Science.gov

Sample records for natural convection due

  1. Natural convection in low-g environments

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Bannister, T. C.

    1974-01-01

    The present state of knowledge in the area of low-g natural convection is reviewed, taking into account a number of experiments conducted during the Apollo 14, 16, and 17 space flights. Convections due to steady low-g accelerations are considered. Steady g-levels result from spacecraft rotation, gravity gradients, solar wind, and solar pressure. Varying g-levels are produced by engine burns, attitude control maneuvers, and onboard vibrations from machinery or astronaut movement. Thermoacoustic convection in a low-g environment is discussed together with g-jitter convection, surface tension-driven convection, electrohydrodynamics under low-g conditions, phase change convection, and approaches for the control and the utilization of convection in space.

  2. Heat distribution by natural convection

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.

  3. Natural convection flows due to the combined buoyancy of heat and mass diffusion in a thermally stratified medium

    SciTech Connect

    Angirasa, D.; Srinivasan, J. )

    1989-08-01

    This paper presents a numerical study of laminar doubly diffusive free convection flows adjacent to a vertical surface in a stable thermally stratified medium. The two buoyant mechanisms are thermal diffusion and species diffusion. The species concentration is assumed to be small. Boussinesq approximations are incorporated and the governing conservation equations of mass, momentum, energy, and species are nondimensionalized. These equations are solved using a finite-difference method. The results are explained in terms of the basic physical mechanisms that govern these flows. It is observed that the ambient thermal stratification has a profound influence on the transport characteristics. The results show many interesting aspects of the complex interaction of the two buoyant mechanisms.

  4. Onset of Natural Convection in Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Riaz, A.

    2013-05-01

    Sequestration of carbon dioxide in saline aquifers has emerged as the preferred method of permanently storing CO2 in the subsurface. In order to be successful over geologic time scales, sequestration in saline aquifers relies upon enhanced dissolution of CO2 in brine by natural convection. In this talk we review the progress made thus far towards the modeling and prediction of the onset time for natural convection that occurs due to an unstable stratification of aqueous CO2. We show how the onset of natural convection is connected to a preceding event of the onset of instability with respect to small amplitude perturbations that originate within the aqueous boundary layer. Our analysis indicates that the onset time for instability is uncertain within an initial transient period where perturbation growth depends on the specific form of the initial condition. A constrained adjoint based optimization is employed to determine the upper bound and the mean of perturbation growth. With the help of a weakly nonlinear analysis, we show that the time at which convection initiates is associated with fixed perturbation amplitude. The influence of permeability heterogeneity is studied with this approach. For certain permeability structures, the marginal stability curve bifurcates to form multiple stable and unstable zones in the space of the perturbation wavenumber and time. The transition toward bifurcation governs the behavior of the most dangerous mode in the linear regime and determines the route to the onset of natural convection.

  5. Self-propulsion via natural convection

    NASA Astrophysics Data System (ADS)

    Ardekani, Arezoo; Mercier, Matthieu; Allshouse, Michael; Peacock, Thomas

    2014-11-01

    Natural convection of a fluid due to a heated or cooled boundary has been studied within a myriad of different contexts due to the prevalence of the phenomenon in environmental systems such as glaciers, katabatic winds, or magmatic chambers; and in engineered problems like natural ventilation of buildings, or cooling of electronic components. It has, however, hitherto gone unrecognized that boundary-induced natural convection can propel immersed objects. We experimentally investigate the motion of a wedge-shaped object, immersed within a two-layer fluid system, due to a heated surface. The wedge resides at the interface between the two fluid layers of different density, and its concomitant motion provides the first demonstration of the phenomenon of propulsion via boundary-induced natural convection. Established theoretical and numerical models are used to rationalize the propulsion speed by virtue of balancing the propulsion force against the appropriate drag force. We successfully verified the influence of various fluid and heat parameters on the predicted speed. now at IMFT (Institut de Mécanique des Fluides de Toulouse).

  6. Bifurcations and unfoldings in natural convection

    SciTech Connect

    Decker, W.J.; Dorning, J.

    1996-12-31

    Extensive numerical studies of bifurcations and unfoldings have been carried out for two important problems in natural convection. These are (a) the Rayleigh-Benard convection (RBC) problem-a rectangular cavity, with insulated sidewalls, heated at constant uniform temperature along the bottom and cooled at constant uniform temperature along the top; and (b) the volumetric heating convection (VHC) problem - a rectangular cavity, with insulated sidewalls and bottom, heated by a constant uniform volumetric heat source and cooled at constant uniform temperature along the top. The information available in the literature on RBC was used to evaluate and justify the approximations made in the current research, which has shed additional light on nonlinear phenomena in RBC and led to new basic information on the bifurcations and unfoldings that occur in VHC for which there were essentially no previous results available. Both problems arise in many important technological and scientific contexts, including reactor safety analysis and meteorological phenomena. In particular, VHC is relevant to the development of an understanding of the natural convective motion driven by the radioactive decay heat in the molten core mixture (corium) in the core catcher following a hypothetical reactor core meltdown accident and of that which occurs in the atmosphere due to the deposition of radiant solar energy. The calculations were done using newly developed versions of the nodal integral method (NIM) for steady-state flows in conjunction with extended system methods for numerical bifurcation analysis for the saddle-node and pitchfork bifurcation computations.

  7. Numerical simulation of natural convection in a spherical container due to cooling at the center (idealization of the Lal/Kroes experiment)

    NASA Technical Reports Server (NTRS)

    Robertson, S. J.

    1981-01-01

    Natural convection in a spherical container with cooling at the center was numerically simulated using a numerical fluid dynamics computer program. The numerical analysis was simplified by assuming axisymmetric flow in the spherical container, with the symmetry axis being a sphere diagonal parallel to the gravity vector. This axisymmetric spherical geometry was intended as an idealization of the proposed Lal/Kroes crystal growing experiment to be performed on Spacelab. Results were obtained for a range of Rayleigh numbers from 25 to 10,000. The computed velocities were found to be approximately proportional to the Rayleigh number over the range of Rayleigh numbers investigated.

  8. Natural convection in porous media

    SciTech Connect

    Prasad, V.; Hussain, N.A.

    1986-01-01

    This book presents the papers given at a conference on free convection in porous materials. Topics considered at the conference included heat transfer, nonlinear temperature profiles and magnetic fields, boundary conditions, concentrated heat sources in stratified porous media, free convective flow in a cavity, heat flux, laminar mixed convection flow, and the onset of convection in a porous medium with internal heat generation and downward flow.

  9. Natural convection between concentric spheres

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.

    1992-01-01

    A finite-difference solution for steady natural convective flow in a concentric spherical annulus with isothermal walls has been obtained. The stream function-vorticity formulation of the equations of motion for the unsteady axisymmetric flow is used; interest lying in the final steady solution. Forward differences are used for the time derivatives and second-order central differences for the space derivatives. The alternating direction implicit method is used for solution of the discretization equations. Local one-dimensional grid adaptation is used to resolve the steep gradients in some regions of the flow at large Rayleigh numbers. The break-up into multi-cellular flow is found at high Rayleigh numbers for air and water, and at significantly low Rayleigh numbers for liquid metals. Excellent agreement with previous experimental and numerical data is obtained.

  10. Modelling natural convection of fluid in cuvette

    NASA Astrophysics Data System (ADS)

    Kucher, D.; Manukhin, B.; Andreeva, O.; Chivilikhin, S.

    2014-09-01

    Convection is a process of transfer liquid from a hot region to a cool region. This phenomenon is involved in many physical processes. The main characteristic of convection is a temperature field. Modelling of convection allows to get the information about temperature field at any time of process. In this paper the results of modelling natural convection of fluid in cuvette are presented. All results are approved by experimental data. For modelling the process of natural convection Navier-Stokes equations under Boussinesq approximation were used. An experimental setup based on digital holographic interferometry was developedin order to make an experiment. The results for three stadiums of convection, such as: jet initiation, initial jet formation, jet development with formation of mushroom-shaped convective stream, are presented.

  11. Suppression of Natural Convection in a Thermoacoustic Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Han, Jun-Qing; Liu, Qiu-Sheng

    2013-05-01

    The effects of gravity on the efficiency of thermoacoustic engines are investigated theoretically and experimentally, especially for thermoacoustic pulse tube refrigerators. The significant effects of gravity are found to be due to the presence of natural convection in the thermoacoustic pulse tube when the hot side of the tube is lower than the cold side. This kind of natural convection influences and reduces the efficiency of the thermoacoustic working system. Thus, how to suppress this natural convection becomes important for increasing the efficiency of thermoacoustic engines. Unlike the method of inserting a silk screen in a pulse tube, the present study uses a numerical simulation method to research the natural convection in pulse tubes, and we try to change the shape of the pulse tube to suppress this convection.

  12. Natural convection in nonvertical wells

    SciTech Connect

    Denbow, D.A.; Murphy, H.D.; McEligot, D.M.

    1985-01-01

    Convective instabilities and the shapes of the ensuing convection cells were experimentally studied for nonvertical wellbores. Steady-state temperature distributions were measured for three inclination angles over a wide range of heating rates to demonstrate the effects of drilling angle and Rayleigh number. In addition, velocities were estimated by measuring the time-of-flight of tracers formed by the Thymol blue technique. 8 refs., 6 figs.

  13. MHD Natural Convective Flow in an Isosceles Triangular Cavity Filled with Porous Medium due to Uniform/Non-Uniform Heated Side Walls

    NASA Astrophysics Data System (ADS)

    Javed, Tariq; Siddiqui, Muhammad Arshad; Mehmood, Ziafat; Pop, Ioan

    2015-10-01

    In this article, numerical simulations are carried out for fluid flow and heat transfer through natural convection in an isosceles triangular cavity under the effects of uniform magnetic field. The cavity is of cold bottom wall and uniformly/non-uniformly heated side walls and is filled with isotropic porous medium. The governing Navier Stoke's equations are subjected to Penalty finite element method to eliminate pressure term and Galerkin weighted residual method is applied to obtain the solution of the reduced equations for different ranges of the physical parameters. The results are verified as grid independent and comparison is made as a limiting case with the results available in literature, and it is shown that the developed code is highly accurate. Computations are presented in terms of streamlines, isotherms, local Nusselt number and average Nusselt number through graphs and tables. It is observed that, for the case of uniform heating side walls, strength of circulation of streamlines gets increased when Rayleigh number is increased above critical value, but increase in Hartmann number decreases strength of streamlines circulations. For non-uniform heating case, it is noticed that heat transfer rate is maximum at corners of bottom wall.

  14. Mesospheric heating due to intense tropospheric convection

    NASA Technical Reports Server (NTRS)

    Taylor, L. L.

    1979-01-01

    A series of rocket measurements made twice daily at Wallops Island, Va., revealed a rapid heating of the mesosphere on the order of 10 K on days when thunderstorms or squall lines were in the area. This heating is explained as the result of frictional dissipation of vertically propagating internal gravity waves generated by intense tropospheric convection. Ray-tracing theory is used to determine the spectrum of gravity wave groups that actually reach mesospheric heights. This knowledge is used in an equation describing the spectral energy density of a penetrative convective element to calculate the fraction of the total energy initially available to excite those waves that do reach the level of heating. This value, converted into a vertical velocity, is used as the lower boundary condition for a multilayer model used to determine the detailed structure of the vertically propagating waves. The amount of frictional dissipation produced by the waves is calculated from the solutions of the frictionless model by use of a vertically varying eddy viscosity coefficient. The heating produced by the dissipation is then calculated from the thermodynamic equation.

  15. VERTICAL REDISTRIBUTION OF A POLLUTANT TRACER DUE TO CUMULUS CONVECTION

    EPA Science Inventory

    Mathematical formalisms that incorporate the physical processes responsible for the vertical redistribution of a conservative pollutant tracer due to a convective cloud field are presented. Two modeling approaches are presented differing in the manner in which the cloud fields ar...

  16. Solar Hot Water Heating by Natural Convection.

    ERIC Educational Resources Information Center

    Noble, Richard D.

    1983-01-01

    Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)

  17. A Simple Classroom Demonstration of Natural Convection

    ERIC Educational Resources Information Center

    Wheeler, Dean R.

    2005-01-01

    This article explains a simple way to demonstrate natural convection, such as from a lit candle, in the classroom using an overhead projector. The demonstration is based on the principle of schlieren imaging, commonly used to visualize variations in density for gas flows.

  18. Estimation of Reduction in Airspace Capacity Due to Convective Weather

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; Sridhar, Banavar; Namjoshi, Leena

    2006-01-01

    Severe convective weather routinely disrupts normal flow of air traffic in the United States' National Airspace System (NAS). Over the last decade, severe weather has been the most significant cause, accounting for over 70% of air traffic delays in the NAS. Flights incur modification in their nominal routes due to the presence of severe weather, and hence, suffer increased delays. These delays contribute to increased burden on airlines due to extra fuel costs and missed schedules for connecting flights. In this paper, the reduction in air space capacity and the associated air traffic delays due to severe convective weather will be investigated.

  19. Heterogeneous nanofluids: natural convection heat transfer enhancement

    PubMed Central

    2011-01-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755

  20. Heterogeneous nanofluids: natural convection heat transfer enhancement.

    PubMed

    Oueslati, Fakhreddine Segni; Bennacer, Rachid

    2011-01-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755

  1. Heterogeneous nanofluids: natural convection heat transfer enhancement

    NASA Astrophysics Data System (ADS)

    Oueslati, Fakhreddine Segni; Bennacer, Rachid

    2011-12-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.

  2. The Phenix ultimate natural convection test

    SciTech Connect

    Gauthe, P.; Pialla, D.; Tenchine, D.; Vasile, A.; Rochwerger, D.

    2012-07-01

    The French sodium cooled fast reactor Phenix was shut down in 2009 after 35 years of operation. Before decommissioning, a final set of tests were performed by the CEA during 9 months. Several topics were involved such as thermal hydraulics, core physics and fuel behaviour. Among these ultimate experiments, two thermal hydraulic tests were performed: an asymmetrical test consisting in a trip of one secondary pump and a natural convection test in the primary circuit. Recognizing the unique opportunity offered by these Phenix ultimate tests, IAEA decided in 2007 to launch a Coordinated Research Project (CRP) devoted to benchmarking analyses with system codes on the Phenix natural convection test. One objective of the natural convection test in Phenix reactor is the assessment of the CATHARE system code for safety studies on future and advanced sodium cooled fast reactors. The aim of this paper is to describe this test, which was performed on June 22-23, 2009, and the associated benchmark specifications for the CRP work. The paper reminds briefly the Phenix reactor with the main physical parameters and the instrumentation used during the natural convection test. After that, the test scenario is described: - initial state at a power of 120 MWth, - test beginning resulting from a manual dry out of the two steam generators, - manual scram, - manual trip on the three primary pumps without back-up by pony motors, - setting and development of natural convection in the primary circuit, in a first phase without significant heat sink in the secondary circuits and in a second phase with significant heat sink in the secondary circuits, by opening the casing of steam generators to create an efficient heat sink, by air natural circulation in the steam generators casing. The benchmark case ends after this second phase, which corresponds to the experimental test duration of nearly 7 hours. The paper presents also the benchmark specifications data supplied by the CEA to all

  3. Natural convective heat transfer from square cylinder

    NASA Astrophysics Data System (ADS)

    Novomestský, Marcel; Smatanová, Helena; Kapjor, Andrej

    2016-06-01

    This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable

  4. Natural-convection promoter for geothermal wells

    SciTech Connect

    Allis, R.G.; James, R.

    1980-09-01

    Many geothermal wells stand with relatively cold water overlying hot water. If a pipe is inserted into such a well, natural convection will occur and hot water will flow to the top of the well. The convection-promoting pipe enables domestic wells which would normally require the use of a downhole pump or airlift (with attendant environmental problems of fluid disposal) to be satisfactorily operated with a downhole heat exchanger. In potentially powerful steam-water wells which are difficult to discharge, a pipe positioned beneath the water level should raise wellhead pressure to the point where spontaneous discharge is possible. In both cases, the permeability and temperature of the feed zones are the limiting factors for the heat output of the well.

  5. Studies of heat source driven natural convection

    NASA Technical Reports Server (NTRS)

    Kulacki, F. A.; Nagle, M. E.; Cassen, P.

    1974-01-01

    Natural convection energy transport in a horizontal layer of internally heated fluid with a zero heat flux lower boundary, and an isothermal upper boundary, has been studied. Quantitative information on the time-mean temperature distribution and the fluctuating component of temperature about the mean temperature in steady turbulent convection are obtained from a small thermocouple inserted into the layer through the upper bounding plate. Data are also presented on the development of temperature at several vertical positions when the layer is subject to both a sudden increase and to a sudden decrease in power input. For changes of power input from zero to a value corresponding to a Rayleigh number much greater than the critical linear stability theory value, a slight hysteresis in temperature profiles near the upper boundary is observed between the heat-up and cool-down modes.

  6. On natural solutal convection in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Ivanov, A. S.; Pshenichnikov, A. F.

    2015-09-01

    An experiment was carried out to investigate natural solutal convection in a magnetic fluid caused by non-homogeneous initial distribution of colloidal particles in a vertical Hele-Shaw cell. For experiment, we used a dilute magnetic fluid of the "magnetite-kerosene-oleic acid" type. The initial distribution of particles was formed by magnetophoresis of the drop-like aggregates and their sedimentation on the surface of the diamagnetic disk located in the center of the cell. Application of the magnetic field on the system led to the onset of the Rayleigh-Taylor instability and formation of descending convective jets. The velocity of the flow at the front of descending jets was measured for different values of cell thickness (up to 0.18 mm) and strength of the magnetic field generating the drop-like aggregates (up to 21 kA/m). The solutal Rayleigh numbers varied in the range Ra = 50-105. It was shown that the intensity of the convective flow characterized by the Reynolds number Re, increases with the Rayleigh number according to the power law: Re = 1.16 × 10-5Ra0.86.

