. A.; Muñoz, J. D.; de Gouveia dal Pino, E. M.

    2005-09-01

    Circulation-dominated solar dynamo models, which employ a helioseismic rotation profile and a fixed meridional flow, give a good approximation to the large scale solar magnetic phenomena, such as the 11-year cycle or the so called Hale's law of polarities. Nevertheless, the larger amplitude of the radial shear ∂Ω/∂r at the high latitudes makes the dynamo to produce a strong toroidal magnetic field at high latitudes, in contradiction with the observations of the sunspots (Sporer's Law). A possible solution was proposed by Nandy and Choudhuri in which a deep meridional flow can conduct the magnetic field inside of a stable layer (the radiative core) and then allow that it erupts just at lower latitudes. Although they obtain good results, this hypothesis generates new problems like the mixture of elements in the radiative core (that alters the abundance of the elements) and the transfer of angular momentum. We have recently explored this hypothesis in a different approximation, using the magnetic buoyancy mechanism proposed by Dikpati and Charbonneau (1999) and found that a deep meridional flow pushes the maximum of the toroidal magnetic field towards the solar equator, but, in contrast to Nandy and Choudhuri (2002 ), a second zone of maximum fields remains at the poles. In that work, we have also introduced a bipolytropic density profile in order to better reproduce the stratification in the radiative zone. We here review these results and also discuss a new possible scenario where the tachocline has an ellipsoidal shape, following early helioseismologic observations, and find that the modification of the geometry of the tachocline can lead to results which are in good agreement with observations and opens the possibility to explore in more detail, through the dynamo model, the place where the magnetic field could be really stored.

  5. Absence of circulating natural killer (NK) cells in a child with erythrophagocytic lymphohistiocytosis lacking NK cell activity

    SciTech Connect

    Kawai, H.; Komiyama, A.; Aoyama, K.; Miyagawa, Y.; Akabane, T.

    1988-06-01

    A 5-year-old girl who was diagnosed as having erythrophagocytic lymphohistiocytosis died at age 9 years. Peripheral lymphocytes from the patient persistently lacked natural killer (NK) cell activity during the 4-year observation period: the percent lysis values as measured by a 4-hr /sup 51/Cr release assay at a 40:1 effector:target ratio were below 1.0% against K562 and Molt-4 cells as compared with the normal lymphocyte value (mean +/- SD) of 46.2% +/- 5.8% and 43.9% +/- 6.7%, respectively. The patient's lymphocytes never developed NK cell activity by their incubation with target cells for longer time periods or by their stimulation with interferon-alpha, interleukin-2, or polyinosinic-polycytidilic acid. Single cell-in-agarose assay showed the absence of target-binding cells (TBCs): TBC numbers were below 0.3% as compared with the normal lymphocyte value of 8.1% +/- 1.3% (mean +/- SD). Flow cytometry showed a marked decrease in Leu-7+ cells (1.7%) and the absence of Leu-11+ cells (0.4%) in the peripheral blood. These results first demonstrate a case of erythrophagocytic lymphohistiocytosis in which there is the lack of NK cell activity due to the absence of circulating NK cells.

  6. Ten years of Nature Physics: Go with the flow

    NASA Astrophysics Data System (ADS)

    Garstecki, Piotr; Hołyst, Robert

    2015-04-01

    A 2006 Nature Physics paper reported phonons in a one-dimensional crystal of aqueous droplets traversing a laminar oil flow -- putting microfluidics on the map as a tool for unravelling the mechanisms behind regularity in thermodynamically open systems.

  7. Calculation of the Phenix end-of-life test in natural circulation with the CATHARE code

    SciTech Connect

    Maas, L.; Cocheme, F.

    2012-07-01

    The Inst. of Radiological Protection and Nuclear Safety (IRSN) acts as technical support to French public authorities. As such, IRSN is in charge of safety assessment of operating and under construction reactors, as well as future projects. In this framework, one current objective of IRSN is to evaluate the ability and accuracy of numerical tools to foresee consequences of accidents. One of the advantages pointed up for fast reactors cooled by heavy liquid metal is the possibility of decay heat removal based on natural convection. The promotion of this passive cooling mode in future safety demonstrations will involve the use of adapted and validated numerical codes. After the final shutdown of the Phenix sodium cooled fast reactor in 2009, a set of tests covering different areas was conducted for code validation, including a natural circulation test in the primary circuit. Experimental data were issued by CEA to organize a benchmark exercise in the frame of an IAEA Coordinated Research Project (CRP), with the objective to assess the system-codes capability in simulating the thermal-hydraulics behavior of sodium cooled fast reactors in such accidental conditions. IRSN participated to this benchmark with the CATHARE code. This code, co-developed by CEA, EDF, AREVA and IRSN and widely used for PWR safety studies, was recently extended for sodium applications. This paper presents the CATHARE modeling of the Phenix primary circuit and the results obtained. A relatively good agreement was found with available measurements considering the experimental uncertainties. This work stressed the local aspects of phenomena occurring during the natural convection establishment and the limits of a 0D/1D approach. (authors)

  8. Wind-driven lateral circulation in a stratified estuary and its effects on the along-channel flow

    NASA Astrophysics Data System (ADS)

    Li, Yun; Li, Ming

    2012-09-01

    In the stratified rotating estuary of Chesapeake Bay, the Ekman transport drives a counterclockwise lateral circulation under down-estuary winds and a clockwise lateral circulation under up-estuary winds (looking into estuary). The clockwise circulation is about twice as strong as the counterclockwise circulation. Analysis of the streamwise vorticity equation reveals a balance among three terms: titling of the planetary vorticity by vertical shear in the along-channel current, baroclinic forcing due to sloping isopycnals at cross-channel sections, and turbulent diffusion. The baroclinic forcing is highly asymmetric between the down- and up-estuary winds. While the counter-clockwise lateral circulation tilts isopycnals vertically and creates lateral barolinic pressure gradient to oppose the Ekman transport under the down-estuary wind, the clockwise circulation initially flattens the isopycnals and the baroclinic forcing reinforces the Ekman transport under the up-estuary wind. The Coriolis acceleration associated with the lateral flows is of the first-order importance in the along-channel momentum balance. It has a sign opposite to the stress divergence in the surface layer and the pressure gradient in the bottom layer, thereby reducing the shear in the along-channel current. Compared with the non-rotating system, the shear reduction is about 30-40%. Two summary diagrams are constructed to show how the averaged streamwise vorticity and along-channel current shear vary with the Wedderburn (W) and Kelvin (Ke) numbers.

  9. Thermohydraulic model experiments and calculations on the transition from forced to natural circulation for pool-type fast reactors

    SciTech Connect

    Hoffmann, H.; Marten, K.; Weinberg, D.; Kamide, H.

    1990-01-01

    After a reactor scram, the decay heat removal (DHR) is of decisive importance for the safety of the plant. A fully passive DHR system based on natural circulation alone is independent of any power source. The DHE system consists of immersion coolers (ICs) installed in the hot plenum and connected to air coolers, each via intermediate circuits. During the postscram phase, the decay heat is to be removed by natural circulation from the core into the hot plenum and via the ICs and intermediate loops to the air coolers. The function of this DHR system is investigated and demonstrated in model tests with a geometry similar to the reactor, though on a different scale RAMONA is such a three-dimensional model set up on a 1:20 scale. It is operated with water. The steady-state tests for natural-circulation DHR operations have been conducted over a wide range of operational and geometric parameters. To study the transition from nominal to DHR conditions, experiments were defined to investigate the onset of natural circulation in the postscram phase (transient tests). The experiments were analyzed using the one-dimensional LEDHER code. LEDHER is a network analysis code for the long-term DHR of a fast reactor developed at Power Reactor and Nuclear Fuel Development Corporation in Japan. The results of the experiments and conclusions are summarized.

  10. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery

    NASA Astrophysics Data System (ADS)

    Yang, Hyeon Sun; Park, Jong Ho; Ra, Ho Won; Jin, Chang-Soo; Yang, Jung Hoon

    2016-09-01

    In a zinc-bromine redox flow battery, a nonaqueous and dense polybromide phase formed because of bromide oxidation in the positive electrolyte during charging. This formation led to complicated two-phase flow on the electrode surface. The polybromide and aqueous phases led to different kinetics of the Br/Br- redox reaction; poor mixing of the two phases caused uneven redox kinetics on the electrode surface. As the Br/Br- redox reaction was coupled with the zinc deposition reaction, the uneven redox reaction on the positive electrode was accompanied by nonuniform zinc deposition and zinc dendrite formation, which degraded battery stability. A single-flow cell was operated at varying electrolyte circulation rates and current densities. Zinc dendrite formation was observed after cell disassembly following charge-discharge testing. In addition, the flow behavior in the positive compartment was observed by using a transparent version of the cell. At low rate of electrolyte circulation, the polybromide phase clearly separated from the aqueous phase and accumulated at the bottom of the flow frame. In the corresponding area on the negative electrode, a large amount of zinc dendrites was observed after charge-discharge testing. Therefore, a minimum circulation rate should be considered to avoid poor mixing of the positive electrolyte.

  11. Wall jet analysis for circulation control aerodynamics. Part 2: Zonal modeling concepts for wall jet/potential flow coupling

    NASA Technical Reports Server (NTRS)

    Dvorak, Frank A.; Dash, Sanford M.

    1987-01-01

    Work currently in progress to update an existing transonic circulation control airfoil analysis method is described. Existing methods suffer from two dificiencies: the inability to predict the shock structure of the underexpanded supersonic jets; and the insensitivity of the calculation to small changes in the Coanda surface geometry. A method developed for the analysis of jet exhaust plumes in supersonic flow is being modified for the case of the underexpanded wall jet. In the subsonic case, the same wall jet model was modified to include the calculation of the normal pressure gradient. This model is currently being coupled with the transonic circulation control airfoil analysis.

  12. Circulating Tumor Cells: Clinically Relevant Molecular Access Based on a Novel CTC Flow Cell

    PubMed Central

    Winer-Jones, Jessamine P.; Vahidi, Behrad; Arquilevich, Norma; Fang, Cong; Ferguson, Samuel; Harkins, Darren; Hill, Cory; Klem, Erich; Pagano, Paul C.; Peasley, Chrissy; Romero, Juan; Shartle, Robert; Vasko, Robert C.; Strauss, William M.; Dempsey, Paul W.

    2014-01-01

    Background Contemporary cancer diagnostics are becoming increasing reliant upon sophisticated new molecular methods for analyzing genetic information. Limiting the scope of these new technologies is the lack of adequate solid tumor tissue samples. Patients may present with tumors that are not accessible to biopsy or adequate for longitudinal monitoring. One attractive alternate source is cancer cells in the peripheral blood. These rare circulating tumor cells (CTC) require enrichment and isolation before molecular analysis can be performed. Current CTC platforms lack either the throughput or reliability to use in a clinical setting or they provide CTC samples at purities that restrict molecular access by limiting the molecular tools available. Methodology/Principal Findings Recent advances in magetophoresis and microfluidics have been employed to produce an automated platform called LiquidBiopsy®. This platform uses high throughput sheath flow microfluidics for the positive selection of CTC populations. Furthermore the platform quantitatively isolates cells useful for molecular methods such as detection of mutations. CTC recovery was characterized and validated with an accuracy (<20% error) and a precision (CV<25%) down to at least 9 CTC/ml. Using anti-EpCAM antibodies as the capture agent, the platform recovers 78% of MCF7 cells within the linear range. Non specific recovery of background cells is independent of target cell density and averages 55 cells/mL. 10% purity can be achieved with as low as 6 CTCs/mL and better than 1% purity can be achieved with 1 CTC/mL. Conclusions/Significance The LiquidBiopsy platform is an automated validated platform that provides high throughput molecular access to the CTC population. It can be validated and integrated into the lab flow enabling CTC enumeration as well as recovery of consistently high purity samples for molecular analysis such as quantitative PCR and Next Generation Sequencing. This tool opens the way for

  13. Adhesion dynamics of circulating tumor cells under shear flow in a bio-functionalized microchannel

    NASA Astrophysics Data System (ADS)

    Siu-Lun Cheung, Luthur; Zheng, Xiangjun; Wang, Lian; Baygents, James C.; Guzman, Roberto; Schroeder, Joyce A.; Heimark, Ronald L.; Zohar, Yitshak

    2011-05-01

    The adhesion dynamics of circulating tumor cells in a bio-functionalized microchannel under hydrodynamic loading is explored experimentally and analyzed theoretically. EpCAM antibodies are immobilized on the microchannel surface to specifically capture EpCAM-expressing target breast cancer cells MDA-MB-231 from a homogeneous cell suspension in shear flow. In the cross-stream direction, gravity is the dominant physical mechanism resulting in continuous interaction between the EpCAM cell receptors and the immobilized surface anti-EpCAM ligands. Depending on the applied shear rate, three dynamic states have been characterized: firm adhesion, rolling adhesion and free rolling. The steady-state velocity under adhesion- and free-rolling conditions as well as the time-dependent velocity in firm adhesion has been characterized experimentally, based on video recordings of target cell motion in functionalized microchannels. A previously reported theoretical model, utilizing a linear spring to represent the specific receptor-ligand bonds, has been adopted to analyze adhesion dynamics including features such as the cell-surface binding force and separation gap. By fitting theoretical predictions to experimental measurements, a unified exponential decay function is proposed to describe the target cell velocity evolution during capture; the fitting parameters, velocity and time scales, depend on the particular cell-surface system.

  14. F-111 TACT natural laminar flow glove flight results

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Steers, L. L.; Trujillo, B.

    1981-01-01

    Improvements in cruise efficiency on the order of 15 to 40% are obtained by increasing the extent of laminar flow over lifting surfaces. Two methods of achieving laminar flow are being considered, natural laminar flow and laminar flow control. Natural laminar flow (NLF) relies primarily on airfoil shape while laminar flow control involves boundary layer suction or blowing with mechanical devices. The extent of natural laminar flow that could be achieved with consistency in a real flight environment at chord Reynolds numbers in the range of 30 x 10(6) power was evaluated. Nineteen flights were conducted on the F-111 TACT airplane having a NLF airfoil glove section. The section consists of a supercritical airfoil providing favorable pressure gradients over extensive portions of the upper and lower surfaces of the wing. Boundary layer measurements were obtained over a range of wing leading edge sweep angles at Mach numbers from 0.80 to 0.85. Data were obtained for natural transition and for a range of forced transition locations over the test airfoil.

  15. Application of natural laminar flow to a supersonic transport concept

    NASA Technical Reports Server (NTRS)

    Fuhrmann, Henri D.

    1993-01-01

    Results are presented of a preliminary investigation into an application of supersonic natural laminar flow (NLF) technology for a high speed civil transport (HSCT) configuration. This study focuses on natural laminar flow without regard to suction devices which are required for laminar flow control (LFC) or hybrid laminar flow control (HLFC). An HSCT design is presented with a 70 deg inboard leading-edge sweep and a 20 deg leading-edge outboard crank to obtain NLF over the outboard crank section. This configuration takes advantage of improved subsonic performance and NLF on the low-sweep portion of the wing while minimizing the wave drag and induced drag penalties associated with low-sweep supersonic cruise aircraft. In order to assess the benefits of increasing natural laminar flow wetted area, the outboard low-sweep wing area is parametrically increased. Using a range of supersonic natural laminar flow transition Reynolds numbers, these aircraft are then optimized and sized for minimum take-off gross weight (TOGW) subject to mission constraints. Results from this study indicate reductions in TOGW for the NLF concepts, due mainly to reductions in wing area and total wing weight. Furthermore, significant reductions in block fuel are calculated throughout the range of transition Reynolds numbers considered. Observations are made on the benefits of unsweeping the wingtips with all turbulent flow.

  16. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

    PubMed Central

    Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-01-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis. PMID:27255403

  17. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells.

    PubMed

    Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-01-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm(2)), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis. PMID:27255403

  18. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

    NASA Astrophysics Data System (ADS)

    Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-06-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis.

  19. Climatology and natural variability of the global hydrologic cycle in the GLA atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Mehta, V. M.; Sud, Y. C.; Walker, G. K.

    1994-01-01

    Time average climatology and low-frequency variabilities of the global hydrologic cycle (GHC) in the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) were investigated in the present work. A 730-day experiment was conducted with the GLA GCM forced by insolation, sea surface temperature, and ice-snow undergoing climatological annual cycles. Ifluences of interactive soil moisture on time average climatology and natural variability of the GHC were also investigated by conducting 365-day experiments with and without interactive soil moisture. Insolation, sea surface temperature, and ice-snow were fixed at their July levels in the latter two experiments. Results show that the model's time average hydrologic cycle variables for July in all three experiments agree reasonably well with observations. Except in the case of precipitable water, the zonal average climates of the annual cycle experiment and the two perpetual July experiments are alike, i.e., their differences are within limits of the natural variability of the model's climate. Statistics of various components of the GHC, i.e., water vapor, evaporation, and precipitation, are significantly affected by the presence of interactive soil moisture. A long-term trend is found in the principal empirical modes of variability of ground wetness, evaporation, and sensible heat. Dominant modes of variability of these quantities over land are physically consistent with one another and with land surface energy balance requirements. The dominant mode of precipitation variability is found to be closely related to organized convection over the tropical western Pacific Ocean. The precipitation variability has timescales in the range of 2 to 3 months and can be identified with the stationary component of the Madden-Julian Oscillation. The precipitation mode is not sensitive to the presence of interactive soil moisture but is closely linked to both the rotational and divergent components of atmospheric

  20. Development of the Circulation Control Flow Scheme Used in the NTF Semi-Span FAST-MAC Model

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Milholen, William E., II; Chan, David T.; Allan, Brian G.; Goodliff, Scott L.; Melton, Latunia P.; Anders, Scott G.; Carter, Melissa B.; Capone, Francis J.

    2013-01-01

    The application of a circulation control system for high Reynolds numbers was experimentally validated with the Fundamental Aerodynamic Subsonic Transonic Modular Active Control semi-span model in the NASA Langley National Transonic Facility. This model utilized four independent flow paths to modify the lift and thrust performance of a representative advanced transport type of wing. The design of the internal flow paths highlights the challenges associated with high Reynolds number testing in a cryogenic pressurized wind tunnel. Weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions ranging from 0.1 to 10 lbm/sec. Results from the test verified system performance and identified solutions associated with the weight-flow metering system that are linked to internal perforated plates used to achieve flow uniformity at the jet exit.

  1. Estimating Natural Flows into the California's Sacramento - San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Huang, G.; Kadir, T.; Chung, F. I.

    2014-12-01

    Natural flows into the California's Sacramento - San Joaquin Delta under predevelopment vegetative conditions, if and when reconstructed, can serve as a useful guide to establish minimum stream flows, restoration targets, and a basis for assessing impacts of global warming in the Bay-Delta System. Daily simulations of natural Delta flows for the period 1922-2009 were obtained using precipitation-snowmelt-runoff models for the upper watersheds that are tributaries to the California's Central Valley, and then routing the water through the Central Valley floor area using a modified version of the California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM) for water years 1922 through 2009. Daily stream inflows from all major upper watersheds were simulated using 23 Soil Water Assessment Tool (SWAT) models. Historical precipitation and reference evapotranspiration data were extracted from the SIMETAW2 with the 4km gridded meteorological data. The Historical natural and riparian vegetation distributions were compiled from several pre-1900 historical vegetation maps of the Central Valley. Wetlands were dynamically simulated using interconnected lakes. Flows overtopping natural levees were simulated using flow rating curves. New estimates of potential evapotranspiration from different vegetative classes under natural conditions were also used. Sensitivity simulations demonstrate that evapotranspiration estimates, native vegetation distribution, surface-groundwater interaction parameters, extinction depth for groundwater uptake, and other physical processes play a key role in the magnitude and timing of upstream flows arriving at the Delta. Findings contradict a common misconception that the magnitude of inflows to the Delta under natural vegetative conditions is greater than those under the historical agricultural and urban land use development. The developed models also enable to study the impacts of global warming by modifying meteorological and

  2. Numerical Modeling of Reactive Multiphase Flow for FCC and Hot Gas Desulfurization Circulating Fluidized Beds

    SciTech Connect

    2005-07-01

    This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFB riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.

  3. Validation of a Device for Fluorescence Sensing of Rare Circulating Cells with Diffusive Light in an Optical Flow Phantom Model

    PubMed Central

    Zettergren, Eric; Vickers, Dwayne; Runnels, Judith; Lin, Charles P.; Niedre, Mark J.

    2013-01-01

    Detection and quantification of rare circulating cells in biological tissues is an important problem and has many applications in biomedical research. Current methods normally involve extraction of blood samples and counting of cells ex vivo, or the use of microscopy-based fluorescence in vivo flow cytometry. The goal of this work is to develop an instrument for non-invasively enumerating very rare circulating cells in small animals with diffuse light with several orders of magnitude sensitivity improvement versus current approaches. In this work, we describe the design of our system and show that single, fluorescent microspheres can be detected in limb-mimicking optical flow phantoms with varying optical properties chosen to simulate in vivo conditions. Further, we demonstrate single cell counting capabilities using fluorescently (Vybrant-DiD) labeled Jurkat and Multiple Myeloma cells. Ongoing work includes in vivo testing and characterization of our system in mice. PMID:22254354

  4. Lung Circulation.

    PubMed

    Suresh, Karthik; Shimoda, Larissa A

    2016-01-01

    The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed. © 2016 American Physiological Society. Compr Physiol 6:897-943, 2016. PMID:27065170

  5. Predictive mapping of the natural flow regimes of France

    NASA Astrophysics Data System (ADS)

    Snelder, Ton H.; Lamouroux, Nicolas; Leathwick, John R.; Pella, Hervé; Sauquet, Eric; Shankar, Ude

    2009-06-01

    SummaryHydrologic variability is important in sustaining a variety of ecological processes in streams and rivers. Natural flow regime classifications group streams and rivers that are relatively homogeneous with respect to flow variability and have been promoted as a method of defining units for management of river flows. Although there has been considerable interest in classifying natural flow regimes, there has been less emphasis given to developing accurate methods of extrapolating these classifications to locations without flow data. We developed a method of mapping flow regime classes using boosted regression trees (BRT) that automatically fits non-linear functions and interactions between explanatory variables of flow regimes, both of which can be expected when comparing responses between complex systems such as watersheds. A natural flow regimes classification of continental France was developed from cluster analysis of 157 hydrological indices derived from 763 gauging stations representing unmodified flows. BRT models were used to predict the likelihood of gauging stations belonging to each class based on the watershed characteristics. These models were used to extrapolate the natural flow regime classification to all segments of a national river network. The performance of the BRT models were compared with other methods of assigning locations to flow regime classes, including the use of geographically contiguous regions, linear discriminant analysis (LDA) and classification and regression trees (CART). The "fitted" misclassification rate (associated with model fits) for assignment based on the BRT models was 13% whereas the fitted misclassification rates for geographically contiguous regions, LDA and CART were 52%, 44% and 39% respectively. A "predictive" misclassification rate (calculated for new cases) was estimated for assignments based on the BRT, LDA and CART models using cross validation analysis. For assignment based on the BRT models, the mean

  6. Evaluation of circulating levels and renal clearance of natural amino acids in patients with Cushing's disease.

    PubMed

    Faggiano, A; Pivonello, R; Melis, D; Alfieri, R; Filippella, M; Spagnuolo, G; Salvatore, F; Lombardi, G; Colao, A

    2002-02-01

    Although the hypercortisolism-induced impairment of protein homeostasis is object of several studies, a detailed evaluation of the complete amino acid profile of patients with Cushing's syndrome (CS) has never been performed. The aim of the current open transversal controlled study was to evaluate serum and urinary concentrations as well as renal clearance of the complete series of natural amino acids and their relationship with glucose tolerance in patients with Cushing's disease (CD). Twenty patients with CD (10 active and 10 cured) and 20 sex- and age-matched healthy controls entered the study. Measurement of serum and urinary levels of the complete series of natural amino acids was performed in all patients analyzed by cationic exchange high performance liquid cromatography (HPLC) after 2 weeks of a standardized protein intake regimen. The renal clearance (renal excretion rate) of each amino acid was calculated on the basis of the serum and urinary concentrations of creatinine and the specific amino acid. Fasting glucose and insulin levels, glucose and insulin response to standard glucose load, insulinogenic and homeostasis model insulin resistance (Homa-R) indexes were also evaluated and correlated to the circulating levels and renal clearances of each amino acid. Significantly higher serum (p<0.01) and urinary (p<0.05) levels of alanine and cystine, lower serum and higher urinary levels of leucine, isoleucine and valine (p<0.05) and higher renal excretion rates of leucine, isoleucine and valine (p<0.01) were found in patients with active CD than in patients cured from the disease and in controls. No difference was found between cured patients and controls. Creatinine clearance was similar in active and cured patients and in controls. In patients with active CD, urinary cortisol levels were significantly correlated to urinary cystine levels (r=0.85; p<0.01) and renal excretion rate of leucine (r=-0.76; p<0.05), isoleucine (r=-0.76; p<0.05) and valine (r=-0

  7. Heat-flow and hydrothermal circulation at the ocean-continent transition of the eastern gulf of Aden

    NASA Astrophysics Data System (ADS)

    Lucazeau, Francis; Leroy, Sylvie; Rolandone, Frédérique; d'Acremont, Elia; Watremez, Louise; Bonneville, Alain; Goutorbe, Bruno; Düsünur, Doga

    2010-07-01

    In order to investigate the importance of fluid circulation associated with the formation of ocean-continent transitions (OCT), we examine 162 new heat-flow (HF) measurements in the eastern Gulf of Aden, obtained at close locations along eight seismic profiles and with multi-beam bathymetry. The average HF values in the OCT and in the oceanic domain (~ 18 m.y.) are very close to the predictions of cooling models, showing that the overall importance of fluids remains small at the present time compared to oceanic ridge flanks of the same age. However, local HF anomalies are observed, although not systematically, in the vicinity of the unsedimented basement and are interpreted by the thermal effect of meteoric fluids flowing laterally. We propose a possible interpretation of hydrothermal paths based on the shape of HF anomalies and on the surface morphology: fluids can circulate either along-dip or along-strike, but are apparently focussed in narrow "pipes". In several locations in the OCT, there is no detectable HF anomaly while the seismic velocity structure suggests serpentinization and therefore past circulation. We relate the existence of the present day fluid circulation in the eastern Gulf of Aden to the presence of unsedimented basement and to the local extensional stress in the vicinity of the Socotra-Hadbeen fault zone. At the scale of rifted-margins, fluid circulation is probably not as important as in the oceanic domain because it can be inhibited rapidly with high sedimentation rates, serpentinization and stress release after the break-up.

  8. Natural Laminar Flow Design for Wings with Moderate Sweep

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Lynde, Michelle N.

    2016-01-01

    A new method for the aerodynamic design of wings with natural laminar flow is under development at the NASA Langley Research Center. The approach involves the addition of new flow constraints to an existing knowledge-based design module for use with advanced flow solvers. The uniqueness of the new approach lies in the tailoring of target pressure distributions to achieve laminar flow on transonic wings with leading-edge sweeps and Reynolds numbers typical of current transports. The method is demonstrated on the Common Research Model configuration at critical N-factor levels representative of both flight and high-Reynolds number wind tunnel turbulence levels. The design results for the flight conditions matched the target extent of laminar flow very well. The design at wind tunnel conditions raised some design issues that prompted further improvements in the method, but overall has given promising results.

  9. Fluid Flow along Venous Adventitia in Rabbits: Is It a Potential Drainage System Complementary to Vascular Circulations?

    PubMed Central

    Li, Hong-yi; Chen, Min; Yang, Jie-fu; Yang, Chong-qing; Xu, Liang; Wang, Fang; Tong, Jia-bin; Lv, You; Suonan, Caidan

    2012-01-01

    Background Our previous research and other studies with radiotracers showed evidence of a centripetal drainage pathway, separate from blood or lymphatic vessels, that can be visualized when a small amount of low molecular weight tracer is injected subcutaneously into a given region on skin of humans. In order to further characterize this interesting biological phenomenon, animal experiments are designed to elucidate histological and physiologic characteristics of these visualized pathways. Methods Multiple tracers are injected subcutaneously into an acupuncture point of KI3 to visualize centripetal pathways by magnetic resonance imaging or fluorescein photography in 85 healthy rabbits. The pathways are compared with venography and indirect lymphangiography. Fluid flow through the pathways is observed by methods of altering their hydrated state, hydrolyzing by different collagenases, and histology is elucidated by optical, fluorescein and electron microscopy. Results Histological and magnetic imaging examinations of these visualized pathways show they consist of perivenous loose connective tissues. As evidenced by examinations of tracers’ uptake, they appear to function as a draining pathway for free interstitial fluid. Fluorescein sodium from KI3 is found in the pathways of hind limbs and segments of the small intestines, partial pulmonary veins and results in pericardial effusion, suggesting systematical involvement of this perivenous pathway. The hydraulic conductivity of these pathways can be compromised by the collapse of their fiber-rich beds hydrolyzed by either of collagenase type I, III, IV or V. Conclusions The identification of pathways comprising perivenous loose connective tissues with a high hydraulic conductivity draining interstitial fluid in hind limbs of a mammal suggests a potential drainage system complementary to vascular circulations. These findings may provide new insights into a systematically distributed collagenous connective tissue with

  10. Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts.

    PubMed

    Nedosekin, Dmitry A; Sarimollaoglu, Mustafa; Galanzha, Ekaterina I; Sawant, Rupa; Torchilin, Vladimir P; Verkhusha, Vladislav V; Ma, Jie; Frank, Markus H; Biris, Alexandru S; Zharov, Vladimir P

    2013-05-01

    In vivo photoacoustic (PA) and fluorescence flow cytometry were previously applied separately using pulsed and continuous wave lasers respectively, and positive contrast detection mode only. This paper introduces a real-time integration of both techniques with positive and negative contrast modes using only pulsed lasers. Various applications of this new tool are summarized, including detection of liposomes loaded with Alexa-660 dye, red blood cells labeled with Indocyanine Green, B16F10 melanoma cells co-expressing melanin and green fluorescent protein (GFP), C8161-GFP melanoma cells targeted by magnetic nanoparticles, MTLn3 adenocarcinoma cells expressing novel near-infrared iRFP protein, and quantum dot-carbon nanotube conjugates. Negative contrast flow cytometry provided label-free detection of low absorbing or weakly fluorescent cells in blood absorption and autofluorescence background, respectively. The use of pulsed laser for time-resolved discrimination of objects with long fluorescence lifetime (e.g., quantum dots) from shorter autofluorescence background (e.g., blood plasma) is also highlighted in this paper. The supplementary nature of PA and fluorescence detection increased the versatility of the integrated method for simultaneous detection of probes and cells having various absorbing and fluorescent properties, and provided verification of PA data using a more established fluorescence based technique. PMID:22903924

  11. Steady state boiling crisis in a helium vertically heated natural circulation loop - Part 1: Critical heat flux, boiling crisis onset and hysteresis

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2016-01-01

    Experiments were conducted on a 2-m high two-phase helium natural circulation loop operating at 4.2 K and 1 atm. The same loop was used in two experiments with different heated section internal diameter (10 and 6 mm). The power applied on the heated section wall was controlled in increasing and decreasing sequences, and temperature along the section, mass flow rate and pressure drop evolutions were recorded. The values of critical heat flux (CHF) were found at different positions of the test section, and the post-CHF regime was studied. The predictions of CHF by existing correlations were good in the downstream portion of the section, however CHF anomalies have been observed near the entrance, in the low quality region. In resonance with this, the re-wetting of the surface has distinct hysteresis behavior in each of the two CHF regions. Furthermore, hydraulics effects of crisis, namely on friction, were studied (Part 2). This research is the starting point to future works addressing transients conducing to boiling crisis in helium natural circulation loops.

  12. Characterising natural bedform morphology and its influence on flow

    NASA Astrophysics Data System (ADS)

    Lefebvre, Alice; Paarlberg, Andries J.; Winter, Christian

    2016-06-01

    Bedforms such as dunes and ripples are ubiquitous in rivers and coastal seas, and commonly described as triangular shapes from which height and length are calculated to estimate hydrodynamic and sediment dynamic parameters. Natural bedforms, however, present a far more complicated morphology; the difference between natural bedform shape and the often assumed triangular shape is usually neglected, and how this may affect the flow is unknown. This study investigates the shapes of natural bedforms and how they influence flow and shear stress, based on four datasets extracted from earlier studies on two rivers (the Rio Paraná in Argentina, and the Lower Rhine in The Netherlands). The most commonly occurring morphological elements are a sinusoidal stoss side made of one segment and a lee side made of two segments, a gently sloping upper lee side and a relatively steep (6 to 21°) slip face. A non-hydrostatic numerical model, set up using Delft3D, served to simulate the flow over fixed bedforms with various morphologies derived from the identified morphological elements. Both shear stress and turbulence increase with increasing slip face angle and are only marginally affected by the dimensions and positions of the upper and lower lee side. The average slip face angle determined from the bed profiles is 14°, over which there is no permanent flow separation. Shear stress and turbulence above natural bedforms are higher than above a flat bed but much lower than over the often assumed 30° lee side angle.

  13. Design of fuselage shapes for natural laminar flow

    NASA Technical Reports Server (NTRS)

    Dodbele, S. S.; Vandam, C. P.; Vijgen, P. M. H. W.

    1986-01-01

    Recent technological advances in airplane construction techniques and materials allow for the production of aerodynamic surfaces without significant waviness and roughness, permitting long runs of natural laminar flow (NLF). The present research effort seeks to refine and validate computational design tools for use in the design of axisymmetric and nonaxisymmetric natural-laminar-flow bodies. The principal task of the investigation involves fuselage body shaping using a computational design procedure. Analytical methods were refined and exploratory calculations conducted to predict laminar boundary-layer on selected body shapes. Using a low-order surface-singularity aerodynamic analysis program, pressure distribution, boundary-layer development, transition location and drag coefficient have been obtained for a number of body shapes including a representative business-aircraft fuselage. Extensive runs of laminar flow were predicted in regions of favorable pressure gradient on smooth body surfaces. A computational design procedure was developed to obtain a body shape with minimum drag having large extent of NLF.

  14. Design of fuselage shapes for natural laminar flow

    NASA Astrophysics Data System (ADS)

    Dodbele, S. S.; Vandam, C. P.; Vijgen, P. M. H. W.

    1986-03-01

    Recent technological advances in airplane construction techniques and materials allow for the production of aerodynamic surfaces without significant waviness and roughness, permitting long runs of natural laminar flow (NLF). The present research effort seeks to refine and validate computational design tools for use in the design of axisymmetric and nonaxisymmetric natural-laminar-flow bodies. The principal task of the investigation involves fuselage body shaping using a computational design procedure. Analytical methods were refined and exploratory calculations conducted to predict laminar boundary-layer on selected body shapes. Using a low-order surface-singularity aerodynamic analysis program, pressure distribution, boundary-layer development, transition location and drag coefficient have been obtained for a number of body shapes including a representative business-aircraft fuselage. Extensive runs of laminar flow were predicted in regions of favorable pressure gradient on smooth body surfaces. A computational design procedure was developed to obtain a body shape with minimum drag having large extent of NLF.

  15. Flight tests of a supersonic natural laminar flow airfoil

    NASA Astrophysics Data System (ADS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2015-06-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.

  16. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Banks, Daniel W.; Garzon, G. A.; Matisheck, J. R.

    2015-01-01

    A flight-test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane (McDonnell Douglas Corporation, now The Boeing Company, Chicago, Illinois). The test article was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  17. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2014-01-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The wing was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  18. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  19. Overturn of the Oceasn Flow in the North Atlantic as a Trigger of Inertia Motion to Form a Meridional Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Nakamura, Shigehisa

    2010-05-01

    This work is an introduction of a meridional ocean circulation. As for the zonal motions,there have been many contributions. Recent oceanographic works noticed an overturn of the ocean current in the North Atlantic. The author notices this overturn is a trigger to generate a meridional ocean circulation to have a track through the deep Atlantic, the deep circum-polar current, the deep branch flow to the Pacific between the Australian and the South America. The east part of the branch flow relates to the upwelling off Peru, and the west part relates to form a deep water in the Northwest Pacific. THe overturn of the North Atlantic suggests an outflow of the deep water and a storage of the old aged deep water in the Northwest Pacific. The storage water increase in the Northwest Pacific shoould be a trigger of the swelling up of the sea level mid Pacific to affect to the ocean front variations between the coastal waters and the ocean water. In order to keep a hydrodynamic balance on the earth, an increase of the deep water in the Pacific should flow through the Bering Sea and the Arctic Sea to get to the North Atlantic. It should be noted that a budget of the ocean water flow must be hold the condition of the water masses concservation on the earth surface. This inertia motion is maintained once induced after any natural effect or some man-made influences. At this stage, the author has to notice that there has been developed a meridional inertia path of the air particle as well as the ocean water parcel, nevertheless nobody has had pointed out this inertiamotion with a meridional path in the ocean. Air-sea interaction must be one of the main factors for driving the ocean water though the inertia motion in the global scale is more energetic. To the details, the scientists should pursue what geophysical dynamics must be developed in the future.

  20. On the combination of kinematics with flow visualization to compute total circulation - Application to vortex rings in a tube

    NASA Technical Reports Server (NTRS)

    Brasseur, J. G.; Chang, I.-D.

    1980-01-01

    To date the computation of the total circulation, or strength of a vortex has required detailed measurements of the velocity field within the vortex. In this paper a method is described in which the kinematics of the vortical flow field is exploited to calculate the strength of a vortex from relatively simple flow visualization measurements. There are several advantages in the technique, the most important being the newly acquired ability to calculate the transient changes in strength of a single vortex as it evolves. The method is applied to the study of vortex rings, although the development can be carried over directly to study vortex pairs, and it is expected that it can be generalized to other flows which contain regions of concentrated vorticity. The accuracy of the method as applied to vortex rings, assessed in part by comparing with the laser Doppler velocimeter (LDV) measurements of Sullivan et al., is shown to be excellent.

  1. Porous media flow problems: Natural convection and non-Newtonian

    NASA Astrophysics Data System (ADS)

    Walker, K. L.

    1980-03-01

    Natural convection of a Newtonian fluid and one dimensional flow of a nonNewtonian fluid are studied. Convection in a rectangular porous cavity driven by heating in the horizontal is analyzed by a number of different techniques which yield a fairly complete description of the two dimensional solutions. The solutions are governed by two dimensionless parameters: the Darcy-Rayleigh number R and cavity aspect ratio A. The flow behavior of a dilute solution of polyacrylamide in corn syrup flowing through porous media is also studied. Measurement of the pressure drop and flow rate are made for the solution flowing through a packed bed of glass beads. At low velocities the pressure drop as a function of velocity is the same as that for a Newtonian fluid of equal viscosity. At high flow rates the nonNewtonian fluid exhibited significantly higher pressure drops than a Newtonian fluid. Careful rheological measurements of the fluid are made using a Weissenberg rheogoniometer. From measurements of the dynamic viscosity shear it is determined that elastic effects are negligible. It is believed that the increased pressure gradients are caused by nonlinear viscous effects resulting from the extensional components of the flow.

  2. Pressure Regulator With Internal Ejector Circulation Pump, Flow and Pressure Measurement Porting, and Fuel Cell System Integration Options

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2011-01-01

    An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also

  3. PARTICLE FLOW, MIXING, AND CHEMICAL REACTION IN CIRCULATING FLUIDIZED BED ABSORBERS

    EPA Science Inventory

    A mixing model has been developed to simulate the particle residence time distribution (RTD) in a circulating fluidized bed absorber (CFBA). Also, a gas/solid reaction model for sulfur dioxide (SO2) removal by lime has been developed. For the reaction model that considers RTD dis...

