These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Clues for biomimetics from natural composite materials  

PubMed Central

Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine. PMID:22994958

Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

2013-01-01

2

New toughening concepts for ceramic composites from rigid natural materials.  

PubMed

The mechanisms underlying the toughening in rigid natural composites exhibited by the concentric cylindrical composites of spicules of hexactinellid sponges, and by the nacre (brick-and-mortar) structure of mollusks such as Haliotis rufescens (red abalone), as well as the crossed-lamellar structure of Strombus gigas (queen conch) show commonalities in the manner in which toughening takes place. It is proposed that crack diversion, a new kind of crack bridging, resulting in retardation of delamination, creation of new surface areas, and other energy-dissipating mechanisms occur in both natural systems. However, these are generally different from the toughening mechanisms that are utilized for other classes of structural materials. Complementary to those mechanisms found in rigid natural ceramic/organic composites, special architectures and thin viscoelastic organic layers have been found to play controlling roles in energy dissipation in these structures. PMID:21565715

Mayer, George

2011-07-01

3

Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials  

NASA Astrophysics Data System (ADS)

The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination theory, finite element method, and Castigliano's method in unidirectional tension and compression, but are less accurate for the more bond-dependent flexural and shear properties. With the acknowledged NFRP matrix bonding issues, the over-prediction of these theoretical models indicates that the flexural stiffness of the kenaf composite may be increased by up to 40% if a better bond between the fiber and matrix can be obtained. The sustainability of NFRPs was examined from two perspectives: environmental and socioeconomic. While the kenaf fibers themselves possess excellent sustainability characteristics, costing less while possessing a lesser environmental impact than the glass fibers, the vinyl ester resin used in the composites is environmentally hazardous and inflated the cost and embodied energy of the composite SIPs. Consistent throughout all the designs was a correlation between the respective costs of the raw materials and the respective environmental impacts. The socioeconomic study looked at the sustainability of natural fiber reinforced composite materials as housing materials in developing countries. A literature study on the country of Bangladesh, where the fibers in this study were grown, showed that the jute and kenaf market would benefit from the introduction of a value-added product like natural fiber composites. The high rate of homeless and inadequately housed in Bangladesh, as well as in the US and throughout the rest of the world, could be somewhat alleviated if a new, affordable, and durable material were introduced. While this study found that natural fiber composites possess sufficient mechanical properties to be adopted as primary structural members, the two major remaining hurdles needing to be overcome before natural fiber composites can be adopted as housing materials are the cost and sustainability of the resin system and the moisture resistance/durability of the fibers. (Abstract shortened by UMI.)

Dittenber, David B.

4

Tensile & impact behaviour of natural fibre-reinforced composite materials  

SciTech Connect

Short abaca fiber reinforced composite materials are fabricated and investigated for short term performance. Abaca plants which grow in abundance in Asia contain fibers that are inexpensive but underutilized. This study attempts to utilize the abaca fibers for composite material structure as a possible alternative to timber products in building applications. The composite material is fabricated using the hand lay-up method under varying fiber length and fiber volume fraction. The fibers are impregnated with a mixture of resins which cures at room temperature. A fabricating facility is designed to accommodate fabrication of lamina. Tensile and impact properties are determined in relation to the length and volume fraction of the fiber. For a given fiber length, the tensile and impact strength increase as the volume fraction increases up to a limiting value. And for a given fiber volume fraction, the tensile strength increases but the impact strength decreases as the fiber length increases. This behavior of abaca fiber-reinforced composite lamina will help in optimizing the design parameter in random composite panels.

Tobias, B.C. [Victoria Univ. of Technology, Footscray (Australia). Dept. of Mechanical Engineering

1993-12-31

5

Composite material  

DOEpatents

A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

2012-02-07

6

Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt  

Microsoft Academic Search

The application of ultrasonic melt treatment to the production of natural and synthesized aluminum-based composite materials is considered in terms of underlying basic ideas and commercial implementations. It is shown that the ultrasonic cavitation treatment combined with microalloying of hypereutectic Al–Si natural composites (alloys) promotes the formation of structures suitable for further deformation. The use of highly impure starting materials

G. I. Eskin; D. G. Eskin

2003-01-01

7

Composite Materials  

NSDL National Science Digital Library

This is an activity (located on page 3 of PDF) about composites, materials made of 2 or more different components. Learners will be challenged to build the best mud bricks, one of the earliest examples of composites. From a supply of various building components, which the learners will examine for their different properties, they will build mud bricks, then dry them and put them through several tests. *Bricks must bake in the sun for 2-3 days prior to testing. Resource contains information about how this activity relates to carbon nanotubes and links to video, DragonflyTV Nano: Hockey Sticks.

2012-05-09

8

Investigation of Polymer Resin/Fiber Compatibility in Natural Fiber Reinforced Composite Automotive Materials  

SciTech Connect

Natural fibers represent a lower density and potentially lower cost alternative to glass fibers for reinforcement of polymers in automotive composites. The high specific modulus and strength of bast fibers make them an attractive option to replace glass not only in non-structural automotive components, but also in semi-structural and structural components. Significant barriers to insertion of bast fibers in the fiber reinforced automotive composite market include the high moisture uptake of this lignocellulosic material relative to glass and the weak inherent interface between natural fibers and automotive resins. This work seeks to improve the moisture uptake and resin interfacing properties of natural fibers through improved fundamental understanding of fiber physiochemical architecture and development of tailored fiber surface modification strategies.

Fifield, Leonard S.; Huang, Cheng; Simmons, Kevin L.

2010-01-01

9

A novel use of bio-based natural fibers, polymers, and rubbers for composite materials  

NASA Astrophysics Data System (ADS)

The composites, materials, and packaging industries are searching for alternative materials to attain environmental sustainability. Bio-plastics are highly desired and current microbially-derived bio-plastics, such as PHA (poly-(hydroxy alkanoate)), PHB (poly-(hydroxybutyrate)), and PHBV (poly-(beta-hydroxy butyrate-co-valerate)) could be engineered to have similar properties to conventional thermoplastics. Poly-(hydroxybutyrate) (PHB) is a bio-degradable aliphatic polyester that is produced by a wide range of microorganisms. Basic PHB has relatively high glass transition and melting temperatures. To improve flexibility for potential packaging applications, PHB is synthesized with various co-polymers such as Poly-(3-hydroxyvalerate) (HV) to decrease the glass and melting temperatures and, since there is improved melt stability at lower processing temperatures, broaden the processing window. However, previous work has shown that this polymer is too brittle, temperature-sensitive, and hydrophilic to meet packaging material physical requirements. Therefore, the proposed work focuses on addressing the needs for bio-derived and bio-degradable materials by creating a range of composite materials using natural fibers as reinforcement agents in bio-polymers and bio- plastic-rubber matrices. The new materials should possess properties lacking in PHBV and broaden the processing capabilities, elasticity, and improve the mechanical properties. The first approach was to create novel composites using poly-(beta-hydroxy butyrate-co-valerate) (PHBV) combined with fibers from invasive plants such as common reed (Phragmites australis), reed canary grass (Phalaris arundinacea), and water celery ( Vallisneria americana). The composites were manufactured using traditional processing techniques of extrusion compounding followed by injection molding of ASTM type I parts. The effects of each bio-fiber at 2, 5, and 10% loading on the mechanical, morphological, rheological, and thermal properties of PHBV were investigated. Many of the composites showed miscible blends between the fibers and PHBV. The SEM analysis showed finely dispersed water celery bio-fibers into the PHBV matrix indicating compatibility between this fiber and the PHBV matrix. The finely ground water celery fibers increased the fiber-matrix interactions without the use of additives or compatibilizers. When the mechanical properties of the composites were compared to pure PHBV, the composites showed improvements in the tensile modulus, while limited changes were observed in the tensile strength and elongation at break. Also, improvements in the viscosity at 170¨¬C over pure PHBV were observed with the addition of 10% by weight bio-fibers due to fiber-fiber and fiber-matrix interactions. With these improvements in the melt stability, the composites can be processed above the melting temperature of 165-170°C, a marked benefit over pure PHBV. The brittle nature of PHBV and its relatively high water transmission rates making it unsuitable for packaging applications. New blends of PHBV with high molecular weight natural rubber of matched viscosity were developed. The mechanical, rheological, and thermal properties of the blends with 5, 10, 15, and 25% by weight high molecular weight natural rubber (HMW-NR) were characterized; in addition, the water vapor transmission rates of these blends was determined. The results showed increased thermal stability and more uniform melting peaks for the blends compared to pure PHBV. The water permeation decreased with the addition of HMW-NR, and the permeation rates were similar to that of traditional thermoplastics. The addition of rubber increased the elongation at break without adversely affecting the Young's modulus for the blends. The complex viscosity of the blends was improved by one log over pure PHBV at 170ºC suggesting improved thermal stability of the blends. During creep and recovery testing, higher compliance values of the blends suggest increased entanglements network of PHBV and rubber micro-fibrils preventing the blends from deve

Modi, Sunny Jitendra

10

Composite Materials  

NASA Technical Reports Server (NTRS)

Composites are lighter and stronger than metals. Aramid fibers like Kevlar and Nomex were developed by DuPont Corporation and can be combined in a honeycomb structure which can give an airplane a light, tough structure. Composites can be molded into many aerodynamic shapes eliminating rivets and fasteners. Langley Research Center has tested composites for both aerospace and non-aerospace applications. They are also used in boat hulls, military shelters, etc.

1985-01-01

11

New natural injection-moldable composite material from sunflower oil cake.  

PubMed

Through a twin-screw extrusion process the native structure of sunflower oil cake was completely transformed (globular protein denaturation/texturization and husk fiber defibration) into a simpler matrix-fiber structure, as could be seen on SEM micrographs. Further chemical reduction of protein disulfide bridges greatly reduced the melt viscosity of the moistened composite that it could be injection-molded. The molded specimens were tested and their tensile and flexural properties and water absorption calculated. Their water resistance appeared to be particularly high, and could be enhanced further after a thermal treatment (N2, 200 degrees C). The proteic matrix seemed to behave like a natural thermoset resin. Sunflower oil cake could be used without any additives to make biodegradable, water resistant and exceptionally cheap materials. PMID:15961308

Rouilly, A; Orliac, O; Silvestre, F; Rigal, L

2006-03-01

12

In vitro calcium phosphate formation on a natural composite material, bamboo.  

PubMed

A natural self-reinforced composite material, bamboo, is studied for the first time as a biomedical material. Its anatomical structure was investigated and its mechanical properties were measured and compared with those of some common bone-bonding or bone-repairing biomaterials. It is found that, among all kinds of biomaterials, bamboo has the closest modulus of elasticity to human long bone. The cytotoxicity of bamboo was tested using the agar overlay method before and after heat or chemical treatments. The results reveal that ethanol, methanol and toluene can remove toxic leachable components from bamboo to some extent through extraction. After grafting a polymer whose molecule includes poly(ethylene glycol), alpha,omega-di(aminopropyl)poly(ethylene glycol) 800 on bamboo, bamboo has the ability to form a calcium phosphate coating after being immersed in calcification solution (simulated body fluid and accelerated calcification solution). The characteristics and the morphology of the mineral formed on bamboo were studied by infrared spectroscopy and scanning electron microscopy. PMID:9061179

Li, S H; Liu, Q; de Wijn, J R; Zhou, B L; de Groot, K

1997-03-01

13

The Chemical Nature of the Fiber/resin Interface in Composite Materials  

NASA Technical Reports Server (NTRS)

Carbon fiber/epoxy resin composites are considered. The nature of the fiber structure and the interaction that occurs at the interface between fiber and matrix are emphasized. Composite toughness can be improved by increased axial tensile and compressive strengths in the fibers. The structure of carbon fibers indicates that the fiber itself can fail transversely, and different transverse microstructures could provide better transverse strengths. The higher surface roughness of lower modulus and surface-treated carbon fibers provides better mechanical interlocking between the fiber and matrix. The chemical nature of the fiber surface was determined, and adsorption of species on this surface can be used to promote wetting and adhesion. Finally, the magnitude of the interfacial bond strength should be controlled such that a range of composites can be made with properties varying from relatively brittle and high interlaminar shear strength to tougher but lower interlaminar shear strength.

Diefendorf, R. J.

1984-01-01

14

Preparation of antibacterial composite material of natural rubber particles coated with silica and titania  

NASA Astrophysics Data System (ADS)

Silica coating, followed by titania coating, was performed over spray-dried natural rubber (NR) compound for physical and anti-bacterial characterizations. Titania has a strong photo-oxidative catalytic property, which can disinfect bacteria, but may degrade NR. Therefore, silica coating was intended to form a barrier between NR and titania. First, NR particles were prepared by spray-drying of NR compound latex, formulated for household glove products, mixed with sodium dodecyl sulfate (SDS) to reduce particle agglomeration. The factorial experimental design was employed to investigate the effects of nozzle flow rate (500-700 Lh-1), inlet air temperature (110-150 °C), SDS content (35-55 phr) and mass flow rate (1.2-1.7 g rubber/min) on NR yield and moisture content. Then, the NR compound particles prepared at the optimum condition were coated with silica, using tetraethoxysilane (TEOS) as the precursor, by chemical vapor deposition (CVD) at 60 °C for 2-48 hours. Next, the particles were coated with titania using titanium tetrafluoride (TiF4) by liquid phase deposition (LPD) at 60 ºC for 4-8 hours. The NR composites were characterized for surface morphology by SEM, silica and titania content by TGA and EDX. The NR composites were found to cause more than 99% reduction of Escherichia coli and Staphylococcus aureus under 1-hour exposure to natural light.

Wisutiratanamanee, Apisit; Poompradub, Sirilux; Poochinda, Kunakorn

2014-06-01

15

Composite structural materials  

NASA Technical Reports Server (NTRS)

Transverse properties of fiber constituents in composites, fatigue in composite materials, matrix dominated properties of high performance composites, numerical investigation of moisture effects, numerical investigation of the micromechanics of composite fracture, advanced analysis methods, compact lug design, and the RP-1 and RP-2 sailplanes projects are discussed.

Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

1983-01-01

16

Tough Composite Materials  

NASA Technical Reports Server (NTRS)

Papers and working group summaries are presented which address composite material behavior and performance improvement. Topic areas include composite fracture toughness and impact characterization, constituent properties and interrelationships, and matrix synthesis and characterization.

Vosteen, L. F. (compiler); Johnson, N. J. (compiler); Teichman, L. A. (compiler)

1984-01-01

17

Composite structural materials  

NASA Technical Reports Server (NTRS)

Technology utilization of fiber reinforced composite materials is discussed in the areas of physical properties, and life prediction. Programs related to the Composite Aircraft Program are described in detail.

Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

1979-01-01

18

Nano-composite materials  

DOEpatents

Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

2010-05-25

19

Composite structural materials  

NASA Technical Reports Server (NTRS)

A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.

Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

1979-01-01

20

Composite structural materials  

NASA Technical Reports Server (NTRS)

Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project.

Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

1984-01-01

21

Acceleration and localization of subcritical crack growth in a natural composite material  

NASA Astrophysics Data System (ADS)

Catastrophic failure of natural and engineered materials is often preceded by an acceleration and localization of damage that can be observed indirectly from acoustic emissions (AE) generated by the nucleation and growth of microcracks. In this paper we present a detailed investigation of the statistical properties and spatiotemporal characteristics of AE signals generated during triaxial compression of a sandstone sample. We demonstrate that the AE event amplitudes and interevent times are characterized by scaling distributions with shapes that remain invariant during most of the loading sequence. Localization of the AE activity on an incipient fault plane is associated with growth in AE rate in the form of a time-reversed Omori law with an exponent near 1. The experimental findings are interpreted using a model that assumes scale-invariant growth of the dominating crack or fault zone, consistent with the Dugdale-Barenblatt "process zone" model. We determine formal relationships between fault size, fault growth rate, and AE event rate, which are found to be consistent with the experimental observations. From these relations, we conclude that relatively slow growth of a subcritical fault may be associated with a significantly more rapid increase of the AE rate and that monitoring AE rate may therefore provide more reliable predictors of incipient failure than direct monitoring of the growing fault.

Lennartz-Sassinek, S.; Main, I. G.; Zaiser, M.; Graham, C. C.

2014-11-01

22

Acceleration and localization of subcritical crack growth in a natural composite material.  

PubMed

Catastrophic failure of natural and engineered materials is often preceded by an acceleration and localization of damage that can be observed indirectly from acoustic emissions (AE) generated by the nucleation and growth of microcracks. In this paper we present a detailed investigation of the statistical properties and spatiotemporal characteristics of AE signals generated during triaxial compression of a sandstone sample. We demonstrate that the AE event amplitudes and interevent times are characterized by scaling distributions with shapes that remain invariant during most of the loading sequence. Localization of the AE activity on an incipient fault plane is associated with growth in AE rate in the form of a time-reversed Omori law with an exponent near 1. The experimental findings are interpreted using a model that assumes scale-invariant growth of the dominating crack or fault zone, consistent with the Dugdale-Barenblatt "process zone" model. We determine formal relationships between fault size, fault growth rate, and AE event rate, which are found to be consistent with the experimental observations. From these relations, we conclude that relatively slow growth of a subcritical fault may be associated with a significantly more rapid increase of the AE rate and that monitoring AE rate may therefore provide more reliable predictors of incipient failure than direct monitoring of the growing fault. PMID:25493797

Lennartz-Sassinek, S; Main, I G; Zaiser, M; Graham, C C

2014-11-01

23

Composite Structural Materials  

NASA Technical Reports Server (NTRS)

The development and application of filamentary composite materials, is considered. Such interest is based on the possibility of using relatively brittle materials with high modulus, high strength, but low density in composites with good durability and high tolerance to damage. Fiber reinforced composite materials of this kind offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been made since the initial developments in the mid 1960's. There were only limited applied to the primary structure of operational vehicles, mainly as aircrafts.

Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

1984-01-01

24

Composite structural materials  

NASA Technical Reports Server (NTRS)

Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.

Loewy, R.; Wiberley, S. E.

1986-01-01

25

Electrically conductive composite material  

DOEpatents

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

1989-01-01

26

Electrically conductive composite material  

DOEpatents

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

Clough, R.L.; Sylwester, A.P.

1989-05-23

27

Composite structural materials  

NASA Technical Reports Server (NTRS)

The promise of filamentary composite materials, whose development may be considered as entering its second generation, continues to generate intense interest and applications activity. Fiber reinforced composite materials offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been achieved since the initial developments in the mid 1960's. Rather limited applications to primary aircraft structure have been made, however, mainly in a material-substitution mode on military aircraft, except for a few experiments currently underway on large passenger airplanes in commercial operation. To fulfill the promise of composite materials completely requires a strong technology base. NASA and AFOSR recognize the present state of the art to be such that to fully exploit composites in sophisticated aerospace structures, the technology base must be improved. This, in turn, calls for expanding fundamental knowledge and the means by which it can be successfully applied in design and manufacture.

Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

1982-01-01

28

Composite structural materials  

NASA Technical Reports Server (NTRS)

Research in the basic composition, characteristics, and processng science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to problems. Detailed descriptions of the progress achieved in the various component parts of his program are presented.

Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

1982-01-01

29

Mechanics of Composite Materials  

Microsoft Academic Search

The mechanical behavior of composites is traditionally evaluated on both microscopic and macroscopic scale to take into account inhomogeneity. Micromechanics attempts to quantify the interactions of fiber and matrix (reinforcement and resin) on a microscopic scale on par with the diameter of a single fiber. Macromechanics treats composites as homogeneous materials, with mechanical properties representative of the laminate as a

Robert M. Jones

1999-01-01

30

Composite structural materials  

NASA Technical Reports Server (NTRS)

The development and application of composite materials to aerospace vehicle structures which began in the mid 1960's has now progressed to the point where what can be considered entire airframes are being designed and built using composites. Issues related to the fabrication of non-resin matrix composites and the micro, mezzo and macromechanics of thermoplastic and metal matrix composites are emphasized. Several research efforts are presented. They are entitled: (1) The effects of chemical vapor deposition and thermal treatments on the properties of pitch-based carbon fiber; (2) Inelastic deformation of metal matrix laminates; (3) Analysis of fatigue damage in fibrous MMC laminates; (4) Delamination fracture toughness in thermoplastic matrix composites; (5) Numerical investigation of the microhardness of composite fracture; and (6) General beam theory for composite structures.

Loewy, Robert G.; Wiberley, Stephen E.

1987-01-01

31

COMPOSITES FROM RECYCLED MATERIALS  

Microsoft Academic Search

A reduction is urgently needed in the quan- tities of industrial and municipal solid waste materials that are being landfilled currently. Major components of municipal solid waste include waste wood, paper. plastics. fly ash. gypsum. and other biomass fibers -- materials that offer great opportunities as recycled ingre- dients in wood composites. This paper dis- cusses possibilities for manufacturing selected

ROGER M. ROWELL; JOHN A. YOUNGQUIST

32

New natural injection-moldable composite material from sunflower oil cake  

Microsoft Academic Search

Through a twin-screw extrusion process the native structure of sunflower oil cake was completely transformed (globular protein denaturation\\/texturization and husk fiber defibration) into a simpler matrix–fiber structure, as could be seen on SEM micrographs. Further chemical reduction of protein disulfide bridges greatly reduced the melt viscosity of the moistened composite that it could be injection-molded. The molded specimens were tested

A. Rouilly; O. Orliac; F. Silvestre; L. Rigal

2006-01-01

33

Nanostructured composite reinforced material  

DOEpatents

A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

2012-07-31

34

Modified Composite Materials Workshop  

NASA Technical Reports Server (NTRS)

The reduction or elimination of the hazard which results from accidental release of graphite fibers from composite materials was studied at a workshop. At the workshop, groups were organized to consider six topics: epoxy modifications, epoxy replacement, fiber modifications, fiber coatings and new fibers, hybrids, and fiber release testing. Because of the time required to develop a new material and acquire a design data base, most of the workers concluded that a modified composite material would require about four to five years of development and testing before it could be applied to aircraft structures. The hybrid working group considered that some hybrid composites which reduce the risk of accidental fiber release might be put into service over the near term. The fiber release testing working group recommended a coordinated effort to define a suitable laboratory test.

Dicus, D. L. (compiler)

1978-01-01

35

Composite structural materials  

NASA Technical Reports Server (NTRS)

Progress and plans are reported for investigations of: (1) the mechanical properties of high performance carbon fibers; (2) fatigue in composite materials; (3) moisture and temperature effects on the mechanical properties of graphite-epoxy laminates; (4) the theory of inhomogeneous swelling in epoxy resin; (5) numerical studies of the micromechanics of composite fracture; (6) free edge failures of composite laminates; (7) analysis of unbalanced laminates; (8) compact lug design; (9) quantification of Saint-Venant's principles for a general prismatic member; (10) variation of resin properties through the thickness of cured samples; and (11) the wing fuselage ensemble of the RP-1 and RP-2 sailplanes.

Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

1983-01-01

36

Introduction to Advanced Composite Materials  

NSDL National Science Digital Library

This presentation provides an introduction to composite materials and curriculum guidelines. Topics include applications of composites, advantages and disadvantages, and advice for developing a curriculum on advanced composite materials. This document is available for download as a PDF.

Stuart, Joe

37

Aerogel/polymer composite materials  

NASA Technical Reports Server (NTRS)

The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

2010-01-01

38

Composite ion exchange materials  

SciTech Connect

Composite ion exchange materials can be formed by sorbing ion exchange polymers on inert, high surface area substrates. In general, the flux of ions and molecules through these composites, as measured electrochemically, increases as the ratio of the surface area of the substrate increases relative to the volume of the ion exchanger. This suggests that fields and gradients established at the interface between the ion exchanger and substrate are important in determining the transport characteristics of the composites. Here, the authors will focus on composites formed with a cation exchange polymer, Nafion, and two different types of microbeads: polystyrene microspheres and polystyrene coated magnetic microbeads. For the polystyrene microbeads, scanning electron micrographs suggest the beads cluster in a self-similar manner, independent of the bead diameter. Flux of Ru(NH3)63+ through the composites was studied as a function of bead fraction, bead radii, and fixed surface area with mixed bead sizes. Flux was well modeled by surface diffusion along a fractal interface. Magnetic composites were formed with columns of magnetic microbeads normal to the electrode surface. Flux of Ru(NH3)63+ through these composites increased exponentially with bead fraction. For electrolyses, the difference in the molar magnetic susceptibility of the products and reactants, Dcm, tends to be non-zero. For seven redox reactions, the ratio of the flux through the magnetic composites to the flux through a Nafion film increases monotonically with {vert_bar}Dcm{vert_bar}, with enhancements as large as thirty-fold. For reversible species, the electrolysis potential through the magnetic composites is 35 mV positive of that for the Nafion films.

Amarasinghe, S.; Zook, L.; Leddy, J. [Univ. of Iowa, Iowa City, IA (United States)

1994-12-31

39

NDE of composite materials  

NASA Astrophysics Data System (ADS)

The NDE methods applicable to composite material integrity evaluations encompass X-ray and neutron radiography, thermography, holography and interferometry, acoustic emission, ultrasonic, and EM methods. A development status evaluation is presented for each of these techniques. Attention is given to impact-damage C-scans for quasi-isotropic laminates, 3D view of defects of an impact-loaded specimen, and a modified through-transmission C-scan apparatus.

Daniel, I. M.

40

An analysis of the abaca natural fiber in reinforcing concrete composites as a construction material in developing countries  

Microsoft Academic Search

This study analyzed the flexural and splitting tensile strengths and the ductility of abaca fiber-reinforced concrete composites. Abaca fibers are natural fibers of vegetable origin from the abaca plant native to the Philippine Islands. The purpose was to investigate how various volume-fractions of the abaca fiber could affect the mechanical properties of the concrete matrix. A concrete design mix containing

Magdamo

1988-01-01

41

Composite structural materials  

NASA Technical Reports Server (NTRS)

The composite aircraft program component (CAPCOMP) is a graduate level project conducted in parallel with a composite structures program. The composite aircraft program glider (CAPGLIDE) is an undergraduate demonstration project which has as its objectives the design, fabrication, and testing of a foot launched ultralight glider using composite structures. The objective of the computer aided design (COMPAD) portion of the composites project is to provide computer tools for the analysis and design of composite structures. The major thrust of COMPAD is in the finite element area with effort directed at implementing finite element analysis capabilities and developing interactive graphics preprocessing and postprocessing capabilities. The criteria for selecting research projects to be conducted under the innovative and supporting research (INSURE) program are described.

Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

1981-01-01

42

Composite structural materials  

NASA Technical Reports Server (NTRS)

A decade long program to develop critical advanced composite technology in the areas of physical properties, structural concept and analysis, manufacturing, reliability, and life predictions is reviewed. Specific goals are discussed. The status of the chemical vapor deposition effects on carbon fiber properties; inelastic deformation of metal matrix laminates; fatigue damage in fibrous MMC laminates; delamination fracture toughness in thermoplastic matrix composites; and numerical analysis of composite micromechanical behavior are presented.

Loewy, Robert G.; Wiberley, Stephen E.

1988-01-01

43

Composite Materials: Sticks and Glue  

NSDL National Science Digital Library

This learning activity will provide a good example of "the effect on strength and stiffness of a material when it is manufactured as a composite." Popsicle sticks will be used to demonstrate the difference between singular materials and composite materials. Students will be able to see the added benefits of using composite materials. This activity would be suitable for elementary school through college level students, with each grade level gaining different educational benefits. The lesson should take from 5 to 20 minutes, depending on grade level. This document will serve as a framework for instructors and may be downloaded in PDF format.

Stoebe, Thomas G.

44

Natural Fiber Composites: A Review  

SciTech Connect

The need for renewable fiber reinforced composites has never been as prevalent as it currently is. Natural fibers offer both cost savings and a reduction in density when compared to glass fibers. Though the strength of natural fibers is not as great as glass, the specific properties are comparable. Currently natural fiber composites have two issues that need to be addressed: resin compatibility and water absorption. The following preliminary research has investigated the use of Kenaf, Hibiscus cannabinus, as a possible glass replacement in fiber reinforced composites.

Westman, Matthew P.; Fifield, Leonard S.; Simmons, Kevin L.; Laddha, Sachin; Kafentzis, Tyler A.

2010-03-07

45

Composite structural materials. [aircraft structures  

NASA Technical Reports Server (NTRS)

The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.

Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

1980-01-01

46

Reversibly assembled cellular composite materials.  

PubMed

We introduce composite materials made by reversibly assembling a three-dimensional lattice of mass-produced carbon fiber-reinforced polymer composite parts with integrated mechanical interlocking connections. The resulting cellular composite materials can respond as an elastic solid with an extremely large measured modulus for an ultralight material (12.3 megapascals at a density of 7.2 milligrams per cubic centimeter). These materials offer a hierarchical decomposition in modeling, with bulk properties that can be predicted from component measurements and deformation modes that can be determined by the placement of part types. Because site locations are locally constrained, structures can be produced in a relative assembly process that merges desirable features of fiber composites, cellular materials, and additive manufacturing. PMID:23950496

Cheung, Kenneth C; Gershenfeld, Neil

2013-09-13

47

Piezoelectric composite materials  

NASA Technical Reports Server (NTRS)

A laminated structural devices has the ability to change shape, position and resonant frequency without using discrete motive components. The laminate may be a combination of layers of a piezoelectrically active, nonconductive matrix material. A power source selectively places various levels of charge in electrically conductive filaments imbedded in the respective layers to produce various configurations in a predetermined manner. The layers may be electrically conductive having imbedded piezoelectrically active filaments. A combination of layers of electrically conductive material may be laminated to layers of piezoelectrically active material.

Kiraly, L. J. (inventor)

1983-01-01

48

An analysis of the abaca natural fiber in reinforcing concrete composites as a construction material in developing countries  

SciTech Connect

This study analyzed the flexural and splitting tensile strengths and the ductility of abaca fiber-reinforced concrete composites. Abaca fibers are natural fibers of vegetable origin from the abaca plant native to the Philippine Islands. The purpose was to investigate how various volume-fractions of the abaca fiber could affect the mechanical properties of the concrete matrix. A concrete design mix containing a volume ratio of 1.0 part Type I Portland cement and 3.0 parts sand was used in the preparation of laboratory test samples. Abaca fibers were 1 to 1.5 inches long and randomly mixed with the concrete at 0.2% and 0.4% volume fractions. The fibers were not chemically treated and no admixtures were used. Samples were cast into concrete cylinders and flexural beams. Standard ASTM procedures in casting of flexural beams and concrete cylinders and the curing of 28-day concrete samples were followed. The center-point loading method of the flexural test and the splitting tensile test was utilized. Addition of abaca fibers decreased the mean flexural and splitting tensile strengths of the concrete matrices. However, ductility of the matrices increased with the addition of abaca fibers at 0.2% and 0.4% volume-fractions. The Scanning Electron Microscope (SEM) micrographs revealed that increasing the fiber volume-fraction influenced the growth rate of dehydration precipitates as CH (calcium hydroxide) crystals. At the 0.2% volume-fraction, smaller density of precipitates grew into large crystals, while at the 0.4% volume-fraction, the dehydration precipitates were much more dense, which were made up of small sized crystals. Abaca fibers in the concrete mix decreased the mean flexural and splitting tensile strengths, increased the modulus of elasticity, improved the ductility, and acted as a medium to slow down and stop the propagation of cracks.

Magdamo, R.V.

1988-01-01

49

Ultrasonic stress wave characterization of composite materials  

NASA Technical Reports Server (NTRS)

The work reported covers three simultaneous projects. The first project was concerned with: (1) establishing the sensitivity of the acousto-ultrasonic method for evaluating subtle forms of damage development in cyclically loaded composite materials, (2) establishing the ability of the acousto-ultrasonic method for detecting initial material imperfections that lead to localized damage growth and final specimen failure, and (3) characteristics of the NBS/Proctor sensor/receiver for acousto-ultrasonic evaluation of laminated composite materials. The second project was concerned with examining the nature of the wave propagation that occurs during acoustic-ultrasonic evaluation of composite laminates and demonstrating the role of Lamb or plate wave modes and their utilization for characterizing composite laminates. The third project was concerned with the replacement of contact-type receiving piezotransducers with noncontacting laser-optical sensors for acousto-ultrasonic signal acquisition.

Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.

1986-01-01

50

Vibrational dynamic materials and composites  

NASA Astrophysics Data System (ADS)

In this paper, the concept of dynamic materials is briefly outlined and exemplified following the work of the author published during the last decade. Then, a special kind of kinetic dynamic materials is introduced, the so-called 'vibrational dynamics' material with vibrational composites being its special case. A parametrically produced, vibrational dynamic material definition is introduced. Among such materials can also be a range of known systems, which can be considered to be capable of changing their properties under the action of vibration. As a case in point, an unusual dynamic material is considered, in the form of a pipe conveying a pulsating fluid.

Blekhman, I. I.

2008-11-01

51

Multilayer Electroactive Polymer Composite Material  

NASA Technical Reports Server (NTRS)

An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

2011-01-01

52

Ski Technology And Composite Materials  

NSDL National Science Digital Library

The following resource is from Lessonopoly, which has created student activities and lesson plans to support the video series, Science of the Olympic Winter Games, created by NBC Learn and the National Science Foundation. Featuring exclusive footage from NBC Sports and contributions from Olympic athletes and NSF scientists, the series will help teach your students valuable scientific concepts. Students will learn the basic engineering issues related to ski design. They will learn about composite materials and polymer materials. Also, students will create and test a composite material.

2010-01-01

53

Nanophase and Composite Optical Materials  

NASA Technical Reports Server (NTRS)

This talk will focus on accomplishments, current developments, and future directions of our work on composite optical materials for microgravity science and space exploration. This research spans the order parameter from quasi-fractal structures such as sol-gels and other aggregated or porous media, to statistically random cluster media such as metal colloids, to highly ordered materials such as layered media and photonic bandgap materials. The common focus is on flexible materials that can be used to produce composite or artificial materials with superior optical properties that could not be achieved with homogeneous materials. Applications of this work to NASA exploration goals such as terraforming, biosensors, solar sails, solar cells, and vehicle health monitoring, will be discussed.

2003-01-01

54

Critical factors on manufacturing processes of natural fibre composites  

Microsoft Academic Search

Elevated environmental awareness of the general public in reducing carbon footprints and the use non-naturally decomposed solid wastes has resulted in an increasing use of natural materials, biodegradable and recyclable polymers and their composites for a wide range of engineering applications. The properties of natural fibre reinforced polymer composites are generally governed by the pre-treated process of fibre and the

Mei-po Ho; Hao Wang; Joong-Hee Lee; Chun-kit Ho; Kin-tak Lau; Jinsong Leng; David Hui

55

Composite materials for space applications  

NASA Technical Reports Server (NTRS)

The objectives of the program were to: generate mechanical, thermal, and physical property test data for as-fabricated advanced materials; design and fabricate an accelerated thermal cycling chamber; and determine the effect of thermal cycling on thermomechanical properties and dimensional stability of composites. In the current program, extensive mechanical and thermophysical property tests of various organic matrix, metal matrix, glass matrix, and carbon-carbon composites were conducted, and a reliable database was constructed for spacecraft material selection. Material property results for the majority of the as-fabricated composites were consistent with the predicted values, providing a measure of consolidation integrity attained during fabrication. To determine the effect of thermal cycling on mechanical properties, microcracking, and thermal expansion behavior, approximately 500 composite specimens were exposed to 10,000 cycles between -150 and +150 F. These specimens were placed in a large (18 cu ft work space) thermal cycling chamber that was specially designed and fabricated to simulate one year low earth orbital (LEO) thermal cycling in 20 days. With this rate of thermal cycling, this is the largest thermal cycling unit in the country. Material property measurements of the thermal cycled organic matrix composite laminate specimens exhibited less than 24 percent decrease in strength, whereas, the remaining materials exhibited less than 8 percent decrease in strength. The thermal expansion response of each of the thermal cycled specimens revealed significant reduction in hysteresis and residual strain, and the average CTE values were close to the predicted values.

Rawal, Suraj P.; Misra, Mohan S.; Wendt, Robert G.

1990-01-01

56

Composite material impregnation unit  

NASA Technical Reports Server (NTRS)

This memorandum presents an introduction to the NASA multi-purpose prepregging unit which is now installed and fully operational at the Langley Research Center in the Polymeric Materials Branch. A description of the various impregnation methods that are available to the prepregger are presented. Machine operating details and protocol are provided for its various modes of operation. These include, where appropriate, the related equations for predicting the desired prepreg specifications. Also, as the prepregger is modular in its construction, each individual section is described and discussed. Safety concerns are an important factor and a chapter has been included that highlights the major safety features. Initial experiences and observations for fiber impregnation are described. These first observations have given great insight into the areas of future work that need to be addressed. Future memorandums will focus on these individual processes and their related problems.

Wilkinson, S. P.; Marchello, J. M.; Johnston, N. J.

1993-01-01

57

Fiber composite materials technology development  

SciTech Connect

The FY1980 technical accomplishments from the Lawrence Livermore National laboratory (LLNL) for the Fiber Composite Materials Technology Development Task fo the MEST project are summarized. The task is divided into three areas: Engineering data base for flywheel design (Washington University will report this part separately), new materials evaluation, and time-dependent behavior of Kevlar composite strands. An epoxy matrix was formulated which can be used in composites for 120/sup 0/C service with good processing and mechanical properties. Preliminary results on the time-dependent properties of the Kevlar 49/epoxy strands indicate: Fatigue loading, as compared to sustained loading, drastically reduces the lifetime of a Kevlar composie; the more the number of on-off load cycles, the less the lifetime; and dynamic fatigue of the Kevlar composite can not be predicted by current damage theories such as Miner's Rule.

Chiao, T.T.

1980-10-23

58

Dense, finely, grained composite materials  

DOEpatents

Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

Dunmead, Stephen D. (Davis, CA); Holt, Joseph B. (San Jose, CA); Kingman, Donald D. (Danville, CA); Munir, Zuhair A. (Davis, CA)

1990-01-01

59

Delamination growth in composite materials  

NASA Technical Reports Server (NTRS)

Research related to growth of an imbedded through-width delamination (ITWD) in a compression loaded composite structural element is presented. Composites with widely different interlaminar fracture resistance were examined, viz., graphite/epoxy (CYCOM 982) and graphite/PEEK (APC-2). The initial part of the program consisted of characterizing the material in tension, compression and shear mainly to obtain consistent material properties for analysis, but also as a check of the processing method developed for the thermoplastic APC-2 material. The characterization of the delamination growth in the ITWD specimen, which for the unidirectional case is essentially a mixed Mode 1 and 2 geometry, requires verified mixed-mode growth criteria for the two materials involved. For this purpose the main emphasis during this part of the investigation was on Mode 1 and 2 fracture specimens, namely the Double Cantilever Beam (DCB) and End Notched Flexure (ENF) specimens.