  7. Laminar natural convection under nonuniform gravity.

    NASA Technical Reports Server (NTRS)

    Lienhard, J.; Eichhorn, R.; Dhir, V.

    1972-01-01

    Laminar natural convection is analyzed for cases in which gravity varies with the distance from the leading edge of an isothermal plate. The study includes situations in which gravity varies by virtue of the varying slope of a surface. A general integral solution method which includes certain known integral solutions as special cases is developed to account for arbitrary position-dependence of gravity. A series method of solution is also developed for the full equations. Although it is more cumbersome it provides verification of the integral method.

  8. Thermocapillary Convection Due to a Stationary Bubble - A Paradox

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Subramanian, R. S.

    2003-01-01

    We analyze the velocity and temperature fields at steady state due to thermocapillary convection around a gas bubble that is stationary in a liquid. A linear temperature field is imposed in the undisturbed liquid. Our interest is in investigating the effect of convective transport of momentum and energy on the velocity and temperature fields. We assume the pertinent physical properties to be constant, and that buoyant convection is negligible. Suitably defined Reynolds and Marangoni numbers are assumed to be small compared with unity. When both the Reynolds and Marangoni numbers are set equal to zero, a solution can be found. In this solution, far from the bubble, the velocity field decays as the inverse of the distance from the bubble, and the disturbance temperature field decays as the inverse of the square of this distance. We now attempt to obtain a solution when the Reynolds number is zero, but the Marangoni number is small, but non-zero, by a perturbation expansion in the Marangoni number. When the temperature field is expanded in a regular perturbation series in the Marangoni number, we show that the problem for the first correction field is ill-posed. The governing equation for this perturbation field contains an inhomogeneity, and the corresponding particular solution neither decays far from the bubble, nor can be canceled by a homogeneous solution. Additional information is included in the original extended abstract.

  9. Conjugate natural convection between horizontal eccentric cylinders

    NASA Astrophysics Data System (ADS)

    Nasiri, Davood; Dehghan, Ali Akbar; Hadian, Mohammad Reza

    2016-06-01

    This study involved the numerical investigation of conjugate natural convection between two horizontal eccentric cylinders. Both cylinders were considered to be isothermal with only the inner cylinder having a finite wall thickness. The momentum and energy equations were discretized using finite volume method and solved by employing SIMPLER algorithm. Numerical results were presented for various solid-fluid conductivity ratios (KR) and various values of eccentricities in different thickness of inner cylinder wall and also for different angular positions of inner cylinder. From the results, it was observed that in an eccentric case, and for KR < 10, an increase in thickness of inner cylinder wall resulted in a decrease in the average equivalent conductivity coefficient (overline{{K_{eq} }} ); however, a KR > 10 value caused an increase in overline{{K_{eq} }} . It was also concluded that in any angular position of inner cylinder, the value of overline{{K_{eq} }} increased with increase in the eccentricity.

  10. Prandtl Number Dependent Natural Convection with Internal Heat Sources

    SciTech Connect

    Kang Hee Lee; Seung Dong Lee; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-06-01

    Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. Recently, attention is being paid to the feasibility of external vessel flooding as a severe accident management strategy and to the phenomena affecting the success path for retaining the molten core material inside the vessel. The heat transfer inside the molten core material can be characterized by the strong buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of such flow depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, the natural convection heat transfer phenomena involving the internal heat generation are represented by the modified Rayleigh number (Ra’), which quantifies the internal heat source and hence the strength of the buoyancy force. In this study, tests were conducted in a rectangular section 250 mm high, 500 mm long and 160 mm wide. Twenty-four T-type thermocouples were installed in the test section to measure temperatures. Four T-type thermocouples were used to measure the boundary temperatures. The thermocouples were placed in designated locations after calibration. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Ra' between 1.5x106 and 7.42x1015 and the Prandtl number (Pr) between 0.7 and 6.5. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained uniform. The results demonstrated feasibility of the direct heating method to simulate uniform volumetric heat generation. Particular attentions were paid to the effect of Pr on natural convection heat transfer within the rectangular pool.

  11. Theoretical Basis for Convective Invigoration due to Increased Aerosol Concentration

    NASA Astrophysics Data System (ADS)

    Lebo, Z. J.; Chen, Y.; Seinfeld, J.

    2010-12-01

    Recent reports using a one-dimensional parcel model suggest that increases in aerosol number concentration may invigorate deep convection by mitigating the autoconversion process until air parcels reach the freezing level. This would lead to an increase in ice water aloft and the potential for enhanced upward heat transport due to phase changes, hence leading to invigorated convection. Other studies have proposed that an increase in aerosol loading may act to increase cloud top height, increasing the liquid water content, which ultimately increases the cumulative precipitation. Here we study the effect of aerosol perturbations on deep convection by employing the Weather Research and Forecasting model as a three-dimensional CRM with a two-moment, six-class bulk microphysics scheme. These results are corroborated using a newly developed bin microphysics scheme. The bulk microphysics scheme is augmented with a state-of-the-art activation scheme based on Köhler Theory and Population Splitting to analyze the effect of CCN perturbations on cloud development. Moreover, we include a physically-based parameterization for homogeneous and heterogeneous freezing to determine the effects of changes in IN number concentration on deep convective cloud development. We perform idealized simulations of deep convection over a wide range of CCN concentrations (i.e., 102 to 103 cm-3), which encompasses clean maritime conditions to polluted continental conditions, respectively. The detailed model calculations reveal that the CCN effect on precipitation in deep convective clouds depends strongly on the ambient water vapor mixing ratio profile. Our simulations suggest that under relatively dry conditions, an increase in aerosol number concentration leads to a decrease in precipitation (-4.2%), while under moist conditions, an increase in aerosol number concentration leads to an increase in precipitation (8.1%). However, when the water vapor in the mid- to upper-troposphere is depleted

  12. Natural and forced convection during solidification

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome A.

    The following work marries theoretical and experimental approaches to study the interaction of an external shear flow with a solidifying porous medium. The porous medium, a dendritic 'mushy layer', is created when a super-eutectic binary alloy is cooled leading to solid crystals bathed in an interstitial fluid which is compositionally enriched. This compositional enrichment leads to natural buoyant instabilities in the solidifying porous medium coupled with instabilities in the adjoining liquid layer. Theoretically, the effect of an external shear flow on the convective instabilities inherent to this mushy layer is investigated using a linear stability analysis. The external flow is coupled to advective perturbations in the liquid and to flow in the mush through a perturbed mush-liquid interface. A complete numerical solution of the stability of the system is performed and a critical porous medium Rayleigh number is found which is a function of both the external flow speed and the wavenumber of the interfacial perturbations. By neglecting the effects of buoyancy in the liquid and solving only for the pressure perturbations on the corrugated mush-liquid interface induced by the external flow, a reduced model is constructed and solved analytically. These theoretical results are compared with experimental observations obtained in a laboratory flume in which an ammonium-chloride solution is solidified from below at a constant rate. The experimental results reveal that at flow speeds above critical, convection is forced within the mush leading to a series of zero solid fraction tesselations aligned perpendicular to the applied shear flow. The results of the experiments compare favorably to the linear stability analysis.

  13. Natural Convection in Enclosed Porous or Fluid Media

    ERIC Educational Resources Information Center

    Saatdjian, Esteban; Lesage, François; Mota, José Paulo B.

    2014-01-01

    In Saatdjian, E., Lesage, F., and Mota, J.P.B, "Transport Phenomena Projects: A Method to Learn and to Innovate, Natural Convection Between Porous, Horizontal Cylinders," "Chemical Engineering Education," 47(1), 59-64, (2013), the numerical solution of natural convection between two porous, concentric, impermeable cylinders was…

  14. Natural convection around the human head.

    PubMed

    Clark, R P; Toy, N

    1975-01-01

    1. Factors determining the convective flow patterns around the human head in 'still' conditions are discussed in relation to body posture. 2. The flow patterns have been visualized using a schlieren optical system which reveals that the head has a thicker 'insulating' layer of convecting air in the erect posture than in the supine position. 3. Local convective and radiative heat transfer measurements from the head have been using surface calorimeters. These results are seen to be closely related to the thickness of the convective boundary layer flows. 4. The total convective and radiative heat loss from the head of a subject in the erect and supine position has been evaluated from the local measurements. For the head of the supine subject the heat loss was found to be 30% more than when the subject was standing. PMID:1142118

  15. Onset of Convection Due to Surface Tension Variations in Multicomponent and Binary Fluid Layers

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee

    2000-01-01

    Under certain conditions, such as in thin liquid films or microgravity, surface tension variations along a free surface can induce convection. Convection onset due to surface tension variation is important to many terrestrial technological processes in addition to microgravity materials processing applications. Examples include coating, drying crystallization, solidification, liquid surface contamination, and containerless processing. In double-diffusive and multicomponent systems, the spatial variations of surface tension are associated with two or more stratifying agencies, respectively. For example, both temperature and species (concentration) gradients are associated with convection in the solidification of binary alloys or salt ponds. The direction of the two (or more) gradients has a profound effect on the nature of the flow at or slightly beyond the onset of convection. Our recent work at the NASA Lewis Research Center focused on characterizing surface-tension-induced onset of convection, often referred to as Marangoni-Benard convection. Exact solutions for the stationary neutral stability of multicomponent fluid layers with interfacial deformation were derived. These solutions also permit the computation of a boundary curve that separates the long and finite wavelength instabilities. Computing points along this boundary using the exact solution (when possible) is more efficient than the typical numerical approaches, such as finite difference or spectral methods. Above the curve, a long wavelength instability was predicted, suggesting that convection would occur principally through one large flow cell in the layer, whereas below the curve, finite wavelength instabilities occur which suggest multiple finite-sized circulation cells. For many common liquids with layer depths greater than 100 mm, finite wave instability is predicted under terrestrial conditions; however, with little exception, long wavelength instability is predicted in microgravity for the

  16. On Unsteady Natural Convection Between Spherical Shells

    NASA Astrophysics Data System (ADS)

    Feldman, Yuri; Colonius, Tim

    2011-11-01

    Natural convection between two concentric spheres is investigated with three-dimensional numerical simulations. Buoyancy is achieved by preserving a temperature difference between the internal hotter and the external colder boundaries of the spherical shell. The numerical simulations were performed for the two basic configurations characterized by external to internal radius ratios of 1.2 and 1.5. Slightly supercritical laminar regimes characterized by the Rayleigh numbers of order Ra ~ O(104-105) were simulated by utilizing a Direct Numerical Simulation (DNS) approach while a Large Eddy Simulation (LES) was used for investigation of turbulent regimes for Ra ~ O (108-109) . We discuss the topological characteristics of the both laminar and turbulent flows. One of the possible scenarios of steady-unsteady transition is proposed as well. Implications of the results for the design of a double-walled Montgolfiere aerobot for the exploration of Titan's atmosphere are discussed. Research supported by Jet Propulsion Laboratory with Dr. Jeffrey Hall as monitor.

  17. Transient natural convection in heated inclined tubes

    NASA Astrophysics Data System (ADS)

    McEligot, Donald M.; Denbow, David A.; Murphy, Hugh D.

    1990-05-01

    To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length-to-diameter (L/D) ratio of 36 at angles of 0, 20, and 35 degrees from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Results were primarily qualitative but were useful in providing insight into the phenomena occurring. Steady-state temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. Transient measurements of the temperature distribution were obtained during cooling from a higher temperature without a heat source to calibrate the heat losses. With the electrical heat source, temporal data were taken during heating to examine the approach to steady state. Quasi-steady flow conditions were approached rapidly, but the overall time constant of the apparatus was of the order of one-third of a day. Predictions with the three-dimensional TEMPEST code were first tested by comparison with simple conduction analyses. Comparison with actual data showed good agreement of the predicted temperature levels for the maximum inclination, 35 degrees, and slightly poorer agreement for the other limit, a vertical tube. Trends of temperature level and Nusselt number with heating rate or Rayleigh number were reasonable, but the predicted variation of the end Nusselt number versus inclination was in the opposite direction from the experiment.

  18. Transient natural convection in heated inclined tubes

    SciTech Connect

    McEligot, D.M. . Oceanic Div.); Denbow, D.A. ); Murphy, H.D. )

    1990-05-01

    To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length-to-diameter (L/D) ratio of 36 at angles of 0{degree}, 20{degree}, and 35{degree} from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Results were primarily qualitative but were useful in providing insight into the phenomena occurring. Steady-state temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. transient measurements of the temperature distribution were obtained during cooling from a higher temperature without a heat source to calibrate the heat losses. With the electrical heat source, temporal data were taken during heating to examine the approach to steady state. Quasi-steady flow conditions were approached rapidly, but the overall time constant of the apparatus was of the order of one-third of a day. Predictions with the three-dimensional TEMPEST code were first tested by comparison with simple conduction analyses. Comparison with actual data showed good agreement of the predicted temperature levels for the maximum inclination, 35{degree}, and slightly poorer agreement for the other limit, a vertical tube. Trends of temperature level and Nusselt number with heating rate or Rayleigh number were reasonable, but the predicted variation of the end Nusselt number versus inclination was in the opposite direction from the experiment. 75 refs., 20 figs., 8 tabs.

  19. Numerical prediction of natural convection in square partitioned enclosures

    SciTech Connect

    Kelkar, K.M. ); Patankar, S.V. . Dept. of Mechanical Engineering)

    1990-01-01

    This paper provides a detailed study of flow and heat transfer phenomena in partitioned enclosures that is useful in understanding the more complex processes that occur in natural convection flows in passive solar heated buildings, solar collectors, and other applications. Two-dimensional natural convection flows in square enclosures with partitions are analyzed for laminar flow. Side walls are assumed to be isothermal, while the top and bottom walls are adiabatic.

  20. Analysis of natural convection in a low gravity environment

    NASA Technical Reports Server (NTRS)

    Mattor, Ethan E.; Durgin, William W.; Bloznalis, Peter; Schoenberg, Richard

    1992-01-01

    Natural convection inside a spherical container was studied experimentally with two apparatuses at low buoyancy levels. The data generated by these experiments, plotted nondimensionally as the Nusselt versus Rayleigh numbers, give correlations for Rayleigh numbers between 1000 and 10 exp 8, a range previously untested. These results show that natural convection has significant effects at a Rayleigh number of 1000 and higher, although the behavior of the Nusselt number as the conduction limit is approached is still unknown for a spherical geometry.

  1. SST Variation Due to Interactive Convective-Radiative Processes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Shie, C.-L.; Johnson, D.; Simpson, J.; Li, X.; Sui, C.-H.

    2000-01-01

    The recent linking of Cloud-Resolving Models (CRMs) to Ocean-Mixed Layer (OML) models has provided a powerful new means of quantifying the role of cloud systems in ocean-atmosphere coupling. This is due to the fact that the CRM can better resolve clouds and cloud systems and allow for explicit cloud-radiation interaction. For example, Anderson (1997) applied an atmospheric forcing associated with a CRM simulated squall line to a 3-D OML model (one way or passive interaction). His results suggested that the spatial variability resulting from the squall forcing can last at least 24 hours when forced with otherwise spatially uniform fluxes. In addition, the sea surface salinity (SSS) variability continuously decreased following the forcing, while some of the SST variability remained when a diurnal mixed layer capped off the surface structure. The forcing used in the OML model, however, focused on shorter time (8 h) and smaller spatial scales (100-120 km). In this study, the 3-D Goddard Cumulus Ensemble Model (GCE; 512 x 512 x 23 cu km, 2-km horizontal resolution) is used to simulate convective active episodes occurring in the Western Pacific warm pool and Eastern Atlantic regions. The model is integrated for seven days, and the simulated results are coupled to an OML model to better understand the impact of precipitation and changes in the planetary boundary layer upon SST variation. We will specifically examine and compare the results of linking the OML model with various spatially-averaged outputs from GCE simulations (i.e., 2 km vs. 10-50 km horizontal resolutions), in order to help understand the SST sensitivity to multi-scale influences. This will allow us to assess the importance of explicitly simulated deep and shallow clouds, as well as the subgrid-scale effects (in coarse-model runs) upon SST variation. Results using both 1-D and 2-D OML models will be evaluated to assess the effects of horizontal advection.

  2. Nature versus nurture in shallow convection

    NASA Astrophysics Data System (ADS)

    Romps, D. M.; Kuang, Z.

    2009-12-01

    We use tracers in a large-eddy simulation of shallow convection to show that stochastic entrainment, not cloud-base properties, determine the fate of convecting parcels. The tracers are used to diagnose the correlations between a parcel's state above the cloud base and both the parcel's state at the cloud base and its entrainment history. We find that the correlation with the cloud-base state goes to zero a few hundred meters above the cloud base. On the other hand, correlations between a parcel's state and its net entrainment are large. Evidence is found that the entrainment events may be described as a stochastic Poisson process. We construct a parcel model with stochastic entrainment that is able to replicate flux profiles and, more importantly, the observed variability. Turning off cloud-base variability has little effect on the results, which suggests that stochastic mass-flux models may be initialized with a single set of properties. The success of the stochastic parcel model suggests that it holds promise as the framework for a convective parameterization.