  4. Comparative History of Education: William Brickman and the Study of Educational Flows, Transfers, and Circulations

    ERIC Educational Resources Information Center

    Sobe, Noah W.; Ness, Corinne

    2010-01-01

    This article discusses William W. Brickman's historical scholarship on the international circulation of educational ideas and practices by examining the ways Brickman wrote about John Dewey and his international significance as an educational thinker and reformer. The authors argue that Brickman's scholarship was rooted in an "educational…

  5. EVALUATION OF GROUNDWATER FLOW PATTERNS AROUND A DUAL-SCREENED GROUNDWATER CIRCULATION WELL

    EPA Science Inventory

    Dual-screened groundwater circulation wells (GCWs) can be used to remove contaminant mass and to mix reagents in situ. GCWs are so named because they force water in a circular pattern between injection and extraction screens. The radial extent, flux and direction of the effective...

  6. Antimicrobial activity of various immunomodulators: independence from normal levels of circulating monocytes and natural killer cells. Technical report

    SciTech Connect

    Morahan, P.S.; Dempsey, W.L.; Volkman, A.; Connor, J.

    1986-01-01

    The effects of /sup 89/Sr treatment on the natural host resistance of CD-1 mice and the enhancement of resistance by immunomodulators to infection with Listeria monocytogenes or herpes simplex virus type 2 (HSV-2) were determined. In the CD-1 mouse, single-dose treatment with /sup 89/Sr caused a profound decrease in the number of circulating monocytes (Mo), lymphocytes, and polymorphonuclear leukocytes (PMN) within 1 week. There was also marked functional impairment of the Mo inflammatory response, as well as markedly decreased spontaneous and activatable cytoxicity by splenic natural killer (NK) cells. Despite this profound cellular suppression, there was no significant change in natural resistance of CD-1 mice to L. monocytogenes of HSV-2 infection. Furthermore, prophylactic treatment of mice with the biologic immunomodulator Corynebacterium parvum or the synthetic immunomodulators maleic anhydride-divinyl ether or avridine in liposomes resulted in comparable enhancement of resistance in /sup 89/Sr-treated and normal mice. These data indicate that natural and immunomodulator-enhanced resistance of CD-1 mice to microbail infections do not depend on normal levels of Mo, PMN, or NK cells. The resistance enhancement may rely on activated tissue macrophages. In contrast to the early changes in circulating leukocytes, the residenet peritoneal cell populations were not markedly altered until after day 30. There then was a distinct decline in lymphocytes and a gradual decline in activated tissue macrophages.

  7. Fine-scale heat flow, shallow heat sources, and decoupled circulation systems at two sea-floor hydrothermal sites, Middle Valley, northern Juan de Fuca Ridge

    SciTech Connect

    Stein, J.S.; Fisher, A.T.; Langseth, M.; Jin, W.; Iturrino, G.; Davis, E.

    1998-12-01

    Fine-scale heat-flow patterns at two areas of active venting in Middle Valley, a sedimented rift on the northern Juan de Fuca Ridge, provide thermal evidence of shallow hydrothermal reservoirs beneath the vent fields. The extreme variability of heat flow is explained by conductive heating immediately adjacent to vents and shallow circulation within sediments above the reservoir. This secondary circulation is hydrologically separated from the deeper system feeding the vents by a shallow conductive lid within the sediments. A similar separation of shallow and deep circulation may also occur at sediment-free ridge-crest hydrothermal environments.

  8. The scale of hydrothermal circulation of the Iheya-North field inferred from intensive heat flow measurements and ocean drilling

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Kinoshita, M.; Yamamoto, H.; Nakajima, R.; Kumagai, H.; Takai, K.

    2014-12-01

    Iheya-North hydrothermal field situated in the middle Okinawa trough backarc basin is one of the largest ongoing Kuroko deposits in the world. Active chimneys as well as diffuse ventings (maximum fluid temperature 311 °C) have been located and studied in detail through various geological and geophysical surveys. To clarify the spatial scale of the hydrothermal circulation system, intensive heat flow measurements were carried out and ~100 heat flow data in and around the field from 2002 to 2014. In 2010, Integrated Ocean Drilling Program (IODP) Expedition 331 was carried out, and subbottom temperature data were obtained around the hydrothermal sites. During the JAMSTEC R/V Kaiyo cruise, KY14-01 in 2014, Iheya-North "Natsu" and "Aki" hydrothermal fields were newly found. The Iheya-Noth "Natsu" and "Aki" sites are located 1.2 km and 2.6 km south from the Iheya-North original site, respectively, and the maximum venting fluid temperature was 317 °C. We obtained one heat flow data at the "Aki" site. The value was 17 W/m2. Currently, the relationship between these hydrothermal sites are not well known. Three distinct zones are identified by heat flow values within 3 km from the active hydrothermal field. They are high-heat flow zone (>1 W/m2; HHZ), moderate-heat-flow zone (1-0.1 W/m2; MHZ); and low-heat-flow zone (<0.1 W/m2; LHZ). With increasing distance east of the HHZ, heat flow gradually decreases towards MHZ and LHZ. In the LHZ, temperature at 37m below the seafloor (mbsf) was 6 °C, that is consistent with the surface low heat flow suggesting the recharge of seawater. However, between 70 and 90 mbsf, the coarser sediments were cored, and temperature increased from 25 °C to 40°C. The temperature was 905°C at 151 mbsf, which was measured with thermoseal strips. The low thermal gradient in the upper 40 m suggests downward fluid flow. We infer that a hydrothermal circulation in the scale of ~1.5 km horizontal vs. ~a few hundred meters vertical.

  9. Nature of turbulence in wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, Balakumar Jothimohan

    This thesis tackles two distinct issues in wall turbulence: (1) Contributions of large and very-large-scale motions to the turbulent kinetic energy and shear stress at laboratory Reynolds numbers in canonical channel and zero-pressure-gradient boundary layers. (2) The nature of core turbulence in fully transpired channel flows with an imposed side-wall injection length scale. Inside canonical channel flows and zero-pressure-gradient boundary layers (ZPGBLs), a significant portion of the streamwise kinetic energy and shear stress is carried by motions with length scales larger than 2h , where h, is the outer scale of the flow. This behavior is universal and observed in channel, ZPGBL, and pipe flows despite the additional azimuthal symmetries for the growth of structures in pipes. A bimodal distribution of spectra inside the log-layer is interpreted to be the result of a dual effect of hairpin vortex packets and the alignment of packets one behind another. The smaller scales uniformly retard the mean flow throughout while the larger scales retard the flow only in the wake region. In the log-layer, the larger scales begin increasingly to accelerate the flow as the shear stress peak is approached. These trends point to the existence of an equilibrium at the shear-stress peak, where the forces due to large-scale fluctuations that accelerate the flow are balanced by the forces due to small-scale fluctuations that retard the flow. Particle-image velocimetry measurements inside a fully transpired channel flow apparatus with side-wall injection are used to determine the role of side-wall injection length scale on core turbulence. Smaller pore sizes create laminar flow near the head end of the channel while the larger pore sizes induce transition to turbulence at the head end itself. Flow visualization studies are used to identify persistent axial and spanwise vortices in the flow. The vortices swept by the mean velocity affect the injection velocity streamlines that emerge

  10. Research in Natural Laminar Flow and Laminar-Flow Control, part 3

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Part 3 of the Symposium proceedings contains papers addressing advanced airfoil development, flight research experiments, and supersonic transition/laminar flow control research. Specific topics include the design and testing of natural laminar flow (NLF) airfoils, NLF wing gloves, and NLF nacelles; laminar boundary-layer stability over fuselage forebodies; the design of low noise supersonic/hypersonic wind tunnels; and boundary layer instability mechanisms on swept leading edges at supersonic speeds.

  11. Modelling of compositional flow in naturally fractured reservoirs

    SciTech Connect

    Chen, Zhangxin; Douglas, J. Jr.

    1996-12-31

    A double porosity model of multidimensional, multicomponent, three-phase flow in naturally fractured reservoirs is derived first on the basis of physical intuition and then by the mathematical theory of homogenization. A fully compositional model is considered when there are N chemical components, each of which may exist in any or all of the three phases: gas, oil, and water. The equations of the interaction between matrix and fracture systems are obtained from the mass, momentum, and energy balance laws and the entropy condition, and a mechanical potential tensor is introduced to describe the matrix boundary condition. Various types of flow in naturally fractured reservoirs are treated as particular cases of the present techniques.

  12. Midlatitudes precipitation and the global atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Pauluis, O.; Czaja, A.; Korty, R.; Laliberte, F.

    2008-12-01

    The global atmospheric circulation transports energy from the equatorial regions to higher latitudes. Due to the turbulent nature of the flow, describing a 'mean' circulation depends strongly on the averaging method and coordinates system. When averaged in isentropic coordinates, the circulation appears as a single overturning cell with a poleward flow of high entropy air and return flow at lower entropy. However, the entropy of a parcel of moist air is not uniquely defined, and different expression for the entropy yield different mean circulations. Here, the global circulation in the NCEP/NCAR Reanalysis is computed on surfaces of constant potential temperature, or dry isentropes, and on surfaces of constant equivalent potential temperature, or moist isentropes. The two analyses are qualitatively similar but differ quantitatively in that the circulation on moist isentropes is between 1.5 and 3 times larger than the circulation on dry isentropes. It is shown that the additional mass transport on moist isentropes corresponds to a poleward flow of warm, moist air near the Earth's surface that moves from the subtropics into the midlatitudes and rises in the upper troposphere within the stormtracks. In the subtropics, this flow is characterized by a low potential temperature but a much higher equivalent potential temperature. It does not appear in the circulation on dry isentropes, as it is hidden by the presence of a larger equatorward flow of drier air at same potential temperature. However, as the equivalent potential temperature in this low-level poleward flow is close to the potential temperature of the air near the tropopause, it is included in the total circulation on moist isentropes. The thermodynamic properties of this low-level poleward flow indicates that these poleward moving air parcels should ascend into the upper troposphere within the midlatitude stormtracks. Based on these findings, we propose a revised version of the global circulation. We argue that

  13. Assessment of the role of circulating breast cancer cells in tumor formation and metastatic potential using in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Hwu, Derrick; Boutrus, Steven; Greiner, Cherry; Dimeo, Theresa; Kuperwasser, Charlotte; Georgakoudi, Irene

    2011-04-01

    The identification of breast cancer patients who will ultimately progress to metastatic disease is of significant clinical importance. The quantification and assessment of circulating tumor cells (CTCs) has been proposed as one strategy to monitor treatment effectiveness and disease prognosis. However, CTCs have been an elusive population of cells to study because of their small number and difficulties associated with isolation protocols. In vivo flow cytometry (IVFC) can overcome these limitations and provide insights in the role these cells play during primary and metastatic tumor growth. In this study, we used two-color IVFC to examine, for up to ten weeks following orthotopic implantation, changes in the number of circulating human breast cells expressing GFP and a population of circulating hematopoietic cells with strong autofluorescence. We found that the number of detected CTCs in combination with the number of red autofluorescent cells (650 to 690 nm) during the first seven days following implantation was predictive in development of tumor formation and metastasis eight weeks later. These results suggest that the combined detection of these two cell populations could offer a novel approach in the monitoring and prognosis of breast cancer progression, which in turn could aid significantly in their effective treatment.

  14. Modeling of information flows in natural gas storage facility

    NASA Astrophysics Data System (ADS)

    Ranjbari, Leyla; Bahar, Arifah; Aziz, Zainal Abdul

    2013-09-01

    The paper considers the natural-gas storage valuation based on the information-based pricing framework of Brody-Hughston-Macrina (BHM). As opposed to many studies which the associated filtration is considered pre-specified, this work tries to construct the filtration in terms of the information provided to the market. The value of the storage is given by the sum of the discounted expectations of the cash flows under risk-neutral measure, conditional to the constructed filtration with the Brownian bridge noise term. In order to model the flow of information about the cash flows, we assume the existence of a fixed pricing kernel with liquid, homogenous and incomplete market without arbitrage.

  15. Numerical Studies on an Active Flow Circulation Controlled Flap Concept for Aeronautical Applications

    NASA Astrophysics Data System (ADS)

    Zacharos, Athanasios; Kontis, Konstantinos

    Four different circulation controlled airfoils have been numerically simulated. The baseline airfoil was a 17% thick supercritical airfoil. Different blowing rates have been examined by adjusting the slot height and blowing velocity. A number of turbulence models were employed, these were: Spalart-Allmaras, standard κ ɛ, realizable κ ɛ, SST κ ω and Reynolds stress model. The results from the numerical simulations were compared with experimental data at zero angle of attack. The solutions indicated that at momentum coefficients, Cμ=0.1 or greater, all isotropic turbulence models failed to capture the physics of the circulation control problem. The Reynolds stress model captured successfully the physics at Cμ=0.1. At greater values of momentum coefficient, the Reynolds stress model also failed to predict the experimentally measured lift coefficients because the jet remained attached to the surface of the airfoil. The Spalart-Allmaras model consistently predicted the right trend for lift variation with Cμ in all cases tested.

  16. The Essential Role of Circulating Thyroglobulin in Maintaining Dominance of Natural Regulatory T Cell Function to Prevent Autoimmune Thyroiditis.

    PubMed

    Kong, Y M; Brown, N K; Morris, G P; Flynn, J C

    2015-09-01

    Several key findings from the late 1960s to mid-1970s regarding thyroid hormone metabolism and circulating thyroglobulin composition converged with studies pertaining to the role of T lymphocytes in autoimmune thyroiditis. These studies cemented the foundation for subsequent investigations into the existence and antigenic specificity of thymus-derived natural regulatory T cells (nTregs). These nTregs prevented the development of autoimmune thyroiditis, despite the ever-present genetic predisposition, autoantigen (thyroglobulin), and thyroglobulin-reactive T cells. Guided by the hypothalamus-pituitary-thyroid axis as a fixed set-point regulator in thyroid hormone metabolism, we used a murine model and compared at key junctures the capacity of circulating thyroglobulin level (raised by thyroid-stimulating hormone or exogenous thyroglobulin administration) to strengthen self-tolerance and resist autoimmune thyroiditis. The findings clearly demonstrated an essential role for raised circulating thyroglobulin levels in maintaining the dominance of nTreg function and inhibiting thyroid autoimmunity. Subsequent identification of thyroglobulin-specific nTregs as CD4(+)CD25(+)Foxp3(+) in the early 2000s enabled the examination of probable mechanisms of nTreg function. We observed that whenever nTreg function was perturbed by immunotherapeutic measures, opportunistic autoimmune disorders invariably surfaced. This review highlights the step-wise progression of applying insights from endocrinologic and immunologic studies to advance our understanding of the clonal balance between natural regulatory and autoreactive T cells. Moreover, we focus on how tilting the balance in favor of maintaining peripheral tolerance could be achieved. Thus, murine autoimmune thyroiditis has served as a unique model capable of closely simulating natural physiologic conditions. PMID:26158397

  17. A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells.

    PubMed

    Murlidhar, Vasudha; Zeinali, Mina; Grabauskiene, Svetlana; Ghannad-Rezaie, Mostafa; Wicha, Max S; Simeone, Diane M; Ramnath, Nithya; Reddy, Rishindra M; Nagrath, Sunitha

    2014-12-10

    Circulating tumor cells (CTCs) are believed to play an important role in metastasis, a process responsible for the majority of cancer-related deaths. But their rarity in the bloodstream makes microfluidic isolation complex and time-consuming. Additionally the low processing speeds can be a hindrance to obtaining higher yields of CTCs, limiting their potential use as biomarkers for early diagnosis. Here, a high throughput microfluidic technology, the OncoBean Chip, is reported. It employs radial flow that introduces a varying shear profile across the device, enabling efficient cell capture by affinity at high flow rates. The recovery from whole blood is validated with cancer cell lines H1650 and MCF7, achieving a mean efficiency >80% at a throughput of 10 mL h(-1) in contrast to a flow rate of 1 mL h(-1) standardly reported with other microfluidic devices. Cells are recovered with a viability rate of 93% at these high speeds, increasing the ability to use captured CTCs for downstream analysis. Broad clinical application is demonstrated using comparable flow rates from blood specimens obtained from breast, pancreatic, and lung cancer patients. Comparable CTC numbers are recovered in all the samples at the two flow rates, demonstrating the ability of the technology to perform at high throughputs. PMID:25074448

  18. [APPLICATION OF FLOW CYTOMETRY FOR THE ANALYSIS OF CIRCULATING HEMOCYTE POPULATIONS IN THE ASCIDIAN HALOCYNTHIA AURANTIUM (PALLAS, 1787)].

    PubMed

    Sukhachev, A N; Dyachkov, I S; Kudryavtsev, I V; Kumeiko, V V; Tsybulskiy, A V; Polevshchikov, A V

    2015-01-01

    This study addresses the potentialities of flow cytometry in analyzing the composition of circulating hemocyte populations in the ascidian Halocynthia aurantium (Pallas, 1787) both using monoclonal antibodies (mAbs) against some human leukocyte conservative adhesion molecules and without mAbs. Flow cytometry, based on the assessment of forward and side scattering revealed five hemocyte populations. From the wide panel of antibodies against human leukocyte adhesion molecules (CD15, CD29, CD34, CD54, CD62L, CD62P, CD90, CD94, CD117, CD 166), only two mAbs (against CD54, CD90) displayed cross-reactivity with the H. aurantium hemocyte surface antigens. Distribution patterns of these antigens across the hemocyte populations have been analyzed. PMID:26281224

  19. Application of digital holographic interferometry to pressure measurements of symmetric, supercritical and circulation-control airfoils in transonic flow fields

    NASA Technical Reports Server (NTRS)

    Torres, Francisco J.

    1987-01-01

    Six airfoil interferograms were evaluated using a semiautomatic image-processor system which digitizes, segments, and extracts the fringe coordinates along a polygonal line. The resulting fringe order function was converted into density and pressure distributions and a comparison was made with pressure transducer data at the same wind tunnel test conditions. Three airfoil shapes were used in the evaluation to test the capabilities of the image processor with a variety of flows. Symmetric, supercritical, and circulation-control airfoil interferograms provided fringe patterns with shocks, separated flows, and high-pressure regions for evaluation. Regions along the polygon line with very clear fringe patterns yielded results within 1% of transducer measurements, while poorer quality regions, particularly near the leading and trailing edges, yielded results that were not as good.

  20. Flow Measurements through natural and degraded regions of the Everglades

    NASA Astrophysics Data System (ADS)

    Variano, E. A.; Engel, V.; Schmieder, P.; Reid, M.; Ho, D. T.

    2007-12-01

    The $8 Billion Comprehensive Everglades Restoration Plan (CERP) will attempt to preserve the ecological richness of the Everglades, a unique "river of grass" and UNESCO world heritage site. However, the natural flow conditions in the Everglades are complex and poorly understood. A better understanding of flow dynamics is important not only as a target for restoration designs, but also to elucidate the mechanisms by which ridge and slough structures (low elevation land and shallow channels, respectively) are maintained by the flow. Current hypotheses include direct transport of sediment or the effects of nutrient transport on soil chemistry. We perform a set of tracer releases using Sulfur Hexafluoride (SF6) to examine these hypotheses, as well as provide information of immediate utility for any possible restoration plans in the South Florida Water Management District's WCA-3A. SF6 tracer releases offer the ability to both visualize and quantify the flow dynamics over a large area (roughly 30 ha). We measure SF6 levels to high accuracy using a uniquely rugged and portable gas extraction and chromatography unit. Using these techniques, we compare the flow in an area with relatively little degradation with areas both upstream and downstream of a typical canal/levee obstruction.

  1. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.

    SciTech Connect

    Moisseytsev, A.; Sienicki, J. J.

    2007-03-08

    STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal

  2. Tidal-flow, circulation, and flushing characteristics of Kings Bay, Citrus County, Florida

    USGS Publications Warehouse

    Hammett, K.M.; Goodwin, C.R.; Sanders, G.L.

    1996-01-01

    Kings Bay is an estuary on the gulf coast of peninsular Florida with a surface area of less than one square mile. It is a unique estuarine system with no significant inflowing rivers or streams. As much as 99 percent of the freshwater entering the bay originates from multiple spring vents at the bottom of the estuary. The circulation and flushing characteristics of Kings Bay were evaluated by applying SIMSYS2D, a two-dimensional numerical model. Field data were used to calibrate and verify the model. Lagrangian particle simulations were used to determine the circulation characteristics for three hydrologic conditions: low inflow, typical inflow, and low inflow with reduced friction from aquatic vegetation. Spring discharge transported the particles from Kings Bay through Crystal River and out of the model domain. Tidal effects added an oscillatory component to the particle paths. The mean particle residence time was 59 hours for low inflow with reduced friction; therefore, particle residence time is affected more by spring discharge than by bottom friction. Circulation patterns were virtually identical for the three simulated hydroloigc conditions. Simulated particles introduced in the southern part of Kings Bay traveled along the eastern side of Buzzard Island before entering Crystal River and existing the model domain. The flushing characteristics of Kings Bay for the three hydrodynamic conditions were determined by simulating the injection of conservative dye constituents. The average concentration of dye initially injected in Kings Bay decreased asymptotically because of spring discharge, and the tide caused some oscillation in the average dye concentration. Ninety-five percent of the injected dye exited Kings Bay and Crystal River with 94 hours for low inflow, 71 hours for typical inflow, and 94 hours for low inflow with reduced bottom friction. Simulation results indicate that all of the open waters of Kings Bay are flushed by the spring discharge. Reduced

  3. Particle filter based on thermophoretic deposition from natural convection flow

    SciTech Connect

    Sasse, A.G.B.M.; Nazaroff, W.W. ); Gadgil, A.J. )

    1994-04-01

    We present an analysis of particle migration in a natural convection flow between parallel plates and within the annulus of concentric tubes. The flow channel is vertically oriented with one surface maintained at a higher temperature than the other. Particle migration is dominated by advection in the vertical direction and thermophoresis in the horizontal direction. From scale analysis it is demonstrated that particles are completely removed from air flowing through the channel if its length exceeds L[sub c] = (b[sup 4]g/24K[nu][sup 2]), where b is the width of the channel, g is the acceleration of gravity, K is a thermophoretic coefficient of order 0.5, and [nu] is the kinematic viscosity of air. Precise predictions of particle removal efficiency as a function of system parameters are obtained by numerical solution of the governing equations. Based on the model results, it appears feasible to develop a practical filter for removing smoke particles from a smoldering cigarette in an ashtray by using natural convection in combination with thermophoresis. 22 refs., 8 figs., 1 tab.

  4. Characterization of fluid flow in naturally fractured reservoirs. Final report

    SciTech Connect

    Evans, R.D.

    1981-08-01

    This report summarizes the results of a four month study of the characteristics of multiphase flow in naturally fractured porous media. An assessment and evaluation of the literature was carried out and a comprehensive list of references compiled on the subject. Mathematical models presented in the various references cited were evaluated along with the stated assumptions or those inherent in the equations. Particular attention was focused upon identifying unique approaches which would lead to the formulation of a general mathematical model of multiphase/multi-component flow in fractured porous media. A model is presented which may be used to more accurately predict the movement of multi-phase fluids through such type formations. Equations of motion are derived for a multiphase/multicomponent fluid which is flowing through a double porosity, double permeability medium consisting of isotropic primary rock matrix blocks and an anisotropic fracture matrix system. The fractures are assumed to have a general statistical distribution in space and orientation. A general distribution function, called the fracture matrix function is introduced to represent the statistical nature of the fractures.

  5. Research in natural laminar flow and laminar-flow control, part 1

    SciTech Connect

    Hefner, J.N.; Sabo, F.E.

    1987-12-01

    Since the mid 1970's, NASA, industry, and universities have worked together to conduct important research focused at developing laminar flow technology that could reduce fuel consumption for general aviation, commuter, and transport aircraft by as much as 40 to 50 percent. The symposium was planned in view of the recent accomplishments within the areas of laminar flow control and natural laminar flow, and the potential benefits of laminar flow technology to the civil and military aircraft communities in the United States. Included were technical sessions on advanced theory and design tool development; wind tunnel and flight research; transition measurement and detection techniques; low and high Reynolds number research; and subsonic and supersonic research.

  6. Research in Natural Laminar Flow and Laminar-Flow Control, part 1

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Since the mid 1970's, NASA, industry, and universities have worked together to conduct important research focused at developing laminar flow technology that could reduce fuel consumption for general aviation, commuter, and transport aircraft by as much as 40 to 50 percent. The symposium was planned in view of the recent accomplishments within the areas of laminar flow control and natural laminar flow, and the potential benefits of laminar flow technology to the civil and military aircraft communities in the United States. Included were technical sessions on advanced theory and design tool development; wind tunnel and flight research; transition measurement and detection techniques; low and high Reynolds number research; and subsonic and supersonic research.

  7. Investigation of gas–solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-09-01

    The hydrodynamics of gas–solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s‑1 to 3.0 m s‑1 with a step of 0.2 m s‑1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas–solids bubbling flows.

  8. The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell Aggregation in Extracorporeal Circulation

    PubMed Central

    Ahn, Chi Bum; Kang, Yang Jun; Kim, Myoung Gon; Yang, Sung; Lim, Choon Hak; Son, Ho Sung; Kim, Ji Sung; Lee, So Young; Son, Kuk Hui; Sun, Kyung

    2016-01-01

    Background Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Methods Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous O2 saturation, and lactate were measured. Results The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. Conclusion After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow. PMID:27298790

  9. Natural variability of the climate as predicted by a simple ocean model with parameterized thermohaline circulation

    SciTech Connect

    Watts, R.G.; Li, S.

    1995-12-31

    Variability of the Earth`s climate can take place on many time scales as a result of internal features. This natural variability is important to humans since it affects such important human enterprises as agriculture, floods, droughts, etc. The authors investigate natural variability within a simple ocean model.

  10. Langmuir circulation driving sediment entrainment into newly formed ice: Tank experiment results with application to nature (Lake Hattie, United States; Kara Sea, Siberia)

    NASA Astrophysics Data System (ADS)

    Dethleff, Dirk; Kempema, E. W.

    2007-02-01

    Langmuir circulation (Lc) was generated under freezing conditions in saltwater tank experiments through surface wind stress and cross-waves interacting with subsurface return flow. Fine-grained sediments distributed in the tank prior to frazil crystal formation were aligned in parallel streaks in Lc bottom convergence zones. Downwelling at Lc surface convergence zones aligned floating frazil in wind-parallel rows, and individual crystals rotated on helical paths down to the tank bottom and up again to the surface. The crystals interacted with suspended particles in the water column, and with sediment on the tank bottom, preferentially collecting fine-grained particles and enhancing their entrainment into new ice. Evidence includes higher sediment concentrations in ice and ice-interstitial water (ice pore water) as compared to the tank water. Both tank ice and ice interstitial water contain more silt-sized particles than tank water suspension load and tank bottom sediment. Sand is reduced in the ice, and clay is about the same concentration in all samples. This points to preferential entrainment of fine particles in newly formed ice supported by Lc-driven circulation. Comparable results of Lc-supported ice particle entrainment were found in Lake Hattie. Comparison of ice sediment from tank experiments run with Kara Sea material to ice particles from the natural Kara setting showed both types of ice sediment have very similar grain size distributions and mineralogical compositions. Results from experiments and nature help to better understand the potentially Lc-driven entrainment of sediment into ice formed in shallow freezing waters.

  11. Determination of natural killer cell function by flow cytometry.

    PubMed Central

    Kane, K L; Ashton, F A; Schmitz, J L; Folds, J D

    1996-01-01

    Natural killer cells (NK cells) are a subset of peripheral blood lymphocytes that mediate non-major histocompatibility complex-restricted cytotoxicity of foreign target cells. The "gold standard" assay for NK cell activity has been the chromium release assay. This method is not easily performed in the clinical laboratory because of difficulties with disposal of radioactive and hazardous materials, short reagent half-lives, expense, and difficulties with assay standardization. We describe a flow cytometric assay for the clinical measurement of NK cell activity. This study compared the chromium release assay and the flow cytometric assay by using clinically relevant specimens. There were no significant differences between the two assays in the measurement of lytic activity for 17 peripheral blood specimens or in reproducibility in repeated samplings of healthy individuals. We also established a normal range of values for NK activity in healthy adults and identified a small cluster of individuals who have exceptionally high or low levels of NK activity. The flow cytometric assay was validated by testing specimens from subjects expected to have abnormally low levels of NK activity (pregnant women) and specimens from healthy individuals in whom the activity of NK cells was enhanced by exposure to interleukin-2 or alpha interferon. Treatment with these agents was associated with a significant increase in NK activity. These results confirm and extend those of others, showing that the flow cytometric assay is a viable alternative to the chromium release assay for measuring NK cell activity. PMID:8705672

  12. Topological analysis of a mixing flow generated by natural convection

    NASA Astrophysics Data System (ADS)

    Contreras, Pablo Sebastián; de la Cruz, Luis Miguel; Ramos, Eduardo

    2016-01-01

    We use topological tools to describe the natural convective motion and the Lagrangian trajectories of a flow generated by stepwise, alternating heating and cooling protocol of opposite vertical walls of a cubic container. The working fluid considered is Newtonian and the system is in presence of the acceleration of gravity but the nonlinear terms are neglected, i.e., we study the piece-wise steady and linear problem. For this convective mixing flow, we identify invariant surfaces formed by the Lagrangian orbits of massless tracers that are topologically equivalent to spherical shells and period-1 lines with elliptic and hyperbolic segments that are located on symmetry planes. We describe the previous features as functions of the Rayleigh number in the range 3 × 104 ≤ Ra ≤ 5 × 105. We show that this system shares properties with other systems with non-toroidal invariant surfaces.

  13. High-flaps for natural laminar flow airfoils

    NASA Technical Reports Server (NTRS)

    Morgan, Harry L.

    1986-01-01

    A review of the NACA and NASA low-drag airfoil research is presented with particular emphasis given to the development of mechanical high-lift flap systems and their application to general aviation aircraft. These flap systems include split, plain, single-slotted, and double-slotted trailing-edge flaps plus slat and Krueger leading-edge devices. The recently developed continuous variable-camber high-lift mechanism is also described. The state-of-the-art of theoretical methods for the design and analysis of multi-component airfoils in two-dimensional subsonic flow is discussed, and a detailed description of the Langley MCARF (Multi-Component Airfoil Analysis Program) computer code is presented. The results of a recent effort to design a single- and double-slotted flap system for the NASA high speed natural laminar flow (HSNLF) (1)-0213 airfoil using the MCARF code are presented to demonstrate the capabilities and limitations of the code.

  14. Inferring network flows from incomplete information with application to natural gas flows. [State-to-state natural gas flows in 1974-77

    SciTech Connect

    Hooker, J.N.

    1980-02-01

    A method is detailed for estimating flows along arcs (edges or links) of a network, such as a transportation network, when the total outflow and total inflow at each node (vertex) are known. It proves the optimality of a greedy method of choosing flows for independent estimation so as to determine the other flows, and does so by exploiting an underlying matroid structure. The resulting problem is formulated both as a linear program and a multi-commodity flow problem, and sensitivity analysis is performed. The technique is applied to the estimation of US state-to-state natural gas flows in the years 1974 to 1977, and numerical results are presented; 1974 and 1975 results are checked against actual data. The potential application of the same technique to the estimation of disaggregate data (of any kind), when aggregate and some disaggregate data are known, is pointed out.

  15. On the North Atlantic circulation

    SciTech Connect

    Schmitz, W.J. Jr.; McCartney, M.S. )

    1993-02-01

    A summary for North Atlantic circulation is proposed to replace the circulation scheme hypothesized by Worthington in 1976. Divergences from the previous model are in thermohaline circulation, cross-equatorical transport and Florida Current sources, flow in the eastern Atlantic, circulation in the Newfoundland Basin, slope water currents, and flow pattern near the Bahamas. The circulation patterns presented here are consistent with the majority of of published accounts of flow components. 77 refs., 14 figs., 3 tabs.

  16. Manufacturing tolerances for natural laminar flow airframe surfaces

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Obara, C. J.; Martin, G. L.; Domack, C. S.

    1985-01-01

    Published aircraft surface waviness and boundary layer transition measurements imply that currently achievable low levels of surface waviness are compatible with the natural laminar flow (NLF) requirements of business and commuter aircraft, in the cases of both metallic and composite material airframes. The primary challenge to the manufacture of NLF-compatible surfaces is two-dimensional roughness in the form of steps and gaps at structural joints. Attention is presently given to recent NASA investigations of manufacturing tolerance requirements for NLF surfaces, including flight experiment results.

  17. THE LIQUID NITROGEN SYSTEM FOR CHAMBER A; A CHANGE FROM ORIGINAL FORCED FLOW DESIGN TO A NATURAL FLOW (THERMO SIPHON) SYSTEM

    SciTech Connect

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Creel, J.; Arenius, D.; Garcia, S.

    2010-04-09

    NASA at the Johnson Space Center (JSC) in Houston is presently working toward modifying the original forced flow liquid nitrogen cooling system for the thermal shield in the space simulation chamber-A in Building 32 to work as a natural flow (thermo siphon) system. Chamber A is 19.8 m (65 ft) in diameter and 35.66 m (117 ft) high. The LN{sub 2} shroud environment within the chamber is approximately 17.4 m (57 ft) in diameter and 28 m (92 ft) high. The new thermo siphon system will improve the reliability, stability of the system. Also it will reduce the operating temperature and the liquid nitrogen use to operate the system. This paper will present the requirements for the various operating modes. System level thermodynamic comparisons of the existing system to the various options studied and the final option selected will be outlined. A thermal and hydraulic analysis to validate the selected option for the conversion of the current forced flow to natural flow design will be discussed. The proposed modifications to existing system to convert to natural circulation (thermo siphon) system and the design features to help improve the operations, and maintenance of the system will be presented.

  18. THE LIQUID NITROGEN SYSTEM FOR CHAMBER A; A CHANGE FROM ORIGINAL FORCED FLOW DESIGN TO A NATURAL FLOW (THERMO SIPHON) SYSTEM

    SciTech Connect

    J. Homan, M. Montz, V. Ganni, A. Sidi-Yekhlef, P. Knudsen, J. Creel, D. Arenius, and S. Garcia

    2010-04-01

    NASA at the Johnson Space Center (JSC) in Houston is presently working toward modifying the original forced flow liquid nitrogen cooling system for the thermal shield in the space simulation chamber-A in Building 32 to work as a natural flow (thermo siphon) system. Chamber A is 19.8 m (65 ft) in diameter and 35.66 m (117 ft) high. The LN2 shroud environment within the chamber is approximately 17.4 m (57 ft) in diameter and 28 m (92 ft) high. The new thermo siphon system will improve the reliability, stability of the system. Also it will reduce the operating temperature and the liquid nitrogen use to operate the system. This paper will present the requirements for the various operating modes. System level thermodynamic comparisons of the existing system to the various options studied and the final option selected will be outlined. A thermal and hydraulic analysis to validate the selected option for the conversion of the current forced flow to natural flow design will be discussed. The proposed modifications to existing system to convert to natural circulation (thermo siphon) system and the design features to help improve the operations, and maintenance of the system will be presented.

  19. The effects of sleep on circulating catecholamines and aqueous flow in human subjects.

    PubMed

    Maus, T L; McLaren, J W; Shepard, J W; Brubaker, R F

    1996-04-01

    We measured the rate of aqueous flow and analysed its relation to the time of day, the state of wakefulness and the urinary excretion of catecholamines. Two groups of subjects were studied. One group comprised 20 normal subjects who were studied over two 22-hr periods. During one period, the subjects were permitted to sleep during their customary hours of sleep; during the other, they were not permitted to sleep, but remained active for all 22 hr. The other group comprised ten subjects with obstructive sleep apnea who were studied over a 22-hr period and slept during their customary hours of sleep but without the aid of any respiratory device. Aqueous flow was measured with fluorophotometry. Motion of the wrist was monitored by a seismograph (wrist Actigraph) and served as a surrogate of activity and wakefulness. Urinary catecholamine excretion was measured during different periods of the wake/sleep cycle. Both groups exhibited the normal nocturnal suppression of flow (59% lower compared to morning in the normal group; 56% lower compared to morning in the apneic group). During sleep deprivation, the rate of flow at night in normal subjects was 30% lower than during the morning (P < 0.001) and 60% higher than during sleep (P < 0.001). Lid closure during sleep deprivation had no effect on the results. Aqueous flow correlated with a 'catecholamine index', derived from the combined excretion of epinephrine and norepinephrine. Flow also correlated with an 'activity index', and 'sleep efficiency', indices derived from motion of the wrist. We conclude that the day-night difference of aqueous humor flow as measured by clearance of fluorescein from the human eye is driven partly by a factor that has a circadian rhythm and partly by a factor that depends on the activity of the subject. We hypothesize that these factors are the catecholamines, epinephrine and norepinephrine. PMID:8795453

  20. Initial Acute Animal Experiment Using a New Miniature Axial Flow Pump in Series With the Natural Heart.

    PubMed

    Okamoto, Eiji; Yano, Tetsuya; Shiraishi, Yasuyuki; Miura, Hidekazu; Yambe, Tomoyuki; Mitamura, Yoshinori

    2015-08-01

    We have advocated an axial flow blood pump called "valvo pump" that is implanted at the aortic valve position, and we have developed axial flow blood pumps to realize the concept of the valvo pump. The latest model of the axial flow blood pump mainly consists of a stator, a directly driven impeller, and a hydrodynamic bearing. The axial flow blood pump has a diameter of 33 mm and length of 74 mm, and the length of anatomical occupation is 33 mm. The axial flow blood pump is anastomosed to the aorta with polytetrafluoroethylene (PTFE) cuffs worn on the inflow and outflow ports. Dp-Q curves of the axial flow blood pump are flatter than those of ordinary axial flow pumps, and pump outflow of 5 L/min was obtained against a pressure difference of 50 mm Hg at a rotational speed of 9000 rpm in vitro. The axial flow blood pump was installed in a goat by anastomosing with the thoracic descending aorta using PTFE cuffs, and it was rotated at a rotational speed of 8000 rpm. Unlike in case of the ventricular assistance in parallel with the natural heart, pulsatilities of aortic pressure and aortic flow were preserved even when the pump was on, and mean aortic flow was increased by 1.5 L/min with increase in mean aortic pressure of 30 mm Hg. In conclusion, circulatory assistance in series with the natural heart using the axial flow blood pump was able to improve hemodynamic pulsatility, and it would contribute to improvement of end-organ circulation. . PMID:26234449

  1. Paleofluid-flow circulation within a Triassic rift basin: Evidence from oil inclusions and thermal histories

    USGS Publications Warehouse

    Tseng, H.-Y.; Burruss, R.C.; Onstott, T.C.; Omar, G.

    1999-01-01

    The migration of subsurface fluid flow within continental rift basins has been increasingly recognized to significantly affect the thermal history of sediments and petroleum formation. To gain insight into these paleofluid flow effects, the thermal history of the Taylorsville basin in Virginia was reconstructed from fluid-inclusion studies, apatite fission-track data, and vitrinite reflectance data. Models of thermal history indicate that the basin was buried to the thermal maximum at 200 Ma; a cooling event followed during which the eastern side of the basin cooled earlier and faster than the western side, suggesting that there was a differential uplift and topographically driven fluid flow. This hypothesis is supported by analyses of secondary oil and aqueous inclusions trapped in calcite and quartz veins during the uplift stage. Gas chromatograms of inclusion oils exhibit variable but extensive depletion of light molecular-weight hydrocarbons. The relative abundance of n-alkanes, petrographic observations, and the geological data indicate that the alteration process on these inclusion oils was probably neither phase separation nor biodegradation, but water washing. Water:oil ratios necessary to produce the observed alteration are much greater than 10000:1. These exceedingly high ratios are consistent with the migration of inclusion oils along with fluid flow during the early stages of basin evolution. The results provide significant evidence about the role of a subsurface flow system in modifying the temperature structure of the basin and the composition of petroleum generated within the basin.

  2. Circulation of Coxiella burnetii in a Naturally Infected Flock of Dairy Sheep: Shedding Dynamics, Environmental Contamination, and Genotype Diversity

    PubMed Central

    Joulié, A.; Laroucau, K.; Bailly, X.; Prigent, M.; Gasqui, P.; Lepetitcolin, E.; Blanchard, B.; Rousset, E.; Sidi-Boumedine, K.