Gillespie, J. W., Jr.; Carlson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

1985-01-01

60

Energy producing waste material composition  

SciTech Connect

Waste materials from the conversion of iron ore to pig iron or steel combine with a reducing metal, such as aluminum or magnesium, and a small portion of a mineral acid to form a reaction mixture which gives a heat output superior to many conventional fuels. The materials are processed in several steps to produce either a shaped or loose composition, a portion of which is then heated to a reaction temperature. Retardants for the reaction may be added.

Cundari, S.M.; Deardorff, P.A.; Wood, R.C.

1980-06-17

61

Durability of aircraft composite materials  

NASA Technical Reports Server (NTRS)

Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

Dextern, H. B.

1982-01-01

62

Joining of polymer composite materials  

SciTech Connect

Under ideal conditions load bearing structures would be designed without joints, thus eliminating a source of added weight, complexity and weakness. In reality the need for accessibility, repair, and inspectability, added to the size limitations imposed by the manufacturing process and transportation/assembly requirements mean that some minimum number of joints will be required in most structures. The designer generally has two methods for joining fiber composite materials, adhesive bonding and mechanical fastening. As the use of thermoplastic materials increases, a third joining technique -- welding -- will become more common. It is the purpose of this document to provide a review of the available sources pertinent to the design of joints in fiber composites. The primary emphasis is given to adhesive bonding and mechanical fastening with information coming from documentary sources as old as 1961 and as recent as 1989. A third, shorter section on composite welding is included in order to provide a relatively comprehensive treatment of the subject.

Magness, F.H.

1990-11-01

63

Mechanical properties of composite materials  

NASA Technical Reports Server (NTRS)

A composite material incorporates high strength, high modulus fibers in a matrix (polymer, metal, or ceramic). The fibers may be oriented in a manner to give varying in-plane properties (longitudinal, transverse-stress, strain, and modulus of elasticity). The lay-up of the composite laminates is such that a center line of symmetry and no bending moment exist through the thickness. The laminates are tabbed, with either aluminum or fiberglass, and are ready for tensile testing. The determination of the tensile properties of resin matrix composites, reinforced by continuous fibers, is outlined in ASTM standard D 3039, Tensile Properties of Oriented Fiber Composites. The tabbed flat tensile coupons are placed into the grips of a tensile machine and load-deformation curves plotted. The load-deformation data are translated into stress-strain curves for determination of mechanical properties (ultimate tensile strength and modulus of elasticity).

Thornton, H. Richard; Cornwell, L. R.

1993-01-01

64

Mechanical performance of woodfibre–waste plastic composite materials  

Microsoft Academic Search

Plastic products used for packaging are often discarded after a single use resulting in an inexhaustible supply of waste polymeric materials. The stiffness and strength of polymeric materials have been known to improve with the addition of lignocellulosic fibres available in abundance in nature. Hence, composite materials containing natural fibres and waste plastics would result in the reduction of solid

Krishnan Jayaraman; Debes Bhattacharyya

2004-01-01

65

Graphene-based composite materials.  

PubMed

Graphene sheets--one-atom-thick two-dimensional layers of sp2-bonded carbon--are predicted to have a range of unusual properties. Their thermal conductivity and mechanical stiffness may rival the remarkable in-plane values for graphite (approximately 3,000 W m(-1) K(-1) and 1,060 GPa, respectively); their fracture strength should be comparable to that of carbon nanotubes for similar types of defects; and recent studies have shown that individual graphene sheets have extraordinary electronic transport properties. One possible route to harnessing these properties for applications would be to incorporate graphene sheets in a composite material. The manufacturing of such composites requires not only that graphene sheets be produced on a sufficient scale but that they also be incorporated, and homogeneously distributed, into various matrices. Graphite, inexpensive and available in large quantity, unfortunately does not readily exfoliate to yield individual graphene sheets. Here we present a general approach for the preparation of graphene-polymer composites via complete exfoliation of graphite and molecular-level dispersion of individual, chemically modified graphene sheets within polymer hosts. A polystyrene-graphene composite formed by this route exhibits a percolation threshold of approximately 0.1 volume per cent for room-temperature electrical conductivity, the lowest reported value for any carbon-based composite except for those involving carbon nanotubes; at only 1 volume per cent, this composite has a conductivity of approximately 0.1 S m(-1), sufficient for many electrical applications. Our bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications. PMID:16855586

Stankovich, Sasha; Dikin, Dmitriy A; Dommett, Geoffrey H B; Kohlhaas, Kevin M; Zimney, Eric J; Stach, Eric A; Piner, Richard D; Nguyen, SonBinh T; Ruoff, Rodney S

2006-07-20

66

Asymmetric Dielectric Elastomer Composite Material  

NASA Technical Reports Server (NTRS)

Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

Stewart, Brian K. (Inventor)

2014-01-01

67

MATERIAL COMPOSITIONS FOR REINFORCING IONIC POLYMER COMPOSITES  

Technology Transfer Automated Retrieval System (TEKTRAN)

The invention is related to the preparation of an ionic polymer composition containing soy spent flakes, defatted soy flour, or soy protein concentrate composite reinforcement. The composite composition is formed by incorporating soy spent flakes, defatted soy flour, or soy protein concentrate comp...

68

Improved Silica Aerogel Composite Materials  

NASA Technical Reports Server (NTRS)

A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.

Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven

2008-01-01

69

Composite materials for thermal energy storage  

DOEpatents

The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO); Shinton, Yvonne D. (Northglenn, CO)

1986-01-01

70

Composite materials for fusion applications  

SciTech Connect

Ceramic matrix composites, CMCs, are being considered for advanced first-wall and blanket structural applications because of their high-temperature properties, low neutron activation, low density and low coefficient of expansion coupled with good thermal conductivity and corrosion behavior. This paper presents a review and analysis of the hermetic, thermal conductivity, corrosion, crack growth and radiation damage properties of CMCs. It was concluded that the leak rates of a gaseous coolant into the plasma chamber or tritium out of the blanket could exceed design criteria if matrix microcracking causes existing porosity to become interconnected. Thermal conductivities of unirradiated SiC/SiC and C/SiC materials are about 1/2 to 2/3 that of Type 316 SS whereas the thermal conductivity for C/C composites is seven times larger. The thermal stress figure-of-merit value for CMCs exceeds that of Type 316 SS for a single thermal cycle. SiC/SiC composites are very resistant to corrosion and are expected to be compatible with He or Li coolants if the O{sub 2} concentrations are maintained at the appropriate levels. CMCs exhibit subcritical crack growth at elevated temperatures and the crack velocity is a function of the corrosion conditions. The radiation stability of CMCs will depend on the stability of the fiber, microcracking of the matrix, and the effects of gaseous transmutation products on properties. 23 refs., 14 figs., 1 tab.

Jones, R.H.; Henager, C.H. Jr.; Hollenberg, G.W.

1991-10-01

71

GROWING ALTERNATIVE SUSTAINABLE BUILDINGS: BIO-COMPOSITE PRODUCTS FROM NATURAL FIBER, BIODEGRADABLE AND RECYCLABLE POLYMER MATERIALS FOR LOAD-BEARING CONSTRUCTION COMPONENTS  

EPA Science Inventory

The project is an integrative educational and research project that will revolutionize design and construction methods towards more sustainable buildings. The project will develop and test new product design concepts using bio-composite materials in load-bearing and fa&cced...

72

Sunflower cake as a natural composite: composition and plastic properties.  

PubMed

Nowadays, the end-of-life of plastic products and the decrease of fossil energy are great environmental problems. Moreover, with the increase of food and nonfood transformations of renewable resources, the quantities of agro-industrial byproducts and wastes increase hugely. These facts allow the development of plastic substitutes made from agro-resources. Many researches show the feasibility of molding biopolymers extracted from plants like a common polymeric matrix. Other natural macromolecules are used like fillers into polyolefins, for example. However, limited works present results about the transformation of a natural blend of biopolymers into a plastic material. The aim of this study is the determination of the composition of sunflower cake (SFC) and also the characterization of its components. These were identified by chemical and biochemical analysis often used in agricultural or food chemistry. Most of the extraction and purification processes modify the macrostructure of several biopolymers (e.g., denaturation of proteins, cleavage or creation of weak bonds, etc.). So, the composition of different parts of the sunflower seed (husk, kernel, and also protein isolate) was determined, and the plasticlike properties of their components were studied with thermogravimetric analysis, differential scanning calorimetry, and a dynamic mechanical thermal analysis apparatus. Finally, this indirect way of characterization showed that SFC can be considered a natural composite. In SFC, several components like lignocellulosic fibers [40%/dry matter (DM)], which essentially come from the husk of sunflower seed, can act as fillers. However, other biopolymers like globulins ( approximately 30% of the 30% of sunflower seed proteins/DM of SFC) can be shaped as a thermoplastic-like material because this kind of protein has a temperature of glass transition and a temperature of denaturation that seems to be similar to a melting temperature. These proteins have also viscoelastic properties. Moreover, SFC has similar rheological properties and other physicochemical properties compatible with shaping or molding behaviors of plastic-processing machinery. PMID:18998703

Geneau-Sbartaï, Céline; Leyris, Juliette; Silvestre, Françoise; Rigal, Luc

2008-12-10

73

Self-healing polymer composites: mimicking nature to enhance performance  

Microsoft Academic Search

Autonomic self-healing materials, where initiation of repair is integral to the material, are being developed for engineering applications. This bio-inspired concept offers the designer an ability to incorporate secondary functional materials capable of counteracting service degradation whilst still achieving the primary, usually structural, requirement. Most materials in nature are themselves self-healing composite materials. This paper reviews the various self-healing technologies

R S Trask; H R Williams; I P Bond

2007-01-01

74

Space processing of composite materials  

NASA Technical Reports Server (NTRS)

Materials and processes for the testing of aluminum-base fiber and particle composites, and of metal foams under extended-time low-g conditions were investigated. A wetting and dispersion technique was developed, based on the theory that under the absence of a gas phase all solids are wetted by liquids. The process is characterized by a high vacuum environment and a high temperature cycle. Successful wetting and dispersion experiments were carried out with sapphire fibers, whiskers and particles, and with fibers of silicon carbide, pyrolytic graphite and tungsten. The developed process and facilities permit the preparation of a precomposite which serves as sample material for flight experiments. Low-g processing consists then merely in the uniform redistribution of the reinforcements during a melting cycle. For the preparation of metal foams, gas generation by means of a thermally decomposing compound was found most adaptable to flight experiments. For flight experiments, the use of compacted mixture of the component materials limits low-g processing to a simple melt cycle.

Steurer, W. H.; Kaye, S.

1975-01-01

75

Polyolefin composites containing a phase change material  

DOEpatents

A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein, said polyolefin being thermally form stable; the composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

Salyer, Ival O. (Dayton, OH)

1991-01-01

76

Delamination growth in composite materials  

NASA Technical Reports Server (NTRS)

The Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) specimens are employed to characterize MODE I and MODE II interlaminar fracture resistance of graphite/epoxy (CYCOM 982) and graphite/PEEK (APC2) composites. Sizing of test specimen geometries to achieve crack growth in the linear elastic regime is presented. Data reduction schemes based upon beam theory are derived for the ENF specimen and include the effects of shear deformation and friction between crack surfaces on compliance, C, and strain energy release rate, G sub II. Finite element (FE) analyses of the ENF geometry including the contact problem with friction are presented to assess the accuracy of beam theory expressions for C and G sub II. Virtual crack closure techniques verify that the ENF specimen is a pure Mode II test. Beam theory expressions are shown to be conservative by 20 to 40 percent for typical unidirectional test specimen geometries. A FE parametric study investigating the influence of delamination length and depth, span, thickness and material properties on G sub II is presented. Mode I and II interlaminar fracture test results are presented. Important experimental parameters are isolated, such as precracking techniques, rate effects, and nonlinear load-deflection response. It is found that subcritical crack growth and inelastic materials behavior, responsible for the observed nonlinearities, are highly rate-dependent phenomena with high rates generally leading to linear elastic response.

Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

1986-01-01

77

Nonlinear Dynamic Properties of Layered Composite Materials  

SciTech Connect

We present an application of the asymptotic homogenization method to study wave propagation in a one-dimensional composite material consisting of a matrix material and coated inclusions. Physical nonlinearity is taken into account by considering the composite's components as a Murnaghan material, structural nonlinearity is caused by the bonding condition between the components.

Andrianov, Igor V.; Topol, Heiko; Weichert, Dieter [Institute of General Mechanics, RWTH Aachen University, Termplergraben 64, Aachen, D-52062 (Germany); Danishevs'kyy, Vladyslav V. [Prydniprovs'ka State Academy of Civil Engineering and Architecture, Dnipropetrovs'k, Chernishevs'kogo 24a, UA-49600 (Ukraine)

2010-09-30

78

Thin film dielectric composite materials  

DOEpatents

A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

Jia, Quanxi (Los Alamos, NM); Gibbons, Brady J. (Los Alamos, NM); Findikoglu, Alp T. (Los Alamos, NM); Park, Bae Ho (Los Alamos, NM)

2002-01-01

79

Spectroscopy of MPS(3):DAMS(+) composite materials  

NASA Astrophysics Data System (ADS)

Composite materials are comprised of two separate components that are brought together to form a new material that exhibits unique properties not found in the individual components. The composite material studied in this work is a guest dye cation, (4-[4-(dimethylamino)-alpha-styrl]-1-methylpyridinium) or DAMS+, intercalated into an inorganic host lattice (MPS 3, where M = Cd2+ or Mn2+). MPS3 :DAMS+ exhibits high-efficiency second-harmonic generation (SHG), which is only observed when a material lacks a center of symmetry. There must be an organization of dye molecules upon intercalation to induce the noncentrosymmetry necessary for SHG. The formation of dye aggregates will be studied as a possible noncentrosymmetric arrangement. The intercalated materials (MPS3:DAMS+) exhibited spectral features of J-aggregates. These features included a sharp aggregate absorption and emission band, known as the J-band. There was a small Stokes shift (250 cm-1) between aggregate absorption and emission bands, and a red-shift between the J-band and isolated dye absorption band (3,700 cm-1). The low-energy tail of the emission J-band was theoretically modeled using the Urbach-Martienssen equation, while the high-energy states were fit to a Gaussian to determine aggregate disorder. Disorder was also modeled using a Monte-Carlo lineshape analysis program. From these theoretical models, the aggregate was found to be two-dimensional and weakly coupled. A variety of sample types were studied including intercalated powders and single crystals using absorbance, reflectance and emission spectroscopy. Reflectance spectra were directly compared with absorbance spectra using the Kramers-Kronig Transformation2 to determine that the surface aggregates and the interior aggregates were structurally similar. A new imaging microspectrophotometer was developed to investigate the topology of the composite materials. Kinetics of the intercalation front were studied and a layer-by-layer intercalation mechanism was developed. Surface studies using other materials indicated the polyanion nature of MPS3 :DAMS+ was essential for aggregation. Infrared microspectroscopy was used to determine the orientation of dye molecules on the surface of the large composite crystals. The DAMS+ in MPS 3:DAMS+ was shown to form two-dimensional brickwork aggregates with the molecules aligned "edge-on" on the surface and interior of the host lattice.

Holt, Jennifer Suzanne

80

Method for machining holes in composite materials  

NASA Technical Reports Server (NTRS)

A method for boring well defined holes in a composite material such as graphite/epoxy is discussed. A slurry of silicon carbide powder and water is projected onto a work area of the composite material in which a hole is to be bored with a conventional drill bit. The silicon carbide powder and water slurry allow the drill bit, while experiencing only normal wear, to bore smooth, cylindrical holes in the composite material.

Daniels, Julia G. (inventor); Ledbetter, Frank E., III (inventor); Clemons, Johnny M. (inventor); Penn, Benjamin G. (inventor); White, William T. (inventor)

1987-01-01

81

Morphology and microstructure of composite materials  

NASA Technical Reports Server (NTRS)

Lightweight continuous carbon fiber based polymeric composites are currently enjoying increasing acceptance as structural materials capable of replacing metals and alloys in load bearing applications. As with most new materials, these composites are undergoing trials with several competing processing techniques aimed at cost effectively producing void free consolidations with good mechanical properties. As metallic materials have been in use for several centuries, a considerable database exists on their morphology - microstructure; and the interrelationships between structure and properties have been well documented. Numerous studies on composites have established the crucial relationship between microstructure - morphology and properties. The various microstructural and morphological features of composite materials, particularly those accompanying different processing routes, are documented.

Tiwari, S. N.; Srinivansan, K.

1991-01-01

82

CCMR: “ Green ” Composites: An alternative to petroleum-based materials  

NSDL National Science Digital Library

Composites made from natural fibers and resins offer a potential alternative to the petroleum-based materials that are currently used in in many applications such as packaging. These composites have the advantage of being biodegradable, renewable and environmentally friendly. In this work, different additives, including glycerol and polycarboxylic acid (PCA), are introduced to these composites in an attempt to increase properties such as strength and flexibility.

Cooley, LaDean M.

2007-08-29

83

Optimized adhesives for strong, lightweight, damage-resistant, nanocomposite materials: new insights from natural materials  

NASA Astrophysics Data System (ADS)

From our investigations of natural composite materials such as abalone shell and bone we have learned the following. (1) Nature is frugal with resources: it uses just a few per cent glue, by weight, to glue together composite materials. (2) Nature does not avoid voids. (3) Nature makes optimized glues with sacrificial bonds and hidden length. We discuss how optimized adhesives combined with high specific stiffness/strength structures such as carbon nanotubes or graphene sheets could yield remarkably strong, lightweight, and damage-resistant materials.

Hansma, P. K.; Turner, P. J.; Ruoff, R. S.

2007-01-01

84

Process for producing dispersed particulate composite materials  

DOEpatents

This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.

Henager, Jr., Charles H. (Richland, WA); Hirth, John P. (Viola, ID)

1995-01-01

85

NASA technology utilization survey on composite materials  

NASA Technical Reports Server (NTRS)

NASA and NASA-funded contractor contributions to the field of composite materials are surveyed. Existing and potential non-aerospace applications of the newer composite materials are emphasized. Economic factors for selection of a composite for a particular application are weight savings, performance (high strength, high elastic modulus, low coefficient of expansion, heat resistance, corrosion resistance,), longer service life, and reduced maintenance. Applications for composites in agriculture, chemical and petrochemical industries, construction, consumer goods, machinery, power generation and distribution, transportation, biomedicine, and safety are presented. With the continuing trend toward further cost reductions, composites warrant consideration in a wide range of non-aerospace applications. Composite materials discussed include filamentary reinforced materials, laminates, multiphase alloys, solid multiphase lubricants, and multiphase ceramics. New processes developed to aid in fabrication of composites are given.

Leeds, M. A.; Schwartz, S.; Holm, G. J.; Krainess, A. M.; Wykes, D. M.; Delzell, M. T.; Veazie, W. H., Jr.

1972-01-01

86

Improved Damage Resistant Composite Materials Incorporating Shape Memory Alloys  

NASA Technical Reports Server (NTRS)

Metallic shape memory alloys (SMA) such as nitinol have unique shape recovery behavior and mechanical properties associated with a material phase change that have been used in a variety of sensing and actuation applications. Recent studies have shown that integrating nitinol-SMA actuators into composite materials increases the composite material's functionality. Hybrid composites of conventional graphite/epoxy or glass/epoxy and nitinol-SMA elements can perform functions in applications where monolithic composites perform inadequately. One such application is the use of hybrid composites to function both in load bearing and armor capacities. While monolithic composites with high strength-to-weight ratios function efficiently as loadbearing structures, because of their brittle nature, impact loading can cause significant catastrophic damage. Initial composite failure modes such as delamination and matrix cracking dissipate some impact energy, but when stress exceeds the composite's ultimate strength, fiber fracture and material perforation become dominant. One of the few methods that has been developed to reduce material perforation is hybridizing polymer matrix composites with tough kevlar or high modulus polyethynylene plies. The tough fibers increase the impact resistance and the stiffer and stronger graphite fibers carry the majority of the load. Similarly, by adding nitinol-SMA elements that absorb impact energy through the stress-induced martensitic phase transformation, the composites' impact perforation resistance can be greatly enhanced. The results of drop-weight and high velocity gas-gun impact testing of various composite materials will be presented. The results demonstrate that hybridizing composites with nitinol-SMA elements significantly increases perforation resistance compared to other traditional toughening elements. Inspection of the composite specimens at various stages of perforation by optical microscope illustrates the mechanisms by which perforation is initiated. Results suggest that the out-of-plane transverse shear properties of the composite and nitinol elements have a significant effect on the perforation resistance. Applications that can utilize the hybrid composites effectively will also be presented with the experimental studies.

Paine, Jeffrey S. N.; Rogers, Craig A.

1996-01-01

87

Composite structural materials. [fiber reinforced composites for aircraft structures  

NASA Technical Reports Server (NTRS)

Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

1981-01-01

88

Finite element analysis of damaged woven fabric composite materials  

Microsoft Academic Search

Since fiber reinforced composite materials have been used in main parts of structures, an accurate evaluation of their mechanical characteristics becomes very important. Due to their anisotropic nature and complicated architecture, it is very difficult to reveal the damage mechanisms of these materials from the results of mechanical tests. Therefore, there is a need to conduct reliable simulations and analytical

Masaru Zako; Yasutomo Uetsuji; Tetsusei Kurashiki

2003-01-01

89

Precipitate strengthening in nanostructured metallic material composites  

Microsoft Academic Search

Nanostructured metallic material (NMM) composites are a new class of materials that exhibit high structural stability, mechanical strength, high ductility, toughness and resistance to fracture and fatigue; these properties suggest that these materials can play a leading role in the future micromechanical devices. However, before those materials are put into service in any significant applications, many important fundamental issues remain

N. Abdolrahim; I. N. Mastorakos; H. M. Zbib

2012-01-01

90

Composite materials and method of making  

SciTech Connect

A method for forming improved composite materials using a thermosetting polyester urethane hybrid resin, a closed cavity mold having an internal heat transfer mechanism used in this method, and the composite materials formed by this method having a hybrid of a carbon fiber layer and a fiberglass layer.

Simmons, Kevin L [Kennewick, WA; Wood, Geoffrey M [North Saanich, CA

2011-05-17

91

Composite, nanostructured, super-hydrophobic material  

DOEpatents

A hydrophobic disordered composite material having a protrusive surface feature includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a protrusive surface feature, the protrusive feature being hydrophobic.

D'Urso, Brian R. (Clinton, TN); Simpson, John T. (Clinton, TN)

2007-08-21

92

Machine augmented composite materials for damping purposes  

E-print Network

Matthew McCutcheon, B.S., Arkansas Tech University Co-Chairs of Advisory Committee: Dr. J. N. Reddy Dr. Terry Creasy In this study the energy dissipation performance of machine augmented composite (MAC) materials is investigated. MAC materials... MACHINE AUGMENTED COMPOSITE MATERIALS FOR DAMPING PURPOSES A Thesis by DAVID MATTHEW MCCUTCHEON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

McCutcheon, David Matthew

2005-02-17

93

Advanced composites: Environmental effects on selected resin matrix materials  

NASA Technical Reports Server (NTRS)

The effects that expected space flight environment has upon the mechanical properties of epoxy and polyimide matrix composites were analyzed. Environmental phenomena covered water immersion, high temperature aging, humidity, lightning strike, galvanic action, electromagnetic interference, thermal shock, rain and sand erosion, and thermal/vacuum outgassing. The technology state-of-the-art for graphite and boron reinforced epoxy and polyimide matrix materials is summarized to determine the relative merit of using composites in the space shuttle program. Resin matrix composites generally are affected to some degree by natural environmental phenomena with polyimide resin matrix materials less affected than epoxies.

Welhart, E. K.

1976-01-01

94

Natural materials for carbon capture.  

SciTech Connect

Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

Myshakin, Evgeniy M. (National Energy Technology Laboratory, Pittsburgh, PA); Romanov, Vyacheslav N. (National Energy Technology Laboratory, Pittsburgh, PA); Cygan, Randall Timothy

2010-11-01

95

Composition of estuarine colloidal material: organic components  

USGS Publications Warehouse

Colloidal material in the size range 1.2 nm to 0.4 ??m was isolated by ultrafiltration from Chesapeake Bay and Patuxent River waters (U.S.A.). Temperature controlled, stepwise pyrolysis of the freeze-dried material, followed by gas chromatographic-mass spectrometric analyses of the volatile products indicates that the primary organic components of this polymer are carbohydrates and peptides. The major pyrolysis products at the 450??C step are acetic acid, furaldehydes, furoic acid, furanmethanol, diones and lactones characteristic of carbohydrate thermal decomposition. Pyrroles, pyridines, amides and indole (protein derivatives) become more prevalent and dominate the product yield at the 600??C pyrolysis step. Olefins and saturated hydrocarbons, originating from fatty acids, are present only in minor amounts. These results are consistent with the composition of Chesapeake phytoplankton (approximately 50% protein, 30% carbohydrate, 10% lipid and 10% nucleotides by dry weight). The pyrolysis of a cultured phytoplankton and natural particulate samples produced similar oxygen and nitrogencontaining compounds, although the proportions of some components differ relative to the colloidal fraction. There were no lignin derivatives indicative of terrestrial plant detritus in any of these samples. The data suggest that aquatic microorganisms, rather than terrestrial plants, are the dominant source of colloidal organic material in these river and estuarine surface waters. ?? 1982.

Sigleo, A.C.; Hoering, T.C.; Helz, G.R.

1982-01-01

96

Combinatorial synthesis of inorganic or composite materials  

DOEpatents

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Goldwasser, Isy (Palo Alto, CA); Ross, Debra A. (Mountain Ranch, CA); Schultz, Peter G. (La Jolla, CA); Xiang, Xiao-Dong (Danville, CA); Briceno, Gabriel (Baldwin Park, CA); Sun, Xian-Dong (Fremont, CA); Wang, Kai-An (Cupertino, CA)

2010-08-03

97

Materials research at Stanford University. [composite materials, crystal structure, acoustics  

NASA Technical Reports Server (NTRS)

Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

1975-01-01

98

Advanced composite materials for precision segmented reflectors  

NASA Technical Reports Server (NTRS)

The objective in the NASA Precision Segmented Reflector (PSR) project is to develop new composite material concepts for highly stable and durable reflectors with precision surfaces. The project focuses on alternate material concepts such as the development of new low coefficient of thermal expansion resins as matrices for graphite fiber reinforced composites, quartz fiber reinforced epoxies, and graphite reinforced glass. Low residual stress fabrication methods will be developed. When coupon specimens of these new material concepts have demonstrated the required surface accuracies and resistance to thermal distortion and microcracking, reflector panels will be fabricated and tested in simulated space environments. An important part of the program is the analytical modeling of environmental stability of these new composite materials concepts through constitutive equation development, modeling of microdamage in the composite matrix, and prediction of long term stability (including viscoelasticity). These analyses include both closed form and finite element solutions at the micro and macro levels.

Stein, Bland A.; Bowles, David E.

1988-01-01

99

Composite Material Application to Liquid Rocket Engines  

NASA Technical Reports Server (NTRS)

The substitution of reinforced plastic composite (RPC) materials for metal was studied. The major objectives were to: (1) determine the extent to which composite materials can be beneficially used in liquid rocket engines; (2) identify additional technology requirements; and (3) determine those areas which have the greatest potential for return. Weight savings, fabrication costs, performance, life, and maintainability factors were considered. Two baseline designs, representative of Earth to orbit and orbit to orbit engine systems, were selected. Weight savings are found to be possible for selected components with the substitution of materials for metal. Various technology needs are identified before RPC material can be used in rocket engine applications.

Judd, D. C.

1982-01-01

100

NASA Thermographic Inspection of Advanced Composite Materials  

NASA Technical Reports Server (NTRS)

As the use of advanced composite materials continues to increase in the aerospace community, the need for a quantitative, rapid, in situ inspection technology has become a critical concern throughout the industry. In many applications it is necessary to monitor changes in these materials over an extended period of time to determine the effects of various load conditions. Additionally, the detection and characterization of defects such as delaminations, is of great concern. This paper will present the application of infrared thermography to characterize various composite materials and show the advantages of different heat source types. Finally, various analysis methodologies used for quantitative material property characterization will be discussed.

Cramer, K. Elliott

2004-01-01

101

NATURAL FIBERS PLASTIC COMPOSITES FOR AUTOMOTIVE APPLICATIONS  

Microsoft Academic Search

The use of natural fibers in composite plastics is gaining popularity in many areas, and particularly the automotive industry. The use of natural fibers in polymers can provide many advantages over other filler technologies, and areas of application appear limitless. The automotive industry is currently shifting to a \\

Paulo Aparecido dos Santos; Jay Amarasekera; Glauco Moraes; SABIC Innovative Plastics

102

Mechanics of composite materials: Unified micromechanical approach  

SciTech Connect

Although many books have been written on the mechanics of composite materials, only a vew few have been devoted almost exclusively to the micromechanics aspects. The present monograph is devoted primarily to the micromechanics of fiber and particle reinforced composites with some additional treatment of laminates as well. Thus, this book would probably be more suitable as a reference book than a textbook.

Aboundi, J.

1991-12-31

103

Self-healing structural composite materials  

Microsoft Academic Search

A self-healing fiber-reinforced structural polymer matrix composite material is demonstrated. In the composite, a microencapsulated healing agent and a solid chemical catalyst are dispersed within the polymer matrix phase. Healing is triggered by crack propagation through the microcapsules, which then release the healing agent into the crack plane. Subsequent exposure of the healing agent to the chemical catalyst initiates polymerization

M. R. Kessler; N. R. Sottos; S. R. White

2003-01-01

104

Combustion joining of refractory materials: Carboncarbon composites  

E-print Network

Combustion joining of refractory materials: Carbon­carbon composites Jeremiah D.E. White Department­carbon composite is achieved by employing self-sustained, oxygen-free, high-temperature combustion reactions to a used "core" to produce a brake that meets the performance specifications. The combustion-joining (CJ

Mukasyan, Alexander

105

Composite materials inspection. [ultrasonic vibration holographic NDT  

NASA Technical Reports Server (NTRS)

Investigation of the application requirements, advantages, and limitations of nondestructive testing by a technique of ultrasonic-vibration holographic-interferometry readout used in a production control facility for the inspection of a single product such as composite compressor blades. It is shown that, for the detection and characterization of disbonds in composite material structures, this technique may represent the most inclusive test method.

Erf, R. K.

1974-01-01

106

Composite materials with improved phyllosilicate dispersion  

DOEpatents

The present invention provides phyllosilicates edge modified with anionic surfactants, composite materials made from the edge modified phyllosilicates, and methods for making the same. In various embodiments the phyllosilicates are also surface-modified with hydrophilic lipophilic balance (HLB) modifying agents, polymeric hydrotropes, and antioxidants. The invention also provides blends of edge modified phyllosilicates and semicrystalline waxes. The composite materials are made by dispersing the edge modified phyllosilicates with polymers, particularly polyolefins and elastomers.

Chaiko, David J.

2004-09-14

107

Candida albicans adhesion to composite resin materials  

Microsoft Academic Search

The adhesion of Candida albicans to dental restorative materials in the human oral cavity may promote the occurrence of oral candidosis. This study aimed\\u000a to compare the susceptibility of 14 commonly used composite resin materials (two compomers, one ormocer, one novel silorane,\\u000a and ten conventional hybrid composites) to adhere Candida albicans. Differences in the amount of adhering fungi should be

Ralf Bürgers; Wulf Schneider-Brachert; Martin Rosentritt; Gerhard Handel; Sebastian Hahnel

2009-01-01

108

Composite, ordered material having sharp surface features  

DOEpatents

A composite material having sharp surface features includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a sharp surface feature. The sharp surface features can be coated to make the surface super-hydrophobic.

D'Urso, Brian R.; Simpson, John T.

2006-12-19

109

Method of making a composite refractory material  

DOEpatents

A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000.degree. C. to form a composite refractory material.

Morrow, Marvin S. (Kingston, TN); Holcombe, Cressie E. (Knoxville, TN)

1995-01-01

110

Method of making a composite refractory material  

DOEpatents

A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000 C to form a composite refractory material.

Morrow, M.S.; Holcombe, C.E.

1995-09-26

111

Laser welding of discontinuously reinforced composite materials  

NASA Astrophysics Data System (ADS)

The features of metal composite materials fusion welding are examined and the main defects arising at argon-arc, electron-beam and laser welding of alloys Al-Be-Mg, Fe-Cu-Pb and Al-Pb are revealed. The defects formation mechanisms are indicated and technological welding methods of metal composite materials are developed. These methods allow to prevent defects formation and obtain the welds with required mechanical properties and quality.

Shiganov, I. N.

1999-01-01

112

GREEN COMPOSITES OF NATURAL RUBBER AND DEFATTED SOY FLOUR  

Technology Transfer Automated Retrieval System (TEKTRAN)

Viscoelastic properties of natural rubber (NR) composites reinforced by defatted soy flour (DSF) are investigated. DSF is an abundant renewable commodity and has a lower material cost than carbon black (CB). DSF contains soy protein, soy carbohydrate, and soy whey. Aqueous dispersion of DSF was b...

113

Dynamic permeability in soft magnetic composite materials  

NASA Astrophysics Data System (ADS)

This article reports on an isotropic model of the magnetic susceptibility based on an average field theory and proposes to predict the dynamic behaviors of powder magnetic materials. It was essentially built around a so-called effective demagnetizing factor capable of taking the particle shapes into account. So, for a population of randomly distributed particles of anisotropic shapes like, for instance, needles or flakes, we show that the effective demagnetizing factor of this population of particles can be significantly lowered with regard to the well known value of 1/3 classically used to represent the isotropy state. This phenomenon is interpreted as the natural tendency of particles to form clusters to which a moving demagnetizing factor must be assigned. Taking then the aggregation process of particles into account, the ability of the model to predict the dynamic properties of many composite magnetic materials is successfully demonstrated. Our development is illustrated by experimental results concerning a nickel-zinc ferrimagnetic (Ni0.7Zn0.3Fe2O4) powder.

Chevalier, A.; Le Floc'h, M.

2001-10-01

114

Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.  

SciTech Connect

In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

2012-02-01

115

Oxygen isotope composition of trinitite postdetonation materials.  

PubMed

Trinitite is the melt glass produced subsequent the first nuclear bomb test conducted on July 16, 1945, at White Sands Range (Alamagordo, NM). The geological background of the latter consists of arkosic sand that was fused with radioactive debris and anthropogenic materials at ground zero subsequent detonation of the device. Postdetonation materials from historic nuclear weapon test sites provide ideal samples for development of novel forensic methods for attribution and studying the chemical/isotopic effects of the explosion on the natural geological environment. In particular, the latter effects can be evaluated relative to their spatial distribution from ground zero. We report here ?(18)O(‰) values for nonmelted, precursor minerals phases (quartz, feldspar, calcite), "feldspathic-rich" glass, "average" melt glass, and bulk (natural) unmelted sand from the Trinity site. Prior to oxygen isotope analysis, grains/crystals were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) to determine their corresponding major element composition. ?(18)O values for bulk trinitite samples exhibit a large range (11.2-15.5‰) and do not correlate with activity levels for activation product (152)Eu; the latter levels are a function of their spatial distribution relative to ground zero. Therefore, the slow neutron flux associated with the nuclear explosion did not perturb the (18)O/(16)O isotope systematics. The oxygen isotope values do correlate with the abundances of major elements derived from precursor minerals present within the arkosic sand. Hence, the O isotope ratios documented here for trinitite melt glass can be attributed to a mixture of the respective signatures for precursor minerals at the Trinity site prior to the nuclear explosion. PMID:24304329

Koeman, Elizabeth C; Simonetti, Antonio; Chen, Wei; Burns, Peter C

2013-12-17

116

3-D textile reinforcements in composite materials  

SciTech Connect

Laminated composite materials have been used in structural applications since the 1960s. However, their high cost and inability to accommodate fibers in the laminate`s thickness direction greatly reduce their damage tolerance and impact resistance. The second generation of materials--3-D textile reinforced composites--offers significant cost reduction, and by incorporating reinforcement in the thickness direction, dramatically increases damage tolerance and impact resistance. However, methods for predicting mechanical properties of 3-D textile reinforced composite materials tend to be more complex. These materials also have disadvantages--particularly in regard to crimps in the yarns--that require more research. Textile preforms, micro- and macromechanical modeling, manufacturing processes, and characterization all need further development. As researchers overcome these problems, this new generation of composites will emerge as a highly competitive family of materials. This book provides a state-of-the-art account of this promising technology. In it, top experts describe the manufacturing processes, highlight the advantages, identify the main applications, analyze methods for predicting mechanical properties, and detail various reinforcement strategies, including grid structure, knitted fabric composites, and the braiding technique. Armed with the information in this book, readers will be prepared to better exploit the advantages of 3-D textile reinforced composites, overcome its disadvantages, and contribute to the further development of the technology.

Miravete, A. [Univ. of Zaragoza (Spain)

1999-11-01

117

Oxygen Compatibility Testing of Composite Materials  

NASA Technical Reports Server (NTRS)

The development of polymer composite liquid oxygen LO2 tanks is a critical step in creating the next generation of launch vehicles. Future launch vehicles need to minimize the gross liftoff weight (GLOW), which is possible due to the 25%-40% reduction in weight that composite materials could provide over current aluminum technology. Although a composite LO2 tank makes these weight savings feasible, composite materials have not historically been viewed as "LO2 compatible." To be considered LO2 compatible, materials must be selected that will resist any type of detrimental, combustible reaction when exposed to usage environments. This is traditionally evaluated using a standard set of tests. However, materials that do not pass the standard tests can be shown to be safe for a particular application. This paper documents the approach and results of a joint NASA/Lockheed Martin program to select and verify LO2 compatible composite materials for liquid oxygen fuel tanks. The test approach developed included tests such as mechanical impact, particle impact, puncture, electrostatic discharge, friction, and pyrotechnic shock. These tests showed that composite liquid oxygen tanks are indeed feasible for future launch vehicles.

Graf, Neil A.; Hudgins, Richard J.; McBain, Michael

2000-01-01

118

Material flows vs. `natural capital'  

Microsoft Academic Search

In the discourse about sustainable development, `constant natural capital' is frequently referred to as a criterion for ecological sustainability. But what is `natural capital'? The concept will be analyzed by presenting arguments in favour of using the term and different versions of sustainability (strong and weak). Subsequently, a critique of the `natural capital' concept is brought forward, from an ecological

Friedrich Hinterberger; Fred Luks; Friedrich Schmidt-Bleek

1997-01-01

119

Failure and fatigue mechanisms in composite materials  

NASA Technical Reports Server (NTRS)

A phenomenological description of microfailure under monotonic and cyclic loading is presented, emphasizing the significance of material inhomogeneity for the analysis. Failure in unnotched unidirectional laminates is reviewed for the cases of tension, compression, shear, transverse normal, and combined loads. The failure of notched composite laminates is then studied, with particular attention paid to the effect of material heterogeneity on load concentration factors in circular holes in such laminates, and a 'materials engineering' shear-lay type model is presented. The fatigue of notched composites is discussed with the application of 'mechanistic wearout' model for determining crack propagation as a function of the number of fatigue cycles.-

Rosen, B. W.; Kulkarni, S. V.; Mclaughlin, P. V., Jr.