  3. A decoupled monolithic projection method for natural convection problems

    NASA Astrophysics Data System (ADS)

    Pan, Xiaomin; Kim, Kyoungyoun; Lee, Changhoon; Choi, Jung-Il

    2016-06-01

    We propose an efficient monolithic numerical procedure based on a projection method for solving natural convection problems. In the present monolithic method, the buoyancy, linear diffusion, and nonlinear convection terms are implicitly advanced by applying the Crank-Nicolson scheme in time. To avoid an otherwise inevitable iterative procedure in solving the monolithic discretized system, we use a linearization of the nonlinear convection terms and approximate block lower-upper (LU) decompositions along with approximate factorization. Numerical simulations demonstrate that the proposed method is more stable and computationally efficient than other semi-implicit methods, preserving temporal second-order accuracy.

  4. NATURAL CONVECTION IN PASSIVE SOLAR BUILDINGS: EXPERIMENTS, ANALYSIS AND RESULTS

    SciTech Connect

    Gadgil, A.; Bauman, F.; Kammerud, R.

    1981-04-01

    Computer programs have been developed to numerically simulate natural convection in two- and three-dimensional room geometries. The programs have been validated using published data from the literature, results from a full-scale experiment performed at the Massachusetts Institute of Technology, and results from a small-scale experiment performed at LBL. One of the computer programs has been used to study the influence of natural convection on the thermal performance of a single zone in a direct-gain passive solar building. It is found that the convective heat transfer coefficients between the air and the enclosure surfaces can be substantially different from the values assumed in the standard building energy analysis methods, and can exhibit significant variations across a given surface. This study implies that the building heating loads calculated by standard building energy analysis methods may have substantial errors as a result of their use of common assumptions regarding the convection processes which occur in an enclosure.

  5. Special session: computational predictability of natural convection flows in enclosures

    SciTech Connect

    Christon, M A; Gresho, P M; Sutton, S B

    2000-08-14

    Modern thermal design practices often rely on a ''predictive'' simulation capability--although predictability is rarely quantified and often difficult to confidently achieve in practice. The computational predictability of natural convection in enclosures is a significant issue for many industrial thermal design problems. One example of this is the design for mitigation of optical distortion due to buoyancy-driven flow in large-scale laser systems. In many instances the sensitivity of buoyancy-driven enclosure flows can be linked to the presence of multiple bifurcation points that yield laminar thermal convective processes that transition from steady to various modes of unsteady flow. This behavior is brought to light by a problem as ''simple'' as a differentially-heated tall rectangular cavity (8:1 height/width aspect ratio) filled with a Boussinesq fluid with Pr = 0.71--which defines, at least partially, the focus of this special session. For our purposes, the differentially-heated cavity provides a virtual fluid dynamics laboratory.

  6. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  7. Thermally induced natural convection effects in Yucca Mountain drifts.

    PubMed

    Webb, Stephen W; Francis, Nicholas D; Dunn, Sandra Dalvit; Itamura, Michael T; James, Darryl L

    2003-01-01

    Thermally induced natural convection from the heat produced by emplaced waste packages is an important heat and mass transfer mechanism within the Yucca Mountain Project (YMP) drifts. Various models for analyzing natural convection have been employed. The equivalent porous medium approach using Darcy's law has been used in many YMP applications. However, this approach has questionable fidelity, especially for turbulent flow conditions. Computational fluid dynamics (CFD), which is based on the fundamental Navier-Stokes equations, is currently being evaluated as a technique to calculate thermally induced natural convection in YMP. Data-model comparisons for turbulent flow conditions show good agreement of CFD predictions with existing experiments including YMP-specific data. PMID:12714318

  8. Numerical Solution of Natural Convection in Eccentric Annuli

    SciTech Connect

    Pepper, D.W.

    2001-09-18

    The governing equations for transient natural convection in eccentric annular space are solved with two high-order accurate numerical algorithms. The equation set is transformed into bipolar coordinates and split into two one-dimensional equations: finite elements are used in the direction normal to the cylinder surfaces; the pseudospectral technique is used in the azimuthal direction. This report discusses those equations.

  9. Natural convection of a magnetic fluid in a cubic enclosure

    NASA Astrophysics Data System (ADS)

    Kikura, H.; Sawada, T.; Tanahashi, T.

    1993-04-01

    Laminar natural convection heat transfer of a magnetic fluid in a cubic enclosure is examined experimentally. Wall-temperature distributions are visualized by thermosensitive liquid crystal sheets. The effect of the magnetic field on the transient temperature distributions, and the local and averaged Nusselt numbers are discussed.

  10. On the convective-absolute nature of river bedform instabilities

    NASA Astrophysics Data System (ADS)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca; Chomaz, Jean Marc

    2014-12-01

    River dunes and antidunes are induced by the morphological instability of stream-sediment boundary. Such bedforms raise a number of subtle theoretical questions and are crucial for many engineering and environmental problems. Despite their importance, the absolute/convective nature of the instability has never been addressed. The present work fills this gap as we demonstrate, by the cusp map method, that dune instability is convective for all values of the physical control parameters, while the antidune instability exhibits both behaviors. These theoretical predictions explain some previous experimental and numerical observations and are important to correctly plan flume experiments, numerical simulations, paleo-hydraulic reconstructions, and river works.

  11. Coupled three-dimensional conduction and natural convection heat transfer

    NASA Astrophysics Data System (ADS)

    Tolpadi, Anil Kumar

    1987-09-01

    A numerical and experimental investigation of three-dimensional natural convection heat transfer coupled with conduction was performed. This general problem is of great importance because of its widespread applicability in areas such as compact natural convection heat exchangers, cooling of electronic equipment, and porous media flows. The determination of flow patterns and heat transfer coefficients in such situations is necessary because of its practical use in various industries. A vectorized finite difference code was developed for the Cray-2 supercomputer which has the capability of simulating a wide class of three-dimensional coupled conduction-convection problems. This program numerically solves the transient form of the complete laminar Navier-Stokes equations of motion using the vorticity-vector potential methods. Using this program, numerical solutions were obtained for 3-D natural convection from a horizontal isothermal heat exchanger tube with an attached circular cooling fin array. Experiments were performed to measure three-dimensional temperature fields using Mach-Zehnder interferometry. Software was developed to digitize and process fringe patterns and inversion algorithms used to compute the 3-D temperature field.

  12. Mechanisms of Steady and Oscillatory Double-component Convection Due To Different Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Tsitverblit, Naftali

    The effects of different boundary conditions on the behavior of double-component fluid are of basic significance for the ocean processes up to the scales of the global ocean thermohaline circulation [Walin, Palaeogeogr. Palaeoclimatol. Palaeoecol. 50, 323 (1985)]. One major aspect of such flows is that the effect of different boundary conditions can be conceptually analogous to that of different diffusivities in the classi- cal double-diffusion [Welander, Tellus, Ser. A 41, 66 (1989); Tsitverblit, Phys. Fluids 9, 2458 (1997); ibid. 11, 2516 (1999); Phys. Rev. E 62, R7591 (2000)]. This work reports the existence of a novel mechanism of double-component convection resulting from different boundary conditions, whose nature is unrelated to differential diffu- sion. This mechanism emerges in a horizontal layer of Boussinesq fluid as a stable stratification due to flux boundary conditions is added to an unstable gradient speci- fied by fixed boundary values. A large enough perturbation substantially decreases the stable flux gradient but fails to mix the unstable fixed-value gradient. Steady finite- amplitude flows reminiscent of Rayleigh--Benard convection then arise even as the net background stratification is stable. At sufficiently large Rayleigh numbers, con- tinuation of such flows into the finite-amplitude states in Tsitverblit (2000) exhibits a hysteresis region in the slot inclination angle, due to the dissimilar nature of these two convective flows. Welander's (1989) oscillatory instability is also analyzed with the focus on the compensating across-slot gradients. In the inviscid fluid, k = 0 is the most unstable wave number, with the perturbation frequency c = 0. The long- wavelength expansion yields the critical (joint) Rayleigh number, Rac, and group ve- locity, k (c/k), for k = 0 as Rac = 12(k) and k = c c 2 c 60/7. [Generally, at k = 0, the critical (fixed-value) Rayleigh number Rac = (2Ras + 5040)/51 and 12(k) = Ras; Ras being the flux Rayleigh number

  13. Drift natural convection and seepage at the Yucca Mountain repository

    NASA Astrophysics Data System (ADS)

    Halecky, Nicholaus Eugene

    The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock, from the hot drift center to the cool drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water- induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity values, with reduced local seepage, form a more desirable waste package environment.

  14. Validation of PARET for the modeling of heat transfer under natural convection core cooling

    SciTech Connect

    Ibrahim, J.K.; Kassim, M.S.; Mohammed, F.

    1995-12-31

    The PARET code is a one-dimensional, coupled thermal-hydraulic and point-kinetics code, which was originally developed for the analysis of SPERT-I transients and later adapted for the analysis of transient behavior in research reactors. Due to its ease of transportability and relative simplicity of input preparation, it is widely used internationally and is particularly attractive for research reactors with limited computational facilities. The thermal-hydraulic modeling of the current version of PARET accounts for buoyancy forces in the core and external pressure gradients that may arise from density differences between the core inlet and outlet. This feature of PARET makes it a useful tool for the analysis of research reactors cooled by natural convection as well as those cooled by forced convection. Since PARET has been applied to the analysis of the International Atomic Energy Agency 10-MW benchmark cores for protected and unprotected transients and also for the analysis of SPERT-I transients, its forced convection heat-removal model is reliable. However, there has been little experience with the capability of PARET to model heat removal in cores cooled by natural convection. This paper reports the results of some experiments performed at the Malaysian PUSPATI reactor to compare PARET predictions for power increases under natural convection core cooling to measured data.

  15. Temporal response of laser power standards with natural convective cooling.

    PubMed

    Xu, Tao; Gan, Haiyong; Yu, Jing; Zang, Erjun

    2016-01-25

    Laser power detectors with natural convective cooling are convenient to use and hence widely applicable in a power range below 150 W. However, the temporal response characteristics of the laser power detectors need to be studied in detail for accurate measurement. The temporal response based on the absolute laser power standards with natural convective cooling is studied through theoretical analysis, numerical simulations, and experimental verifications. Our results show that the response deviates from a single exponential function and that an ultimate response balance is difficult to achieve because the temperature rise of the heat sink leads to continuous increase of the response. To determine the measurement values, an equal time reading method is proposed and validated by the laser power calibrations. PMID:26832477

  16. Influence of geometry on natural convection in buildings

    SciTech Connect

    White, M.D.; Winn, C.B.; Jones, G.F.; Balcomb, J.D.

    1985-01-01

    Strong free convection airflows occur within passive solar buildings resulting from elevated temperatures of surfaces irradiated by solar energy compared with the cooler surfaces not receiving radiation. The geometry of a building has a large influence on the directions and magnitudes of natural airflows, and thus heat transfer between zones. This investigation has utilized a variety of reduced-scale building configurations to study the effects of geometry on natural convection heat transfer. Similarity between the reduced-scale model and a full-scale passive solar building is achieved by having similar geometries and by replacing air with Freon-12 gas as the model's working fluid. Filling the model with Freon-12 gas results in similarity in Prandtl numbers and Rayleigh numbers based on temperature differences in the range from 10/sup 9/ to 10/sup 11/. Results from four geometries are described with an emphasis placed on the effects of heat loss on zone temperature stratification shifts.

  17. Numerical investigation of natural convection heat transfer in a three-dimensional annular enclosure

    NASA Astrophysics Data System (ADS)

    Yung, Chain-Nan; de Witt, Kenneth J.; Keith, Theo G., Jr.

    Natural convective flow and heat transfer in a three-dimensional annular enclose have been investigated numerically. The analysis uses dimensionless equations of continuity, momentum, and energy in Cartesian coordinates, which are cast into a generalized curvilinear system and solved by using a prediction-correction algorithm. For short horizontal cylinders, the local heat transfer rate is found to decrease sharply near the end walls due to convective velocity suppression; the overall heat transfer rate is less than that predicted by a two-dimensional model. Heat transfer rates are presented as a function of the Rayleigh number and compared with the available experimental data.

  18. Verification of a numerical simulation technique for natural convection

    SciTech Connect

    Gadgil, A.; Bauman, F.; Altmayer, E.; Kammerud, R.C.

    1983-03-01

    The present paper describes a verification of CONVEC2 for single-zone geometries by comparison with the results of two natural convection experiments performed in small-scale rectangular enclosures. These experiments were selected because of the high Rayleigh numbers obtained and the small heat loss through the insulated surfaces. Comparisons are presented for (1) heat transfer rates, (2) fluid temperature profiles, and (3) surface heat flux distributions.

  19. Numerical simulation heat transfer by natural convection in liquid metal with a sinusoidal temperature

    NASA Astrophysics Data System (ADS)

    Missoum, Abdelkrim; Elmir, Mohamed; Bouanini, Mohamed; Belkacem, Abdellah; Draoui, Belkacem

    2016-03-01

    This study focuses on the numerical simulation of heat transfer by natural convection in a rectangular enclosure, filled with a liquid metal (low Prandtl number) partially heated from below with a sinusoidal temperature. The value of the study lies in its involvement in the crystal growth for the manufacture of semiconductors and electronics cooling. Indeed, the occurrence of convection during crystal growth can lead to in homogeneities that lead to striations and defects that affect the quality of the crystals obtained by the Bridgman techniques or Chochrawlski. Temperature of the oscillations, due to the instabilities of the convective flow in the liquid metal, also induces non-uniform cooling in the solidification front. Convection is then studied in order to reduce it. A modelling of the problem in two dimensions was conducted using Comsol computer code that is based on the finite element method, by varying the configuration of the control parameters, namely, the Rayleigh number, the nature of fluid (Prandtl number) and amplitude of temperature on heat transfer rate (Nusselt number) on convective structures that appear.

  20. Topological analysis of a mixing flow generated by natural convection

    NASA Astrophysics Data System (ADS)

    Contreras, Pablo Sebastián; de la Cruz, Luis Miguel; Ramos, Eduardo

    2016-01-01

    We use topological tools to describe the natural convective motion and the Lagrangian trajectories of a flow generated by stepwise, alternating heating and cooling protocol of opposite vertical walls of a cubic container. The working fluid considered is Newtonian and the system is in presence of the acceleration of gravity but the nonlinear terms are neglected, i.e., we study the piece-wise steady and linear problem. For this convective mixing flow, we identify invariant surfaces formed by the Lagrangian orbits of massless tracers that are topologically equivalent to spherical shells and period-1 lines with elliptic and hyperbolic segments that are located on symmetry planes. We describe the previous features as functions of the Rayleigh number in the range 3 × 104 ≤ Ra ≤ 5 × 105. We show that this system shares properties with other systems with non-toroidal invariant surfaces.

  1. The Fractional Step Method Applied to Simulations of Natural Convective Flows

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Heinrich, Juan C.; Saxon, Jeff (Technical Monitor)

    2002-01-01

    This paper describes research done to apply the Fractional Step Method to finite-element simulations of natural convective flows in pure liquids, permeable media, and in a directionally solidified metal alloy casting. The Fractional Step Method has been applied commonly to high Reynold's number flow simulations, but is less common for low Reynold's number flows, such as natural convection in liquids and in permeable media. The Fractional Step Method offers increased speed and reduced memory requirements by allowing non-coupled solution of the pressure and the velocity components. The Fractional Step Method has particular benefits for predicting flows in a directionally solidified alloy, since other methods presently employed are not very efficient. Previously, the most suitable method for predicting flows in a directionally solidified binary alloy was the penalty method. The penalty method requires direct matrix solvers, due to the penalty term. The Fractional Step Method allows iterative solution of the finite element stiffness matrices, thereby allowing more efficient solution of the matrices. The Fractional Step Method also lends itself to parallel processing, since the velocity component stiffness matrices can be built and solved independently of each other. The finite-element simulations of a directionally solidified casting are used to predict macrosegregation in directionally solidified castings. In particular, the finite-element simulations predict the existence of 'channels' within the processing mushy zone and subsequently 'freckles' within the fully processed solid, which are known to result from macrosegregation, or what is often referred to as thermo-solutal convection. These freckles cause material property non-uniformities in directionally solidified castings; therefore many of these castings are scrapped. The phenomenon of natural convection in an alloy under-going directional solidification, or thermo-solutal convection, will be explained. The

  2. Transient Convection Due to Imposed Heat Flux: Application to Liquid-Acquisition Devices

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Chato, David J.; Doherty, Michael P.

    2014-01-01

    A model problem is considered that addresses the effect of heat load from an ambient laboratory environment on the temperature rise of liquid nitrogen inside an enclosure. This model has applications to liquid acquisition devices inside the cryogenic storage tanks used to transport vapor-free propellant to the main engine. We show that heat loads from Q = 0.001 to 10 W, with corresponding Rayleigh numbers from Ra = 109 to 1013, yield a range of unsteady convective states and temperature rise in the liquid. The results show that Q = 1 to 10 W (Ra = 1012 to 1013) yield temperature distributions along the enclosure height that are similar in trend to experimental measurements. Unsteady convection, which shows selfsimilarity in its planforms, is predicted for the range of heat-load conditions. The onset of convection occurs from a free-convection-dominated base flow that becomes unstable against convective instability generated at the bottom of the enclosure while the top of the enclosure is convectively stable. A number of modes are generated with small-scale thermals at the bottom of the enclosure in which the flow selforganizes into two symmetric modes prior to the onset of the propagation of the instability. These symmetric vertical modes transition to asymmetric modes that propagate as a traveling-wave-type motion of convective modes and are representative of the asymptotic convective state of the flow field. Intense vorticity production is created in the core of the flow field due to the fact that there is shear instability between the vertical and horizontal modes. For the higher Rayleigh numbers, 1012 to 1013, there is a transition from a stationary to a nonstationary response time signal of the flow and temperature fields with a mean value that increases with time over various time bands and regions of the enclosure.