    2015-01-01

    Q fever is a worldwide zoonosis caused by Coxiella burnetii. Domestic ruminants are considered to be the main reservoir. Sheep, in particular, may frequently cause outbreaks in humans. Because within-flock circulation data are essential to implementing optimal management strategies, we performed a follow-up study of a naturally infected flock of dairy sheep. We aimed to (i) describe C. burnetii shedding dynamics by sampling vaginal mucus, feces, and milk, (ii) assess circulating strain diversity, and (iii) quantify barn environmental contamination. For 8 months, we sampled vaginal mucus and feces every 3 weeks from aborting and nonaborting ewes (n = 11 and n = 26, respectively); for lactating females, milk was obtained as well. We also sampled vaginal mucus from nine ewe lambs. Dust and air samples were collected every 3 and 6 weeks, respectively. All samples were screened using real-time PCR, and strongly positive samples were further analyzed using quantitative PCR. Vaginal and fecal samples with sufficient bacterial burdens were then genotyped by multiple-locus variable-number tandem-repeat analysis (MLVA) using 17 markers. C. burnetii burdens were higher in vaginal mucus and feces than in milk, and they peaked in the first 3 weeks postabortion or postpartum. Primiparous females and aborting females tended to shed C. burnetii longer and have higher bacterial burdens than nonaborting and multiparous females. Six genotype clusters were identified; they were independent of abortion status, and within-individual genotype diversity was observed. C. burnetii was also detected in air and dust samples. Further studies should determine whether the within-flock circulation dynamics observed here are generalizable. PMID:26253679

  3. Circulation of Coxiella burnetii in a Naturally Infected Flock of Dairy Sheep: Shedding Dynamics, Environmental Contamination, and Genotype Diversity.

    PubMed

    Joulié, A; Laroucau, K; Bailly, X; Prigent, M; Gasqui, P; Lepetitcolin, E; Blanchard, B; Rousset, E; Sidi-Boumedine, K; Jourdain, E

    2015-10-01

    Q fever is a worldwide zoonosis caused by Coxiella burnetii. Domestic ruminants are considered to be the main reservoir. Sheep, in particular, may frequently cause outbreaks in humans. Because within-flock circulation data are essential to implementing optimal management strategies, we performed a follow-up study of a naturally infected flock of dairy sheep. We aimed to (i) describe C. burnetii shedding dynamics by sampling vaginal mucus, feces, and milk, (ii) assess circulating strain diversity, and (iii) quantify barn environmental contamination. For 8 months, we sampled vaginal mucus and feces every 3 weeks from aborting and nonaborting ewes (n=11 and n=26, respectively); for lactating females, milk was obtained as well. We also sampled vaginal mucus from nine ewe lambs. Dust and air samples were collected every 3 and 6 weeks, respectively. All samples were screened using real-time PCR, and strongly positive samples were further analyzed using quantitative PCR. Vaginal and fecal samples with sufficient bacterial burdens were then genotyped by multiple-locus variable-number tandem-repeat analysis (MLVA) using 17 markers. C. burnetii burdens were higher in vaginal mucus and feces than in milk, and they peaked in the first 3 weeks postabortion or postpartum. Primiparous females and aborting females tended to shed C. burnetii longer and have higher bacterial burdens than nonaborting and multiparous females. Six genotype clusters were identified; they were independent of abortion status, and within-individual genotype diversity was observed. C. burnetii was also detected in air and dust samples. Further studies should determine whether the within-flock circulation dynamics observed here are generalizable. PMID:26253679

  4. Conjugate natural convection flow over a vertical surface with radiation

    NASA Astrophysics Data System (ADS)

    Siddiqa, Sadia; Hossain, Md. Anwar; Gorla, Rama Subba Reddy

    2016-06-01

    Numerical study of conjugate natural convection flow over a finite vertical surface with radiation is reported in this article. Rosseland diffusion approximation is used to express the radiative heat flux term. The governing boundary-layer equations are made dimensionless by means of a suitable form of non-similarity transformation. These equations are obtained in three regimes: (1) upstream (when ξ → 0), (2) downstream (when ξ → ∞ ) and (3) entire regime and are solved numerically. The solutions in the upstream and downstream regimes are obtained via shooting method whereas two-point implicit finite difference method is used to get the solutions for the entire regime. It is seen that asymptotic solutions give accurate results when compared with the numerical solution of the entire regime. The results indicate that the flow field and the temperature distributions are greatly influenced by thermal radiation parameter , R_d, surface temperature parameter, θ _w and Prandtl number Pr. It is established from the analysis that recirculation occurs in the flow specifically for R_d=1.5.

  5. Special session: computational predictability of natural convection flows in enclosures

    SciTech Connect

    Christon, M A; Gresho, P M; Sutton, S B

    2000-08-14

    Modern thermal design practices often rely on a ''predictive'' simulation capability--although predictability is rarely quantified and often difficult to confidently achieve in practice. The computational predictability of natural convection in enclosures is a significant issue for many industrial thermal design problems. One example of this is the design for mitigation of optical distortion due to buoyancy-driven flow in large-scale laser systems. In many instances the sensitivity of buoyancy-driven enclosure flows can be linked to the presence of multiple bifurcation points that yield laminar thermal convective processes that transition from steady to various modes of unsteady flow. This behavior is brought to light by a problem as ''simple'' as a differentially-heated tall rectangular cavity (8:1 height/width aspect ratio) filled with a Boussinesq fluid with Pr = 0.71--which defines, at least partially, the focus of this special session. For our purposes, the differentially-heated cavity provides a virtual fluid dynamics laboratory.

  6. The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations

    NASA Astrophysics Data System (ADS)

    Cauquoin, A.; Jean-Baptiste, P.; Risi, C.; Fourré, É.; Stenni, B.; Landais, A.

    2015-10-01

    The description of the hydrological cycle in Atmospheric General Circulation Models (GCMs) can be validated using water isotopes as tracers. Many GCMs now simulate the movement of the stable isotopes of water, but here we present the first GCM simulations modelling the content of natural tritium in water. These simulations were obtained using a version of the LMDZ General Circulation Model enhanced by water isotopes diagnostics, LMDZ-iso. To avoid tritium generated by nuclear bomb testing, the simulations have been evaluated against a compilation of published tritium datasets dating from before 1950, or measured recently. LMDZ-iso correctly captures the observed tritium enrichment in precipitation as oceanic air moves inland (the so-called continental effect) and the observed north-south variations due to the latitudinal dependency of the cosmogenic tritium production rate. The seasonal variability, linked to the stratospheric intrusions of air masses with higher tritium content into the troposphere, is correctly reproduced for Antarctica with a maximum in winter. LMDZ-iso reproduces the spring maximum of tritium over Europe, but underestimates it and produces a peak in winter that is not apparent in the data. This implementation of tritium in a GCM promises to provide a better constraint on: (1) the intrusions and transport of air masses from the stratosphere, and (2) the dynamics of the modelled water cycle. The method complements the existing approach of using stable water isotopes.

  7. Isolation of circulating tumor cells using photoacoustic flowmetry and two phase flow

    NASA Astrophysics Data System (ADS)

    O'Brien, Christine M.; Rood, Kyle D.; Gupta, Sagar K.; Mosley, Jeffrey D.; Goldschmidt, Benjamin S.; Sharma, Nikhilesh; Sengupta, Shramik; Viator, John A.

    2011-03-01

    Melanoma is the deadliest form of skin cancer, yet current diagnostic methods are inadequately sensitive. Patients must wait until secondary tumors form before malignancy can be diagnosed and treatment prescribed. Detection of cells that have broken off the original tumor and flow through the blood or lymph system can provide data for diagnosing and monitoring cancer. Our group utilizes the photoacoustic effect to detect metastatic melanoma cells, which contain the pigmented granule melanin. As a rapid laser pulse irradiates melanoma, the melanin undergoes thermo-elastic expansion and ultimately creates a photoacoustic wave. Thus, melanoma patient's blood samples can be enriched, leaving the melanoma in a white blood cell (WBC) suspension. Irradiated melanoma cells produce photoacoustic waves, which are detected with a piezoelectric transducer, while the optically transparent WBCs create no signals. Here we report an isolation scheme utilizing two-phase flow to separate detected melanoma from the suspension. By introducing two immiscible fluids through a t-junction into one flow path, the analytes are compartmentalized. Therefore, the slug in which the melanoma cell is located can be identified and extracted from the system. Two-phase immiscible flow is a label free technique, and could be used for other types of pathological analytes.

  8. Capture of circulating tumor cells using photoacoustic flowmetry and two phase flow

    PubMed Central

    O’Brien, Christine M.; Rood, Kyle D.; Bhattacharyya, Kiran; DeSouza, Thiago; Sengupta, Shramik; Gupta, Sagar K.; Mosley, Jeffrey D.; Goldschmidt, Benjamin S.; Sharma, Nikhilesh

    2012-01-01

    Abstract. Melanoma is the deadliest form of skin cancer, yet current diagnostic methods are unable to detect early onset of metastatic disease. Patients must wait until macroscopic secondary tumors form before malignancy can be diagnosed and treatment prescribed. Detection of cells that have broken off the original tumor and travel through the blood or lymph system can provide data for diagnosing and monitoring metastatic disease. By irradiating enriched blood samples spiked with cultured melanoma cells with nanosecond duration laser light, we induced photoacoustic responses in the pigmented cells. Thus, we can detect and enumerate melanoma cells in blood samples to demonstrate a paradigm for a photoacoustic flow cytometer. Furthermore, we capture the melanoma cells using microfluidic two phase flow, a technique that separates a continuous flow into alternating microslugs of air and blood cell suspension. Each slug of blood cells is tested for the presence of melanoma. Slugs that are positive for melanoma, indicated by photoacoustic waves, are separated from the cytometer for further purification and isolation of the melanoma cell. In this paper, we evaluate the two phase photoacoustic flow cytometer for its ability to detect and capture metastastic melanoma cells in blood. PMID:22734751

  9. Capture of circulating tumor cells using photoacoustic flowmetry and two phase flow

    NASA Astrophysics Data System (ADS)

    O'Brien, Christine M.; Rood, Kyle D.; Bhattacharyya, Kiran; DeSouza, Thiago; Sengupta, Shramik; Gupta, Sagar K.; Mosley, Jeffrey D.; Goldschmidt, Benjamin S.; Sharma, Nikhilesh; Viator, John A.

    2012-06-01

    Melanoma is the deadliest form of skin cancer, yet current diagnostic methods are unable to detect early onset of metastatic disease. Patients must wait until macroscopic secondary tumors form before malignancy can be diagnosed and treatment prescribed. Detection of cells that have broken off the original tumor and travel through the blood or lymph system can provide data for diagnosing and monitoring metastatic disease. By irradiating enriched blood samples spiked with cultured melanoma cells with nanosecond duration laser light, we induced photoacoustic responses in the pigmented cells. Thus, we can detect and enumerate melanoma cells in blood samples to demonstrate a paradigm for a photoacoustic flow cytometer. Furthermore, we capture the melanoma cells using microfluidic two phase flow, a technique that separates a continuous flow into alternating microslugs of air and blood cell suspension. Each slug of blood cells is tested for the presence of melanoma. Slugs that are positive for melanoma, indicated by photoacoustic waves, are separated from the cytometer for further purification and isolation of the melanoma cell. In this paper, we evaluate the two phase photoacoustic flow cytometer for its ability to detect and capture metastastic melanoma cells in blood.

  10. Bioreduction of natural specular hematite under flow conditions

    NASA Astrophysics Data System (ADS)

    Gonzalez-Gil, G.; Amonette, J. E.; Romine, M. F.; Gorby, Y. A.; Geesey, G. G.

    2005-03-01

    Dissimilatory reduction of Fe(III) by Shewanella oneidensis MR-1 was evaluated using natural specular hematite as sole electron acceptor in an open system under dynamic flow conditions to obtain a better understanding of biologic Fe(III) reduction in the natural environment. During initial exposure to hematite under advective flow conditions, cells exhibited a transient association with the mineral characterized by a rapid rate of attachment followed by a comparable rate of detachment before entering a phase of surface colonization that was slower but steadier than that observed initially. Accumulation of cells on the hematite surface was accompanied by the release of soluble Fe(II) into the aqueous phase when no precautions were taken to remove amorphous Fe(III) from the mineral surface before colonization. During the period of surface colonization following the detachment phase, cell yield was estimated at 1.5-4 × 10 7 cells/μmol Fe(II) produced, which is similar to that reported in studies conducted in closed systems. This yield does not take into account those cells that detached during this phase or the Fe(II) that remained associated with the hematite surface. Hematite reduction by the bacterium led to localized surface pitting and localized discrete areas where Fe (II) precipitation occurred. The cleavage plane of hematite left behind after bacterial reduction, as revealed by our results, strongly suggests, that heterogeneous energetics of the mineral surface play a strong role in this bioprocess. AQDS, an electron shuttle shown to stimulate bioreduction of Fe(III) in other studies, inhibited reduction of hematite by this bacterium under the dynamic flow conditions employed in the current study.

  11. Review of pertinent thermal-hydraulic data for LMFBR core natural circulation analyses

    SciTech Connect

    Bishop, A. A.; Coffield, Jr., R. D.; Markley, R. A.

    1980-01-01

    A literature review and summary of significant data is presented relative to LMFBR core natural convection cooling analysis. First, a brief review of computer codes and respective input data needs is made, significant data areas are then addressed and data for verifying the code calculations are described. Recommendations and conclusions with regard to the data are included.

  12. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Mike; Banks, Dan; Garzon, Andres; Matisheck, Jason

    2014-01-01

    IR thermography was used to characterize the transition front on a S-NLF test article at chord Reynolds numbers in excess of 30 million Changes in transition due to Mach number, Reynolds number, and surface roughness were investigated - Regions of laminar flow in excess of 80% chord at chord Reynolds numbers greater than 14 million IR thermography clearly showed the transition front and other flow features such as shock waves impinging upon the surface A series of parallel oblique shocks, of yet unknown origin, were found to cause premature transition at higher Reynolds numbers. NASA has a current goal to eliminate barriers to the development of practical supersonic transport aircraft Drag reduction through the use of supersonic natural laminar flow (S-NLF) is currently being explored as a means of increasing aerodynamic efficiency - Tradeoffs work best for business jet class at M<2 Conventional high-speed designs minimize inviscid drag at the expense of viscous drag - Existence of strong spanwise pressure gradient leads to crossflow (CF) while adverse chordwise pressure gradients amplifies and Tollmien-Schlichting (TS) instabilities Aerion Corporation has patented a S-NLF wing design (US Patent No. 5322242) - Low sweep to control CF - dp/dx < 0 on both wing surfaces to stabilize TS - Thin wing with sharp leading edge to minimize wave drag increase due to reduction in sweep NASA and Aerion have partnered to study S-NLF since 1999 Series of S-NLF experiments flown on the NASA F-15B research test bed airplane Infrared (IR) thermography used to characterize transition - Non-intrusive, global, good spatial resolution - Captures significant flow features well

  13. Development of a Couette-Taylor flow device with active minimization of secondary circulation

    SciTech Connect

    Ethan Schartman

    2009-01-27

    A novel Taylor-Couette experiment has been developed to produce rotating shear ows for the study of hydrodynamic and magnetohydrodynamic instabilities which are believed to drive angular momentum transport in astrophysical accretion disks. High speed, concentric, corotating cylinders generate the flow where the height of the cylinders is twice the radial gap width. Ekman pumping is controlled and minimized by splitting the vertical boundaries into pairs of nested, differentially rotating rings. The end rings and cylinders comprise four independently driven rotating components which provide exibility in developing flow profiles. The working fluids of the experiment are water, a water-glycerol mix, or a liquid gallium alloy. The mechanical complexity of the apparatus and large dynamic pressures generated by high speed operation with the gallium alloy presented unique challenges. The mechanical implementation of the experiment and some representative results obtained with Laser Doppler Velocimetry in water are discussed.

  14. Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study.

    PubMed

    Grinberg, L; Cheever, E; Anor, T; Madsen, J R; Karniadakis, G E

    2011-01-01

    We compare results from numerical simulations of pulsatile blood flow in two patient-specific intracranial arterial networks using one-dimensional (1D) and three-dimensional (3D) models. Specifically, we focus on the pressure and flowrate distribution at different segments of the network computed by the two models. Results obtained with 1D and 3D models with rigid walls show good agreement in massflow distribution at tens of arterial junctions and also in pressure drop along the arteries. The 3D simulations with the rigid walls predict higher amplitude of the flowrate and pressure temporal oscillations than the 1D simulations with compliant walls at various segments even for small time-variations in the arterial cross-sectional areas. Sensitivity of the flow and pressure with respect to variation in the elasticity parameters is investigated with the 1D model. PMID:20661645

  15. Low Circulating Natural Killer Cell Counts are Associated With Severe Disease in Patients With Common Variable Immunodeficiency

    PubMed Central

    Ebbo, Mikael; Gérard, Laurence; Carpentier, Sabrina; Vély, Frédéric; Cypowyj, Sophie; Farnarier, Catherine; Vince, Nicolas; Malphettes, Marion; Fieschi, Claire; Oksenhendler, Eric; Schleinitz, Nicolas; Vivier, Eric

    2016-01-01

    Natural Killer (NK) cells have been shown to exert antiviral and antitumoural activities. Nevertheless most available data are derived from mouse models and functions of these cells in human remain unclear. To evaluate the impact of low circulating NK cell counts and to provide some clues to the role of NK cells in natural conditions, we studied a large cohort of patients with common variable immunodeficiency (CVID) included in a multicenter cohort of patients with primary hypogammaglobulinaemia. Patients were classified into three groups on the basis of their NK cell counts: severe and mild NK cell lymphopenia (< 50 and 50–99 × 106/L respectively), and normal NK cell counts (> 100 × 106/L). Clinical events were analyzed and compared between these three groups of patients. During study period, 457 CVID patients were included: 99 (21.7%) with severe NK cell lymphopenia, 118 (25.8%) with mild NK cell lymphopenia and 240 (52.5%) with normal NK cell counts. Non-infectious complications (57% vs. 36% and 35%), and, particularly, granulomatous complications (25.3% vs. 13.6% and 8.8%), were more frequent in patients with severe NK cell lymphopenia than in other groups. Invasive infections (68.7% vs. 60.2% and 48.8%), including bacteraemia (22.2% vs. 5.9% and 8.3%) and infectious pneumonia (63.6% vs. 59.3% and 44.2%), were also more frequent in this population. However, no difference was observed for viral infections and neoplasms. Low circulating NK cell counts are associated with more severe phenotypes of CVID, which may indicate a protective role of these immune cells against severe bacterial infections and other complications and non-redundant immune functions when the adaptive immune response is not optimal. PMID:27211564

  16. Performance of polypropylene and steel tubes in solar water heaters with natural circulation

    SciTech Connect

    Riazi, M.R.; Razavi, J.

    1997-02-01

    Performance of solar water heaters in thermosyphonic flow with polypropylene and steel tubes was studied experimentally. An experimental apparatus consisting of 36 south-facing parallel tubes was designed and built especially for this study. Experiments were performed at Sharif University of Technology in Tehran during July--August 1994 from 0900 to 1700, when the ambient temperature varied from 29 to 36 C. Overall, 30 experiments were conducted for both types of tubes. At first, it was found that the best collector slope for both types of tubes was 36{degree} and it is independent of tube type. Generally, it was found that polypropylene tubes under similar conditions can increase water temperature by 10 C more than steel tubes. Based on the results shown in this study, use of polypropylene tubes in solar water heating systems is recommended.

  17. Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments

    SciTech Connect

    Jose Reyes

    2005-02-14

    In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

  18. Homogenization and simulation for compositional flow in naturally fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Chen, Zhangxin

    2007-02-01

    A dual porosity model of multidimensional, multicomponent, multiphase flow in naturally fractured reservoirs is derived by the mathematical theory of homogenization. A fully compositional model is considered where there are N chemical components, each of which may exist in any or all of the three phases: gas, oil, and water. Special attention is paid to developing a general approach to incorporating gravitational forces, pressure gradient effects, and effects of mass transfer between phases. In particular, general equations for the interactions between matrix and fracture systems are obtained under homogenization by a careful scaling of these effects. Using this dual porosity compositional model, numerical experiments are reported for the benchmark problems of the sixth comparative solution project organized by the society of petroleum engineers.

  19. Computational wing design studies relating to natural laminar flow

    NASA Technical Reports Server (NTRS)

    Waggoner, Edgar G.

    1986-01-01

    Two research studies are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wing planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first study supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. A wing was designed computationally for a corporate transport aircraft in the second study. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs.

  20. Preterm Birth Prevention: Effects of Vaginal Progesterone Administration on Blood Flow Impedance in Uterine-Fetal Circulation by Doppler Sonography

    PubMed Central

    Vafaei, Homeira; Zamanpour, Tarlan; Shahraki, Hadi Raeisi

    2016-01-01

    Objective: The present study aimed to evaluate the effect of vaginal progesterone administration on maternal and fetal circulation to prevent preterm birth. Methods: The present prospective study was conducted on 35 women with singleton pregnancy at 18–33 weeks of gestation, who presented with at least one episode of preterm labor or asymptomatic short cervix, or past medical history of preterm birth. Doppler flow and Pulsatility Index (PI) assessment of the umbilical artery, fetal middle cerebral artery, uterine arteries, and ductusvenosus were performed before and 72 h after vaginal progesterone administration. Results: Results showed a significant reduction in the PI of the uterine artery following progesterone administration. Nevertheless, no significant changes were observed in the PI of other vessels. No significant difference was found in Doppler flow parameters in any of the examined vessels before or after progesterone treatment in women with Preterm Labor Pain (PLP). Yet, a statistically significant association was observed between short cervix complication in the current pregnancy and medical history of PLP in the previous pregnancy. Conclusion: Treatment with vaginal progesterone reduced the PI in the uterine arteries in the second and third trimesters of pregnancy. Thus, this medication may have useful vasodilatory effects on uterine-fetal vessels.

  1. Flow Regime Study in a Circulating Fluidized Bed Riser with an Abrupt Exit: [1] High Density Suspension

    SciTech Connect

    Mei, J.S.; Lee, G.T.; Seachman, S.M.; Ludlow, J.C.; Shadle, L.J.

    2008-05-13

    Flow regime study was conducted in a 0.3 m diameter, 15.5 m tall circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U. S. Department of Energy. A statistical designed test series was conducted including four (4) operating set points and a duplicated center point (therefore a total of 6 operating set points). Glass beads of mean diameter 200 μm and particle density of 2,430 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 5.6 to 7.6 m/s and solid mass flux from a low of 86 to a high of 303 kg/m2-s. Results of the apparent solids fraction profile as well as the radial particle velocity profile were analyzed in order to identify the presence of Dense Suspension Upflow (DSU) conditions. DSU regime was found to exist at the bottom of the riser, while the middle section of the riser was still exhibiting core-annular flow structure. Due to the abrupt geometry of the exit, the DSU regime was also found at the top of the riser. In addition the effects of the azimuthal angle, riser gas velocity, and mass solids flux on the particle velocity were investigated and are discussed in this paper.

  2. Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography

    NASA Astrophysics Data System (ADS)

    Bunge, Hans-Peter

    2002-08-01

    Earth's mantle overturns itself about once every 200 Million years (myrs). Prima facie evidence for this overturn is the motion of tectonic plates at the surface of the Earth driving the geologic activity of our planet. Supporting evidence also comes from seismic tomograms of the Earth's interior that reveal the convective currents in remarkable clarity. Much has been learned about the physics of solid state mantle convection over the past two decades aided primarily by sophisticated computer simulations. Such simulations are reaching the threshold of fully resolving the convective system globally. In this talk we will review recent progress in mantle dynamics studies. We will then turn our attention to the fundamental question of whether it is possible to explicitly reconstruct mantle flow back in time. This is a classic problem of history matching, amenable to control theory and data assimilation. The technical advances that make such approach feasible are dramatically increasing compute resources, represented for example through Beowulf clusters, and new observational initiatives, represented for example through the US-Array effort that should lead to an order-of-magnitude improvement in our ability to resolve Earth structure seismically below North America. In fact, new observational constraints on deep Earth structure illustrate the growing importance of of improving our data assimilation skills in deep Earth models. We will explore data assimilation through high resolution global adjoint models of mantle circulation and conclude that it is feasible to reconstruct mantle flow back in time for at least the past 100 myrs.

  3. The Oscillating Component of the Internal Jugular Vein Flow: The Overlooked Element of Cerebral Circulation

    PubMed Central

    Sisini, Francesco; Toro, Eleuterio; Gambaccini, Mauro; Zamboni, Paolo

    2015-01-01

    The jugular venous pulse (JVP) provides valuable information about cardiac haemodynamics and filling pressures and is an indirect estimate of the central venous pressure (CVP). Recently it has been proven that JVP can be obtained by measuring the cross-sectional area (CSA) of the IJV on each sonogram of an ultrasound B-mode sonogram sequence. It has also been proven that during its pulsation the IJV is distended and hence that the pressure gradient drives the IJV haemodynamics. If this is true, then it will imply the following: (i) the blood velocity in the IJV is a periodic function of the time with period equal to the cardiac period and (ii) the instantaneous blood velocity is given by a time function that can be derived from a flow-dynamics theory that uses the instantaneous pressure gradient as a parameter. The aim of the present study is to confirm the hypothesis that JVP regulates the IJV blood flow and that pressure waves are transmitted from the heart toward the brain through the IJV wall. PMID:26783380

  4. Plasma flow and carbon production and circulation with the ergodic divertor of Tore Supra

    NASA Astrophysics Data System (ADS)

    Corre, Y.; Gunn, J.; Pégourié, B.; Guirlet, R.; DeMichelis, C.; Giannella, R.; Ghendrih, P.; Hogan, J.; Monier-Garbet, P.; Azéroual, A.; Escarguel, A.; Gauthier, E.

    2007-02-01

    This paper presents a detailed study of carbon production and transport from the ergodic divertor (ED) target plates to the plasma core in the Tore Supra tokamak. Adapted experimental and numerical modelling techniques have been used to describe each of the main phenomena in play. Edge electron density and temperature are measured with Langmuir probes. The C II, C III and Hα emission is measured with optical fibres and cameras. The background plasma flow is calculated consistently with the observed recycling pattern by the neutral transport code EDCOLL for the two magnetic connection schemes of interest (short or long connection lengths). 3D Monte-Carlo modelling of carbon near the neutralizer plate (BBQ code) shows that the transport of carbon ions is governed by the friction force in addition to the electric field. Finally, a simplified 3D test particle model is used to estimate the core penetration fraction of carbon. A high value is found for the carbon screening efficiency (fraction of particles that does not penetrate in the plasma core), in the range 95-97% depending on the edge plasma conditions. This value, combined with the calculated carbon influxes, yields the first quantitative estimate of the carbon core contamination during ED operation. The paper shows that the screening of carbon and core contamination are mainly dependent on the carbon source (partially controlled with the ED) and the plasma flow distribution in the laminar region (magnetic topology and particle drifts).

  5. Elderly bioheat modeling: changes in physiology, thermoregulation, and blood flow circulation

    NASA Astrophysics Data System (ADS)

    Rida, Mohamad; Ghaddar, Nesreen; Ghali, Kamel; Hoballah, Jamal

    2014-01-01

    A bioheat model for the elderly was developed focusing on blood flow circulatory changes that influence their thermal response in warm and cold environments to predict skin and core temperatures for different segments of the body especially the fingers. The young adult model of Karaki et al. (Int J Therm Sci 67:41-51, 2013) was modified by incorporation of the physiological thermoregulatory and vasomotor changes based on literature observations of physiological changes in the elderly compared to young adults such as lower metabolism and vasoconstriction diminished ability, skin blood flow and its minimum and maximum values, the sweating values, skin fat thickness, as well as the change in threshold parameter related to core or skin temperatures which triggers thermoregulatory action for sweating, maximum dilatation, and maximum constriction. The developed model was validated with published experimental data for elderly exposure to transient and steady hot and cold environments. Predicted finger skin temperature, mean skin temperature, and core temperature were in agreement with published experimental data at a maximum error less than 0.5 °C in the mean skin temperature. The elderly bioheat model showed an increase in finger skin temperature and a decrease in core temperature in cold exposure while it showed a decrease in finger skin temperature and an increase in core temperature in hot exposure.

  6. Flow cytometric measurement of immunoglobulin E to natural latex proteins.

    PubMed Central

    Kwittken, P L; Pawlowski, N A; Sweinberg, S K; Douglas, S D; Campbell, D E

    1994-01-01

    Immediate hypersensitivity to natural latex (NL) occurs in sensitized individuals after repeated exposure to products or devices containing NL components. Since allergic reactions to NL proteins are quite frequent and may be quite serious, diagnostic assays are needed to identify individuals at risk. A number of latex proteins have been considered the major antigens, but they have been incompletely characterized. There is no standard material available for skin testing. In vitro diagnostic tests, such as the radioallergosorbent test (RAST), are time consuming and their sensitivity and specificity remain to be proven. We have developed a rapid microsphere-based, fluorescence-activated flow cytometry assay for the measurement of NL protein-specific human immunoglobulin E and have compared it with both the enzyme-linked immunosorbent assay and radioallergosorbent test methods. By using the total purified NL protein fraction isolated from raw ammoniated NL sap as the antigen, the flow cytometry assay was both sensitive and specific for the detection of NL protein-specific human immunoglobulin E in the sera of sensitized pediatric patients. PMID:7496945

  7. Natural laminar flow experiments on modern airplane surfaces

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Obara, C. J.; Yip, L. P.

    1984-01-01

    Flight and wind-tunnel natural laminar flow experiments have been conducted on various lifting and nonlifting surfaces of several airplanes at unit Reynolds numbers between 0.63 x 10 to the 6th power/ft and 3.08 x 10 to the 6th power/ft, at Mach numbers from 0.1 to 0.7, and at lifting surface leading-edge sweep angles from 0 deg to 63 deg. The airplanes tested were selected to provide relatively stiff skin conditions, free from significant roughness and waviness, on smooth modern production-type airframes. The observed transition locations typically occurred downstream of the measured or calculated pressure peak locations for the test conditions involved. No discernible effects on transition due to surface waviness were observed on any of the surfaces tested. None of the measured heights of surface waviness exceeded the empirically predicted allowable surface waviness. Experimental results consistent with spanwise contamination criteria were observed. Large changes in flight-measured performance and stability and control resulted from loss of laminar flow by forced transition. Rain effects on the laminar boundary layer caused stick-fixed nose-down pitch-trim changes in two of the airplanes tested. No effect on transition was observed for flight through low-altitude liquid-phase clouds. These observations indicate the importance of fixed-transition tests as a standard flight testing procedure for modern smooth airframes.

  8. Going With the Flow: Evidence for Changes in Circulation in Seneca Lake, NY During the Holocene

    NASA Astrophysics Data System (ADS)

    Crocker, M. L.; Curtin, T. M.

    2005-12-01

    carbonate concentrations are highest, between 30-35%. The combination of relatively finer grain sizes and low P'values of sediment deposited during the late Hypsithermal and part of the Neoglacial suggests there was more extensive reworking by currents or organisms, eliminating any preferred depositional alignment of grains as a function of lake currents or low current influence during this time. Overall, variations in median grain size, MS, and P' indicate varying current strengths are responsible for deposition of sediment and reflect changes in lake circulation in response to changes in air temperatures and the position of the jet stream.

  9. Relationships between circulating plasma concentrations and duodenal flows of essential amino acids in lactating dairy cows.

    PubMed

    Patton, R A; Hristov, A N; Parys, C; Lapierre, H

    2015-07-01

    The objective of this study was to better define essential AA (EAA) requirements in lactating dairy cows through examination of the relationship between plasma essential AA concentration (p[EAA]) and predicted duodenal flow of essential AA (EAAduo). Our hypothesis was that at a given level of milk protein output, p[EAA] would remain steady in response to increasing EAAduo until the EAA requirement was met, at which point p[EAA] would increase rapidly in response to greater duodenal flow of EAA until p[EAA] reached a plateau as other body processes degraded excess EAA to avoid toxicity. Thus, the requirement of each EAA would be fulfilled when p[EAA] increased rapidly. To investigate this hypothesis, we compiled a literature database that included 102 studies with 420 treatment means that reported p[EAA], dietary nutrient content, body weight, and milk production. A second database was produced to validate relationships developed in the first database and included 32 studies with 98 treatment means. All relationships were evaluated as regression equations with study as a random factor. Breed, days in milk, body weight, and milk protein production had no effect on the plasma concentration of any EAA. Other than metabolizable protein supply, nutritional content of the rations did not affect p[EAA]. Only p[Arg] was affected by parity, with primiparous cows having higher concentrations of Arg than older cows. No break points in the relationship between p[EAA] versus EAAduo were detected as either steep increases or plateaus. Plasma Arg, Ile, Lys, Thr, and Val concentrations were best associated with their respective EAAduo as quadratic equations, whereas His, Leu, Met, and Phe were associated only linearly. Adding a quadratic term improved the adjusted R(2) or decreased the root mean square error marginally (<2.0%). Thus, we conclude that the main effect of EAAduo on p[EAA] is linear. Abomasal or duodenal infusions of Met, Lys, His, Lys+Met, and casein revealed that Met

  10. Flow cytometric analysis of circulating endothelial cells and endothelial progenitors for clinical purposes in oncology: A critical evaluation

    PubMed Central

    DANOVA, MARCO; COMOLLI, GIUDITTA; MANZONI, MARIANGELA; TORCHIO, MARTINA; MAZZINI, GIULIANO

    2016-01-01

    Malignant tumors are characterized by uncontrolled cell growth and metastatic spread, with a pivotal importance of the phenomenon of angiogenesis. For this reason, research has focused on the development of agents targeting the vascular component of the tumor microenvironment and regulating the angiogenic switch. As a result, the therapeutic inhibition of angiogenesis has become an important component of anticancer treatment, however, its utility is partly limited by the lack of an established methodology to assess its efficacy in vivo. Circulating endothelial cells (CECs), which are rare in healthy subjects and significantly increased in different tumor types, represent a promising tool for monitoring the tumor clinical outcome and the treatment response. A cell population circulating into the blood also able to form endothelial colonies in vitro and to promote vasculogenesis is represented by endothelial progenitor cells (EPCs). The number of both of these cell types is extremely low and they cannot be identified using a single marker, therefore, in absence of a definite consensus on their phenotype, require discrimination using combinations of antigens. Multiparameter flow cytometry (FCM) is ideal for rapid processing of high numbers of cells per second and is commonly utilized to quantify CECs and EPCs, however, remains technically challenging since there is as yet no standardized protocol for the identification and enumeration of these rare events. Methodology in studies on CECs and/or EPCs as clinical biomarkers in oncology is heterogeneous and data have been obtained from different studies leading to conflicting conclusions. The present review presented a critical review of the issues that limit the comparability of results of the most significant studies employing FCM for CEC and/or EPC detection in patients with cancer. PMID:27284422

  11. Flow cytometric analysis of circulating platelet-monocyte aggregates in whole blood: methodological considerations.

    PubMed

    Harding, Scott A; Din, Jehangir N; Sarma, Jaydeep; Jessop, Alasdair; Weatherall, Mark; Fox, Keith A A; Newby, David E

    2007-08-01

    Platelet-monocyte aggregates are increasingly being used to quantify platelet activation. The variables that influence platelet-monocyte aggregates have not been well defined. We sought to determine the effect of blood collection, handling and processing techniques on detected levels of platelet-monocyte aggregates using a flow cytometric assay. Whole blood was labelled with anti-CD14-PE and anti-CD42a-FITC. Thereafter, samples were fixed and red cells lysed. Analysis was performed with the flow cytometer initially triggering on light scatter and then on FL-2 to identify CD14-PE positive monocytes. Platelet-monocyte aggregates were defined as monocytes positive for CD42a. The effect of collection, handling and processing techniques on this assay were assessed. Anticoagulation with heparin (20.1 +/- 2.0%), PPACK (16.8 +/- 1.9%), sodium citrate (12.3 +/- 1.6%) and EDTA (9.5 +/- 1.0%) resulted in markedly different levels of platelet-monocyte aggregation (P < 0.0001). Platelet-monocyte aggregation was higher in samples obtained from intravenous cannulae compared to those obtained by venepuncture (20.9 +/- 3.9% vs.13.8 +/- 2.4%, P = 0.03). For every 10 minutes of delay prior to processing platelet-monocyte aggregates increased by 2.8% (P = 0.0001) in PPACK anticoagulated blood and 1.7% (P = 0.01) in citrate anticoagulated blood. Erythrocyte lysis together with fixation does not affect platelet-monocyte aggregation. Platelet-monocyte aggregates remained stable over 24 hours when fixed and stored at 4 degrees C. Multiple handling and processing factors may affect platelet-monocyte aggregation. We recommend the measurement of platelet-monocyte aggregates on samples collected by direct venepuncture, using a direct thrombin inhibitor as the anticoagulant and minimising the time delay before sample fixation. PMID:17721630

  12. Circulation on the Northwestern Iberian Margin: Vertical structure and seasonality of the alongshore flows

    NASA Astrophysics Data System (ADS)

    Teles-Machado, Ana; Peliz, Álvaro; McWilliams, James C.; Couvelard, Xavier; Ambar, Isabel

    2016-01-01

    We describe the seasonal cycle of the alongshore flows on the Northwestern Iberian Margin and explain what are the important mechanisms forcing the system. We used a 20-year model simulation at 2.3 km horizontal resolution, with realistic atmospheric forcing and covering the whole Western Iberian Margin. The model results are compared with satellite data, with data measured at two moored buoys and with a compilation of current meter data available for the study region. We show that currents over the slope are divided in three different cores: the Iberian Poleward Current (IPC) occupying the top 350 m, a deeper core at Mediterranean Water levels (∼600-1200 m) and in between the two, an equatorward core centered just beneath the IPC core, the Upper Slope Countercurrent (USCC). The IPC is present almost yearlong, including in summer months, when it is close to the shelf-break and topped by the equatorward upwelling jet. After September, the IPC intensifies and its core surfaces. Heat and salinity budgets on the shelf and slope are dominated by advection, confirming the important role of the IPC in driving the temperature and salinity seasonal cycles. Analysis of the seasonal cycle of the barotropic vorticity equation on the slope, shows that the main forcing mechanism of northward flows is the "Joint Effect of Baroclinicity and Relief" (JEBAR), whose contribution is higher in summer than in winter. In December and January, when the IPC is stronger and surface intensified, the main contribution is from southerly winds. The cross-shore analysis of these terms shows that JEBAR decreases substantially at the core of the IPC because, as advection terms become important, the northward density flux diminishes the local meridional density gradients, resulting in the decrease of JEBAR in the months of strong IPC.

  13. Chimney for enhancing flow of coolant water in natural circulation boiling water reactor

    DOEpatents

    Oosterkamp, W.J.; Marquino, W.

    1999-01-05

    A chimney which can be reconfigured or removed during refueling to allow vertical removal of the fuel assemblies is disclosed. The chimney is designed to be collapsed or dismantled. Collapse or dismantlement of the chimney reduces the volume required for chimney storage during the refueling operation. Alternatively, the chimney has movable parts which allow reconfiguration of its structure. In a first configuration suitable for normal reactor operation, the chimney is radially constricted such that the chimney obstructs vertical removal of the fuel assemblies. In a second configuration suitable for refueling or maintenance of the fuel core, the parts of the chimney which obstruct access to the fuel assemblies are moved radially outward to positions whereas access to the fuel assemblies is not obstructed. 11 figs.

  14. Chimney for enhancing flow of coolant water in natural circulation boiling water reactor

    DOEpatents

    Oosterkamp, Willem Jan; Marquino, Wayne

    1999-01-05

    A chimney which can be reconfigured or removed during refueling to allow vertical removal of the fuel assemblies. The chimney is designed to be collapsed or dismantled. Collapse or dismantlement of the chimney reduces the volume required for chimney storage during the refueling operation. Alternatively, the chimney has movable parts which allow reconfiguration of its structure. In a first configuration suitable for normal reactor operation, the chimney is radially constricted such that the chimney obstructs vertical removal of the fuel assemblies. In a second configuration suitable for refueling or maintenance of the fuel core, the parts of the chimney which obstruct access to the fuel assemblies are moved radially outward to positions whereat access to the fuel assemblies is not obstructed.