1975-01-01

120

Energy absorption of composite material and structure  

NASA Technical Reports Server (NTRS)

Results are presented from a joint research program on helicopter crashworthiness conducted by the U.S. Army Aerostructures Directorate and NASA Langley. Through the ongoing research program an in-depth understanding has been developed on the cause/effect relationships between material and architectural variables and the energy-absorption capability of composite material and structure. Composite materials were found to be efficient energy absorbers. Graphite/epoxy subfloor structures were more efficient energy absorbers than comparable structures fabricated from Kevlar or aluminum. An accurate method of predicting the energy-absorption capability of beams was developed.

Farley, Gary L.

1987-01-01

121

Mimicry of natural material designs and processes  

Microsoft Academic Search

Biological structural materials, although composed of unremarkable substances synthesized at low temperatures, often exhibit superior mechanical properties. In particular, the quality in which nearly all biologically derived materials excel is toughness. The advantageous mechanical properties are attributable to the hierarchical, composite, structural arrangements common to biological systems. Materials scientists and engineers have increasingly recognized that biological designs or processing approaches

G. M. Bond; R. H. Richman; W. P. McNaughton

1995-01-01

122

Nonlinear optical properties of composite materials  

NASA Technical Reports Server (NTRS)

The optical properties of a new class of composite nonlinear materials composed of coated grains, such as cadmium sulfide with a silver coating, are examined. These materials exhibit intrinsic optical bistability and resonantly enhanced conjugate reflectivity. The threshold for intrinsic optical bistability is low enough for practical applications in optical communications and optical computing. Some problems associated with the fabrication of these materials are addressed. Based on preliminary results, switching times are expected to be in the subpicosecond range.

Haus, Joseph W.; Inguva, Ramarao

1991-01-01

123

Morphology genetic materials templated from natural species.  

PubMed

The structural characteristics of natural species have been optimized by natural selection for millions of years. They offer specific functions much more effectively than artificial approaches. Morphology genetic materials utilize morphologies gleaned from natural selection into their hierarchical structures. The combination of natural morphologies and manually selected functional materials makes these novel materials suitable for many applications. This review focuses on the strategies by which the structures and functions of natural species can be utilized. Specific functions inherited from both the natural microstructures and coupled functional materials are highlighted with regard to various applications, including photonics, light-harvesting, surface-enhanced Raman scattering (SERS), and electrodes for supercapacitors and batteries, as well as environmentally friendly materials. PMID:25331783

Gu, Jiajun; Zhang, Wang; Su, Huilan; Fan, Tongxiang; Zhu, Shenmin; Liu, Qinglei; Zhang, Di

2015-01-21

124

Advanced composite materials for optomechanical systems  

NASA Astrophysics Data System (ADS)

Polymer matrix composites (PMCs) have been well established in optomechanical systems for several decades. The other three classes of composites; metal matrix composites (MMCs), ceramic matrix composites (CMCs), and carbon matrix composites (CAMCs) are making significant inroads. The latter include carbon/carbon (C/C) composites (CCCs). The success of composites has resulted in increasing use in consumer, industrial, scientific, and aerospace/defense optomechanical applications. Composites offer significant advantages over traditional materials, including high stiffnesses and strengths, near-zero and tailorable coefficients of thermal expansion (CTEs), tailorable thermal conductivities (from very low to over twice that of copper), and low densities. In addition, they lack beryllium's toxicity problems. Some manufacturing processes allow parts consolidation, reducing machining and joining operations. At present, PMCs are the most widely used composites. Optomechanical applications date from the 1970s. The second High Energy Astrophysical Observatory spacecraft, placed in orbit in 1978, had an ultrahigh-modulus carbon fiber-reinforced epoxy (carbon/epoxy) optical bench metering structure. Since then, fibers and matrix materials have advanced significantly, and use of carbon fiber-reinforced polymers (CFRPs) has increased steadily. Space system examples include the Hubble Space Telescope metering truss and instrument benches, Upper Atmosphere Research Satellite (UARS), James Webb Space Telescope and many others. Use has spread to airborne applications, such as SOFIA. Perhaps the most impressive CFRP applications are the fifty-four 12m and twelve 7m moveable ground-based ALMA antennas. The other three classes of composites have a number of significant advantages over PMCs, including no moisture absorption or outgassing of organic compounds. CCC and CMC components have flown on a variety of spacecraft. MMCs have been used in space, aircraft, military and industrial applications. In this paper, we review key PMC, MMC, CCC, and CMC optomechanical system materials, including properties, advantages, disadvantages, applications and future developments. These topics are covered in more detail in SPIE short courses SC218 and SC1078.

Zweben, Carl

2013-09-01

125

Ceramic Aerogel Composite Materials and Characterization  

NASA Technical Reports Server (NTRS)

Aerogels a.k.a "Solid Smoke" are gels with the liquid phase replaced by gas, leaving behind a highly porous material with a nanoscale framework. Due to the porous, nanoscale structure, aerogels have the lowest known density and conductivity of solids. Aerogels have the potential for being a breakthrough material because of their extremely light weight and unique properties. In this paper, we address overcoming their most profound weaknesses: mechanical fragility and very high surface activity, which leads to a lowered sintering temperature. A matrix of ceramic aerogel composite materials was produced to investigate their properties and functionality. Mechanical property measurements and Scanning Electron Micrographs are used to identify trends and structure of these ceramic composite materials. Thermal cycling was used to identify the sintering points of the materials.

White, Susan; Hrubesh, Lawrence W.; Rasky, Daniel J. (Technical Monitor)

1997-01-01

126

Tensile failure criteria for fiber composite materials  

NASA Technical Reports Server (NTRS)

The analysis provides insight into the failure mechanics of these materials and defines criteria which serve as tools for preliminary design material selection and for material reliability assessment. The model incorporates both dispersed and propagation type failures and includes the influence of material heterogeneity. The important effects of localized matrix damage and post-failure matrix shear stress transfer are included in the treatment. The model is used to evaluate the influence of key parameters on the failure of several commonly used fiber-matrix systems. Analyses of three possible failure modes were developed. These modes are the fiber break propagation mode, the cumulative group fracture mode, and the weakest link mode. Application of the new model to composite material systems has indicated several results which require attention in the development of reliable structural composites. Prominent among these are the size effect and the influence of fiber strength variability.

Rosen, B. W.; Zweben, C. H.

1972-01-01

127

Properties of five toughened matrix composite materials  

NASA Technical Reports Server (NTRS)

The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

Cano, Roberto J.; Dow, Marvin B.

1992-01-01

128

A physically-based abrasive wear model for composite materials  

SciTech Connect

A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of the reinforcement is estimated by modeling the three primary wear mechanisms, specifically plowing, interfacial cracking and particle removal. Critical variables describing the role of the reinforcement, such as its relative size and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy matrix composite material.

Lee, Gun Y.; Dharan, C.K.H.; Ritchie, Robert O.

2001-05-01

129

Computational modeling of composite material fires.  

SciTech Connect

Composite materials behave differently from conventional fuel sources and have the potential to smolder and burn for extended time periods. As the amount of composite materials on modern aircraft continues to increase, understanding the response of composites in fire environments becomes increasingly important. An effort is ongoing to enhance the capability to simulate composite material response in fires including the decomposition of the composite and the interaction with a fire. To adequately model composite material in a fire, two physical model development tasks are necessary; first, the decomposition model for the composite material and second, the interaction with a fire. A porous media approach for the decomposition model including a time dependent formulation with the effects of heat, mass, species, and momentum transfer of the porous solid and gas phase is being implemented in an engineering code, ARIA. ARIA is a Sandia National Laboratories multiphysics code including a range of capabilities such as incompressible Navier-Stokes equations, energy transport equations, species transport equations, non-Newtonian fluid rheology, linear elastic solid mechanics, and electro-statics. To simulate the fire, FUEGO, also a Sandia National Laboratories code, is coupled to ARIA. FUEGO represents the turbulent, buoyantly driven incompressible flow, heat transfer, mass transfer, and combustion. FUEGO and ARIA are uniquely able to solve this problem because they were designed using a common architecture (SIERRA) that enhances multiphysics coupling and both codes are capable of massively parallel calculations, enhancing performance. The decomposition reaction model is developed from small scale experimental data including thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) in both nitrogen and air for a range of heating rates and from available data in the literature. The response of the composite material subject to a radiant heat flux boundary condition is examined to study the propagation of decomposition fronts of the epoxy and carbon fiber and their dependence on the ambient conditions such as oxygen concentration, surface flow velocity, and radiant heat flux. In addition to the computational effort, small scaled experimental efforts to attain adequate data used to validate model predictions is ongoing. The goal of this paper is to demonstrate the progress of the capability for a typical composite material and emphasize the path forward.

Brown, Alexander L.; Erickson, Kenneth L.; Hubbard, Joshua Allen; Dodd, Amanda B.

2010-10-01

130

Health monitoring method for composite materials  

DOEpatents

An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

Watkins, Jr., Kenneth S. (Dahlonega, GA); Morris, Shelby J. (Hampton, VA)

2011-04-12

131

Hybrid titanium composite material improving composite structure coupling  

Microsoft Academic Search

One method of increasing mechanical joint e-ciency entails the reinforcement of the joining area with thin metal laminates. The suitability and e-ciency of ti- tanium as a reinforcing material was researched and proven at the Institute of Composite Structures and Adaptive Systems of the German Aerospace Cen- ter in Germany (DLR). Experimental results show a signiflcant gain of bearing strength

Axel Fink; Boris Kolesnikov

2005-01-01

132

Thermal expansion properties of composite materials  

NASA Technical Reports Server (NTRS)

Thermal expansion data for several composite materials, including generic epoxy resins, various graphite, boron, and glass fibers, and unidirectional and woven fabric composites in an epoxy matrix, were compiled. A discussion of the design, material, environmental, and fabrication properties affecting thermal expansion behavior is presented. Test methods and their accuracy are discussed. Analytical approaches to predict laminate coefficients of thermal expansion (CTE) based on lamination theory and micromechanics are also included. A discussion is included of methods of tuning a laminate to obtain a near-zero CTE for space applications.

Johnson, R. R.; Kural, M. H.; Mackey, G. B.

1981-01-01

133

Frictional Ignition Testing of Composite Materials  

NASA Technical Reports Server (NTRS)

The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.

Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel

2006-01-01

134

Data-mined similarity function between material compositions  

E-print Network

A new method for assessing the similarity of material compositions is described. A similarity measure is important for the classification and clustering of compositions. The similarity of the material compositions is ...

Yang, Lusann

135

Method of making carbon nanotube composite materials  

DOEpatents

The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

2014-05-20

136

Passive vibration damping with magnetostrictive composite material  

NASA Astrophysics Data System (ADS)

This paper describes evaluation of an autonomous-material system tailored for free-layer vibration damping of structural elements. The magnetostrictive particulate composite (MPC) material described has moderate stiffness and minimal temperature and frequency dependence. The composite is created by curing Terfenol particles {Tb (1-x)Dy (x)Fe (2),0.2material is subjected to a constant magnetic field. The cured MPC, under vibratory loading, dissipates energy through hysteresis due to domain-wall motion within the particles. The material has an uncommon combination of stiffness and damping, with modulus near that of fiberglass and loss factor similar to many rubber formulations, and the material exhibits vibration damping capability over wide temperature and frequency ranges. Challenges for design are the material's load-dependent damping capacity and its low ultimate strength. The MPC damping mechanism is predictable, and a finite element modeling approach was validated by test. Material evaluation was performed with direct measurements of modulus and loss factor. Both composite and monolithic Terfenol samples were built and tested. Measurements of the MPC formulations showed loss factors of up to 0.1 are achievable. Off-stoichiometric samples, with higher levels of Terbium (Tb) content compared to the standard Terfenol composition, were found to have even higher damping, with peak damping observed at Tb 0.5. Loss factors approaching 0.3 were measured in monolithic, off-stoichiometric material samples. The damping is load-dependent, moderately dependent on temperature, and relatively insensitive to loading frequency. A prototype flexure with MPC damping, based on the patented SoftRide design used for whole-spacecraft vibration isolation, was built and tested. Damping and stiffness matched predictions with a finite element model of the MPC-damped SoftRide isolator.

Maly, Joseph R.; Carmen, Gregory P.; Goodding, James C.; Kerrigan, Catherine A.; Ho, Ken K.

2007-04-01

137

Composite materials for the extravehicular mobility unit  

NASA Technical Reports Server (NTRS)

The extravehicular mobility unit (EMU), commonly known as the astronaut space suit assembly (SSA) and primary life support system (PLSS), has evolved through the years to incorporate new and innovative materials in order to meet the demands of the space environment. The space shuttle program which is seeing an increasing level of extravehicular activity (EVA), also called space walks, along with interest in an EMU for Lunar-Mars missions means even more demanding conditions are being placed on the suit and PLSS. The project for this NASA-ASEE Summer Program was to investigate new materials for these applications. The focus was to emphasize the use of composite materials for every component of the EMU to enhance the properties while reducing the total weight of the EMU. To accomplish this, development of new materials called fullerene reinforced materials (FRM's) was initiated. Fullerenes are carbon molecules which when added to a material significantly reduce the weight of that material. The Faculty Fellow worked directly on the development of the fullerene reinforced materials. A chamber for fullerene production was designed and assembled and first generation samples were processed. He also supervised with the JSC Colleague, a study of composite materials for the EMU conducted by the student participant in the NASA-ASEE Program, Hector Tello a Rice University graduate student, and by a NASA Aerospace Technologist (Materials Engineer) Evelyne Orndoff, in the Systems Engineering Analysis Office (EC7), also a Rice University graduate student. Hector Tello conducted a study on beryllium and Be alloys and initiated a study of carbon and glass reinforced composites for space applications. Evelyne Orndoff compiled an inventory of the materials on the SSA. Ms. Orndoff also reviewed SSA material requirements and cited aspects of the SSA design where composite materials might be further considered. Hector Tello spent part of his time investigating the solar radiation sensitivity of anodic coatings. This project was directed toward the effects of ultra-violet radiation on high emissivity anodic coatings. The work of both Evelyne Orndoff and Hector Tello is of interest to the Engineering Directorate at NASA/JSC and is also directed toward their research as Rice University graduate students.

Barrera, Enrique V.; Tello, Hector M.

1992-01-01

138

Moisture Absorption and Desorption of Composite Materials  

Microsoft Academic Search

Expressions are presented for the moisture distribution and the mois ture content as a function of time of one dimensional homogeneous and composite materials exposed either on one side or on both sides to humid air or to water. The results apply during both moisture absorption and desorption when the moisture content and the temperature of the environ ment are

Chi-Hung Shen; George S. Springer

1976-01-01

139

http://jtc.sagepub.com Composite Materials  

E-print Network

http://jtc.sagepub.com Composite Materials Journal of Thermoplastic DOI: 10 Thermal and Mechanical Properties of Wood Flour/Talc-filled Polylactic http://jtc.sagepub.com/cgi/content/abstract/21/3/209 The online version of this article can be found at: Published by: http

140

Characterization of self-healing composite materials  

Microsoft Academic Search

Damage occurs in almost every composite material in the form of microcracks that develop in the epoxy matrix that binds the fibers together. Researchers at the University of Illinois Urbana Champaign have recently developed a method to reverse the effects of, or heal, damage in the epoxy matrix. Their in-situ self-healing system uses embedded microcapsules and a catalyst that trigger

Kevin John Ford

2006-01-01

141

EFFECTIVE PROPERTIES OF POROUS AND COMPOSITE MATERIALS  

Microsoft Academic Search

Based on a previously modified version of Bruggerman's method, a dependence of the effective diffusion coefficient in porous media on the porosity is deduced and compared with available experimental data. Based on the same method, a dependency of the effective elastic coefficients of composite materials on the volume fraction of inclusions is deduced in the case of different types of

V. M. Starov; A. G. F. Stapley; V. G. Zhdanov

2004-01-01

142

Crashworthy capability of composite material structures  

Microsoft Academic Search

Considerable research interest has been directed towards the use of composite materials for crashworthiness applications, because they can be designed to provide impact energy absorption capabilities which are superior to those of metals when compared on a weight basis. This review draws together information from a variety of sources to compare the findings of researchers in this field.The anisotropy of

A. G Mamalis; M. Robinson; D. E. Manolakos; G. A. Demosthenous; M. B. Ioannidis; J. Carruthers

1997-01-01

143

Mimicry of natural material designs and processes  

Microsoft Academic Search

Biological structural materials, although composed of unremarkable substances synthesized at low temperatures, often exhibit\\u000a superior mechanical properties. In particular, the quality in which nearly all biologically derived materials excel is toughness.\\u000a The advantageous mechanical properties are attributable to the hierarchical, composite, structural arrangements common to\\u000a biological systems. Materials scientists and engineers have increasingly recognized that biological designs or processing\\u000a approaches

G. M. Bond; R. H. Richman; W. P. McNaughton

1995-01-01

144

Fungal degradation of fiber-reinforced composite materials  

NASA Technical Reports Server (NTRS)

As described in a previous report, a fungal consortium isolated from degraded polymeric materials was capable of growth on presterilized coupons of five composites, resulting in deep penetration into the interior of all materials within five weeks. Data describing the utilization of composite constituents as nutrients for the microflora are described in this article. Increased microbial growth was observed when composite extract was incubated with the fungal inoculum at ambient temperatures. Scanning electron microscopic observation of carbon fibers incubated with a naturally developed population of microorganisms showed the formation of bacterial biofilms on the fiber surfaces, suggesting possible utilization of the fiber chemical sizing as carbon and energy sources. Electrochemical impedance spectroscopy was used to monitor the phenomena occurring at the fiber-matrix interfaces. Significant differences were observed between inoculated and sterile panels of the composite materials. A progressive decline in impedance was detected in the inoculated panels. Several reaction steps may be involved in the degradation process. Initial ingress of water into the resin matrix appeared to be followed by degradation of fiber surfaces, and separation of fibers from the resin matrix. This investigation suggested that composite materials are susceptible to microbial attack by providing nutrients for growth.

Gu, J. D.; Lu, C.; Mitchell, R.; Thorp, K.; Crasto, A.

1997-01-01

145

Accelerated Aging of Polymer Composite Bridge Materials  

SciTech Connect

Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

Carlson, Nancy Margaret; Blackwood, Larry Gene; Torres, Lucinda Laine; Rodriguez, Julio Gallardo; Yoder, Timothy Scott

1999-03-01

146

Mishap risk control for advanced aerospace/composite materials  

NASA Technical Reports Server (NTRS)

Although advanced aerospace materials and advanced composites provide outstanding performance, they also present several unique post-mishap environmental, safety, and health concerns. The purpose of this paper is to provide information on some of the unique hazards and concerns associated with these materials when damaged by fire, explosion, or high-energy impact. Additionally, recommended procedures and precautions are addressed as they pertain to all phases of a composite aircraft mishap response, including fire-fighting, investigation, recovery, clean-up, and guidelines are general in nature and not application-specific. The goal of this project is to provide factual and realistic information which can be used to develop consistent and effective procedures and policies to minimize the potential environmental, safety, and health impacts of a composite aircraft mishap response effort.

Olson, John M.

1994-01-01

147

Optical properties of esthetic restorative materials and natural dentition.  

PubMed

The diffuse reflectance spectra of dental ceramic and composite resin specimens were analyzed by the Kubelka-Munk (K-M) theory of light scattering materials. This enabled the prediction of the spectra and color of differing thicknesses of these materials on various backgrounds, which were in good agreement with observation. The reflectance spectra of natural enamel and dentine sections were also measured on white and black backgrounds. This allowed the calculation of the K-M scattering (S) and absorption (K) parameters, which were compared with those of the restorative materials. The Chroma of these tooth sections increased slightly with the age of the patient, but the Hue and Value showed no systematic variation. Comparisons of the measured Munsell color for a range of composite resins and ceramics with that of the natural tooth sections showed that they generally exhibited a similar range of colors. PMID:4066723

Cook, W D; McAree, D C

1985-01-01

148

Mechanics of failure of composite materials  

NASA Technical Reports Server (NTRS)

Composite materials are both inhomogeneous and anisotropic. Both of these characteristics affect the internal stress distributions since inhomogeneity involves variations in both strength and stiffness. The fracture mechanics of nonuniform materials are considered, taking into account the effect of nonuniformity on stress distributions near the crack tip, predicted yield zones in nonuniform and uniform materials, and the fracture of a center-notched unidirectional specimen. The mechanics of failure of laminated materials is discussed. It is found that the development of damage in a laminate with increasing load and, possibly, increasing numbers of cycles of loading is peculiar to the laminate in question, i.e., the material system, the stacking sequence, and the geometry. Approaches for monitoring damage development are also described.

Reifsnider, K. L.

1978-01-01

149

Development of a novel regenerated cellulose composite material.  

PubMed

We report for the first time on a new natural composite material achieved by blending cotton and duck feather using an ionic liquid. The addition of duck feather was found to improve the elasticity, strain at break, by 50% when compared to regenerated cellulose alone. This is a significant finding since regenerated cotton using ionic liquids often suffers from poor elasticity. The improved elasticity is likely due to the regenerated duck feather maintaining its helical structure. The new regenerated cellulose composites were characterized using a combination of dynamic mechanical analysis, Fourier transform infrared spectroscopy, thermal gravimetric analysis, contact angle measurements and scanning electron microscopy. PMID:25659713

De Silva, Rasike; Vongsanga, Kylie; Wang, Xungai; Byrne, Nolene

2015-05-01

150

Conductor-polymer composite electrode materials  

DOEpatents

A conductive composite material useful as an electrode, comprises a conductor and an organic polymer which is reversibly electrochemically dopable to change its electrical conductivity. Said polymer continuously surrounds the conductor in intimate electrical contact therewith and is prepared by electrochemical growth on said conductor or by reaction of its corresponding monomer(s) on said conductor which has been pre-impregnated or pre-coated with an activator for said polymerization. Amount of the conductor is sufficient to render the resultant composite electrically conductive even when the polymer is in an undoped insulating state.

Ginley, D.S.; Kurtz, S.R.; Smyrl, W.H.; Zeigler, J.M.

1984-06-13

151

Mechanical Spectroscopy of Nanostructured Composite Materials  

NASA Astrophysics Data System (ADS)

The thermo-mechanical behavior of different nano-structured composite materials, which were processed within the SAPHIR European Integrated Project, has been characterized by mechanical spectroscopy. The obtained results show clearly that creep resistance of fine grain ceramics such as zirconia can be improved by carbon nano-tube (CNT) reinforcements. On the other hand the elastic modulus and the damping capacity of aluminum matrix composites were increased by SiC nano-particle additions. It has also been observed that CNT additions are responsible for a better thermal stability of polymer such as ABS (Acrylonitrile-Butadiene-Styrene) used in automotive industry.

Mari, Daniele; Schaller, Robert; Mazaheri, Mehdi

2011-07-01

152

Compression Testing of Textile Composite Materials  

NASA Technical Reports Server (NTRS)

The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.

Masters, John E.

1996-01-01

153

ACEE Composite Structures Technology: Review of selected NASA research on composite materials and structures  

NASA Technical Reports Server (NTRS)

The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.

1984-01-01

154

Endogenous plastic composite material in the Alzheimer's brain.  

PubMed

Accumulation of amyloid beta (Abeta) peptide in brain is the hallmark of Alzheimer's disease (AD). The resulting plaques though fibrous in nature may also consist of additional structures currently poorly defined. We hypothesize that plastic composite material contributes to plaque formation. This material is organized by polymers of acrolein, which is an oxidized lipid fragment found in AD. Acrolein, a 3-carbon compound, contains a carbonyl and a vinyl group that participate in polymerization via fundamental latex chemistry. The redox and surfactant properties of Abeta allow it to catalyze the polymerization of acrolein. We previously reported observations of thin plastic fragments of Abeta-polyacrolein. The current paper outlines the proposed steps in forming these plastic fragments. Endogenous plastic composite material may significantly contribute to the pathogenesis of AD. PMID:16678976

Seidler, N W; Craig, H D; Squire, T J

2006-01-01

155

Putting it Together: The Science and Technology of Composite Materials  

NSDL National Science Digital Library

Composite materials are light, strong, corrosion-resistant composites of two or more materials used commonly in manufacturing. This recent report is from the Australian Academy of Science with support from The Cooperative Research Centre for Advanced Composite Structures, Ltd. and the Commonwealth Department of Industry, Science and Resources. It gives information on the history, manufacturing techniques, and efficiency of composite materials. A glossary, reference list, and links to educational sites as well as other composite materials sites are also featured.

2000-01-01

156

Interaction of pesticides with natural organic material  

USGS Publications Warehouse

Two examples of the interaction of pesticides with natural organic materials have been investigated. Sodium humate solubilizes DDT in water and humic acid strongly sorbs 2,4,5-T. These two types of interactions are indicative of the types that one would expect when any organic pesticide is applied to a natural soil-water system.

Wershaw, R.L.; Burcar, P.J.; Goldberg, M.C.

1969-01-01

157

Introduction to naturally occurring radioactive material  

Microsoft Academic Search

Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. We are also bathed in a sea of natural radiation coming from the sun and deep space. Living systems have adapted to these levels

Egidi

1997-01-01

158

Filament-wound composite vessels material technology  

NASA Technical Reports Server (NTRS)

Programs are reviewed that were conducted to establish a technology base for applying advanced fibers or resins to high performance filament-wound pressure vessels for containment of cryogens and high pressure gases. Materials evaluated included boron, graphite, PRD 49-1 and 3/epoxy and S-glass/polyimide composites. Closed-end cylindrical, and oblate spheroid-shaped vessels were fabricated in 4- and 8-inch diameter sizes. Vessels were subjected to single-cycle burst, low-cycle fatigue, and sustained loading tests over a -423 F to room temperature range for epoxy composites and a -423 to 500 F temperature range for the polyimide composites. Vessels tested at cryogenic and/or 500 F had thin (3 to 20 mils) metallic liners whereas vessels tested at room temperature had elastomeric liners. Correlations between acoustic emissions and burst and cyclic properties of PRD 49-1 filament-wound vessels are discussed.

Lark, R. F.

1973-01-01

159

Advanced Technology Composite Fuselage - Materials and Processes  

NASA Technical Reports Server (NTRS)

The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

1997-01-01

160

Mechanics Methodology for Textile Preform Composite Materials  

NASA Technical Reports Server (NTRS)

NASA and its contractors have completed a program to develop a basic mechanics underpinning for textile composites. Three major deliverables were produced by the program: 1. A set of test methods for measuring material properties and design allowables; 2. Mechanics models to predict the effects of the fiber preform architecture and constituent properties on engineering moduli, strength, damage resistance, and fatigue life; and 3. An electronic data base of coupon type test data. This report describes these three deliverables.

Poe, Clarence C., Jr.

1996-01-01

161

Alkali metal protective garment and composite material  

DOEpatents

A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

Ballif, III, John L. (Salt Lake City, UT); Yuan, Wei W. (Seattle, WA)

1980-01-01

162

Fiber Reinforced Composite Materials Used for Tankage  

NASA Technical Reports Server (NTRS)

The Nonmetallic Materials and Processes Group is presently working on several projects to optimize cost while providing effect materials for the space program. One factor that must be considered is that these materials must meet certain weight requirements. Composites contribute greatly to this effort. Through the use of composites the cost of launching payloads into orbit will be reduced to one-tenth of the current cost. This research project involved composites used for aluminum pressure vessels. These tanks are used to store cryogenic liquids during flight. The tanks need some type of reinforcement. Steel was considered, but added too much weight. As a result, fiber was chosen. Presently, only carbon fibers with epoxy resin are wrapped around the vessels as a primary source of reinforcement. Carbon fibers are lightweight, yet high strength. The carbon fibers are wet wound onto the pressure vessels. This was done using the ENTEC Filament Winding Machine. It was thought that an additional layer of fiber would aid in reinforcement as well as containment and impact reduction. Kevlar was selected because it is light weight, but five times stronger that steel. This is the same fiber that is used to make bullet-proof vests trampolines, and tennis rackets.

Cunningham, Christy

2005-01-01

163

Flexible Composite-Material Pressure Vessel  

NASA Technical Reports Server (NTRS)

A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

Brown, Glen; Haggard, Roy; Harris, Paul A.

2003-01-01

164

Impact of solids on composite materials  

NASA Technical Reports Server (NTRS)

The failure modes of composite materials as a result of low velocity impact were investigated by simulating the impact with a finite element analysis. An important facet of the project is the modeling of the impact of a solid onto cylindrical shells composed of composite materials. The model under development will simulate the delamination sustained when a composite material encounters impact from another rigid body. The computer equipment was installed, the computer network tested, and a finite element method model was developed to compare results with known experimental data. The model simulated the impact of a steel rod onto a rotating shaft. Pre-processing programs (GMESH and TANVEL) were developed to generate node and element data for the input into the three dimensional, dynamic finite element analysis code (DYNA3D). The finite element mesh was configured with a fine mesh near the impact zone and a coarser mesh for the impacting rod and the regions surrounding the impacting zone. For the computer simulation, five impacting loads were used to determine the time history of the stresses, the scribed surface areas, and the amount of ridging. The processing time of the computer codes amounted from 1 to 4 days. The calculated surface area were within 6-12 percent, relative error when compated to the actual scratch area.

Bronson, Arturo; Maldonado, Jerry; Chern, Tzong; Martinez, Francisco; Mccord-Medrano, Johnnie; Roschke, Paul N.

1987-01-01

165

Discrimination of Naturally Occurring Radioactive Material in Plastic Scintillator Material  

SciTech Connect

Plastic scintillator material is used in many applications for the detection of gamma-rays from radioactive material, primarily due to the sensitivity per unit cost compared to other detection materials. However, the resolution and lack of full-energy peaks in the plastic scintillator material prohibits detailed spectroscopy. Therefore, other materials such as doped sodium iodide are used for spectroscopic applications. The limited spectroscopic information can however be exploited in plastic scintillator materials to provide some discrimination. The discrimination between man-made and naturally occurring sources would be useful in reducing alarm screening for radiation detection applications which target man-made sources. The results of applying the limited energy information from plastic scintillator material for radiation portal monitors are discussed.

Ely, James H.; Kouzes, Richard T.; Geelhood, Bruce D.; Schweppe, John E.; Warner, Ray A.

2003-08-19

166

Natural Materials adopted for Electrical and Electronic Materials  

NASA Astrophysics Data System (ADS)

Humankind is required to reduce environmental impact caused by its activity. Materials and products have been evaluated by criteria of performance in use and price. Now environmental impact is added to the criteria for evaluation. One of the future directions of science and technology is to minimize the environmental load of materials and products keeping their state-of-the-art performance. Adoption of natural materials is one of promising ways to realize that. This review will introduce some examples in the field of dielectric and electrical insulating materials.

Shimizu, Noriyuki; Muramoto, Yuji

167

Composite material systems for hydrogen management  

NASA Technical Reports Server (NTRS)

The task of managing hydrogen entry into elevated temperature structural materials employed in turbomachinery is a critical engineering area for propulsion systems employing hydrogen or decomposable hydrocarbons as fuel. Extant structural materials, such as the Inconel series, are embrittled by the ingress of hydrogen in service, leading to a loss of endurance and general deterioration of load-bearing dependability. Although the development of hydrogen-insensitive material systems is an obvious engineering option, to date insensitive systems cannot meet the time-temperature-loading service extremes encountered. A short-term approach that is both feasible and technologically sound is the development and employment of hydrogen barrier coatings. The present project is concerned with developing, analyzing, and physically testing laminate composite hydrogen barrier systems, employing Inconel 718 as the structural material to be protected. Barrier systems will include all metallic, metallic-to-ceramic, and, eventually, metallic/ceramic composites as the lamellae. Since space propulsion implies repetitive engine firings without earth-based inspection and repair, coating durability will be closely examined, and testing regimes will include repetitive thermal cycling to simulate damage accumulation. The target accomplishments include: generation of actual hydrogen permeation data for metallic, ceramic-metallic, and hybrid metallic/ceramic composition barrier systems, practically none of which is currently extant; definition of physical damage modes imported to barrier systems due to thermal cycling, both transient temperature profiles and steady-state thermal mismatch stress states being examined as sources of damage; and computational models that incorporate general laminate schemes as described above, including manufacturing realities such as porosity, and whatever defects are introduced through service and characterized during the experimental programs.

Pangborn, R. N.; Queeney, R. A.

1991-01-01

168

Nondestructive evaluation of advanced ceramic composite materials  

SciTech Connect

Nondestructive evaluation techniques were developed to characterize performance degrading conditions in continuous fiber-reinforced silicon carbide/silicon carbide composites. Porosity, fiber-matrix interface bond strength, and physical damage were among the conditions studied. The material studied is formed by chemical vapor infiltration (CVI) of the matrix material into a preform of woven reinforcing fibers. Acoustic, ultrasonic, and vibration response techniques were studied. Porosity was investigated because of its inherent presence in the CVI process and of the resultant degradation of material strength. Correlations between porosity and ultrasonic attenuation and velocity were clearly demonstrated. The ability of ultrasonic transmission scanning techniques to map variations in porosity in a single sample was also demonstrated. The fiber-matrix interface bond was studied because of its importance in determining the fracture toughness of the material. Correlations between interface bonding and acoustic and ultrasonic properties were observed. These results are presented along with those obtained form acoustic and vibration response measurements on material samples subjected to mechanical impact damage. This is the final report on research sponsored by the US Department of Energy, Fossil Energy Advanced Research and Technology Development Materials Program. 10 refs., 24 figs., 2 tabs.

Lott, L.A.; Kunerth, D.C.; Walter, J.B.

1991-09-01

169

Computational Damage Mechanics for Composite Materials Based on Mathematical Homogenization  

E-print Network

1 Computational Damage Mechanics for Composite Materials Based on Mathematical Homogenization Jacob process in composite materi- als, among which the damage mechanics approach is particularly attractive is performed first followed by application of damage mechanics principles to homogenized anisotropic medium

Fish, Jacob

170

Polymer-composite materials for radiation protection.  

PubMed

Unwanted exposures to high-energy or ionizing radiation can be hazardous to health. Prolonged or accumulated radiation dosage from either particle-emissions such as alpha/beta, proton, electron, neutron emissions, or high-energy electromagnetic waves such as X-rays/? rays, may result in carcinogenesis, cell mutations, organ failure, etc. To avoid occupational hazards from these kinds of exposures, researchers have traditionally used heavy metals or their composites to attenuate the radiation. However, protective gear made of heavy metals are not only cumbersome but also are capable of producing more penetrative secondary radiations which requires additional shielding, increasing the cost and the weight factor. Consequently, significant research efforts have been focused toward designing efficient, lightweight, cost-effective, and flexible shielding materials for protection against radiation encountered in various industries (aerospace, hospitals, and nuclear reactors). In this regard, polymer composites have become attractive candidates for developing materials that can be designed to effectively attenuate photon or particle radiation. In this paper, we review the state-of-the-art of polymer composites reinforced with micro/nanomaterials, for their use as radiation shields. PMID:23009182

Nambiar, Shruti; Yeow, John T W

2012-11-01

171

Air Force requirements for NDE of composite materials  

NASA Astrophysics Data System (ADS)

The usage of composite materials has increased and continues to grow in advanced and sophisticated weapon systems. The complexity of structures, and the need for rapid inspection and assessment of systems require further development of existing inspection methods to provide the accuracy and reliability desired. Because of the inherently anisotropic and sometimes nonuniform layered nature of composites, detection and interpretation of defects in operational systems is difficult. Further compounding the inspection problem is the growing requirement to assess the integrity of large structures, and to acquire and interpret large data sets in near real time. This paper examines various aspects of composite development, manufacture, assembly, and inspection issues as they relate to Air Force needs and requirements. Current and future initiatives are detailed and an attempt is made to highlight the inadequacies of current inspection procedures: their reliability and sensitivity to discriminate among various defect states.

Cordell, T. M.; Bhagat, P. K.

172

Use of advanced composite materials for innovative building design solutions/  

E-print Network

Advanced composite materials become popular in construction industry for the innovative building design solutions including strengthening and retrofitting of existing structures. The interface between different materials ...

Lau, Tak-bun, Denvid

2009-01-01

173

Glasses, ceramics, and composites from lunar materials  

NASA Astrophysics Data System (ADS)

A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

Beall, George H.

1992-02-01

174

Ceramic Matrix Composite (CMC) Materials Characterization  

NASA Technical Reports Server (NTRS)

Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

Calomino, Anthony

2001-01-01

175

Ceramic Matrix Composite (CMC) Materials Development  

NASA Technical Reports Server (NTRS)

Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

DiCarlo, James

2001-01-01

176

TREATMENT OF STORMWATER BY NATURAL ORGANIC MATERIALS  

EPA Science Inventory

The overall objective of this study was to evaluate the feasibility of using low-cost natural filter materials for stormwater (SW) treatment. Generic mulch, pine bark mulch, and processed jute were evaluated for metal and organic pollutant removal from actual SW samples collected...

177

Radiation Facilities for Composite Materials Formation  

NASA Astrophysics Data System (ADS)

The radiation facilities on the base of linac for polymer composite materials (PCM) formation was designed. The general technological scheme of PCM production consists in impregnations by synthetic monomers or oligomers of wares made of capillaryporous materials such as wood, qypsum, concrete, ceramic, paper, waste of papermaking, textile and woodworking production which are further treated by relativistic electron or breamsstruhglung beams. The facilities encorporates a linac with scanning electron beams, microwave chamber for drying of materials, a system for vacuum impregnating of materials with synthetic origomers, test bench for irradiations of samples, precise monitoring system for measuring of three-dimentional dose distribution in irradiated samples, and control processing system. The main beam parameters of linac are: electron energy 5--8 MeV; mean beam power up to 5 kW, pulse duration 1--4 mcs; scanning frequency of electromagnetic scanner 1--8 Hz; the irradiation is possible both with electron and with breamsstrahglung beams. The facilities were used for radiation processing investigation and production of new high-strength and corrosian-resistant PCM.

Popov, G. F.; Zalubovsky, I. I.; Avilov, A. M.; Rudychev, V. G.

1997-05-01

178

Dielectric composite materials and method for preparing  

DOEpatents

The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

2003-07-29

179

Method for preparing dielectric composite materials  

DOEpatents

The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

2004-11-23

180

From crabshell to chitosan-hydroxyapatite composite material via a biomorphic mineralization synthesis method  

Microsoft Academic Search

Hydroxyapatite–polymer composite materials, as biological bone tissue materials, have become an important research direction.\\u000a In this paper, the calcium carbonate from the crabshells was transformed into hydroxyapatite by a hydrothermal process. According\\u000a to the method that we called Biomorphic Mineralization synthesis, we obtained a novel kind of hydroxyapatite-chitosan composite\\u000a materials which reserved the natural perfect structure of the original crabshells.