  3. An experimental investigation of a natural convection solar air loop

    SciTech Connect

    Mastrullo, R.; Mazzei, P.; Vanoli, R.

    1983-12-01

    The interest that has been shown in the use of solar energy to heat dwellings following the ''passive'' design criteria does not correspond to the development of accurate theoretical and experimental analysis. This is particularly true for natural circulation solar air heaters. A significant application of these components is wall panel to complement south-facing windows in supplying solar heat directly to buildings. This idea, formerly suggested by Trombe et al., leads to various realizations, one of which was theoretically investigated by present authors. A convective loop panel consists of a glass layer and a black absorber that is backed by insulation. In the configuration shown the air flows in the channel in front of the absorber and the deflecting panel allows cool air to settle to the bottom of the U channel, preventing reverse thermocirculation during night or very low insolation periods. Since thermocirculation is the primary mode of heat transfer for the solar air heaters, the definition of an accurate convection model for the channel is essential for performance predictions. Studies on this subject - free convection between asymmetrically heated vertical planes - deal mainly with theoretical solutions for laminar flow, with the two usual boundary conditions. As the heat transfer process in the solar air loop cannot be expected to follow this model, there is the need of extensive experimental investigation.

  4. Instabilities of Natural Convection in a Periodically Heated Layer

    NASA Astrophysics Data System (ADS)

    Hossain, M. Z.; Floryan, Jerzy M.

    2013-11-01

    Natural convection in a horizontal layer subject to a spatially periodic heating along the lower wall has been investigated. The heating produces sinusoidal temperature variations characterized by the wave number α and the Rayleigh number Rap. The primary response has the form of stationary rolls with axis orthogonal to the heating wave vector. For large α convection is limited to a thin layer adjacent to the lower wall with a uniform conduction above it. Linear stability was used to determine conditions leading to a secondary convection. Two mechanisms of instability have been identified. For α = 0(1), the parametric resonance dominates and leads to the pattern of instability that is locked-in with the pattern of the heating according to the relation δcr = α /2, where δcr denotes the component of the critical disturbance wave vector parallel to the heating wave vector. The second mechanism, Rayleigh-Bénard (RB) mechanism, dominates for large α. Competition between these mechanisms gives rise to non-commensurable states and appearance of soliton lattices, to the formation of distorted transverse rolls, and to the appearance of the wave vector component in the direction perpendicular to the forcing direction.

  5. Natural convection within a vertical finite-length channel in free space

    SciTech Connect

    Lin, S.C.; Chang, K.P.; Hung, Y.H. )

    1994-04-01

    Natural convection within a vertical finite length channel in free space is studied in this article to remove assumptions that need to be made on velocity and temperature profiles at the channel entrance. For small channel aspect ratios and low Rayleigh numbers, significant deviations of the Nusselt number and temperature distributions exist due to the effects of vertical thermal diffusion and free space stratification in the channel. A new correlation was proposed on induced Reynolds number for vertical finite length channel. 8 refs.

  6. Thermally optimum spacing of vertical, natural convection cooled, parallel plates

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, A.; Rohsenow, W. M.

    Vertical two-dimensional channels formed by parallel plates or fins are a frequently encountered configuration in natural convection cooling in air of electronic equipment. In connection with the complexity of heat dissipation in vertical parallel plate arrays, little theoretical effort is devoted to thermal optimization of the relevant packaging configurations. The present investigation is concerned with the establishment of an analytical structure for analyses of such arrays, giving attention to useful relations for heat distribution patterns. The limiting relations for fully-developed laminar flow, in a symmetric isothermal or isoflux channel as well as in a channel with an insulated wall, are derived by use of a straightforward integral formulation.

  7. Convection

    NASA Astrophysics Data System (ADS)

    Britz, Dieter

    Convection has long been coupled with electrochemistry, and the name hydrodynamic voltammetry has become standard. In electroanalytical chemistry we mainly seek reproducible conditions. These are almost always attained by systems in which a steady convective state is achieved, although not always. Thus, the once popular dropping mercury electrode (see texts such as [74, 257]) has convection around it, but is never in steady state; it might be called a reproducible periodic dynamic state.

  8. Particle filter based on thermophoretic deposition from natural convection flow

    SciTech Connect

    Sasse, A.G.B.M.; Nazaroff, W.W. ); Gadgil, A.J. )

    1994-04-01

    We present an analysis of particle migration in a natural convection flow between parallel plates and within the annulus of concentric tubes. The flow channel is vertically oriented with one surface maintained at a higher temperature than the other. Particle migration is dominated by advection in the vertical direction and thermophoresis in the horizontal direction. From scale analysis it is demonstrated that particles are completely removed from air flowing through the channel if its length exceeds L[sub c] = (b[sup 4]g/24K[nu][sup 2]), where b is the width of the channel, g is the acceleration of gravity, K is a thermophoretic coefficient of order 0.5, and [nu] is the kinematic viscosity of air. Precise predictions of particle removal efficiency as a function of system parameters are obtained by numerical solution of the governing equations. Based on the model results, it appears feasible to develop a practical filter for removing smoke particles from a smoldering cigarette in an ashtray by using natural convection in combination with thermophoresis. 22 refs., 8 figs., 1 tab.

  9. Effect of enclosure shape on natural convection velocities

    NASA Technical Reports Server (NTRS)

    Robertson, S. J.; Nicholson, L. A.

    1982-01-01

    A numerical analysis was performed to compare natural convection velocities in two dimensional enclosures of various shape. The following shapes were investigated: circle, square, horizontal and upright 2 x 1 aspect ratio rectangles, horizontal and upright half circles, diamond. In all cases, the length scale in the various dimensionless parameters, such as Rayleigh number, is defined as the diameter of the equal area circle. Natural convection velocities were calculated for Rayleigh numbers of 1000 and 5000 with the temperature difference taken to be across (1) the maximum horizontal dimension, (2) the median horizontal line (line through centroid) and (3) the horizontal distance such that the temperature gradient is the same for shapes of equal area. For the class of shapes including the square, upright half circle and upright rectangle, the computed velocities were found to agree very closely with that of the equal area circle when the temperature difference is taken to be across the maximum horizontal dimension (condition (a)). The velocities for the horizontal rectangle and half circle were found to be approximately one half that of the equal area circle for the same condition. Better overall agreement among all shapes was obtained by setting the temperature difference across a distance such that the temperature gradients were equal for shapes of equal area.

  10. Double-component convection due to different boundary conditions in an infinite slot diversely oriented to the gravity

    NASA Astrophysics Data System (ADS)

    Tsitverblit, N.

    2007-08-01

    Onset of small-amplitude oscillatory and both small- and finite-amplitude steady double-component convection arising due to component different boundary conditions in an infinite slot is studied for various slot orientations to the gravity. The main focus is on two compensating background gradients of the components. The physical mechanisms underlying steady and oscillatory convection are analyzed from the perspective of a universally consistent understanding of the effects of different boundary conditions. In a horizontal slot with inviscid fluid addressed by Welander [P. Welander, Tellus Ser. A 41 (1989) 66], oscillatory convection sets in with the most unstable wave number and oscillation frequency being zero. Exact expressions for the critical fixed-value background gradient and the respective group velocity at zero wave number are derived from the long-wavelength expansion both for the horizontal slot with independently varying background gradients and for the inclined slot with the compensating gradients. In the horizontal slot with viscous fluid, the dissipation of along-slot perturbation-cell motion reduces efficiency of the oscillatory instability feedback and thus prevents the most unstable wavelength from being infinite. Based on this interpretation, the oscillatory instability of a three-dimensional (3D) nature is predicted for an interval of long two-dimensional (2D) wavelengths in an inclined slot, and such 3D instability is indeed shown to arise. Related general conditions for three-dimensionality of most unstable disturbances are also formulated. As the slot orientation changes from the horizontal by angle θ (⩾π/2), the oscillatory 2D marginal-stability boundaries in inviscid and viscous fluid are expected to eventually transform into respective steady ones. Oscillatory instability in the vertical slot with viscous fluid, first reported by Tsitverblit [N. Tsitverblit, Phys. Rev. E 62 (2000) R7591], is of a quasi-steady nature. Its (new

  11. Double-component convection due to different boundary conditions in an infinite slot diversely oriented to the gravity

    SciTech Connect

    Tsitverblit, N. . E-mail: naftali@eng.tau.ac.il

    2007-08-15

    Onset of small-amplitude oscillatory and both small- and finite-amplitude steady double-component convection arising due to component different boundary conditions in an infinite slot is studied for various slot orientations to the gravity. The main focus is on two compensating background gradients of the components. The physical mechanisms underlying steady and oscillatory convection are analyzed from the perspective of a universally consistent understanding of the effects of different boundary conditions. In a horizontal slot with inviscid fluid addressed by Welander [P. Welander, Tellus Ser. A 41 (1989) 66], oscillatory convection sets in with the most unstable wave number and oscillation frequency being zero. Exact expressions for the critical fixed-value background gradient and the respective group velocity at zero wave number are derived from the long-wavelength expansion both for the horizontal slot with independently varying background gradients and for the inclined slot with the compensating gradients. In the horizontal slot with viscous fluid, the dissipation of along-slot perturbation-cell motion reduces efficiency of the oscillatory instability feedback and thus prevents the most unstable wavelength from being infinite. Based on this interpretation, the oscillatory instability of a three-dimensional (3D) nature is predicted for an interval of long two-dimensional (2D) wavelengths in an inclined slot, and such 3D instability is indeed shown to arise. Related general conditions for three-dimensionality of most unstable disturbances are also formulated. As the slot orientation changes from the horizontal by angle {theta} ({>=}{pi}/2), the oscillatory 2D marginal-stability boundaries in inviscid and viscous fluid are expected to eventually transform into respective steady ones. Oscillatory instability in the vertical slot with viscous fluid, first reported by Tsitverblit [N. Tsitverblit, Phys. Rev. E 62 (2000) R7591], is of a quasi-steady nature. Its (new

  12. Porous media flow problems: Natural convection and non-Newtonian

    NASA Astrophysics Data System (ADS)

    Walker, K. L.

    1980-03-01

    Natural convection of a Newtonian fluid and one dimensional flow of a nonNewtonian fluid are studied. Convection in a rectangular porous cavity driven by heating in the horizontal is analyzed by a number of different techniques which yield a fairly complete description of the two dimensional solutions. The solutions are governed by two dimensionless parameters: the Darcy-Rayleigh number R and cavity aspect ratio A. The flow behavior of a dilute solution of polyacrylamide in corn syrup flowing through porous media is also studied. Measurement of the pressure drop and flow rate are made for the solution flowing through a packed bed of glass beads. At low velocities the pressure drop as a function of velocity is the same as that for a Newtonian fluid of equal viscosity. At high flow rates the nonNewtonian fluid exhibited significantly higher pressure drops than a Newtonian fluid. Careful rheological measurements of the fluid are made using a Weissenberg rheogoniometer. From measurements of the dynamic viscosity shear it is determined that elastic effects are negligible. It is believed that the increased pressure gradients are caused by nonlinear viscous effects resulting from the extensional components of the flow.

  13. Adjoint optimization of natural convection problems: differentially heated cavity

    NASA Astrophysics Data System (ADS)

    Saglietti, Clio; Schlatter, Philipp; Monokrousos, Antonios; Henningson, Dan S.

    2016-06-01

    Optimization of natural convection-driven flows may provide significant improvements to the performance of cooling devices, but a theoretical investigation of such flows has been rarely done. The present paper illustrates an efficient gradient-based optimization method for analyzing such systems. We consider numerically the natural convection-driven flow in a differentially heated cavity with three Prandtl numbers (Pr=0.15{-}7 ) at super-critical conditions. All results and implementations were done with the spectral element code Nek5000. The flow is analyzed using linear direct and adjoint computations about a nonlinear base flow, extracting in particular optimal initial conditions using power iteration and the solution of the full adjoint direct eigenproblem. The cost function for both temperature and velocity is based on the kinetic energy and the concept of entransy, which yields a quadratic functional. Results are presented as a function of Prandtl number, time horizons and weights between kinetic energy and entransy. In particular, it is shown that the maximum transient growth is achieved at time horizons on the order of 5 time units for all cases, whereas for larger time horizons the adjoint mode is recovered as optimal initial condition. For smaller time horizons, the influence of the weights leads either to a concentric temperature distribution or to an initial condition pattern that opposes the mean shear and grows according to the Orr mechanism. For specific cases, it could also been shown that the computation of optimal initial conditions leads to a degenerate problem, with a potential loss of symmetry. In these situations, it turns out that any initial condition lying in a specific span of the eigenfunctions will yield exactly the same transient amplification. As a consequence, the power iteration converges very slowly and fails to extract all possible optimal initial conditions. According to the authors' knowledge, this behavior is illustrated here

  14. Air cooling of a vented enclosure by combined conduction, natural convection and radiation

    SciTech Connect

    Yu, E.; Joshi, Y.K.

    1996-12-31

    A three-dimensional investigation of combined conduction, natural convection and radiation in vented enclosures is carried out. A discrete flush type heat source mounted on a vertical substrate is used to simulate an electronic component. A uniform volumetric generation rate is assumed within the heat source. Combined natural convection in the air, conduction in the heat source, the substrate and the enclosure walls, and surface radiation are solved for Rayleigh numbers at 2.6 {times} 10{sup 6} and 2.0 {times} 10{sup 7}. Radiation is incorporated based on the radiosity/irradiation approach. The resulting flow and temperature patterns are discussed, focusing on radiation and three-dimensional effects. The relative contributions of natural convection and radiation are investigated for different emissivities of internal surface of the substrate. Heat transfer rates from the substrate and other internal walls are presented to illustrate conjugate heat transfer due to combined modes. The numerical solutions are found in reasonably good agreement with the data.

  15. STARSPOTS DUE TO LARGE-SCALE VORTICES IN ROTATING TURBULENT CONVECTION

    SciTech Connect

    Kaepylae, Petri J.; Mantere, Maarit J.; Hackman, Thomas

    2011-11-20

    We study the generation of large-scale vortices in rotating turbulent convection by means of Cartesian direct numerical simulations. We find that for sufficiently rapid rotation, cyclonic structures on a scale large in comparison to that of the convective eddies emerge, provided that the fluid Reynolds number exceeds a critical value. For slower rotation, cool cyclonic vortices are preferred, whereas for rapid rotation, warm anti-cyclonic vortices are favored. In some runs in the intermediate regime both types of cyclones coexist for thousands of convective turnover times. The temperature contrast between the vortices and the surrounding atmosphere is of the order of 5%. We relate the simulation results to observations of rapidly rotating late-type stars that are known to exhibit large high-latitude spots from Doppler imaging. In many cases, cool spots are accompanied with spotted regions with temperatures higher than the average. In this paper, we investigate a scenario according to which of the spots observed in the temperature maps could have a non-magnetic origin due to large-scale vortices in the convection zones of the stars.

  16. Natural Convection and Boiling for Cooling SRP Reactors During Loss of Circulation Conditions

    SciTech Connect

    Buckner, M.R.

    2001-06-26

    This study investigated natural convection and boiling as a means of cooling SRP reactors in the event of a loss of circulation accident. These studies show that single phase natural convection cooling of SRP reactors in shutdown conditions with the present piping geometry is probably not feasible.

  17. Three-dimensional, transient natural convection in inclined wellbores

    SciTech Connect

    McEligot, D.M. . Oceanic Div.); Denbow, D.A. ); Murphy, H.D. )

    1990-01-01

    The occurrence of natural conduction in a wellbore can affect geothermal gradient measurements and heat flow estimates. In the Hot Dry Rock geothermal concept, the wellbores are purposely inclined in the deep regions to enhance heat production. To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length to diameter (L/D) ratio of 36 at angles of 0{degrees}, 20{degrees}, and 35{degrees} from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. Comparison with measurements showed good agreement of the predicted temperature levels for the maximum inclination and slightly poorer agreement for the other limit, a vertical tube. 50 refs., 9 figs.

  18. Natural convection in enclosures. Proceedings of the nineteenth national heat transfer conference, Orlando, FL, July 27-30, 1980

    SciTech Connect

    Torrance, K.E.; Catton, I.

    1980-01-01

    Natural convection in low aspect ratio rectangular enclosures is considered along with three-dimensional convection within rectangular boxes, natural convection flow visualization in irradiated water cooled by air flow over the surface, free convection in vertical slots, the stratification in natural convection in vertical enclosures, the flow structure with natural convection in inclined air-filled enclosures, and natural convection across tilted, rectangular enclosures of small aspect ratio. Attention is given to the effect of wall conduction and radiation on natural convection in a vertical slot with uniform heat generation of the heated wall, a numerical study of thermal insulation enclosure, free convection in a piston-cylinder enclosure with sinusoidal piston motion, natural convection heat transfer between bodies and their spherical enclosure, an experimental study of the steady natural convection in a horizontal annulus with irregular boundaries, three-dimensional natural convection in a porous medium between concentric inclined cylinders, a numerical solution for natural convection in concentric spherical annuli, and heat transfer by natural convection in porous media between two concentric spheres.