  15. Multiple-scale hydrothermal circulation in 135 Ma oceanic crust of the Japan Trench outer rise: Numerical models constrained with heat flow observations

    NASA Astrophysics Data System (ADS)

    Ray, Labani; Kawada, Yoshifumi; Hamamoto, Hideki; Yamano, Makoto

    2015-09-01

    Anomalous high heat flow is observed within 150 km seaward of the trench axis at the Japan Trench offshore of Sanriku, where the old Pacific Plate (˜135 Ma) is subducting. Individual heat flow values range between 42 and 114 mW m-2, with an average of ˜70 mW m-2. These values are higher than those expected from the seafloor age based on thermal models of the oceanic plate, i.e., ˜50 mW m-2. The heat flow exhibits spatial variations at multiple scales: regional high average heat flow (˜100 km) and smaller-scale heat flow peaks (˜1 km). We found that hydrothermal mining of heat from depth due to gradual thickening of an aquifer in the oceanic crust toward the trench axis can yield elevated heat flow of the spatial scale of ˜100 km. Topographic effects combined with hydrothermal circulation may account for the observed smaller-scale heat flow variations. Hydrothermal circulation in high-permeability faults may result in heat flow peaks of a subkilometer spatial scale. Volcanic intrusions are unlikely to be a major source of heat flow variations at any scale because of limited occurrence of young volcanoes in the study area. Hydrothermal heat transport may work at various scales on outer rises of other subduction zones as well, since fractures and faults have been well developed due to bending of the incoming plate.

  16. Flow Visualization of Forced and Natural Convection in Internal Cavities

    SciTech Connect

    John Crepeau; Hugh M. Mcllroy,Jr.; Donald M. McEligot; Keith G. Condie; Glenn McCreery; Randy Clarsean; Robert S. Brodkey; Yann G. Guezennec

    2002-01-31

    The report descries innovative flow visualization techniques, fluid mechanics measurements and computational models of flows in a spent nuclear fuel canister. The flow visualization methods used a fluid that reacted with a metal plate to show how a local reaction affects the surrounding flow. A matched index of refraction facility was used to take mean flow and turbulence measurements within a generic spent nuclear fuel canister. Computational models were also made of the flow in the canister. It was determined that the flow field in the canister was very complex, and modifications may need to be made to ensure that the spent fuel elements are completely passivated.

  17. Expanding the Natural Laminar Flow Boundary for Supersonic Transports

    NASA Technical Reports Server (NTRS)

    Lynde, Michelle N.; Campbell, Richard L.

    2016-01-01

    A computational design and analysis methodology is being developed to design a vehicle that can support significant regions of natural laminar flow (NLF) at supersonic flight conditions. The methodology is built in the CDISC design module to be used in this paper with the flow solvers Cart3D and USM3D, and the transition prediction modules BLSTA3D and LASTRAC. The NLF design technique prescribes a target pressure distribution for an existing geometry based on relationships between modal instability wave growth and pressure gradients. The modal instability wave growths (both on- and off-axes crossflow and Tollmien-Schlichting) are balanced to produce a pressure distribution that will have a theoretical maximum NLF region for a given streamwise wing station. An example application is presented showing the methodology on a generic supersonic transport wingbody configuration. The configuration has been successfully redesigned to support significant regions of NLF (approximately 40% of the wing upper surface by surface area). Computational analysis predicts NLF with transition Reynolds numbers (ReT) as high as 36 million with 72 degrees of leading-edge sweep (?LE), significantly expanding the current boundary of ReT - ?LE combinations for NLF. This NLF geometry provides a total drag savings of 4.3 counts compared to the baseline wing-body configuration (approximately 5% of total drag). Off-design evaluations at near-cruise and low-speed, high-lift conditions are discussed, as well as attachment line contamination/transition concerns. This computational NLF design effort is a part of an ongoing cooperative agreement between NASA and JAXA researchers.

  18. Impact of collection, isolation and storage methodology of circulating microvesicles on flow cytometric analysis

    PubMed Central

    KONG, FANCONG; ZHANG, LIMING; WANG, HONGXIANG; YUAN, GUOLIN; GUO, ANYUAN; LI, QIUBAI; CHEN, ZHICHAO

    2015-01-01

    Microvesicles (MVs) in body fluids participate in a variety of physical and pathological processes, and are regarded as potential biomarkers for numerous diseases. Flow cytometry (FCM) is among the most frequently used techniques for MV detection. However, different handling methods unavoidably cause pre-analytical variations in the counts and sizes of MVs determined by FCM. The aim of the present study was to investigate the effect of centrifugation, storage conditions and anticoagulant on MV measurements. Blood samples were obtained from 13 healthy donors, including 4 women and 9 men. Calcein-AM staining was used to label MVs and assess the impact of pre-analytical preparation, including centrifugation, and storage conditions on MV measurements obtained using FCM. The range of factors investigated for comparison included: Platelet-free plasma (PFP) stored at −80°C for 1 or 4 weeks; MVs stored at 4°C for 3–4 days or 1 week; MVs frozen at −80°C for 1 or 4 weeks; and anticoagulants, either heparin or ethylenediaminetetraacetic acid (EDTA). No statistically significant differences in MV counts were detected between the two centrifugation speeds (16,000 and 20,500 × g) or among the three centrifugation times (15, 30 and 60 min) investigated. Similarly, no significant differences were noted in MV counts between the two anticoagulants tested (heparin and EDTA). However, the storage of PFP or MVs in heparin-anticoagulated plasma for different periods markedly affected the detected MV counts and size distribution. The counts and sizes of MVs from EDTA-anticoagulated plasma were only affected when the MVs were frozen at −80°C for 4 weeks. In conclusion, calcein-AM is able to efficiently identify MVs from plasma and may be an alternative to Annexin V for MV staining. EDTA preserves the MV counts and size more accurately compared with heparin under calcein-AM staining. PFP centrifuged at 16,000 × g for 15 min is sufficient to isolate MVs, which enables the

  19. Applicability of flow laws to naturally deformed polyphase rocks

    NASA Astrophysics Data System (ADS)

    Kilian, Rüdiger; Heilbronner, Renée; Stünitz, Holger

    2013-04-01

    Small scale shear zones formed in the Gran Paradiso metagranodiorite under lower amphibolite facies conditions (~550°C/0.8 GPa LeGoff & Ballevre, 1990; Brouwer et al.,2002). Based on detailed microstructural work the deformation mechanisms of the different rheological phases have been identified. Polycrystalline quartz aggregates deform by dislocation creep (gbm recrystallization), whereas the polymineralic matrix deforms by diffusion creep (Kilian et al., 2011). Iso - stress conditions (Sachs-average) are assumed based on a constant recrystallized quartz grain size and the formation of shear-parallel layers. Deformed quartz aggregates show higher rotation angle / lower aspect ratio relations, little coalescence, and only minor pinch and swell structures, which altogether suggest that quartz represents the more viscous phase in a somewhat lower viscous matrix. At high strain quartz is completely recrystallized and forms parallel layers with the matrix and does not boudinage. Experimental flow laws for quartz and feldspar from the literature as well as the theoretically derived flow law for Coble creep with the appropriate parameters can reproduce the observed relation between quartz aggregates and matrix suggesting a strain rate ratio below 2 orders of magnitude. A comparison of data from different granitic rocks deformed between 450° to ~ 600°C suggests that a combination of a quartz creep law and a Coble creep law can be used for extrapolation at medium grade, natural conditions. These results provide an indication for the range of reasonable flow law parameters and viscosity ratios which are useful for modeling purposes. References: Kilian, R., Heilbronner, R., Stünitz, H. Quartz grain size reduction in a granitoid rock and the transition from dislocation to diffusion creep. JSG 33,1265-1284,2011. LeGoff, E., Ballevre, M. Geothermobarometry in albite-garnet orthogneisses - a case-study from the Gran-Paradiso Nappe (Western Alps). Lithos, 25,261-280,1990. F

  20. Breakdown of the large-scale circulation in Γ=1/2 rotating Rayleigh-Bénard flow

    NASA Astrophysics Data System (ADS)

    Stevens, Richard J. A. M.; Clercx, Herman J. H.; Lohse, Detlef

    2012-11-01

    Experiments and simulations of rotating Rayleigh-Bénard convection in cylindrical samples have revealed an increase in heat transport with increasing rotation rate. This heat transport enhancement is intimately related to a transition in the turbulent flow structure from a regime dominated by a large-scale circulation (LSC), consisting of a single convection roll, at no or weak rotation to a regime dominated by vertically aligned vortices at strong rotation. For a sample with an aspect ratio Γ=D/L=1 (D is the sample diameter and L is its height) the transition between the two regimes is indicated by a strong decrease in the LSC strength. In contrast, for Γ=1/2, Weiss and Ahlers [J. Fluid Mech.JFLSA70022-112010.1017/jfm.2011.392 688, 461 (2011)] revealed the presence of a LSC-like sidewall temperature signature beyond the critical rotation rate. They suggested that this might be due to the formation of a two-vortex state, in which one vortex extends vertically from the bottom into the sample interior and brings up warm fluid while another vortex brings down cold fluid from the top; this flow field would yield a sidewall temperature signature similar to that of the LSC. Here we show by direct numerical simulations for Γ=1/2 and parameters that allow direct comparison with experiment that the spatial organization of the vertically aligned vortical structures in the convection cell do indeed yield (for the time average) a sinusoidal variation of the temperature near the sidewall, as found in the experiment. This is also the essential and nontrivial difference with the Γ=1 sample, where the vertically aligned vortices are distributed randomly.

  1. Inner shelf circulation patterns and nearshore flow reversal under downwelling and stratified conditions off a curved coastline

    NASA Astrophysics Data System (ADS)

    Sanay, Rosario; Yankovsky, Alexander; Voulgaris, George

    2008-08-01

    The role of a curved coastline and associated bathymetry in the development of downwelling circulation in a stratified inner shelf is examined through a number of numerical experiments. Different scenarios include constant versus variable wind-forcing and variations in bottom friction. The three-dimensional response of the shelf within the domain (embayment enclosed by capes) is associated with the generation of a velocity/pycnocline disturbance at the upstream cape and its subsequent downstream advection. This disturbance is more pronounced under variable wind conditions. Its downstream advection through the bay exhibits different patterns depending on the competition between inertia and bottom friction near the cape. When inertia dominates, the disturbance separates from the cape and travels downwind with an enhanced downstream flow offshore and a countercurrent inshore. The separation occurs at a low Rossby number (Ro ˜ 0.15), which is attributed to the positive curvature of the coastline forming the cape. When friction dominates, the advection path is constrained along the coastline, resulting in an alongshore temperature gradient and a transient thermal front running almost perpendicular to the coast/isobaths. Simulations with spatially variable bottom friction, with higher friction toward the coast, result in the generation of eddy-like features. The numerical results are in agreement with both observations and surface temperature imagery from Long Bay, South Carolina, an embayment enclosed by two capes, and emphasize the role that coastline and associated shelf morphology can play in enhancing cross-shelf transport and exchange.

  2. An investigation of radial tracer flow in naturally fractured reservoirs

    SciTech Connect

    Jetzabeth, Ramirez-Sabag; Fernando, Samaniego V.; Jesus, Rivera R.; Fernando Rodriguez

    1991-01-01

    This study presents a general solution for the radial flow of tracers in naturally fractured reservoirs. Continuous and finite step injection of chemical and radioactive tracers are considered. The reservoir is treated as being composed of two regions: a mobile region where longitudinal dispersion and convection take place and a stagnant region where only diffusion and adsorption are allowed. Radioactive decay is considered in both regions. The model of this study is thoroughly compared to those previously presented in literature by Moench and Ogata, Tang et al., Chen et al., and Hsieh et al. The solution is numerically inverted by means of the Crump algorithm. A detailed validation of the model with respect to solutions previously presented and/or simplified physical conditions solutions (i.e., homogeneous case) or limit solutions (i.e., for short times) was carried out. The influence of various dimensionless parameters that enter into the solution was investigated. A discussion of results obtained through the Crump and Stehfest algorithm is presented, concluding that the Crump method provides more reliable tracer concentrations.

  3. Secondary flow structures in the presence of Type-IV stent fractures through a bent tube model for curved arteries: Effect of circulation thresholding

    NASA Astrophysics Data System (ADS)

    Hussain, Shadman; Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    A common treatment for atherosclerosis is the opening of narrowed arteries resulting from obstructive lesions by angioplasty and stent implantation to restore unrestricted blood flow. ``Type-IV'' stent fractures involve complete transverse, linear fracture of stent struts, along with displacement of the stent fragments. Experimental data pertaining to secondary flows in the presence of stents that underwent ``Type-IV'' fractures in a bent artery model under physiological inflow conditions were obtained through a two-component, two-dimensional (2C-2D) PIV technique. Concomitant stent-induced flow perturbations result in secondary flow structures with complex, multi-scale morphologies and varying size-strength characteristics. Ultimately, these flow structures may have a role to play in restenosis and progression of atherosclerotic plaque. Vortex circulation thresholds were established with the goal of resolving and tracking iso-circulation secondary flow vortical structures and their morphological changes. This allowed for a parametric evaluation and quantitative representation of secondary flow structures undergoing deformation and spatial reorganization. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  4. Low flow and high flow responses to converting natural grassland into bluegum ( Eucalyptus globulus) in Nilgiris watersheds of South India

    NASA Astrophysics Data System (ADS)

    Sikka, A. K.; Samra, J. S.; Sharda, V. N.; Samraj, P.; Lakshmanan, V.

    2003-01-01

    A concern has been raised in many parts of the world over the effect of large scale planting of Eucalyptus on hydrological behaviour of small watersheds. Hydrological response of watersheds due to conversion of natural grasslands into bluegum ( Eucalyptus globulus) plantations on low flows and high flows has been presented in this paper. The concept of using low flow index (LFI) as a tool to study and quantify the effects of bluegum plantation on low flow regime has been demonstrated. Conversion of natural grasslands into bluegum plantations has resulted in decreased low flow volume as well as peak flow, which in turn increased the soil moisture losses. These effects were more pronounced during the second rotation (i.e. first coppiced growth) as compared to the first rotation. Significant reduction in low flow as a result of decline in base flow could be predicted with LFI decreasing by 2.0 and 3.75 times, in the first and second rotation, respectively. Moderation in peak discharge rates was also observed as a result of bluegum plantation. Probability plots of peak discharge tend to suggest that the effect of bluegum plantation on peak flows become insignificant for the floods with higher return periods. These results clearly suggest that caution need to be exercised while planning large scale conversion of natural grasslands into bluegum plantations in the catchments of hydro-electric reservoirs in the Nilgiris which adversely affects water availability especially during lean flow period.

  5. Natural flow regimes of the Ozark-Ouachita Interior Highlands region

    USGS Publications Warehouse

    Leasure, D. R.; Magoulick, Daniel D.; Longing, S. D.

    2016-01-01

    Natural flow regimes represent the hydrologic conditions to which native aquatic organisms are best adapted. We completed a regional river classification and quantitative descriptions of each natural flow regime for the Ozark–Ouachita Interior Highlands region of Arkansas, Missouri and Oklahoma. On the basis of daily flow records from 64 reference streams, seven natural flow regimes were identified with mixture model cluster analysis: Groundwater Stable, Groundwater, Groundwater Flashy, Perennial Runoff, Runoff Flashy, Intermittent Runoff and Intermittent Flashy. Sets of flow metrics were selected that best quantified nine ecologically important components of these natural flow regimes. An uncertainty analysis was performed to avoid selecting metrics strongly affected by measurement uncertainty that can result from short periods of record. Measurement uncertainties (bias, precision and accuracy) were assessed for 170 commonly used flow metrics. The ranges of variability expected for select flow metrics under natural conditions were quantified for each flow regime to provide a reference for future assessments of hydrologic alteration. A random forest model was used to predict the natural flow regimes of all stream segments in the study area based on climate and catchment characteristics, and a map was produced. The geographic distribution of flow regimes suggested distinct ecohydrological regions that may be useful for conservation planning. This project provides a hydrologic foundation for future examination of flow–ecology relationships in the region. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  6. In vivo multispectral photoacoustic and photothermal flow cytometry with multicolor dyes: a potential for real-time assessment of circulation, dye-cell interaction, and blood volume

    PubMed Central

    Proskurnin, Mikhail A.; Zhidkova, Tatyana V.; Volkov, Dmitry S.; Sarimollaoglu, Mustafa; Galanzha, Ekaterina I.; Mock, Donald; Zharov, Vladimir P.

    2011-01-01

    Recently, photoacoustic (PA) flow cytometry (PAFC) has been developed for in vivo detection of circulating tumor cells and bacteria targeted by nanoparticles. Here, we propose multispectral PAFC with multiple dyes having distinctive absorption spectra as multicolor PA contrast agents. As a first step of our proof-of-concept, we characterized high-speed PAFC capability to monitor the clearance of three dyes (ICG, MB, and TB) in an animal model in vivo and in real time. We observed strong dynamic PA signal fluctuations, which can be associated with interactions of dyes with circulating blood cells and plasma proteins. PAFC demonstrated enumeration of circulating red and white blood cells labeled with ICG and MB, respectively, and detection of rare dead cells uptaking TB directly in bloodstream. The possibility for accurate measurements of various dye concentrations including CV and BG were verified in vitro using complementary to PAFC photothermal (PT) technique and spectrophotometry under batch and flow conditions. We further analyze the potential of integrated PAFC/PT spectroscopy with multiple dyes for rapid and accurate measurements of circulating blood volume without a priori information on hemoglobin content, which is impossible with existing optical techniques. This is important in many medical conditions including surgery and trauma with extensive blood loss, rapid fluid administration, transfusion of red blood cells. The potential for developing a robust clinical PAFC prototype that is, safe for human, and its applications for studying the liver function are further highlighted. PMID:21905207

  7. Observation of airplane flow fields by natural condensation effects

    NASA Technical Reports Server (NTRS)

    Campbell, James F.; Chambers, Joseph R.; Rumsey, Christopher L.

    1988-01-01

    In-flight condensation patterns can illustrate a variety of airplane flow fields, such as attached and separated flows, vortex flows, and expansion and shock waves. These patterns are a unique source of flow visualization that has not been utilized previously. Condensation patterns at full-scale Reynolds number can provide useful information for researchers experimenting in subscale tunnels. It is also shown that computed values of relative humidity in the local flow field provide an inexpensive way to analyze the qualitative features of the condensation pattern, although a more complete theoretical modeling is necessary to obtain details of the condensation process. Furthermore, the analysis revealed that relative humidity is more sensitive to changes in local static temperature than to changes in pressure.

  8. Risk assessment of debris flow hazards in natural slope

    NASA Astrophysics Data System (ADS)

    Choi, Junghae; Chae, Byung-gon; Liu, Kofei; Wu, Yinghsin

    2016-04-01

    The study area is located at north-east part of South Korea. Referring to the map of landslide sus-ceptibility (KIGAM, 2009) from Korea Institute of Geoscience and Mineral Resources (KIGAM for short), there are large areas of potential landslide in high probability on slope land of mountain near the study area. Besides, recently some severe landslide-induced debris flow hazards occurred in this area. So this site is convinced to be prone to debris flow haz-ards. In order to mitigate the influence of hazards, the assessment of potential debris flow hazards is very important and essential. In this assessment, we use Debris-2D, debris flow numerical program, to assess the potential debris flow hazards. The worst scenario is considered for simulation. The input mass sources are determined using landslide susceptibility map. The water input is referred to the daily accumulative rainfall in the past debris flow event in study area. The only one input material property, i.e. yield stress, is obtained using calibration test. The simulation results show that the study area has po-tential to be impacted by debris flow. Therefore, based on simulation results, to mitigate debris flow hazards, we can propose countermeasures, including building check dams, constructing a protection wall in study area, and installing instruments for active monitoring of debris flow hazards. Acknowledgements:This research was supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2012M3A2A1050983)

  9. Patterns in the sky: Natural visualization of aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Campbell, James F.; Chambers, Joseph R.

    1994-01-01

    The objective of the current publication is to present the collection of flight photographs to illustrate the types of flow patterns that were visualized and to present qualitative correlations with computational and wind tunnel results. Initially in section 2, the condensation process is discussed, including a review of relative humidity, vapor pressure, and factors which determine the presence of visible condensate. Next, outputs from computer code calculations are postprocessed by using water-vapor relationships to determine if computed values of relative humidity in the local flow field correlate with the qualitative features of the in-flight condensation patterns. The photographs are then presented in section 3 by flow type and subsequently in section 4 by aircraft type to demonstrate the variety of condensed flow fields that was visualized for a wide range of aircraft and flight maneuvers.

  10. A Regional Hydrologic Classification of Unregulated Rivers: Towards the Development of Natural Flow Regime Characterization and Environmental Flows in California

    NASA Astrophysics Data System (ADS)

    Lane, B.; Sandoval Solis, S.

    2014-12-01

    Alterations to flow regimes from regulation and climate change affect the biophysical functioning of rivers. Re-operating reservoirs to provide environmental flows - the quantity, quality, and timing of water to sustain natural river functions and species - is now widely applied in multi-objective water resources management. However, the absence of a quantitative, transferable framework for evaluating the relationships between hydrologic inputs, geomorphic functions, and ecological responses, remains a major limitation to setting environmental flows standards. This research addresses this gap by developing a hydrologic classification framework for the State of California that balances operational practicality with scientific defensibility. The framework organizes river reaches into: (1) natural flow classes based on (a) a classification model that clusters hydrologic indices calculated directly from unimpaired streamflow data, and (b) a regression model using a set of climatic, landscape, and local geomorphic controls over the flow regime, and (2) functional zones constrained by temporal (seasonal) ranges and hydrologic (average flow percentile-based) thresholds (e.g. summer low flows). The framework is then used to (1) identify major climatic, landscape, and local geomorphic controls over prototypical flow regime signatures, and (2) characterize key natural functions and processes expected of reaches of each flow class and functional zone during wet, dry, and normal water year types. Organizing hydrologic data in this manner provides a means of comparison and transferability of ecologically-significant hydrologic and geomorphic information across reaches of all major flow classes seen in California, both regulated and unregulated. Through this framework, transferable relationships between hydrologic and physiographic conditions, flow alteration, and ecological metrics can be developed and tested on the basis of data obtained from a limited set of study sites.

  11. Porous media flow problems: natural convection and one-dimensional flow of a non-Newtonian fluid

    SciTech Connect

    Walker, K.L.

    1980-01-01

    Two fluid problems in porous media are studied: natural convection of a Newtonian fluid and one-dimensional flow of a non-Newtonian fluid. Convection in a rectangular porous cavity driven by heating in the horizontal is analyzed by a number of different techniques which yield a fairly complete description of the 2-dimensional solutions. The solutions are governed by 2 dimensionless parameters: the Darcy-Rayleigh number R and cavity aspect ratio A. The flow behavior of a dilute solution of polyacrylamide in corn syrup flowing through porous media also is studied. Measurements of the pressure drop and flow rate are made for the solution flowing through a packed bed of glass beads. At low velocities the pressure drop as a function of velocity is the same as that for a Newtonian fluid of equal viscosity. At higher flow rates the non-Newtonian fluid exhibited significantly higher pressure drops than a Newtonian fluid.

  12. Evolution of particle angularity in natural and laboratory debris flows

    NASA Astrophysics Data System (ADS)

    Mclaughlin, M. K.; Arabnia, O.; Sklar, L. S.

    2014-12-01

    The sizes of particles entrained in debris flows influence flow dynamics, affecting erosive power and runout distance. Particle size distributions evolve due to wear by abrasion and fracturing, and by gains or losses of sediment mass during transport. To tease apart these factors, we need a better understanding of the controls on rates and patterns of particle wear in debris flows. Here we focus on changes in particle angularity with travel distance, combining laboratory experiments with field study of a rocky debris flow at Inyo Creek, Sierra Nevada California. Angularity can indicate proximity to sediment source, assuming abrasion leads to progressive smoothing of particle surfaces. However, particle fracture can create fresh angular surfaces, confounding estimates of travel distance from angularity. This study is a component of an ongoing set of experiments using a 4 m diameter rotating drum to create near-prototype-scale debris flows. We load the drum with 1.7 Mg of highly angular granodiorite clasts, with median b-axis diameter of 100 mm. The 0.75 m deep, shearing mass flows at 1 m/s. After each 250 m travel distance, we measure mass and length of principal axes for every particle >19 mm, and sieve all smaller particles, to track evolution of the size distribution. We document the angularity of subsamples of selected particle sizes, using several techniques, including analysis of 2D photographs, 3D laser scans, and hand-placed equilibrium points. We use the same techniques in analyzing particles collected in the field study of the downstream evolution of rock clasts along a 1 km length of Inyo Creek. In this catchment, underlain by granodiorite, sediment transport is dominated by debris flows, which leave deposits on the bed and channel margins at slopes >20%. Preliminary laboratory results show rapid smoothing of large particle surfaces combined with creation of smaller angular particles by fracture. In contrast, downstream evolution of angularity in the

  13. Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning

    USGS Publications Warehouse

    McCoy, S.W.; Kean, J.W.; Coe, J.A.; Staley, D.M.; Wasklewicz, T.A.; Tucker, G.E.

    2010-01-01

    Many theoretical and laboratory studies have been undertaken to understand debris-flow processes and their associated hazards. However, complete and quantitative data sets from natural debris flows needed for confirmation of these results are limited. We used a novel combination of in situ measurements of debris-flow dynamics, video imagery, and pre- and postflow 2-cm-resolution digital terrain models to study a natural debris-flow event. Our field data constrain the initial and final reach morphology and key flow dynamics. The observed event consisted of multiple surges, each with clear variation of flow properties along the length of the surge. Steep, highly resistant, surge fronts of coarse-grained material without measurable pore-fluid pressure were pushed along by relatively fine-grained and water-rich tails that had a wide range of pore-fluid pressures (some two times greater than hydrostatic). Surges with larger nonequilibrium pore-fluid pressures had longer travel distances. A wide range of travel distances from different surges of similar size indicates that dynamic flow properties are of equal or greater importance than channel properties in determining where a particular surge will stop. Progressive vertical accretion of multiple surges generated the total thickness of mapped debris-flow deposits; nevertheless, deposits had massive, vertically unstratified sedimentological textures. ?? 2010 Geological Society of America.

  14. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    SciTech Connect

    Marashdeh, Qussai

    2013-02-01

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi

  15. FLOW VISUALIZATION OF FORCED AND NATURAL CONVECTION IN INTERNAL CAVITIES

    EPA Science Inventory

    This research project will focus efforts on developing techniques to model fluid flow in spent nuclear fuel canisters. One treatment technique is to inject gases which react with spent fuels into storage canisters, preventing the occurrence of pyrophoric reactions. The primary go...

  16. Summary of past experience in natural laminar flow and experimental program for resilient leading edge

    NASA Technical Reports Server (NTRS)

    Carmichael, B. H.

    1979-01-01

    The potential of natural laminar flow for significant drag reduction and improved efficiency for aircraft is assessed. Past experience with natural laminar flow as reported in published and unpublished data and personal observations of various researchers is summarized. Aspects discussed include surface contour, waviness, and smoothness requirements; noise and vibration effects on boundary layer transition, boundary layer stability criteria; flight experience with natural laminar flow and suction stabilized boundary layers; and propeller slipstream, rain, frost, ice and insect contamination effects on boundary layer transition. The resilient leading edge appears to be a very promising method to prevent leading edge insect contamination.

  17. Breakdown of doublet re-circulation and direct line drives by far-field flow in reservoirs: Implications for geothermal and hydrocarbon well placement

    NASA Astrophysics Data System (ADS)

    Weijermars, R.; van Harmelen, A.

    2016-04-01

    An important real world application of doublet flow occurs in well design of both geothermal and hydrocarbon reservoirs. A guiding principle for fluid management of injection and extraction wells is that mass balance is commonly assumed between the injected and produced fluid. Because the doublets are considered closed loops, the injection fluid is assumed to eventually reach the producer well and all the produced fluid ideally comes from stream tubes connected to the injector of the well pair making up the doublet. We show that when an aquifer background flow occurs, doublets will rarely retain closed loops of fluid re-circulation. When the far-field flow rate increases relative to the doublet's strength, the area occupied by the doublet will diminish and eventually vanishes. Alternatively, rather than using a single injector (source) and single producer (sink), a linear array of multiple injectors separated by some distance from a parallel array of producers can be used in geothermal energy projects as well as in waterflooding of hydrocarbon reservoirs. Fluid flow in such an arrangement of parallel source-sink arrays is shown to be macroscopically equivalent to that of a line doublet. Again, any far-field flow that is strong enough will breach through the line doublet, which then splits into two vortices. Apart from fundamental insight into elementary flow dynamics, our new results provide practical clues that may contribute to improve the planning and design of doublets and direct line drives commonly used for flow management of groundwater, geothermal and hydrocarbon reservoirs.

  18. Flow and habitat effects on juvenile fish abundance in natural and altered flow regimes

    USGS Publications Warehouse

    Freeman, Mary C.; Bowen, Z.H.; Bovee, K.D.; Irwin, E.R.

    2001-01-01

    Conserving biological resources native to large river systems increasingly depends on how flow-regulated segments of these rivers are managed. Improving management will require a better understanding of linkages between river biota and temporal variability of flow and instream habitat. However, few studies have quantified responses of native fish populations to multiyear (>2 yr) patterns of hydrologic or habitat variability in flow-regulated systems. To provide these data, we quantified young-of-year (YOY) fish abundance during four years in relation to hydrologic and habitat variability in two segments of the Tallapoosa River in the southeastern United States. One segment had an unregulated flow regime, whereas the other was flow-regulated by a peak-load generating hydropower dam. We sampled fishes annually and explored how continuously recorded flow data and physical habitat simulation models (PHABSIM) for spring (April-June) and summer (July-August) preceding each sample explained fish abundances. Patterns of YOY abundance in relation to habitat availability (median area) and habitat persistence (longest period with habitat area continuously above the long-term median area) differed between unregulated and flow-regulated sites. At the unregulated site, YOY abundances were most frequently correlated with availability of shallow-slow habitat in summer (10 species) and persistence of shallow-slow and shallow-fast habitat in spring (nine species). Additionally, abundances were negatively correlated with 1-h maximum flow in summer (five species). At the flow-regulated site, YOY abundances were more frequently correlated with persistence of shallow-water habitats (four species in spring; six species in summer) than with habitat availability or magnitude of flow extremes. The associations of YOY with habitat persistence at the flow-regulated site corresponded to the effects of flow regulation on habitat patterns. Flow regulation reduced median flows during spring and

  19. Heavy and moderate interval exercise training alters low-flow-mediated constriction but does not increase circulating progenitor cells in healthy humans.

    PubMed

    Rakobowchuk, Mark; Harris, Emma; Taylor, Annabelle; Baliga, Vivek; Cubbon, Richard M; Rossiter, Harry B; Birch, Karen M

    2012-03-01

    Moderate-intensity endurance exercise training improves vascular endothelial vasomotor function; however, the impact of high-intensity exercise training has been equivocal. Thus, the effect of the physiological stress of the exercise remains poorly understood. Furthermore, enhanced vascular repair mediated by circulating progenitor cells may also be improved. To address whether the physiological stress of exercise training is an important factor contributing to these adaptations, 20 healthy participants trained for 6 weeks. Training involved either moderate (MSIT; n = 9) or heavy metabolic stress (HSIT; n = 11) interval exercise training programmes matched for total work and duration of exercise. Before and after training, flow-mediated dilatation, low-flow-mediated constriction and total vessel reactivity were measured at the brachial artery using Doppler ultrasound. Circulating progenitor cells (CD34(+), CD133(+) and CD309/KDR(+)) were measured by flow cytometry (means ± SD). Relative (MSIT pre- 5.5 ± 3.4 versus post-training 6.6 ± 2.5%; HSIT pre- 6.6 ± 4.1 versus post-training 7.0 ± 3.4%, P = 0.33) and normalized (P = 0.16) flow-mediated dilatation did not increase with either training programme. However, low-flow-mediated constriction was greater after training in both groups (MSIT pre- -0.5 ± 3.2 versus post-training -1.9 ± 3.1%; HSIT pre- -1.0 ± 1.7 versus post-training -2.9 ± 3.0%, P = 0.04) and contributed to greater total vessel reactivity (MSIT pre- 7.4 ± 3.3 versus post-training 10.1 ± 3.7%; HSIT pre- 10.9 ± 5.9 versus post-training 12.7 ± 6.2%, P = 0.01). Peak reactive hyperaemia and the area under the shear rate curve were not different between groups, either before or after training. Although circulating progenitor cell numbers increased following heavy-intensity interval exercise training, variability was great amongst participants [MSIT pre- 16 ± 18 versus post-training 14 ± 12 cells (ml whole blood)(-1); HSIT pre- 8 ± 6 versus post

  20. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    NASA Astrophysics Data System (ADS)

    Sakitani, Katsumi; Honda, Hiroshi

    Experimental and theoretical studies were made of the heat transfer characteristics of a latent heat storage unit used for a natural circulation cooling /latent heat storage system. Heating and cooling curves of the latent heat storage unit undergoing solid-liquid phase change of a PCM (lauric acid) was obtained by using anatural circulation loop of R22 which consisted of an electrically heated evaporater, a water cooled condenser and the latent heat storage unit. The latent heat storage unit showed a heat transfer performance which was high enough for practical use. An approximate theoretical analysis was conducted to investigate transient behavior of the latent heat storage unit. Predictions of the refrigerant and outer surface temperatures during the melting process were in fair agreement with the experimental data, whereas that of the refrigerant temperature during the solidification process was considerably lower than the measurement.

  1. Laminar boundary layer in conditions of natural transition to turbulent flow

    NASA Technical Reports Server (NTRS)

    Polyakov, N. F.

    1986-01-01

    Results of experimental study of regularities of a natural transition of a laminar boundary layer to a turbulent layer at low subsonic air flow velocities are presented, analyzed and compared with theory and model experiments.

  2. Research in Natural Laminar Flow and Laminar-Flow Control, part 2

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Part 2 of the Symposium proceedings includes papers addressing various topics in basic wind tunnel research/techniques and computational transitional research. Specific topics include: advanced measurement techniques; laminar flow control; Tollmien-Schlichting wave characteristics; boundary layer transition; flow visualization; wind tunnel tests; flight tests; boundary layer equations; swept wings; and skin friction.

  3. Noninvasive evaluation of flow changes and gas bubbles in the circulation by combined use of color-flow-imaging and computer postprocessing.

    PubMed

    Brubakk, A O; Torp, H; Angelsen, B A

    1991-01-01

    Significant circulatory changes occur in microgravity and gas bubbles may be present in the circulation as a result of decompression during EVA. A system for the non-invasive evaluation of circulatory changes and gas bubbles in the circulation is described. This system is based on an ultrasonic scanning and Doppler system (CFM 700(750), Vingmed Sound, Horten Norway) together with programs to transmit the data to a Macintosh [correction of Mackintosh] II computer. A method for measuring pulsatile blood pressure non-invasively is also included. On the computer, programs for the calculation of cardiovascular parameters and the analysis of ultrasonic images containing gas bubbles have been developed. PMID:11537142

  4. The physics of blood flow in capillaries. I. The nature of the motion.

    PubMed

    PROTHERO, J; BURTON, A C

    1961-09-01

    In many capillaries erythrocytes travel singly, separated by segments of plasma (bolus flow). The peculiar flow pattern, within the plasma, has been studied visually in a model in which air bubbles separated by short columns of liquid flow through a glass tube. Injection of dye reveals an "eddy-like" motion, in that each fluid element repeatedly describes a closed circuit. The possible significance of this "mixing motion" in relation to gaseous equilibration (e.g., in pulmonary capillaries) has been studied in a thermal analogue. A copper tube passed first through a constant temperature bath which brought the fluid to a uniform temperature T(1), and then through a second smaller bath at a lower temperature T(2). From the final temperature T(3) of the fluid, which was collected in a thermally insulated flask, a calculation of the heat transfer was made (i.e., from the flow and the temperature drop (T(1)-T(3))). Bolus flow was up to twice as effective in transferring heat as Poiseuille flow (no bubbles in fluid). The theory of modelling was employed in order to apply this thermal data to gaseous equilibration, especially in pulmonary capillaries. It was concluded that gaseous equilibration may be considerably accelerated by bolus flow, though this may be more of a limiting factor in peripheral capillaries than in the pulmonary circulation. The result supports the assumption of complete mixing in plasma made by Roughton and Forster in 1957. PMID:14488985

  5. The Nature, Meaning, and Measure of Teacher Flow in Elementary Schools: A Test of Rival Hypotheses

    ERIC Educational Resources Information Center

    Beard, Karen Stansberry; Hoy, Wayne K.

    2010-01-01

    Purpose: This inquiry is the first comprehensive, empirical analysis of the nature and measurement of flow in elementary teachers. The clearest sign of flow is the merging of action and awareness, that is, the degree to which an activity becomes spontaneous and automatic and individuals lose conscious awareness of themselves as they perform a task…

  6. On the nature of magnetic turbulence in rotating, shearing flows

    NASA Astrophysics Data System (ADS)

    Walker, Justin; Lesur, Geoffroy; Boldyrev, Stanislav

    2016-03-01

    The local properties of turbulence driven by the magnetorotational instability (MRI) in rotating, shearing flows are studied in the framework of a shearing-box model. Based on numerical simulations, we propose that the MRI-driven turbulence comprises two components: the large-scale shear-aligned strong magnetic field and the small-scale fluctuations resembling magnetohydrodynamic (MHD) turbulence. The energy spectrum of the large-scale component is close to k-2, whereas the spectrum of the small-scale component agrees with the spectrum of strong MHD turbulence k-3/2. While the spectrum of the fluctuations is universal, the outer-scale characteristics of the turbulence are not; they depend on the parameters of the system, such as the net magnetic flux. However, there is remarkable universality among the allowed turbulent states - their intensity v0 and their outer scale λ0 satisfy the balance condition v0/λ0 ˜ dΩ/dln r, where dΩ/dln r is the local orbital shearing rate of the flow. Finally, we find no sustained dynamo action in the Pm = 1 zero net-flux case for Reynolds numbers as high as 45 000, casting doubts on the existence of an MRI dynamo in the Pm ≤ 1 regime.

  7. Natural laminar flow and airplane stability and control

    NASA Technical Reports Server (NTRS)

    Vandam, Cornelis P.

    1986-01-01

    Location and mode of transition from laminar to turbulent boundary layer flow have a dominant effect on the aerodynamic characteristics of an airfoil section. The influences of these parameters on the sectional lift and drag characteristics of three airfoils are examined. Both analytical and experimental results demonstrate that when the boundary layer transitions near the leading edge as a result of surface roughness, extensive trailing-edge separation of the turbulent boundary layer may occur. If the airfoil has a relatively sharp leading-edge, leading-edge stall due to laminar separation can occur after the leading-edge suction peak is formed. These two-dimensional results are used to examine the effects of boundary layer transition behavior on airplane longitudinal and lateral-directional stability and control.

  8. Nitrogen reduction in wastewater treatment using different anox-circulation flow rates and ethanol as a carbon source.