Haoran Ge; Bingyuan Zhao; Yijian Lai; Xiaobin Hu; Di Zhang; Keao Hu

2010-01-01

181

New topics on nanoindentation of polymers and composite materials  

NASA Astrophysics Data System (ADS)

In this study, nanoindentation was used to determine Young's modulus of homogeneous plastic materials as well as inhomogeneous epoxy woven fabric composites using various indenters. In the first part, homogeneous PMMA and polycarbonate were characterized using conical and spherical indenters. The conventional approach of the inverse analysis was modified in order to account for effects obtained during spherical nanoindentation. The experimental results were verified using FEA analysis in ABAQUS. It was found that viscous effects were present in conical nanoindentations which led to an overestimation of contact stiffness. The second part, the response of carbon and glass fiber woven fabric epoxy composites was investigated using Berkovich and spherical indenters. Localized nanoindentation was performed using the Berkovich probe in both materials which led to determination of glass fibers and matrix stiffnesses. The anisotropic nature of the response was treated modifying the classical approach to calculate transverse modulus of a unidirectional composite. Finally, fiber volume ratios were calculated according to type of composite and indenter used.

Martinez Hernandez, Ricardo

182

Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials  

NASA Astrophysics Data System (ADS)

Recent developments in nano- and bio-technology require new materials. Among these new classes of materials which have emerged in the recent years are biomimetic materials, which mimic structure and properties of materials found in living nature. There are a large number of biological objects including bacteria, animals and plants with properties of interest for engineers. Among these properties is the ability of the lotus leaf and other natural materials to repel water, which has inspired researchers to prepare similar surfaces. The Lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. The range of actual and potential applications of superhydrophobic surfaces is diverse including optical, building and architecture, textiles, solar panels, lab-on-a-chip, microfluidic devices, and applications requiring antifouling from biological and organic contaminants. In this thesis, in chapter one, we introduce the general concepts and definitions regarding the wetting properties of the surfaces. In chapter two, we develop novel models and conduct experiments on wetting of composite materials. To design sustainable superhydrophobic metal matrix composite (MMC) surfaces, we suggest using hydrophobic reinforcement in the bulk of the material, rather than only at its surface. We experimentally study the wetting properties of graphite-reinforced Al- and Cu-based composites and conclude that the Cu-based MMCs have the potential to be used in the future for the applications where the wear-resistant superhydrophobicity is required. In chapter three, we introduce hydrophobic coating at the surface of concrete materials making them waterproof to prevent material failure, because concretes and ceramics cannot stop water from seeping through them and forming cracks. We create water-repellant concretes with CA close to 160o using superhydrophobic coating. In chapter four, experimental data are collected in terms of oleophobicity especially when underwater applications are of interest. We develop models for four-phase rough interface of underwater oleophobicity and develop a novel approach to predict the CA of organic liquid on the rough surfaces immersed in water. We investigate wetting transition on a patterned surface in underwater systems, using a phase field model. We demonstrated that roughening on an immersed solid surface can drive the transition from Wenzel to Cassie-Baxter state. This discovery improves our understanding of underwater systems and their surface interactions during the wetting phenomenon and can be applied for the development of underwater oil-repellent materials which are of interest for various applications in the water industry, and marine devices. In chapter five, we experimentally and theoretically investigate the icephobicity of composite materials. A novel comprehensive definition of icephobicity, broad enough to cover a variety of situations including low adhesion strength, delayed ice crystallization, and bouncing is determined. Wetting behavior and ice adhesion properties of various samples are theoretically and experimentally compared. We conclude superhydrophobic surfaces are not necessarily icephobic. The models are tested against the experimental data to verify the good agreement between them. The models can be used for the design of novel superhydrophobic, oleophobic, omniphobic and icephobic composite materials. Finally we conclude that creating surface micro/nanostructures using mechanical abrasion or chemical etching as well as applying low energy materials are the most simple, inexpensive, and durable techniques to create superhydrophobic, oleophobic, and icephobic materials.

Hejazi, Vahid

183

Composite material including nanocrystals and methods of making  

DOEpatents

Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties

Bawendi, Moungi G. (Boston, MA); Sundar, Vikram C. (New York, NY)

2008-02-05

184

Composite material including nanocrystals and methods of making  

DOEpatents

Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.

Bawendi, Moungi G.; Sundar, Vikram C.

2010-04-06

185

PERSPECTIVE: Self-healing polymer composites: mimicking nature to enhance performance  

Microsoft Academic Search

Autonomic self-healing materials, where initiation of repair is integral to the material, are being developed for engineering applications. This bio-inspired concept offers the designer an ability to incorporate secondary functional materials capable of counteracting service degradation whilst still achieving the primary, usually structural, requirement. Most materials in nature are themselves self-healing composite materials. This paper reviews the various self-healing technologies

R. S. Trask; H. R. Williams; I. P. Bond

2007-01-01

186

High velocity impact resistance of composite materials  

NASA Astrophysics Data System (ADS)

Composite materials are used in applications that require protection against high velocity impacts by fragment simulating projectiles. In this work, the ballistic performance of two commercially available materials against a fragments simulating projectile (FSP) is studied. The materials used were an aramid fiber with a phenolic matrix and a polyethylene fiber with a thermoplastic film. Impact tests have been carried out, with velocities ranging from 300 m/s to 1260m/s. The projectile used is a 1.1g NATO FSP. Impact velocity and exit velocity are measured, to determine the V{50} and the energy absorbed in cases where perforation occurs. Assessment of the impact damaged area is done using ultrasonic C-scan inspection. Types of damage and damage mechanisms have been identified. Several mechanical tests have been carried out to determine the mechanical properties, at different strain rates. Future work in numerical simulation of impact will be done using commercial code AutodyntinycircledR ftom Century Dynamics.

Justo, Jo; Marquer, A. T.

2003-09-01

187

Polymer and Composite Materials Used in Hydrogen Service  

E-print Network

1 Polymer and Composite Materials Used in Hydrogen Service MEETING PROCEEDINGS Polymer This report1 describes the results from an information-sharing meeting on the use of polymer and composite knowledge gaps and data needs for using polymers and composite material systems in hydrogen service

188

Composition and method for removing photoresist materials from electronic components  

DOEpatents

Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

Davenhall, Leisa B. (Santa Fe, NM); Rubin, James B. (Los Alamos, NM); Taylor, Craig M. V. (Jemez Springs, NM)

2008-06-03

189

Composite materials: Tomorrow for the day after tomorrow  

NASA Technical Reports Server (NTRS)

A description is given of the history of the use of composite materials in the aerospace industry. Research programs underway to obtain exact data on the behavior of composite materials over time are discussed. It is concluded that metal composites have not yet replaced metals, but that that this may be a future possibility.

Condom, P.

1982-01-01

190

Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 19. Leaching Characteristics of Composited Materials from Mine Waste-Rock Piles and Naturally Altered Areas near Questa, New Mexico  

USGS Publications Warehouse

The goal of this study is to compare and contrast the leachability of metals and the acidity from individual mine waste-rock piles and natural erosional scars in the study area near Questa, New Mexico. Surficial multi-increment (composite) samples less than 2 millimeters in diameter from five waste-rock piles, nine erosional-scar areas, a less-altered site, and a tailings slurry-pipe sample were analyzed for bulk chemistry and mineralogy and subjected to two back-to-back leaching procedures. The first leaching procedure, the U.S. Geological Survey Field Leach Test (FLT), is a short-duration leach (5-minute shaking and 10-minute settling) and is intended to leach readily soluble materials. The FLT was immediately followed by an 18-hour, end-over-end rotation leaching procedure. Comparison of results from the back-to-back leaching procedures can provide information about reactions that may take place upon migration of leachates through changing geochemical conditions (for example, pH changes), both within the waste-rock and scar materials and away from the source materials. For the scar leachates, the concentrations of leachable metals varied substantially between the scar areas sampled. The scar leachates have low pH (pH 3.2-4.1). Under these low-pH conditions, cationic metals are solubilized and mobile, but anionic species, such as molybdenum, are less soluble and less mobile. Generally, metal concentrations in the waste-rock leachates did not exceed the upper range of those metal concentrations in the erosional-scar leachates. One exception is molybdenum, which is notably higher in the waste-rock leachates compared with the scar leachates. Most of the waste-rock leachates were at least mildly acidic (pH 3.0-6.2). The pH values in the waste-rock leachates span a large pH range that includes some pH-dependent solubility and metal-attenuation reactions. An increase in pH with leaching time and agitation indicates that there is pH-buffering capacity in some of the waste-rock piles. As pH increased in the waste-pile leachates, concentrations of several metals decreased with increasing time and agitation. Similar pH-dependent reactions may take place upon migration of the leachates in the waste-rock piles. Bulk chemistry, mineralogy, and leachate sulfur-isotope data indicate that the Capulin and Sugar Shack West waste-rock piles are compositionally different from the younger Sugar Shack South, Sugar Shack Middle, and Old Sulphur Gulch piles. The Capulin and Sugar Shack West piles have the lowest-pH leachates (pH 3.0-4.1) of the waste-pile samples, and the source material for the Capulin and Sugar Shack West piles appears to be similar to the source material for the erosional-scar areas. Calcite dissolution, in addition to gypsum dissolution, appears to produce the calcium and sulfate concentrations in leachates from the Sugar Shack South, Sugar Shack Middle, and Old Sulphur Gulch piles.

Smith, Kathleen S.; Hageman, Philip L.; Briggs, Paul H.; Sutley, Stephen J.; McCleskey, R. Blaine; Livo, K. Eric; Verplanck, Philip L.; Adams, Monique G.; Gemery-Hill, Pamela A.

2007-01-01

191

Method of preparing corrosion resistant composite materials  

DOEpatents

Method of manufacture of ceramic materials which require stability in severely-corrosive environment having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These surfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

1993-01-01

192

Lightweight Impact-Resistant Composite Materials: Lessons from Mantis Shrimp  

NASA Astrophysics Data System (ADS)

Nature has evolved efficient strategies to synthesize complex mineralized structures that exhibit exceptional damage tolerance. One such example is found in the hyper-mineralized hammer-like dactyl clubs of the stomatopods, a group of highly aggressive marine crustaceans. The dactyl clubs from one such species, Odontodactylus Scyllarus, exhibit an impressive set of characteristics adapted for surviving high velocity impacts with the heavily mineralized prey species on which they feed. Consisting of a multi-phase composite of oriented crystalline hydroxyapatite and amorphous calcium phosphate and carbonate, in conjunction with a highly expanded helicoidal organization of the fibrillar chitinous organic matrix, these structures display several effective lines of defense against catastrophic failure during repetitive high energy loading events. The study of this organism and its relatives has lead to design cues, which were incorporated into prototype composite materials designed for applications in aviation, body armor, and entertainment.

Milliron, Garrett Wayne

193

Method for preparing polyolefin composites containing a phase change material  

DOEpatents

A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein. The composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

Salyer, Ival O. (Dayton, OH)

1990-01-01

194

Millimeter-wave imaging of composite materials  

SciTech Connect

This work addresses the application and evaluates the potential of mm-wave imaging in the W-band (75-110 GHz) using samples of low-loss dielectric and composite materials with artificial defects. The initial focus is on the measurement of amplitude changes in the back scattered and forward-scattered fields. The c-scan system employs a focused beam antenna to provide spatial resolution of about one wavelength. A plane-wave model is used to calculate the effective reflection (or transmission) coefficient of multilayer test sample geometry. Theoretical analysis is used to optimize the measurement frequency for higher image contrast and to interpret the experimental results. Both reflection and transmission images, based on back scattered and forward-scattered powers, were made with Plexiglas and Kevlar/epoxy samples containing artificially introduced defects such as subsurface voids and disbonds. The results clearly indicate that mm-wave imaging has high potential for non-contact interrogation of low-loss materials.

Gopalsami, N.; Bakhtiari, S.; Dieckman, S.L.; Raptis, A.C.; Lepper, M.J.

1993-09-01

195

ALL NATURAL COMPOSITE SANDWICH BEAMS FOR STRUCTURAL APPLICATIONS. (R829576)  

EPA Science Inventory

As part of developing an all natural composite roof for housing application, structural panels and unit beams were manufactured out of soybean oil based resin and natural fibers (flax, cellulose, pulp, recycled paper, chicken feathers) using vacuum assisted resin tran...

196

Laminated thermoplastic composite material from recycled high density polyethylene  

NASA Technical Reports Server (NTRS)

The design of a materials-science, educational experiment is presented. The student should understand the fundamentals of polymer processing and mechanical property testing of materials. The ability to use American Society for Testing and Materials (ASTM) standards is also necessary for designing material test specimens and testing procedures. The objectives of the experiment are (1) to understand the concept of laminated composite materials, processing, testing, and quality assurance of thermoplastic composites and (2) to observe an application example of recycled plastics.

Liu, Ping; Waskom, Tommy L.

1994-01-01

197

An in situ grown eutectic magnetoelectric composite material  

Microsoft Academic Search

The phase diagram of the quinary system Fe-Co-Ti-Ba-O contains a region of compositions with the property that unidirectional solidification of liquids with these compositions results in an aligned two phase composite material. One of the phases is a piezomagnetic spinel and the other one a piezoelectric perovskite. The resulting composite is a magnetoelectric material, which can convert magnetic fields into

J. VAN DEN BOOMGAARD; D. R. Terrell; R. A. J. Born; H. F. J. I. Giller

1974-01-01

198

Designing nacre-like materials for simultaneous stiffness, strength and toughness: Optimum materials, composition, microstructure and size  

NASA Astrophysics Data System (ADS)

Nacre, bone and spider silk are staggered composites where inclusions of high aspect ratio reinforce a softer matrix. Such staggered composites have emerged through natural selection as the best configuration to produce stiffness, strength and toughness simultaneously. As a result, these remarkable materials are increasingly serving as model for synthetic composites with unusual and attractive performance. While several models have been developed to predict basic properties for biological and bio-inspired staggered composites, the designer is still left to struggle with finding optimum parameters. Unresolved issues include choosing optimum properties for inclusions and matrix, and resolving the contradictory effects of certain design variables. Here we overcome these difficulties with a multi-objective optimization for simultaneous high stiffness, strength and energy absorption in staggered composites. Our optimization scheme includes material properties for inclusions and matrix as design variables. This process reveals new guidelines, for example the staggered microstructure is only advantageous if the tablets are at least five times stronger than the interfaces, and only if high volume concentrations of tablets are used. We finally compile the results into a step-by-step optimization procedure which can be applied for the design of any type of high-performance staggered composite and at any length scale. The procedure produces optimum designs which are consistent with the materials and microstructure of natural nacre, confirming that this natural material is indeed optimized for mechanical performance.

Barthelat, Francois

2014-12-01

199

Thermoelectric study of INSB secondary phase based nano composite materials  

NASA Astrophysics Data System (ADS)

In the past several decades there has been an intensive study in the field of thermoelectric study that is basically materials driven. As the simplest technology applicable in direct heat-electricity energy conversion, thermoelectricity utilizes the Seebeck effect to generate electricity from heat or conversely achieve the solid-state cooling via the Peltier effect. With many technical merits, thermoelectric devices can be used as spot-size generators or distributed refrigerators, however, their applications are restricted by the energy conversion efficiency, which is mainly determined by the figure of merit ZT of the thermoelectric materials that these devices are made of. A higher ZT (ZT=alpha2*sigma/kappa) entails a larger Seebeck coefficient (alpha), a higher electrical conductivity (sigma) and a lower thermal conductivity (kappa). However, it is challenging to simultaneously optimize these three material parameters because they are adversely correlated. To this end, a promising approach to answer this challenge is nano-compositing or microstructuring at multiple length scales. The numerous grain boundaries in nano-composite allow for significant reduction of lattice thermal conductivity via strong phonon scattering and as well an enhanced Seebeck coefficient via, carrier energy filtering effect. As the same grain boundaries also scatter carriers, a coherent interface between grains is needed to minimize the degradation of carrier mobilities. To this end,in-situ, instead of ex-situ, formation of nano-composite is preferred. It is noteworthy that electrical conductivity can be further enhanced by the injection of high-mobility carriers introduced by the secondary nano-phase. In view of the prevalent use of Antimony (Sb) in thermoelectric materials, Indium Antimonide (InSb) naturally becomes one of the most promising nano-inclusions since it possesses one of the largest carrier mobilities (˜7.8 m 2/V-s) in any semiconductors, while at the same time possesses a reasonably narrow band gap (˜0.17 eV at 300 K). In this dissertation, I experimentally investigate whether InSb could be a "good" nano-secondary phase in two thermoelectric bulk matrix materials, FeSb2 and half-Heusler compounds. In these in situ formed nano-composites, three mechanisms are utilized to decouple the otherwise adversely correlated Seebeck coefficient (alpha), electrical conductivity (sigma), and thermal conductivity (kappa). First, low energy carriers will be filtered out via the carrier energy filtering effect, enhancing the Seebeck coefficient without degrading the power factor (PF= alpha 2sigma). Second, high mobility carriers from the InSb nano-inclusions will be injected to the system to increase the electrical conductivity. Last, the numerous grain boundaries present in nano-composites allow for strong phonon scattering so as to reduce the thermal conductivity. After the initial in situ synthesis of nano-composites with the optimized composition, further nano-structuring processes are applied in the samples of FeSb2 with 0.5% atomic ratio of InSb. The results indicate that not all nano-structures are thermoelectrically favorable, multi-scale microstructures with the length scale comparable with the phonon mean free path are needed to effectively scatter phonons over a wide range of wavelength. In summary, the successful combination of the carrier energy filtering effect, high mobility carrier injection effect, and strong phonon scattering effect in the in situ synthesized FeSb2-InSb and half-Heusler-InSb nano-composites leads to a significantly enhanced ZT. This approach of in situ formation of nano-composites based on InSb secondary nano-phase may also be applied to other thermoelectric materials.

Zhu, Song

200

New silicate bonding technique for composite laser materials  

NASA Astrophysics Data System (ADS)

We report a new low loss silicate bonding method for the assembly of laser materials. Original heterogeneous composite laser crystals have been obtained thanks to this sol-gel method: Er/Yb phosphate glass||sapphire and Nd:YVO 4||sapphire. Sol composition containing additives enables to bond chemically and thermo-mechanically different materials. Composite materials made with KH 2PO 4 rich sol-gel demonstrated the best temperature resistance. Potassium and phosphate ions add extra flexibility and chemical affinity. The bond is resistant to temperatures higher than 200 °C and laser actions have been demonstrated in both composite materials for the first time.

Petit, P. O.; Goldner, P.; Boissière, C.; Sanchez, C.; Viana, B.

2010-08-01

201

Preparation and performances of a novel intelligent humidity control composite material  

Microsoft Academic Search

A novel intelligent humidity control composite material with excellent humidity control performances has been prepared, comprising a natural polymer derivative (carboxymethyl cellulose (CMC)), a porous natural mineral (sepiolite), and an acrylic acid (AA)\\/acrylamide (AM) copolymer. It features high moisture adsorption capacity, fast response to humidity changes, small equilibrium humidity control range and good acid gas absorbability. It is suitable for

Hailiang Yang; Zhiqin Peng; Yang Zhou; Feng Zhao; Jing Zhang; Xiaoye Cao; Zhiwen Hu

2011-01-01

202

Material composition optimization for heat-resisting FGMs by artificial neural network  

Microsoft Academic Search

Unless the material composition field in functionally graded materials (FGM) is assumed a priori, an explicit relation between the objective function and the design variables is almost hard to derive. This implicitness naturally leads to the use of finite difference scheme for the sensitivity analysis in the numerical optimization, but which requires the remarkably long CPU time when the objective

J. R. Cho; S. W. Shin

2004-01-01

203

Effect of Sericin on Mechanical Behavior of Composite Material Reinforced by Silk Woven Fabric  

NASA Astrophysics Data System (ADS)

Recent, attention has been given to shift from glass fibers and carbon fibers to natural fibers for FRP composites for the goal of protecting the environment. This paper concerned with the application of silk fabric for composite materials. Polypropylene (PP) was used for the matrix material and the silk fabric composites were molded using a compression molding method. Especially, the effect of sericin on mechanical behaviors of composite materials was discussed. Good adhesion between silk and PP was obtained by removing the sericin existing around the fibroin. The tensile modulus of composite decreased with decreasing the sericin because of the flexibility of silk fibers without sericin. In particular, the higher Izod impact value was obtained for the composites containing the silk fibers without sericin.

Kimura, Teruo; Ino, Haruhiro; Hanada, Koji; Katori, Sigetaka

204

Surface composites: A new class of engineered materials  

SciTech Connect

To integrate irreconcilable material properties into a single component, a new class of engineered materials termed {open_quotes}surface composites{close_quotes} has been developed. In this engineered material, the second phase is spatially distributed in the near surface regions, such that the phase composition is linearly graded as a function of distance from the surface. Surface composites are different from existing engineered materials such as {open_quotes}bulk composites{close_quotes} and {open_quotes}functionally graded materials{close_quotes} (FGM). Unlike bulk composites, the surface phase in surface composites is present only at the near surface regions. In contrast to FGM, the graded properties of surface composites are achieved by unique morphological surface modification of the bulk phase. To fabricate surface composites, the initial surface of the bulk material is transformed using a novel multiple pulse irradiation technique into truncated cone-like structures. The laser induced micro-rough structures (LIMS) possess surface areas which are up to an order of magnitude higher than the original surface. The second phase is deposited on the surface using thin or thick film deposition methods. A key characteristic of surface composites is the formation of a three dimensional, compositionally and thermally graded interface, which gives rise to improved adhesion of the surface phase. Examples of various types of surface composites such as W/Mo, silica/SiC and diamond/steel, etc. are presented in this paper. The unique properties of surface composites make them ideal engineered materials for applications involving adherent thick film coatings of thermally mismatched materials, compositional surface modification for controlled catalytic activity, and creating adherent metal-ceramic and ceramic-polymeric joints. {copyright} {ital 1997 Materials Research Society.}

Singh, R.; Fitz-Gerald, J. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)

1997-03-01

205

Natural materials for nano bio systems  

NASA Astrophysics Data System (ADS)

Many papers have been published on the properties of deoxyribonucleic acid (DNA) and DNAhexadecyltrimethylammonium chloride (CTMA) and their applications in electronics and photonics. This paper is a review of some of the properties and their related applications for other types of naturally occurring materials, nucleic acid bases or nucleobases which make up the DNA molecules. Nucleobases under investigation included guanine, cytosine, adenine and thymine. Potential applications include electron blocking layers for organic light emitting diodes, gate dielectrics for organic thin film transistors and protective layers for polymer-based capacitors.

Ouchen, Fahima; Yaney, Perry; Joyce, Donna; Williams, Adrienne; Gomez, Eliot; Subramanyam, Guru; Grote, James

2014-09-01

206

A Review on the Natural Fiber-Reinforced Polymer Composites for the Development of Roselle Fiber-Reinforced Polyester Composite  

Microsoft Academic Search

In recent years, the interest of scientists and engineers has turned over on utilizing all plant fibers as effectively and economically as possible to produce good quality fiber-reinforced polymer composites for structural, building, and other needs. It is because of the high availability of the natural resources in this green world. This has led to the development of alternative materials

M. Thiruchitrambalam; A. Athijayamani; S. Sathiyamurthy; A. Syed Abu Thaheer

2010-01-01

207

Separating Mixtures: How We Concentrate Natural Materials  

NSDL National Science Digital Library

This activity involves separating mixtures of minerals on the basis of their physical properties. Students are shown a piece of granite and see that it is clearly a mixture. Students will try to devise ways of separating some simple mixtures and then see how some of the same methods are used to separate real minerals from mixtures. Students will discover that many useful materials are found as part of mixtures. For example, salt is found in underground deposits mixed with sand and clay. The mixture is called rock salt. Minerals are chemicals found naturally in the Earth and many of them are very useful. To get at the useful minerals, we usually have to separate them from less-useful material which are often called gangue (pronounced gang) by miners.

208

Some functional properties of composite material based on scrap tires  

NASA Astrophysics Data System (ADS)

The utilization of scrap tires still obtains a remarkable importance from the aspect of unloading the environment from non-degradable waste [1]. One of the most prospective ways for scrap tires reuse is a production of composite materials [2] This research must be considered as a continuation of previous investigations [3, 4]. It is devoted to the clarification of some functional properties, which are considered important for the view of practical applications, of the composite material. Some functional properties of the material were investigated, for instance, the compressive stress at different extent of deformation of sample (till 67% of initial thickness) (LVS EN 826) [5] and the resistance to UV radiation (modified method based on LVS EN 14836) [6]. Experiments were realized on the purposefully selected samples. The results were evaluated in the correlation with potential changes of Shore C hardness (Shore scale, ISO 7619-1, ISO 868) [7, 8]. The results showed noticeable resistance of the composite material against the mechanical influence and ultraviolet (UV) radiation. The correlation with the composition of the material, activity of binder, definite technological parameters, and the conditions supported during the production, were determined. It was estimated that selected properties and characteristics of the material are strongly dependent from the composition and technological parameters used in production of the composite material, and from the size of rubber crumb. Obtained results show possibility to attain desirable changes in the composite material properties by changing both the composition and technological parameters of examined material.

Plesuma, Renate; Malers, Laimonis

2013-09-01

209

Processing and characterization of natural cellulose fibers/thermoset polymer composites.  

PubMed

Recently natural cellulose fibers from different biorenewable resources have attracted the considerable attraction of research community all around the globe owing to their unique intrinsic properties such as biodegradability, easy availability, environmental friendliness, flexibility, easy processing and impressive physico-mechanical properties. Natural cellulose fibers based materials are finding their applications in a number of fields ranging from automotive to biomedical. Natural cellulose fibers have been frequently used as the reinforcement component in polymers to add the specific properties in the final product. A variety of cellulose fibers based polymer composite materials have been developed using various synthetic strategies. Seeing the immense advantages of cellulose fibers, in this article we discuss the processing of biorenewable natural cellulose fibers; chemical functionalization of cellulose fibers; synthesis of polymer resins; different strategies to prepare cellulose based green polymer composites, and diverse applications of natural cellulose fibers/polymer composite materials. The article provides an in depth analysis and comprehensive knowledge to the beginners in the field of natural cellulose fibers/polymer composites. The prime aim of this review article is to demonstrate the recent development and emerging applications of natural cellulose fibers and their polymer materials. PMID:24815407

Thakur, Vijay Kumar; Thakur, Manju Kumari

2014-08-30

210

Structural assessment of a novel carpet composite material  

NASA Astrophysics Data System (ADS)

Noise pollution caused by vehicles has always been a concern to the communities in the vicinity of highways and busy roadways. The carpet composite material was recently developed and proposed to be utilized as sound-walls in highways. In the carpet composite material post-consumer carpet is used as reinforcing element inside and epoxy matrix. The main focus of this work is to assess flexural behavior of this novel material. Tests were performed on the individual components of the composite material. Using the results from the test and a theoretical approach, a model was proposed that describes the flexural behavior and also a close estimate of the flexural strength of the carpet composite material. In this work the contribution of the carpet in flexural behavior of the composite material was investigated. It was found that the carpet is weaker than the epoxy and the contribution of the carpet in flexural strength of the composite material is small. It was also found that using the carpet inside the epoxy results in 63% decrease in ultimate strength of the section, however; the gain in ductility is considerable. Based on the flexural test results the composite section follows a bilinear behavior. To determine the capacity of the composite, the effective epoxy section is to be determined before and after the tension cracks form at the bottom of the section. Using the epoxy section analysis described in this work, the strength of the composite section can be calculated at cracking and ultimate capacity.

Abbaszadeh, Ali

211

ENG 4793: Composite Materials and Processes 1 Injection Molding  

E-print Network

1 ENG 4793: Composite Materials and Processes 1 Injection Molding ver 1 ENG 4793: Composite to inject plastic into mold cavity · Part cools and solidifies ­ next shot is made ENG 4793: Composite mold Injection Part cooling Open and eject part Pack and hold Process time 1 5 15 33 35 ENG 4793

Colton, Jonathan S.

212

Worldwide flight and ground-based exposure of composite materials  

NASA Technical Reports Server (NTRS)

The long-term durability of those advanced composite materials which are applicable to aircraft structures was discussed. The composite components of various military and commercial aircraft and helicopters were reviewed. Both ground exposure and flight service were assessed in terms of their impact upon composite structure durability. The ACEE Program is mentioned briefly.

Dexter, H. B.; Baker, D. J.

1984-01-01

213

Elastoplastic analysis of thermal cycling: layered materials with compositional gradients  

Microsoft Academic Search

Elastopllastic analyses are presented for the cyclic thermal response in multi-layered materials which comprise layers of fixed compositions of a metal and a ceramic, and a compositionally graded interface. Analytical solutions for the characteristic temperature at which the onset of thermally induced plastic deformation occurs are derived for the layered composite. Solutions for the evolution of curvature and thermal strains,

A. E. Giannakopoulos; S. Suresh; M. Finot; M. Olsson

1995-01-01

214

Microstructural design of composite materials for crashworthy structural applications  

Microsoft Academic Search

Traditionally, metals are used for crashworthy structural applications, mainly due to their plastic deformation characteristics that enable them to absorb impact energy in a controlled manner. Unlike the metals, polymer composite materials display little plastic deformation characteristics. The use of polymer composites for crashworthy structural applications is a major challenge for the composite community. Current research work clearly suggests that

S Ramakrishna

1997-01-01

215

Selected NASA research in composite Materials and structures  

NASA Technical Reports Server (NTRS)

Various aspects of the application of composite materials to aircraft structures are considered. Failure prediction techniques, buckling and postbuckling research, laminate fatigue analysis, damage tolerance, high temperature resin matrix composites and electrical hazards of carbon fiber composites are among the topics discussed.

1980-01-01

216

Electromagnetic properties of Permendur granular composite materials containing flaky particles  

NASA Astrophysics Data System (ADS)

Electromagnetic properties of Permendur (Fe50Co50 alloy) granular composite materials containing flaky particle have been studied from the RF to microwave frequency range. Properties of the flaky particle composites were compared with the spherical particle ones. The electrical conductivity of the flaky particle composite was higher than that of the spherical particle composite at the same particle content. An insulator to metal transition was observed at the percolation threshold ?c in both composites. The ?c of the flaky particle composite was lower than that of the spherical one. The relative complex permittivity indicates that the insulating state has dielectric properties. For the spherical particle composite, the permittivity enhancement caused by particle cluster formation can be described by the effective cluster model (ECM). The enhancement of the dielectric constant in the flaky particle composite is larger than the ECM prediction. A negative permittivity spectrum indicating a low frequency plasmonic state was observed in the metallic 70 vol. % flaky particle composite. The relative complex permeability spectra of the flaky particle composite are different from those of the spherical one. The flaky particle composite shows a larger permeability value and lower permeability dispersion frequency than the spherical particle composite. Negative permeability spectra were observed in the both composite materials. The negative permeability frequency band of the flaky particle composite is lower than that of the spherical particle composite owing to the demagnetizing field effect.

Kasagi, Teruhiro; Tsutaoka, Takanori; Hatakeyama, Kenichi

2014-10-01

217

Process for fabricating composite material having high thermal conductivity  

DOEpatents

A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

Colella, Nicholas J. (Livermore, CA); Davidson, Howard L. (San Carlos, CA); Kerns, John A. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA)

2001-01-01

218

Evaluation of Composite Materials for Use on Launch Complexes  

NASA Technical Reports Server (NTRS)

Commercially available composite structural shapes were evaluated for use. These composites, fiberglass-reinforced polyester and vinylester resin materials are being used extensively in the fabrication and construction of low maintenance, corrosion resistant structures. The evaluation found that in many applications these composite materials can be successfully used at the space center. These composite materials should not be used where they will be exposed to the hot exhaust plume/cloud of the launch vehicle during the liftoff, and caution should be taken in their use in areas where electrostatic discharge and hypergolic propellant compatibility are primary concerns.

Finchum, A.; Welch, Peter J.

1989-01-01

219

Dielectric breakdown model for composite materials F. Peruani,1  

E-print Network

Dielectric breakdown model for composite materials F. Peruani,1 G. Solovey,1 I. M. Irurzun,1,2 E. E. The dielectric breakdown model was generalized to describe dielectric breakdown patterns in conductor 30 June 2003 This paper addresses the problem of dielectric breakdown in composite materials

Peruani, Fernando

220

Progressive failure analysis of fibrous composite materials and structures  

NASA Technical Reports Server (NTRS)

A brief description is given of the modifications implemented in the PAFAC finite element program for the simulation of progressive failure in fibrous composite materials and structures. Details of the memory allocation, input data, and the new subroutines are given. Also, built-in failure criteria for homogeneous and fibrous composite materials are described.

Bahei-El-din, Yehia A.

1990-01-01

221

Pistons and Cylinders Made of Carbon-Carbon Composite Materials  

NASA Technical Reports Server (NTRS)

An improved reciprocating internal combustion engine has a plurality of engine pistons, which are fabricated from carbon---carbon composite materials, in operative association with an engine cylinder block, or an engine cylinder tube, or an engine cylinder jug, all of which are also fabricated from carbon-carbon composite materials.

Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

2000-01-01

222

An embedded polarimetric sensor for strain monitoring in composite material  

Microsoft Academic Search

Composite materials are being used in increasingly critical applications such as structural members in airplane wings. As demand for these materials pushes design limits, the ability to monitor their internal strain state takes on increasing importance. This paper details one concept for strain monitoring in graphite\\/epoxy composites. In this technique, strain along an embedded optical fiber is monitored by observing

Brian W. Brennan

1986-01-01

223

Pistons and Cylinders Made of Carbon-Carbon Composite Materials  

NASA Technical Reports Server (NTRS)

An improved reciprocating internal combustion engine has a plurality of engine pistons, which are fabricated from carbon-carbon composite materials, in operative association with an engine cylinder block, or an engine cylinder tube, or an engine cylinder jug, all of which are also fabricated from carbon-carbon composite materials.

Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

2000-01-01

224

Industry technology assessment of graphite-polymide composite materials. [conferences  

NASA Technical Reports Server (NTRS)

An assessment of the current state of the art and the future prospects for graphite polyimide composite material technology is presented. Presentations and discussions given at a minisymposium of major issues on the present and future use, availability, processing, manufacturing, and testing of graphite polyimide composite materials are summarized.

1975-01-01

225

Thermophysical Analysis of High Modulus Composite Materials for Space Vehicles  

Microsoft Academic Search

High modulus composite materials are used extensively in aerospace vehicles mainly for the purpose of increasing strength and reducing weight. However, thermal properties have become essential design information with the use of composite materials in the thermal design of spacecraft and spacecraft electronics packages. This is because the localized heat from closely packed devices can lead to functional failure of

Ho-Sung Lee

2009-01-01

226

Cured composite materials for reactive metal battery electrolytes  

DOEpatents

A solid molecular composite polymer-based electrolyte is made for batteries, wherein silicate compositing produces a electrolytic polymer with a semi-rigid silicate condensate framework, and then mechanical-stabilization by radiation of the outer surface of the composited material is done to form a durable and non-tacky texture on the electrolyte. The preferred ultraviolet radiation produces this desirable outer surface by creating a thin, shallow skin of crosslinked polymer on the composite material. Preferably, a short-duration of low-medium range ultraviolet radiation is used to crosslink the polymers only a short distance into the polymer, so that the properties of the bulk of the polymer and the bulk of the molecular composite material remain unchanged, but the tough and stable skin formed on the outer surface lends durability and processability to the entire composite material product.

Harrup, Mason K.; Stewart, Frederick F.; Peterson, Eric S.

2006-03-07

227

Advanced organic composite materials for aircraft structures: Future program  

NASA Technical Reports Server (NTRS)

Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

1987-01-01

228

Environmental effects on composite materials. Volume 3  

SciTech Connect

The present collection of papers, each of which has previously been abstracted in International Aerospace Abstracts, discusses the accelerated environmental testing of composites, moisture solubility and diffusion in epoxy and epoxy-glass composites, the influence of internal and external factors affecting moisture absorption in polymer composites, long-tern moisture absorption in graphite/epoxy angle-ply laminates, the effect of UV light on Kevlar 49-reinforced composites, and temperature and moisture induced deformation in composite sandwich panels. Also discussed are the orthotropic thermoelastic problem of uniform heat flow distributed by a central crack, the effect of microcracks on composite laminate thermal expansion, the stress analysis of wooden structures exposed to elevated temperatures, and the deflection of plastic beams at elevated temperatures.

Springer, G.S.

1988-01-01

229

Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials  

NASA Technical Reports Server (NTRS)

A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

1974-01-01

230

From crabshell to chitosan-hydroxyapatite composite material via a biomorphic mineralization synthesis method.  

PubMed

Hydroxyapatite-polymer composite materials, as biological bone tissue materials, have become an important research direction. In this paper, the calcium carbonate from the crabshells was transformed into hydroxyapatite by a hydrothermal process. According to the method that we called Biomorphic Mineralization synthesis, we obtained a novel kind of hydroxyapatite-chitosan composite materials which reserved the natural perfect structure of the original crabshells. Benefited from its fine micro-structure as the crabshells, this kind of materials held a high value of tensile modulus, which is expected to be promising bone tissue engineering applications. PMID:20237825

Ge, Haoran; Zhao, Bingyuan; Lai, Yijian; Hu, Xiaobin; Zhang, Di; Hu, Keao

2010-06-01

231

Orthotic devices using lightweight composite materials  

NASA Technical Reports Server (NTRS)

Potential applications of high strength, lightweight composite technology in the orthotic field were studied. Several devices were designed and fabricated using graphite-epoxy composite technology. Devices included shoe plates, assistive walker devices, and a Simes prosthesis reinforcement. Several other projects having medical application were investigated and evaluations were made of the potential for use of composite technology. A seat assembly was fabricated using sandwich construction techniques for the Total Wheelchair Project.

Harrison, E., Jr.

1983-01-01

232

Application of advanced material systems to composite frame elements  

NASA Technical Reports Server (NTRS)

A three phase program has been conducted to investigate DuPont's Long Discontinuous Fiber (LDF) composites. Additional tests were conducted to compare LDF composites against toughened thermosets and a baseline thermoset system. Results have shown that the LDF AS4/PEKK offers improved interlaminar (flange bending) strength with little reduction in mechanical properties due to the discontinuous nature of the fibers. In the third phase, a series of AS4/PEKK LDF C-section curved frames (representing a typical rotorcraft light frame) were designed, manufactured and tested. Specimen reconsolidation after 'stretch forming' and frame thickness were found to be key factors in this light frame's performance. A finite element model was constructed to correlate frame test results with expected strain levels determined from material property tests. Adequately reconsolidated frames performed well and failed at strain levels at or above baseline thermoset material test strains. Finally a cost study was conducted which has shown that the use of LDF for this frame would result in a significant cost savings, for moderate to large lot sizes compared with the hand lay-up of a thermoset frame.