  19. Natural convection in a horizontal cylinder with axial rotation.

    PubMed

    Sánchez, Odalys; Mercader, Isabel; Batiste, Oriol; Alonso, Arantxa

    2016-06-01

    We study the problem of thermal convection in a laterally heated horizontal cylinder rotating about its axis. A cylinder of aspect ratio Γ=H/2R=2 containing a small Prandtl number fluid (σ=0.01) representative of molten metals and molten semiconductors at high temperature is considered. We focus on a slow rotation regime (Ω<8), where the effects of rotation and buoyancy forces are comparable. The Navier-Stokes and energy equations with the Boussinesq approximation are solved numerically to calculate the basic states, analyze their linear stability, and compute several secondary flows originated from the instabilities. Due to the confined cylindrical geometry-the presence of lateral walls and lids-all the flows are completely three dimensional, even the basic steady states. Results characterizing the basic states as the rotation rate increases are presented. As it occurred in the nonrotating case for higher values of the Prandtl number, two curves of steady states with the same symmetric character coexist for moderate values of the Rayleigh number. In the range of Ω considered, rotation has a stabilizing effect only for very small values. As the value of the rotation rate approaches Ω=3.5 and Ω=4.5, the scenario of bifurcations becomes more complex due to the existence in both cases of very close bifurcations of codimension 2, which in the latter case involve both curves of symmetric solutions. PMID:27415364

  20. Natural convection in a horizontal cylinder with axial rotation

    NASA Astrophysics Data System (ADS)

    Sánchez, Odalys; Mercader, Isabel; Batiste, Oriol; Alonso, Arantxa

    2016-06-01

    We study the problem of thermal convection in a laterally heated horizontal cylinder rotating about its axis. A cylinder of aspect ratio Γ =H /2 R =2 containing a small Prandtl number fluid (σ =0.01 ) representative of molten metals and molten semiconductors at high temperature is considered. We focus on a slow rotation regime (Ω <8 ), where the effects of rotation and buoyancy forces are comparable. The Navier-Stokes and energy equations with the Boussinesq approximation are solved numerically to calculate the basic states, analyze their linear stability, and compute several secondary flows originated from the instabilities. Due to the confined cylindrical geometry—the presence of lateral walls and lids—all the flows are completely three dimensional, even the basic steady states. Results characterizing the basic states as the rotation rate increases are presented. As it occurred in the nonrotating case for higher values of the Prandtl number, two curves of steady states with the same symmetric character coexist for moderate values of the Rayleigh number. In the range of Ω considered, rotation has a stabilizing effect only for very small values. As the value of the rotation rate approaches Ω =3.5 and Ω =4.5 , the scenario of bifurcations becomes more complex due to the existence in both cases of very close bifurcations of codimension 2, which in the latter case involve both curves of symmetric solutions.

  1. Natural convection of silica-water nanofluids based on experimental measured thermophysical properties: critical analysis

    NASA Astrophysics Data System (ADS)

    Haddad, Zoubida; Abid, Chérifa; Mohamad, A. A.; Rahli, O.; Bawazer, S.

    2016-08-01

    An experimental and numerical study was performed to investigate the effect of different formulas for nanofluid thermal conductivity and dynamic viscosity on natural convective heat transfer. It was found that the heat transfer across the enclosure using different models can be enhanced or deteriorated with respect to the base fluid. Also, it was found that the inconsistencies in the reported thermal conductivity and dynamic viscosity from different research groups are mainly due to the characterization of the nanofluid, including determination of colloidal stability and particle size, (i.e., aggregates size) within nanofluid.

  2. Evolving Views on the Scale and Nature of Mantle Convection

    NASA Astrophysics Data System (ADS)

    van der Hilst, R. D.

    2014-12-01

    Since seminal studies of transition zone discontinuities in the 1960ies and the advent of seismic tomography a decade later much progress has been made with the understanding of the scale and nature of mantle convection. First order questions remain, however, about the fluxes between the canonical upper and lower parts of Earth's mantle and the origin and nature of deep mantle heterogeneity. The first generation of tomographic models depicted fast shear wave propagation in the lowermost mantle beneath the circum-Pacific subduction zones and large low shear wspeed anomalies beneath Africa and the central Pacific. In P-wave models these structures are less apparent, and the anomalous Vp/Vs ratios and related variables are suggestive of chemical heterogeneity. Later tomographic studies revealed the pattern of subducted oceanic lithosphere in more detail and discovered that some slabs sink deep into the lower mantle whereas others remain, at least temporarily, in the transition zone. The complex flow trajectories and the evidence for compositional heterogeneity render simple end-member models of strict layering or unobstructed mantle flow untenable. Various seismic imaging methods have been used to map with increasing precision the variations in depth to the major mantle discontinuities, and also these results are not fully consistent with expectations for simple convection models. In addition, renewed scrutiny with more data and better methods suggest that the models of phase transitions around 410 and 660 km depth in the olivine component of a pyrolitic mantle composition are oversimplifications. Indeed, interfaces are also found at other depths, and many exceptions to the expected anti correlation of the interface topographies have been reported. Some of these observations can be explained with experimental and computational studies of the mineralogy and phase chemistry of deep mantle assemblages, but with such studies still restricted to fairly simple bulk

  3. Fire risk due to convective drying at forest edges in Rondonia

    NASA Astrophysics Data System (ADS)

    Baidya Roy, S.; Rastogi, D.

    2010-12-01

    Fire in tropical forests is a severe and growing problem that is exacerbated by forest fragmentation and selective logging. Despite the importance of uncontrolled forest fires in the tropics, there is currently little understanding of the processes by which disturbances alter the moisture dynamics of these normally near-fire-immune ecosystems. In this project we show that horizontal temperature gradients due to forest fragmentation generate organized mesoscale convective circulations. These circulations are anchored within the gaps and pump moisture away from the forest edges, effectively acting in opposition to the moisture-trapping evapotranspiration process. We conducted a set of 12-hour simulations and a 2-month-long simulation with the RAMS model to study the impact of these convective cells on the temperature and humidity of canopy air. These simulations show that during the 2004 dry season (June-July) the convective cells lead to a rapid drying of the forest edges to the point of fire susceptibility. This difference between intact and disturbed forests must be accounted for while predicting fire susceptibility in the tropics.

  4. Delay in convection in nocturnal boundary layer due to aerosol-induced cooling

    NASA Astrophysics Data System (ADS)

    Singh, Dhiraj Kumar; Ponnulakshmi, V. K.; Subramanian, G.; Sreenivas, K. R.

    2012-11-01

    Heat transfer processes in the nocturnal boundary layer (NBL) influence the surface energy budget, and play an important role in many micro-meteorological processes including the formation of inversion layers, radiation fog, and in the control of air-quality near the ground. Under calm clear-sky conditions, radiation dominates over other transport processes, and as a result, the air layers just above ground cool the fastest after sunset. This leads to an anomalous post-sunset temperature profile characterized by a minimum a few decimeters above ground (Lifted temperature minimum). We have designed a laboratory experimental setup to simulate LTM, involving an enclosed layer of ambient air, and wherein the boundary condition for radiation is decoupled from those for conduction and convection. The results from experiments involving both ambient and filtered air indicate that the high cooling rates observed are due to the presence of aerosols. Calculated Rayleigh number of LTM-type profiles is of the order 105-107 in the field and of order 103-105 in the laboratory. In the LTM region, there is convective motion when the Rayleigh number is greater than 104 rather than the critical Rayleigh number (Rac = 1709). The diameter of convection rolls is a function of height of minimum of LTM-type profiles. The results obtained should help in the parameterization of transport process in the nocturnal boundary layer, and highlight the need to accounting the effects of aerosols and ground emissivity in climate models.

  5. Suspension of sediment particles over a ripple due to turbulent convection under unsteady flow conditions

    NASA Astrophysics Data System (ADS)

    Chang, Yeon S.; Park, Young-Gyu

    2016-03-01

    We analyzed the motions of small sediment particles over a sinusoidal ripple due to an unsteady turbulent boundary layer flow using Large Eddy Simulation. The motions of sediment particles are described in terms of the Lagrangian framework as it is helpful in studying the structure of sediment suspension in detail. Strong coherent vortical structures are well developed along the upslope of the ripple surface during the accelerating flow phase, which effectively drag the particles to the ripple crest. At the maximum flow rate and at the decelerating flow phase, a cloud of vortical structures is developed vertically in the lee area of the ripple. Sediment particles render strong dispersion in the vertical direction when they are captured by these turbulent vortices, causing convective sediment flux that cannot be explained by the mean flows. The convective sediment suspension is strongest at the time of flow deceleration, while over a flat bed at the time of flow reversal. This observation suggests that bed form effect should be considered in modeling convective sediment flux.

  6. Polar vortex formation in giant-planet atmospheres due to moist convection

    NASA Astrophysics Data System (ADS)

    O'Neill, Morgan E.; Emanuel, Kerry A.; Flierl, Glenn R.

    2015-07-01

    A strong cyclonic vortex has been observed on each of Saturn’s poles, coincident with a local maximum in observed tropospheric temperature. Neptune also exhibits a relatively warm, although much more transient, region on its south pole. Whether similar features exist on Jupiter will be resolved by the 2016 Juno mission. Energetic, small-scale storm-like features that originate from the water-cloud level or lower have been observed on each of the giant planets and attributed to moist convection, suggesting that these storms play a significant role in global heat transfer from the hot interior to space. Nevertheless, the creation and maintenance of Saturn’s polar vortices, and their presence or absence on the other giant planets, are not understood. Here we use simulations with a shallow-water model to show that storm generation, driven by moist convection, can create a strong polar cyclone throughout the depth of a planet’s troposphere. We find that the type of shallow polar flow that occurs on a giant planet can be described by the size ratio of small eddies to the planetary radius and the energy density of its atmosphere due to latent heating from moist convection. We suggest that the observed difference in these parameters between Saturn and Jupiter may preclude a Jovian polar cyclone.

  7. Experimental analysis of natural convection within a thermosyphon

    SciTech Connect

    Clarksean, R.

    1993-09-01

    The heat transfer characteristics of a thermosyphon designed to passively cool cylindrical heat sources are experimentally studied. The analysis is based on recognizing the physics of the flow within different regions of the thermosyphon to develop empirical heat transfer correlations. The basic system consists of three concentric cylinders, with an outer channel between the outer two cylinders, and an inner channel between the inner two cylinders. Tests were conducted. with two different process material container diameters, representing the inner cylinder, and several different power levels. The experimentally determined local and average Nu numbers for the inner channel are in good agreement with previous work for natural convection between vertical parallel plates, one uniformly heated and the other thermally insulated. The implication is that the heat transfer off of each surface is independent of the adjacent surface for sufficiently high Ra numbers. The heat transfer is independent because of limited interaction between the boundary layers at sufficiently high Ra numbers. As a result of the limited interaction, the maximum temperature within the system remained constant, or decreased slightly when the radii of the inner cylinders increased for the same amount of heat removal.

  8. Conjugate natural convection flow over a vertical surface with radiation

    NASA Astrophysics Data System (ADS)

    Siddiqa, Sadia; Hossain, Md. Anwar; Gorla, Rama Subba Reddy

    2016-06-01

    Numerical study of conjugate natural convection flow over a finite vertical surface with radiation is reported in this article. Rosseland diffusion approximation is used to express the radiative heat flux term. The governing boundary-layer equations are made dimensionless by means of a suitable form of non-similarity transformation. These equations are obtained in three regimes: (1) upstream (when ξ → 0), (2) downstream (when ξ → ∞ ) and (3) entire regime and are solved numerically. The solutions in the upstream and downstream regimes are obtained via shooting method whereas two-point implicit finite difference method is used to get the solutions for the entire regime. It is seen that asymptotic solutions give accurate results when compared with the numerical solution of the entire regime. The results indicate that the flow field and the temperature distributions are greatly influenced by thermal radiation parameter , R_d, surface temperature parameter, θ _w and Prandtl number Pr. It is established from the analysis that recirculation occurs in the flow specifically for R_d=1.5.

  9. Analysis of Phenix natural convection test with the TRACE code

    SciTech Connect

    Chenu, A.; Mikityuk, K.; Chawla, R.

    2012-07-01

    Experimental data from the Natural Convection (NC) test performed in the Phenix reactor prior to its final shutdown have been used to further validate the single-phase sodium flow modeling in TRACE. The experimental data for the benchmark have been shared by the CEA in the frame of a Coordinated Research Project (CRP), initiated by the IAEA Technical Working Group on Fast Reactors (TWG-FR). This paper presents a complete TRACE model of the Phenix primary circuit developed for the analysis. Steady-state calculations at nominal (350 MWth) and reduced (120 MWth) power are compared to the experimental data for the validation of the model. We presents results from the 'blind' comparison, i.e. the comparison of the test results with those computed prior to the communication of the experimental data, so-called 'pre-test' results. 'Post-test' results, calculated from a model improved on the basis of the discrepancies identified from the blind comparison, are also presented. The analysis highlights the need to accurately simulate the reactor structures, since these define the thermal inertia of the system during the first phase of the transient. Furthermore, it shows the limitations of computed 1D-results when applied to the simulation of highly-stratified temperature fields. Nevertheless, the simulated reactor behavior and temperatures are found to match very well with the experimental data after the first two hours and, in general, the TRACE blind predictions may be considered as having been quite satisfactory. (authors)

  10. Natural convection of ferrofluids in partially heated square enclosures

    NASA Astrophysics Data System (ADS)

    Selimefendigil, Fatih; Öztop, Hakan F.; Al-Salem, Khaled

    2014-12-01

    In this study, natural convection of ferrofluid in a partially heated square cavity is numerically investigated. The heater is located to the left vertical wall and the right vertical wall is kept at constant temperature lower than that of the heater. Other walls of the square enclosure are assumed to be adiabatic. Finite element method is utilized to solve the governing equations. The influence of the Rayleigh number (104≤Ra≤5×105), heater location (0.25H≤yh≤0.75H), strength of the magnetic dipole (0≤γ≤2), horizontal and vertical location of the magnetic dipole (-2H≤a≤-0.5H, 0.2H≤b≤0.8H) on the fluid flow and heat transfer characteristics are investigated. It is observed that different velocity components within the square cavity are sensitive to the magnetic dipole source strength and its position. The length and size of the recirculation zones adjacent to the heater can be controlled with magnetic dipole strength. Averaged heat transfer increases with decreasing values of horizontal position of the magnetic dipole source. Averaged heat transfer value increases from middle towards both ends of the vertical wall when the vertical location of the dipole source is varied. When the heater location is changed, a symmetrical behavior in the averaged heat transfer plot is observed and the minimum value of the averaged heat transfer is attained when the heater is located at the mid of vertical wall.

  11. Transient natural convection of cold water in a vertical channel

    NASA Astrophysics Data System (ADS)

    Chiba, Ryoichi

    2016-05-01

    The two-dimensional differential transform method (DTM) is applied to analyse the transient natural convection of cold water in a vertical channel. The cold water gives rise to a density variation with temperature that may not be linearized. The vertical channel is composed of doubly infinite parallel plates, one of which has a constant prescribed temperature and the other of which is insulated. Considering the temperature-dependent viscosity and thermal conductivity of the water, approximate analytical (series) solutions for the temperature and flow velocity are derived. The transformed functions included in the solutions are obtained through a simple recursive procedure. Numerical computation is performed for the entire range of water temperature conditions around the temperature at the density extremum point, i.e. 4°C. Numerical results illustrate the effects of the temperature-dependent properties on the transient temperature and flow velocity profiles, volumetric flow rate, and skin friction. The DTM is a powerful tool for solving nonlinear transient problems as well as steady problems.

  12. Role of natural convection in the dissolution of sessile droplets

    NASA Astrophysics Data System (ADS)

    Dietrich, Erik; Wildeman, Sander; Visser, Claas Willem; Hofhuis, Kevin; Kooij, E. Stefan; Zandvliet, Harold J. W.; Lohse, Detlef

    2016-05-01

    The dissolution process of small (initial (equivalent) radius $R_0 < 1$ mm) long-chain alcohol (of various types) sessile droplets in water is studied, disentangling diffusive and convective contributions. The latter can arise for high solubilities of the alcohol, as the density of the alcohol-water mixture is then considerably less as that of pure water, giving rise to buoyancy driven convection. The convective flow around the droplets is measured, using micro-particle image velocimetry ($\\mu$PIV) and the schlieren technique. When nondimensionalizing the system, we fnd a universal $Sh\\sim Ra^1/4$ scaling relation for all alcohols (of different solubilities) and all droplets in the convective regime. Here Sh is the Sherwood number (dimensionless mass flux) and Ra the Rayleigh number (dimensionless density difference between clean and alcohol-saturated water). This scaling implies the scaling relation $\\tau_c \\sim R^5/4$ of the convective dissolution time $\\tau_c$, which is found to agree with experimental data. We show that in the convective regime the plume Reynolds number (the dimensionless velocity) of the detaching alcohol-saturated plume follows $Re_p \\sim Sc^-1 Ra^5/8$, which is confirmed by the $\\mu$PIV data. Here, Sc is the Schmidt number. The convective regime exists when $Ra > Ra_t$, where $Ra_t = 12$ is the transition Ra-number as extracted from the data. For $Ra < Ra_t$ and smaller, convective transport is progressively overtaken by diffusion and the above scaling relations break down.