    PubMed

    Poutiainen, H; Laitinen, S; Pradhan, S; Pessi, M; Heinonen-Tanski, H

    2010-05-01

    We studied the optimization of nitrogen reduction from municipal wastewater in a laboratory-scale modified Ludzack-Ettinger activated sludge wastewater treatment plant (WWTP). The unit consisted of primary denitrification, secondary nitrification, a sludge clarifier and a post-denitrification unit. The process simulates the Kuopio WWTP, which provided the influent utilized. We describe the effect of varying anox-circulation schemes on the nitrogen removal efficiency. We further compare the denitrification efficiencies of ethanol and methanol applied in the post-denitrification unit, and compare the properties and costs of these chemicals as carbon sources. Maximum efficiency of total nitrogen removal (70.8%) was obtained with 256% anox-circulation. The process was, however, not very sensitive, as a wide range of 150-400% of anox-circulations gave good results for nitrogen reduction. The unit achieved high BOD, and COD reductions of wastewater also when nitrogen reduction was moderate. The addition of 40 mg/L/day of ethanol to the post-denitrification tank meant that the nitrate-levels of effluent could be controlled to below 10 mg/L of nitrate nitrogen. Methanol and ethanol were equally effective for denitrification. The use of ethanol instead of methanol could reduce treatment costs by 30% to 0.02 E/m3 of treated wastewater according to 2008 market prices. PMID:20540423

  9. The Meridional Secondary Circulation of 3D Vortices in Rotating, Stratified, Shear and its Role in Astrophysical Flows: from a Newly Pale Great Red Spot to Planet Formation

    NASA Astrophysics Data System (ADS)

    Marcus, P. S.; Hassanzadeh, P.

    2012-12-01

    The interest in understanding the physics of 3D, compact baroclinic vortices in rotating, stratified shear is growing. This is partly due to the fact that vortices in protoplanetary disks attract dust and may be key in planetesimal formation. The interest is also fueled by the unanswered questions about vortices of Jupiter and Saturn and the recent changes of the Jovian vortices. Examples are the appearance of the Red Oval BA in 2005, and the very recent color-change of the Great Red Spot to pale orange, which was observed in July 2012. While the dynamics of 3D baroclinic vortices in rotating stratified flows, even without shear, is poorly understood, the presence of horizontal shear strongly influences their dynamics and further complicates the problem. Studying the physics of planetary vortices and their interaction with the environment requires high-resolution 3D simulations. Ignoring the vertical direction, neglecting the vertical motion (as has been done in almost all published numerical simulations of Jovian vortices because most studies have assumed vertical hydrostatic equilibrium), or the lack of enough resolution eliminates or changes important physical processes such as the secondary circulation. This secondary, ageostrophic flow within the vortices is essential in dust accumulation and agglomeration in vortices in protoplanetary disks. The secondary circulation has been shown to be important in determining the color and cloud patterns in Jovian vortices. For example, the recent color change of the Great Red Spot can be explained by changes in its secondary circulation. It has also been suggested that the persistent rings around the Jovian anticyclones are produces by this secondary circulation. We show that the lifetimes of Jovian vortices depend upon their ability to merge with and absorb smaller vortices and also on the secondary circulations within vortices. The main dissipation mechanism for most astrophysical vortices is thermal radiation rather

  10. [Blood flow changes in the optic nerve head of albino rabbits following intravenous administration of brovincamine fumarate, an improver of cerebral circulation and metabolism].

    PubMed

    Nirei, M

    1996-02-01

    The blood flow changes in the optic nerve head in adult albino rabbits following intravenous administration of brovincamine fumarate, an improver of cerebral circulation and metabolism, were investigated employing the hydrogen clearance method. In the brovincamine fumarate (0.1 mg/kg)-administered group, the blood flow in the optic nerve head increased soon after injection and reached the maximal value of 124.2 +/- 7.3% against the value before injection, at 20 minutes after injection, followed by a gradual decrease in the blood flow. Statistical analysis showed a significant increase (p < 0.05) in the blood flow at 10 to 40 minutes after injection, compared with the value before injection in the brovincamine fumarate (0.1 mg/kg)-administered group, but no significant increases in the blood flow were observed in either the brovincamine fumarate (0.5 mg/kg)-administered group or the control group given no brovincamine fumarate throughout the course. No significant changes in the mean values of the blood pressure in the femoral artery, pulse rate, respiratory rate or rectal temperature were observed in any group through the experiment. To learn the mechanism of the different efficacy of the two doses, further studies are needed in light of the cyclic adenosine monophosphate (cyclic AMP) changes induced by brovincamine fumarate administration or in light of the receptor responsiveness to the drug concentration. PMID:8851150

  11. Natural flow and water consumption in the Milk River basin, Montana and Alberta, Canada

    USGS Publications Warehouse

    Thompson, R.E.

    1986-01-01

    A study was conducted to determine the differences between natural and nonnatural Milk River streamflow, to delineate and quantify the types and effects of water consumption on streamflow, and to refine the current computation procedure into one which computes and apportions natural flow. Water consumption consists principally of irrigated agriculture, municipal use, and evapotranspiration. Mean daily water consumption by irrigation ranged from 10 cu ft/sec to 26 cu ft/sec in the Canada part and from 6 cu ft/sec to 41 cu ft/sec in the US part. Two Canadian municipalities consume about 320 acre-ft and one US municipality consumes about 20 acre-ft yearly. Evaporation from the water surface comprises 80% 0 90% of the flow reduction in the Milk River attributed to total evapotranspiration. The current water-budget approach for computing natural flow of the Milk River where it reenters the US was refined into an interim procedure which includes allowances for man-induced consumption and a method for apportioning computed natural flow between the US and Canada. The refined procedure is considered interim because further study of flow routing, tributary inflow, and man-induced consumption is needed before a more accurate procedure for computing natural flow can be developed. (Author 's abstract)

  12. LES of High-Reynolds-Number Coanda Flow Separating from a Rounded Trailing Edge of a Circulation Control Airfoil

    NASA Technical Reports Server (NTRS)

    Nichino, Takafumi; Hahn, Seonghyeon; Shariff, Karim

    2010-01-01

    This slide presentation reviews the Large Eddy Simulation of a high reynolds number Coanda flow that is separated from a round trailing edge of a ciruclation control airfoil. The objectives of the study are: (1) To investigate detailed physics (flow structures and statistics) of the fully turbulent Coanda jet applied to a CC airfoil, by using LES (2) To compare LES and RANS results to figure out how to improve the performance of existing RANS models for this type of flow.

  13. Numerical investigation of transient flow-mode transition of laminar natural convection in an inclined enclosure

    SciTech Connect

    Tzeng, P.Y.; Soong, C.Y.; Sheu, T.S.

    1997-02-07

    The present work is concerned with a numerical investigation of transient laminar natural convection and the associated flow-mode transition in a two-dimensional rectangular enclosure. Navier-Stokes/Boussinesq equations for fluid flow and energy balance are solved by using the SIMPLE-C algorithm. Air of Pr = 0.71 in a differentially heated enclose of length-to-height aspect ratio As = 4 and at Ra = 5,000 is chosen as the flow model to examine the influences of the inclination. Calculations of time accuracy are performed to investigate the transient procedure of the flow-mode transition with increasing or decreasing inclination. The present results reveal that, at some critical situations, natural convection in inclined enclosures is very sensitive to the change in tilt angle, and the associated heat transfer rates are closely related to the correspondent cellular flow patterns.

  14. The seasonal variation of the upper layers of the South China Sea (SCS) circulation and the Indonesian through flow (ITF): An ocean model study

    NASA Astrophysics Data System (ADS)

    Xu, Danya; Malanotte-Rizzoli, Paola

    2013-09-01

    The upper layer, wind-driven circulation of the South China Sea (SCS), its through-flow (SCSTF) and the Indonesian through flow (ITF) are simulated using a high resolution model, FVCOM (finite volume coastal ocean model) in a regional domain comprising the Maritime Continent. The regional model is embedded in the MIT global ocean general circulation model (ogcm) which provides surface forcing and boundary conditions of all the oceanographic variables at the lateral open boundaries in the Pacific and Indian oceans. A five decade long simulation is available from the MITgcm and we choose to investigate and compare the climatologies of two decades, 1960-1969 and 1990-1999. The seasonal variability of the wind-driven circulation produced by the monsoon system is realistically simulated. In the SCS the dominant driving force is the monsoon wind and the surface circulation reverses accordingly, with a net cyclonic tendency in winter and anticyclonic in summer. The SCS circulation in the 90s is weaker than in the 60s because of the weaker monsoon system in the 90s. In the upper 50 m the interaction between the SCSTF and ITF is very important. The southward ITF can be blocked by the SCSTF at the Makassar Strait during winter. In summer, part of the ITF feeds the SCSTF flowing into the SCS through the Karimata Strait. Differently from the SCS, the ITF is primarily controlled by the sea level difference between the western Pacific and eastern Indian Ocean. The ITF flow, consistently southwestward below the surface layer, is stronger in the 90s. The volume transports for winter, summer and yearly are estimated from the simulation through all the interocean straits. On the annual average, there is a ∼5.6 Sv of western Pacific water entering the SCS through the Luzon Strait and ∼1.4 Sv exiting through the Karimata Strait into the Java Sea. Also, ∼2 Sv of SCS water enters the Sulu Sea through the Mindoro Strait, while ∼2.9 Sv flow southwards through the Sibutu Strait

  15. Thermodynamics of convective circulations

    NASA Astrophysics Data System (ADS)

    Adams, D. K.; Renno, N. O.

    2003-04-01

    The heat engine framework has proven successful for studies of atmospheric phenomena ranging from small to large scales. At large scales, the heat engine framework provides estimates of convective available potential energy, convective velocities, and fractional area covered by convection. At the smaller end of the spectrum, the framework provides estimates of the intensity of convective vortices such as dust devils and waterspouts. The heat engine framework sheds light on the basic physics of planetary atmospheres. In particular, it allows the calculation of their thermodynamic efficiency. Indeed, this is a fundamental number for atmospheric circulations because it quantifies the amount of heat that is converted into kinetic energy. As such, it is a valuable number not only for comparison of models with nature, but also for the intercomparison of models. In the present study, we generalize the heat engine framework to large-scale circulations, both open (e.g., the Hadley circulation) and closed (e.g., the general circulation) and apply it to an idealized global climate model to ascertain the thermodynamic efficiency of model circulations, both global and regional. Our results show that the thermodynamic efficiency is sensitive to model resolution and provides a baseline for minimum model resolution in climate studies. The value of the thermodynamic efficiency of convective circulations in nature is controversial. It has been suggested that both nature and numerical models are extremely irreversible. We show that both the global and the Hadley circulation of the idealized model are, to a first approximation, reversible.

  16. Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy

    NASA Astrophysics Data System (ADS)

    Underwood, S. Jeffrey; Schultz, Michael D.; Berti, Metteo; Gregoretti, Carlo; Simoni, Alessandro; Mote, Thomas L.; Saylor, Anthony M.

    2016-02-01

    The Dolomite Alps of northeastern Italy experience debris flows with great frequency during the summer months. An ample supply of unconsolidated material on steep slopes and a summer season climate regime characterized by recurrent thunderstorms combine to produce an abundance of these destructive hydro-geologic events. In the past, debris flow events have been studied primarily in the context of their geologic and geomorphic characteristics. The atmospheric contribution to these mass-wasting events has been limited to recording rainfall and developing intensity thresholds for debris mobilization. This study aims to expand the examination of atmospheric processes that preceded both locally intense convective rainfall (LICR) and debris flows in the Dolomite region. 500 hPa pressure level plots of geopotential heights were constructed for a period of 3 days prior to debris flow events to gain insight into the synoptic-scale processes which provide an environment conducive to LICR in the Dolomites. Cloud-to-ground (CG) lightning flash data recorded at the meso-scale were incorporated to assess the convective environment proximal to debris flow source regions. Twelve events were analyzed and from this analysis three common synoptic-scale circulation patterns were identified. Evaluation of CG flashes at smaller spatial and temporal scales illustrated that convective processes vary in their production of CF flashes (total number) and the spatial distribution of flashes can also be quite different between events over longer periods. During the 60 min interval immediately preceding debris flow a majority of cases exhibited spatial and temporal colocation of LICR and CG flashes. Also a number of CG flash parameters were found to be significantly correlated to rainfall intensity prior to debris flow initiation.

  17. Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy

    NASA Astrophysics Data System (ADS)

    Underwood, S. J.; Schultz, M. D.; Berti, M.; Gregoretti, C.; Simoni, A.; Mote, T. L.; Saylor, A. M.

    2015-09-01

    The Dolomite Alps of northeastern Italy experience debris flows with great frequency during the summer months. An ample supply of unconsolidated material on steep slopes and a summer season climate regime characterized by recurrent thunderstorms combine to produce an abundance of these destructive hydrogeologic events. In the past debris flow events have been studied primarily in the context of their geologic and geomorphic characteristics. The atmospheric contribution to these mass wasting events has been limited to recording rainfall and developing intensity thresholds for debris mobilization. This study aims to expand the examination of atmospheric processes that preceded both locally intense convective rainfall (LICR) and debris flows in the Dolomite region. 500 hPa pressure level plots of geopotential heights were constructed for a period of three days prior to debris flow events to gain insight into the synoptic scale processes which provide an environment conducive to LICR in the Dolomites. Cloud-to-ground (CG) lightning flash data recorded at the meso-scale were incorporated to assess the convective environment proximal to debris flow source regions. Twelve events were analyzed and from this analysis three common synoptic scale circulation patterns were identified. Evaluation of CG flashes at smaller spatial and temporal scales illustrated that convective processes vary in their production of CG flashes (total number) and the spatial distribution of flashes can also be quite different between events over longer periods. During the 60 min interval immediately preceding debris flow a majority of cases exhibited spatial and temporal collocation of LICR and CG flashes. Also a number of CG flash parameters were found to be significantly correlated to rainfall intensity prior to debris flow initiation.

  18. Overall results of and lessons learned from the IAEA CRP on sodium natural circulation test performed during the Phenix end-of-life experiments

    SciTech Connect

    Monti, S.; Toti, A.; Tenchine, D.; Pialla, D.

    2012-07-01

    In 2007, the International Atomic Energy Agency (IAEA) launched the Coordinated Research Project (CRP) 'Control Rod Withdrawal and Sodium Natural Circulation Tests Performed during the Phenix End-of-Life Experiments'. The overall purpose of the CRP, performed within the framework of the IAEA programme in support of innovative fast reactor technology development and deployment, is to improve the Member States' analytical capabilities in the various fields of research and design of sodium-cooled fast reactors through data and codes verification and validation. In particular the CRP, taking advantage of the End-of-Life set of experiments performed before the final shut-down of the French prototype fast breeder power reactor Phenix, aims at improving fast reactor simulation methods and design capabilities in the field of temperature and power distribution evaluation, as well as of the analysis of sodium natural circulation phenomena. The paper presents the overall results of the CRP, including blind calculations and post-test and sensitivity analyses carried out by the CRP participants, as well as lessons learned and recommendations for further future implementations to resolve open issues. (authors)

  19. A short-term increase of the postoperative naturally circulating dendritic cells subsets in flurbiprofen-treated patients with esophageal carcinoma undergoing thoracic surgery

    PubMed Central

    Chai, Xiao-qing; Shu, Shu-hua; Zhang, Xiao-lin; Xie, Yan-hu; Wei, Xin; Wu, Yu-jing; Wei, Wei

    2016-01-01

    The present study evaluated whether flurbiprofen increased the naturally circulating dendritic cells (DCs) subsets in patients with esophageal squamous cell carcinoma (ESCC) undergoing esophageal resection. Compared to healthy donors (n=20), the significantly depressed percentages of plasmacytoid DCs (pDCs), CD1c+ myeloid DCs (mDCs), and CD141+ mDCs among ESCC patients (n=60) were confirmed. Flurbiprofen was administered before skin incision and at the end of operation in group F (n=30), as well as placebo in group C (n=30). The postoperative suppressed percentages of pDCs, CD1c+ mDCs, and CD141+ mDCs increased significantly following the perioperative treatment with flurbiprofen. Flurbiprofen also significantly stimulated the postoperative IFN-f and IL-17 production, but inhibited the immunosuppressive IL-10 and TGF-β levels. Furthermore, flurbiprofen exerted a similar analgesic effect and brought a significantly less sufentanil consumption compared to group C. Taken together, flurbiprofen provided a short-term increase of postoperative naturally circulating DCs in ESCC patients. PMID:26959879

  20. A static air flow visualization method to obtain a time history of the lift-induced vortex and circulation

    NASA Technical Reports Server (NTRS)

    Patterson, J. C., Jr.; Jordan, F. L., Jr.

    1975-01-01

    A recently proposed method of flow visualization was investigated at the National Aeronautics and Space Administration's Langley Research Center. This method of flow visualization is particularly applicable to the study of lift-induced wing tip vortices through which it is possible to record the entire life span of the vortex. To accomplish this, a vertical screen of smoke was produced perpendicular to the flight path and allowed to become stationary. A model was then driven through the screen of smoke producing the circular vortex motion made visible as the smoke was induced along the path taken by the flow and was recorded by highspeed motion pictures.

  1. Predictive models of circulating fluidized bed combustors

    SciTech Connect

    Gidaspow, D.

    1992-07-01

    Steady flows influenced by walls cannot be described by inviscid models. Flows in circulating fluidized beds have significant wall effects. Particles in the form of clusters or layers can be seen to run down the walls. Hence modeling of circulating fluidized beds (CFB) without a viscosity is not possible. However, in interpreting Equations (8-1) and (8-2) it must be kept in mind that CFB or most other two phase flows are never in a true steady state. Then the viscosity in Equations (8-1) and (8-2) may not be the true fluid viscosity to be discussed next, but an Eddy type viscosity caused by two phase flow oscillations usually referred to as turbulence. In view of the transient nature of two-phase flow, the drag and the boundary layer thickness may not be proportional to the square root of the intrinsic viscosity but depend upon it to a much smaller extent. As another example, liquid-solid flow and settling of colloidal particles in a lamella electrosettler the settling process is only moderately affected by viscosity. Inviscid flow with settling is a good first approximation to this electric field driven process. The physical meaning of the particulate phase viscosity is described in detail in the chapter on kinetic theory. Here the conventional derivation resented in single phase fluid mechanics is generalized to multiphase flow.

  2. The Gastrointestinal Circulation: Physiology and Pathophysiology.

    PubMed

    Granger, D Neil; Holm, Lena; Kvietys, Peter

    2015-07-01

    The gastrointestinal (GI) circulation receives a large fraction of cardiac output and this increases following ingestion of a meal. While blood flow regulation is not the intense phenomenon noted in other vascular beds, the combined responses of blood flow, and capillary oxygen exchange help ensure a level of tissue oxygenation that is commensurate with organ metabolism and function. This is evidenced in the vascular responses of the stomach to increased acid production and in intestine during periods of enhanced nutrient absorption. Complimenting the metabolic vasoregulation is a strong myogenic response that contributes to basal vascular tone and to the responses elicited by changes in intravascular pressure. The GI circulation also contributes to a mucosal defense mechanism that protects against excessive damage to the epithelial lining following ingestion of toxins and/or noxious agents. Profound reductions in GI blood flow are evidenced in certain physiological (strenuous exercise) and pathological (hemorrhage) conditions, while some disease states (e.g., chronic portal hypertension) are associated with a hyperdynamic circulation. The sacrificial nature of GI blood flow is essential for ensuring adequate perfusion of vital organs during periods of whole body stress. The restoration of blood flow (reperfusion) to GI organs following ischemia elicits an exaggerated tissue injury response that reflects the potential of this organ system to generate reactive oxygen species and to mount an inflammatory response. Human and animal studies of inflammatory bowel disease have also revealed a contribution of the vasculature to the initiation and perpetuation of the tissue inflammation and associated injury response. PMID:26140727

  3. Natural-Scale Lava Flow Experiments on Video: Variations with Temperature, Slope, and Effusion Rate

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Wysocki, R.; Edwards, B. R.; Lev, E.

    2013-12-01

    Investigations of active basaltic lava flows and analog materials show that flow dynamics and final flow morphology are strongly determined by the rapidly evolving rheology of the lava crust which constrains the downslope advance of the lava flow. The non-dimensional factor Ψ (ratio of the time scale of crust formation to advective heat loss) provides a useful means of comparing different flows. The key parameters that control Ψ include the melt viscosity, temperature, effusion rate, and slope. Experimental lava flows, up to several meters long created in the Syracuse University Lava Project permit these variables to be investigated independently and in combination in volume-limited flows (<450 kg, 0.5 m3). Video results show lava is very sensitive to relatively small variations in these variables under experimental conditions. For example, experiments 1.1 Ga Keewenan basalt from the Mid-Continent Rift and 200 Ma basalt from the Palisades Sill show very different flow rates and flow morphologies for meter-scale flows on dry sand slopes between 5° and 20°, with all other variables held constant. Similar differences result from varying the effusion rate (~10-4m3s-1) or temperature (1050°-1250°C) on a constant slope. In addition, videos document the development of a wide range of reproducible lava flow structures found in natural lava flows including folds, shear zones, lava tubes, inflated lobes, break-outs, and bubbles (limu o'Pele), that provide additional information on lava crust development. New, continuous flow (cooling-limited) experiments show downslope variations under constant flow conditions.

  4. Constraints on the Lost City Hydrothermal System from borehole thermal data; 3-D models of heat flow and hydrothermal circulation in an oceanic core complex.

    NASA Astrophysics Data System (ADS)

    Titarenko, S.; McCaig, A. M.

    2014-12-01

    A perennial problem in near-ridge hydrothermal circulation is that the only directly measurable data to test models is often vent fluid temperature. Surface heat flow measurements may be available but without the underlying thermal structure it is not known if they are transient and affected by local hydrothermal flow, or conductive. The Atlantis Massif oceanic core complex at 30 °N on the mid-Atlantic Ridge, offers a unique opportunity to better constrain hydrothermal circulation models. The temperature profile in gabbroic rocks of IODP Hole 1309D was measured in IODPExpedition 340T, and found to be near-conductive, but with a slight inflexion at ~750 mbsf indicating downward advection of fluid above that level. The lack of deep convection is especially remarkable given that the long-lived Lost City Hydrothermal Field (LCHF) is located only 5km to the south. We have modelled hydrothermal circulation in the Massif using Comsol Multiphysics, comparing 2-D and 3-D topographic models and using temperature-dependent conductivity to give the best estimate of heatflow into the Massif. We can constrain maximum permeability in gabbro below 750 mbsf to 5e-17 m2. The thermal gradient in the upper part of the borehole can be matched with a permeability of 3e-14 m2 in a 750 m thick layer parallel to the surface of the massif, with upflow occurring in areas of high topography and downflow at the location of the borehole. However in 3-D the precise flow pattern is quite model dependent, and the thermal structure can be matched either by downflow centred on the borehole at lower permeability or centred a few hundred metres from the borehole at higher permeability. The borehole gradient is compatible with the longevity (>120 kyr) and outflow temperature (40-90 °C) of the LCHF either with a deep more permeable (1e-14 m2 to 1e-15 m2) domain beneath the vent site in 2-D or a permeable fault slot 500 to 1000m wide and parallel to the transform fault in 3-D. In both cases topography

  5. Quantification of Natural Gradient Flow Using Active Fiber Optic DTS in Sealed Boreholes

    NASA Astrophysics Data System (ADS)

    Coleman, T. I.; Parker, B. L.; Munn, J. D.; Chalari, A.; Mondanos, M.

    2014-12-01

    Temperature has been used for many years to characterize flow in fractured rock systems. Fiber-optic distributed temperature sensing (DTS) was adopted by the oil/gas industry over two decades ago for monitoring processes in deep fractured rock environments. Improvements in DTS system resolutions, methodology advancements, and improved data processing techniques have caused recent popularity for shallow fractured rock hydrogeologic applications. A powerful advance in DTS methodology is the use of response data collected during active cable heating. When applied to borehole applications active heating creates a thermal disequilibrium in the aquifer system that enhances the detection of groundwater flow. Active DTS has been applied to open borehole environments; however, characterization methods based on open borehole measurements are limited in that only the effects of unnatural flow (i.e. vertical cross-connection and redistribution of flow creating local, induced flows) can be observed. To characterize natural gradient flow processes borehole effects need to be minimized.The literature shows borehole sealing using flexible impervious fabric liners creates a static water column in the well that eliminates the negative effects of cross-connection. Measurements in this sealed environment have been shown by others to be representative of natural gradient flow conditions, rather than the conditions created by the borehole short circuiting units or fractures with varying hydraulic head. A new method for flow system characterization using active DTS in sealed boreholes has been developed with excellent prospects for quantitation of natural gradient groundwater fluxes and related hydraulic properties. This project demonstrates the utility of using an analytical solution for calculating apparent thermal conductivities and natural gradient groundwater fluxes at depth-discrete intervals observed continuously along a borehole using active DTS. Groundwater flux data can then be

  6. The aerodynamics of circulation control

    NASA Technical Reports Server (NTRS)

    Wood, N. J.

    1981-01-01

    Two dimensional subsonic wind tunnel tests were conducted on a 20% thickness: chord ratio circulation controlled elliptic aerofoil section equipped with forward and reverse blowing slots. Overall performance measurements were made over a range of trailing edge blowing momentum coefficients from 0 to 0.04; some included the effect of leading edge blowing. A detailed investigation of the trailing edge wall jet, using split film probes, hot wire probes and total head tubes, provided measurements of mean velocity components, Reynolds normal and shear stresses, and radial static pressure. The closure of the two dimensional angular momentum and continuity equations was examined using the measured data, with and without correction, and the difficulty of obtaining a satisfactory solution illustrated. Suggestions regarding the nature of the flow field which should aid the understanding of Coanda effect and the theoretical solution of highly curved wall jet flows are presented.

  7. Median and Low-Flow Characteristics for Streams under Natural and Diverted Conditions, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    2005-01-01

    Flow-duration statistics under natural (undiverted) and diverted flow conditions were estimated for gaged and ungaged sites on 21 streams in northeast Maui, Hawaii. The estimates were made using the optimal combination of continuous-record gaging-station data, low-flow measurements, and values determined from regression equations developed as part of this study. Estimated 50- and 95-percent flow duration statistics for streams are presented and the analyses done to develop and evaluate the methods used in estimating the statistics are described. Estimated streamflow statistics are presented for sites where various amounts of streamflow data are available as well as for locations where no data are available. Daily mean flows were used to determine flow-duration statistics for continuous-record stream-gaging stations in the study area following U.S. Geological Survey established standard methods. Duration discharges of 50- and 95-percent were determined from total flow and base flow for each continuous-record station. The index-station method was used to adjust all of the streamflow records to a common, long-term period. The gaging station on West Wailuaiki Stream (16518000) was chosen as the index station because of its record length (1914-2003) and favorable geographic location. Adjustments based on the index-station method resulted in decreases to the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow computed on the basis of short-term records that averaged 7, 3, 4, and 1 percent, respectively. For the drainage basin of each continuous-record gaged site and selected ungaged sites, morphometric, geologic, soil, and rainfall characteristics were quantified using Geographic Information System techniques. Regression equations relating the non-diverted streamflow statistics to basin characteristics of the gaged basins were developed using ordinary-least-squares regression analyses. Rainfall

  8. Particle-Based Methods for Multiscale Modeling of Blood Flow in the Circulation and in Devices: Challenges and Future Directions

    PubMed Central

    Yamaguchi, Takami; Ishikawa, Takuji; Imai, Y.; Matsuki, N.; Xenos, Mikhail; Deng, Yuefan; Bluestein, Danny

    2010-01-01

    A major computational challenge for a multiscale modeling is the coupling of disparate length and timescales between molecular mechanics and macroscopic transport, spanning the spatial and temporal scales characterizing the complex processes taking place in flow-induced blood clotting. Flow and pressure effects on a cell-like platelet can be well represented by a continuum mechanics model down to the order of the micrometer level. However, the molecular effects of adhesion/aggregation bonds are on the order of nanometer. A successful multiscale model of platelet response to flow stresses in devices and the ensuing clotting responses should be able to characterize the clotting reactions and their interactions with the flow. This paper attempts to describe a few of the computational methods that were developed in recent years and became available to researchers in the field. They differ from traditional approaches that dominate the field by expanding on prevailing continuum-based approaches, or by completely departing from them, yielding an expanding toolkit that may facilitate further elucidation of the underlying mechanisms of blood flow and the cellular response to it. We offer a paradigm shift by adopting a multidisciplinary approach with fluid dynamics simulations coupled to biophysical and biochemical transport. PMID:20336827

  9. Synthesis of Natural and Unnatural Cyclooligomeric Depsipeptides Enabled by Flow Chemistry

    PubMed Central

    Lücke, Daniel; Dalton, Toryn; Ley, Steven V.

    2016-01-01

    Abstract Flow chemistry has been successfully integrated into the synthesis of a series of cyclooligomeric depsipeptides of three different ring sizes including the natural products beauvericin (1 a), bassianolide (2 b) and enniatin C (1 b). A reliable flow chemistry protocol was established for the coupling and macrocyclisation to form challenging N‐methylated amides. This flexible approach has allowed the rapid synthesis of both natural and unnatural depsipeptides in high yields, enabling further exploration of their promising biological activity. PMID:26844421

  10. Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications

    NASA Technical Reports Server (NTRS)

    Somers, D. M.

    1981-01-01

    A natural-laminar-flow airfoil for general aviation applications, the NLF(1)-0416, was designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low-speed airfoils with the low cruise drag of the NACA 6-series airfoils was achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge was also met. Comparisons of the theoretical and experimental results show excellent agreement. Comparisons with other airfoils, both laminar flow and turbulent flow, confirm the achievement of the basic objective.

  11. Nature of Transport across Sheared Zonal Flows in Electrostatic Ion-Temperature-Gradient Gyrokinetic Plasma Turbulence

    SciTech Connect

    Sanchez, R.; Newman, D. E.; Leboeuf, J.-N.; Decyk, V. K.; Carreras, B. A.

    2008-11-14

    It is shown that the usual picture for the suppression of turbulent transport across a stable sheared flow based on a reduction of diffusive transport coefficients is, by itself, incomplete. By means of toroidal gyrokinetic simulations of electrostatic, collisionless ion-temperature-gradient turbulence, it is found that the nature of the transport is altered fundamentally, changing from diffusive to anticorrelated and subdiffusive. Additionally, whenever the flows are self-consistently driven by turbulence, the transport gains an additional non-Gaussian character. These results suggest that a description of transport across sheared flows using effective diffusivities is oversimplified.

  12. Nature of Transport across Sheared Zonal Flows in Electrostatic Ion-Temperature-Gradient Gyrokinetic Plasma Turbulence

    SciTech Connect

    Sanchez, Raul; Newman, David E; Leboeuf, Jean-Noel; Decyk, Viktor; Carreras, Benjamin A

    2008-01-01

    It is shown that the usual picture for the suppression of turbulent transport across a stable sheared flow based on a reduction of diffusive transport coefficients is, by itself, incomplete. By means of toroidal gyrokinetic simulations of electrostatic, collisionless ion-temperature-gradient turbulence, it is found that the nature of the transport is altered fundamentally, changing from diffusive to anticorrelated and subdiffusive. Additionally, whenever the flows are self-consistently driven by turbulence, the transport gains an additional non-Gaussian character. These results suggest that a description of transport across sheared flows using effective diffusivities is oversimplified.

  13. the nature of air flow near the inlets of blunt dust sampling probes

    NASA Astrophysics Data System (ADS)

    Vincent, J. H.; Hutson, D.; Mark, D.

    This paper sets out to describe the nature of air flow near blunt dust samplers in a way which allows a relatively simple assessment of their performances for collecting dust particles. Of particular importance is the shape of the limiting stream surface which divides the sampled air from that which passes outside the sampler, and how this is affected by the free-stream air velocity, the sampling flow rate, and the shape of the sampler body. This was investigated for two-dimensional and axially-symmetric sampler systems by means of complementary experiments using electrolytic tank potential flow analogues and a wind tunnel respectively. For extreme conditions the flow of air entering the sampling orifice may be wholly divergent or wholly convergent. For a wide range of intermediate conditions, however, the flow first diverges then converges, exhibiting a so-called "spring onion effect". Whichever of these applies for a particular situation, the flow may be considered to consist of two parts, the outer one dominated by the flow about the sampler body and the inner one dominated by the flow into the sampling orifice. Particle transport in this two-part flow may be assessed using ideas borrowed from thin-walled probe theory.

  14. The Compressible Potential Flow Past Elliptic Symmetrical Cylinders at Zero Angle of Attack and with No Circulation

    NASA Technical Reports Server (NTRS)

    Hantzsche, W.; Wendt, H.

    1942-01-01

    For the tunnel corrections of compressible flows those profiles are of interest for which at least the second approximation of the Janzen-Rayleigh method can be applied in closed form. One such case is presented by certain elliptical symmetrical cylinders located in the center of a tunnel with fixed walls and whose maximum velocity, incompressible, is twice the velocity of flow. In the numerical solution the maximum velocity at the profile and the tunnel wall as well as the entry of sonic velocity is computed. The velocity distribution past the contour and in the minimum cross section at various Mach numbers is illustrated on a worked out-example.

  15. In vivo acoustic and photoacoustic focusing of circulating cells

    NASA Astrophysics Data System (ADS)

    Galanzha, Ekaterina I.; Viegas, Mark G.; Malinsky, Taras I.; Melerzanov, Alexander V.; Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Zharov, Vladimir P.

    2016-03-01

    In vivo flow cytometry using vessels as natural tubes with native cell flows has revolutionized the study of rare circulating tumor cells in a complex blood background. However, the presence of many blood cells in the detection volume makes it difficult to count each cell in this volume. We introduce method for manipulation of circulating cells in vivo with the use of gradient acoustic forces induced by ultrasound and photoacoustic waves. In a murine model, we demonstrated cell trapping, redirecting and focusing in blood and lymph flow into a tight stream, noninvasive wall-free transportation of blood, and the potential for photoacoustic detection of sickle cells without labeling and of leukocytes targeted by functionalized nanoparticles. Integration of cell focusing with intravital imaging methods may provide a versatile biological tool for single-cell analysis in circulation, with a focus on in vivo needleless blood tests, and preclinical studies of human diseases in animal models.

  16. In vivo acoustic and photoacoustic focusing of circulating cells

    PubMed Central

    Galanzha, Ekaterina I.; Viegas, Mark G.; Malinsky, Taras I.; Melerzanov, Alexander V.; Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Zharov, Vladimir P.

    2016-01-01

    In vivo flow cytometry using vessels as natural tubes with native cell flows has revolutionized the study of rare circulating tumor cells in a complex blood background. However, the presence of many blood cells in the detection volume makes it difficult to count each cell in this volume. We introduce method for manipulation of circulating cells in vivo with the use of gradient acoustic forces induced by ultrasound and photoacoustic waves. In a murine model, we demonstrated cell trapping, redirecting and focusing in blood and lymph flow into a tight stream, noninvasive wall-free transportation of blood, and the potential for photoacoustic detection of sickle cells without labeling and of leukocytes targeted by functionalized nanoparticles. Integration of cell focusing with intravital imaging methods may provide a versatile biological tool for single-cell analysis in circulation, with a focus on in vivo needleless blood tests, and preclinical studies of human diseases in animal models. PMID:26979811

  17. The spatial temporal regime of stream flow of the conterminous U.S. in connection with indices of global atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Shmagin, B.; Johnston, C.; Bridgham, S.

    2004-05-01

    Long-term stream flow records (1929-1988) from seventy one U.S. Geological Survey gauging stations with drainage area in range 1000-10000 sq mi were analyzed using multivariate statistics. Factor analysis of average annual flow revealed seven patterns of river runoff within seven distinct regions of the territory. This factor model reflected 69% variance of the initial matrix. The second set of stream flow records (1939-1972) from ninety-seven gauging stations was used as control. This set contains all seventy one from first one and additional stations with shorter observation period. Factor analysis of this expended set again yielded seven factors (69% variance of the initial matrix) with very similar spatial distribution of gauging stations. Every group of watersheds obtained as a factor was presented by one gauging station with time series of annual discharges (1- 05474000, 2- 14321000, 3- 07019000, 4- 0815000, 5- 11186001, 6- 01666000, 7- 06800500) as the most typical for group. For the same time interval, streams represented by all patterns have increasing values (i. e. the positive difference between two time subintervals); but only the positive linear trend for patterns 1 and 7 are statistically significant. For the seven typical flow records, monthly average values were obtained from three to five seasons composed from different ensembles of months. For each annual time series of the typical seven stream flow patterns, regression equations were obtained from indices of global atmospheric circulation (AO, NAO, NPO and AAO). The equations contain from one to five variables (predictors) and have coefficients of correlation from 32% to 73%. The hydrological regionalization of the conterminous U. S. presented in this paper puts the task of creation of ensemble prediction system on a new level of global and regional understanding of hydroclimatological processes.

  18. Final results of bilateral comparison between NIST and PTB for flows of high pressure natural gas

    NASA Astrophysics Data System (ADS)

    Mickan, B.; Toebben, H.; Johnson, A.; Kegel, T.

    2013-01-01

    In 2009 NIST developed a US national flow standard to provide traceability for flow meters used for custody transfer of pipeline quality natural gas. NIST disseminates the SI unit of flow by calibrating a customer flow meter against a parallel array of turbine meter working standards, which in turn are traceable to a pressure-volume-temperature-time (PVTt) primary standard. The calibration flow range extends from 0.125 actual m3/s to 9 actual m3/s with an expanded uncertainty as low as 0.22% at high flows, and increasing to almost 0.40% at the lowest flows. Details regarding the traceability chain and uncertainty analysis are documented in prior publications. The current manuscript verifies NIST's calibration uncertainty via a bilateral comparison with the German National Metrology Institute PTB. The results of the bilateral are linked to the 2006 key comparison results between three EURAMET national metrology institutes (i.e., PTB, VSL and LNE). Linkage is accomplished in spite of using a different transfer standard in the bilateral versus the key comparison. A mathematical proof is included that demonstrates that the relative difference between a laboratory's measured flow and the key comparison reference value is independent of the transfer package for most flow measurement applications. The bilateral results demonstrate that NIST's natural gas flow measurements are within their specified uncertainties and are equivalent to those of the EURAMET National Metrology Institutes. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  19. Improved Modeling of Naturally Fractured Reservoirs by Quantitatively Handling Flow Convergence into the Wellbore

    NASA Astrophysics Data System (ADS)

    Stadelman, M.; Crandall, D.; Sams, W. N.; Bromhal, G. S.

    2015-12-01

    Complex fractured networks in the subsurface control the flow of fluids in many applications, and accurately modeling their interaction with wells is critical to understanding their behavior. For tight sand and shale formations, fluid flow is primarily restricted to fractures within each rock layer. NFFLOW was designed by the Department of Energy to model gas well production from naturally fractured reservoirs. NFFLOW is a discrete fracture simulator, with every fracture and rock matrix in the domain handled individually. One-dimensional models are used calculate the flow through connected fractures and flow from the surrounding rocks into fractures. Flow into wellbores are determined from the combined flux from connecting fractures and adjacent rock matrices. One-dimensional fluid flow equations are used because they are extremely fast to solve and represent a reasonable approximation of the physical behavior of fluids in most of the reservoir. However, near the wellbore those models become inaccurate due to gas flow convergence, which is a multidimensional situation. We present a method to correct the one-dimensional models, using data from two-dimensional fluid flow models, while maintaining the original simulator speed. By applying corrections from the two-dimensional model, the one-dimensional models can better account for gas flow convergence into the wellbore as well as the location of the wellbore within the rock strata. Corrections were successful in scaling the one-dimensional flow rates to match the two dimensional values over a wide range of parameters for both fracture flow and porous media flow into the wellbore. This is shown to increase the accuracy of history matching to production data for a wide range of wells, allowing for better modeling and prediction of future productivity. With an accurate history match established, NFFLOW can then be used to investigate issues such as the ability of the formation to sequester carbon dioxide or the effects

  20. Measurement of Gas Velocities in the Presence of Solids in the Riser of a Cold Flow Circulating Fluidized Bed

    SciTech Connect

    Spenik, J.; Ludlow, J.C.; Compston, R.; Breault, R.W.