Llorente, Steven; Minguet, Pierre; Fay, Russell; Medwin, Steven

1992-01-01

233

NASA's Reusable Launch Vehicle Technologies: A Composite Materials Overview  

NASA Technical Reports Server (NTRS)

A materials overview of the NASA's Earth-to-Orbit Space Transportation Program is presented. The topics discussed are: Earth-to-Orbit Goals and Challenges; Space Transportation Program Structure; Generations of Reusable Launch Vehicles; Space Transportation Derived Requirements; X 34 Demonstrator; Fastrac Engine System; Airframe Systems; Propulsion Systems; Cryotank Structures; Advanced Materials, Fabrication, Manufacturing, & Assembly; Hot and Cooled Airframe Structures; Ceramic Matrix Composites; Ultra-High Temp Polymer Matrix Composites; Metal Matrix Composites; and PMC Lines Ducts and Valves.

Clinton, R. G., Jr.; Cook, Steve; Effinger, Mike; Smith, Dennis; Swint, Shayne

1999-01-01

234

Natural Cork Agglomerate Employed as an Environmentally Friendly Solution for Quiet Sandwich Composites  

PubMed Central

Carbon fiber-synthetic foam core sandwich composites are widely used for many structural applications due to their superior mechanical performance and low weight. Unfortunately these structures typically have very poor acoustic performance. There is increasingly growing demand in mitigating this noise issue in sandwich composite structures. This study shows that marrying carbon fiber composites with natural cork in a sandwich structure provides a synergistic effect yielding a noise-free sandwich composite structure without the sacrifice of mechanical performance or weight. Moreover the cork-core sandwich composites boast a 250% improvement in damping performance, providing increased durability and lifetime operation. Additionally as the world seeks environmentally friendly materials, the harvesting of cork is a natural, renewable process which reduces subsequent carbon footprints. Such a transition from synthetic foam cores to natural cork cores could provide unprecedented improvements in acoustic and vibrational performance in applications such as aircraft cabins or wind turbine blades. PMID:22574250

Sargianis, James; Kim, Hyung-ick; Suhr, Jonghwan

2012-01-01

235

Natural cork agglomerate employed as an environmentally friendly solution for quiet sandwich composites.  

PubMed

Carbon fiber-synthetic foam core sandwich composites are widely used for many structural applications due to their superior mechanical performance and low weight. Unfortunately these structures typically have very poor acoustic performance. There is increasingly growing demand in mitigating this noise issue in sandwich composite structures. This study shows that marrying carbon fiber composites with natural cork in a sandwich structure provides a synergistic effect yielding a noise-free sandwich composite structure without the sacrifice of mechanical performance or weight. Moreover the cork-core sandwich composites boast a 250% improvement in damping performance, providing increased durability and lifetime operation. Additionally as the world seeks environmentally friendly materials, the harvesting of cork is a natural, renewable process which reduces subsequent carbon footprints. Such a transition from synthetic foam cores to natural cork cores could provide unprecedented improvements in acoustic and vibrational performance in applications such as aircraft cabins or wind turbine blades. PMID:22574250

Sargianis, James; Kim, Hyung-ick; Suhr, Jonghwan

2012-01-01

236

Kinetic determination of rare elements of the platinum group in natural materials  

SciTech Connect

Methods for kinetic determination of osmium, ruthenium, and iridium have been developed. The preparation of samples of different composition, namely, sulfide, oxide, silicate, biogeochemical, and natural waters, is described. Schemes are given for analysis of natural materials for concentration of rare elements of the platinum group.

Romanovskaya, L.E.; Khomutova, E.G.; Rysev, A.P. [M.V. Lomonosov Moscow State Academy of Fine Chemical Engineering (Russian Federation)

1995-02-01

237

Nondestructive evaluation of composite materials - A design philosophy  

NASA Technical Reports Server (NTRS)

Efficient and reliable structural design utilizing fiber reinforced composite materials may only be accomplished if the materials used may be nondestructively evaluated. There are two major reasons for this requirement: (1) composite materials are formed at the time the structure is fabricated and (2) at practical strain levels damage, changes in the condition of the material, that influence the structure's mechanical performance is present. The fundamental basis of such a nondestructive evaluation capability is presented. A discussion of means of assessing nondestructively the material condition as well as a damage mechanics theory that interprets the material condition in terms of its influence on the mechanical response, stiffness, strength and life is provided.

Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.; Reifsnider, K. L.

1984-01-01

238

Study of composites as substrate materials in large space telescopes  

NASA Technical Reports Server (NTRS)

Nonmetallic composites such as the graphite/epoxy system were investigated as possible substrates for the primary mirror of the large space telescope. The possible use of fiber reinforced metal matrix composites was reviewed in the literature. Problems arising out of the use of composites as substrate materials such as grinding, polishing, adherence of reflective coatings, rigidity of substrate, hygrospcopici tendency of the composites, thermal and temporal stability and other related problems were examined.

Sharma, A. V.

1979-01-01

239

Modeling and simulation of manufacturing processes of advanced composite materials  

NASA Astrophysics Data System (ADS)

Models for autoclave curing of thermosetting matrix composites are briefly described along with models of manufacturing process models for thermoplastic matrix composites. These models can be used to obtain optimum cure cycles of composite materials. They are particularly useful since the cure cycle must be modified to account for the effect of internal heat generation at the thickness of composite laminate changes. They can be indispensable tools in finding appropriate rules for optimum cure cycles via expert systems.

Lee, Woo I.; Springer, George S.

240

Corrosion inhibiting composition for treating asbestos containing materials  

DOEpatents

A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed. The composition comprises water, at least about 30% by weight of an acid component, optionally a source of fluoride ions, and a corrosion inhibiting amount of thiourea, a lower alkylthiourea, a C{sub 8}{single_bond}C{sub 15} alkylpyridinium halide or mixtures. A method of transforming an asbestos-containing building material, while part of a building structure, into a non-asbestos material by using the present composition also is disclosed.

Hartman, J.R.

1998-04-21

241

Corrosion inhibiting composition for treating asbestos containing materials  

DOEpatents

A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed, wherein the composition comprises water, at least about 30% by weight of an acid component, optionally a source of fluoride ions, and a corrosion inhibiting amount of thiourea, a lower alkylthiourea, a C.sub.8 -C.sub.15 alkylpyridinium halide or mixtures thereof. A method of transforming an asbestos-containing building material, while part of a building structure, into a non-asbestos material by using the present composition also is disclosed.

Hartman, Judithann Ruth (Columbia, MD)

1998-04-21

242

Hydroxyapatite-calcium carbonate ceramic composite materials  

Microsoft Academic Search

Hydroxyapatite\\/calcium carbonate (CC) composite powders containing up to 50 wt % CO32?, have been prepared via precipitation from aqueous solutions. According to chemical analysis data, the CO32? content of the powders coincides with the intended one over the entire composition range studied. With increasing CO32? content, the specific surface area of the powders decreases because of the formation and growth

M. A. Gol’dberg; V. V. Smirnov; S. V. Kutsev; T. V. Shibaeva; L. I. Shvorneva; N. S. Sergeeva; I. K. Sviridova; S. M. Barinov

2010-01-01

243

Computer modelling of woven composite materials  

Microsoft Academic Search

In this paper the reasons for choosing woven fabric reinforcements for composite components are given and the alternatives to woven structures are examined. The philosophy behind the development of the computer-generated model of a woven composite fabric reinforcement is discussed. The model described here is a general one, capable of producing a 3-D representation of any single layer fabric, and

J. A. Hewitt; D. Brown; R. B. Clarke

1995-01-01

244

Modeling of self-healing composite materials  

Microsoft Academic Search

In this thesis modeling approaches have been considered to describe healing process in self-healing materials. These materials can partially restore their mechanical properties as microcracks develop inside the material. The interest in modeling of self-healing materials comes from recent experiments [1] that show possible perspective applications in many fields of industry. Following the idea of bio-materials that can heal its

Alexander Dementsov

2008-01-01

245

Numerical testing of homogenization formulas efficiency for magnetic composite materials  

NASA Astrophysics Data System (ADS)

Magnetic composite materials are used for multiple applications. The macroscopic behavior of the material is influenced by its microscopic properties. Sometimes it is difficult to model the complex structure of the composite because the properties differ at the microscopic scale. Some simplifying assumptions are often needed, one of them being the homogenization of the material. In this paper two different composite materials were analyzed using a finite element software (COMSOL Multiphysics©). Both materials have a non-magnetic matrix with inclusions made of paramagnetic material for one of them, and ferromagnetic material for the other. The 3D numerical simulations were made for different particle concentrations and for different applied fields. The homogenization was implemented using two different formulas: Maxwell Garnett and Bruggeman. Numerical comparison was made between the magnetic properties of non-homogeneous materials and homogeneous ones showing each formula's efficiency for different cases.

Bordianu, Adelina; Petrescu, Lucian; Ionita, Valentin

2015-02-01

246

Nature of branching in disordered materials  

NASA Astrophysics Data System (ADS)

The phenomenon of structural branching is ubiquitous in a wide array of materials such as polymers, ceramic aggregates, networks and gels. These materials with structural branching are a unique class of disordered materials and often display complex architectures. Branching has a strong influence over the structure-property relationships of these materials. Despite the generic importance across a wide spectrum of materials, our physical understanding of the scientific nature of branching and the analytic description and quantification of branching is at an early stage, though many decades of effort have been made. For polymers, branching is conventionally characterized by hydrodynamic radius (size exclusion chromatography, SEC, rheology) or by counting branch sites (nuclear magnetic resonance spectroscopy, NMR). SEC and rheology are, at best, qualitative; and quantitative characterization techniques like NMR and transmission electron microscopy (TEM) (for ceramic nanoparticulate aggregates) have limitations in providing routine quantification. Effective structure characterization, though an important step in understanding these materials, remains elusive. For ceramic aggregates, theoretical work has dominated and only a few publications on analytic studies exist to support theory. A new generic scaling model is proposed in Chapter I, which encompasses the critical structural features associated with these complex architectures. The central theme of this work is the application of this model to describe a variety of disordered structures like aggregated nano-particulates, long chain branched polymers like polyethylene, hyperbranched polymers, multi-arm star polymers, and cyclic macromolecules. The application of the proposed model to these materials results in a number of fundamental structural parameters, like the mass-fractal dimension, df, the minimum path dimension, dmin, connectivity dimension, c, and the mole fraction branch content, ?br. These dimensions reflect different features of the global structure, and it is categorically shown that this dimensional analysis results in effective structure characterization of these materials. Small-angle scattering of x-rays and neutrons can be used to quantify branch content and characterize the structure, through application of concepts native to fractal geometry. The application of the scaling model to nano-particulate aggregates yields quantitative information regarding the structure of these materials. In-situ small and ultra small angle x-ray scattering data collected on fumed silica and soot particles is presented in Chapter II. These measurements were performed at Advanced Photon Source, Argonne National Laboratory, UNICAT beam-line and the European Synchrotron Radiation Facility, Grenoble, France, ID2 beam-line. The dimensional analysis is successful in not only giving an average snap-shot of the nano-particulate aggregates, but also yields information regarding the growth processes involved in the complex pyrolysis technique of synthesizing these materials. In case of macromolecular systems, the minimum path dimension, dmin, is shown to reflect the thermodynamics of the system. This is categorically established in Chapter III on hyperbranched polymers, where the scaling model accurately predicts the good-solvent to theta-condition transition in these highly branched polymers with increasing molar mass. The scaling model is applied to the long standing problem of quantifying long chain branching in polyethylene in Chapter IV. Small angle neutron scattering data on dilute solutions of polyethylene were obtained at the Intense Pulsed Neutron Source (SAND beam-line); NIST center for Neutron Scattering (NG3 beam-line); and Los Alamos Neutron Scattering Center (LQD beam-line). This work, for the first time in literature, reports the length of a long chain branch in polyethylene in terms of the average molar mass of the branches, and the average number of carbon atoms in the long chain branch. Cyclic polymers are examined in the Chapter V. The scaling model presents a new

Kulkarni, Amit S.

247

Multilayer composite material and method for evaporative cooling  

NASA Technical Reports Server (NTRS)

A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

Buckley, Theresa M. (Inventor)

2002-01-01

248

Nano composite phase change materials microcapsules  

NASA Astrophysics Data System (ADS)

MicroPCMs with nano composite structures (NC-MicroPCMs) have been systematically studied. NC-MicroPCMs were fabricated by the in situ polymerization and addition of silver NPs into core-shell structures. A full factorial experiment was designed, including three factors of core/shell, molar ratio of formaldehyde/melamine and NPs addition. 12 MicroPCMs samples were prepared. The encapsulated efficiency is approximately 80% to 90%. The structural/morphological features of the NC-MicroPCMs were evaluated. The size was in a range of 3.4 mu m to 4.0 mu m. The coarse appearance is attributed to NPs and NPs are distributed on the surface, within the shell and core. The NC-MicroPCMs contain new chemical components and molecular groups, due to the formation of chemical bonds after the pretreatment of NPs. Extra X-ray diffraction peaks of silver were found indicating silver nano-particles were formed into an integral structure with the core/shell structure by means of chemical bonds and physical linkages. Extra functionalities were found, including: (1) enhancement of IR radiation properties; (2) depression of super-cooling, and (3) increase of thermal stabilities. The effects of SERS (Surface Enhanced Raman Spectroscopy) arising from the silver nano-particles were observed. The Raman scattering intensity was magnified more than 100 times. These effects were also exhibited in macroscopic level in the fabric coatings as enhanced IR radiation properties were detected by the "Fabric Infrared Radiation Management Tester" (FRMT). "Degree of Crystallinity" (DOC) was measured and found the three factors have a strong influence on it. DOC is closely related to thermal stability and MicroPCMs with a higher DOC show better temperature resistance. The thermal regulating effects of the MicroPCMs coatings were studied. A "plateau regions" was detected around the temperature of phase change, showing the function of PCMs. Addition of silver nano-particles to the MicroPCMs has a positive influence on it. NC-MicroPCMs with introducing silver nano particles into the MicroPCMs structure, have shown excellent multifunctional thermal properties and thermal stabilities that are far beyond those of the conventional MicroPCMs. The novel NC-MicroPCMs can be used to develop advanced smart materials and products with prosperous and promising applications in a number of industries.

Song, Qingwen

249

Composite material application for liquid rocket engines  

NASA Technical Reports Server (NTRS)

With increasing emphasis on improving engine thrust-to-weight ratios to provide improved payload capabilities, weight reductions achievable by the use of composites have become attractive. Of primary significance is the weight reduction offered by composites, although high temperature properties and cost reduction were also considered. The potential for application of composites to components of Earth-to-orbit hydrocarbon engines and orbit-to-orbit LOX/H2 engines was assessed. The components most likely to benefit from the application of composites were identified, as were the critical technology areas where developed would be required. Recommendations were made and a program outlined for the design, fabrication, and demonstration of specific engine components.

Heubner, S. W.

1982-01-01

250

Formation of Lanxide ceramic composite materials  

Microsoft Academic Search

A process for the production of ceramic\\/metal composites is described which involves rapid outward growth of an oxidation reaction product from the surface of a molten metal in contact with a gaseous oxidant. The process is illustrated with the example of the formation of AlâOâ\\/Al composites from Al, and Mg and one or more of the Group IV elements Si,

M. S. Newkirk; A. W. Urquhart; H. R. Zwicker; E. Breval

1986-01-01

251

Modeling of physical properties of composite materials  

Microsoft Academic Search

Recent progress in three different areas involving the modeling of the physical properties of composites is reviewed. These include: (i) theoretical approaches to microstructure\\/property relations; (ii) X-ray microtomography, an imaging technique that enables one to obtain high-resolution three-dimensional microstructural phase information of a composite sample in a non-intrusive manner; and (ii) topology optimization, a promising numerical technique that enables one

S. Torquato

2000-01-01

252

Flexible composite material with phase change thermal storage  

NASA Technical Reports Server (NTRS)

A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

Buckley, Theresa M. (Inventor)

1999-01-01

253

Flexible composite material with phase change thermal storage  

NASA Technical Reports Server (NTRS)

A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

Buckley, Theresa M. (Inventor)

2001-01-01

254

Preparation of composite materials in space. Volume 1: Executive summary  

NASA Technical Reports Server (NTRS)

The reported objectives were to define promising materials, to obtain significant processing criteria and the related processing techniques and apparatus for the preparation of composites in space, and to establish a program for zero-g experiments and the required developmental efforts. Preparation was studied of the following composite types: (1) metal-base fiber and particle composites, including cemented compacts, (2) controlled density metals, comprising plain and reinforced metal foams, and (3) unidirectionally solidified eutectic alloys. The zero-g environment of orbital operations offers the capability to produce metal-base composite materials and castings which exhibit properties and, particularly, unique combinations of properties that cannot be achieved in terrestrial production.

Steurer, W. H.; Kaye, S.

1973-01-01

255

Co-continuous composite materials for friction and braking applications  

NASA Astrophysics Data System (ADS)

Reactive infiltration of precursor ceramics (e.g., the formation of an alumina-aluminum composite by reaction of silica in liquid aluminum) is a low-cost and versatile method of creating materials with interpenetrating co-continuous ceramic and metal phases. By controlling the composition and microstructure of the precursor and the composition of the reaction bath, one can control the structure and properties of the resulting material. This paper summarizes preliminary attempts to use these routes to create next-generation materials for automotive brake rotors. Two types of materials were tested. The first is a two-level composite of a co-continuous alumina-aluminum structure that surrounds SiC particles that provide thermal conductivity. For higher-temperature use, the aluminum alloy is replaced with aluminum-bronze. Both materials show friction and wear properties similar to cast iron, but with half the density and better thermal conductivity.

Daehn, Glenn S.; Breslin, Michael C.

2006-11-01

256

Production of composites by using gliadin as a bonding material  

Technology Transfer Automated Retrieval System (TEKTRAN)

In our previous papers, a new technology that produces biopolymer composites by particle-bonding was introduced. During the manufacturing process, micrometer-scale raw material was coated with a corn protein, zein, which is then processed to form a rigid material. The coating of raw-material particl...

257

Nonmetallic materials and composites at low temperatures 3  

Microsoft Academic Search

Developments in theoretical and experimental research into the use of nonmetallic materials in low temperature applications are surveyed. Studies of the thermal expansion properties of nonmetallic materials and the thermal conductivity of polymers below 1 K are reported. A method is presented for the fracture toughness of composite materials exposed to impact loading and a mini-cryostat is described for high-velocity

G. Hartwig; D. Evans

1986-01-01

258

Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials  

Microsoft Academic Search

In the past few decades, extensive research has been conducted on the magnetoelectric (ME) effect in single phase and composite materials. Dielectric polarization of a material under a magnetic field or an induced magnetization under an electric field requires the simultaneous presence of long-range ordering of magnetic moments and electric dipoles. Single phase materials suffer from the drawback that the

JUNGHO RYU; SHASHANK PRIYA; KENJI UCHINO; HYOUN-EE KIM

2002-01-01

259

LIGHTNING EFFECTS IN AIRCRAFT OF THE COMPOSITE MATERIAL  

Microsoft Academic Search

While a gradual increase is looked for in the use of composite material (CFC, Fiberglass, etc.) in aircraft, aiming to a significant reduction in weight, the use of this material cause a decrease in the protection against the adverse effects generate by lightning (high intensity atmospheric discharge), for treating of a bad conductive electric current material. The lightning current when

S. A. Baldacim; N. Cristofani; J. L. F. Junior; J. R. Lautenschlager

260

POLYDIMETHYLSILOXANE-BASED SELF-HEALING COMPOSITE AND COATING MATERIALS  

E-print Network

POLYDIMETHYLSILOXANE-BASED SELF-HEALING COMPOSITE AND COATING MATERIALS BY SOO HYOUN CHO B and bulk materials. The new self-healing system we developed greatly extends the capability of self-healing. This self-healing coating solution can be easily applied to most substrate materials, and is compatible

Braun, Paul

261

Networks of channels for self-healing composite materials  

Microsoft Academic Search

This is a fundamental study of how to vascularize a self-healing composite material so that healing fluid reaches all the crack sites that may occur randomly through the material. The network of channels is built into the material and is filled with pressurized healing fluid. When a crack forms, the pressure drops at the crack site and fluid flows from

A. Bejan; S. Lorente; K.-M. Wang

2006-01-01

262

Characterization and performance of a self-healing composite material  

Microsoft Academic Search

The development of a self-healing polymer-matrix composite material that possesses the ability to heal cracks autonomically is described. The system uses a monomer repair agent, dicyclopentadiene (DCPD), which is stored in an epoxy matrix by dispersing microcapsules containing the liquid repair agent throughout the matrix. When the material is damaged, cracks propagate through the material and break open the microcapsules,

Michael Richard Kessler

2002-01-01

263

Optimisation of a multiphase intermetallic metal metal composite material  

E-print Network

Optimisation of a multiphase intermetallic metal ± metal composite material J. D. Robson, N; accepted 7 August 2000. # 2001 IoM Communications Ltd. Introduction Single phase intermetallic materials strength. Many efforts have therefore focused on the development of multiphase intermetallic materials

Cambridge, University of

264

Introduction to naturally occurring radioactive material  

SciTech Connect

Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. We are also bathed in a sea of natural radiation coming from the sun and deep space. Living systems have adapted to these levels of radiation and radioactivity. But some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Other activities, such as flying at high altitudes, expose us to elevated levels of NORM. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute primarily to background doses. TENORM is found in many waste streams; for example, scrap metal, sludges, slags, fluids, and is being discovered in industries traditionally not thought of as affected by radionuclide contamination. Not only the forms and volumes, but the levels of radioactivity in TENORM vary. Current discussions about the validity of the linear no dose threshold theory are central to the TENORM issue. TENORM is not regulated by the Atomic Energy Act or other Federal regulations. Control and regulation of TENORM is not consistent from industry to industry nor from state to state. Proposed regulations are moving from concentration-based standards to dose-based standards. So when is TENORM a problem? Where is it a problem? That depends on when, where, and whom you talk to! We will start by reviewing background radioactivity, then we will proceed to the geology, mobility, and variability of these radionuclides. We will then review some of the industrial sectors affected by TENORM, followed by a brief discussion on regulatory aspects of the issue.

Egidi, P.

1997-08-01

265

Composite-Material Tanks with Chemically Resistant Liners  

NASA Technical Reports Server (NTRS)

Lightweight composite-material tanks with chemically resistant liners have been developed for storage of chemically reactive and/or unstable fluids . especially hydrogen peroxide. These tanks are similar, in some respects, to the ones described in gLightweight Composite-Material Tanks for Cryogenic Liquids h (MFS-31379), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 58; however, the present tanks are fabricated by a different procedure and they do not incorporate insulation that would be needed to prevent boil-off of cryogenic fluids. The manufacture of a tank of this type begins with the fabrication of a reusable multisegmented aluminum mandrel in the shape and size of the desired interior volume. One or more segments of the mandrel can be aluminum bosses that will be incorporated into the tank as end fittings. The mandrel is coated with a mold-release material. The mandrel is then heated to a temperature of about 400 F (approximately equal to 200 C) and coated with a thermoplastic liner material to the desired thickness [typically approxiamtely equal to 15 mils (approximately equal to 0.38 mm)] by thermal spraying. In the thermal-spraying process, the liner material in powder form is sprayed and heated to the melting temperature by a propane torch and the molten particles land on the mandrel. The sprayed liner and mandrel are allowed to cool, then the outer surface of the liner is chemically and/or mechanically etched to enhance bonding of a composite overwrap. The etched liner is wrapped with multiple layers of an epoxy resin reinforced with graphite fibers; the wrapping can be done either by manual application of epoxy-impregnated graphite cloth or by winding of epoxy-impregnated filaments. The entire assembly is heated in an autoclave to cure the epoxy. After the curing process, the multisegmented mandrel is disassembled and removed from inside, leaving the finished tank. If the tank is to be used for storing hydrogen peroxide, then the liner material should be fluorinated ethylene/propylene (FEP), and one or more FEP O ring(s) should be used in the aluminum end fitting(s). This choice of materials is dictated by experimental observations that pure aluminum and FEP are the only materials suitable for long-term storage of hydrogen peroxide and that other materials tend to catalyze the decomposition of hydrogen peroxide to oxygen and water. Other thermoplastic liner materials that are suitable for some applications include nylon 6 and polyethylene. The processing temperatures for nylon 6 are lower than those for FEP. Nylon 6 is compatible with propane, natural gas, and other petroleum-based fuels. Polyethylene is compatible with petroleum- based products and can be used for short-term storage of hydrogen peroxide.

DeLay, Thomas K.

2004-01-01

266

Microthermodynamics analysis of the shape memory effect in composite materials  

SciTech Connect

The shape memory effect and pseudoelasticity due to phase transformation in shape memory alloy (SMA) composites is modeled using a two part procedure. First, phenomenological constitutive equations are proposed for the monolithic polycrystalline SMA material. The equations are of the generalized standard material type, in which the response is given by a convex free energy function and a dissipation potential. Second, a micromechanics analysis of a SMA composite material is performed to derive its free energy, transformation strain rate, and Clausius-Clapeyron equation. Specific results are given for a Nitinol SMA fiber/elastomer matrix composite.

Boyd, J.G.; Lagoudas, D.C. [Texas A and M Univ., College Station, TX (United States)

1994-12-31

267

Advanced composites: Fabrication processes for selected resin matrix materials  

NASA Technical Reports Server (NTRS)

This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.

Welhart, E. K.

1976-01-01

268

Preparation of composite materials in space. Volume 2: Technical report  

NASA Technical Reports Server (NTRS)

A study to define promising materials, significant processing criteria, and the related processing techniques and apparatus for the preparation of composite materials in space was conducted. The study also established a program for zero gravity experiments and the required developmental efforts. The following composite types were considered: (1) metal-base fiber and particle composites, including cemented compacts, (2) controlled density metals, comprising plain and reinforced metal foams, and (3) unidirectionally solidified eutectic alloys. A program of suborbital and orbital experiments for the 1972 to 1978 time period was established to identify materials, processes, and required experiment equipment.

Steurer, W. H.; Kaye, S.

1973-01-01

269

Pressure variation assisted fiber extraction and development of high performance natural fiber composites and nanocomposites  

NASA Astrophysics Data System (ADS)

It is believed, that due to the large surface areas provided by the nano scale materials, various composite properties could be enhanced when such particles are incorporated into a polymer matrix. There is also a trend of utilizing natural resources or reusing and recycling materials that are already available for the fabrication of the new composite materials. Cellulose is the most abundant natural polymer on the planet, and therefore it is not surprising to be of interest for composite fabrication. Basic structures of cellulose, comprised of long polysaccharide chains, are the building blocks of cellulose nano fibers. Nano fibers are further bound into micro fibrils and macro fibers. Theoretically pure cellulose nano fibers have tremendous strengths, and therefore are some of the most sought after nano particles. The fiber extraction however is a complex task. The ultrasound, which creates pressure variation in the medium, was employed to extract nano-size cellulose particles from microcrystalline cellulose (MCC). The length and the intensity of the cavitations were evaluated. Electron microscopy studies revealed that cellulose nanoparticles were successfully obtained from the MCC after ultrasound treatment of just 30 minutes. Structure of the fractionated cellulose was also analyzed with the help of X-ray diffraction, and its thermal properties were evaluated with the help of differential scanning calorimetry (DSC). Ultrasound treatment performed on the wheat straw, kenaf, and miscanthus particles altered fiber structure as a result of the cavitation. The micro fibers were generated from these materials after they were subjected to NaOH treatment followed by the ultrasound processing. The potential of larger than nano-sized natural fibers to be used for composite fabrication was also explored. The agricultural byproducts, such as wheat or rice straw, as well as other fast growing crops as miscanthus or kenaf, are comprised of three basic polymers. Just like in wood the polymers are: cellulose, hemicelluloses, and lignin. When subjected to elevated pressures and temperatures, we are able to get access to some of these natural polymers and use them as a matrix material for composite fabrication. Therefore, fabrication of composite materials without addition of synthetic polymers is possible. Thermal and mechanical properties of such composites are evaluated with the help of electron microscopy, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and flexural strength measurements. The chemical changes in the composites are also probed with the help of Fourier transform infrared (FTIR) analysis. Various additives introduced into composite materials provide different properties. The addition of small amounts of synthetic polymers further enhances the properties of natural fiber composites and do not require high fabrication pressures. Calcium sulfite crystals, which are one of the coal combustion products, were combined with the natural fibers and recycled HDPE polymer to form wood substitute composites. The introduction of these additives resulted in composites with the properties similar to those of the natural wood. Coal combustion products, often used in composite material fabrication, contain mercury which may be rereleased during composite fabrication. Mercury behavior under composite fabrication conditions, such as elevated pressures and temperatures were evaluated. Sulfite rich scrubber material, generated during the flue gas desulphurization process was the main target of the study. It was observed that the release of the mercury is highly dependent on the composite fabrication pressure as well as the temperature.

Markevicius, Gediminas

270

Microbiological destruction of composite polymeric materials in soils  

NASA Astrophysics Data System (ADS)

Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.

Legonkova, O. A.; Selitskaya, O. V.

2009-01-01

271

Nature of branching in disordered materials  

Microsoft Academic Search

The phenomenon of structural branching is ubiquitous in a wide array of materials such as polymers, ceramic aggregates, networks and gels. These materials with structural branching are a unique class of disordered materials and often display complex architectures. Branching has a strong influence over the structure-property relationships of these materials. Despite the generic importance across a wide spectrum of materials,

Amit S. Kulkarni

2007-01-01

272

Composition and Rhetoric: A Natural Alliance.  

ERIC Educational Resources Information Center

Writing teachers and theorists face political and pedagogical dangers because of their increasing tendency to align themselves against each other on the side of either rhetoric or composition. As the differences between the two schools widens, writing teachers stand to lose political ground in English departments and their students stand to lose…

Minot, Walter S.

273

Zeolite–Nafion composites as ion conducting membrane materials  

Microsoft Academic Search

Composite membranes formed of zeolitic fillers embedded in Nafion can be made by evaporating the solvents from a suspension of small zeolite crystals in a Nafion solution. Two natural zeolites were selected as fillers: chabazite and clinoptilolite. Membranes with various zeolite content were obtained. Composite membranes with zeolite content up to 40 vol.% exhibited uniform distribution of the zeolite fillers

Vincenzo Tricoli; Francesco Nannetti

2003-01-01

274

Electrical Characterizations of Lightning Strike Protection Techniques for Composite Materials  

NASA Technical Reports Server (NTRS)

The growing application of composite materials in commercial aircraft manufacturing has significantly increased the risk of aircraft damage from lightning strikes. Composite aircraft designs require new mitigation strategies and engineering practices to maintain the same level of safety and protection as achieved by conductive aluminum skinned aircraft. Researchers working under the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project are investigating lightning damage on composite materials to support the development of new mitigation, diagnosis & prognosis techniques to overcome the increased challenges associated with lightning protection on composite aircraft. This paper provides an overview of the electrical characterizations being performed to support IVHM lightning damage diagnosis research on composite materials at the NASA Langley Research Center.

Szatkowski, George N.; Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Mielnik, John J.

2009-01-01

275

Composite metal foil and ceramic fabric materials  

DOEpatents

The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

Webb, Brent J. (Richland, WA); Antoniak, Zen I. (Richland, WA); Prater, John T. (Chapel Hill, NC); DeSteese, John G. (Kennewick, WA)

1992-01-01

276

Composite metal foil and ceramic fabric materials  

DOEpatents

The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

1992-03-24

277

Micromechanical models for graded composite materials  

Microsoft Academic Search

Elastic response of selected plane-array models of graded composite microstructures is examined under both uniform and linearly varying boundary tractions and displacements, by means of detailed finite element studies of large domains containing up to several thousand inclusions. Models consisting of piecewise homogeneous layers with equivalent elastic properties estimated by Mori-Tanaka and selfconsistent methods are also analysed under similar boundary

Viggo Tvergaard

1997-01-01

278

Filament-wound composite vessel materials technology  

NASA Technical Reports Server (NTRS)

Review of recent developments in advanced filament-wound fiber/resin composite vessel technology for cryogen and high-pressure gas containment applications. Design and fabrication procedures have been developed for small-diameter closed-end vessels equipped with thin elastomeric or thin metallic liners. Specific results are discussed.

Lark, R. F.

1973-01-01

279

New understanding of fiber composite materials  

NASA Technical Reports Server (NTRS)

Statistical bounding approach to study of filamentary composites provides understanding of their fracture mechanics. Comparison shows that bounds are in good agreement with data from several fiber-matrix systems, and that they can be used to interpret strength data and provide fracture behavior information leading to improved strength.

Zweben, C.

1971-01-01

280

Delamination durability of composite materials for rotorcraft  

NASA Technical Reports Server (NTRS)

Delamination is the most commonly observed failure mode in composite rotorcraft dynamic components. Although delamination may not cause immediate failure of the composite part, it often precipitates component repair or replacement, which inhibits fleet readiness, and results in increased life cycle costs. A fracture mechanics approach for analyzing, characterizing, and designing against delamination will be outlined. Examples of delamination problems will be illustrated where the strain energy release rate associated with delamination growth was found to be a useful generic parameter, independent of thickness, layup, and delamination source, for characterizing delamination failure. Several analysis techniques for calculating strain energy release rates for delamination from a variety of sources will be outlined. Current efforts to develop ASTM standard test methods for measuring interlaminar fracture toughness and developing delamination failure criteria will be reviewed. A technique for quantifying delamination durability due to cyclic loading will be presented. The use of this technique for predicting fatigue life of composite laminates and developing a fatigue design philosophy for composite structural components will be reviewed.

Obrien, T. Kevin

1988-01-01

281

Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures  

PubMed Central

Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

Ge, Zhiwei; Ye, Feng; Ding, Yulong

2014-01-01

282

Flight service environmental effects on composite materials and structures  

NASA Technical Reports Server (NTRS)

NASA Langley and the U.S. Army have jointly sponsored programs to assess the effects of realistic flight environments and ground-based exposure on advanced composite materials and structures. Composite secondary structural components were initially installed on commercial transport aircraft in 1973; secondary and primary structural components were installed on commercial helicopters in 1979; and primary structural components were installed on commercial aircraft in the mid-to-late 1980's. Service performance, maintenance characteristics, and residual strength of numerous components are reported. In addition to data on flight components, 10 year ground exposure test results on material coupons are reported. Comparison between ground and flight environmental effects for several composite material systems are also presented. Test results indicate excellent in-service performance with the composite components during the 15 year period. Good correlation between ground-based material performance and operational structural performance has been achieved.

Dexter, H. Benson; Baker, Donald J.

1992-01-01

283

Composite materials with self-contained wireless sensing networks  

NASA Astrophysics Data System (ADS)

The increasing demand for in-service structural health monitoring, particularly in the aircraft industry, has stimulated efforts to integrate self sensing capabilities into materials and structures. This work presents efforts to develop structural composite materials which include networks of sensors with decision-making capabilities that extend the functionality of the composite materials to be information-aware. Composite panels are outfitted with networks of self-contained wireless sensor modules which can detect damage in composite materials via active nondestructive testing techniques. The wireless sensor modules will communicate with one another and with a central processing unit to convey the sensor data while also maintaining robustness and the ability to self-reconfigure in the event that a module fails. Ultimately, this research seeks to create an idealized network that is compact in size, cost efficient, and optimized for low power consumption while providing a sufficient data transfer rate to a local host.

Schaaf, Kristin; Kim, Robert; Nemat-Nasser, Sia

2010-04-01

284

Health, safety and environmental requirements for composite materials  

NASA Technical Reports Server (NTRS)

The health, safety and environmental requirements for the production of composite materials are discussed. The areas covered include: (1) chemical identification for each chemical; (2) toxicology; (3) industrial hygiene; (4) fire and safety; (5) environmental aspects; and (6) medical concerns.

Hazer, Kathleen A.

1994-01-01

285

Microstructural Characterization of Material Properties and Damage in Asphalt Composites  

E-print Network

composite material and X-ray Computed Tomography nondestructive imaging of damage in the microstructure. These experimental measurements were performed on specimens that are first damaged in the Dynamic Mechanical Analyzer (DMA). The DMA is a tool commonly...

Mohammad Khorasani, Sara

2013-05-03

286

Composite materials for thermal energy storage: enhancing performance through microstructures.  

PubMed

Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

Ge, Zhiwei; Ye, Feng; Ding, Yulong

2014-05-01

287

Low-Cost Composite Materials and Structures for Aircraft Applications  

NASA Technical Reports Server (NTRS)

A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

2003-01-01

288

Three-dimensional electromagnetic modeling of composite dielectric materials  

Microsoft Academic Search

When manufacturing composite dielectric materials with various shapes, sizes, dielectric properties, and amounts of each constituent element, it is beneficial to predict the effective dielectric constant and the distribution of electric fields within the composite. A three-dimensional electromagnetic model has recently been developed at the University of Missouri to aid in this analysis. CST EM Studio, which specializes in three-dimensional

K. A. O'Connor; R. D. Curry

2011-01-01

289

Material properties of piezoelectric composites by BEM and homogenization method  

E-print Network

Material properties of piezoelectric composites by BEM and homogenization method Qing-Hua Qin method (BEM) to piezoelectric composites in conjunction with homogenization approach for determining average stress and strain are calculated by the boundary tractions and displacements of the RVE. Thus BEM

Qin, Qinghua

290

Generating Finite-Element Models Of Composite Materials  

NASA Technical Reports Server (NTRS)

Program starts at micromechanical level, from simple inputs supplied by user. COMGEN, COmposite Model GENerator, is interactive FORTRAN program used to create wide variety of finite-element models of continuous-fiber composite materials at micromechanical level. Quickly generates batch or "session files" to be submitted to finite-element preprocessor and postprocessor program, PATRAN. COMGEN requires PATRAN to complete model.

Melis, M. E.

1993-01-01

291

All natural composite sandwich beams for structural applications  

Microsoft Academic Search

As part of developing an all natural composite roof for housing application, structural panels and unit beams were manufactured out of soybean oil based resin and natural fibers (flax, cellulose, pulp, recycled paper, chicken feathers) using vacuum assisted resin transfer molding (VARTM) technology. Physical and chemical investigations and mechanical testing of the beams yielded good results in line with desired

M. A. Dweib; B. Hu; A. O’Donnell; H. W. Shenton; R. P. Wool

2004-01-01

292

Resistance fail strain gage technology as applied to composite materials  

NASA Technical Reports Server (NTRS)

Existing strain gage technologies as applied to orthotropic composite materials are reviewed. The bonding procedures, transverse sensitivity effects, errors due to gage misalignment, and temperature compensation methods are addressed. Numerical examples are included where appropriate. It is shown that the orthotropic behavior of composites can result in experimental error which would not be expected based on practical experience with isotropic materials. In certain cases, the transverse sensitivity of strain gages and/or slight gage misalignment can result in strain measurement errors.

Tuttle, M. E.; Brinson, H. F.

1985-01-01

293

Microstructure of composite material with powders of barium ferrite  

Microsoft Academic Search

Purpose: The aim of the present work is the microstructure characterization of commercial powder BaFe12O19 (as-prepared) and composite material with BaFe12O19 powders and polymer matrix, using XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscopy) methods. Design\\/methodology\\/approach: The morphology of barium ferrite powders and a fracture surface of the examined composite material was realized by using the scanning electron microscope. The

R. Nowosielski; R. Babilas; G. Dercz; L. Paj?k b

294

Digital cellular solids : reconfigurable composite materials  

E-print Network

Digital materials are comprised of a small number of types of discrete physical building blocks, which assemble to form constructions that meet the versatility and scalability of digital computation and communication ...