  13. Multicellular natural convection of a low Prandlt number fluid between horizontal concentric cylinders

    SciTech Connect

    Joosik Yoo; Jun Young Choi; Moonuhn Kim . Dept. of Mechanical Engineering)

    1994-01-01

    Two-dimensional natural convection of a fluid of low Prandtl number (Pr = 0.02) in an annulus between two concentric horizontal cylinders is numerically investigated in a wide range of gap widths. For low Grashof numbers, a steady unicellular convection is obtained. Above a transition Grashof number that depends on the gap width, a steady bicellular flow occurs. With further increase of the Grashof number, steady or time-periodic multicellular convection occurs, and finally, complex unsteady convective flow appears. A plot is presented that predicts the type of flow patterns for various combination of gap widths and Grashof numbers.

  14. Theoretical analysis of solar-driven natural convection energy conversion systems

    SciTech Connect

    Jacobs, E.W.; Lasier, D.D.

    1984-01-01

    This report presents a theoretical study of solar-powered natural convection tower (chimney) performance. Both heated and cooled towers are analyzed; the latter uses evaporating water as the cooling mechanism. The results, which are applicable to any open-cycle configuration, show that the ideal conversion efficiencies of both heated and cooled natural convection towers are linear functions of height. The performance of a heated tower in an adiabatic atmosphere ideally approaches the Carnot efficiency limit of approx. = 3.4%/km (1.0%/1000 ft). Including water pumping requirements, the ideal limit to cooled tower performance is approx. = 2.75%/km (0.85%/1000 ft). Ambient atmospheric conditions such as vertical temperature gradient (lapse rate) and relative humidity can have significantly adverse effects on natural convection tower performance. The combined effects of lapse rate and ambient relative humidity are especially important to cooled natural convection towers.

  15. Thermal modeling of phase change solidification in thermal control devices including natural convection effects

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.

    1972-01-01

    Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.

  16. Study on natural convection capability of liquid gallium for passive decay heat removal system (PDHRS)

    SciTech Connect

    Kang, S.; Ha, K. S.; Lee, S. W.; Park, S. D.; Kim, S. M.; Seo, H.; Kim, J. H.; Bang, I. C.

    2012-07-01

    The safety issues of the SFRs are important due to the fact that it uses sodium as a nuclear coolant, reacting vigorously with water and air. For that reason, there are efforts to seek for alternative candidates of liquid metal coolants having excellent heat transfer property and to adopt improved safety features to the SFR concepts. This study considers gallium as alternative liquid metal coolant applicable to safety features in terms of chemical activity issue of the sodium and aims to experimentally investigate the natural convection capability of gallium as a feasibility study for the development of gallium-based passive safety features in SFRs. In this paper, the design and construction of the liquid gallium natural convection loop were carried out. The experimental results of heat transfer coefficient of liquid gallium resulting in heat removal {approx}2.53 kW were compared with existing correlations and they were much lower than the correlations. To comparison of the experimental data with computer code analysis, gallium property code was developed for employing MARS-LMR (Korea version of RELAP) based on liquid gallium as working fluid. (authors)

  17. Inherent safety advantages of carbide fuel systems and technical issues regarding natural convection in LMRs

    SciTech Connect

    Barthold, W.P.

    1984-08-01

    The scope of work is to summarize inherent safety advantages that are unique to the use of a carbide based fuel system and to summarize the technical issues regarding natural convection flow in LMFBR cores. As discussed in this report, carbide fuel provides the designer with far greater flexibility than oxide fuel. Carbide fuel systems can be designed to eliminate major accident initiators. They turn quantitative advantages into a qualitative advantage. The author proposed to LANL a series of core design and component concepts that would greatly enhance the safety of carbide over oxide systems. This report cites a series of safety advantages which potentially exist for a carbide fuel system. Natural convection issues have not been given much attention in the past. Only during the last few years has this issue been addressed in some detail. Despite claims to the contrary by some of the LMR contractors, the author does not think that the natural convection phenomena is fully understood. Some of the approximations made in natural convection transient analyses have probably a greater impact on calculated transient temperatures than the effects under investigation. Only integral in-pile experimental data and single assembly out-of-pile detailed data are available for comparisons with analytical models and correlations. Especially for derated cores, the natural convection capability of a LMR should be far superior to that of a LWR. The author ranks the natural convection capability of the LMR as the most important inherent safety feature.

  18. Study of plasma natural convection induced by electron beam in atmosphere [

    SciTech Connect

    Deng, Yongfeng Han, Xianwei; Tan, Yonghua

    2014-06-15

    Using high-energy electron beams to ionize air is an effective way to produce a large-size plasma in the atmosphere. In particular, with a steady-state high power generator, some unique phenomena can be achieved, including natural convection of the plasma. The characteristics of this convection are studied both experimentally and numerically. The results show that an asymmetrical temperature field develops with magnitudes that vary from 295 K to 389 K at a pressure of 100 Torr. Natural convection is greatly enhanced under 760 Torr. Nevertheless, plasma transport is negligible in this convection flow field and only the plasma core tends to move upward. Parameter analysis is performed to discern influencing factors on this phenomenon. The beam current, reflecting the Rayleigh number Ra effect, correlates with convection intensity, which indicates that energy deposition is the underlying key factor in determining such convections. Finally, natural convection is concluded to be an intrinsic property of the electron beam when focused into dense air, and can be achieved by carefully adjusting equipment operations parameters.

  19. Nature, theory and modelling of geophysical convective planetary boundary layers

    NASA Astrophysics Data System (ADS)

    Zilitinkevich, Sergej

    2015-04-01

    Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in

  20. Numerical simulation of natural convection in a sessile liquid droplet

    NASA Astrophysics Data System (ADS)

    Bartashevich, M. V.; Marchuk, I. V.; Kabov, O. A.

    2012-06-01

    Heat transfer in a sessile liquid droplet was studied with numerical methods. A computer code was developed for solving the problem of convection in an axisymmetric hemispherical droplet and in a spherical layer as well. The problem of establishing an equilibrium state in a droplet was solved using several variables: temperature, stream function, and vorticity. Simulation was performed for droplets of water, ethyl alcohol, and model liquids. Variable parameters: intensity of heat transfer from droplet surface, Rayleigh and Marangoni dimensionless criteria, and the characteristic temperature difference. It was revealed that the curve of convective flow intensity versus heat transfer intensity at droplet surface has a maximum. A dual-vortex structure was obtained in a stationary hemispherical profile of liquid droplet for the case of close values for thermocapillary and thermogravitational forces. Either thermocapillary or thermogravitational vortex might be dominating phenomena in the flow structure.

  1. Environmental exposures due to natural disasters.

    PubMed

    Knap, Anthony H; Rusyn, Ivan

    2016-03-01

    The environmental mobilization of contaminants by "natural disasters" is a subject of much interest, however, little has been done to address these concerns, especially in the developing world. Frequencies and predictability of events, both globally and regionally as well as the intensity, vary widely. It is clear that there are greater probabilities for mobilization of modern contaminants in sediments. Over the past 100 years of industrialization many chemicals are buried in riverine, estuarine and coastal sediments. There are a few studies, which have investigated this potential risk especially to human health. Studies that focus on extreme events need to determine the pre-existing baseline, determine the medium to long term fate and transport of contaminants and investigate aquatic and terrestrial pathways. Comprehensive studies are required to investigate the disease pathways and susceptibility for human health concerns. PMID:26982607

  2. Environmental exposures due to natural disasters

    PubMed Central

    Knap, Anthony H.; Rusyn, Ivan

    2016-01-01

    The environmental mobilization of contaminants by “natural disasters” is a subject of much interest; however, little has been done to address these concerns, especially in the developing world. Frequencies and predictability of events, both globally and regionally as well as the intensity, vary widely. It is clear that there are greater probabilities for mobilization of modern contaminants in sediments. Over the past 100 years of industrialization many chemicals are buried in riverine, estuarine and coastal sediments. There are a few studies, which have investigated this potential risk especially to human health. Studies that focus on extreme events need to determine the pre-existing baseline, determine the medium to long term fate and transport of contaminants and investigate aquatic and terrestrial pathways. Comprehensive studies are required to investigate the disease pathways and susceptibility for human health concerns. PMID:26982607

  3. Natural convection mass transfer on a vertical steel structure submerged in a molten aluminum pool

    SciTech Connect

    Cheung, F.B.; Yang, B.C.; Shiah, S.W.; Cho, D.H.; Tan, M.J.

    1995-02-01

    The process of dissolution mass transport along a vertical steel structure submerged in a large molten aluminum pool is studied theoretically. A mathematical model is developed from the conservation laws and thermodynamic principles, taking full account of the density variation in the dissolution boundary layer due to concentration differences. Also accounted for are the influence of the solubility of the wall material on species transfer and the motion of the solid/liquid interface at the dissolution front. The governing equations are solved by a combined analytical-numerical technique to determine the characteristics of the dissolution boundary layer and the rate of natural convection mass transfer. Based upon the numerical results, a correlation for the average Sherwood number is obtained. It is found that the Sherwood number depends strongly on the saturated concentration of the substrate at the moving dissolution front but is almost independent of the freestream velocity.

  4. Natural convection in binary gases driven by combined horizontal thermal and vertical solutal gradients

    SciTech Connect

    Weaver, J.A.; Viskanta, R. )

    1992-01-01

    An investigation of natural convection is presented to examine the influence of a horizontal temperature gradient and a concentration gradient occurring from the bottom to the cold wall in a cavity. As the solutal buoyancy force changes from augmenting to opposing the thermal buoyancy force, the fluid motion switches from unicellular to multicellular flow (fluid motion is up the cold wall and down the hot wall for the bottom counterrotating flow cell). Qualitatively, the agreement between predicted streamlines and smoke flow patterns is generally good. In contrast, agreement between measured and predicted temperature and concentration distributions ranges from fair to poor. Part of the discrepancy can be attributed to experimental error. However, there remains considerable discrepancy between data and predictions due to the idealizations of the mathematical model, which examines only first-order physical effects. An unsteady flow, variable thermophysical properties, conjugate effects, species interdiffusion, and radiation were not accounted for in the model. 31 refs.

  5. Natural convection flow in a square cavity revisited: Laminar and turbulent models with wall functions

    NASA Astrophysics Data System (ADS)

    Barakos, G.; Mitsoulis, E.; Assimacopoulos, D.

    1994-04-01

    Numerical simulations have been undertaken for the benchmark problem of natural convection flow in a square cavity. The control volume method is used to solve the conservation equations for laminar and turbulent flows for a series of Rayleigh numbers (Ra) reaching values up to 10(exp 10). The k-epsilon model has been used for turbulence modelling with and without logarithmic wall functions. Uniform and non-uniform (stretched) grids have been employed with increasing density to guarantee accurate solutions, especially near the walls for high Ra-values. ADI and SIP solvers are implemented to accelerate convergence. Excellent agreement is obtained with previous numerical solutions, while some discrepancies with others for high Ra-values may be due to a possibly different implementation of the wall functions. Comparisons with experimental data for heat transfer (Nusselt number) clearly demonstrates the limitations of the standard k-epsilon model with logarithmic wall functions, which gives significant overpredictions.

  6. Natural-convection heat transfer of a spherical lighting fixture

    SciTech Connect

    Ikeda, Takamasa; Fujii, Tetsu

    1994-09-01

    The surface temperatures of the inner lamp and the outer globe of a spherical lighting fixture, the surfaces of which are painted black, were measured. From the results, the average convective heat-transfer coefficients between the inner lamp and the outer globe and on the outer surface of the globe were obtained. These data are correlated with the aid of existing equations for two concentric spheres and the outer surface of a single sphere. The relationships between the maximum and mean temperatures on the lamp and the globe were also obtained. By the use of these equations, a method for the optimal thermal design of spherical lighting fixtures is proposed.

  7. Suppression/Reversal of Natural Convection by Exploiting the Temperature/Composition Dependence of Magnetic Susceptibility

    NASA Technical Reports Server (NTRS)

    Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.

    2000-01-01

    Natural convection, driven by temperature-or concentration gradients or both, is an inherent phenomenon during solidification of materials on Earth. This convection has practical consequences (e.g effecting macrosegregation) but also renders difficult the scientific examination of diffusive/conductive phenomena during solidification. It is possible to halt, or even reverse, natural convection by exploiting the variation (with temperature, for example) of the susceptibility of a material. If the material is placed in a vertical magnetic field gradient, a buoyancy force of magnetic origin arises and, at a critical field gradient, can balance the normal buoyancy forces to halt convection. At higher field gradients the convection can be reversed. The effect has been demonstrated in experiments at Marshall Space Flight Center where flow was measured by PIV in MnCl2 solution in a superconducting magnet. In auxiliary experiments the field in the magnet and the properties of the solution were measured. Computations of the natural convection, its halting and reversal, using the commercial software FLUENT were in good agreement with the measurements.

  8. Onset of convection in a finite two-dimensional container due to unipolar injection of ions.

    PubMed

    Wu, Jian; Traoré, Philippe; Vázquez, Pedro A; Pérez, Alberto T

    2013-11-01

    This work addresses the stability of a two-dimensional plane layer of a dielectric liquid enclosed in wall bounded cavities of different aspect ratios and subjected to unipolar injection of ions. Numerical simulations have been conducted to investigate the effect of lateral walls, especially in the development of the electroconvective instability. It is found that an unexpected change of the bifurcation nature occurs for certain cavity aspect ratios. We show that above the linear stability threshold for the rest state a supercritical bifurcation arises. This bifurcation takes place at a given value T(c1) of the parameter T (the electric Rayleigh number). Then, a second subcritical bifurcation occurs at a second threshold T(c2), featuring a typical hysteresis loop with an associated nonlinear criterion T(f), which is very characteristic of the Coulomb-driven convection. This behavior has been confirmed by different numerical codes based on different numerical methods. The physical mechanism which leads to this situation is analyzed and discussed. The evolution of the bifurcation diagrams with the aspect ratio of the cavity is also provided and analyzed. PMID:24329362

  9. Determination of sub-lithospheric stress due to mantle convection using GOCE gradiometric data over Iran

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi; Romeshkani, Mohsen

    2015-11-01

    Sub-lithospheric stress due to mantle convection can be determined from gravimetric data based on Runcorn's theory. In this paper, the satellite gradiometric data of the recent European satellite mission, the Gravity field and steady-state Ocean Circulation Explorer (GOCE) is used to determine the sub-lithospheric stress locally in Iran. The method of S function (SF) with numerical differentiation is developed further and an integral equation connecting satellite gradiometric data to SF is presented. The integral equation will be used to invert the real gradiometric data of GOCE to recover the SF. Later on, the sub-lithospheric shear stresses, which are the northward and eastward derivatives of the SF, are computed numerically. Our numerical results show that the mean squares error of the recovered SF is smaller than the values of the SF meaning that the recovery process is successful. Also, the recovered stress has a good agreement with the tectonic boundaries and active seismic points of the world stress map (WSM) database. This stress reaches amplitude of 100 MPa in the territory.

  10. Thermocapillary flow and natural convection in a melt column with an unknown melt/solid interface

    NASA Technical Reports Server (NTRS)

    Lan, C. W.; Kou, Sindo

    1991-01-01

    A vertical melt column set up between an upper heating rod and a lower sample rod, i.e., the so-called half-zone system, is a convenient experimental tool for studying convection in the melt in floating-zone crystal growth. In order to help understand the convection observed in the melt column, a computer model has been developed to describe steady state, axisymmetrical thermocapillary flow and natural convection in the melt. The governing equations and boundary conditions are expressed in general non-orthogonal curvilinear coordinates in order to accurately treat the unknown melt/solid interface as well as all other physical boundaries in the system. The effects of key dimensionless variables on the following items are discussed: (1) convection and temperature distribution in the melt; (2) the shape of the melt/solid interface; (3) the height of the melt column. These dimensionless variables are the Grashof, Marangoni and Prandtl numbers.

  11. Transient natural convection inside rigid drops in a liquid-liquid direct-contact heat exchanger

    SciTech Connect

    Hutchins, J.F.

    1988-01-01

    Natural convection was simulated inside spherical container and drops. The transient Navier-Stokes and energy equations were solved by employing finite-difference techniques. Pseudosteady-state natural convection inside spheres was simulated. Pseudosteady state was maintained by keeping the driving force for natural convection constant. To obtain pseudosteady state conditions, the temperature at the inside surface of the sphere was steadily increased so that the temperature difference between the surface and the center remained constant. The results were compared to experimental data found in the literature. It was found that the Nusselt number (Pr > 0.7) for pseudosteady state correlated to the Raleigh number by the following relation: Nu = 1.19Ra{sup .2215}, 10{sup 5} < Ra < 10{sup 8}. The simulation results were compared to experimental data of two other researchers who measured drop-temperature profiles in direct-contact heat-exchange columns. The simulation results demonstrate good correlation to the experimental data.

  12. Natural convection heat transfer on two horizontal cylinders in liquid sodium

    SciTech Connect

    Hata, K.; Shiotsu, M.; Takeuchi, Y.