    2007-01-01

    The local gas velocity and the intensity of the gas turbulence in a gas/solid flow are a required measurement in validating the gas and solids flow structure predicted by computational fluid dynamic (CFD) models in fluid bed and transport reactors. The high concentration and velocities of solids, however, make the use of traditional gas velocity measurement devices such as pitot tubes, hot wire anemometers and other such devices difficult. A method of determining these velocities has been devised at the National Energy Technology Laboratory employing tracer gas. The technique developed measures the time average local axial velocity gas component of a gas/solid flow using an injected tracer gas which induces changes in the heat transfer characteristics of the gas mixture. A small amount of helium is injected upstream a known distance from a self-heated thermistor. The thermistor, protected from the solids by means of a filter, is exposed to gases that are continuously extracted from the flow. Changes in the convective heat transfer characteristics of the gas are indicated by voltage variations across a Wheatstone bridge. When pulsed injections of helium are introduced to the riser flow the change in convective heat transfer coefficient of the gas can be rapidly and accurately determined with this instrument. By knowing the separation distance between the helium injection point and the thermistor extraction location as well as the time delay between injection and detection, the gas velocity can easily be calculated. Variations in the measured gas velocities also allow the turbulence intensity of the gas to be estimated.

  1. Noninvasive evaluation of flow changes and gas bubbles in the circulation by combined use of color-flow-imaging and computer postprocessing

    NASA Astrophysics Data System (ADS)

    Brubakk, A. O.; Torp, H.; Angelsen, B. A. J.

    A system for obtaining cardiovascular data by using an ultrasonic scanner combined with a noninvasive method for measuring pulsatile pressure and computer-based postprocessing capabilities has been developed. The system is based on an ultrasonic scanning and Doppler system together with programs to transmit the data to a Macintosh II computer. A system for detecting and counting air bubbles in the circulation system through analysis of ultrasonic images containing gas bubbles has also been developed. The basic instrumentation incorporated in these systems is described and the postprocessing of ultrasound data is discussed in detail. The ability to perform postprocessing of data directly on the spacecraft, thereby making it possible to change experimental setup based on results is cited as one of the primary advantages of this system.

  2. Effect of Inlet and Outlet Flow Conditions on Natural Gas Parameters in Supersonic Separation Process

    PubMed Central

    Yang, Yan; Wen, Chuang; Wang, Shuli; Feng, Yuqing

    2014-01-01

    A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions. PMID:25338207

  3. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    NASA Astrophysics Data System (ADS)

    Sakitani, Katsumi; Honda, Hiroshi

    Experiments were performed to investigate feasibility of using organic materials as a PCM for a latent heat storage unit of a natural circulation cooling/latent heat storage system. This system was designed to cool a shelter accommodating telecommunication equipment located in subtropical deserts or similar regions without using a power source. Taking into account practical considerations and the results of various experiments regarding the thermodynamic properties, thermal degradation, and corrosiveness to metals, lauric acid and iron was selected for the PCM and the latent heat storage unit material, respectively. Cyclic heating and cooling of the latent heat storage unit undergoing solid-liquid phase change was repeated for more than 430 days. The results showed that the heating-cooling curve was almost unchanged between the early stage and the 1,870th cycle. It was concluded that the latent heat storage unit could be used safely for more than ten years as a component of the cooling system.

  4. Design of a Slotted, Natural-Laminar-Flow Airfoil for Business-Jet Applications

    NASA Technical Reports Server (NTRS)

    Somers, Dan M.

    2012-01-01

    A 14-percent-thick, slotted, natural-laminar-flow airfoil, the S204, for light business-jet applications has been designed and analyzed theoretically. The two primary objectives of high maximum lift, relatively insensitive to roughness, and low profile drag have been achieved. The drag-divergence Mach number is predicted to be greater than 0.70.

  5. Environmental flows in the context of unconventional natural gas development in the Marcellus Shale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative flow-ecology relationships are needed to evaluate the threat of water withdrawals associated with unconventional natural gas development to aquatic ecosystems. Addressing this need, we assessed current patterns of hydrologic alteration in the Marcellus Shale region by comparing observed...

  6. FLOW PROPERTIES OF NATURAL RUBBER COMPOSITES FILLED WITH DEFATTED SOY FLOUR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, defatted soy flour (DSF) in a styrene-butadiene matrix has been shown to have a significant reinforcement effect. In this study, the objective is to investigate the flow properties of composites in natural rubber to understand their processing characteristics. Composites with 10 to 30 ...

  7. Seasonal flows of international British Columbia-Alaska rivers: The nonlinear influence of ocean-atmosphere circulation patterns

    NASA Astrophysics Data System (ADS)

    Fleming, S. W.; Hood, E.; Dahlke, H. E.; O'Neel, S.

    2016-01-01

    The northern portion of the Pacific coastal temperate rainforest (PCTR) is one of the least anthropogenically modified regions on earth and remains in many respects a frontier area to science. Rivers crossing the northern PCTR, which is also an international boundary region between British Columbia, Canada and Alaska, USA, deliver large freshwater and biogeochemical fluxes to the Gulf of Alaska and establish linkages between coastal and continental ecosystems. We evaluate interannual flow variability in three transboundary PCTR watersheds in response to El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), and North Pacific Gyre Oscillation (NPGO). Historical hydroclimatic datasets from both Canada and the USA are analyzed using an up-to-date methodological suite accommodating both seasonally transient and highly nonlinear teleconnections. We find that streamflow teleconnections occur over particular seasonal windows reflecting the intersection of specific atmospheric and terrestrial hydrologic processes. The strongest signal is a snowmelt-driven flow timing shift resulting from ENSO- and PDO-associated temperature anomalies. Autumn rainfall runoff is also modulated by these climate modes, and a glacier-mediated teleconnection contributes to a late-summer ENSO-flow association. Teleconnections between AO and freshet flows reflect corresponding temperature and precipitation anomalies. A coherent NPGO signal is not clearly evident in streamflow. Linear and monotonically nonlinear teleconnections were widely identified, with less evidence for the parabolic effects that can play an important role elsewhere. The streamflow teleconnections did not vary greatly between hydrometric stations, presumably reflecting broad similarities in watershed characteristics. These results establish a regional foundation for both transboundary water management and studies of long-term hydroclimatic and environmental change.

  8. Phenotypic Features of Circulating Leukocytes from Non-human Primates Naturally Infected with Trypanosoma cruzi Resemble the Major Immunological Findings Observed in Human Chagas Disease

    PubMed Central

    Mattoso-Barbosa, Armanda Moreira; Perdigão-de-Oliveira, Marcelo; Costa, Ronaldo Peres; Elói-Santos, Silvana Maria; Gomes, Matheus de Souza; do Amaral, Laurence Rodrigues; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Dick, Edward J.; Hubbard, Gene B.; VandeBerg, Jane F.; VandeBerg, John L.

    2016-01-01

    Background Cynomolgus macaques (Macaca fascicularis) represent a feasible model for research on Chagas disease since natural T. cruzi infection in these primates leads to clinical outcomes similar to those observed in humans. However, it is still unknown whether these clinical similarities are accompanied by equivalent immunological characteristics in the two species. We have performed a detailed immunophenotypic analysis of circulating leukocytes together with systems biology approaches from 15 cynomolgus macaques naturally infected with T. cruzi (CH) presenting the chronic phase of Chagas disease to identify biomarkers that might be useful for clinical investigations. Methods and Findings Our data established that CH displayed increased expression of CD32+ and CD56+ in monocytes and enhanced frequency of NK Granzyme A+ cells as compared to non-infected controls (NI). Moreover, higher expression of CD54 and HLA-DR by T-cells, especially within the CD8+ subset, was the hallmark of CH. A high level of expression of Granzyme A and Perforin underscored the enhanced cytotoxicity-linked pattern of CD8+ T-lymphocytes from CH. Increased frequency of B-cells with up-regulated expression of Fc-γRII was also observed in CH. Complex and imbricate biomarker networks demonstrated that CH showed a shift towards cross-talk among cells of the adaptive immune system. Systems biology analysis further established monocytes and NK-cell phenotypes and the T-cell activation status, along with the Granzyme A expression by CD8+ T-cells, as the most reliable biomarkers of potential use for clinical applications. Conclusions Altogether, these findings demonstrated that the similarities in phenotypic features of circulating leukocytes observed in cynomolgus macaques and humans infected with T. cruzi further supports the use of these monkeys in preclinical toxicology and pharmacology studies applied to development and testing of new drugs for Chagas disease. PMID:26808481

  9. High frequency of circulating HBcAg-specific CD8 T cells in hepatitis B infection: a flow cytometric analysis

    PubMed Central

    Matsumura, S; Yamamoto, K; Shimada, N; Okano, N; Okamoto, R; Suzuki, T; Hakoda, T; Mizuno, M; Higashi, T; Tsuji, T

    2001-01-01

    Viral antigen-specific T cells are important for virus elimination. We studied the hepatitis B virus (HBV)-specific T cell response using flow cytometry. Three phases of HBV infection were studied: Group A, HBeAg (+) chronic hepatitis; Group B, HBeAb (+) HBV carrier after seroconversion; and Group C, HBsAb (+) phase. Peripheral T cells were incubated with recombinant HB core antigen (HBcAg), and intracytoplasmic cytokines were analysed by flow cytometry. HBcAg-specific CD4 and CD8 T cells were identified in all three groups and the number of IFN-γpositive T cells was greater than TNF-α-positive T cells. The frequency of IFN-γ-positive CD4 and CD8 T cells was highest in Group C, compared with Groups A and B. No significant difference in the HBcAg-specific T cell response was observed between Group A and Group B. The HBcAg-specific CD8 T cell response was diminished by CD4 depletion, addition of antibody against human leucocyte antigen (HLA) class I, class II or CD40L. Cytokine-positive CD8 T cells without HBcAg stimulation were present at a high frequency (7 of 13 cases) in Group B, but were rare in other groups. HBcAg-specific T cells can be detected at high frequency by a sensitive flow cytometric analysis, and these cells are important for controlling HBV replication. PMID:11472405

  10. Influence of non-uniform flow distribution on overall heat transfer in convective bundle of circulating fluidized bed boiler

    NASA Astrophysics Data System (ADS)

    Kalisz, Sylwester; Pronobis, Marek

    2005-09-01

    In the paper the results of comparative investigations on heat transfer performance of boiler convective bundle and its additional surface, i.e. membrane water wall are presented. For this purpose the non-uniform flow field was modelled in an isothermal test stand operated in self-modeling mode. Then the heat transfer characteristics of such arrangement were estimated by means of naphthalene heat/mass transfer analogy technique. The bundle samples in the shape of round bars (rods) were cast with naphthalene and placed in 27 locations in the bundle while water-wall-modeling samples were coated with naphthalene by painting. Both types of samples were exposed to cold air flow. The results were then compared to the mean heat transfer performance of the same bundle exposed to uniform flow field. The differences of approximately 10% were noticed. Moreover, the heat transfer coefficients for additional surface were even three times lower than those of the bundle. In view of results obtained in the work, the commonly made assumption of equality of heat transfer coefficients for both the bundle and its additional surface may lead to certain errors in heat transfer calculations and discrepancies between the calculated values of heating surfaces area and later operational needs of steam generator.

  11. A Method for the Constrained Design of Natural Laminar Flow Airfoils

    NASA Technical Reports Server (NTRS)

    Green, Bradford E.; Whitesides, John L.; Campbell, Richard L.; Mineck, Raymond E.

    1996-01-01

    A fully automated iterative design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. Drag reductions have been realized using the design method over a range of Mach numbers, Reynolds numbers and airfoil thicknesses. The thrusts of the method are its ability to calculate a target N-Factor distribution that forces the flow to undergo transition at the desired location; the target-pressure-N-Factor relationship that is used to reduce the N-Factors in order to prolong transition; and its ability to design airfoils to meet lift, pitching moment, thickness and leading-edge radius constraints while also being able to meet the natural laminar flow constraint. The method uses several existing CFD codes and can design a new airfoil in only a few days using a Silicon Graphics IRIS workstation.

  12. Flow resistance of flexible and stiff vegetation: a flume study with natural plants

    NASA Astrophysics Data System (ADS)

    Järvelä, Juha

    2002-12-01

    Flow resistance of natural grasses, sedges and willows was studied in a laboratory flume. The objective was to investigate, how type, density and placement of vegetation, flow depth and velocity influence friction losses. The plants were studied in various combinations under nonsubmerged and submerged conditions in a total of 350 test runs. The results show large variations in the friction factor, f, with depth of flow, velocity, Reynolds number, and vegetative density. The friction factor was dependent mostly on (1) the relative roughness in the case of grasses; (2) the flow velocity in the case of willows and sedges/grasses combined; and (3) the flow depth in the case of leafless willows on bare bottom soil. Leaves on willows seemed to double or even triple the friction factor compared to the leafless case despite the fact that the bottom was growing sedges in both cases. For the leafless willows, f appeared to increase with depth almost linearly and independently of velocity. Unexpectedly, different spacing of the same number of leafless willows with grasses did not have any significant effect on f. Based on the experimental work, a better understanding of flow resistance due to different combinations of natural stiff and flexible vegetation under nonsubmerged and submerged conditions was gained.

  13. Numerical and experimental investigation of natural flow-induced vibrations of flexible hydrofoils

    NASA Astrophysics Data System (ADS)

    Chae, Eun Jung; Akcabay, Deniz Tolga; Lelong, Alexandra; Astolfi, Jacques Andre; Young, Yin Lu

    2016-07-01

    The objective of this work is to present combined numerical and experimental studies of natural flow-induced vibrations of flexible hydrofoils. The focus is on identifying the dependence of the foil's vibration frequencies and damping characteristics on the inflow velocity, angle of attack, and solid-to-fluid added mass ratio. Experimental results are shown for a cantilevered polyacetate (POM) hydrofoil tested in the cavitation tunnel at the French Naval Academy Research Institute (IRENav). The foil is observed to primarily behave as a chordwise rigid body and undergoes spanwise bending and twisting deformations, and the flow is observed to be effectively two-dimensional (2D) because of the strong lift retention at the free tip caused by a small gap with a thickness less than the wall boundary layer. Hence, the viscous fluid-structure interaction (FSI) model is formulated by coupling a 2D unsteady Reynolds-averaged Navier-Stokes (URANS) model with a two degree-of-freedom (2-DOF) model representing the spanwise tip bending and twisting deformations. Good agreements were observed between viscous FSI predictions and experimental measurements of natural flow-induced vibrations in fully turbulent and attached flow conditions. The foil vibrations were found to be dominated by the natural frequencies in absence of large scale vortex shedding due to flow separation. The natural frequencies and fluid damping coefficients were found to vary with velocity, angle of attack, and solid-to-fluid added mass ratio. In addition, the numerical results showed that the in-water to in-air natural frequency ratios decreased rapidly, and the fluid damping coefficients increased rapidly, as the solid-to-fluid added mass ratio decreases. Uncoupled mode (UM) linear potential theory was found to significantly over-predict the fluid damping for cases of lightweight flexible hydrofoils, and this over-prediction increased with higher velocity and lower solid-to-fluid added mass ratio.

  14. A critical evaluation of an asymmetrical flow field-flow fractionation system for colloidal size characterization of natural organic matter.

    PubMed

    Zhou, Zhengzhen; Guo, Laodong

    2015-06-19

    Colloidal retention characteristics, recovery and size distribution of model macromolecules and natural dissolved organic matter (DOM) were systematically examined using an asymmetrical flow field-flow fractionation (AFlFFF) system under various membrane size cutoffs and carrier solutions. Polystyrene sulfonate (PSS) standards with known molecular weights (MW) were used to determine their permeation and recovery rates by membranes with different nominal MW cutoffs (NMWCO) within the AFlFFF system. Based on a ≥90% recovery rate for PSS standards by the AFlFFF system, the actual NMWCOs were determined to be 1.9 kDa for the 0.3 kDa membrane, 2.7 kDa for the 1 kDa membrane, and 33 kDa for the 10 kDa membrane, respectively. After membrane calibration, natural DOM samples were analyzed with the AFlFFF system to determine their colloidal size distribution and the influence from membrane NMWCOs and carrier solutions. Size partitioning of DOM samples showed a predominant colloidal size fraction in the <5 nm or <10 kDa size range, consistent with the size characteristics of humic substances as the main terrestrial DOM component. Recovery of DOM by the AFlFFF system, as determined by UV-absorbance at 254 nm, decreased significantly with increasing membrane NMWCO, from 45% by the 0.3 kDa membrane to 2-3% by the 10 kDa membrane. Since natural DOM is mostly composed of lower MW substances (<10 kDa) and the actual membrane cutoffs are normally larger than their manufacturer ratings, a 0.3 kDa membrane (with an actual NMWCO of 1.9 kDa) is highly recommended for colloidal size characterization of natural DOM. Among the three carrier solutions, borate buffer seemed to provide the highest recovery and optimal separation of DOM. Rigorous calibration with macromolecular standards and optimization of system conditions are a prerequisite for quantifying colloidal size distribution using the flow field-flow fractionation technique. In addition, the coupling of AFlFFF with fluorescence

  15. Concept of CFD model of natural draft wet-cooling tower flow

    NASA Astrophysics Data System (ADS)

    Hyhlík, T.

    2014-03-01

    The article deals with the development of CFD model of natural draft wet-cooling tower flow. The physical phenomena taking place within a natural draft wet cooling tower are described by the system of conservation law equations along with additional equations. The heat and mass transfer in the counterflow wet-cooling tower fill are described by model [1] which is based on the system of ordinary differential equations. Utilization of model [1] of the fill allows us to apply commonly measured fill characteristics as shown by [2].The boundary value problem resulting from the fill model is solved separately. The system of conservation law equations is interlinked with the system of ordinary differential equations describing the phenomena occurring in the counterflow wet-cooling tower fill via heat and mass sources and via boundary conditions. The concept of numerical solution is presented for the quasi one dimensional model of natural draft wet-cooling tower flow. The simulation results are shown.

  16. In vivo flow cytometry visualizes the effects of tumor resection on metastasis by real-time monitoring of rare circulating cancer cells

    NASA Astrophysics Data System (ADS)

    Wei, Dan; Fan, Zhichao; Wang, Xueding; Wei, Xunbin

    2013-02-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world, with approximately 1,000,000 cases reported every year. The fate of circulating tumor cells (CTCs) is an important determinant of metastasis and recurrence, which lead to most deaths in HCC. Therefore, quantification of CTCs proves to be an emerging tool for diagnosing, stratifying and monitoring patients with metastatic diseases. In vivo flow cytometry (IVFC) has the capability to monitor the dynamics of fluorescently labeled CTCs continuously and non-invasively. Here, we combine IVFC technique and a GFP-transfected HCC orthotopic metastatic tumor model to monitor CTC dynamics. Our IVFC has ~1.8-fold higher sensitivity than whole blood analysis by conventional flow cytometry. We find out a significant difference of CTC dynamics between orthotopic and subcutaneous (s.c.) tumor models. We also investigate whether liver resection promotes or restricts hematogenous metastasis in advanced HCC. Our result shows that the number of CTCs and early metastases decreases after the resection. CTC dynamics is correlated with tumor growth in our orthotopic tumor model. The number and size of distant metastases correspond to CTC dynamics. The novel IVFC technique combined with orthotopic tumor models might provide insights to tumor hematogenous metastasis and guidance to cancer therapy.

  17. The relative influence of natural selection and geography on gene flow in guppies.

    PubMed

    Crispo, Erika; Bentzen, Paul; Reznick, David N; Kinnison, Michael T; Hendry, Andrew P

    2006-01-01

    Two general processes may influence gene flow among populations. One involves divergent selection, wherein the maladaptation of immigrants and hybrids impedes gene flow between ecological environments (i.e. ecological speciation). The other involves geographic features that limit dispersal. We determined the relative influence of these two processes in natural populations of Trinidadian guppies (Poecilia reticulata). If selection is important, gene flow should be reduced between different selective environments. If geography is important, gene flow should be impeded by geographic distance and physical barriers. We examined how genetic divergence, long-term gene flow, and contemporary dispersal within a watershed were influenced by waterfalls, geographic distance, predation, and habitat features. We found that waterfalls and geographic distance increased genetic divergence and reduced dispersal and long-term gene flow. Differences in predation or habitat features did not influence genetic divergence or gene flow. In contrast, differences in predation did appear to reduce contemporary dispersal. We suggest that the standard predictions of ecological speciation may be heavily nuanced by the mating behaviour and life history strategies of guppies. PMID:16367829

  18. Mimicking Natural Laminar to Turbulent Flow Transition: A Systematic CFD Study Using PAB3D

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Abdol-Hamid, Khaled S.

    2005-01-01

    For applied aerodynamic computations using a general purpose Navier-Stokes code, the common practice of treating laminar to turbulent flow transition over a non-slip surface is somewhat arbitrary by either treating the entire flow as turbulent or forcing the flow to undergo transition at given trip locations in the computational domain. In this study, the possibility of using the PAB3D code, standard k-epsilon turbulence model, and the Girimaji explicit algebraic stresses model to mimic natural laminar to turbulent flow transition was explored. The sensitivity of flow transition with respect to two limiters in the standard k-epsilon turbulence model was examined using a flat plate and a 6:1 aspect ratio prolate spheroid for our computations. For the flat plate, a systematic dependence of transition Reynolds number on background turbulence intensity was found. For the prolate spheroid, the transition patterns in the three-dimensional boundary layer at different flow conditions were sensitive to the free stream turbulence viscosity limit, the reference Reynolds number and the angle of attack, but not to background turbulence intensity below a certain threshold value. The computed results showed encouraging agreements with the experimental measurements at the corresponding geometry and flow conditions.

  19. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2006-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  20. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2005-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  1. ENERGY EFFICIENT THERMAL MANAGEMENT FOR NATURAL GAS ENGINE AFTERTREATMENT VIA ACTIVE FLOW CONTROL

    SciTech Connect

    David K. Irick; Ke Nguyen

    2004-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  2. Estimating peak-flow frequency statistics for selected gaged and ungaged sites in naturally flowing streams and rivers in Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Skinner, Kenneth D.; Veilleux, Andrea G.

    2016-01-01

    -central Idaho (average standard error of prediction=46.4 percent; pseudo-R2>92 percent) and region 5 in central Idaho (average standard error of prediction=30.3 percent; pseudo-R2>95 percent). Regression model fit was poor for region 7 in southern Idaho (average standard error of prediction=103 percent; pseudo-R2<78 percent) compared to other regions because few streamgages in region 7 met the criteria for inclusion in the study, and the region’s semi-arid climate and associated variability in precipitation patterns causes substantial variability in peak flows.A drainage area ratio-adjustment method, using ratio exponents estimated using generalized least-squares regression, was presented as an alternative to the regional regression equations if peak-flow estimates are desired at an ungaged site that is close to a streamgage selected for inclusion in this study. The alternative drainage area ratio-adjustment method is appropriate for use when the drainage area ratio between the ungaged and gaged sites is between 0.5 and 1.5.The updated regional peak-flow regression equations had lower total error (standard error of prediction) than all regression equations presented in a 1982 study and in four of six regions presented in 2002 and 2003 studies in Idaho. A more extensive streamgage screening process used in the current study resulted in fewer streamgages used in the current study than in the 1982, 2002, and 2003 studies. Fewer streamgages used and the selection of different explanatory variables were likely causes of increased error in some regions compared to previous studies, but overall, regional peak‑flow regression model fit was generally improved for Idaho. The revised statistical procedures and increased streamgage screening applied in the current study most likely resulted in a more accurate representation of natural peak-flow conditions.The updated, regional peak-flow regression equations will be integrated in the U.S. Geological Survey StreamStats program to allow

  3. Buoyancy and Pressure Induced Flow of Hot Gases in Vertical Shafts with Natural and Forced Ventilation

    NASA Astrophysics Data System (ADS)

    Jaluria, Yogesh; Tamm, Gunnar Olavi

    2014-11-01

    An experimental investigation was conducted to study buoyancy and pressure induced flow of hot gases in vertical shafts to model smoke propagation in elevator and ventilation shafts of high rise building fires. Various configurations were tested with regard to natural and forced ventilation imposed at the upper and lower surfaces of the vertical shaft. The aspect ratio was taken at a typical value of 6. From a lower vent, the inlet conditions for smoke and hot gases were varied in terms of the Reynolds and Grashof numbers. The forced ventilation at the upper or lower boundary was of the same order as the bulk shaft flow. Measurements were taken within the shaft to allow a detailed study of the steady state flow and thermal fields established for various shaft configurations and inlet conditions, from which optimal means for smoke alleviation in high rise building fires may be developed. Results indicated a wall plume as the primary transport mechanism for smoke propagating from the inlet towards the exhaust region. Recirculation and entrainment dominated at high inlet Grashof number flows, while increased inlet Reynolds numbers allowed greater mixing in the shaft. The development and stability of these flow patterns and their effects on the smoke behavior were assessed for several shaft configurations with different inlet conditions. The comparisons indicated that the fastest smoke removal and lowest overall shaft temperatures occur for a configuration with natural ventilation at the top surface and forced ventilation up from the shaft bottom.

  4. Scaling Analysis of Natural Fracture Systems in Support of Fluid Flow Modeling and Seismic Risk Assessment

    NASA Astrophysics Data System (ADS)

    La Pointe, P. R.

    2001-12-01

    Many significant problems in rock engineering require consideration of fluid flow through natural fractures in rock or the mechanical response of a fractured rock mass. Accurate prediction of flow volumes, rates and mass transport through natural fracture systems, and their mechanical response, is critical for design and licensing of nuclear waste repositories, optimization of recovery from many petroleum reservoirs, and also in solution mining, groundwater resource development and protection, and hardrock civil engineering projects. Many of these projects require a large-scale, 3D numerical model for flow, transport or mechanical simulation or visualization. A fundamental problem in constructing these models is that fracture data from wells, boreholes, geophysical profiles or surface outcrops represents a small portion of the rock volume under consideration. Not only does the data represent a very small proportion of the reservoir or rock mass, it also represents fracturing in very restricted size scales. Thus scaling analysis is critical to accurately constructing a fracture model from the data. This paper describes, through two case examples, how scaling analysis techniques have been used to develop models of natural fracturing to support the design and licensing of a high level nuclear waste repository in Finland, and for optimization of a tertiary recovery project in an aging oil field in the US. A new technique for scaling fracture sizes is presented. Together, these two examples illustrate the importance of the scaling analyses, pitfalls in carrying out the analyses, and new methods to improve the 3D characterization of naturally fractured rock masses.

  5. Natural Circulation in the Blanket Heat Removal System During a Loss-of-Pumping Accident (LOFA) Based on Initial Conceptual Design

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    A transient natural convection model of the APT blanket primary heat removal (HR) system was developed to demonstrate that the blanket could be cooled for a sufficient period of time for long term cooling to be established following a loss-of-flow accident (LOFA). The particular case of interest in this report is a complete loss-of-pumping accident. For the accident scenario in which pumps are lost in both the target and blanket HR systems, natural convection provides effective cooling of the blanket for approximately 68 hours, and, if only the blanket HR systems are involved, natural convection is effective for approximately 210 hours. The heat sink for both of these accident scenarios is the assumed stagnant fluid and metal on the secondary sides of the heat exchangers.

  6. POWER GENERATION USING MEGNETOHYDRODYNAMIC GENERATOR WITH A CIRCULATION FLOW DRIVEN BY SOLAR-HEAT-INDUCED NATURAL CONVECTION

    EPA Science Inventory

    The project team has theoretically studied the mechanism of magnetohydrodynamic generator, the coupling of heat transfer and buoyancy-driven free convection, and radiation heat transfer. A number of ideas for the projects have been brainstormed in the team. The underline physi...

  7. Natural convection flows and associated heat transfer processes in room fires

    NASA Astrophysics Data System (ADS)

    Sargent, William Stapf

    This report presents the results of experimental investigations of natural convection flows and associated heat transfer processes produced by small fires in rooms with a single door or window opening. Calculation procedures have been developed to model the major aspects of these flows.Two distinct sets of experiments were undertaken.First, in a roughly 1/4 scale facility, a slightly dense solution of brine was allowed to flow into a tank of fresh water. The resulting density difference produced a flow which simulated a very small fire in a room with adiabatic walls. Second, in an approximately 1/2 scale test room, a nearly stoichioinetric mixture of air and natural gas was burned at floor level to model moderate strength fires. In this latter facility, we directly measured the heat conducted through the walls, in addition to determining the gas temperature and composition throughout the room.These two facilities complemented each other. The former offered good flow visualization and allowed us to observe the basic flow phenomena in the absence of heat transfer effects. On the other hand, the latter, which involved relatively larger fires, was a more realistic simulation of an actual room fire, and allowed us to calculate the convective heat transfer to the ceiling and walls. In addition, the stronger sources present in these 1/2 scale tests produced significant secondary flows. These secondary flows along with heat transfer effects act to modify the gas temperature or density profiles within the room from those observed in the 1/4 scale experiments.Several calculation procedures have been developed, based on the far field properties of plumes when the density differences are small (the Boussinesq approximation). The simple point source plume solution is used along with hydraulic analysis of flow through an orifice to estimate the temperatures of the hot ceiling layer gas and of the cooler floor zone fluid, as well as the height of the interface between them. A

  8. Preparative free-flow electrophoresis as a method of fractionation of natural organic materials

    USGS Publications Warehouse

    Leenheer, J.A.; Malcolm, R.L.

    1973-01-01

    Preparative free-flow electrophoresis was found to be an efficient method of conducting large-scale fractionations of the natural organic polyelectrolytes occurring in many surface waters and soils. The method of free-flow electrophoresis obviates, the problem of adsorption upon a supporting medium and permits the use of high potential gradients and currents because of an efficient cooling system. Separations were monitored by determining organic carbon concentration with a dissolved carbon analyzer, and color was measured by absorbance at 400 nanometers. Organic materials from waters and soils were purified by filtration, hydrogen exchange, and dialysis and were concentrated by freeze drying or freeze concentration. In electrophoretic fractionations of natural organic materials typically found in surface waters and soils, color was found to increase with the charge of the fraction.

  9. Measurements of natural ice nuclei with a continuous flow diffusion chamber

    NASA Technical Reports Server (NTRS)

    Rogers, D. C.

    1983-01-01

    A description is given of a continuous flow diffusion chamber technique for measuring the atmospheric concentrations of natural C-F nuclei. It is noted that the same device can also measure deposition nuclei; these two modes can thus be separated and compared. The laminar flow characteristics allow the temperature and supersaturation to be calculated with a high degree of precision and confidence. The method avoids the problems of a supporting substrate and of concentrating the sample into a small volume (as for membrane filters). The present measurements of natural ice nucleus concentrations at +1 percent water supersaturation are found to be comparable to research aircraft measurements of ice crystal concentrations in winter cap clouds over Elk Mountain, Wyoming (Vali et al., 1982).

  10. DRE-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb; Liao, Wei; Li, Fe; Choudhari, Meelan

    2013-01-01

    Nonlinear parabolized stability equations and secondary instability analyses are used to provide a computational assessment of the potential use of the discrete roughness elements (DRE) technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural laminar flow airfoil with a leading-edge sweep angle of 34.6deg, free-stream Mach number of 0.75 and chord Reynolds numbers of 17 x 10(exp 6), 24 x 10(exp 6) and 30 x 10(exp 6) suggest that DRE could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small wavelength stationary crossflow disturbances (i.e., DRE) also suppresses the growth of most amplified traveling crossflow disturbances.

  11. Boundary layer stability analysis of a natural laminar flow glove on the F-111 TACT airplane

    NASA Technical Reports Server (NTRS)

    Runyan, L. J.; Steers, L. L.

    1980-01-01

    A natural laminar flow airfoil has been developed as a part of the aircraft energy efficiency program. A NASA flight program incorporating this airfoil into partial wing gloves on the F-111 TACT airplane was scheduled to start in May, 1980. In support of this research effort, an extensive boundary layer stability analysis of the partial glove has been conducted. The results of that analysis show the expected effects of wing leading-edge sweep angle, Reynolds number, and compressibility on boundary layer stability and transition. These results indicate that it should be possible to attain on the order of 60% laminar flow on the upper surface and 50% laminar flow on the lower surface for sweep angles of at least 20 deg, chord Reynolds numbers of 25 x 10 to the 6th and Mach numbers from 0.81 to 0.85.

  12. An Approach to the Constrained Design of Natural Laminar Flow Airfoils

    NASA Technical Reports Server (NTRS)

    Green, Bradford E.

    1997-01-01

    A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integral turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the laminar flow toward the desired amount. An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.

  13. An approach to the constrained design of natural laminar flow airfoils

    NASA Technical Reports Server (NTRS)

    Green, Bradford Earl

    1995-01-01

    A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integml turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the larninar flow toward the desired amounl An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.

  14. Flight investigation of natural laminar flow on the Bellanca Skyrocket II

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Obara, C. J.; Gregorek, G. M.; Hoffman, M. J.; Freuhler, R. J.

    1983-01-01

    Two major concerns have inhibited the use of natural laminar flow (NLF) for viscous drag reduction on production aircraft. These are the concerns of achieveability of NLF on practical airframe surfaces, and maintainability in operating environments. Previous research in this area left a mixture of positive and negative conclusions regarding these concerns. While early (pre-1950) airframe construction methods could not achieve NLF criteria for waviness, several modern construction methods (composites for example) can achieve the required smoothness. This paper presents flight experiment data on the achieveability and maintainability of NLF on a high-performance, single-propeller, composite airplane, the Bellanca Skyrocket II. The significant contribution of laminar flow to the performance of this airplane was measured. Observations of laminar flow in the propeller slipstream are discussed, as are the effects of insect contamination on the wing. These observations have resulted in a new appreciation of the operational feasibility for achieving and maintaining NLF on modern airframe surfaces.

  15. Natural Colloid Mobilization in Unsaturated Hanford Coarse Sand Under Transient Flow and Transient Chemical Conditions

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Saiers, J. E.

    2007-12-01

    Colloid-sized clay, carbonate, and metal oxide particles are ubiquitous in the vadose zone and strongly adsorb dissolved contaminants such as metals and radionuclides. Under certain conditions, colloid particles are readily mobilized (released) into pore water and travel in a nearly conservative fashion and thus can facilitate the transport of contaminants. Although much progress has been made toward identifying and modeling colloid mobilization and transport processes in ideal, homogeneous systems, our understanding of the phenomenon in non-ideal, heterogeneous systems is still limited. We investigated natural colloid mobilization and transport in laboratory columns packed with Hanford Coarse Sand, a heterogeneous natural sediment. Our major focus was the role of transient flow and transient chemical conditions on colloid release and transport in unsaturated media. We found that a moving air-water interface had the greatest effects on the mobilization of colloid, and up to ~1000 mg/L of colloid was mobilized during column drainage at an ionic strength of 2 mM. An increase in flow rate or decrease in ionic strength also mobilized colloids. A model that accounts for transient pore water flow, colloid transport, and mass transfer in unsaturated media was developed to describe colloid mobilization in our column experiments. Both our experimental and modeling results showed the important role of moving air-water interfaces, changes in moisture content, and changes in ionic strength in mobilizing natural colloids in heterogeneous natural sediments. This work has contributed to our knowledge of colloid and colloid-associated contaminant mobilization in real vadose-zone environments under transient flow and transient chemical conditions.

  16. 75 FR 42330 - Elemental Mercury Used in Flow Meters, Natural Gas Manometers, and Pyrometers; Significant New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ...EPA is promulgating a significant new use rule (SNUR) under section 5(a)(2) of the Toxic Substances Control Act (TSCA) for elemental mercury (CAS No. 7439-97-6) for use in flow meters, natural gas manometers, and pyrometers, except for use in these articles when they are in service as of September 11, 2009. This action will require persons who intend to manufacture (including import) or......

  17. The Fractional Step Method Applied to Simulations of Natural Convective Flows

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Heinrich, Juan C.; Saxon, Jeff (Technical Monitor)

    2002-01-01

    This paper describes research done to apply the Fractional Step Method to finite-element simulations of natural convective flows in pure liquids, permeable media, and in a directionally solidified metal alloy casting. The Fractional Step Method has been applied commonly to high Reynold's number flow simulations, but is less common for low Reynold's number flows, such as natural convection in liquids and in permeable media. The Fractional Step Method offers increased speed and reduced memory requirements by allowing non-coupled solution of the pressure and the velocity components. The Fractional Step Method has particular benefits for predicting flows in a directionally solidified alloy, since other methods presently employed are not very efficient. Previously, the most suitable method for predicting flows in a directionally solidified binary alloy was the penalty method. The penalty method requires direct matrix solvers, due to the penalty term. The Fractional Step Method allows iterative solution of the finite element stiffness matrices, thereby allowing more efficient solution of the matrices. The Fractional Step Method also lends itself to parallel processing, since the velocity component stiffness matrices can be built and solved independently of each other. The finite-element simulations of a directionally solidified casting are used to predict macrosegregation in directionally solidified castings. In particular, the finite-element simulations predict the existence of 'channels' within the processing mushy zone and subsequently 'freckles' within the fully processed solid, which are known to result from macrosegregation, or what is often referred to as thermo-solutal convection. These freckles cause material property non-uniformities in directionally solidified castings; therefore many of these castings are scrapped. The phenomenon of natural convection in an alloy under-going directional solidification, or thermo-solutal convection, will be explained. The

  18. Natural Rolling Responses of a Delta Wing in Transonic and Subsonic Flows

    NASA Technical Reports Server (NTRS)

    Menzies, Margaret A.; Kandil, Osama A.

    1996-01-01

    The unsteady, three-dimensional, full Navier-Stokes (NS) equations and the Euler equations of rigid-body dynamics are sequentially solved to simulate the natural rolling response of slender delta wings of zero thickness at moderate to high angles of attack, to transonic and subsonic flows. The governing equations of fluid flow and dynamics of the present multi-disciplinary problem are solved using the time-accurate solution of the NS equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. The main focus is to analyze the effect of Mach number and angle of attack on the leading edge vortices and their breakdown, the resultant rolling motion, and overall aerodynamic response of the wing. Three cases demonstrate the natural response of a 65 deg swept, cropped delta wing in a transonic flow with breakdown of the leading edge vortices and an 80 deg swept delta wing in a subsonic flow undergoing either damped or self-excited limit-cycle rolling oscillations as a function of angle of attack. Comparisons with an experimental investigation completes this study, validating the analysis and illustrating the complex details afforded by computational investigations.

  19. Characterization and fluid flow simulation of naturally fractured Frontier sandstone, Green River Basin, Wyoming

    SciTech Connect

    Harstad, H.; Teufel, L.W.; Lorenz, J.C.; Brown, S.R.

    1996-08-01

    Significant gas reserves are present in low-permeability sandstones of the Frontier Formation in the greater Green River Basin, Wyoming. Successful exploitation of these reservoirs requires an understanding of the characteristics and fluid-flow response of the regional natural fracture system that controls reservoir productivity. Fracture characteristics were obtained from outcrop studies of Frontier sandstones at locations in the basin. The fracture data were combined with matrix permeability data to compute an anisotropic horizontal permeability tensor (magnitude and direction) corresponding to an equivalent reservoir system in the subsurface using a computational model developed by Oda (1985). This analysis shows that the maximum and minimum horizontal permeability and flow capacity are controlled by fracture intensity and decrease with increasing bed thickness. However, storage capacity is controlled by matrix porosity and increases linearly with increasing bed thickness. The relationship between bed thickness and the calculated fluid-flow properties was used in a reservoir simulation study of vertical, hydraulically-fractured and horizontal wells and horizontal wells of different lengths in analogous naturally fractured gas reservoirs. The simulation results show that flow capacity dominates early time production, while storage capacity dominates pressure support over time for vertical wells. For horizontal wells drilled perpendicular to the maximum permeability direction a high target production rate can be maintained over a longer time and have higher cumulative production than vertical wells. Longer horizontal wells are required for the same cumulative production with decreasing bed thickness.

  20. Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability

    USGS Publications Warehouse

    Montgomery, D.R.; Schmidt, K.M.; Dietrich, W.E.; McKean, J.