Cheung, Kenneth Chun-Wai

2012-01-01

295

Electrode material comprising graphene-composite materials in a graphite network  

DOEpatents

A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

Kung, Harold H.; Lee, Jung K.

2014-07-15

296

The atomic weight and isotopic composition of boron and their variation in nature  

SciTech Connect

The boron isotopic composition and atomic weight value and their variation in nature are reviewed. Questions are raised about the previously recommended value and the uncertainty for the atomic weight. The problem of what constitutes an acceptable range for normal material and what should then be considered geologically exceptional is discussed. Recent measurements make some previous decisions in need of re-evaluation.

Holden, N.E.

1993-08-01

297

Proc ACUN-5 "Developments in Composites: Advanced, Infrastructural, Natural and Nano-compsoites", UNSW, SYDNEY, Australia,  

E-print Network

Proc ACUN-5 "Developments in Composites: Advanced, Infrastructural, Natural and Nano-compsoites", UNSW, SYDNEY, Australia, 11-14 July 2006 High modulus carbon fiber materials for retrofit of steel_rizkalla@ncsu.edu Abstract This paper summarizes the research work dealing with the use of high modulus carbon fiber

298

Bone substitute material on the basis of natural components  

NASA Astrophysics Data System (ADS)

The creation of regenerative materials remains a problem for rehabilitation medicine, but the obtaining of initial substances that can cause bone tissue regeneration, possessing biological activity and creation on their basis of composite materials with specified physical and mechanical characteristics is an important scientific problem. This paper presents the investigation of physical-chemical and biological properties of bioresorbable composite material that can restore their own bone tissue of the body.

Melnikova, S.; Zelichenko, E.; Zenin, B.; Guzeev, V.; Gurova, O.

2014-10-01

299

Method of tissue repair using a composite material  

DOEpatents

A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M

2014-03-18

300

Composite Structures and Materials Research at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI), Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, roberto J.

2003-01-01

301

Composite Structures and Materials Research at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI) Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, Roberto J.

2001-01-01

302

Bearing material. [composite material with low friction surface for rolling or sliding contact  

NASA Technical Reports Server (NTRS)

A composite material is described which will provide low friction surfaces for materials in rolling or sliding contact and is self-lubricating and oxidation resistant up to and in excess of about 930 C. The composite is comprised of a metal component which lends strength and elasticity to the structure, a fluoride salt component which provides lubrication and, lastly, a glass component which not only provides oxidation protection to the metal but may also enhance the lubrication qualities of the composite.

Sliney, H. E. (inventor)

1976-01-01

303

Preparation of Al8B4C7 composite materials by using oxide raw materials  

NASA Astrophysics Data System (ADS)

Al8B4C7 composites materials were prepared by using Al, B2O3 and C as raw materials. The effect of sintering temperature and different additives (Al and C) on Al8B4C7 composites materials were investigated. The Al8B4C7 composites materials were characterized from microstructure, apparent porosity, bulk density and compressive strength. The results demonstrated that the increasing of sintering temperatures could make the samples denser and improve compressive strength. The optimal sintering temperature was 1700 °C, and the main phase composition of Al8B4C7 composites materials were Al8B4C7 and Al2O3. Al additive could improve the properties while C additive played an harmful role. The Al8B4C7 grains were irregular flake and the size was 2~4 ?m.

Zhu, H. X.; Pan, C.; Deng, C. J.; Yuan, W. J.

2011-10-01

304

Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries  

NASA Technical Reports Server (NTRS)

A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

Woodworth James; Baldwin, Richard; Bennett, William

2010-01-01

305

Composition/bandgap selective dry photochemical etching of semiconductor materials  

DOEpatents

Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

Ashby, C.I.H.; Dishman, J.L.

1985-10-11

306

Composition and process for making an insulating refractory material  

DOEpatents

A composition and process for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4-2.6 g/cm.sup.3 with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness, good abrasion resistance and crush strength.

Pearson, Alan (Murrysville, PA); Swansiger, Thomas G. (Apollo, PA)

1998-04-28

307

Composition and process for making an insulating refractory material  

DOEpatents

A composition and process are disclosed for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4--2.6 g/cm{sup 3} with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness.

Pearson, A.; Swansiger, T.G.

1998-04-28

308

Method and apparatus for gripping uniaxial fibrous composite materials  

NASA Technical Reports Server (NTRS)

A strip specimen is cut from a unidirectional strong, brittle fiber composite material, and the surfaces of both ends of the specimen are grit blasted. The specimen is then placed between metal load transfer members having grit blasted surfaces. Sufficient compressive stress is applied to the load transfer members to prevent slippage during testing at both elevated temperatures and room temperatures. The need for adhesives, load pads, and other secondary composite processing is eliminated. This gripping system was successful in tensile testing, creep rupture testing, and fatigue testing uniaxial composite materials at 316 C.

Whittenberger, J. D.; Hurwitz, F. I. (inventors)

1984-01-01

309

NATURE MATERIALS | VOL 10 | NOVEMBER 2011 | www.nature.com/naturematerials 817 requirement for almost all engineering structural materials  

E-print Network

NATURE MATERIALS | VOL 10 | NOVEMBER 2011 | www.nature.com/naturematerials 817 A requirement for almost all engineering structural materials is that they are both strong and tough (damage tolerant) yet invariably, in most materials, the properties of strength and toughness are mutually exclusive

Ritchie, Robert

310

Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes  

NASA Technical Reports Server (NTRS)

An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

2009-01-01

311

The Natural Materials Browser: Using a Tablet Interface for Exploring Volumetric Materials Science Datasets  

E-print Network

The Natural Materials Browser: Using a Tablet Interface for Exploring Volumetric Materials Science angus.forbes@sista.arizona.edu Tony Fast Department of Materials Science Georgia Institute of Technology Barbara holl@cs.ucsb.edu ABSTRACT We present a novel tablet application, the Natural Materials Browser

Hollerer, Tobias

312

Surface characteristics of resin composite materials after finishing and polishing.  

PubMed

This in vitro study determined the surface roughness (Ra) and absolute gloss (AG) values for 2 resin composites: a microhybrid and a microfill. Eight groups (n = 4) of each resin composite were prepared, along with 4 controls (Mylar strip) for the 2 resin composites. After finishing with a medium polishing disc, the specimens from each resin composite material were subjected to 7 polishing procedures, and Ra measurements and AG values were determined. Two-way ANOVA and Fisher's LSD multiple comparisons revealed significant differences (P ? 0.05). For both materials, the control group produced the lowest Ra values and highest AG values, and the medium polishing disc produced the highest Ra values and lowest AG values. Of the 2 resin composites, the microhybrid had lower mean Ra and higher mean AG than the microfill for the majority of the polishing procedures. Pearson's r correlation coefficient (P ? 0.001) indicated an inverse linear relationship between Ra and AG. PMID:25734283

St Germain, Henry; Samuelson, Bart A

2015-01-01

313

Functional composite materials based on chemically converted graphene.  

PubMed

Graphene, a one-atom layer of graphite, possesses a unique two-dimensional structure and excellent mechanical, thermal, and electrical properties. Thus, it has been regarded as an important component for making various functional composite materials. Graphene can be prepared through physical, chemical and electrochemical approaches. Among them, chemical methods were tested to be effective for producing chemically converted graphene (CCG) from various precursors (such as graphite, carbon nanotubes, and polymers) in large scale and at low costs. Therefore, CCG is more suitable for synthesizing high-performance graphene based composites. In this progress report, we review the recent advancements in the studies of the composites of CCG and small molecules, polymers, inorganic nanoparticles or other carbon nanomaterials. The methodology for preparing CCG and its composites has been summarized. The applications of CCG-based functional composite materials are also discussed. PMID:21360763

Bai, Hua; Li, Chun; Shi, Gaoquan

2011-03-01

314

Universal composition–structure–property maps for natural and biomimetic platelet–matrix composites and stacked heterostructures  

NASA Astrophysics Data System (ADS)

Many natural and biomimetic platelet–matrix composites—such as nacre, silk, and clay-polymer—exhibit a remarkable balance of strength, toughness and/or stiffness, which call for a universal measure to quantify this outstanding feature given the structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures. Here we report the development of a unified framework to construct universal composition–structure–property diagrams that decode the interplay between various geometries and inherent material features in both platelet–matrix composites and stacked heterostructures. We study the effects of elastic and elastic-perfectly plastic matrices, overlap offset ratio and the competing mechanisms of platelet versus matrix failures. Validated by several 3D-printed specimens and a wide range of natural and synthetic materials across scales, the proposed universally valid diagrams have important implications for science-based engineering of numerous platelet–matrix composites and stacked heterostructures.

Sakhavand, Navid; Shahsavari, Rouzbeh

2015-03-01

315

Universal composition-structure-property maps for natural and biomimetic platelet-matrix composites and stacked heterostructures.  

PubMed

Many natural and biomimetic platelet-matrix composites-such as nacre, silk, and clay-polymer-exhibit a remarkable balance of strength, toughness and/or stiffness, which call for a universal measure to quantify this outstanding feature given the structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures. Here we report the development of a unified framework to construct universal composition-structure-property diagrams that decode the interplay between various geometries and inherent material features in both platelet-matrix composites and stacked heterostructures. We study the effects of elastic and elastic-perfectly plastic matrices, overlap offset ratio and the competing mechanisms of platelet versus matrix failures. Validated by several 3D-printed specimens and a wide range of natural and synthetic materials across scales, the proposed universally valid diagrams have important implications for science-based engineering of numerous platelet-matrix composites and stacked heterostructures. PMID:25774944

Sakhavand, Navid; Shahsavari, Rouzbeh

2015-01-01

316

Olivine Composite Cathode Materials for Improved Lithium Ion Battery Performance  

SciTech Connect

Composite cathode materials in lithium ion batteries have become the subject of a great amount of research recently as cost and safety issues related to LiCoO2 and other layered structures have been discovered. Alternatives to these layered materials include materials with the spinel and olivine structures, but these present different problems, e.g. spinels have low capacities and cycle poorly at elevated temperatures, and olivines exhibit extremely low intrinsic conductivity. Previous work has shown that composite structures containing spinel and layered materials have shown improved electrochemical properties. These types of composite structures have been studied in order to evaluate their performance and safety characteristics necessary for use in lithium ion batteries in portable electronic devices, particularly hybrid-electric vehicles. In this study, we extended that work to layered-olivine and spinel-olivine composites. These materials were synthesized from precursor salts using three methods: direct reaction, ball-milling, and a coreshell synthesis method. X-ray diffraction spectra and electrochemical cycling data show that the core-shell method was the most successful in forming the desired products. The electrochemical performance of the cells containing the composite cathodes varied dramatically, but the low overpotential and reasonable capacities of the spinel-olivine composites make them a promising class for the next generation of lithium ion battery cathodes.

Ward, R.M.; Vaughey, J.T.

2006-01-01

317

Structurally integrated fiber optic damage assessment system for composite materials.  

PubMed

Progress toward the development of a fiber optic damage assessment system for composite materials is reported. This system, based on the fracture of embedded optical fibers, has been characterized with respect to the orientation and location of the optical fibers in the composite. Together with a special treatment, these parameters have been tailored to yield a system capable of detecting the threshold of damage for various impacted Kevlar/epoxy panels. The technique has been extended to measure the growth of a damage region which could arise from either impact, manufacturing flaws, or static overloading. The mechanism of optical fiber fracture has also been investigated. In addition, the influence of embedded optical fibers on the tensile and compressive strength of the composite material has been studied. Image enhanced backlighting has been shown to be a powerful and convenient method of assessing internal damage to translucent composite materials. PMID:20555570

Measures, R M; Glossop, N D; Lymer, J; Leblanc, M; West, J; Dubois, S; Tsaw, W; Tennyson, R C

1989-07-01

318

Coplanar circulator made from composite magnetic material  

Microsoft Academic Search

This paper deals with the operation of a Y- junction coplanar circulator. It operates at high frequencies (>40 GHz). Barium hexaferrite particles within a host matrix form the integrated magnetic material in this device. The structure of this 3-port microwave device and its different characteristics are presented. A three dimensional finite element method was used to calculate the S-parameters and

Taline Boyajian; Didier Vincent; Sophie Neveu; Martine LeBerre; Jean-Jacques Rousseau

2011-01-01

319

Teaching Composition in Prisons: Methods and Materials.  

ERIC Educational Resources Information Center

A pilot study gathered information on materials and methods used by writing instructors teaching in prisons in Tennessee, Kentucky, Illinois, and Missouri via a questionnaire. The classes taught by the respondents were all at the college level, were sponsored by various universities and colleges, and all but two were taught at maximum security…

Mowery, Carl D., Jr.

320

Highly explosive nanosilicon-based composite materials  

Microsoft Academic Search

We present a highly explosive binary system based on porous silicon layers with their pores filled with solid oxidizers. The porous layers are produced by a standard electrochemical etching process and exhibit properties that are different from other energetic materials. Its production is completely compatible with the standard silicon technology and full bulk silicon wafers can be processed and therefore

D. Clément; J. Diener; E. Gross; N. Künzner; V. Yu. Timoshenko; D. Kovalev

2005-01-01

321

Light weight polymer matrix composite material  

NASA Technical Reports Server (NTRS)

A graphite fiber reinforced polymer matrix is layed up, cured, and thermally aged at about 750.degree. F. in the presence of an inert gas. The heat treatment improves the structural integrity and alters the electrical conductivity of the materials. In the preferred embodiment PMR-15 polyimides and Celion-6000 graphite fibers are used.

Bowles, Kenneth J. (Inventor); Lowell, Carl E. (Inventor)

1991-01-01

322

Characterization of ceramic composite materials for gas turbine applications  

Microsoft Academic Search

Ceramic composite materials have the capability to sustain high stress in the presence of high temperatures and aggressive atmospheres. Such materials are being considered for application as cumbustors, burner cubes, heat exchangers, headers. hot-gas filters, and even rotors of stationary gas turbine engines. In the present program, Nicalon preforms of tubular geometry were fabricated with different fiber architectures (filament winding,

K. Reifsnider; W. Stinchcomb; K. Liao; L. Oleksuk; D. Stinton

1993-01-01

323

Composite Materials with Viscoelastic Stiffness Greater Than Diamond  

E-print Network

. Stone,3 R. S. Lakes4 * We show that composite materials can exhibit a viscoelastic modulus (Young of single foam cells (3). The elastic modulus, a stress/strain ratio, is a measure of material stiffness compressibility has been observed in small-cell foams (10). Negative compressibility differs from negative thermal

Lakes, Roderic

324

Finite Element Modeling of the Thermographic Inspection for Composite Materials  

NASA Technical Reports Server (NTRS)

The performance of composite materials is dependent on the constituent materials selected, material structural geometry, and the fabrication process. Flaws can form in composite materials as a result of the fabrication process, handling in the manufacturing environment, and exposure in the service environment to anomalous activity. Often these flaws show no indication on the surface of the material while having the potential of substantially degrading the integrity of the composite structure. For this reason it is important to have available inspection techniques that can reliably detect sub-surface defects such as inter-ply disbonds, inter-ply cracks, porosity, and density changes caused by variations in fiber volume content. Many non-destructive evaluation techniques (NDE) are capable of detecting sub-surface flaws in composite materials. These include shearography, video image correlation, ultrasonic, acoustic emissions, and X-ray. The difficulty with most of these techniques is that they are time consuming and often difficult to apply to full scale structures. An NDE technique that appears to have the capability to quickly and easily detect flaws in composite structure is thermography. This technique uses heat to detect flaws. Heat is applied to the surface of a structure with the use of a heat lamp or heat gun. A thermographic camera is then pointed at the surface and records the surface temperature as the composite structure cools. Flaws in the material will cause the thermal-mechanical material response to change. Thus, the surface over an area where a flaw is present will cool differently than regions where flaws do not exist. This paper discusses the effort made to thermo-mechanically model the thermography process. First the material properties and physical parameters used in the model will be explained. This will be followed by a detailed discussion of the finite element model used. Finally, the result of the model will be summarized along with recommendations for future work.

Bucinell, Ronald B.

1996-01-01

325

Emissivity Results on High Temperature Coatings for Refractory Composite Materials  

NASA Technical Reports Server (NTRS)

The directional emissivity of various refractory composite materials considered for application for reentry and hypersonic vehicles was investigated. The directional emissivity was measured at elevated temperatures of up to 3400 F using a directional spectral radiometric technique during arc-jet test runs. A laboratory-based relative total radiance method was also used to measure total normal emissivity of some of the refractory composite materials. The data from the two techniques are compared. The paper will also compare the historical database of Reinforced Carbon-Carbon emissivity measurements with emissivity values generated recently on the material using the two techniques described in the paper.

Ohlhorst, Craig W.; Vaughn, Wallace L.; Daryabeigi, Kamran; Lewis, Ronald K.; Rodriguez, Alvaro C.; Milhoan, James D.; Koenig, John R.

2007-01-01

326

DOE Automotive Composite Materials Research: Present and Future Efforts  

SciTech Connect

One method of increasing automotive energy efficiency is through mass reduction of structural components by the incorporation of composite materials. Significant use of glass reinforced polymers as structural components could yield a 20--30% reduction in vehicle weight while the use of carbon fiber reinforced materials could yield a 40--60% reduction in mass. Specific areas of research for lightweighting automotive components are listed, along with research needs for each of these categories: (1) low mass metals; (2) polymer composites; and (3) ceramic materials.

Warren, C.D.

1999-08-10

327

Polymeric compositions incorporating polyethylene glycol as a phase change material  

DOEpatents

A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

Salyer, Ival O. (Dayton, OH); Griffen, Charles W. (Mason, OH)

1989-01-01

328

Lightweight Composite Materials for Heavy Duty Vehicles  

SciTech Connect

The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

2013-08-31

329

Acoustic emission from composite materials. [nondestructive tests  

NASA Technical Reports Server (NTRS)

The two basic areas where the acoustic emission (AE) technique can be applied are materials research and the evaluation of structural reliability. This experimental method leads to a better understanding of fracture mechanisms and is an NDT technique particularly well suited for the study of propagating cracks. Experiments are described in which acoustic emissions were unambiguously correlated with microstructural fracture mechanisms. The advantages and limitations of the AE technique are noted.

Visconti, I. C.; Teti, R.

1979-01-01

330

Accelerated hygrothermal stabilization of composite materials  

SciTech Connect

Experimentation validated a simple moisture conditioning scheme to prepare Gr/Ep composite parts for precision applications by measuring dimensional changes over 90 days. It was shown that an elevated temperature moisture conditioning scheme produced a dimensionally stable part from which precision structures could be built/machined without significant moisture induced dimensional changes after fabrication. Conversely, that unconditioned Gr/Ep composite panels exhibited unacceptably large dimensional changes (i.e., greater than 125 ppM). It was also shown that time required to produce stable parts was shorter, by more than an order of magnitude, employing the conditioning scheme than using no conditioning scheme (46 days versus 1000+ days). Two final use environments were chosen for the experiments: 50% RH/21C and 0% RH/21C. Fiberite 3034K was chosen for its widespread use in aerospace applications. Two typical lay-ups were chosen, one with low sensitivity to hygrothermal distortions and the other high sensitivity: [0, {plus_minus} 45, 90]s, [0, {plus_minus} 15, 0]s. By employing an elevated temperature, constant humidity conditioning scheme, test panels achieved an equilibrium moisture content in less time, by more than an order of magnitude, than panels exposed to the same humidity environment and ambient temperature. Dimensional changes, over 90 days, were up to 4 times lower in the conditioned panels compared to unconditioned panels. Analysis of weight change versus time of test coupons concluded that the out-of-autoclave moisture content of Fiberite 3034K varied between 0.06 and 0.1%.

Gale, J.A.

1994-05-01

331

A grammatical approach to customization of shape and composite materials  

NASA Astrophysics Data System (ADS)

With the increasing use of composite materials in Mechanical and Aerospace industries, an approach is required to facilitate designing of components using composite materials, while ensuring customization of the shape such a way that multiple design goals for the components are satisfied. Existing design methods may be used in some cases, where the component shape and loadings are simple. While a significant amount of research has been conducted to study the properties of composite materials, little attention has been paid to find out a design approach such that (1) the user requirements in the very general form may be used directly and as the input for the design, (2) the best possible composite material are selected to meet multiple desired functions, and (3) shape variation is analyzed in order to enable mass customization of the design. Thus an approach is required that will be able to handle both the shape and the material in order to design a load bearing component using composite materials. In this research the focus is to develop a design approach that will consider the user requirements for a composite component in its very general form and generate component shape and material details in a systematic order so that the designed component can withstand a given loading condition. Consequently, the Primary Research Question is: How to simultaneously explore shape and composite materials during the design of a product to meet multiple property and functional goals? The wide range of properties, covered by various fiber-matrix combinations, along with their directional property characteristics, maximizes the flexibility of the designers, while designing composite material products. Meeting multiple property goals, however, complicates the design process as both the composite material selection and the component shape formation becomes highly intricate with the loading conditions and a number of matrix calculations needs to be performed to determine theoretical value of composite material properties. A grammar is a formal definition of a language written in transformational form. To address these issues, in this research a grammatical approach is developed that will generate a shape grammar to perform shape optimization, and then incorporate a composite material selection system and loading analysis techniques of Solid Mechanics in order to design load bearing components of irregular shape. The approach will be able to consider the user requirements in the very general text form, convert them to the design requirements for the component, generate optimized shape based on multiple design constraints, perform the complete design work, and generate the component. The major contributions include: (1) generating a shape grammar to represent functions of the load bearing component such a way that mass-customization of shape is possible, (2) developing a composite material customization system in order to satisfy directional property requirements, and (3) introducing a unique laminate design approach in order to satisfy design property requirements at the critical cross-sections locally that can result in highly efficient design compared to conventional design method. Verification of the approach will focus on its application to simultaneously explore shapes and customization of composite materials.

Nandi, Soumitra

332

Leaching of technologically enhanced naturally occurring radioactive materials.  

PubMed

A form of waste associated with mining activities is related to the type of deposit being mined and to the procedure of exploitation and enrichment adopted. The wastes usually contain relatively large amounts of technologically enhanced naturally occurring radioactive materials (TENORM). The TENORM are often stored on the surface. Consequently, they can be leached as a result of interaction with aqueous solutions of different chemical composition. This further leads to pollution of water and soil in the vicinity of the stored wastes. The paper presents the results of laboratory investigation aimed at quantifying the leaching process of samples originating from uranium dumps and storage reservoirs associated with brine pumped from coal mines. The leaching process was investigated with respect to selected elements: uranium isotopes, radium isotopes, iron, barium and sodium. The samples were exposed to aqueous solutions of different chemical composition. The experiments revealed that TENORM in form of sulphate compounds are the most resistant against leaching. The leaching coefficient for radium isotopes varies from a few thousandth percent to a few hundredth percent. On the other hand, for TENORM occurring in sand or sludge, the leaching coefficient for uranium and radium isotopes ranged from a few hundredth percent to a few percent. PMID:17482828

Chau, Nguyen Dinh; Chru?ciel, Edward

2007-08-01

333

The role of polymer based composites materials in modern and future aerospace structures  

NASA Astrophysics Data System (ADS)

The need to reduce the overall weight of aeronautical and space structures, while at the same time preserving or even improving their performances, make the research and development in the field of innovative structures and advanced composite materials a crucial step for the advancement of aerospace technologies. Several fields of innovation have been explored in the last decades but the most promising solutions for the future of aerospace structures will be found in the "intelligent" use of polymer based composite materials both in the design and in their "nature like" use.

Cantoni, Stefania; De Nicola, Felice; Mercurio, Umberto; Quaranta, Vincenzo

2014-05-01

334

Quantitative measurement of nanomechanical properties in composite materials  

NASA Astrophysics Data System (ADS)

In this work, quantitative Atomic force acoustic microscopy (AFAM) was used to measure nanomechanical properties and to determine microstructural morphology in fiber reinforced composites and hard calcified tissue. In carbon fiber reinforced composites, the fiber-matrix interphase is of interest as it affects the primary load-transfer process and thereby bulk mechanical properties of reinforced composites. The study of properties in the interphase region is important for an understanding of the bulk mechanical properties, which have been shown affected by moisture-based environmental degradation. Single point AFAM testing has been used to quantitatively determine elastic properties at the fiber-matrix interphase by taking advantage of the high spatial scanning resolution capable of measuring interphase dimensions. Carbon-fiber epoxy composite samples were degraded in laboratory conditions by exposure to a accelerated hydrothermal degradation environment in deionized water and salt water. Composite degradation has been characterized by the change in the epoxy matrix contact stiffness and the interphase properties. A decrease in matrix stiffness was found to coincide with the environmental exposure and moisture absorption of the samples. Interphase stiffness measurements indicate a constant interphase thickness as a function of environmental exposure. Chemical analysis of the epoxy using FTIR and Raman spectroscopy indicate hydrolysis of the C-O-C and Epoxide bonds which contribute to the decrease in epoxy mechanical properties. Accelerated degradation by salt water and deionized water both resulted in degradation of the epoxy, though the presence of sodium chloride showed less degradation. From SEM, debonding of the fiber-matrix interface was observed to be more severe when exposed to a salt water environment. In performing quantitative AFAM measurements, the effects of tip shape on the contact mechanics at the epoxy interface were found to influence the reported results significantly, and new, power-law body of revolution models of the probe tip geometry have been applied. Due to the low yield strength of polymers compared with other engineering materials, elastic-plastic contact is considered to better represent the epoxy surface response and was used to acquire more accurate quantitative measurements. Visco-elastic contact response was introduced in the boundary condition of the AFAM cantilever vibration model, due to the creep nature of epoxy, to determine time-dependent effects. These methods have direct impact on the quantitative measurement capabilities of near-filler interphase regions in polymers and composites and the long-term influence of environmental conditions on composites. In addition, quantitative AFAM scans were made on distal surfaces of human bicuspids and molars, to determine the microstructural and spatial variation in nanomechanical properties of the enamel biocomposite. Single point AFAM measurements were performed on individual enamel prism and sheath locations to determine spatial elastic modulus. Mechanical property variation of enamel is associated to the differences in the mineral to organic content and the apatite crystal orientations within the enamel microstructure. Also, variation in the elastic modulus of the enamel ultrastructure was observed in measurements at the outer enamel versus near the dentine enamel junction (DEJ).

Zhao, Wei

335

Investigating Tungsten Concentrations and Isotopic Compositions of Natural Water Samples from the Carson River Basin  

NASA Astrophysics Data System (ADS)

Recent studies have shown that W-isotopes may fractionate in nature1; however, the magnitude and cause of the isotopic variations are largely unknown and unconstrained. In this study, the isotopic compositions of the NIST 3163 W standard, W ore minerals, and 15 natural surface waters from Nevada's Carson River Basin were analyzed by MC-ICP-MS using external bracketing with NIST 3163 and the IUPAC 184W/183W for mass bias correction. Chemical separation procedures were developed to purify W from natural matrices and tested to assure fractionation was not introduced during column chemistry. The W isotopic compositions of these samples were measured and compared to the accepted IUPAC composition of natural W. Samples of wolframite (Fe, MnWO4) and hubnerite (MnWO4) have compositions similar to the IUPAC value but vary from the isotopic composition of NIST 3163 - particularly in 182W/183W. The isotopic compositions of the natural waters, except for an extremely evaporated sample from Soda Lake, are similar to the NIST standard. This evaporative lake, formed by a maar, has a unique chemical composition compared to other surface waters with high W (800 ± 20 ng/g) and As (1665 ± 17 ng/g) concentrations; and relatively low Fe (5.00 ± 0.13 ng/g) and Mn (0.52 ± 0.07 ng/g). These results support recent observations of natural W isotopic variation and imply that W-isotope compositions may be useful for environmental applications of stable isotope geochemistry. 1. Irisawa, K. and Hirata, T. (2006) Tungsten isotopic analysis on six geochemical reference materials using multiple collector-ICP-mass spectrometry coupled with a rhenium-external correction technique. Journal of Analytical Atomic Spectrometry 21, 1387-1395.

Wasserman, N. L.; Williams, R. W.; Kayzar, T. M.; Schorzman, K. C.

2012-12-01

336

Properties of graphite composites based on natural and synthetic graphite powders and a phenolic novolac binder  

NASA Astrophysics Data System (ADS)

Model graphite composites, similar to those used in nuclear applications as encasement material in fuel pebbles, were prepared by uniaxial cold compression moulding. They contained natural flake graphite, synthetic graphite and 20 wt.% phenolic novolac resin binder. The materials were carbonised at 900 °C in a nitrogen atmosphere and then annealed at 1800 °C in helium atmosphere. The X-ray diffraction studies showed that the graphite in these composites had hexagonal crystal structure after annealing. Raman spectroscopy revealed the presence of the structurally disordered phase derived from the carbonised resin. Optical microscopy revealed a flake-like microstructure for composites containing mainly natural graphite and needle-coke like particles for composites containing mainly synthetic graphite. The composites featured anisotropic property behaviour as the particles were partially aligned in a direction perpendicular to the compression direction. Thermogravimetric analysis studies showed that the annealed graphite composites were stable in air to 650 °C. The linear thermal expansion coefficients measured by thermomechanical analysis (20-600 °C) in the direction of pressing were in the range 5-9 × 10-6 K-1 and in the range 1.2-2 × 10-6 K-1 in the direction normal to pressing. The thermal conductivity of the composites were measured using Xenon flash method from 100 to 1000 °C and the values ranged from 19 to 30 W m-1 K-1.

Magampa, P. P.; Manyala, N.; Focke, W. W.

2013-05-01

337

Thermal pretreatment of silica composite filler materials.  

PubMed

Three different silica filler materials were thermally treated in order to effect dehydration, dehydroxylation, and rehydroxylation. Samples were characterized by thermogravimetry (TG), pycnometry, elemental analysis, and scanning electron microscopy (SEM). For all fillers, our results indicate incremental removal of silanol groups at higher heating temperatures and irreversible dehydroxylation at over 673 K. To remove the organic content and maintain adequate silanol density for subsequent silanization on Stöber-type silica, we suggest heating at 673 K followed by overnight boiling in water. PMID:20445821

Wan, Quan; Ramsey, Christopher; Baran, George

2010-01-01

338

Thermal, mechanical, and electroelastic behavior of composite materials  

SciTech Connect

A unified analytical approach is developed to predict the effective behavior of composite materials for electronic applications. The target applications are materials for electronic packaging and electromechanical transducers where the material properties of interest are the effective thermal expansion coefficients, thermal conductivity, dielectric constant, and the couples electroelastic behavior. The analytical approach that is forwarded is based on the equivalent inclusion method of Eshelby (1957) extended to finite reinforcement concentrations through the Mori-Tanaka (1973) mean field approach. In addition to the effects of the material properties of the constituents, the effects of the volume fraction, shape, and orientation distribution of the reinforcing phase are considered. Through this approach, internal stresses generated due to the mismatch in thermal expansion coefficients of the constituents of a composite material are studied. Thermal expansion coefficients and time dependent creep deformations under a constant applied stress are analyzed. Analytical predictions of the proposed model are seen to be in good agreement with measured results of a multiphase Al2O3/Si3N4/Kerimid composite. The Mori-Tanaka mean field approach is also utilized to study the effective physical properties, modeled by Laplace's equation, of composite materials. Particular attention is devoted to microdamaged composites containing porosity or microcracks in the matrix and composites with coated reinforcement. Analytical predictions are shown to be in good agreement with measured results of the effective thermal conductivity for a multiphase Al2O3/Si3N4/Kerimid composite. Finally, the rigorous analytical solution for the couples electroelastic behavior of piezoelectric inclusions (Deeg, 1980) is utilized to derive the constraint tensors for an ellipsoidal piezoelectric inclusion in a infinite matrix.

Dunn, M.L.

1992-01-01

339

Review on advanced composite materials boring mechanism and tools  

NASA Astrophysics Data System (ADS)

With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling composite materials.

Shi, Runping; Wang, Chengyong

2010-12-01

340

Review on advanced composite materials boring mechanism and tools  

NASA Astrophysics Data System (ADS)

With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling composite materials.

Shi, Runping; Wang, Chengyong

2011-05-01

341

Cytotoxicity of composite materials polymerized with LED curing units.  

PubMed

The proper intensity and illumination time of a curing light is of great importance for the complete polymerization of resin composites and long-lasting resin composite restorations. Inadequately cured resin composites can have a cytotoxic effect on pulp tissue by releasing unreacted monomers. This study determined whether there is any difference in cytotoxicity between composite materials illuminated with different curing modes of LED curing units. Thin layers of two composite materials were polymerized using three different modes of the Bluephase C8 LED curing unit: a high intensity mode (HIP-800 mW/cm2, 20 seconds), a soft-start mode (SOF-650 mW/cm2 first 5 seconds, 800 mW/cm2 next 25 seconds) and a low intensity mode (LOP-650 mW/cm2, 30 seconds). Lymphocyte cultures were treated with both polymerized and unpolymerized composites using one of the modes stated above. Cells were analyzed using the trypan blue exclusion test, the acridine orange/ethidium bromide dying technique and an alkaline comet assay. Significant cytotoxicity was observed for 120 mg of unpolymerized composites and those polymerized with the HIP polymerization mode. A significant level of DNA damage was detected for 120 mg of unpolymerized composites. However, curing via the LOP program exhibited the lowest genotoxicity. Longer curing time with lower intensity results in less cytotoxicity than shorter curing exposure using a higher intensity of light emitted from the curing light source. PMID:18335729

Knezevic, Alena; Zeljezic, Davor; Kopjar, Nevenka; Tarle, Zrinka

2008-01-01

342

Annual Conference on Composites and Advanced Ceramic Materials  

SciTech Connect

The proceedings examine current status and future prospects for engineering ceramics and discuss topics on the reinforcements and interfaces of ceramic-matrix composites, the oxide-matrix and nonoxide-matrix composites, and the fracture and mechanical behaviors in ceramic matrix composites. Papers are presented on an Air Force high-temperature materials program, a high-temperature continuous sintered SiC fiber for composite applications, silylene-acetylene polymers as precursors to SiC fibers, the material characterization of chemical-vapor-deposited TiB2 fibers, and an investigation of interfacial shear strength in SiC/Si3N4 composites. Attention is also given to an evaluation of SiC platelets as a reinforcement for oxide matrix composites, physical properties of alumina-boron carbide whisker/particle composites, hot isostatic pressing of sintered Si3N4 ceramics, the influence of the Si3N4 microstructure on its R-curve and fatigue behavior, and acoustic emission characterization of the fracture mechanism of a glass-matrix composite.

Not Available

1991-10-01

343

Development of chemical vapor composites, CVC materials. Final report  

SciTech Connect

Industry has a critical need for high-temperature operable ceramic composites that are strong, non-brittle, light weight, and corrosion resistant. Improvements in energy efficiency, reduced emissions and increased productivity can be achieved in many industrial processes with ceramic composites if the reaction temperature and pressure are increased. Ceramic composites offer the potential to meet these material requirements in a variety of industrial applications. However, their use is often restricted by high cost. The Chemical Vapor composite, CVC, process can reduce the high costs and multiple fabrication steps presently required for ceramic fabrication. CVC deposition has the potential to eliminate many difficult processing problems and greatly increase fabrication rates for composites. With CVC, the manufacturing process can control the composites` density, microstructure and composition during growth. The CVC process: can grow or deposit material 100 times faster than conventional techniques; does not require an expensive woven preform to infiltrate; can use high modulus fibers that cannot be woven into a preform; can deposit composites to tolerances of less than 0.025 mm on one surface without further machining.

NONE

1998-10-05

344

Biotransformation of an uncured composite material  

NASA Technical Reports Server (NTRS)

The feasibility of biologically degrading prepreg wastes was studied. The work was conducted with the intention of obtaining baseline data that would facilitate the achievement of two long-range goals. These goals are: (1) the biological remediation of the hazardous components in the prepreg wastes, and (2) providing the potential for recycling the prepreg waste fibers. The experiments examined a prepreg that employs an bismaleimide resin system. Initial results demonstrated an obvious deterioration of the prepreg material when incubated with several bacterial strains. The most active cultures were identified as a mixture of 'Bacillus cereus' and 'Pseudomonas sp'. Gas chromatography analyses revealed seven primary compounds in the resin mixture. Biotransformation studies, using the complete prepreg material, demonstrated on obvious loss of all seven organic compounds. Gas chromatography-mass spectrometry analyses resulted in structure assignments for the two primary components of the resin. Both were analogs of Bisphenol A; one being bismaleimide, and the other being Bisphenol A containing a diglycidyl moiety. The 'diglycidyl analog' was purified using thin-layer chromatography and the biotransformation of this compound (at 27 ug/ml bacterial culture) was monitored. After a seven-day incubation, approximately 40% of the organic compound was biotransformed. These results demonstrate the biotransformation of the prepreg resin and indicate that biological remediation of the prepreg wastes is feasible.

Welsh, Clement J.; Glass, Michael J.; Cheslack, Brian; Pryor, Robert; Tran, Duan K.; Bowers-Irons, Gail

1994-01-01

345

Thermal radiation transmission through composite material  

NASA Astrophysics Data System (ADS)

On 10 June 1993, the Defense Nuclear Agency (DNA) Field Command at White Sands Missile Range conducted a Thermal Radiation Simulator (TRS) test for the Naval Surface Warfare Center (NSWC) during project MINOR UNCLE. The NSWC was interested in measuring the radiant thermal energy absorbed by a fiberglass panel during a simulated nuclear weapon event. The resultant thermocouple data showed an unusual initial high-temperature rise and fall, followed by the expected conductive heating. The initial transient was theorized to be the result of thermal radiation transmitted through the panel. To investigate this theory, NSWC prepared several more panels of different thicknesses, preinstrumented with thermocouples and strain gages for testing with a U.S. Army Research Laboratory (ARL) TRS. ARL also provided additional instrumentation to measure thermal radiation on the front surface as well as behind the panel. The results showed that there was direct heating of the rear of the composite panel by thermal radiation. The quantity of heat transmission through the panel and the point of ignition of the front surface of the panel were determined. Smoke and charring of the front surface protected the panel from further heating and possible destruction.

Loucks, Richard B.

1995-06-01

346

Composite material fabrication techniques. CRADA final report  

SciTech Connect

This report describes a low cost method of fabricating components for mockups and training simulators used in the transportation industry. This technology was developed jointly by the Oak Ridge National Laboratory (ORNL) and Metters Industries, Incorporated (MI) as part of a Cooperative Research and Development Agreement (CRADA) ORNL94-0288 sponsored by the Department of Energy (DOE) Office of Economic Impace and Diversity Minority Business Technology Transfer Consortium. The technology involves fabricating component replicas from fiberglass/epoxy composites using a resin transfer molding (RTM) process. The original components are used as masters to fabricate the molds. The molding process yields parts that duplicate the significant dimensional requirements of the original component while still parts that duplicate the significant dimensional requirements of the original component while still providing adequate strength and stiffness for use in training simulators. This technology permits MI to overcome an acute shortage in surplus military hardware available to them for use in manufacturing training simulators. In addition, the cost of the molded fiberglass components is expected to be less than that of procuring the original components from the military.