    1995-09-01

    Natural convection heat transfer on two horizontal 7.6 mm diameter test cylinders assembled with the ratio of the distance between each cylinder axis to the cylinder diameter, S/D, of 2 in liquid sodium was studied experimentally and theoretically. The heat transfer coefficients on the cylinder surface due to the same heat inputs ranging from 1.0 X 10{sup 7} to 1.0 x 10{sup 9} W/m{sup 3} were obtained experimentally for various setting angeles, {gamma}, between vertical direction and the plane including both of these cylinder axis over the range of zero to 90{degrees}. Theoretical equations for laminar natural convection heat transfer from the two horizontal cylinders were numerically solved for the same conditions as the experimental ones considering the temperature dependence of thermophysical properties concerned. The average Nusselt numbers, Nu, values on the Nu versus modified Rayleigh number, R{sub f}, graph. The experimental values of Nu for the upper cylinder are about 20% lower than those for the lower cylinder at {gamma} = 0{degrees} for the range of R{sub f} tested here. The value of Nu for the upper cylinder becomes higher and approaches that for the lower cylinder with the increase in {gamma} over range of 0 to 90{degrees}. The values of Nu for the lower cylinder at each {gamma} are almost in agreement with those for a single cylinder. The theoretical values of Nu on two cylinders except those for R{sub f}<4 at {gamma} = 0{degrees} are in agreement with the experimental data at each {gamma} with the deviations less than 15%. Correlations for Nu on the upper and lower cylinders were obtained as functions of S/D and {gamma} based n the theoretical solutions for the S/D ranged over 1.5 to 4.0.

  13. Transient testing of the FFTF for decay-heat removal by natural convection

    SciTech Connect

    Beaver, T R; Johnson, H G; Stover, R L

    1982-06-01

    This paper reports on the series of transient tests performed in the FFTF as a major part of the pre-operations testing program. The structure of the transient test program was designed to verify the capability of the FFTF to safely remove decay heat by natural convection. The series culminated in a scram from full power to complete natural convection in the plant, simulating a loss of all electrical power. Test results and acceptance criteria related to the verification of safe decay heat removal are presented.

  14. Analysis and measurements of interzonal natural convection heat transfer in buildings

    SciTech Connect

    Hill, D.; Kirkpatrick, A.; Burns, P.

    1986-08-01

    Natural convection heat transfer through doorways can be an important process by which thermal energy is transferred from one zone to another zone of a building. The topic of this paper is interzonal natural convection in a two zone and a three zone multilevel full scale building. Aperture velocity and temperature distributions are measured and the experimental interzonal mass flow rate and heat transfer are determined. A Bernoulli model is derived to predict the neutral heights, velocity profiles, and interzonal heat transfer. The measured and predicted interzonal flow rate and heat transfer are compared and found to be in good agreement.

  15. Transient Rayleigh-Bénard-Marangoni convection due to evaporation: a linear non-normal stability analysis

    NASA Astrophysics Data System (ADS)

    Doumenc, F.; Boeck, T.; Guerrier, B.; Rossi, M.

    2010-04-01

    The convective instability in a plane liquid layer with time-dependent temperature profile is investigated by means of a general method suitable for linear stability analysis of an unsteady basic flow. The method is based on a non-normal approach, and predicts the onset of instability, critical wave number and time. The method is applied to transient Rayleigh-Benard-Marangoni convection due to cooling by evaporation. Numerical results as well as theoretical scalings for the critical parameters as function of the Biot number are presented for the limiting cases of purely buoyancy-driven and purely surface-tension-driven convection. Critical parameters from calculations are in good agreement with those from experiments on drying polymer solutions, where the surface cooling is induced by solvent evaporation.

  16. Natural Convection Cooling of the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Hill, Dennis

    2011-01-01

    After fueling and prior to launch, the Advanced Stirling Radioisotope Generator (ASRG) will be stored for a period of time then moved to the launch pad for integration with the space probe and mounting on the launch vehicle. During this time, which could be as long as 3 years, the ASRG will operate continuously with heat rejected from the housing and fins. Typically, the generator will be cooled by forced convection using fans. During some of the ground operations, maintaining forced convection may add significant complexity, so allowing natural convection may simplify operations. A test was conducted on the ASRG Engineering Unit (EU) to quantify temperatures and operating parameters with natural convection only and determine if the EU could be safely operated in such an environment. The results show that with natural convection cooling the ASRG EU Stirling convertor pressure vessel temperatures and other parameters had significant margins while the EU was operated for several days in this configuration. Additionally, an update is provided on ASRG EU testing at NASA Glenn Research Center, where the ASRG EU has operated for over 16,000 hr and underwent extensive testing.

  17. Weight and water loss in the neonate in natural and forced convection.

    PubMed Central

    Thompson, M H; Stothers, J K; McLellan, N J

    1984-01-01

    We describe a simple method of determining weight loss and hence water loss of infants in incubators. Unlike previously reported methods, it does not interfere with the microenvironment surrounding the infant. Weight loss of 16 term and 32 preterm infants was measured in both forced and natural convection. No significant increase in water loss was observed in the term infants but in the preterm infants the mean loss in natural convection was 0.85 g/kg/hour compared with 1.26 g/kg/hour in forced convection: in the most extreme situation it was doubled. This water loss represents a substantial energy loss and suggestions to minimise it are discussed. Images Fig. 1 PMID:6497432

  18. Mass transport at infinite regular arrays of microband electrodes submitted to natural convection: theory and experiments.

    PubMed

    Pebay, Cécile; Sella, Catherine; Thouin, Laurent; Amatore, Christian

    2013-12-17

    Mass transport at infinite regular arrays of microband electrodes was investigated theoretically and experimentally in unstirred solutions. Even in the absence of forced hydrodynamics, natural convection limits the convection-free domain up to which diffusion layers may expand. Hence, several regimes of mass transport may take place according to the electrode size, gap between electrodes, time scale of the experiment, and amplitude of natural convection. They were identified through simulation by establishing zone diagrams that allowed all relative contributions to mass transport to be delineated. Dynamic and steady-state regimes were compared to those achieved at single microband electrodes. These results were validated experimentally by monitoring the chronoamperometric responses of arrays with different ratios of electrode width to gap distance and by mapping steady-state concentration profiles above their surface through scanning electrochemical microscopy. PMID:24283775

  19. Forced-to-natural convection transition tests in parallel simulated liquid metal reactor fuel assemblies

    SciTech Connect

    Levin, A.E. ); Montgomery, B.H. )

    1990-01-01

    The Thermal-Hydraulic Out of Reactor Safety (THORS) Program at Oak Ridge National Laboratory (ORNL) had as its objective the testing of simulated, electrically heated liquid metal reactor (LMR) fuel assemblies in an engineering-scale, sodium loop. Between 1971 and 1985, the THORS Program operated 11 simulated fuel bundles in conditions covering a wide range of normal and off-normal conditions. The last test series in the Program, THORS-SHRS Assembly 1, employed two parallel, 19-pin, full-length, simulated fuel assemblies of a design consistent with the large LMR (Large Scale Prototype Breeder -- LSPB) under development at that time. These bundles were installed in the THORS Facility, allowing single- and parallel-bundle testing in thermal-hydraulic conditions up to and including sodium boiling and dryout. As the name SHRS (Shutdown Heat Removal System) implies, a major objective of the program was testing under conditions expected during low-power reactor operation, including low-flow forced convection, natural convection, and forced-to-natural convection transition at various powers. The THORS-SHRS Assembly 1 experimental program was divided up into four phases. Phase 1 included preliminary and shakedown tests, including the collection of baseline steady-state thermal-hydraulic data. Phase 2 comprised natural convection testing. Forced convection testing was conducted in Phase 3. The final phase of testing included forced-to-natural convection transition tests. Phases 1, 2, and 3 have been discussed in previous papers. The fourth phase is described in this paper. 3 refs., 2 figs.

  20. Terrestrial smokers: Thermal springs due to hydrothermal convection of groundwater connected to surface water

    NASA Astrophysics Data System (ADS)

    Bayani Cardenas, M.; Lagmay, Alfredo Mahar F.; Andrews, Benjamin J.; Rodolfo, Raymond S.; Cabria, Hillel B.; Zamora, Peter B.; Lapus, Mark R.

    2012-01-01

    Thermal springs are ubiquitous features whose underground kinematic structure is mostly unknown but are typically thought to originate from deep sources. We documented a type of thermal springs at the banks of a volcanic lake that are discharge zones of hydrothermal convection cells circulating groundwater within the near shore environment. The convection captures lake water through the lakebed, mixes it with deeper groundwater at velocities of 100s of m d-1, then returns the water to the lake via the spring. The convection cell is flushed in a few hours and turns over the lake's volume in a few days. Most volcanic lakes and other relatively cool surface water bodies in areas of elevated geothermal heat fluxes meet the conditions for the occurrence of local hydrothermal circulation of groundwater. The type of spring we studied, the terrestrial version of black smokers, is likely present but perhaps unrecognized at many areas.

  1. Numerical study of natural convection in a horizontal cylinder filled with water-based alumina nanofluid

    NASA Astrophysics Data System (ADS)

    Meng, Xiangyin; Li, Yan

    2015-03-01

    Natural heat convection of water-based alumina (Al2O3/water) nanofluids (with volume fraction 1% and 4%) in a horizontal cylinder is numerically investigated. The whole three-dimensional computational fluid dynamics (CFD) procedure is performed in a completely open-source way. Blender, enGrid, OpenFOAM and ParaView are employed for geometry creation, mesh generation, case simulation and post process, respectively. Original solver `buoyantBoussinesqSimpleFoam' is selected for the present study, and a temperature-dependent solver `buoyantBoussinesqSimpleTDFoam' is developed to ensure the simulation is more realistic. The two solvers are used for same cases and compared to corresponding experimental results. The flow regime in these cases is laminar (Reynolds number is 150) and the Rayleigh number range is 0.7 × 107 ~ 5 × 107. By comparison, the average natural Nusselt numbers of water and Al2O3/water nanofluids are found to increase with the Rayleigh number. At the same Rayleigh number, the Nusselt number is found to decrease with nanofluid volume fraction. The temperature-dependent solver is found better for water and 1% Al2O3/water nanofluid cases, while the original solver is better for 4% Al2O3/water nanofluid cases. Furthermore, due to strong three-dimensional flow features in the horizontal cylinder, three-dimensional CFD simulation is recommended instead of two-dimensional simplifications.

  2. Effects of electrode location on EHD-enhanced natural convection in an enclosure

    SciTech Connect

    Liu, K.S.; Lai, F.C.

    1997-07-01

    Numerical results are presented for natural convection in an enclosure under the influence of electric field. The geometry considered is a two-dimensional cavity with an aspect ratio of 5. The electrical field is generated by positive corona from an electrode wire charged with a high dc voltage. Three wire locations have been considered, which result in symmetric and non-symmetric electric fields. Numerical calculations have covered a wide range of parameters (i.e., V{sub o} = 12, 15 and 18 kV, 10{sup 3} {le} Ra {le} 10{sup 6}). In the presence of electric field, the flow and temperature fields may reach a steady, steady-periodic or non-periodic state. For low Rayleigh numbers, it is observed that the flow and temperature fields are basically oscillatory in nature. When the Rayleigh number is sufficiently increased, a steady state may be reached. Due to the oscillatory flows, there is a significant increase in heat transfer. It is found that heat transfer enhancement increases with the applied voltage but decreases with the Rayleigh number. In addition, it is found that heat transfer enhancement can be maximized by placing the electrode toward the leading edge of the heat transfer surface, that is, to perturb the thermal boundary layer as early as it begins to develop.

  3. Pressure transfer function of a JT15D nozzle due to acoustic and convected entropy fluctuations

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1982-01-01

    An acoustic transmission matrix analysis of sound propagation in a variable area duct with and without flow is extended to include convected entropy fluctuations. The boundary conditions used in the analysis are a transfer function relating entropy and pressure at the nozzle inlet and the nozzle exit impedance. The nozzle pressure transfer function calculated is compared with JT15D turbofan engine nozzle data. The one dimensional theory for sound propagation in a variable area nozzle with flow but without convected entropy is good at the low engine speeds where the nozzle exit Mach number is low (M=0.2) and the duct exit impedance model is good. The effect of convected entropy appears to be so negligible that it is obscured by the inaccuracy of the nozzle exit impedance model, the lack of information on the magnitude of the convected entropy and its phase relationship with the pressure, and the scatter in the data. An improved duct exit impedance model is required at the higher engine speeds where the nozzle exit Mach number is high (M=0.56) and at low frequencies (below 120 Hz).

  4. Frequency Shifts of Resonant Modes of the Sun due to Near-Surface Convective Scattering

    NASA Astrophysics Data System (ADS)

    Bhattacharya, J.; Hanasoge, S.; Antia, H. M.

    2015-06-01

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt-Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  5. A Newton method with adaptive finite elements for solving phase-change problems with natural convection

    NASA Astrophysics Data System (ADS)

    Danaila, Ionut; Moglan, Raluca; Hecht, Frédéric; Le Masson, Stéphane

    2014-10-01

    We present a new numerical system using finite elements with mesh adaptivity for the simulation of solid-liquid phase change systems. In the liquid phase, the natural convection flow is simulated by solving the incompressible Navier-Stokes equations with Boussinesq approximation. A variable viscosity model allows the velocity to progressively vanish in the solid phase, through an intermediate mushy region. The phase change is modeled by introducing an implicit enthalpy source term in the heat equation. The final system of equations describing the liquid-solid system by a single domain approach is solved using a Newton iterative algorithm. The space discretization is based on a P2-P1 Taylor-Hood finite elements and mesh adaptivity by metric control is used to accurately track the solid-liquid interface or the density inversion interface for water flows. The numerical method is validated against classical benchmarks that progressively add strong non-linearities in the system of equations: natural convection of air, natural convection of water, melting of a phase-change material and water freezing. Very good agreement with experimental data is obtained for each test case, proving the capability of the method to deal with both melting and solidification problems with convection. The presented numerical method is easy to implement using FreeFem++ software using a syntax close to the mathematical formulation.

  6. The effect of external heat transfer on thermal explosion in a spherical vessel with natural convection.

    PubMed

    Campbell, A N

    2015-07-14

    When any exothermic reaction proceeds in an unstirred vessel, natural convection may develop. This flow can significantly alter the heat transfer from the reacting fluid to the environment and hence alter the balance between heat generation and heat loss, which determines whether or not the system will explode. Previous studies of the effects of natural convection on thermal explosion have considered reactors where the temperature of the wall of the reactor is held constant. This implies that there is infinitely fast heat transfer between the wall of the vessel and the surrounding environment. In reality, there will be heat transfer resistances associated with conduction through the wall of the reactor and from the wall to the environment. The existence of these additional heat transfer resistances may alter the rate of heat transfer from the hot region of the reactor to the environment and hence the stability of the reaction. This work presents an initial numerical study of thermal explosion in a spherical reactor under the influence of natural convection and external heat transfer, which neglects the effects of consumption of reactant. Simulations were performed to examine the changing behaviour of the system as the intensity of convection and the importance of external heat transfer were varied. It was shown that the temporal development of the maximum temperature in the reactor was qualitatively similar as the Rayleigh and Biot numbers were varied. Importantly, the maximum temperature in a stable system was shown to vary with Biot number. This has important consequences for the definitions used for thermal explosion in systems with significant reactant consumption. Additionally, regions of parameter space where explosions occurred were identified. It was shown that reducing the Biot number increases the likelihood of explosion and reduces the stabilising effect of natural convection. Finally, the results of the simulations were shown to compare favourably with

  7. Effects of finiteness on the thermo-fluid-dynamics of natural convection above horizontal plates

    NASA Astrophysics Data System (ADS)

    Guha, Abhijit; Sengupta, Sayantan

    2016-06-01

    A rigorous and systematic computational and theoretical study, the first of its kind, for the laminar natural convective flow above rectangular horizontal surfaces of various aspect ratios ϕ (from 1 to ∞) is presented. Two-dimensional computational fluid dynamic (CFD) simulations (for ϕ → ∞) and three-dimensional CFD simulations (for 1 ≤ ϕ < ∞) are performed to establish and elucidate the role of finiteness of the horizontal planform on the thermo-fluid-dynamics of natural convection. Great care is taken here to ensure grid independence and domain independence of the presented solutions. The results of the CFD simulations are compared with experimental data and similarity theory to understand how the existing simplified results fit, in the appropriate limiting cases, with the complex three-dimensional solutions revealed here. The present computational study establishes the region of a high-aspect-ratio planform over which the results of the similarity theory are approximately valid, the extent of this region depending on the Grashof number. There is, however, a region near the edge of the plate and another region near the centre of the plate (where a plume forms) in which the similarity theory results do not apply. The sizes of these non-compliance zones decrease as the Grashof number is increased. The present study also shows that the similarity velocity profile is not strictly obtained at any location over the plate because of the entrainment effect of the central plume. The 3-D CFD simulations of the present paper are coordinated to clearly reveal the separate and combined effects of three important aspects of finiteness: the presence of leading edges, the presence of planform centre, and the presence of physical corners in the planform. It is realised that the finiteness due to the presence of physical corners in the planform arises only for a finite value of ϕ in the case of 3-D CFD simulations (and not in 2-D CFD simulations or similarity theory

  8. Radiation effects on bifurcation and dual solutions in transient natural convection in a horizontal annulus

    SciTech Connect

    Luo, Kang; Yi, Hong-Liang Tan, He-Ping

    2014-05-15

    Transitions and bifurcations of transient natural convection in a horizontal annulus with radiatively participating medium are numerically investigated using the coupled lattice Boltzmann and direct collocation meshless (LB-DCM) method. As a hybrid approach based on a common multi-scale Boltzmann-type model, the LB-DCM scheme is easy to implement and has an excellent flexibility in dealing with the irregular geometries. Separate particle distribution functions in the LBM are used to calculate the density field, the velocity field and the thermal field. In the radiatively participating medium, the contribution of thermal radiation to natural convection must be taken into account, and it is considered as a radiative term in the energy equation that is solved by the meshless method with moving least-squares (MLS) approximation. The occurrence of various instabilities and bifurcative phenomena is analyzed for different Rayleigh number Ra and Prandtl number Pr with and without radiation. Then, bifurcation diagrams and dual solutions are presented for relevant radiative parameters, such as convection-radiation parameter Rc and optical thickness τ. Numerical results show that the presence of volumetric radiation changes the static temperature gradient of the fluid, and generally results in an increase in the flow critical value. Besides, the existence and development of dual solutions of transient convection in the presence of radiation are greatly affected by radiative parameters. Finally, the advantage of LB-DCM combination is discussed, and the potential benefits of applying the LB-DCM method to multi-field coupling problems are demonstrated.