    2009-01-01

    The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium. Postfailure observations of the bedrock surface exposed in the debris flow scar reveal a strong spatial correspondence between elevated piezometric response and water discharging from bedrock fractures. Measurements of apparent root cohesion on the basal (Cb) and lateral (Cl) scarp demonstrate substantial local variability, with areally weighted values of Cb = 0.1 and Cl = 4.6 kPa. Using measured soil properties and basal root strength, the widely used infinite slope model, employed assuming slope parallel groundwater flow, provides a poor prediction of hydrologie conditions at failure. In contrast, a model including lateral root strength (but neglecting lateral frictional strength) gave a predicted critical value of relative soil saturation that fell within the range defined by the arithmetic and geometric mean values at the time of failure. The 3-D slope stability model CLARA-W, used with locally observed pore water pressure, predicted small areas with lower factors of safety within the overall slide mass at sites consistent with field observations of where the failure initiated. This highly variable and localized nature of small areas of high pore pressure that can trigger slope failure means, however, that substantial uncertainty appears inevitable for estimating hydrologie conditions within incipient debris flows under natural conditions. Copyright 2009 by the American Geophysical Union.

  1. Energy policy act transportation study: Interim report on natural gas flows and rates

    SciTech Connect

    1995-11-17

    This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

  2. In Vivo Ultra-Fast Photoacoustic Flow Cytometry of Circulating Human Melanoma Cells Using Near-Ingrared High-Pulse Rate Lasers

    PubMed Central

    Nedosekin, Dmitry A.; Sarimollaoglu, Mustafa; Ye, John; Galanzha, Ekaterina I.; Zharov, Vladimir P.

    2011-01-01

    The circulating tumor cells (CTCs) appear to be a marker of metastasis development, especially, for highly aggressive and epidemically growing melanoma malignancy that is often metastatic at early stages. Recently, we introduced in vivo photoacoustic (PA) flow cytometry (PAFC) for label-free detection of mouse B16F10 CTCs in melanoma-bearing mice using melanin as an intrinsic marker. Here, we significantly improve the speed of PAFC by using a high pulse repetition rate laser operating at 820 and 1064 nm wavelengths. This platform was used in preclinical studies for label-free PA detection of low pigmented human CTCs. Demonstrated label-free PAFC detection, low level of background signals, and favorable safety standards for near infrared irradiation suggest that a fiber laser operating at 1064 nm at pulse repetition rates up to 0.5 MHz could be a promising source for portable clinical PAFC devices. The possible applications can include early diagnosis of melanoma at the parallel progression of primary tumor and CTCs, detection of cancer recurrence, residual disease, and real-time monitoring of therapy efficiency by counting CTCs before, during and after therapeutic intervention. Herewith, we also address sensitivity of label-free PAFC melanoma CTCs detection and introduce in vivo CTCs targeting by magnetic nanoparticles conjugated with specific antibody and magnetic cells enrichment. PMID:21786417

  3. In vivo ultra-fast photoacoustic flow cytometry of circulating human melanoma cells using near-infrared high-pulse rate lasers.

    PubMed

    Nedosekin, Dmitry A; Sarimollaoglu, Mustafa; Ye, Jian-Hui; Galanzha, Ekaterina I; Zharov, Vladimir P

    2011-10-01

    The circulating tumor cells (CTCs) appear to be a marker of metastasis development, especially, for highly aggressive and epidemically growing melanoma malignancy that is often metastatic at early stages. Recently, we introduced in vivo photoacoustic (PA) flow cytometry (PAFC) for label-free detection of mouse B16F10 CTCs in melanoma-bearing mice using melanin as an intrinsic marker. Here, we significantly improve the speed of PAFC by using a high-pulse repetition rate laser operating at 820 and 1064 nm wavelengths. This platform was used in preclinical studies for label-free PA detection of low-pigmented human CTCs. Demonstrated label-free PAFC detection, low level of background signals, and favorable safety standards for near-infrared irradiation suggest that a fiber laser operating at 1064 nm at pulse repetition rates up to 0.5 MHz could be a promising source for portable clinical PAFC devices. The possible applications can include early diagnosis of melanoma at the parallel progression of primary tumor and CTCs, detection of cancer recurrence, residual disease and real-time monitoring of therapy efficiency by counting CTCs before, during, and after therapeutic intervention. Herewith, we also address sensitivity of label-free detection of melanoma CTCs and introduce in vivo CTC targeting by magnetic nanoparticles conjugated with specific antibody and magnetic cells enrichment. PMID:21786417

  4. Nacelle/pylon/wing integration on a transport model with a natural laminar flow nacelle

    NASA Technical Reports Server (NTRS)

    Lamb, M.; Aabeyounis, W. K.; Patterson, J. C., Jr.

    1985-01-01

    Tests were conducted in the Langley 16-Foot Transonic Tunnel at free-stream Mach numbers from 0.70 to 0.82 and angles of attack from -2.5 deg to 4.0 deg to determine if nacelle/pylon/wing integration affects the achievement of natural laminar flow on a long-duct flow-through nacelle for a high-wing transonic transport configuration. In order to fully assess the integration effect on a nacelle designed to achieve laminar flow, the effects of fixed and free nacelle transitions as well as nacelle longitudinal position and pylon contouring were obtained. The results indicate that the ability to achieve laminar flow on the nacelle is not significantly altered by nacelle/pylon/wing integration. The increment in installed drag between free and fixed transition for the nacelles on symmetrical pylons is essentially the calculated differences between turbulent and laminar flow on the nacelles. The installed drag of the contoured pylon is less than that of the symmetrical pylon. The installed drag for the nacelles in a rearward position is greater than that for the nacelles in a forward position.

  5. The Natural Helmholtz-Hodge Decomposition for Open-Boundary Flow Analysis.

    PubMed

    Bhatia, Harsh; Pascucci, Valerio; Bremer, Peer-Timo

    2014-11-01

    The Helmholtz-Hodge decomposition (HHD), which describes a flow as the sum of an incompressible, an irrotational, and a harmonic flow, is a fundamental tool for simulation and analysis. Unfortunately, for bounded domains, the HHD is not uniquely defined, traditionally, boundary conditions are imposed to obtain a unique solution. However, in general, the boundary conditions used during the simulation may not be known known, or the simulation may use open boundary conditions. In these cases, the flow imposed by traditional boundary conditions may not be compatible with the given data, which leads to sometimes drastic artifacts and distortions in all three components, hence producing unphysical results. This paper proposes the natural HHD, which is defined by separating the flow into internal and external components. Using a completely data-driven approach, the proposed technique obtains uniqueness without assuming boundary conditions a priori. As a result, it enables a reliable and artifact-free analysis for flows with open boundaries or unknown boundary conditions. Furthermore, our approach computes the HHD on a point-wise basis in contrast to the existing global techniques, and thus supports computing inexpensive local approximations for any subset of the domain. Finally, the technique is easy to implement for a variety of spatial discretizations and interpolated fields in both two and three dimensions. PMID:26355335

  6. The application of computational fluid dynamics to natural river channels: Eddy resolving versus mean flow approaches

    NASA Astrophysics Data System (ADS)

    Keylock, C. J.; Constantinescu, G.; Hardy, R. J.

    2012-12-01

    In the last decade, as computing power has increased, there has been an explosion in the use of eddy-resolving numerical methods in the engineering, earth and environmental sciences. For complex geomorphic flows, where accurate field investigations are difficult to perform and where experiments may be difficult to scale, these numerical approaches are beginning to give key insights into the nature of these flows. Eddy-resolving methods such as Large and Detached Eddy Simulation (LES/DES) may be contrasted with the time-averaged, three-dimensional simulations that only really began to be applied seriously in geomorphology fifteen years ago. While the potential of LES for geomorphology has been examined previously, DES is a relatively recent method that deserves further consideration. In this paper, we explain the method and then utilise examples from meander and confluence flows, as well as flow near the bed of a gravel bed river, to highlight the improvements to both the representation of the mean flow, and to the representation of time-varying processes, that result from the use of LES/DES. Some suggestions are provided for the future use of such techniques in geomorphology.

  7. Basaltic Lava Flow vs. Welded Basaltic Ignimbrite: Determining the Depositional Nature of a Volcanic Flow in the Akaroa Volcanic Complex

    NASA Astrophysics Data System (ADS)

    Sexton, E. A.; Hampton, S.

    2014-12-01

    Welded basaltic ignimbrites are one of the rarest forms of ignimbrites found on Earth and can often have characteristics that are indistinguishable from those of basaltic lava flows. This study evaluates a basaltic volcanic flow in a coastal cliff sequence in Raupo Bay, Akaroa Volcanic Complex, Banks Peninsula, New Zealand. The Raupo Bay coastal cliff sequence is comprised of 4 units, termed L1, L2, L3, and A, capped by loess. L1 and L2 are basaltic lavas, L3 proximal scoria deposits, which thin inland, and Unit A, a flow with unusual characteristics, which is the focus of this study. Field mapping, sampling, geochemical analysis and petrology were utilized to characterize units. Further detailed structural analysis of Unit A was completed, to determine the nature of the basal contact, variations in welding throughout the unit and the relationship of the layer to the underlying topography. From these analyses it was found: Unit A is thickest in a paleo-valley and thins and mantles higher topography, welding in the unit increases downwards forming topographic controlled columnar jointing, the top of the unit is brecciated and grades into the lower welded/jointed portion, the basal contact is sharp overlying a regional airfall deposit, the unit has a notably distinct geochemical composition from the underlying stratigraphic units, Unit A contains flattened and sheared scoria clasts, has aligned bubbles, and lava lithics. Further thin section analysis of Unit A identified flattened clast boundaries and microlite rimming around phenocrysts. In comparing these features to previous studies on basaltic lavas and ignimbrites it is hypothesized that Unit A is a welded basaltic ignimbrite that was channelized by paleo-topography on the outer flanks of the Akaroa Volcanic Complex. This study furthers the characterization of basaltic ignimbrites and is the first to recognize basaltic ignimbrites within the Akaroa Volcanic Complex.

  8. Paradigm Shift in Dendritic Cell-Based Immunotherapy: From in vitro Generated Monocyte-Derived DCs to Naturally Circulating DC Subsets

    PubMed Central

    Wimmers, Florian; Schreibelt, Gerty; Sköld, Annette E.; Figdor, Carl G.; De Vries, I. Jolanda M.

    2014-01-01

    Dendritic cell (DC)-based immunotherapy employs the patients’ immune system to fight neoplastic lesions spread over the entire body. This makes it an important therapy option for patients suffering from metastatic melanoma, which is often resistant to chemotherapy. However, conventional cellular vaccination approaches, based on monocyte-derived DCs (moDCs), only achieved modest response rates despite continued optimization of various vaccination parameters. In addition, the generation of moDCs requires extensive ex vivo culturing conceivably hampering the immunogenicity of the vaccine. Recent studies, thus, focused on vaccines that make use of primary DCs. Though rare in the blood, these naturally circulating DCs can be readily isolated and activated thereby circumventing lengthy ex vivo culture periods. The first clinical trials not only showed increased survival rates but also the induction of diversified anti-cancer immune responses. Upcoming treatment paradigms aim to include several primary DC subsets in a single vaccine as pre-clinical studies identified synergistic effects between various antigen-presenting cells. PMID:24782868

  9. Successful Antiparasitic Treatment for Cysticercosis is Associated with a Fast and Marked Reduction of Circulating Antigen Levels in a Naturally Infected Pig Model.

    PubMed

    Gonzalez, Armando E; Bustos, Javier A; Garcia, Hector H; Rodriguez, Silvia; Zimic, Mirko; Castillo, Yesenia; Praet, Nicolas; Gabriël, Sarah; Gilman, Robert H; Dorny, Pierre

    2015-12-01

    Taenia solium cysticercosis is a common parasitic infection of humans and pigs. We evaluated the posttreatment evolution of circulating parasite-specific antigen titers in 693 consecutive blood samples from 50 naturally infected cysticercotic pigs, which received different regimes of antiparasitic drugs (N = 39, 7 groups), prednisone (N = 5), or controls (N = 6). Samples were collected from baseline to week 10 after treatment, when pigs were euthanized and carefully dissected at necropsy. Antigen levels decreased proportionally to the efficacy of treatment and correlated with the remaining viable cysts at necropsy (Pearson's p = 0.67, P = 0.000). A decrease of 5 times in antigen levels (logarithmic scale) compared with baseline was found in 20/26 pigs free of cysts at necropsy, compared with 1/24 of those who had persisting viable cysts (odds ratio [OR] = 76.7, 95% confidence interval [CI] = 8.1-3308.6, P < 0.001). Antigen monitoring reflects the course of infection in the pig. If a similar correlation exists in infected humans, this assay may provide a minimally invasive and easy monitoring assay to assess disease evolution and efficacy of antiparasitic treatment in human neurocysticercosis. PMID:26392159

  10. Exposure to naturally circulating androgens during foetal life incurs direct reproductive costs in female spotted hyenas, but is prerequisite for male mating.

    PubMed Central

    Drea, C M; Place, N J; Weldele, M L; Coscia, E M; Licht, P; Glickman, S E

    2002-01-01

    Among all extant mammals, only the female spotted hyena (Crocuta crocuta) mates and gives birth through the tip of a peniform clitoris. Clitoral morphology is modulated by foetal exposure to endogenous, maternal androgens. First births through this organ are prolonged and remarkably difficult, often causing death in neonates. Additionally, mating poses a mechanical challenge for males, as they must reach an anterior position on the female's abdomen and then achieve entry at the site of the retracted clitoris. Here, we report that interfering with the actions of androgens prenatally permanently modifies hyena urogenital anatomy, facilitating subsequent parturition in nulliparous females who, thereby, produce live cubs. By contrast, comparable, permanent anatomical changes in males probably preclude reproduction, as exposure to prenatal anti-androgens produces a penis that is too short and has the wrong shape necessary for insertion during copulation. These data demonstrate that the reproductive costs of clitoral delivery result from exposure of the female foetus to naturally circulating androgens. Moreover, the same androgens that render an extremely unusual and laborious process even more reproductively costly in the female are apparently essential to the male's physical ability to reproduce with a normally masculinized female. PMID:12396496

  11. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia--the impact of new circulating fluidized bed technology.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-03-01

    Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated - two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides and for (40)K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ((210)Pb and (40)K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ((238)U, (226)Ra, (210)Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, (226)Ra and (228)Ra. A part of (226)Ra input activity, unlike (228)Ra, was undetectable in the

  12. MHD Natural Convective Flow in an Isosceles Triangular Cavity Filled with Porous Medium due to Uniform/Non-Uniform Heated Side Walls

    NASA Astrophysics Data System (ADS)

    Javed, Tariq; Siddiqui, Muhammad Arshad; Mehmood, Ziafat; Pop, Ioan

    2015-10-01

    In this article, numerical simulations are carried out for fluid flow and heat transfer through natural convection in an isosceles triangular cavity under the effects of uniform magnetic field. The cavity is of cold bottom wall and uniformly/non-uniformly heated side walls and is filled with isotropic porous medium. The governing Navier Stoke's equations are subjected to Penalty finite element method to eliminate pressure term and Galerkin weighted residual method is applied to obtain the solution of the reduced equations for different ranges of the physical parameters. The results are verified as grid independent and comparison is made as a limiting case with the results available in literature, and it is shown that the developed code is highly accurate. Computations are presented in terms of streamlines, isotherms, local Nusselt number and average Nusselt number through graphs and tables. It is observed that, for the case of uniform heating side walls, strength of circulation of streamlines gets increased when Rayleigh number is increased above critical value, but increase in Hartmann number decreases strength of streamlines circulations. For non-uniform heating case, it is noticed that heat transfer rate is maximum at corners of bottom wall.

  13. Status report on a natural laminar-flow nacelle flight experiment

    NASA Technical Reports Server (NTRS)

    Hastings, Earl C., Jr.; Faust, G. K.; Mungur, Parma; Obara, Clifford J.; Dodbele, S. S.; Schoenster, James A.; Jones, Michael G.

    1987-01-01

    The natural laminar flow (NLF) nacelle experiment is part of a drag reduction production program, and has the dual objectives of studying the extent of NLF on full scale nacelles in a flight environment and the effect of acoustic disturbance on the location of transition on the nacelle surface. The experiment is being conducted in two phases: (1) an NLF fairing was flown on a full scale Citation nacelle to develop the experiment technique and establish feasibility; (2) full scale, flow through, NLF nacelles located below the right wing of an experimental NASA OV-1 aircraft are evaluated. The measurements of most interest are the static pressure distribution and transition location on the nacelle surface, and the fluctuating pressure levels associated with the noise sources. Data are collected in combinations of acoustic frequencies and sound pressure levels. The results of phase 2 tests to date indicate that on shape GE2, natural laminar flow was maintained as far aft as the afterbody joint at 50 percent of the nacelle length. An aft facing step at this joint caused premature transition at this station. No change was observed in the transition pattern when the noise sources were operated.

  14. Natural selection of autocatalytic systems in flow as the universal mechanism of prebiotic evolution

    NASA Astrophysics Data System (ADS)

    Bartsev, S.; Mezhevikin, V.

    The problem of searching for extraterrestrial life is closely associated with the problem of origin of life in general and on the Earth. However convincing scientific concept of this event does not exist till now. The probability of casual occurrence of the elementary living cell from a set of abiogenous substances is so small, that from the point of natural-science methodological positions this variant of life origin should be excluded. It is necessary to assume the predecessors of cells were very simple, and their development, perfecting and thickening occurred gradually and in the certain sense neatly via natural selection. An assumption, that the predecessors of cells were elementary autocatalytic systems on the basis of the phase-isolated particles, and the mechanism of their selection was selection in flow with respect to kinetics parameters is put forward. In the paper probable directions of autocatalytic systems selection in flow inside a reactor of deal mixing are considered. As reali analog of in flow system of the kind the hydrothermal vent tube worms found in deep-sea waters could be considered. Thus, it is possible to select certain types of autocatalytic systems admitting an opportunity of "mutagenesis", and to plan experimental modeling of initial stages of prebiotic evolution under various physical-chemical conditions, including extraterrestrial ones. According to the concept, the life origin under the certain physical-chemical planetary conditions is the inevitable planetary phenomenon and key stages of this phenomenon allow not only theoretical, but also experimental analysis.

  15. Pareto-optimal solutions for environmental flow schemes incorporating the intra-annual and interannual variability of the natural flow regime

    NASA Astrophysics Data System (ADS)

    Shiau, Jenq-Tzong; Wu, Fu-Chun

    2007-06-01

    The temporal variations of natural flows are essential elements for preserving the ecological health of a river which are addressed in this paper by the environmental flow schemes that incorporate the intra-annual and interannual variability of the natural flow regime. We present an optimization framework to find the Pareto-optimal solutions for various flow schemes. The proposed framework integrates (1) the range of variability approach for evaluating the hydrologic alterations; (2) the standardized precipitation index approach for establishing the variation criteria for the wet, normal, and dry years; (3) a weir operation model for simulating the system of flows; and (4) a multiobjective optimization genetic algorithm for search of the Pareto-optimal solutions. The proposed framework is applied to the Kaoping diversion weir in Taiwan. The results reveal that the time-varying schemes incorporating the intra-annual variability in the environmental flow prescriptions promote the ecosystem and human needs fitness. Incorporation of the interannual flow variability using different criteria established for three types of water year further promotes both fitnesses. The merit of incorporating the interannual variability may be superimposed on that of incorporating only the intra-annual flow variability. The Pareto-optimal solutions searched with a limited range of flows replicate satisfactorily those obtained with a full search range. The limited-range Pareto front may be used as a surrogate of the full-range one if feasible prescriptions are to be found among the regular flows.

  16. Nature and extent of lava-flow aquifers beneath Pahute Mesa, Nevada Test Site

    SciTech Connect

    Prothro, L.B.; Drellack, S.L. Jr.

    1997-09-01

    Work is currently underway within the Underground Test Area subproject of the US Department of Energy/Nevada Operations Office Environmental Restoration Program to develop corrective action plans in support of the overall corrective action strategy for the Nevada Test Site as established in the Federal Facility Agreement and Consent Order (FFACO, 1996). A closure plan is currently being developed for Pahute Mesa, which has been identified in the FFACO as consisting of the Western and Central Pahute Mesa Corrective Action Units. Part of this effort requires that hydrogeologic data be compiled for inclusion in a regional model that will be used to predict a contaminant boundary for these Corrective Action Units. Hydrogeologic maps have been prepared for use in the model to define the nature and extent of aquifers and confining units that might influence the flow of contaminated groundwater from underground nuclear tests conducted at Pahute Mesa. Much of the groundwater flow beneath Pahute Mesa occurs within lava-flow aquifers. An understanding of the distribution and hydraulic character of these important hydrogeologic units is necessary to accurately model groundwater flow beneath Pahute Mesa. This report summarizes the results of a study by Bechtel Nevada geologists to better define the hydrogeology of lava-flow aquifers at Pahute Mesa. The purpose of this study was twofold: (1) aid in the development of the hydrostratigraphic framework for Pahute Mesa, and (2) provide information on the distribution and hydraulic character of lava-flow aquifers beneath Pahute Mesa for more accurate computer modeling of the Western and Central Pahute Mesa Corrective Action Units.

  17. On the Nature of the High-Speed Plasma Flows in the 2005 September 13 Flare

    NASA Astrophysics Data System (ADS)

    Liu, C.; Choudhary, D. P.; Deng, N.; Wang, H.

    2008-05-01

    A long-duration, successive flaring event accompanied by fast CMEs occurred on 2005 September 13 in the NOAA AR 10808 and was classified as 2B/X1.5 with peak time at 19:27 UT. In this study, we report direct and unambiguous observations of high-speed hot plasma flows associated with the second major peak in soft X-ray that reached X1.4 on the GOES scale at 20:05 UT. The flows are seen as streams of enhanced density in extreme-UV traveling above and toward arcades of the secondary compact-loop flare at the main δ spot with an apparent speed as high as ~350~km~s-1, and the times when they are initiated correspond to those of bursts of nonthermal emissions in hard X-rays (HXRs) and microwaves. In Hα, the flows appear to become emission later on when approaching the lower atmosphere nearby the flaring magnetic polarity inversion line and subsequently trigger a subflare with propagating kernels. It is particularly notable that the flows are spatially and temporally related to HXR sources detected by RHESSI and a large erupting flux rope. We scrutinize several scenarios to investigate the nature of the observed high-speed flows. We conclude that the observations could be interpreted in terms of materials braking away from a preceding filament eruption and falling gravitationally back into the flaring region. A separate scenario is that the observed flow motion could be a manifestation of sunward reconnection outflow supporting the standard reconnection model.

  18. Natural length scales define the range of applicability of the Richards equation for capillary flows

    NASA Astrophysics Data System (ADS)

    Or, Dani; Lehmann, Peter; Assouline, Shmuel

    2015-09-01

    The rapid expansion of remotely sensed spatial information and enhanced computational capabilities fuel raising scientific and public expectations for reliable hydrologic predictions across time and spatial scales. Process-based hydrologic models often rely on the Richards equation (RE) formalism to represent unsaturated flow processes at multiple scales which raises the much debated question: does the underlying physics in the RE formulation apply at large scales of practical interest? The study analyses recent findings from different unsaturated flow processes (soil evaporation, internal redistribution, and capillary flow from point sources) revealing inherent characteristic length scales that delineate the spatial range of applicability of the RE. These length scales reflect the role of intrinsic porous medium properties that shape liquid phase continuity and interplay of forces that drive and resist unsaturated flow. The study revisits some of the key assumptions in the RE and their ramifications for numerical discretization. An intrinsic length scale for hydraulic continuity deduced from pore size distribution has been shown to control soil evaporation dynamics (i.e., stage 1 to stage 2 transition), to provide upper bounds for regional evaporative losses, and governs the dynamics of internal redistribution toward field capacity. For large-scale hydrologic applications, we show that the spatial extent of lateral flow interactions under most natural capillary gradients rarely exceed a few meters. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the conditions for coexistence of stationarity, hydraulic continuity, and capillary gradients—essential ingredients for physically consistent application of the RE.

  19. An improved protocol for flow cytometry analysis of phytoplankton cultures and natural samples.

    PubMed

    Marie, Dominique; Rigaut-Jalabert, Fabienne; Vaulot, Daniel

    2014-11-01

    Preservation of cells, choice of fixative, storage, and thawing conditions are recurrent issues for the analysis of phytoplankton by flow cytometry. We examined the effects of addition of the surfactant Pluronic F68 to glutaraldehyde-fixed photosynthetic organisms in cultures and natural samples. In particular, we examined cell losses and modifications of side scatter (a proxy of cell size) and fluorescence of natural pigments. We found that different marine phytoplankton species react differently to the action of Pluronic F68. In particular, photosynthetic prokaryotes are less sensitive than eukaryotes. Observed cell losses may result from cell lysis or from cell adhesion to the walls of plastic tubes that are commonly used for flow cytometry analysis. The addition of the surfactant, Pluronic F68, has a positive effect on cells for long-term storage. We recommend to modify current protocols for preservation of natural marine planktonic samples, by fixing them with glutaraldehyde 0.25% (final concentration) and adding Pluronic F68 at a final concentration of 0.01% in the samples before preservation. Pluronic F68 also appears effective for preserving samples without fixation for subsequent sorting, e.g. for molecular biology analyses. © 2014 International Society for Advancement of Cytometry. PMID:25155102

  20. Advanced natural laminar flow airfoil with high lift to drag ratio

    NASA Technical Reports Server (NTRS)

    Viken, Jeffrey K.; Pfenninger, Werner; Mcghee, Robert J.

    1986-01-01

    An experimental verification of a high performance natural laminar flow (NLF) airfoil for low speed and high Reynolds number applications was completed in the Langley Low Turbulence Pressure Tunnel (LTPT). Theoretical development allowed for the achievement of 0.70 chord laminar flow on both surfaces by the use of accelerated flow as long as tunnel turbulence did not cause upstream movement of transition with increasing chord Reynolds number. With such a rearward pressure recovery, a concave type deceleration was implemented. Two-dimensional theoretical analysis indicated that a minimum profile drag coefficient of 0.0026 was possible with the desired laminar flow at the design condition. With the three-foot chord two-dimensional model constructed for the LTPT experiment, a minimum profile drag coefficient of 0.0027 was measured at c sub l = 0.41 and Re sub c = 10 x 10 to the 6th power. The low drag bucket was shifted over a considerably large c sub l range by the use of the 12.5 percent chord trailing edge flap. A two-dimensional lift to drag ratio (L/D) was 245. Surprisingly high c sub l max values were obtained for an airfoil of this type. A 0.20 chort split flap with 60 deg deflection was also implemented to verify the airfoil's lift capabilities. A maximum lift coefficient of 2.70 was attained at Reynolds numbers of 3 and 6 million.

  1. Effect of advective flow in fractures and matrix diffusion on natural gas production

    SciTech Connect

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.

    2015-10-12

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of free gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.

  2. Effect of advective flow in fractures and matrix diffusion on natural gas production

    DOE PAGESBeta

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.

    2015-10-12

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of freemore » gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.« less

  3. Methods for Estimating Magnitude and Frequency of Peak Flows for Natural Streams in Utah

    USGS Publications Warehouse

    Kenney, Terry A.; Wilkowske, Chris D.; Wright, Shane J.

    2007-01-01

    Estimates of the magnitude and frequency of peak streamflows is critical for the safe and cost-effective design of hydraulic structures and stream crossings, and accurate delineation of flood plains. Engineers, planners, resource managers, and scientists need accurate estimates of peak-flow return frequencies for locations on streams with and without streamflow-gaging stations. The 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows were estimated for 344 unregulated U.S. Geological Survey streamflow-gaging stations in Utah and nearby in bordering states. These data along with 23 basin and climatic characteristics computed for each station were used to develop regional peak-flow frequency and magnitude regression equations for 7 geohydrologic regions of Utah. These regression equations can be used to estimate the magnitude and frequency of peak flows for natural streams in Utah within the presented range of predictor variables. Uncertainty, presented as the average standard error of prediction, was computed for each developed equation. Equations developed using data from more than 35 gaging stations had standard errors of prediction that ranged from 35 to 108 percent, and errors for equations developed using data from less than 35 gaging stations ranged from 50 to 357 percent.

  4. Effect of advective flow in fractures and matrix diffusion on natural gas production

    SciTech Connect

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.

    2015-06-26

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of free gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.

  5. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.

    PubMed

    Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena

    2012-10-15

    The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate=4.3 l/h, inter electrode distance=2.8 cm, current density=5.78 mA/cm(2), A/V ratio=0.248 cm(-1). The NOM removal according to UV(254) absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m(3). According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater. PMID:22902131

  6. Effect of advective flow in fractures and matrix diffusion on natural gas production

    NASA Astrophysics Data System (ADS)

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.

    2015-10-01

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network-based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three-dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of free gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. These results also suggest that matrix diffusion may support reduced production over longer time frames.

  7. Natural laminar flow wing for supersonic conditions: Wind tunnel experiments, flight test and stability computations

    NASA Astrophysics Data System (ADS)

    Vermeersch, Olivier; Yoshida, Kenji; Ueda, Yoshine; Arnal, Daniel

    2015-11-01

    In the framework of next supersonic transport airplane generation, the Japan Aerospace eXploration Agency (JAXA) has developed a new natural laminar flow highly swept wing. The design has been experimentally validated firstly in a supersonic wind tunnel and secondly accomplishing flight test. These experimental data were then analyzed and completed by numerical stability analyses in a joint research program between Onera and JAXA. At the design condition, for a Mach number M=2 at an altitude of h=18 km, results have confirmed the laminar design of the wing due to a strong attenuation of cross-flow instabilities ensuring an extended laminar zone. As the amplification of disturbances inside the boundary layer and transition process is very sensitive to external parameters, the impact of wall roughness of the models and the influence of Reynolds number on transition process have been carefully analyzed.

  8. Experimental Results for a Flapped Natural-laminar-flow Airfoil with High Lift/drag Ratio

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Viken, J. K.; Pfenninger, W.; Beasley, W. D.; Harvey, W. D.

    1984-01-01

    Experimental results have been obtained for a flapped natural-laminar-flow airfoil, NLF(1)-0414F, in the Langley Low-Turbulence Pressure Tunnel. The tests were conducted over a Mach number range from 0.05 to 0.40 and a chord Reynolds number range from about 3.0 x 10(6) to 22.0 x 10(6). The airfoil was designed for 0.70 chord laminar flow on both surfaces at a lift coefficient of 0.40, a Reynolds number of 10.0 x 10(6), and a Mach number of 0.40. A 0.125 chord simple flap was incorporated in the design to increase the low-drag, lift-coefficient range. Results were also obtained for a 0.20 chord split-flap deflected 60 deg.

  9. Using composite flow laws to extrapolate lab data on ice to nature

    NASA Astrophysics Data System (ADS)

    de Bresser, Hans; Diebold, Sabrina; Durham, William

    2013-04-01

    The progressive evolution of the grain size distribution of deforming and recrystallizing Earth materials directly affects their rheological behaviour in terms of composite grain-size-sensitive (GSS, diffusion/grain boundary sliding) and grain-size-insensitive (GSI, dislocation) creep. After time, such microstructural evolution might result in strain progressing at a steady-state balance of mechanisms of GSS and GSI creep. In order to come to a meaningful rheological description of materials deforming by combined GSS and GSI mechanisms, composite flow laws are required that bring together individual, laboratory derived GSS and GSI flow laws, and that include full grain size distributions rather than single mean values representing the grain size. A composite flow law approach including grain size distributions has proven to be very useful in solving discrepancies between microstructural observations in natural calcite mylonites and extrapolations of relatively simple laboratory flow laws (Herwegh et al., 2005, J. Struct Geol., 27, 503-521). In the current study, we used previous and new laboratory data on the creep behavior of water ice to investigate if a composite flow law approach also results in better extrapolation of lab data to nature for ice. The new lab data resulted from static grain-growth experiments and from deformation experiments performed on samples with a starting grain size of either < 2 microns ("fine grained ice") or of 180-250 microns ("coarse grained ice"). The deformation experiments were performed in a special cryogenic Heard-type deformation apparatus at temperatures 180-240 K, at confining pressures 30-100 MPa, and strain rates between 1E-08/s and 1E-04/s. After the experiments, all samples were studied using cryogenic SEM and image analysis techniques. We also investigated natural microstructures in EPICA drilling ice core samples of Dronning Maud Land in Antartica. The temperature of the core ranges from 228 K at the surface to 272 K

  10. Effects of Inlet Icing on Performance of Axial-flow Turbojet Engine in Natural Icing Conditions

    NASA Technical Reports Server (NTRS)

    Acker, Loren W; Kleinknecht, Kenneth S

    1950-01-01

    A flight investigation in natural icing conditions was conducted to determine the effect of inlet ice formations on the performance of axial-flow turbojet engines. The results are presented for icing conditions ranging from a liquid-water content of 0.1 to 0.9 gram per cubic meter and water-droplet size from 10 to 27 microns at ambient-air temperature from 13 to 26 degrees F. The data show time histories of jet thrust, air flow, tail-pipe temperature, compressor efficiency, and icing parameters for each icing encounter. The effect of inlet-guide-vane icing was isolated and shown to account for approximately one-half the total reduction in performance caused by inlet icing.

  11. Natural convection flow in a square cavity revisited: Laminar and turbulent models with wall functions

    NASA Astrophysics Data System (ADS)

    Barakos, G.; Mitsoulis, E.; Assimacopoulos, D.

    1994-04-01

    Numerical simulations have been undertaken for the benchmark problem of natural convection flow in a square cavity. The control volume method is used to solve the conservation equations for laminar and turbulent flows for a series of Rayleigh numbers (Ra) reaching values up to 10(exp 10). The k-epsilon model has been used for turbulence modelling with and without logarithmic wall functions. Uniform and non-uniform (stretched) grids have been employed with increasing density to guarantee accurate solutions, especially near the walls for high Ra-values. ADI and SIP solvers are implemented to accelerate convergence. Excellent agreement is obtained with previous numerical solutions, while some discrepancies with others for high Ra-values may be due to a possibly different implementation of the wall functions. Comparisons with experimental data for heat transfer (Nusselt number) clearly demonstrates the limitations of the standard k-epsilon model with logarithmic wall functions, which gives significant overpredictions.

  12. Synthesis of natural flows at selected sites in and near the Milk River basin, Montana, 1928-89

    USGS Publications Warehouse

    Cary, L.E.; Parrett, Charles

    1995-01-01

    Natural monthly streamflows were synthesized for the years 1928-89 at 2 sites in the St. Mary River Basin and 11 sites in the Milk River Basin in north- central Montana. The sites are represented as nodes in a streamflow accounting model being developed by the Bureau of Reclamation for the Milk River Basin. Recorded flows at most sites have been affected by human activities, including reservoir storage and irrigation diversions. The flows at the model nodes were corrected for the effects of these activities to obtain synthesized flows. The synthesized flows at nodes with seasonal and short-term records were extended using a statistical technique. The methods of synthesis varied, depending on upstream activities and information available. Flows at sites in the St. Mary River Basin and at the Milk River at Eastern Crossing of International Boundary pre- viously had been synthesized. The flows at mainstem sites downstream from the Milk River at Eastern Crossing were synthesized by adding synthesized natural runoff from intervening drainage areas to natural flows for Milk River at Eastern Crossing. Natural runoff from intervening drainage areas was estimated by multiplying recorded flows at selected index gaging stations on tributary streams by the ratio of the intervening drainage area to the combined drainage area of the index stations. The recorded flows for Milk River at Western Crossing of International Boundary and for Peoples Creek near Dodson, Montana, were assumed to be natural flows. The synthesized annual flows at the mouth of the Milk River compared favorably with the recorded flows near the mouth when the effects of upstream irrigation were considered.

  13. A TECHNOLOGY ASSESSMENT AND FEASIBILITY EVALUATION OF NATURAL GAS ENERGY FLOW MEASUREMENT ALTERNATIVES

    SciTech Connect

    Kendricks A. Behring II; Eric Kelner; Ali Minachi; Cecil R. Sparks; Thomas B. Morrow; Steven J. Svedeman

    1999-01-01

    Deregulation and open access in the natural gas pipeline industry has changed the gas business environment towards greater reliance on local energy flow rate measurement. What was once a large, stable, and well-defined source of natural gas is now a composite from many small suppliers with greatly varying gas compositions. Unfortunately, the traditional approach to energy flow measurement [using a gas chromatograph (GC) for composition assay in conjunction with a flow meter] is only cost effective for large capacity supplies (typically greater than 1 to 30 million scfd). A less costly approach will encourage more widespread use of energy measurement technology. In turn, the US will benefit from tighter gas inventory control, more efficient pipeline and industrial plant operations, and ultimately lower costs to the consumer. An assessment of the state and direction of technology for natural gas energy flow rate measurement is presented. The alternative technologies were ranked according to their potential to dramatically reduce capital and operating and maintenance (O and M) costs, while improving reliability and accuracy. The top-ranked technologies take an unconventional inference approach to the energy measurement problem. Because of that approach, they will not satisfy the fundamental need for composition assay, but have great potential to reduce industry reliance on the GC. Technological feasibility of the inference approach was demonstrated through the successful development of data correlations that relate energy measurement properties (molecular weight, mass-based heating value, standard density, molar ideal gross heating value, standard volumetric heating value, density, and volume-based heating value) to three inferential properties: standard sound speed, carbon dioxide concentration, and nitrogen concentration (temperature and pressure are also required for the last two). The key advantage of this approach is that inexpensive on-line sensors may be used

  14. Flow Dynamics and Sediment Entrainment in Natural Turbidity Currents Inferred from Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Traer, M. M.; Hilley, G. E.; Fildani, A.

    2009-12-01

    relationship that most harmonious with the observed channel morphology and measured factors such as run-up height of flows along the meander bends in submarine channels. We have applied these methods to two submarine systems, one in the deep-water Kutei basin, Indonesia, and the other offshore Nigeria. Our preliminary findings suggest that the entrainment relationships required by these natural systems are different than those inferred from the limited laboratory data available. These methods provide a rational means of understanding the temporal development of the dynamics of and deposits resulting from these flows where site calibration of entrainment parameters is possible.

  15. Natural laminar flow airfoil design considerations for winglets on low-speed airplanes

    NASA Technical Reports Server (NTRS)

    Vandam, C. P.

    1984-01-01

    Winglet airfoil section characteristics which significantly influence cruise performance and handling qualities of an airplane are discussed. A good winglet design requires an airfoil section with a low cruise drag coefficient, a high maximum lift coefficient, and a gradual and steady movement of the boundary layer transition location with angle of attack. The first design requirement provides a low crossover lift coefficient of airplane drag polars with winglets off and on. The other requirements prevent nonlinear changes in airplane lateral/directional stability and control characteristics. These requirements are considered in the design of a natural laminar flow airfoil section for winglet applications and chord Reynolds number of 1 to 4 million.

  16. An Exploratory Investigation of a Slotted, Natural-Laminar-Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Somers, Dan M.

    2012-01-01

    A 15-percent-thick, slotted, natural-laminar-flow (SNLF) airfoil, the S103, for general aviation applications has been designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The two primary objectives of high maximum lift and low profile drag have been achieved. The constraints on the pitching moment and the airfoil thickness have been satisfied. The airfoil exhibits a rapid stall, which does not meet the design goal. Comparisons of the theoretical and experimental results show good agreement. Comparison with the baseline, NASA NLF(1)-0215F airfoil confirms the achievement of the objectives.

  17. Natural laminar flow data from full-scale flight and wind-tunnel experiments

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Coy, P. F.; Yip, L. P.; Brown, P. W.; Obara, C. J.

    1981-01-01

    Experimental results obtained at NASA Langley during studies of natural laminar flow (NLF) over commercially produced aircraft surfaces are reported. The general aviation aircraft examined were light aircraft, yet displayed NLF extents close to the maximum available and equivalent to high performance business aircraft flying envelopes. Sublimating chemicals and acoustic detection techniques were employed to measure the boundary layer transition. Theoretical predictions of boundary layer stability were found to match well with the experimental data, with consideration given to both swept wings and the amplitudes of allowable waves on the airfoil surfaces. The presence of the NLF on the airfoil surfaces confirmed the benefits available from use of composite materials for airfoil surfaces.