Frame, B J; Paulauskas, F L [Oak Ridge National Lab., TN (United States); Miller, J; Parzych, W [Metters Industries, Inc. (United States)

1996-09-30

347

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-print Network

Evaluation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service the existing natural gas transmission and distribution piping network for hydrogen/mixed gas delivery ­ Develop Capital Cost Hydrogen Effects on Materials Leakage/Seals Compressor/Valves/Inspection Collaborators

348

Fabrication of Composite Material Using Gettou Fiber by Injection Molding  

NASA Astrophysics Data System (ADS)

This study investigated the mechanical properties of composite using gettou (shell ginger) fiber as reinforcement fabricated from injection molding. Gettou fiber is a natural fiber made from gettou, a subtropical plant that is largely abundant in Okinawa, Japan. We used the stem part of gettou plant and made the gettou fiber by crushing the stem. The composite using gettou fiber contributed to low shrinkage ratio, high bending strength and high flexural modulus. The mechanical strength of composite using long gettou fiber showed higher value than composite using short gettou fiber. Next, because gettou is particularly known for its anti-mold characteristic, we investigated the characteristic in gettou plastic composite. The composite was tested against two molds: aspergillius niger and penicillium funiculosum. The 60% gettou fiber plastic composite was found to satisfy the JISZ2801 criterion. Finally, in order to predict the flexural modulus of composite using gettou fiber by Halpin-Tsai equation, the tensile elastic modulus of single gettou fiber was measured. The tendency of the experimental results of composite using gettou fiber was in good agreement with Halpin-Tsai equation.

Setsuda, Roy; Fukumoto, Isao; Kanda, Yasuyuki

349

Highly explosive nanosilicon-based composite materials  

NASA Astrophysics Data System (ADS)

We present a highly explosive binary system based on porous silicon layers with their pores filled with solid oxidizers. The porous layers are produced by a standard electrochemical etching process and exhibit properties that are different from other energetic materials. Its production is completely compatible with the standard silicon technology and full bulk silicon wafers can be processed and therefore a large number of explosive elements can be produced simultaneously. The application-relevant parameters: the efficiency and the long-term stability of various porous silicon/oxidizer systems have been studied in details. Structural properties of porous silicon, its surface termination, the atomic ratio of silicon to oxygen and the chosen oxidizers were optimized to achieve the highest efficiency of the explosive reaction. This explosive system reveals various possible applications in different industrial fields, e.g. as a novel, very fast airbag igniter.

Clément, D.; Diener, J.; Gross, E.; Künzner, N.; Timoshenko, V. Yu.; Kovalev, D.

2005-06-01

350

A new technique for simulating composite material  

NASA Technical Reports Server (NTRS)

This project dealt with the development on new methodologies and algorithms for the multi-spectrum electromagnetic characterization of large scale nonmetallic airborne vehicles and structures. A robust, low memory, and accurate methodology was developed which is particularly suited for modern machine architectures. This is a hybrid finite element method that combines two well known numerical solution approaches. That of the finite element method for modeling volumes and the boundary integral method which yields exact boundary conditions for terminating the finite element mesh. In addition, a variety of high frequency results were generated (such as diffraction coefficients for impedance surfaces and material layers) and a class of boundary conditions were developed which hold promise for more efficient simulations. During the course of this project, nearly 25 detailed research reports were generated along with an equal number of journal papers. The reports, papers, and journal articles are listed in the appendices along with their abstracts.

Volakis, John L.

1991-01-01

351

Military turbojet component design and validation with thermostructural composite material  

SciTech Connect

Ceramic Matrix Composite (CMC) materials based on a concept providing both high temperature capabilities and high mechanical strength can meet new turbojet requirements. They have the potential to enhance performance and durability of pertinent parts. Lab characterization performed on test samples showed that SEPCARBINOX {reg_sign} C/SiC composites with adequate finishing treatments can sustain temperatures up to 600 - 650{degrees}C for long duration and CERASEP {reg_sign} SiC/SiC composites can sustain temperatures up to 1200{degrees}C. A large amount of R&D activities at SEP on CMC components over the last 10 years have demonstrated a good potential for C/SiC and SiC/SiC composites and brought design experience and methodology for developments. In the future, engines should be able to take advantage of an improved thermostructural material specifically developed for turbojet environment.

Spriet, P.; Boury, D.; Habarou, G. [SEP, Saint-Medard-en-Jalles (France)

1995-12-01

352

Fracture toughness of fibrous composite materials  

NASA Technical Reports Server (NTRS)

Laminates with various proportions of 0 deg, 45 deg, and 90 deg plies were fabricated from T300/5208 and T300/BP-907 graphite/epoxy prepreg tape material. The fracture toughness of each laminate orientation or lay-up was determined by testing center-cracked specimens, and it was also predicted with the general fracture-toughness parameter. The predictions were good except when crack-tip splitting was large, at which time the toughness and strengths tended to be underpredicted. By using predictions, a parametric study was also made of factors that influence fracture toughness. Fiber and matrix properties as well as lay-up were investigated. Without crack-tip splitting, fracture toughness increases in proportion to fiber strength and fiber volume fraction, increases linearly with E(22)/E(11), is largest when the modulus for non-0 deg fibers is greater than that of 0 deg fibers, and is smallest for 0(m)/90(p)(s) lay-ups. (The E(11) and E(22) are Young's moduli of the lamina parallel to and normal to the direction of the fibers, respectively). For a given proportion of 0 deg plies, the most notch-sensitive lay-ups are 0(m)/90(p)(s) and the least sensitive are 0(m)/45(n)(s) and alpha(s). Notch sensitivity increases with the proportion of 0 deg plies and decreases with alpha. Strong, tough matrix materials, which inhibit crack-tip splitting, generally lead to minimum fracture toughness.

Poe, C. C., Jr.

1984-01-01

353

Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials  

NASA Technical Reports Server (NTRS)

Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

Baker, James Stewart

2014-01-01

354

Mechanical Properties of Composite Material Using Coal Ash and Clay  

NASA Astrophysics Data System (ADS)

Coal ash is industry waste exhausted lots of amount by electric power plant. The particle sizes of coal ash, especially coal fly ash are very fine, and the chemical component are extremely resemble with Okinawa-Kucha clay. From the point of view that clay is composed of particles of micro meter size in diameter, we should try the application for fabrication of composite material using coal fly ash and clay. The comparison of the mechanical properties of composite material using coal fly ash and clay were performed during electric furnace burning and spark plasma sintering. As a result, the bending strength of composite material containing the coal ash 10% and fired at 1423K using the electric furnace after press forming at 30 MPa showed the highest value of 47 MPa. This phenomenon suggests a reinforcement role of coal ash particles to clay base material. In spark plasma sintering process, the bending strength of the composite material containing the clay 5-10% to fly ash base material fired at 1473K and pressured at 20 MPa showed the highest value of 88 MPa. This result indicates a binder effect of clay according to the liquid phase sintering of melted clay surrounding around coal fly ash particles surface.

Fukumoto, Isao; Kanda, Yasuyuki

355

Life Modeling and Design Analysis for Ceramic Matrix Composite Materials  

NASA Technical Reports Server (NTRS)

The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.

2005-01-01

356

NATURE MATERIALS | VOL 8 | APRIL 2009 | www.nature.com/naturematerials 271 INSIGHT | REVIEW ARTICLES  

E-print Network

NATURE MATERIALS | VOL 8 | APRIL 2009 | www.nature.com/naturematerials 271 INSIGHT | REVIEW and the ability to control and automate modern electron microscopes. Two techniques that have benefited from-dimensional (2D) pro- jections of 3D structures. However, the complexity of both natural and artificial materials

Dunin-Borkowski, Rafal E.

357

Grained composite materials prepared by combustion synthesis under mechanical pressure  

DOEpatents

Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

Dunmead, Stephen D. (Davis, CA); Holt, Joseph B. (San Jose, CA); Kingman, Donald D. (Danville, CA); Munir, Zuhair A. (Davis, CA)

1990-01-01

358

Nondestructive Evaluation of Anisotropy in Composite Materials Via Acoustic Birefringence  

Microsoft Academic Search

A linearly polarized ultrasonic shear wave propagating in fiber-reinforced composites produces an elliptical vibration pattern due to birefringence. The acoustic birefringence of shear waves is analyzed and applied for evaluation of in-plane stiffness anisotropy of uni-axial nonfabric, biaxial, and quadra-axial fabric composite materials. The parameters of the elliptical motion are determined by measurements of the amplitude and phase of the

Igor Solodov; Klaus Pfleiderer; Daniel Doring; Gerd Busse

2008-01-01

359

Vibration reduction in advanced composite turbo-fan blades using embedded damping materials  

NASA Astrophysics Data System (ADS)

A preliminary design and analysis procedure for locating an integral damping treatment in composite turbo-propeller blades has been developed. This finite element based approach, which is based upon the modal strain energy method, is used to size and locate the damping material patch so that the damping (loss factor) is maximized in a particular mode while minimizing the overall stiffness loss (minimal reductions in the structural natural frequencies). Numerical results are presented to illustrate the variation in the natural frequencies and damping levels as a result of stacking sequence, integral damping patch size and location, and border materials. Experimental studies were presented using flat and pretwisted (30 degrees) integrally damped composite blade-like structures to show how a small internal damping patch can significantly increase the damping levels without sacrificing structural integrity. Moreover, the use of a soft border material around the patch can greatly increase the structural damping levels.

Kosmatka, John B.; Lapid, Alex J.; Mehmed, Oral

1996-05-01

360

Effects of thermal cycling on composite materials for space structures  

NASA Technical Reports Server (NTRS)

The effects of thermal cycling on the thermal and mechanical properties of composite materials that are candidates for space structures are briefly described. The results from a thermal analysis of the orbiting Space Station Freedom is used to define a typical thermal environment and the parameters that cause changes in the thermal history. The interactions of this environment with composite materials are shown and described. The effects of this interaction on the integrity as well as the properties of GR/thermoset, Gr/thermoplastic, Gr/metal and Gr/glass composite materials are discussed. Emphasis is placed on the effects of the interaction that are critical to precision spacecraft. Finally, ground test methodology are briefly discussed.

Tompkins, Stephen S.

1989-01-01

361

Effective mechanical, transport and cross properties for distressed composite materials  

NASA Astrophysics Data System (ADS)

Composite materials and materials that have been subjected to varying level of damage have been the subject of extensive research for several decades especially with regard to prediction of constitutive behavior. Classical homogenization techniques aim at replacing an actual heterogeneous body by a fictitious homogeneous solid, which globally behaves in the same way. In this thesis, we are considering the effect of body forces as an external forcing on the mechanical behavior of a heterogeneous material and the effect of heat source on the thermal constitutive equations, when the heterogeneous material is replaced by a fictitious or equivalent homogeneous material. In order to achieve these objectives, as the first step, we use the theorems of minimum strain and minimum complementary energies to modify the bounds for strain energy in linear elasticity in order to consider the effect of body force. By means of the strain energy bounds and using the canonical form of the elasticity tensor for an isotropic material, bounds for the effective bulk and shear moduli of two- or multi-phase non-homogeneous materials may separately be obtained. With the same method by using defined artificial thermal and heat flux energies available in literatures, the bounds for the artificial or equivalent thermal energy are modified in the case of the existence of a heat source. By means of the bounds for equivalent thermal and heat flux energies, the bounds of the effective thermal conductivity of two- or multi-isotropic phase non-homogeneous materials may be obtained. Then, in the case of the existence of a heat source, the effective conductivity of composite materials comprising of a linear isotropic matrix containing linear isotropic inclusions, is evaluated in the frameworks of a self-consistent model. Next, the differential scheme and Mori-Tanaka method are modified for the case of an existing heat source to evaluate the effective conductivity of the composite materials (linear isotropic matrix containing linear isotropic inclusions). The last part of the thesis is related to the effect of severe environmental conditions on the behavior of a composite material such as concrete. Freezing of liquid solutions in the solid matrix before damage occurs, causes the diffusivity of the concrete to be reduced, and after damage due to tensile stress in the concrete, which itself is due to increasing the volume of the solution during freezing, thus causing the diffusivity to increase. Based on composite mechanics and within the framework of self-consistent models, a theory is introduced to consider these effects on the diffusivity of concrete as a composite material. (Abstract shortened by UMI.)

Eskandari-Ghadi, Morteza

362

Hot extruded carbon nanotube reinforced aluminum matrix composite materials.  

PubMed

Carbon nanotube (CNT) reinforced aluminum (Al) matrix composite materials were successfully fabricated by mechanical ball milling followed by powder hot extrusion processes. Microstructural analysis revealed that the CNTs were well dispersed at the boundaries and were aligned with the extrusion direction in the composites obtained. Although only a small quantity of CNTs were added to the composite (1 vol%), the Vickers hardness and the tensile strength were significantly enhanced, with an up to three-fold increase relative to that of pure Al. From the fractography of the extruded Al-CNT composite, several shapes were observed in the fracture surface, and this unique morphology is discussed based on the strengthening mechanism. The damage in the CNTs was investigated with Raman spectroscopy. However, the Al-CNT composite materials were not only strengthened by the addition of CNTs but also enhanced by several synergistic effects. The nanoindentation stress-strain curve was successfully constructed by setting the effective zero-load and zero-displacement points and was compared with the tensile stress-strain curve. The yield strengths of the Al-CNT composites from the nanoindentation and tensile tests were compared and discussed. We believe that the yield strength can be predicted using a simple nanoindentation stress/strain curve and that this method will be useful for materials that are difficult to machine, such as complex ceramics. PMID:23011263

Kwon, Hansang; Leparoux, Marc

2012-10-19

363

Electrostatic Discharge Sensitivity and Electrical Conductivity of Composite Energetic Materials  

SciTech Connect

Composite energetic material response to electrical stimuli was investigated and a correlation between electrical conductivity and ignition sensitivity was examined. The composites consisted of micrometer particle aluminum combined with another metal, metal oxide, or fluoropolymer. Of the nine tested mixtures, aluminum with copper oxide was the only mixture to ignite by electrostatic discharge with minimum ignition energy (MIE) of 25 mJ and an electrical conductivity of 1246.25 nS; two orders of magnitude higher than the next composite. This study showed a similar trend in MIE for ignition triggered by a discharged spark compared with a thermal hot wire source.

Michael A. Daniels; Daniel J. Prentice; Chelsea Weir; Michelle L. Pantoya; Gautham Ramachandran; Tim Dallas

2013-02-01

364

Composite Overwrapped Pressure Vessels (COPV) Materials Aging Issues  

NASA Technical Reports Server (NTRS)

This slide presentation reviews some of the issues concerning the aging of the materials in a Composite Overwrapped Pressure Vessels (COPV). The basic composition of the COPV is a Boss, a composite overwrap, and a metallic liner. The lifetime of a COPV is affected by the age of the overwrap, the cyclic fatigue of the metallic liner, and stress rupture life, a sudden and catastrophic failure of the overwrap while holding at a stress level below the ultimate strength for an extended time. There is information about the coupon tests that were performed, and a test on a flight COPV.

2010-01-01

365

Multi-objective shape and material optimization of composite structures including damping  

NASA Technical Reports Server (NTRS)

A multi-objective optimal design methodology is developed for light-weight, low-cost composite structures of improved dynamic performance. The design objectives include minimization of resonance amplitudes (or maximization of modal damping), weight, and material cost. The design vector includes micromechanics, laminate, and structural shape parameters. Performance constraints are imposed on static displacements, dynamic amplitudes, and natural frequencies. The effects of damping on the dynamics of composite structures are incorporated. Preliminary applications on a cantilever composite beam illustrated that only the proposed multi-objective optimization, as opposed to single objective functions, simultaneously improved all objectives. The significance of composite damping in the design of advanced composite structures was also demonstrated, indicating that design methods based on undamped dynamics may fail to improve the dynamic performance near resonances.

Saravanos, D. A.; Chamis, C. C.

1990-01-01

366

Multi-objective shape and material optimization of composite structures including damping  

NASA Technical Reports Server (NTRS)

A multi-objective optimal design methodology is developed for light-weight, low cost composite structures of improved dynamic performance. The design objectives include minimization of resonance amplitudes (or maximization of modal damping), weight, and material cost. The design vector includes micromechanics, laminate, and structural shape parameters. Performance constraints are imposed on static displacements, dynamic amplitudes, and natural frequencies. The effects of damping on the dynamics of composite structures are incorporated. Preliminary applications on a cantilever composite beam illustrated that only the proposed multi-objective optimization, as opposed to single objective functions, simultaneously improved all objectives. The significance of composite damping in the design of advanced composite structures was also demonstrated, indicating the design methods based on undamped dynamics may fail to improve the dynamic performance near resonances.

Saravanos, D. A.; Chamis, Christos C.

1990-01-01

367

Thermal design of composite material high temperature attachments  

NASA Technical Reports Server (NTRS)

An evaluation has been made of the thermal aspects of utilizing advanced filamentary composite materials as primary structures on the shuttle vehicle. The technical objectives of this study are to: (1) establish and design concepts for maintaining material temperatures within allowable limits at TPS attachments and or penetrations applicable to the space shuttle; and (2) verify the thermal design analysis by testing selected concepts. Specific composite materials being evaluated are boron epoxy, graphite/epoxy, boron polyimide, and boron aluminum; graphite/polyimide has been added to this list for property data identification and preliminary evaluation of thermal design problems. The TPS standoff to composite structure attachment over-temperature problem is directly related to TPS maximum surface temperature. To provide a thermally comprehensive evaluation of attachment temperature characteristics, maximum surface temperatures of 900 F, 1200 F, 1800 F, 2500 F and 3000 F are considered in this study. This range of surface temperatures and the high and low maximum temperature capability of the selected composite materials will result in a wide range of thermal requirements for composite/TPS standoff attachments.

1972-01-01

368

Optimizing material properties of composite plates for sound transmission problem  

NASA Astrophysics Data System (ADS)

To calculate the specific transmission loss (TL) of a composite plate, the conjugate gradient optimization method is utilized to estimate and optimize material properties of the composite plate in this study. For an n-layer composite plate, a nonlinear dynamic stiffness matrix based on the thick plate theory is formulated. To avoid huge computational efforts due to the combination of different composite material plates, a transfer matrix approach is proposed to restrict the dynamic stiffness matrix of the composite plate to a 4×4 matrix. Moreover, the transfer matrix approach has also been used to simplify the complexity of the objective function gradient for the optimization method. Numerical simulations are performed to validate the present algorithm by comparing the TL of the optimal composite plate with that of the original plate. Small number of iterations required during convergence tests illustrates the efficiency of the optimization method. The results indicate that an excellent estimation for the composite plate can be obtained for the desired sound transmission.

Tsai, Yu-Ting; Pawar, S. J.; Huang, Jin H.

2015-01-01

369

Chatter control in the milling process of composite materials  

NASA Astrophysics Data System (ADS)

In this paper, a model of the milling process of fibre reinforced composite material is shown. This classical one degree of freedom model of the milling process is adjusted for composite materials by variable specific cutting forces, which describe the fibre resistance. The stability lobe diagrams are determined numerically. Additionally, to eliminate the chatter vibration, small relative oscillations between the workpiece and the tool are introduced. Basing on numerical simulations the range of amplitude and the frequency of excitation is found for chatter reduction.

Kecik, K.; Rusinek, R.; Warminski, J.; Weremczuk, A.

2012-08-01

370

Experimental determination of material constants of a hybrid composite laminate  

SciTech Connect

This paper discusses the results of the experimental study that was conducted in order to determine the material properties of a hybrid composite laminate made from Fiberite material MXM-7714/120 (a fabric prepreg consisting of woven Kevlar{reg_sign} 49 reinforcement impregnated with Fiberite 250 F (121 C) curing 7714 epoxy resin) and HYE-2448AIE (a 250 F (121 C) curing epoxy resin impregnated unidirectional graphite tape). First, each of the materials that comprise the hybrid laminate was fabricated separately according to ASTM-D-3039 specification in order to determine their material properties. The materials were then hybridized and the properties were determined. Data from this experiment reveal that a new class of material that can meet desired specifications can be created through hybridization. The data also revealed that the properties of the materials bonded together as a hybrid complement the properties of the constituent members of the hybrid.

Ihekweazu, S.N.; Lari, S.B.; Unanwa, C.O. [South Carolina State Univ., Orangeburg, SC (United States)

1999-07-01

371

Durable phosphate-bonded natural fiber composite products  

Microsoft Academic Search

The University of Minnesota Duluth Natural Resources Research Institute (NRRI) and the Wisconsin Business Innovation Corporation (WBIC) conducted a preliminary study to determine the feasibility of producing composite building products utilizing waste pulp and paper mill residues and Ceramicrete®, an innovative chemically-bonded phosphate ceramic binder developed by the United States Department of Energy’s Argonne National Laboratory (ANL). Specifically, the project

Patrick K. Donahue; Matthew D. Aro

2010-01-01

372

Regional Patterns in the Isotopic Composition of Natural and  

E-print Network

regions has the potential to produce large groundwater NO3 - concentrations. The use of isotopes - in groundwater is fundamental to developing effective management plans intended to reduce nitrogen (N) inputsRegional Patterns in the Isotopic Composition of Natural and Anthropogenic Nitrate in Groundwater

373

Characterization of ceramic composite materials for gas turbine applications  

SciTech Connect

Ceramic composite materials have the capability to sustain high stress in the presence of high temperatures and aggressive atmospheres. Such materials are being considered for application as cumbustors, burner cubes, heat exchangers, headers. hot-gas filters, and even rotors of stationary gas turbine engines. In the present program, Nicalon preforms of tubular geometry were fabricated with different fiber architectures (filament winding, 3D braiding, or cloth winding) to tailor the mechanical properties for specific applications. However, these applications require that candidate materials be carefully characterized. Mechanical characterization must establish the properties and performance that are essential for structural design of the turbine components. For this purpose, a full complement of properties is needed, i.e., the stiffness and strengths of the composite material at a range of temperatures, and the fatigue and creep behavior of the materials under the stress states anticipated by the user. This mechanical characterization requires specialized equipment and methodologies, which are now under development by the authors. This paper will present a description of the methodologies required for ceramic composite characterization, and will describe initial results for ceramic composite tubes, a representative geometry for gas turbine components. Future needs and opportunities will also be discussed.

Reifsnider, K.; Stinchcomb, W.; Liao, K.; Oleksuk, L. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Stinton, D. [Oak Ridge National Lab., TN (United States)

1993-05-01

374

Characterization of ceramic composite materials for gas turbine applications  

SciTech Connect

Ceramic composite materials have the capability to sustain high stress in the presence of high temperatures and aggressive atmospheres. Such materials are being considered for application as cumbustors, burner cubes, heat exchangers, headers. hot-gas filters, and even rotors of stationary gas turbine engines. In the present program, Nicalon preforms of tubular geometry were fabricated with different fiber architectures (filament winding, 3D braiding, or cloth winding) to tailor the mechanical properties for specific applications. However, these applications require that candidate materials be carefully characterized. Mechanical characterization must establish the properties and performance that are essential for structural design of the turbine components. For this purpose, a full complement of properties is needed, i.e., the stiffness and strengths of the composite material at a range of temperatures, and the fatigue and creep behavior of the materials under the stress states anticipated by the user. This mechanical characterization requires specialized equipment and methodologies, which are now under development by the authors. This paper will present a description of the methodologies required for ceramic composite characterization, and will describe initial results for ceramic composite tubes, a representative geometry for gas turbine components. Future needs and opportunities will also be discussed.

Reifsnider, K.; Stinchcomb, W.; Liao, K.; Oleksuk, L. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)); Stinton, D. (Oak Ridge National Lab., TN (United States))

1993-01-01

375

Novel Composite Materials for SOFC Cathode-Interconnect Contact  

SciTech Connect

This report summarized the research efforts and major conclusions of our University Coal Research Project, which focused on developing a new class of electrically-conductive, Cr-blocking, damage-tolerant Ag-perovksite composite materials for the cathode-interconnect contact of intermediate-temperature solid oxide fuel cell (SOFC) stacks. The Ag evaporation rate increased linearly with air flow rate initially and became constant for the air flow rate {ge} {approx} 1.0 cm {center_dot} s{sup -1}. An activation energy of 280 KJ.mol{sup -1} was obtained for Ag evaporation in both air and Ar+5%H{sub 2}+3%H{sub 2}O. The exposure environment had no measurable influence on the Ag evaporation rate as well as its dependence on the gas flow rate, while different surface morphological features were developed after thermal exposure in the oxidizing and reducing environments. Pure Ag is too volatile at the SOFC operating temperature and its evaporation rate needs to be reduced to facilitate its application as the cathode-interconnect contact. Based on extensive evaporation testing, it was found that none of the alloying additions reduced the evaporation rate of Ag over the long-term exposure, except the noble metals Au, Pt, and Pd; however, these noble elements are too expensive to justify their practical use in contact materials. Furthermore, the addition of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) into Ag to form a composite material also did not significantly modify the Ag evaporation rate. The Ag-perovskite composites with the perovskite being either (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.8}Fe{sub 0.2})O{sub 3} (LSCF) or LSM were systematically evaluated as the contact material between the ferritic interconnect alloy Crofer 22 APU and the LSM cathode. The area specific resistances (ASRs) of the test specimens were shown to be highly dependent on the volume percentage and the type of the perovskite present in the composite contact material as well as the amount of thermal cycling that the specimens were subjected to during testing. The Ag-LSCF composite contact materials proved more effective in trapping Cr within the contact material and preventing Cr migration into the cathode than the Ag-LSM composites. Ag-perovskite composite contact materials are promising candidates for use in intermediate-temperature SOFC stacks with ferritic stainless steel interconnects due to their ability to maintain acceptably low ASRs while reducing Cr migration into the cathode material.

J. H. Zhu

2009-07-31

376

Development and Analysis of Synthetic Composite Materials Emulating Patient AAA Wall Material Properties  

NASA Astrophysics Data System (ADS)

Abdominal Aortic Aneurysm (AAA) rupture accounts for 14,000 deaths a year in the United States. Since the number of ruptures has not decreased significantly in recent years despite improvements in imaging and surgical procedures, there is a need for an accurate, noninvasive technique capable of establishing rupture risk for specific patients and discriminating lesions at high risk. In this project, synthetic composite materials replicating patient-specific wall stiffness and strength were developed and their material properties evaluated. Composites utilizing various fibers were developed to give a range of stiffness from 1825.75 kPa up through 8187.64 kPa with one base material, Sylgard 170. A range of strength from 631.12 kPa to 1083 kPa with the same base material was also found. By evaluating various base materials and various reinforcing fibers, a catalogue of stiffnesses and strengths was started to allow for adaptation to specific patient properties. Three specific patient properties were well-matched with two composites fabricated: silk thread-reinforced Sylgard 170 and silk thread-reinforced Dragon Skin 20. The composites showed similar stiffnesses to the specific patients while reaching target stresses at particular strains. Not all patients were matched with composites as of yet, but recommendations for future matches are able to be determined. These composites will allow for the future evaluation of flow-induced wall stresses in models replicating patient material properties and geometries.

Margossian, Christa M.

377

The Mori–Tanaka method applied to textile composite materials  

Microsoft Academic Search

The application of the Mori–Tanaka method for the calculation of the elastic properties of textile composite materials is studied. First, it is shown how the implementation of the Mori–Tanaka method for materials with a complex orientation distribution can be greatly simplified by the use of orientation tensors. For inclusions with elliptical cross-section, a new concept of “equivalent orientations” is defined

B. Gommers; I. Verpoest; P. Van Houtte

1998-01-01

378

Holographic imaging of natural-fiber-containing materials  

DOEpatents

The present invention includes methods and apparatuses for imaging material properties in natural-fiber-containing materials. In particular, the images can provide quantified measures of localized moisture content. Embodiments of the invention utilize an array of antennas and at least one transceiver to collect amplitude and phase data from radiation interacting with the natural-fiber-containing materials. The antennas and the transceivers are configured to transmit and receive electromagnetic radiation at one or more frequencies, which are between 50 MHz and 1 THz. A conveyance system passes the natural-fiber-containing materials through a field of view of the array of antennas. A computing device is configured to apply a synthetic imaging algorithm to construct a three-dimensional image of the natural-fiber-containing materials that provides a quantified measure of localized moisture content. The image and the quantified measure are both based on the amplitude data, the phase data, or both.

Bunch, Kyle J [Richland, WA; Tucker, Brian J [Pasco, WA; Severtsen, Ronald H [Richland, WA; Hall, Thomas E [Kennewick, WA; McMakin, Douglas L [Richland, WA; Lechelt, Wayne M [West Richland, WA; Griffin, Jeffrey W [Kennewick, WA; Sheen, David M [Richland, WA

2010-12-21

379

ADSORPTION OF ORGANIC CATIONS TO NATURAL MATERIALS  

EPA Science Inventory

The factors that control the extent of adsorption of amphiphilic organic cations on environmental and pristine surfaces have been studied. he sorbents were kaolinite, montmorillonite, two aquifer materials, and a soil; solutions contained various concentrations of NaCl and CaC12,...

380

ADSORPTION OF ORGANIC CATIONS TO NATURAL MATERIALS  

EPA Science Inventory

The factors that control the extent of adsorption of amphiphilic organic cations on environmental and pristine surfaces have been studied. The sorbents were kaolinite, montmorillonite, two aquifer materials, and a soil; solutions contained various concentrations of NaCl and CaCl,...

381

Alternative processing methods for tungsten-base composite materials  

SciTech Connect

Tungsten composite materials contain large amounts of tungsten distributed in a continuous matrix phase. Current commercial materials include the tungsten-nickel-iron with cobalt replacing some or all of the iron, and also tungsten-copper materials. Typically, these are fabricated by liquid-phase sintering of blended powders. Liquid-phase sintering offers the advantages of low processing costs, established technology, and generally attractive mechanical properties. However, liquid-phase sintering is restricted to a very limited number of matrix alloying elements and a limited range of tungsten and alloying compositions. In the past few years, there has been interest in a wider range of matrix materials that offer the potential for superior composite properties. These must be processed by solid-state processes and at sufficiently low temperatures to avoid undesired reactions between the tungsten and the matrix phase. These processes, in order of decreasing process temperature requirements, include hot-isostatic pressing (HIPing), hot extrusion, and dynamic compaction. The HIPing and hot extrusion processes have also been used to improve mechanical properties of conventional liquid-phase-sintered materials. Results of laboratory-scale investigations of solid-state consolidation of a variety of matrix materials, including titanium, hafnium, nickel aluminide, and steels are reviewed. The potential advantages and disadvantages of each of the possible alternative consolidation processes are identified. Postconsolidation processing to control microstructure and macrostructure is discussed, including novel methods of controlling microstructure alignment.

Ohriner, E.K.; Sikka, V.K.

1995-12-31

382

Simulation of ultrasonic array imaging of composite materials with defects.  

PubMed

Ultrasonic transducer arrays are extensively used for the nondestructive evaluation of materials for aerospace and other applications. However, their use with composites requires some technique development because of reflections at the layer boundaries and the effects of attenuation. When used in full matrix capture mode, algorithms such as the total focusing method (TFM) must be applied to obtain the image. In composite materials, improvement to the algorithm is required to include the effects of material anisotropy (affecting wave speed) and optimum aperture limits to optimize the signal-to-noise ratio and location detection for a defect in the material. This paper presents simulations of the ultrasonic array signals in multilayer anisotropic materials with and without a simulated defect. A kernel model for plane wave propagation in the material is combined with an angular spectrum decomposition (for finite transducer elements) and transducer frequency response, to model the full array signals. Inclusion of the defect is through its far-field scattering response. The model facilitates the study of imaging algorithm development by identification of the effects of anisotropy, signal-to-noise ratio, and aperture limit. An analytical method for the calculation of the effective group velocity in the composite at low frequency is demonstrated, permitting rapid calculation of time delay laws in practice. PMID:24658724

Humeida, Yousif; Pinfield, Valerie J; Challis, Richard E; Wilcox, Paul D; Li, Chuan

2013-09-01

383

Micromechanics of fiber-reinforced brittle-matrix composite materials  

SciTech Connect

The theory of micromechanics is used to investigate fracture mechanisms in fiber-reinforced brittle-matrix composite materials. Mori-Tanaka theory and Eshelby's method were applied to obtain a more accurate evaluation of average elastic and elasto-plastic relationships of composite materials with spherical, prolate spheroidal, and elliptic cylindrical inhomogeneities. Using the inclusion method, toughening of composites by mixing strong continuous fibers into a brittle material was examined. The fibers suppress the extension of a crack through bridging, interfacial debonding, and sliding effects. The energy release rate of a fiber-bridged crack and the resistance to crack extension by energy dissipation were evaluated separately to account for these effects. Tests on cement-based composite specimens with steel wires as fibers and under uniaxial tension conditions were performed with different fiber diameters and fiber-volume ratios. Theoretical considerations show that depending on the values of fiber volume ratio, fiber diameter, matrix and interfacial properties, a composite which is under tensile loading may or may not contain debonding at BOP (bend-over-point).

Yang Chungchia.

1991-01-01

384

Novel Microstructures for Polymer-Liquid Crystal Composite Materials  

NASA Technical Reports Server (NTRS)

There are a number of interface-dominated composite materials that contain a liquid crystalline (LC) phase in intimate contact with an isotropic phase. For example, polymer- dispersed liquid crystals, used in the fabrication of windows with switchable transparency, consist of micron size LC droplets dispersed in an isotropic polymer matrix. Many other types of liquid crystal composite materials can be envisioned that might have outstanding optical properties that could be exploited in novel chemical sensors, optical switches, and computer displays. This research project was based on the premise that many of these potentially useful LC composite materials can only be fabricated under microgravity conditions where gravity driven flows are absent. In the ground-based research described below, we have focused on a new class of LC composites that we call thermotropic- lyotropic liquid crystal systems (TLLCs). TLLCs consist of nanosize droplets of water dispersed in an LC matrix, with surfactants at the interface that stabilize the structure. By varying the type of surfactant one can access almost an infinite variety of unusual LC composite microstructures. Due to the importance of the interface in these types of systems, we have also developed molecular simulation models for liquid crystals at interfaces, and made some of the first measurements of the interfacial tension between liquid crystals and water.

Magda, Jules J.

2004-01-01

385

Experiment with curable composite material during the stratospheric flight.  

NASA Astrophysics Data System (ADS)

Development of the space materials is a complicate task and needs real space flight experiments. However, the space flight experiments are expensive and limited by regulations. The laboratory space simulators can provide only separate factors of the space environment. The stratospheric flight is a good possibility to come close to the space environment with low cost. We designed the stratospheric flight experiment with curable composite material during the flight. The composite based on carbon fibers and epoxy matrix (E201/E201S) was tested in laboratory under high vacuum and temperature. The cassette of uncured composite was designed to measure temperature, altitude, pressure, radiation during the flight. The stratospheric flight was realised from Moscow to altitude of 25 km. The temperature in stratosphere was -60C and pressure of 10 mbar. The composite was under cosmic rays when the flight was higher than the ozone layer. The presentation includes a discussion on the composite materials for space application, stratospheric flight design and conditions, and results of the flight experiment. The study is supported by RFBR (grant 14-08-96011 r_ural_a).

Efremov, Denis; Kondyurin, Alexey; Svistkov, Alexander L.; Lykov, Alexey; Chudinov, Viacheslav; Demin, Anton; Osorgina, I.; Terpugov, Viktor

386

Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials  

NASA Technical Reports Server (NTRS)

Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

Jordan, William

1998-01-01

387

Compendium of Material Composition Data for Radiation Transport Modeling  

SciTech Connect

Computational modeling of radiation transport problems including homeland security, radiation shielding and protection, and criticality safety all depend upon material definitions. This document has been created to serve two purposes: 1) to provide a quick reference of material compositions for analysts and 2) a standardized reference to reduce the differences between results from two independent analysts. Analysts are always encountering a variety of materials for which elemental definitions are not readily available or densities are not defined. This document provides a location where unique or hard to define materials will be located to reduce duplication in research for modeling purposes. Additionally, having a common set of material definitions helps to standardize modeling across PNNL and provide two separate researchers the ability to compare different modeling results from a common materials basis.

Williams, Ralph G.; Gesh, Christopher J.; Pagh, Richard T.

2006-10-31

388

Fractography of modern engineering materials: Composites and metals, Second volume  

SciTech Connect

This book contains the manuscripts of eleven papers that were presented at the Second Symposium on Fractography of Modern Engineering Materials held in May 1992. The numerous advances in materials science in the six year period following the First Symposium dictated this second meeting. Not only had new materials been developed in the intervening years, but understanding of older materials had also progressed. Similarly, advances in the technology and the techniques of fractography had occurred. The objective of the symposium was to extend the colloquy on fractography to include these many advances. The paper may be divided into three sections: Unique Fractographic Techniques; Metallic Materials; Polymeric and Composite Materials. The section titles reflect the diversity of materials discussed in the meeting. The range of materials included cross-linked polyethylene, AISI 52100 steel, 2024 aluminum, and a variety of organic and metal matrix fibrous composites. The case studies presented also covered a wide range. They included failure investigations of an antenna used in deep space exploration and chemical storage tanks. Advances in the techniques of fractography were also reflected in a number of presentations; quantitative techniques and expert systems were also subjects of presentations. A short precis of each paper is included here to assist the readers in identifying works of particular interest.

Masters, J.E.; Gilbertson, L.N. (eds.)

1993-01-01

389

Numerical Simulation of Delamination Growth in Composite Materials  

Microsoft Academic Search

Abstract The use of decohesion elements for the simulation of delamination in composite materials is reviewed The test methods available to measure the interfacial fracture toughness used in the formulation of decohesion elements are described initially After a brief presentation of the virtual crack closure technique, the technique most widely used to simulate delamination growth, the formulation of interfacial decohesion

P. P. Camanho; D. R. Ambur

2001-01-01

390

Microrobotics Using Composite Materials: The Micromechanical Flying Insect Thorax  

E-print Network

Microrobotics Using Composite Materials: The Micromechanical Flying Insect Thorax R. J. Wood S in microrobotic links and joints, as well as greater performance actuators while allow- ing complicatedDOF, 26 joint Micromechani- cal Flying Insect has reduced the thorax inertia by a factor of 3

Fearing, Ron

391

Fabrication and Mechanical Properties of Aluminum Matrix Composite Materials  

Microsoft Academic Search

Aluminum matrix composite materials containing SiC whisker and Saffil alumina short fiber are fabricated by the direct squeeze infiltration method. Optimum processing conditions for preforms and squeeze casting are suggested. For minimum damage of the reinforcements, the relatively low pressure of 25 MPa is applied.

T. Lim; Y. H. Kim; C. S. Lee; K. S. Han

1992-01-01

392

A three dimensional calculation of elastic equilibrium for composite materials  

NASA Technical Reports Server (NTRS)

A compact scheme is applied to three-dimensional elasticity problems for composite materials, involving simple geometries. The mathematical aspects of this approach are discussed, in particular the iteration method. A vector processor code implementing the compact scheme is presented, and several numerical experiments are summarized.

Lustman, Liviu R.; Rose, Milton E.

1986-01-01

393

A three dimensional calculation of elastic equilibrium for composite materials  

NASA Technical Reports Server (NTRS)

A compact scheme is applied to three-dimensional elasticity problems for composite materials, involving simple geometries. The mathematical aspects of this approach are discussed, in particular the iteration method. A vector processor code implementing the compact scheme is presented, and several numerical experiments are summarized.

Lustman, Liviu R.; Rose, Milton E.

1988-01-01

394

Hysteresis heating based induction bonding of composite materials  

Microsoft Academic Search

The viability of using magnetic particulate susceptor materials for induction heating during bonding of polymer matrix composites is well established in this work. The unique ability to offer localized heating, geometric flexibility, and self-controlled temperature is the major advantage of this technique. Hysteresis heating is tailored through careful design of the microstructure of nickel particulate polymer films (Ni\\/PSU). An excellent

Witchuda Suwanwatana

2004-01-01

395

Design And Formability Of A New Composite Material  

NASA Astrophysics Data System (ADS)

Composite materials with metallic cover sheets have been established based on their low weight potential in industrial applications. Further requirements such as high stiffness of component, vibration damping and formability today are only partially met by these composites. For that reason, in current research work, great efforts are being made to develop materials which can be adapted to their later use and load in terms of improving noise, vibration and harshness. Thus, greater stiffness of component structure with a simultaneous reduction of weight can be achieved. This article presents a new composite material which consists of a plane sheet, a thin intermediate damping-layer and a sheet with formed elements to increase stiffness of component such as beads. The plane side can be used as the visible part side. The shape elements increase strength due to work hardening and can be used as design or functional elements. Thus, this composite material results in several advantages within the single layers. Possible flexibility in component design enables new semi-finished or tailored components.

Bolay, C.; Liewald, M.

2011-05-01

396

ENG 4793: Composite Materials and Processes 1 Combining Thermoplastics with  

E-print Network

­ amorphous polymers slightly higher ­ Many injection molded products #12;2 ENG 4793: Composite Materials for injection molding ­ Longer pellets harder to mold and little benefit · Other shapes: ­ Ribbon, Tape, BMC · Injection Molding Limitations - Significant fiber breakage - input: 12 mm fibers - output: 0.5 ­ 3 mm fibers

Colton, Jonathan S.

397

NASA Composite Materials Development: Lessons Learned and Future Challenges  

NASA Technical Reports Server (NTRS)

Composite materials have emerged as the materials of choice for increasing the performance and reducing the weight and cost of military, general aviation, and transport aircraft and space launch vehicles. Major advancements have been made in the ability to design, fabricate, and analyze large complex aerospace structures. The recent efforts by Boeing and Airbus to incorporate composite into primary load carrying structures of large commercial transports and to certify the airworthiness of these structures is evidence of the significant advancements made in understanding and use of these materials in real world aircraft. NASA has been engaged in research on composites since the late 1960 s and has worked to address many development issues with these materials in an effort to ensure safety, improve performance, and improve affordability of air travel for the public good. This research has ranged from synthesis of advanced resin chemistries to development of mathematical analyses tools to reliably predict the response of built-up structures under combined load conditions. The lessons learned from this research are highlighted with specific examples to illustrate the problems encountered and solutions to these problems. Examples include specific technologies related to environmental effects, processing science, fabrication technologies, nondestructive inspection, damage tolerance, micromechanics, structural mechanics, and residual life prediction. The current state of the technology is reviewed and key issues requiring additional research identified. Also, grand challenges to be solved for expanded use of composites in aero structures are identified.

Tenney, Darrel R.; Davis, John G., Jr.; Pipes, R. Byron; Johnston, Norman

2009-01-01

398

The application of composite materials to spaceborne radiometer instrument design  

Microsoft Academic Search

The stability and coregistration requirements for future radiometric instrument designs spawn the need for a totally integrated instrument structure and thermal control scheme. To meet the requirements of the future Geostationary meteorological missions an Ultra Stable Instrument Structure (USIS) will be needed. An instrument structure of lightweight construction is described that takes advantage of composite materials that combine high stiffness,

Robert A. Hookman; George E. Zurmehly

1990-01-01

399

Design And Formability Of A New Composite Material  

SciTech Connect

Composite materials with metallic cover sheets have been established based on their low weight potential in industrial applications. Further requirements such as high stiffness of component, vibration damping and formability today are only partially met by these composites. For that reason, in current research work, great efforts are being made to develop materials which can be adapted to their later use and load in terms of improving noise, vibration and harshness. Thus, greater stiffness of component structure with a simultaneous reduction of weight can be achieved. This article presents a new composite material which consists of a plane sheet, a thin intermediate damping-layer and a sheet with formed elements to increase stiffness of component such as beads. The plane side can be used as the visible part side. The shape elements increase strength due to work hardening and can be used as design or functional elements. Thus, this composite material results in several advantages within the single layers. Possible flexibility in component design enables new semi-finished or tailored components.

Bolay, C.; Liewald, M. [Institute for Metal Forming Technology (IFU)-Holzgartenstr. 17, 70174 Stuttgart (Germany)

2011-05-04

400

Inspection problem of composite materials using an ultrasonic signal processing  

E-print Network

techniques associated to ultrasonic instrumentation are tested for their ability to resolve echoes reflected processing. The ultrasonic testing is based on the detection and the interpretation of the ultrasonic wavesInspection problem of composite materials using an ultrasonic signal processing A. Benammara , R

Paris-Sud XI, Université de

401

Aluminum-matrix composite materials with shungite rock fillers  

Microsoft Academic Search

A method is proposed for the introduction of shungite rocks into aluminum melts by mechanical mixing with carriers, namely,\\u000a aluminum granules and reactive titanium powders taking part in exothermic in situ reactions. The structures of composite materials\\u000a with shungite rock additions are studied, and a stabilizing effect of these additions on dry sliding friction is revealed.

I. E. Kalashnikov; V. V. Kovalevski; T. A. Chernyshova; L. K. Bolotova

2010-01-01

402

Data-mined similarity function between material compositions  

NASA Astrophysics Data System (ADS)

A new method for assessing the similarity of material compositions is described. A similarity measure is important for the classification and clustering of compositions. The similarity of the material compositions is calculated utilizing a data-mined ionic substitutional similarity based upon the probability with which two ions will substitute for each other within the same structure prototype. The method is validated via the prediction of crystal structure prototypes for oxides from the Inorganic Crystal Structure Database, selecting the correct prototype from a list of known prototypes within five guesses 75% of the time. It performs particularly well on the quaternary oxides, selecting the correct prototype from a list of known prototypes on the first guess 65% of the time.

Yang, Lusann; Ceder, Gerbrand

2013-12-01

403

Wear model simulating clinical abrasion on composite filling materials.  

PubMed

The aim of this study was to establish a wear model for testing composite filling materials with abrasion properties closer to a clinical situation. In addition, the model was used to evaluate the effect of filler volume and particle size on surface roughness and wear resistance. Each incisor tooth was prepared with nine identical standardized cavities with respect to depth, diameter, and angle. Generic composite of 3 different filler volumes and 3 different particle sizes held together with the same resin were randomly filled in respective cavities. A multidirectional wet-grinder with molar cusps as antagonist wore the surface of the incisors containing the composite fillings in a bath of human saliva at a constant temperature of 37°C. The present study suggests that the most wear resistant filling materials should consist of medium filling content (75%) and that particles size is not as critical as earlier reported. PMID:21946496

Johnsen, Gaute Floer; Taxt-Lamolle, Sébastien F; Haugen, Håvard J

2011-01-01

404

Investigating accidents involving aircraft manufactured from polymer composite materials  

NASA Astrophysics Data System (ADS)

This study looks into the examination of polymer composite wreckage from the perspective of the aircraft accident investigator. It develops an understanding of the process of wreckage examination as well as identifying the potential for visual and macroscopic interpretation of polymer composite aircraft wreckage. The in-field examination of aircraft wreckage, and subsequent interpretations of material failures, can be a significant part of an aircraft accident investigation. As the use of composite materials in aircraft construction increases, the understanding of how macroscopic failure characteristics of composite materials may aid the field investigator is becoming of increasing importance.. The first phase of this research project was to explore how investigation practitioners conduct wreckage examinations. Four accident investigation case studies were examined. The analysis of the case studies provided a framework of the wreckage examination process. Subsequently, a literature survey was conducted to establish the current level of knowledge on the visual and macroscopic interpretation of polymer composite failures. Relevant literature was identified and a compendium of visual and macroscopic characteristics was created. Two full-scale polymer composite wing structures were loaded statically, in an upward bending direction, until each wing structure fractured and separated. The wing structures were subsequently examined for the existence of failure characteristics. The examination revealed that whilst characteristics were present, the fragmentation of the structure destroyed valuable evidence. A hypothetical accident scenario utilising the fractured wing structures was developed, which UK government accident investigators subsequently investigated. This provided refinement to the investigative framework and suggested further guidance on the interpretation of polymer composite failures by accident investigators..

Dunn, Leigh

405

Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation  

NASA Technical Reports Server (NTRS)

The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

1988-01-01

406

Recent Advances and Developments in Composite Dental Restorative Materials  

PubMed Central

Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance. PMID:20924063

Cramer, N.B.; Stansbury, J.W.; Bowman, C.N.

2011-01-01

407

High resolution computed tomography of advanced composite and ceramic materials  

NASA Technical Reports Server (NTRS)

Advanced composite and ceramic materials are being developed for use in many new defense and commercial applications. In order to achieve the desired mechanical properties of these materials, the structural elements must be carefully analyzed and engineered. A study was conducted to evaluate the use of high resolution computed tomography (CT) as a macrostructural analysis tool for advanced composite and ceramic materials. Several samples were scanned using a laboratory high resolution CT scanner. Samples were also destructively analyzed at the locations of the scans and the nondestructive and destructive results were compared. The study provides useful information outlining the strengths and limitations of this technique and the prospects for further research in this area.

Yancey, R. N.; Klima, S. J.

1991-01-01

408

Application of Raman Spectroscopy for Nondestructive Evaluation of Composite Materials  

NASA Technical Reports Server (NTRS)

This paper will present an overview of efforts to investigate the application of Raman spectroscopy for the characterization of Kevlar materials. Raman spectroscopy is a laser technique that is sensitive to molecular interactions in materials such as Kevlar, graphite and carbon used in composite materials. The overall goal of this research reported here is to evaluate Raman spectroscopy as a potential nondestructive evaluation (NDE) tool for the detection of stress rupture in Kevlar composite over-wrapped pressure vessels (COPVs). Characterization of the Raman spectra of Kevlar yarn and strands will be presented and compared with analytical models provided in the literature. Results of testing to investigate the effects of creep and high-temperature aging on the Raman spectra will be presented.

Washer, Glenn A.; Brooks, Thomas M. B.; Saulsberry, Regor

2007-01-01

409

Environmental exposure effects on composite materials for commercial aircraft  

NASA Technical Reports Server (NTRS)

The data base for composite materials' properties as they are affected by the environments encountered in operating conditions, both in flight and at ground terminals is expanded. Absorbed moisture degrades the mechanical properties of graphite/epoxy laminates at elevated temperatures. Since airplane components are frequently exposed to atmospheric moisture, rain, and accumulated water, quantitative data are required to evaluate the amount of fluids absorbed under various environmental conditions and the subsequent effects on material properties. In addition, accelerated laboratory test techniques are developed are reliably capable of predicting long term behavior. An accelerated environmental exposure testing procedure is developed, and experimental results are correlated and compared with analytical results to establish the level of confidence for predicting composite material properties.

Gibbons, M. N.

1982-01-01

410

Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures  

NASA Technical Reports Server (NTRS)

This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

McManus, Hugh L.; Chamis, Christos C.

1996-01-01

411

LOW-COST COMPOSITES IN VEHICLE MANUFACTURE - Natural-fiber-reinforced polymer composites in automotive applications.  

SciTech Connect

In the last decade, natural fiber composites have experienced rapid growth in the European automotive market, and this trend appears to be global in scale, provided the cost and performance is justified against competing technologies. However, mass reduction, recyclability, and performance requirements can be met today by competing systems such as injection-molded unreinforced thermoplastics; natural fiber composites will continue to expand their role in automotive applications only if such technical challenges as moisture stability, fiber-polymer interface compatibility, and consistent, repeatable fiber sources are available to supply automotive manufacturers. Efforts underway by Tier I and II automotive suppliers to explore hybrid glass-natural fiber systems, as well as applications that exploit such capabilities as natural fiber sound dampening characteristics, could very well have far-reaching effects. In addition, the current development underway of bio-based resins such as Polyhydroxyalkanoate (PHA) biodegradable polyesters and bio-based polyols could provide fully bio-based composite options to future automotive designers. In short, the development of the natural fiber composite market would make a positive impact on farmers and small business owners on a global scale, reduce US reliance on foreign oil, improve environmental quality through the development of a sustainable resource supply chain, and achieve a better CO2 balance over the vehicle?s lifetime with near-zero net greenhouse gas emissions.

Holbery, Jim; Houston, Dan

2006-11-01

412

Interdisciplinary research concerning the nature and properties of ceramic materials  

NASA Technical Reports Server (NTRS)

The nature and properties of ceramic materials as they relate to solid state physics and metallurgy are studied. Special attention was given to the applications of ceramics to NASA programs and national needs.

1975-01-01

413

Functional hybrid materials derived from natural cellulose  

NASA Astrophysics Data System (ADS)

In this paper, we report a study on the optical and the electrical properties of pure cotton fibers (CF) from chemically surface- and morphology-modified samples coated with poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) polymer by using a dip-coating method. The properties of the treated and coated fibers were characterized by using scanning electron microscopy (SEM), luminescence and I- V characteristics. The performance of fibers with MEH-PPV polymer as a coating component was investigated, and an excellent white-light emission that consisted of blue-, green-, and red-light-emitting bands was demonstrated. The I- V characteristics of sandwich-type devices consisting of successive layers of ITO (Indium doped tin oxide coated glass)-PEDOT-PSS (Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate)-CF/MEH-PPV-Ag showed that upon light illumination, the current increased in both the forward and the reverse bias conditions which suggest that the photoresponse parameters for the heterojunction are better than they are for the composite alone.

Zakirov, A. S.; Yuldashev, Sh. U.; Cho, H. D.; Lee, J. C.; Kang, T. W.; Khamdamov, J. J.; Mamadalimov, A. T.

2012-05-01

414

Test Report: Direct and Indirect Lightning Effects on Composite Materials  

NASA Technical Reports Server (NTRS)

Lightning tests were performed on composite materials as a part of an investigation of electromagnetic effects on the materials. Samples were subjected to direct and remote simulated lightning strikes. Samples included various thicknesses of graphite filament reinforced plastic (GFRP), material enhanced by expanded aluminum foil layers, and material with an aluminum honeycomb core. Shielding properties of the material and damage to the sample surfaces and joints were investigated. Adding expanded aluminum foil layers and increasing the thickness of GFRP improves the shielding effectiveness against lightning induced fields and the ability to withstand lightning strikes. A report describing the lightning strike tests performed by the U.S. Army Redstone Technical Test Center, Redstone Arsenal, AL, STERT-TE-E-EM, is included as an appendix.

Evans, R. W.

1997-01-01

415

Percolation modeling of self-damaging of composite materials  

NASA Astrophysics Data System (ADS)

We propose the concept of autonomous self-damaging in “smart” composite materials, controlled by activation of added nanosize “damaging” capsules. Percolation-type modeling approach earlier applied to the related concept of self-healing materials, is used to investigate the behavior of the initial material's fatigue. We aim at achieving a relatively sharp drop in the material's integrity after some initial limited fatigue develops in the course of the sample's usage. Our theoretical study considers a two-dimensional lattice model and involves Monte Carlo simulations of the connectivity and conductance in the high-connectivity regime of percolation. We give several examples of local capsule-lattice and capsule-capsule activation rules and show that the desired self-damaging property can only be obtained with rather sophisticated “smart” material's response involving not just damaging but also healing capsules.

Domanskyi, Sergii; Privman, Vladimir

2014-07-01

416

A Study of Failure Criteria of Fibrous Composite Materials  

NASA Technical Reports Server (NTRS)

The research described in this paper is focused on two areas: (1) evaluation of existing composite failure criteria in the nonlinear, explicit transient dynamic finite element code, MSC.Dytran, and (2) exploration of the possibilities for modification of material and failure models to account for large deformations, progressive failure, and interaction of damage accumulation with stress/strain response of laminated composites. Following a review of the MSC.Dytran user manual, a bibliographical review of existing failure criteria of composites was performed. The papers considered most interesting for the objective of this report are discussed in section 2. The failure criteria included in the code under consideration are discussed in section 3. A critical summary of the present procedures to perform analysis and design of composites is presented in section 4. A study of the most important historical failure criteria for fibrous composite materials and some of the more recent modifications proposed were studied. The result of this analysis highlighted inadequacies in the existing failure criteria and the need to perform some numerical analyses to elucidate the answer to questions on which some of the proposed criteria are based. A summary of these ideas, which is a proposal of studies to be developed, is presented in section 5. Finally, some ideas for future developments are summarized in section 6.

Paris, Federico; Jackson, Karen E. (Technical Monitor)

2001-01-01

417

Dual-nanoparticulate-reinforced aluminum matrix composite materials.  

PubMed

Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al(4)C(3)) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al(4)C(3). Along with the CNT and the nano-SiC, Al(4)C(3) also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials. PMID:22571898

Kwon, Hansang; Cho, Seungchan; Leparoux, Marc; Kawasaki, Akira

2012-06-01

418

Effects of lining materials on the composite resins shrinkage stresses.  

PubMed

Recently, three types of lining materials have been used in dental clinics, conventional powder-liquid glass ionomer cement, light-cured powder-liquid glass ionomer cement and a light-cured single paste type. This study compared the effects of these lining materials on the shrinkage stress of light-cured composite resins during the early setting stage, when polymerization shrinkage occurs. After the second irradiation, the shrinkage stress of composite resins lined with light-cured powder-liquid type cements was approximately 1.0 to 2.2 MPa when the lining application was 1.5 mm and 0.5 mm thick, respectively, demonstrating that a thicker lining application decreased shrinkage stress. The single paste type was only slightly effective in reducing shrinkage stress in composite resins. Although the sample lined with conventional powder-liquid type showed that stresses were less affected by the thickness of the lining, and had the lowest shrinkage stress of all conditions tested, greater exfoliation from the composite resin or the cavity occurred compared to that occurring with other materials. PMID:7842636

Ikemi, T; Nemoto, K

1994-06-01

419

The aqueous corrosion behavior of technetium - Alloy and composite materials  

SciTech Connect

Metal waste forms are under study as possible disposal forms for technetium and other fission products. The alloying of Tc is desirable to reduce the melting point of the Tc-containing metal waste form and potentially improve its corrosion resistance. Technetium-nickel composites were made by mixing the two metal powders and pressing the mixture to make a pellet. The as-pressed composite materials were compared to sintered composites and alloys of identical composition in electrochemical corrosion tests. As-pressed samples were not robust enough for fine polishing and only a limited number of corrosion tests were performed. Alloys and composites with 10 wt% Tc appear to be more corrosion resistant at open circuit than the individual components based on linear polarization resistance and polarization data. The addition of 10 wt% Tc to Ni appears beneficial at open circuit, but detrimental upon anodic polarization. Qualitatively, the polarizations of 10 wt% Tc alloys and composites appear like crude addition of Tc plus Ni. The 1 wt% Tc alloys behave like pure Ni, but some effect of Tc is seen upon polarization. Cathodic polarization of Tc by Ni appears feasible based on open circuit potential measurements, however, zero resistance ammetry and solution measurements are necessary to confirm cathodic protection.

Jarvinen, G.; Kolman, D.; Taylor, C.; Goff, G.; Cisneros, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mausolf, E.; Poineau, F.; Koury, D.; Czerwinski, K. [Department of Chemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154 (United States)

2013-07-01

420

Material and structural studies of metal and polymer matrix composites  

NASA Technical Reports Server (NTRS)

Fiber-reinforced composites and design analysis methods for these materials are being developed because of the vast potential of composites for decreasing weight and/or increasing use temperature capability in aerospace systems. These composites have potential for use in airbreathing engine components as well as aeronautical and space vehicle structures. Refractory wire-superalloy composites for use up to 2200 F or more and metal-matrix composites for lower temperature applications such as aerospace structures and turbojet fan and compressor blades are under investigation and are discussed. The development of a number of resin systems, including the polyimides and polyphenylquinoxalines, is described and their potential for use at temperatures approaching 315 C (600 F) is indicated. Various molecular modifications that improve processability and/or increase thermal and oxidative resistance of the resins are also described. Structural analysis methods are discussed for determining the stresses and deformations in complex composite systems. Consideration is also given to residual stresses resulting from the curing process and to the foreign object damage problem in fan blade applications.

Signorelli, R. A.; Serafini, T. T.; Johns, R. H.

1973-01-01

421

Biomimetic-inspired joining of composite with metal structures: A survey of natural joints and application to single lap joints  

NASA Astrophysics Data System (ADS)

Joining composites with metal parts leads, inevitably, to high stress concentrations because of the material property mismatch. Since joining composite to metal is required in many high performance structures, there is a need to develop a new multifunctional approach to meet this challenge. This paper uses the biomimetics approach to help develop solutions to this problem. Nature has found many ingenious ways of joining dissimilar materials and making robust attachments, alleviating potential stress concentrations. A literature survey of natural joint systems has been carried out, identifying and analysing different natural joint methods from a mechanical perspective. A taxonomy table was developed based on the different methods/functions that nature successfully uses to attach dissimilar tissues (materials). This table is used to understand common themes or approaches used in nature for different joint configurations and functionalities. One of the key characteristics that nature uses to joint dissimilar materials is a transitional zone of stiffness in the insertion site. Several biomimetic-inspired metal-to-composite (steel-to-CFRP), adhesively bonded, Single Lap Joints (SLJs) were numerically investigated using a finite element analysis. The proposed solutions offer a transitional zone of stiffness of one joint part to reduce the material stiffness mismatch at the joint. An optimisation procedure was used to identify the variation in material stiffness which minimises potential failure of the joint. It was found that the proposed biomimetic SLJs reduce the asymmetry of the stress distribution along the adhesive area.

Avgoulas, Evangelos Ioannis; Sutcliffe, Michael P. F.

2014-03-01

422

Experimental and Analytical Characterization of the Macromechanical Response for Triaxial Braided Composite Materials  

NASA Technical Reports Server (NTRS)

Increasingly, carbon composite structures are being used in aerospace applications. Their highstrength, high-stiffness, and low-weight properties make them good candidates for replacing many aerospace structures currently made of aluminum or steel. Recently, many of the aircraft engine manufacturers have developed new commercial jet engines that will use composite fan cases. Instead of using traditional composite layup techniques, these new fan cases will use a triaxially braided pattern, which improves case performance. The impact characteristics of composite materials for jet engine fan case applications have been an important research topic because Federal regulations require that an engine case be able to contain a blade and blade fragments during an engine blade-out event. Once the impact characteristics of these triaxial braided materials become known, computer models can be developed to simulate a jet engine blade-out event, thus reducing cost and time in the development of these composite jet engine cases. The two main problems that have arisen in this area of research are that the properties for these materials have not been fully determined and computationally efficient computer models, which incorporate much of the microscale deformation and failure mechanisms, are not available. The research reported herein addresses some of the deficiencies present in previous research regarding these triaxial braided composite materials. The current research develops new techniques to accurately quantify the material properties of the triaxial braided composite materials. New test methods are developed for the polymer resin composite constituent and representative composite coupons. These methods expand previous research by using novel specimen designs along with using a noncontact measuring system that is also capable of identifying and quantifying many of the microscale failure mechanisms present in the materials. Finally, using the data gathered, a new hybrid micromacromechanical computer model is created to simulate the behavior of these composite material systems under static and ballistic impact loading using the test data acquired. The model also quantifies the way in which the fiber/matrix interface affects material response under static and impact loading. The results show that the test methods are capable of accurately quantifying the polymer resin under a variety of strain rates and temperature for three loading conditions. The resin strength and stiffness data show a clear rate and temperature dependence. The data also show the hydrostatic stress effects and hysteresis, all of which can be used by researchers developing composite constitutive models for the resins. The results for the composite data reveal noticeable differences in strength, failure strain, and stiffness in the different material systems presented. The investigations into the microscale failure mechanisms provide information about the nature of the different material system behaviors. Finally, the developed computer model predicts composite static strength and stiffness to within 10 percent of the gathered test data and also agrees with composite impact data, where available.

Littell, Justin D.

2013-01-01

423

Removal of metals from aqueous solutions using natural chitinous materials  

Microsoft Academic Search

Four naturally derived chitinous materials, commercial cryogenically milled carapace (CCMC), mechanically milled carapace (MMC), chitin and chitosan, were assessed for their ability to remove a range of alkali, alkaline earth, transition and heavy metals from aqueous media in flow-through column trials. The materials showed a poor affinity for the alkali metals and alkaline earth metals but significantly greater affinity for

I. B. Rae; S. W. Gibb

2003-01-01

424

Signatures for several types of naturally occurring radioactive materials  

Microsoft Academic Search

Detectors to scan for illicit nuclear material began to be installed at various screening locations in 2002. On the sites considered, each vehicle drives slowly by radiation detectors that scan for neutron and gamma radiation, resulting in a time series profile. One performance limitation is that naturally occurring radioactive materials (NORM), such as cat litter, are routinely shipped across borders,

Tom Burr; Kary Myers

2008-01-01

425

Untethered micro-robotic coding of three-dimensional material composition  

NASA Astrophysics Data System (ADS)

Complex functional materials with three-dimensional micro- or nano-scale dynamic compositional features are prevalent in nature. However, the generation of three-dimensional functional materials composed of both soft and rigid microstructures, each programmed by shape and composition, is still an unsolved challenge. Here we describe a method to code complex materials in three-dimensions with tunable structural, morphological and chemical features using an untethered magnetic micro-robot remotely controlled by magnetic fields. This strategy allows the micro-robot to be introduced to arbitrary microfluidic environments for remote two- and three-dimensional manipulation. We demonstrate the coding of soft hydrogels, rigid copper bars, polystyrene beads and silicon chiplets into three-dimensional heterogeneous structures. We also use coded microstructures for bottom-up tissue engineering by generating cell-encapsulating constructs.

Tasoglu, S.; Diller, E.; Guven, S.; Sitti, M.; Demirci, U.

2014-01-01

426

Untethered micro-robotic coding of three-dimensional material composition.  

PubMed

Complex functional materials with three-dimensional micro- or nano-scale dynamic compositional features are prevalent in nature. However, the generation of three-dimensional functional materials composed of both soft and rigid microstructures, each programmed by shape and composition, is still an unsolved challenge. Here we describe a method to code complex materials in three-dimensions with tunable structural, morphological and chemical features using an untethered magnetic micro-robot remotely controlled by magnetic fields. This strategy allows the micro-robot to be introduced to arbitrary microfluidic environments for remote two- and three-dimensional manipulation. We demonstrate the coding of soft hydrogels, rigid copper bars, polystyrene beads and silicon chiplets into three-dimensional heterogeneous structures. We also use coded microstructures for bottom-up tissue engineering by generating cell-encapsulating constructs. PMID:24469115

Tasoglu, S; Diller, E; Guven, S; Sitti, M; Demirci, U

2014-01-01

427

Untethered micro-robotic coding of three-dimensional material composition  

PubMed Central

Complex functional materials with three-dimensional micro- or nano-scale dynamic compositional features are prevalent in nature. However, the generation of three-dimensional functional materials composed of both soft and rigid microstructures, each programmed by shape and composition, is still an unsolved challenge. Herein, we describe a method to code complex materials in three-dimensions with tunable structural, morphological, and chemical features using an untethered magnetic micro-robot remotely controlled by magnetic fields. This strategy allows the micro-robot to be introduced to arbitrary microfluidic environments for remote two- and three-dimensional manipulation. We demonstrate the coding of soft hydrogels, rigid copper bars, polystyrene beads, and silicon chiplets into three-dimensional heterogeneous structures. We also use coded microstructures for bottom-up tissue engineering by generating cell-encapsulating constructs. PMID:24469115

Tasoglu, S.; Diller, E.; Guven, S.; Sitti, M.; Demirci, U.

2014-01-01

428

Compendium of Material Composition Data for Radiation Transport Modeling  

SciTech Connect

Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library file or mechanism for revising the data in a consistent and traceable manner. The authors of this revision have addressed that problem by first compiling all of the information (i.e., numbers and references) for all the materials into a single database, maintained at PNNL, that was then used as the basis for this document.

McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert

2011-03-04

429

DOE/MSU composite material fatigue database: Test methods, materials, and analysis  

SciTech Connect

This report presents a detailed analysis of the results from fatigue studies of wind turbine blade composite materials carried out at Montana State University (MSU) over the last seven years. It is intended to be used in conjunction with the DOE/MSU composite Materials Fatigue Database. The fatigue testing of composite materials requires the adaptation of standard test methods to the particular composite structure of concern. The stranded fabric E-glass reinforcement used by many blade manufacturers has required the development of several test modifications to obtain valid test data for materials with particular reinforcement details, over the required range of tensile and compressive loadings. Additionally, a novel testing approach to high frequency (100 Hz) testing for high cycle fatigue using minicoupons has been developed and validated. The database for standard coupon tests now includes over 4,100 data points for over 110 materials systems. The report analyzes the database for trends and transitions in static and fatigue behavior with various materials parameters. Parameters explored are reinforcement fabric architecture, fiber content, content of fibers oriented in the load direction, matrix material, and loading parameters (tension, compression, and reversed loading). Significant transitions from good fatigue resistance to poor fatigue resistance are evident in the range of materials currently used in many blades. A preliminary evaluation of knockdowns for selected structural details is also presented. The high frequency database provides a significant set of data for various loading conditions in the longitudinal and transverse directions of unidirectional composites out to 10{sup 8} cycles. The results are expressed in stress and strain based Goodman Diagrams suitable for design. A discussion is provided to guide the user of the database in its application to blade design.

Mandell, J.F.; Samborsky, D.D. [Montana State Univ., Bozeman, MT (United States). Dept. of Chemical Engineering

1997-12-01

430

27 CFR 555.221 - Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in...  

Code of Federal Regulations, 2014 CFR

...false Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles pyrotechnic. 555...221 Requirements for display fireworks, pyrotechnic compositions,...

2014-04-01

431

27 CFR 555.221 - Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in...  

Code of Federal Regulations, 2013 CFR

...false Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles pyrotechnic. 555...221 Requirements for display fireworks, pyrotechnic compositions,...

2013-04-01

432

27 CFR 555.221 - Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in...  

Code of Federal Regulations, 2012 CFR

... true Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles pyrotechnic. 555...221 Requirements for display fireworks, pyrotechnic compositions,...

2012-04-01

433

27 CFR 555.221 - Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in...  

Code of Federal Regulations, 2011 CFR

... true Requirements for display fireworks, pyrotechnic compositions, and explosive materials used in assembling fireworks or articles pyrotechnic. 555...221 Requirements for display fireworks, pyrotechnic compositions,...

2011-04-01

434

Natural Lignocellulosic Fibers as Engineering Materials—An Overview  

NASA Astrophysics Data System (ADS)

Recent investigations on the tensile properties of natural cellulose-based fibers revealed an increasing potential as engineering materials. This is particularly the case of very thin fibers of some species such as sisal, ramie, and curaua. However, several other commonly used fibers such as flax, jute, hemp, coir, cotton, and bamboo as well as less known bagasse, piassava, sponge gourde, and buriti display tensile properties that could qualify them as engineering materials. An overview of the strength limits attained by these fibers is presented. Based on a tensile strength vs density chart, it is shown that natural fibers stand out as a relevant class of engineering materials.

Monteiro, Sergio Neves; Lopes, Felipe Perissé Duarte; Barbosa, Anderson Paula; Bevitori, Alice Barreto; Silva, Isabela Leão Amaral Da; Costa, Lucas Lopes Da

2011-10-01

435

Nonlinear mechanics of composite materials with periodic microstructure  

NASA Technical Reports Server (NTRS)

This report summarizes the result of research done under NASA NAG3-882 Nonlinear Mechanics of Composites with Periodic Microstructure. The effort involved the development of non-finite element methods to calculate local stresses around fibers in composite materials. The theory was developed and some promising numerical results were obtained. It is expected that when this approach is fully developed, it will provide an important tool for calculating local stresses and averaged constitutive behavior in composites. NASA currently has a major contractual effort (NAS3-24691) to bring the approach developed under this grant to application readiness. The report has three sections. One, the general theory that appeared as a NASA TM, a second section that gives greater details about the theory connecting Greens functions and Fourier series approaches, and a final section shows numerical results.

Jordan, E. H.; Walker, K. P.

1991-01-01

436

Carbonization of wood at 400°C for composite materials  

NASA Astrophysics Data System (ADS)

The carbonization process for large pieces of wood was investigated to produce a solid carbonized wood skeleton precursor that retains the cellular structure of the wood without the formation of cracks and with reduced longitudinal deformation. Two carbonization schedules were designed for the conversion of sugar maple (Acer saccharum) and southern pine ( Pinus spp) into amorphous carbon at a heat treatment temperature of 400°C. Samples from commercial lumber were carbonized to produce the materials. Each schedule was designed meticulously through DTA-TGA for each wood species. The materials were characterized by their average yields, dimensional changes, density, porosity, SEM and mechanical testing. Also, the materials were used as solid carbon skeletons for making resin-infused carbon composites. Structural epoxy resin was infused into the carbon material template and cured at a maximum temperature of 125°C. The depth of the resin infusion was assessed by SEM examination and the retention was analyzed by total weight gain. The strength and the stiffness of the composite materials were evaluated through mechanical testing. It was demonstrated that southern pine and sugar maple should require different heat treatment schedules for carbonization. The schedules were able to reduce the longitudinal deformation and to keep the final products free of cracks. The yield averaged around 28% for both southern pine and sugar maple. Carbonized southern pine exhibited lower density and higher porosity than carbonized sugar maple. The resin treatment increased specific gravity of carbonized materials by 9.6% and 11.6% for maple and southern pine respectively. The resin infusion improved the average MOR values by 140% and 275%. MOE of the composites was similar to that of pure epoxy.

Randrianarisoa, Bernard Laurent

437

Material properties and fractography of an indirect dental resin composite  

PubMed Central

Objectives Determination of material and fractographic properties of a dental indirect resin composite material. Methods A resin composite (Paradigm, 3M-ESPE, MN) was characterized by strength, static elastic modulus, Knoop hardness, fracture toughness and edge toughness. Fractographic analyses of the broken bar surfaces was accomplished with a combination of optical and SEM techniques, and included determination of the type and size of the failure origins, and fracture mirror and branching constants. Results The flexure test mean strength ± standard deviation was 145 MPA ± 17 MPa, and edge toughness, Te, was 172 N/mm ±12 N/mm. Knoop hardness was load dependent, with a plateau at 0.99 GPa ± .02 GPa. Mirrors in the bar specimens were measured with difficulty, resulting in a mirror constant of approximately 2.6 MPa·m1/2. Fracture in the bar specimens initiated at equiaxed material flaws that had different filler concentrations that sometimes were accompanied by partial microcracks. Using the measured flaw sizes, which ranged from 35 µm to 100 µm in size, and estimates of the stress intensity shape factors, fracture toughness was estimated to be 1.1 MPa·m1/2 ± 0.2 MPa·m1/2. Significance Coupling the flexure tests with fractographic examination enabled identification of the intrinsic strength limiting flaws. The same techniques could be useful in determining if clinical restorations of similar materials fail from the same causes. The existence of a strong load-dependence of the Knoop hardness of the resin composite is not generally mentioned in the literature, and is important for material comparisons and wear evaluation studies. Finally, the edge toughness test was found promising as a quantitative measure of resistance to edge chipping, an important failure mode in this class of materials. PMID:20304478

Quinn, Janet B.; Quinn, George D.

2011-01-01

438

A fast multipole hybrid boundary node method for composite materials  

NASA Astrophysics Data System (ADS)

This article presents a multi-domain fast multipole hybrid boundary node method for composite materials in 3D elasticity. The hybrid boundary node method (hybrid BNM) is a meshless method which only requires nodes constructed on the surface of a domain. The method is applied to 3D simulation of composite materials by a multi-domain solver and accelerated by the fast multipole method (FMM) in this paper. The preconditioned GMRES is employed to solve the final system equation and precondition techniques are discussed. The matrix-vector multiplication in each iteration is divided into smaller scale ones at the sub-domain level and then accelerated by FMM within individual sub-domains. The computed matrix-vector products at the sub-domain level are then combined according to the continuity conditions on the interfaces. The algorithm is implemented on a computer code written in C + +. Numerical results show that the technique is accurate and efficient.

Wang, Qiao; Miao, Yu; Zhu, Hongping

2013-06-01

439

Investigation of shock-wave phenomena in composite materials  

NASA Astrophysics Data System (ADS)

We propose a complex experimental-theoretical approach to the investigation and development of high-energy and composite materials for the conditions of high-velocity throwing and interaction with the application of nanotechnologies. We have obtained data on the character of the high-velocity interaction of strikers made from tungsten composites by different technologies with a steel obstacle. A nanostructured material based on copper with higher strength characteristics has been developed. The conditions for increasing the muzzle velocity of a barrel throwing installation due to the application of nanocomposite fuels have been investigated and realized. A computing-experimental method for investigating the processes of high-velocity collision of bodies has been elaborated.

Afanas'eva, S. A.; Belov, N. N.; Biryukov, Yu. A.; Burkin, V. V.; Zakharov, V. M.; Ishchenko, A. N.; Skosyrskii, A. V.; Tabachenko, A. N.; Khorev, I. E.; Yugov, N. T.

2011-01-01

440

Degradation, Fatigue, and Failure of Resin Dental Composite Materials  

SciTech Connect

The intent of this article is to review the numerous factors that affect the mechanical properties of particle- or fiber-filler-containing indirect dental resin composite materials. The focus will be on the effects of degradation due to aging in different media, mainly water and water and ethanol, cyclic loading, and mixed-mode loading on flexure strength and fracture toughness. Several selected papers will be examined in detail with respect to mixed and cyclic loading, and 3D tomography with multi-axial compression specimens. The main cause of failure, for most dental resin composites, is the breakdown of the resin matrix and/or the interface between the filler and the resin matrix. In clinical studies, it appears that failure in the first 5 years is a restoration issue (technique or material selection); after that time period, failure most often results from secondary decay.

Drummond, J.L. (UIC)

2008-11-03