  18. Response of a store with tunable natural frequencies in compressible cavity flow

    SciTech Connect

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell Wayne; Henfling, John F.

    2015-01-07

    Fluid-structure interactions that occur during aircraft internal store carriage were experimentally explored at Mach 0.94 and 1.47 using a generic, aerodynamic store installed in a rectangular cavity having a length-to-depth ratio of 7. Similar to previous studies using a cylindrical store, the aerodynamic store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance. Moreover, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas the spanwise response was much more limited.

  19. Effects of 5-HT1B/1D receptor agonist rizatriptan on cerebral blood flow and blood volume in normal circulation.

    PubMed

    Okazawa, Hidehiko; Tsuchida, Tatsuro; Pagani, Marco; Mori, Tetsuya; Kobayashi, Masato; Tanaka, Fumiko; Yonekura, Yoshiharu

    2006-01-01

    To investigate the vasoconstrictor effect of 5-hydroxytryptamine (5-HT1B/1D) receptor agonists for migraine treatment, changes in cerebral blood flow (CBF) and blood volume induced by rizatriptan were assessed by positron emission tomography (PET). Eleven healthy volunteers underwent PET studies before and after rizatriptan administration. Dynamic PET data were acquired after bolus injection of H2(15)O to analyze CBF and arterial-to-capillary blood volume (V0) images using the three-weighted integral method. After a baseline scan, three further acquisitions were performed at 40 to 50, 60 and 70 to 80 mins after drug administration. Global and regional differences in CBF and V0 between conditions were compared using absolute values in the whole brain and cortical regions, as well as statistical parametric mapping (SPM) analysis. The global and regional values for CBF and V0 decreased significantly after rizatriptan administration compared with the baseline condition. However, both values recovered to baseline within 80 mins after treatment. The maximal reduction in global CBF and V0 was approximately 13% of baseline value. The greatest decrease in CBF was observed approximately 60 mins after drug administration, whereas the maximal reduction in V0 was observed approximately 5 mins earlier. Statistical parametric mapping did not highlight any regional differences between conditions. Thus, in brain circulation, rizatriptan caused significant CBF and V0 decreases, which are consistent with the vasoconstrictor effect of triptans on the large cerebral arteries. The gradual recovery in the late phase from the maximal CBF and V0 decrease suggests that rizatriptan does not affect the cerebral autoregulatory response in small arteries induced by CBF reduction. PMID:15944648

  20. Scaling of the turbulent natural convection flow in a heated square cavity

    NASA Astrophysics Data System (ADS)

    Henkes, R. A. W. M.; Hoogendoorn, C. J.

    1994-05-01

    By numerically solving the Reynolds equations for air and water in a square cavity, with differentially heated vertical walls, at Rayleigh numbers up to 10(exp 20) the scalings of the turbulent natural convection flow are derived. Turbulence is modeled by the standard k-epsilon model and by the low-Reynolds-number k-epsilon models of Chien and of Jones and Launder. Both the scalings with respect to the Rayleigh number (based on the cavity size H) and with respect to the local height (y/H) are considered. The scalings are derived for the inner layer, outer layer, and core region. The Rayleigh number scalings are almost the same as the scalings for the natural convection boundary layer along a hot vertical plate. The scalings found are almost independent of the k-epsilon model used.

  1. Radiology of liver circulation

    SciTech Connect

    Hermine, C.L.

    1985-01-01

    This book proposes that careful evaluation of the arterioportogram is the cornerstone in assessing portal flow obstruction, being the most consistent of all observations including liver histology, portal venous pressure, size and number of portosystemic collaterals, and wedged hepatic venous pressure. Very brief chapters cover normal hepatic circulation and angiographic methods. Contrast volumes and flow rates for celiac, hepatic, and superior mesenteric injection are given, with the timing for venous phase radiographs. In the main body of the text, portal obstruction is divided very simply into presinusoidal (all proximal causes) and postsinusoidal (all distal causes, including Budd-Chiari). Changes are discussed regarding the splenic artery and spleen; hepatic artery and its branches; portal flow rate and direction; and arterioportal shunting and portosystemic collateral circulation in minimal, moderate, severe, and very severe portal obstruction and in recognizable entities such as prehepatic portal and hepatic venous obstructions. The major emphasis in this section is the recognition and understanding of flow changes by which level and severity of obstruction are assessed (not simply the anatomy of portosystemic collateral venous flow). Excellent final chapters discuss the question of portal hypertension without obstruction, and the contribution of arterioportography to the treatment of portal hypertension, again with an emphasis on hemodynamics before and after shunt surgery. There is a fascinating final chapter on segmental intrahepatic obstruction without portal hypertension that explains much of the unusual contrast enhancement sometimes seen in CT scanning of hepatic mass lesions.

  2. Predicting the natural flow regime: Models for assessing hydrological alteration in streams

    USGS Publications Warehouse

    Carlisle, D.M.; Falcone, J.; Wolock, D.M.; Meador, M.R.; Norris, R.H.

    2010-01-01

    Understanding the extent to which natural streamflow characteristics have been altered is an important consideration for ecological assessments of streams. Assessing hydrologic condition requires that we quantify the attributes of the flow regime that would be expected in the absence of anthropogenic modifications. The objective of this study was to evaluate whether selected streamflow characteristics could be predicted at regional and national scales using geospatial data. Long-term, gaged river basins distributed throughout the contiguous US that had streamflow characteristics representing least disturbed or near pristine conditions were identified. Thirteen metrics of the magnitude, frequency, duration, timing and rate of change of streamflow were calculated using a 20-50 year period of record for each site. We used random forests (RF), a robust statistical modelling approach, to develop models that predicted the value for each streamflow metric using natural watershed characteristics. We compared the performance (i.e. bias and precision) of national- and regional-scale predictive models to that of models based on landscape classifications, including major river basins, ecoregions and hydrologic landscape regions (HLR). For all hydrologic metrics, landscape stratification models produced estimates that were less biased and more precise than a null model that accounted for no natural variability. Predictive models at the national and regional scale performed equally well, and substantially improved predictions of all hydrologic metrics relative to landscape stratification models. Prediction error rates ranged from 15 to 40%, but were 25% for most metrics. We selected three gaged, non-reference sites to illustrate how predictive models could be used to assess hydrologic condition. These examples show how the models accurately estimate predisturbance conditions and are sensitive to changes in streamflow variability associated with long-term land-use change. We also

  3. DEVELOPMENT OF A LOW-COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    SciTech Connect

    E. Kelner; T.E. Owen; D.L. George; A. Minachi; M.G. Nored; C.J. Schwartz

    2004-03-01

    In 1998, Southwest Research Institute{reg_sign} began a multi-year project co-funded by the Gas Research Institute (GRI) and the U.S. Department of Energy. The project goal is to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype retrofit natural gas energy flow meter in 2000-2001 included: (1) evaluation of the inferential gas energy analysis algorithm using supplemental gas databases and anticipated worst-case gas mixtures; (2) identification and feasibility review of potential sensing technologies for nitrogen diluent content; (3) experimental performance evaluation of infrared absorption sensors for carbon dioxide diluent content; and (4) procurement of a custom ultrasonic transducer and redesign of the ultrasonic pulse reflection correlation sensor for precision speed-of-sound measurements. A prototype energy meter module containing improved carbon dioxide and speed-of-sound sensors was constructed and tested in the GRI Metering Research Facility at SwRI. Performance of this module using transmission-quality natural gas and gas containing supplemental carbon dioxide up to 9 mol% resulted in gas energy determinations well within the inferential algorithm worst-case tolerance of {+-}2.4 Btu/scf (nitrogen diluent gas measured by gas chromatograph). A two-week field test was performed at a gas-fired power plant to evaluate the inferential algorithm and the data acquisition requirements needed to adapt the prototype energy meter module to practical field site conditions.

  4. Combining Natural Tracers to Identify Flow Paths in Arctic Beaded Streams

    NASA Astrophysics Data System (ADS)

    Neilson, B. T.; Merck, M. F.; Cory, R. M.; Kling, G. W.

    2011-12-01

    Data on the movement of multiple natural tracers through a portion of Imnavait Creek, a beaded tundra stream located north of the Brooks Range in Alaska, were collected to further understand the extent and variability of water storage and residence times throughout the open water season. These data included high spatial resolution temperatures within the pools and surrounding sediments as well as electrical conductivity and analysis of the colored and fluorescent fraction of dissolved organic matter (DOM) within the pools and riparian areas. The results indicated storage areas within the pools, banks, and other marshy areas within the riparian zone, including a subsurface flow path that connected two pools. During low flow periods the in-pool temperatures showed persistent thermal stratification occurring due to absorption of solar radiation by DOM coupled with underlying permafrost and low wind stress at the pool surface. This led to separation of the surface and bottom water masses which was confirmed by the differences in conductivity as well as DOM spectral character. Riparian sediment temperatures and water conductivity within the subsurface flow path showed that the source of water was primarily surface water from an adjacent pool. This subsurface flow path was found not only to increase water residence times, but to alter the chemical composition of DOM within very short distances after leaving the pool. The combined influences of the consistent separation of water masses in each pool and the subsurface flow paths result in significant changes to the fate and transport of materials within the system. Without further understanding of these processes, our ability to predict the evolution of water chemistry and material export will be limited.

  5. Non-stationary rainfall and natural flows modeling at the watershed scale

    NASA Astrophysics Data System (ADS)

    Egüen, M.; Aguilar, C.; Solari, S.; Losada, M. A.

    2016-07-01

    In areas in which natural water resources are variable over time, tools that determine the probability distribution of hydrological variables are required to evaluate various management alternatives. In this article, a stochastic simulation framework of hydrological variables through atmospheric pressure modeling is proposed. This methodology employs the mean value of the atmospheric pressure in the winter to differentiate the wet, medium and dry years in terms of rainfall and flow at different temporal scales. Monthly mean and daily maximum rainfall and flow data series are stochastically replicated. To achieve this replication, a non-stationary parametric mixture distribution model that combines a Weibull and a Normal distribution is fitted to the univariate distribution of the atmospheric pressure. This model includes interannual variability through two covariables: extraterrestrial solar radiation and the NAO index. This model is applied to the Guadalete River Basin in southern Spain, in which the river flow regime is influenced by the highly seasonal precipitation regime typically found in the Mediterranean area. The non-stationary parametric mixture distribution model with the two covariables showed a good fit to the observed sea level pressure, displaying an important reduction on the BIC. A good correlation was obtained between the average sea level pressure in winter and the accumulated precipitation and flow (r = -0.8 for monthly values and -0.6 for maximum daily values). The statistical similarity indicated that the synthetic series of precipitation and flow preserved the distribution trends in the observed data. The identical methodology can be applied in other watersheds once the direct relationship between the mean atmospheric pressure and the hydrology of the area is known.

  6. F-15B in flight showing Supersonic Natural Laminar Flow (SS-NLF) experiment attached vertically to t

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In-flight photo of the F-15B equipped with the Supersonic Natural Laminar Flow (SS-NLF) experiment. During four research flights, laminar flow was achieved over 80 percent of the test wing at speeds approaching Mach 2. This was accomplished as the sole result of the shape of the wing, without the use of suction gloves, such as on the F-16XL. Laminar flow is a condition in which air passes over a wing in smooth layers, rather than being turbulent The greater the area of laminar flow, the lower the amount of friction drag on the wing, thus increasing an aircraft's range and fuel economy. Increasing the area of laminar flow on a wing has been the subject of research by engineers since the late 1940s, but substantial success has proven elusive. The SS-NLF experiment was intended to provide engineers with the data by which to design natural laminar flow wings.

  7. Development and maintenance of a telescoping debris flow fan in response to human-induced fan surface channelization, Chalk Creek Valley Natural Debris Flow Laboratory, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Wasklewicz, T.; Scheinert, C.

    2016-01-01

    Channel change has been a constant theme throughout William L. Graf's research career. Graf's work has examined channel changes in the context of natural environmental fluctuations, but more often has focused on quantifying channel change in the context of anthropogenic modifications. Here, we consider how channelization of a debris flows along a bajada has perpetuated and sustained the development of 'telescoping' alluvial fan. Two-dimensional debris-flow modeling shows the importance of the deeply entrenched channelized flow in the development of a telescoping alluvial fan. GIS analyses of repeat (five different debris flows), high-resolution (5 cm) digital elevation models (DEMs) generated from repeat terrestrial laser scanning (TLS) data elucidate sediment and topographic dynamics of the new telescoping portion of the alluvial fan (the embryonic fan). Flow constriction from channelization helps to perpetuate debris-flow runout and to maintain the embryonic fan and telescoping nature of the alluvial fan complex. Embryonic fan development, in response to five debris flows, proceeds with a major portion of the flows depositing on the southern portion of the embryonic fan. The third through the fifth debris flows also begin to shift some deposition to the northern portion of the embryonic. The transfer of sediment from a higher portion of the embryonic fan to a lower portion continues currently on the embryonic fan. While channelized flow has been shown to be critical to the maintenance of the telescoping fan, the flow constriction has led to higher than background levels of sediment deposition in Chalk Creek, a tributary of the Arkansas River. A majority of the sediment from each debris flow is incorporated into Chalk Creek as opposed to being stored on the embryonic fan.

  8. Three-Dimensional Numerical Simulation of Flow and Pollutant Transport with Application to a Shallow, Natural Lake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Presented is development and application of a three-dimensional numerical model to study wind-driven flow and associated pollutant transport in a shallow natural lake. A parabolic distribution of vertical eddy viscosity was specified to analyze the wind-driven flow. The model was verified against an...

  9. Certification aspects of airplanes which may operate with significant natural laminar flow

    NASA Technical Reports Server (NTRS)

    Gabriel, Edward A.; Tankesley, Earsa L.

    1986-01-01

    Recent research by NASA indicates that extensive natural laminar flow (NLF) is attainable on modern high performance airplanes currently under development. Modern airframe construction methods and materials, such as milled aluminum skins, bonded aluminum skins, and composite materials, offer the potential for production of aerodynamic surfaces having waviness and roughness below the values which are critical for boundary layer transition. Areas of concern with the certification aspects of Natural Laminar Flow (NLF) are identified to stimulate thought and discussion of the possible problems. During its development, consideration has been given to the recent research information available on several small business and experimental airplanes and the certification and operating rules for general aviation airplanes. The certification considerations discussed are generally applicable to both large and small airplanes. However, from the information available at this time, researchers expect more extensive NLF on small airplanes because of their lower operating Reynolds numbers and cleaner leading edges (due to lack of leading-edge high lift devices). Further, the use of composite materials for aerodynamic surfaces, which will permit incorporation of NLF technology, is currently beginning to appear in small airplanes.

  10. Natural and forced asymmetries in flow through a vocal fold model

    NASA Astrophysics Data System (ADS)

    Drain, Bethany; Lambert, Lori; Krane, Michael; Wei, Timothy

    2012-11-01

    Much of the complexity and richness of voice production stems from asymmetries in flow through the vocal folds. There are naturally occurring asymmetries, such as the Coanda effect (i . e . deviation of the glottal jet from the centerline as air passes through the nominally symmetric vocal folds). There are also asymmetries which arise from disease or dysfunction of the vocal folds. This study uses DPIV measurements in a dynamically scaled-up human vocal fold model to compare the flow characteristics between symmetric versus asymmetric oscillations. For this study, asymmetries were introduced by running one vocal fold out of phase with the other. Three phase lags, 0 18 and 36, were examined over a range of frequencies corresponding to the physiological frequencies of 50-200 Hz. Control volume analysis was applied and time traces of terms from the conservation of linear momentum equation were generated. This allowed analysis of how differences in the glottal jet flow manifest themselves in the fluid pressure field. In addition, further examination of the Coanda effect in the context of fluid pressure will be discussed. Supported by NIH.

  11. F-111 natural laminar flow glove flight test data analysis and boundary layer stability analysis

    NASA Technical Reports Server (NTRS)

    Runyan, L. J.; Navran, B. H.; Rozendaal, R. A.

    1984-01-01

    An analysis of 34 selected flight test data cases from a NASA flight program incorporating a natural laminar flow airfoil into partial wing gloves on the F-111 TACT airplane is given. This analysis determined the measured location of transition from laminar to turbulent flow. The report also contains the results of a boundary layer stability analysis of 25 of the selected cases in which the crossflow (C-F) and Tollmien-Schlichting (T-S) disturbance amplification factors are correlated with the measured transition location. The chord Reynolds numbers for these cases ranges from about 23 million to 29 million, the Mach numbers ranged from 0.80 to 0.85, and the glove leading-edge sweep angles ranged from 9 deg to 25 deg. Results indicate that the maximum extent of laminar flow varies from 56% chord to 9-deg sweep on the upper surface, and from 51% chord at 16-deg sweep to 6% chord at 25-deg sweep on the lower. The results of the boundary layer stability analysis indicate that when both C-F and T-S disturbances are amplified, an interaction takes place which reduces the maximum amplification factor of either type of disturbance that can be tolerated without causing transition.

  12. Comparison of Natural Dams from Lava Flows and Landslides on the Owyhee River, Oregon

    NASA Astrophysics Data System (ADS)

    Ely, L. L.; Brossy, C. C.; Othus, S. M.; Orem, C.; Fenton, C.; House, P. K.; O'Connor, J. E.; Safran, E. B.

    2008-12-01

    Numerous large lava flows and mass movements have temporarily dammed the Owyhee River in southeastern Oregon at various temporal and spatial scales. These channel-encroaching events potentially play a significant role in creating and maintaining the geomorphic features of river canyons in uplifted volcanic terranes that compose a significant part of the western U.S. Abundant landslides and lava flows have the capacity to inhibit incision by altering channel slope, width, and bed character, and burying valley- bottom bedrock under exogenous material; or promote incision by generating cataclysmic floods through natural dam failures. The natural dams vary in their source, morphology, longevity and process of removal, which in turn affects the extent and duration of their impact on the river. The 3 most recent lava flows filled the channel 10-75 m deep and flowed up to 26 kilometers downvalley, creating long, low dams that were subject to gradual, rather than catastrophic, removal. In the last 125 ka, the Saddle Butte and West Crater lava dams created reservoirs into which 10-30 meters of silt and sand were deposited. The river overtopped the dams and in most reaches eventually cut a new channel through the adjacent, less resistant bedrock buttresses. Terraces at several elevations downstream and upstream of the West Crater dam indicate periods of episodic incision ranging from 0.28 to 1.7 mm/yr., based on 3He exposure ages on strath surfaces and boulder-rich fluvial deposits. In contrast to the lava dams, outburst flood deposits associated with landslide dams are common along the river. The mechanisms of failure are related to the geologic setting, and include rotational slump complexes, cantilevered blocks and block slides, and massive earthflows. Most large-scale mass movements occur in reaches where the Owyhee canyon incises through stacks of interbedded fluviolacustrine sediments capped with lava flows. The frequently observed association of landslides and flood

  13. Elevated natural killer cell levels and autoimmunity synergistically decrease uterine blood flow during early pregnancy

    PubMed Central

    Yi, Hyun Jeong; Kim, Jung Hyun; Koo, Hwa Seon; Bae, Ju Youn; Cha, Sun Wha

    2014-01-01

    Objective To investigate whether natural killer (NK) cell and autoimmune antibody acts synergistically, by the action of autoantibodies to increase NK cell number and cytotoxicity, to decrease uterine blood flow during early pregnancy in pregnant women with a history of recurrent spontaneous abortion (RSA). Methods Seventy-five pregnant women (between 5 and 7 weeks gestation) with a history of unexplained RSA were included in the study group. Forty-one pregnant women without a history of RSA were included as controls. All women with a history of RSA were tested for autoantibodies and number of peripheral blood natural killer (pbNK) cell by flow cytometry. Study populations were stratified into four groups by existence of autoantibody and degree of increase of pbNK cells. The uterine radial artery resistance index (RI) was measured by color-pulsed Doppler transvaginal ultrasound. Results The mean RI of the autoimmune antibody-positive (AA+) group (0.63±0.09) was significantly higher than that of the normal control group (0.53±0.10, P=0.001). The mean RI of the AA+/only-NK elevated (eNK) group (0.63±0.09) was significantly higher than those of the only-AA+ group (0.55±0.07, P=0.019) and the only-eNK group (0.57±0.07, P=0.021). Conclusion Concurrent elevation in NK cells and autoimmunity results in decreased uterine blood flow during early pregnancy. However, the majority of cases of RSA remain unexplained and larger scale studies are needed to confirm our conclusion and to develop diagnostic and therapeutic plans for women with a history of RSA. PMID:24883292

  14. The nature and distribution of flowing features in a weakly karstified porous limestone aquifer

    NASA Astrophysics Data System (ADS)

    Maurice, L. D.; Atkinson, T. C.; Barker, J. A.; Williams, A. T.; Gallagher, A. J.

    2012-05-01

    SummaryThe nature and distribution of flowing features in boreholes in an area of approximately 400 km2 in a weakly karstic porous limestone aquifer (the Chalk) was investigated using single borehole dilution tests (SBDTs) and borehole imaging. One-hundred and twenty flowing features identified from SBDTs in 24 boreholes have densities which decrease from ∼0.3 m-1 near the water table to ∼0.07 m-1 at depths of more than 40 m below the water table; the average density is 0.20 m-1. There is some evidence of regional lithological control and borehole imaging of three boreholes indicated that most flowing features are associated with marls, hardgrounds and flints that may be developed at a more local scale. Borehole imaging also demonstrated that many flowing features are solutionally enlarged fractures, suggesting that even in carbonate aquifers where surface karst is developed on only a small scale, groundwater flow is still strongly influenced by dissolution. Fully connected solutional pathways can occur over 100s, sometimes 1000s of metres. However, conduits, tubules and fissures may not always be individually persistent along a flowpath, instead being connected together and also connected to unmodified fractures to create a relatively dense network of voids with variable apertures (<0.1 cm to >15 cm). Groundwater therefore moves along flowpaths made up of voids with varying shape and character. Local solutional development of fractures at significant depths below the surface suggests that mixing corrosion and in situ sources of acidity may contribute to solutional enhancement of fractures. The study demonstrates that single borehole dilution testing is a useful method of obtaining a large dataset of flowing features at catchment-regional scales. The Chalk is a carbonate aquifer with small-scale surface karst development and this study raises the question of whether other carbonate aquifers with small-scale surface karst have similar characteristics, and what

  15. TROPICAL METEOROLOGY & Climate: Hadley Circulation

    SciTech Connect

    Lu, Jian; Vecchi, Gabriel A.

    2015-01-30

    The Hadley circulation, a prominent circulation feature characterized by rising air near the Equator and sinking air in the subtropics, defines the position of dry subtropical areas and is a fundamental regulator of the earth’s energy and momentum budgets. The character of the Hadley circulation, and its related precipitation regimes, exhibits variation and change in response to both climate variability and radiative forcing changes. The strength and position of the Hadley circulation change from year to year paced by El Niño and La Niña events. Over the last few decades of the twentieth century, the Hadley cell has expanded poleward in both hemispheres, with changes in atmospheric composition (including stratospheric ozone depletion and greenhouse gas increases) thought to have contributed to its expansion. This article introduces the basic phenomenology and driving mechanism of the Hadley circulation and discusses its variations under both natural and anthropogenic climate forcings.

  16. Synthesis of natural flows at selected sites in the upper Missouri River basin, Montana, 1928-89

    USGS Publications Warehouse

    Cary, L.E.; Parrett, Charles

    1996-01-01

    Natural monthly streamflows were synthesized for the years 1928-89 for 43 sites in the upper Missouri River Basin upstream from Fort Peck Lake in Montana. The sites are represented as nodes in a streamflow accounting model being developed by the Bureau of Reclamation. Recorded and historical flows at most sites have been affected by human activities including reservoir storage, diversions for irrigation, and municipal use. Natural flows at the sites were synthesized by eliminating the effects of these activities. Recorded data at some sites do not include the entire study period. The missing flows at these sites were estimated using a statistical procedure. The methods of synthesis varied, depending on upstream activities and information available. Recorded flows were transferred to nodes that did not have streamflow-gaging stations from the nearest station with a sufficient length of record. The flows at one node were computed as the sum of flows from three upstream tributaries. Monthly changes in reservoir storage were computed from monthend contents. The changes in storage were corrected for the effects of evaporation and precipitation using pan-evaporation and precipitation data from climate stations. Irrigation depletions and consumptive use by the three largest municipalities were computed. Synthesized natural flow at most nodes was computed by adding algebraically the upstream depletions and changes in reservoir storage to recorded or historical flow at the nodes.

  17. Simple flow injection colorimetric system for determination of paraquat in natural water.

    PubMed

    Chuntib, Prakit; Jakmunee, Jaroon

    2015-11-01

    A simple and low cost flow injection colorimetric system has been developed for determination of paraquat in natural water. The developed method is based on the reduction of paraquat by using sodium dithionite as a reducing agent in an alkaline medium to produce a blue free radical ion that can be detected by a simple light emitting diode-light dependent resistor (LED-LDR) colorimeter. The standard or sample solution was injected via a set of 3-way solenoid valves into a water carrier stream and flowed to merge with reagent to generate a colored product which is proportional to the concentration of paraquat ion in the solution. Under the optimum condition of the system, i.e., mixing coil length 30 cm, flow rate 2.0 mL min(-1), sample volume 100 μL, concentrations of dithionite 0.1% (w/v) and sodium hydroxide 0.06 mol L(-1), a linear calibration graph in the range of 0.2-10.0 mg L(-1) with a correlation coefficient of 0.9996, and a limit of detection of 0.15 mg L(-1) were achieved. Relative standard deviation for 9 replicate injections of 1 mg L(-1) paraquat is 3.7%. A sample throughput of 40 injections h(-1) was achieved. The limit of detection can be improved by off-line preconcentration of paraquat employing a column packed with Dowex 50WX8-100 (H) cation exchange resin and eluted with 10% (w/v) ammonium chloride in ammonium buffer solution pH 10. The eluting solution was then injected into the FI system for paraquat determination. The proposed system did not suffer from interferences of some possible ions in natural water and other herbicides. Recoveries obtained by spiking 0.5 and 5.0 mg L(-1) paraquat standard into water samples were in the range of 104-110% and 101-105%, respectively. The developed system can be conveniently applied for screening of paraquat contaminated in natural water. PMID:26452844

  18. Meridional Circulation and Global Solar Oscillations

    NASA Astrophysics Data System (ADS)

    Roth, M.; Stix, M.

    2008-09-01

    We investigate the influence of large-scale meridional circulation on solar p-modes by quasi-degenerate perturbation theory, as proposed by Lavely & Ritzwoller, 1992 (Roy. Soc. Lon. Phil. Trans. Ser. A, 339, 431). As an input flow we use various models of stationary meridional circulation obeying the continuity equation. This flow perturbs the eigenmodes of an equilibrium model of the Sun. We derive the signatures of the meridional circulation in the frequency multiplets of solar p modes. In most cases the meridional circulation leads to negative average frequency shifts of the multiplets. Further possibly observable effects are briefly discussed.

  19. Meridional Circulation and Global Solar Oscillations

    NASA Astrophysics Data System (ADS)

    Roth, M.; Stix, M.

    2008-09-01

    We investigate the influence of large-scale meridional circulation on solar p modes by quasi-degenerate perturbation theory, as proposed by Lavely and Ritzwoller ( Roy. Soc. Lond. Phil. Trans. Ser. A 339, 431, 1992). As an input flow we use various models of stationary meridional circulation obeying the continuity equation. This flow perturbs the eigenmodes of an equilibrium model of the Sun. We derive the signatures of the meridional circulation in the frequency multiplets of solar p modes. In most cases the meridional circulation leads to negative average frequency shifts of the multiplets. Further possibly observable effects are briefly discussed.

  20. "Going with the flow" or not: evidence of positive rheotaxis in oceanic juvenile loggerhead turtles (Caretta caretta) in the South Pacific Ocean Using Satellite Tags and Ocean Circulation Data.

    PubMed

    Kobayashi, Donald R; Farman, Richard; Polovina, Jeffrey J; Parker, Denise M; Rice, Marc; Balazs, George H

    2014-01-01

    The movement of juvenile loggerhead turtles (n = 42) out-fitted with satellite tags and released in oceanic waters off New Caledonia was examined and compared with ocean circulation data. Merging of the daily turtle movement data with drifter buoy movements, OSCAR (Ocean Surface Current Analyses--Real time) circulation data, and three different vertical strata (0-5 m, 0-40 m, 0-100 m) of HYCOM (HYbrid Coordinate Ocean Model) circulation data indicated the turtles were swimming against the prevailing current in a statistically significant pattern. This was not an artifact of prevailing directions of current and swimming, nor was it an artifact of frictional slippage. Generalized additive modeling was used to decompose the pattern of swimming into spatial and temporal components. The findings are indicative of a positive rheotaxis whereby an organism is able to detect the current flow and orient itself to swim into the current flow direction or otherwise slow down its movement. Potential mechanisms for the means and adaptive significance of rheotaxis in oceanic juvenile loggerhead turtles are discussed. PMID:25098694

  1. Two-flow simulation of the natural light field within a canopy of submerged aquatic plants

    NASA Technical Reports Server (NTRS)

    Ackleson, S. G.; Klemas, V.

    1986-01-01

    A two-flow model is developed to simulate a light field composed of both collimated and diffuse irradiance within natural waters containing a canopy of bottom-adhering plants. To account for the effects of submerging a canopy, the transmittance and reflectance terms associated with each plant structure (leaves, stems, fruiting bodies, etc.) are expressed as functions of the ratio of the refractive index of the plant material to the refractive index of the surrounding media and the internal transmittance of the plant stucture. Algebraic solutions to the model are shown to yield plausible physical explanations for unanticipated variations in volume reflectance spectra. The effect of bottom reflectance on the near-bottom light field is also investigated. These indicate that within light-limited submerged aquatic plant canopies, substrate reflectance may play an important role in determining the amount of light available to the plants and, therefore, canopy productivity.

  2. Thermocapillary flow and natural convection in a melt column with an unknown melt/solid interface

    NASA Technical Reports Server (NTRS)

    Lan, C. W.; Kou, Sindo

    1991-01-01

    A vertical melt column set up between an upper heating rod and a lower sample rod, i.e., the so-called half-zone system, is a convenient experimental tool for studying convection in the melt in floating-zone crystal growth. In order to help understand the convection observed in the melt column, a computer model has been developed to describe steady state, axisymmetrical thermocapillary flow and natural convection in the melt. The governing equations and boundary conditions are expressed in general non-orthogonal curvilinear coordinates in order to accurately treat the unknown melt/solid interface as well as all other physical boundaries in the system. The effects of key dimensionless variables on the following items are discussed: (1) convection and temperature distribution in the melt; (2) the shape of the melt/solid interface; (3) the height of the melt column. These dimensionless variables are the Grashof, Marangoni and Prandtl numbers.

  3. Natural convection flow in porous enclosure with localized heating from below with heat flux

    NASA Astrophysics Data System (ADS)

    Siddiki, Md. Noor-A.-Alam; Molla, Md. Mamun; Saha, Suvash C.

    2016-07-01

    Unsteady natural convection flow in a two dimensional fluid saturated porous enclosure with localized heating from below with heat flux, symmetrical cooling from the sides and the insulated top wall has been investigated numerically. The governing equations are the Darcy's law for the porous media and the energy equation for the temperature field has been considered. The non-dimensional Darcy's law in terms of the stream function is solved by finite difference method using the successive over-relaxation (SOR) scheme and the energy equation is solved by Alternative Direction Alternative (ADI) scheme. The uniform heat flux source is located centrally at the bottom wall. The numerical results are presented in terms of the streamlines and isotherms, as well as the local and average rate of heat transfer for the wide range of the Darcy's Rayleigh number and the length of the heat flux source at the bottom wall.

  4. MHD natural convection flow along a vertical wavy surface with heat generation and pressure work

    NASA Astrophysics Data System (ADS)

    Alim, M. A.; Kabir, K. H.; Andallah, L. S.

    2016-07-01

    In this paper, the influence of pressure work on MHD natural convection flow of viscous incompressible fluid along a uniformly heated vertical wavy surface with heat generation has been investigated. The governing boundary layer equations are first transformed into a non-dimensional form using suitable set of dimensionless variables. The resulting nonlinear system of partial differential equations are mapped into the domain of a vertical flat plate and then solved numerically employing the implicit finite difference method, known as Keller-box scheme. The numerical results for the velocity profiles, temperature profiles, skin friction coefficient, the rate of heat transfers, the streamlines and the isotherms are shown graphically and skin friction coefficient and rate of heat transfer have been shown in tabular form for different values of the selective set of parameters consisting of pressure work parameter Ge, the magnetic parameter M, Prandtl number Pr, heat generation parameter Q and the amplitude of the wavy surface.

  5. Parallel Computations of Natural Convection Flow in a Tall Cavity Using an Explicit Finite Element Method

    SciTech Connect

    Dunn, T.A.; McCallen, R.C.

    2000-10-17

    The Galerkin Finite Element Method was used to predict a natural convection flow in an enclosed cavity. The problem considered was a differentially heated, tall (8:1), rectangular cavity with a Rayleigh number of 3.4 x 10{sup 5} and Prandtl number of 0.71. The incompressible Navier-Stokes equations were solved using a Boussinesq approximation for the buoyancy force. The algorithm was developed for efficient use on massively parallel computer systems. Emphasis was on time-accurate simulations. It was found that the average temperature and velocity values can be captured with a relatively coarse grid, while the oscillation amplitude and period appear to be grid sensitive and require a refined computation.

  6. Ocean circulation

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew F.; Rahmstorf, Stefan

    The ocean moderates the Earth's climate due to its vast capacity to store and transport heat; the influence of the large-scale ocean circulation on changes in climate is considered in this chapter. The ocean experiences both buoyancy forcing (through heating/cooling and evaporation/precipitation) and wind forcing. Almost all ocean forcing occurs at the surface, but these changes are communicated throughout the entire depth of the ocean through the meridional overturning circulation (MOC). In a few localized regions, water become sufficiently dense to penetrate thousands of meters deep, where it spreads, providing a continuous source of deep dense water to the entire ocean. Dense water returns to the surface and thus closes the MOC, either through density modification due to diapycnal mixing or by upwelling along sloping isopycnals across the Southern Ocean. Determination of the relative contributions of these two processes in the MOC remains an active area of research. Observations obtained primarily from isotopic compositions in ocean sediments provide substantial evidence that the structure of the MOC has changed significantly in the past. Indeed, large and abrupt changes to the Earth's climate during the past 120,000 years can be linked to either a reorganization or a complete collapse of the MOC. Two of the more dramatic instances of abrupt change include Dansgaard-Oeschger events, abrupt warmings that could exceed 10°C over a period as short as a few decades, and Heinrich events, which are associated with massive freshwater fluxes due to rapid iceberg discharges into the North Atlantic. Numerical models of varying complexity that have captured these abrupt transitions all underscore that the MOC is a highly nonlinear system with feedback loops, multiple equilibria, and hysteresis effects. Prediction of future abrupt shifts in the MOC or "tipping points" remains uncertain. However, the inferred behavior of the MOC during glacial climates suggests that

  7. Natural laminar flow flight experiments on a swept wing business jet-boundary layer stability analyses

    NASA Technical Reports Server (NTRS)

    Rozendaal, R. A.

    1986-01-01

    The linear boundary layer stability analyses and their correlation with data of 18 cases from a natural laminar flow (NLF) flight test program using a Cessna Citation 3 business jet are described. The transition point varied from 5% to 35% chord for these conditions, and both upper and lower wing surfaces were included. Altitude varied from 10,000 to 43,000 ft and Mach number from 0.3 to 0.8. Four cases were at nonzero sideslip. Although there was much scatter in the results, the analyses of boundary layer stability at the 18 conditions led to the conclusion that crossflow instability was the primary cause of transition. However, the sideslip cases did show some interaction of crossflow and Tollmien-Schlichting disturbances. The lower surface showed much lower Tollmien-Schlichting amplification at transition than the upper surface, but similar crossflow amplifications. No relationship between Mach number and disturbance amplification at transition could be found. The quality of these results is open to question from questionable wing surface quality, inadequate density of transition sensors on the wing upper surface, and an unresolved pressure shift in the wing pressure data. The results of this study show the need for careful preparation for transition experiments. Preparation should include flow analyses of the test surface, boundary layer disturbance amplification analyses, and assurance of adequate surface quality in the test area. The placement of necessary instruments and usefulness of the resulting data could largely be determined during the pretest phase.

  8. Flow cytometric determination of bacterial populations in bottled natural mineral waters

    NASA Astrophysics Data System (ADS)

    Beisker, Wolfgang; Meier, H.

    1998-04-01

    In order to enhance the quality and safety of bottled natural mineral waters, new methodologies besides classical bacteriology have been evaluated. Multi laser flow cytometry has been used to identify bacterial populations based on their DNA content, physiological activity and phylogeny from in situ hybridization with rRNA targeted DNA probes. Due to the low content of organic material in these waters, the bacterial population are under conditions (low ribosome content, low activity, etc.) which makes it hard to detect them flow cytometrically. The numbers of bacteria are in the range between 1000 and 100,000 per ml (for uncarbonated waters). Filtration techniques to enrich the bacterial population have been developed in combination with specific staining and hybridization protocols. First results on some selected brands show, that most bacteria belong to the beta subclass of proteobacteria. If the DNA containing cells (DAPI staining) are counted as 100%, 84% could be stained with a eubacteria probe. From these 84% 68% belong to the beta subclass, 8.2% to the alpha and 0.3% to the gamma subclass of roteobacteria. 8.5% could be identified as cytophaga flexibacter. By optimizing DNA staining with cyanine dyes and enhancing the sensitivity of light scatter detection, the detection limit could be considerably lowered.

  9. Reaction flow chromatography for rapid post column derivatisations: the analysis of antioxidants in natural products.

    PubMed

    Camenzuli, M; Ritchie, H J; Dennis, G R; Shalliker, R A

    2013-08-16

    The analysis of antioxidants from complex samples is conveniently achieved using liquid chromatography, which provides sample fraction, coupled with an on-line antioxidant assay, which provides detection. One particularly useful on-line antioxidant assay that has routinely been coupled with HPLC involves the diphenylpicrylhydrazyl radical (DPPH), which provides a positive test for phenolic antioxidants through a decolorisation of the DPPH reagent. A limitation of this assay, however, is the need to employ a reaction coil, which is often large with respect to the peak volume, consequently adding substantial band broadening to the separation. In this study we introduce a new concept that can be employed for systems requiring post column derivatisations, such as the DPPH assay. We have termed this 'reaction flow' chromatography, whereby, the derivatisation reagent can be added directly into one of the outlet ports of a parallel segmented flow column. Subsequently, the mixing between the derivatising reagent and the solute is very efficient removing the need to employ reaction coils. The concept is tested here using the DPPH assay for the analysis of antioxidants in samples derived from natural origin. PMID:23849586

  10. Experiments on Natural-Scale Basaltic Lava Flows: Scope and First Results of the Syracuse University Lava Project

    NASA Astrophysics Data System (ADS)

    Karson, J.; Wysocki, R.; Kissane, M. T.; Smith, C.; Spencer, S.

    2012-12-01

    The Syracuse University Lava Project creates natural-scale basaltic lava flows for scientific investigations, educational opportunities and artistic projects. Modified furnaces designed for melting and pouring metals are used to create individual basaltic lava flow lobes of up to 450 kg (10-2m2) with the potential to generate much larger flow fields under controlled conditions. At present, the starting material used in 1.1 Ga Keewenan basalt from the Mid-Continent Rift in NW Wisconsin, a relatively uniform, well-characterized tholeiitic-alkalic basalt. Other compositions (andesite, komatiite, carbonatite) are planned for future experiments. Basaltic gravel is heated to 1100° to 1300°C in a crucible resulting in homogeneous, convecting basaltic magma. Lava is poured over a variety of surfaces including rock slabs, wet or dry sand, H2O or CO2 ice, rough or smooth material, and confined or unconfined channels. Resulting lava flows can be dissected for mapping