  9. Critical heat flux in natural convection cooled TRIGA reactors with hexagonal bundle

    SciTech Connect

    Yang, J.; Avery, M.; De Angelis, M.; Anderson, M.; Corradini, M.; Feldman, E. E.; Dunn, F. E.; Matos, J. E.

    2012-07-01

    A three-rod bundle Critical Heat Flux (CHF) study at low flow, low pressure, and natural convection condition has been conducted, simulating TRIGA reactors with the hexagonally configured core. The test section is a custom-made trefoil shape tube with three identical fuel pin heater rods located symmetrically inside. The full scale fuel rod is electrically heated with a chopped-cosine axial power profile. CHF experiments were carried out with the following conditions: inlet water subcooling from 30 K to 95 K; pressure from 110 kPa to 230 kPa; mass flux up to 150 kg/m{sup 2}s. About 50 CHF data points were collected and compared with a few existing CHF correlations whose application ranges are close to the testing conditions. Some tests were performed with the forced convection to identify the potential difference between the CHF under the natural convection and forced convection. The relevance of the CHF to test parameters is investigated. (authors)

  10. Natural convection in tunnels at Yucca Mountain and impact on drift seepage

    SciTech Connect

    Halecky, N.; Birkholzer, J.T.; Peterson, P.

    2010-04-15

    The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock in the drift center to the drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water-induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity values, with reduced local seepage, form a more desirable waste package environment.

  11. Numerical investigation of natural convection of nanoparticle enhanced ionic liquids (NEILs) in enclosure heated from below

    NASA Astrophysics Data System (ADS)

    Paul, Titan C.; Morshed, A. K. M. M.; Khan, Jamil A.

    2016-07-01

    The paper presents the numerical simulation of natural convection heat transfer of Al2O3 nanoparticle enhanced N-butyl-N-methylpyrrolidinium bis{trifluoromethyl)sulfonyl} imide ([C4mpyrr][NTf2]) ionic liquid. The simulation was performed in three different enclosures (aspect ratio: 0.5, 1, and 1.5) with heated from below. The temperature dependent thermophysical properties of base ionic liquids (ILs) and nanoparticle enhanced ionic liquids (NEILs) were applied in the numerical simulation. The numerical results were compared with the experimental result. The numerical results show that at a certain Rayleigh number NEILs has a lower Nusselt number compared to the base IL which are consistent with the experimental results. But the percentage of degradation is much less on the numerical results compared to the experimental. However the numerical results match well with the predicted model of using thermophysical properties of NEILs. From these observations it can be concluded that the extra degradation in the experimental results may occur due the particle-fluid interaction, clustering and sedimentation of nanoparticles.

  12. Effect of natural convection on the current-voltage characteristic of a DC discharge in neon at intermediate pressures

    SciTech Connect

    Uvarov, A. V.; Sakharova, N. A.; Vinnichenko, N. A.

    2011-12-15

    The parameters of the positive column of a glow discharge in neon are calculated with allowance for the induced hydrodynamic motion. It is shown that natural convection in the pressure range of {approx}0.1 atm significantly affects the profiles of the parameters of the positive column and its current-voltage characteristic. The convection arising at large deposited energies improves heat removal, due to which the temperature in the central region of the discharge becomes lower than that calculated from the heat conduction equation. As a result, the current-voltage characteristic is shifted. With allowance for convection, the current-voltage characteristic changes at currents much lower than the critical current at which a transition into the constricted state is observed. This change is uniquely related to the Rayleigh number in the discharge. Thus, a simplified analysis of thermal conduction and diffusion, even with detailed account of kinetic processes occurring in the positive column, does not allow one to accurately calculate the current-voltage characteristic and other discharge parameters at intermediate gas pressures.

  13. Generation of coronal electric currents due to convective motions on the photosphere

    NASA Technical Reports Server (NTRS)

    Sakurai, T.; Levine, R. H.

    1981-01-01

    Generation of electric currents in a magnetized plasma overlying a dense convective layer is studied, assuming that the magnetic field perturbation is small and satisfies the force-free equation. Currents are produced by rotational motions on the boundary in the case of a uniform equilibrium field. In a simple two-dimensional bipolar configuration, however, both irrotational and incompressible motions give rise to currents, and the current density has a peak at the magnetic neutral line. Scaling laws for the current density as well as for the stored magnetic energy are derived, and the possibility of heating the solar corona through the dissipation of coronal currents generated in this way is discussed.

  14. On the convectively unstable nature of optimal streaks in boundary layers

    NASA Astrophysics Data System (ADS)

    Brandt, Luca; Cossu, Carlo; Chomaz, Jean-Marc; Huerre, Patrick; Henningson, Dan S.

    2003-06-01

    The objective of the study is to determine the absolute/convective nature of the secondary instability experienced by finite-amplitude streaks in the flat-plate boundary layer. A family of parallel streaky base flows is defined by extracting velocity profiles from direct numerical simulations of nonlinearly saturated optimal streaks. The computed impulse response of the streaky base flows is then determined as a function of streak amplitude and streamwise station. Both the temporal and spatio-temporal instability properties are directly retrieved from the impulse response wave packet, without solving the dispersion relation or applying the pinching point criterion in the complex wavenumber plane. The instability of optimal streaks is found to be unambiguously convective for all streak amplitudes and streamwise stations. It is more convective than the Blasius boundary layer in the absence of streaks; the trailing edge-velocity of a Tollmien Schlichting wave packet in the Blasius boundary layer is around 35% of the free-stream velocity, while that of the wave packet riding on the streaky base flow is around 70%. This is because the streak instability is primarily induced by the spanwise shear and the associated Reynolds stress production term is located further away from the wall, in a larger velocity region, than for the Tollmien Schlichting instability. The streak impulse response consists of the sinuous mode of instability triggered by the spanwise wake-like profile, as confirmed by comparing the numerical results with the absolute/convective instability properties of the family of two-dimensional wakes introduced by Monkewitz (1988). The convective nature of the secondary streak instability implies that the type of bypass transition studied here involves streaks that behave as amplifiers of external noise.

  15. Numerical calculation of the drag force induced by natural convection of spheres at low Grashof numbers

    SciTech Connect

    Dudek, D.; Fletcher, T.H.

    1987-02-01

    When a heated solid sphere is introduced into an ambient fluid, a natural convective flow occurs which results in a drag force on the sphere. This study involves the numerical calculation of both the steady-state and the transient natural convective drag force around spheres at low Grashof numbers. Numerical techniques are taken from Geoola and Cornish. An empirical expression is suggested for the total drag coefficient for Grashof numbers ranging from 4 x 10/sup -4/ to 0.5 and Prandtl number = 0.72: log C/sub DT/ = 1.25 + 0.31 log Gr - 0.097(log Gr)/sup 2/. The dimensionless time required to reach 90% of the steady-state drag force can be approximated by the second-order polynomial: log t/sub 90%/ = 1.32 - log Gr - 0.11(Gr)/sup 2/.

  16. Numerical investigation of transient flow-mode transition of laminar natural convection in an inclined enclosure

    SciTech Connect

    Tzeng, P.Y.; Soong, C.Y.; Sheu, T.S.

    1997-02-07

    The present work is concerned with a numerical investigation of transient laminar natural convection and the associated flow-mode transition in a two-dimensional rectangular enclosure. Navier-Stokes/Boussinesq equations for fluid flow and energy balance are solved by using the SIMPLE-C algorithm. Air of Pr = 0.71 in a differentially heated enclose of length-to-height aspect ratio As = 4 and at Ra = 5,000 is chosen as the flow model to examine the influences of the inclination. Calculations of time accuracy are performed to investigate the transient procedure of the flow-mode transition with increasing or decreasing inclination. The present results reveal that, at some critical situations, natural convection in inclined enclosures is very sensitive to the change in tilt angle, and the associated heat transfer rates are closely related to the correspondent cellular flow patterns.

  17. Scaling of the turbulent natural convection flow in a heated square cavity

    NASA Astrophysics Data System (ADS)

    Henkes, R. A. W. M.; Hoogendoorn, C. J.

    1994-05-01

    By numerically solving the Reynolds equations for air and water in a square cavity, with differentially heated vertical walls, at Rayleigh numbers up to 10(exp 20) the scalings of the turbulent natural convection flow are derived. Turbulence is modeled by the standard k-epsilon model and by the low-Reynolds-number k-epsilon models of Chien and of Jones and Launder. Both the scalings with respect to the Rayleigh number (based on the cavity size H) and with respect to the local height (y/H) are considered. The scalings are derived for the inner layer, outer layer, and core region. The Rayleigh number scalings are almost the same as the scalings for the natural convection boundary layer along a hot vertical plate. The scalings found are almost independent of the k-epsilon model used.

  18. Numerical study of natural convection in a horizontal cylinder filled with water-based alumina nanofluid.

    PubMed

    Meng, Xiangyin; Li, Yan

    2015-01-01

    Natural heat convection of water-based alumina (Al2O3/water) nanofluids (with volume fraction 1% and 4%) in a horizontal cylinder is numerically investigated. The whole three-dimensional computational fluid dynamics (CFD) procedure is performed in a completely open-source way. Blender, enGrid, OpenFOAM and ParaView are employed for geometry creation, mesh generation, case simulation and post process, respectively. Original solver 'buoyantBoussinesqSimpleFoam' is selected for the present study, and a temperature-dependent solver 'buoyantBoussinesqSimpleTDFoam' is developed to ensure the simulation is more realistic. The two solvers are used for same cases and compared to corresponding experimental results. The flow regime in these cases is laminar (Reynolds number is 150) and the Rayleigh number range is 0.7 × 10(7) ~ 5 × 10(7). By comparison, the average natural Nusselt numbers of water and Al2O3/water nanofluids are found to increase with the Rayleigh number. At the same Rayleigh number, the Nusselt number is found to decrease with nanofluid volume fraction. The temperature-dependent solver is found better for water and 1% Al2O3/water nanofluid cases, while the original solver is better for 4% Al2O3/water nanofluid cases. Furthermore, due to strong three-dimensional flow features in the horizontal cylinder, three-dimensional CFD simulation is recommended instead of two-dimensional simplifications. PMID:25852431

  19. Calculation of Post-Closure Natural Convection Heat and Mass Transfer in Yucca Mountain Drifts

    SciTech Connect

    S. Webb; M. Itamura

    2004-03-16

    Natural convection heat and mass transfer under post-closure conditions has been calculated for Yucca Mountain drifts using the computational fluid dynamics (CFD) code FLUENT. Calculations have been performed for 300, 1000, 3000, and 10,000 years after repository closure. Effective dispersion coefficients that can be used to calculate mass transfer in the drift have been evaluated as a function of time and boundary temperature tilt.

  20. CFD numerical simulation of air natural convection over a heated cylindrical surface

    NASA Astrophysics Data System (ADS)

    Flori, M.; Vîlceanu, L.

    2015-06-01

    In this study a CFD numerical simulation is used to describe the fluid flow and heat transfer in air surrounding a heated horizontal cylinder. The model is created in 2D space dimension involving a finite element solver of Navier-Stokes equations. As natural convection phenomenon is induced by a variable fluid density field with temperature rising, the Boussinesq approximation was coupled to the model.

  1. Simulation of natural convection in a rectangular loop using finite elements

    SciTech Connect

    Pepper, D W; Hamm, L L; Kehoe, A B

    1984-01-01

    A two-dimensional finite-element analysis of natural convection in a rectangular loop is presented. A psi-omega formulation of the Boussinesque approximation to the Navier-Stokes equation is solved by the false transient technique. Streamlines and isotherms at Ra = 10/sup 4/ are shown for three different modes of heating. The results indicate that corner effects should be considered when modeling flow patterns in thermosyphons.

  2. Numerical analysis of heat transfer by conduction and natural convection in loose-fill fiberglass insulation--effects of convection on thermal performance

    SciTech Connect

    Delmas, A.A.; Wilkes, K.E.

    1992-04-01

    A two-dimensional code for solving equations of convective heat transfer in porous media is used to analyze heat transfer by conduction and convection in the attic insulation configuration. The particular cases treated correspond to loose-fill fiberglass insulation, which is characterized by high porosity and air permeability. The effects of natural convection on the thermal performance of the insulation are analyzed for various densities, permeabilities, and thicknesses of insulation. With convection increasing the total heat transfer through the insulation, the thermal resistance was found to decrease as the temperature difference across the insulating material increases. The predicted results for the thermal resistance are compared with data obtained in the large-scale climate simulator at the Roof Research Center using the attic test module, where the same phenomenon has already been observed. The way the wood joists within the insulation influence the start of convection is studied for differing thermophysical and dynamic properties of the insulating material. The presence of wood joists induces convection at a lower temperature difference.

  3. Experimental Investigation of the Effects of Surface Conditions on Natural Convection-Driven Evaporation

    NASA Astrophysics Data System (ADS)

    Bower, S. M.; Saylor, J. R.

    2009-11-01

    Presented are the results from an experimental investigation of the effects of surface conditions at an air/water interface on transport phenomena within the context of natural convection-driven evaporation. Experiments were conducted using tanks of heated water under several different surface conditions: 1) contamination with an oleyl alcohol monolayer, 2) contamination with a stearic acid monolayer, and 3) ``clean'' or surfactant-free. These surface conditions create the following hydrodynamic boundary conditions: 1) constant elasticity, 2) no-slip, and 3) shear-free. The effect of these boundary conditions on evaporation and air-side natural convection heat transfer is presented via the power law relationships between the Sherwood and Rayleigh numbers (for evaporation) and the Nusselt and Rayleigh numbers (for natural convection heat transfer). Additionally, infrared imagery of the water surface was collected during these experiments, yielding qualitative information on the effect of these boundary conditions on the flow near the interface. Few studies exist in which the effects of surface conditions on interfacial heat and mass transfer are investigated, making this work particularly relevant.

  4. Emergency cooling down of fast-neutron reactors by natural convection (a review)

    NASA Astrophysics Data System (ADS)

    Zhukov, A. V.; Sorokin, A. P.; Kuzina, Yu. A.

    2013-05-01

    Various methods for emergency cooling down of fast-neutron reactors by natural convection are discussed. The effectiveness of using natural convection for these purposes is demonstrated. The operating principles of different passive decay heat removal systems intended for cooling down a reactor are explained. Experimental investigations carried out in Russia for substantiating the removal of heat in cooling down fast-neutron reactors are described. These investigations include experimental works on studying thermal hydraulics in small-scale simulation facilities containing the characteristic components of a reactor (reactor core elements, above-core structure, immersed and intermediate heat exchangers, pumps, etc.). It is pointed out that a system that uses leaks of coolant between fuel assemblies holds promise for fast-neutron reactor cooldown purposes. Foreign investigations on this problem area are considered with making special emphasis on the RAMONA and NEPTUN water models. A conclusion is drawn about the possibility of using natural convection as the main method for passively removing heat in cooling down fast-neutron reactors, which is confirmed experimentally both in Russia and abroad.

  5. The Prediction of Noise Due to Jet Turbulence Convecting Past Flight Vehicle Trailing Edges

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    High intensity acoustic radiation occurs when turbulence convects past airframe trailing edges. A mathematical model is developed to predict this acoustic radiation. The model is dependent on the local flow and turbulent statistics above the trailing edge of the flight vehicle airframe. These quantities are dependent on the jet and flight vehicle Mach numbers and jet temperature. A term in the model approximates the turbulent statistics of single-stream heated jet flows and is developed based upon measurement. The developed model is valid for a wide range of jet Mach numbers, jet temperature ratios, and flight vehicle Mach numbers. The model predicts traditional trailing edge noise if the jet is not interacting with the airframe. Predictions of mean-flow quantities and the cross-spectrum of static pressure near the airframe trailing edge are compared with measurement. Finally, predictions of acoustic intensity are compared with measurement and the model is shown to accurately capture the phenomenon.

  6. CYCLIC MAGNETIC ACTIVITY DUE TO TURBULENT CONVECTION IN SPHERICAL WEDGE GEOMETRY

    SciTech Connect

    Kaepylae, Petri J.; Mantere, Maarit J.; Brandenburg, Axel

    2012-08-10

    We report on simulations of turbulent, rotating, stratified, magnetohydrodynamic convection in spherical wedge geometry. An initially small-scale, random, weak-amplitude magnetic field is amplified by several orders of magnitude in the course of the simulation to form oscillatory large-scale fields in the saturated state of the dynamo. The differential rotation is solar-like (fast equator), but neither coherent meridional poleward circulation nor near-surface shear layer develop in these runs. In addition to a poleward branch of magnetic activity beyond 50 Degree-Sign latitude, we find for the first time a pronounced equatorward branch at around 20 Degree-Sign latitude, reminiscent of the solar cycle.

  7. Parametric numerical investigaion of natural convection in a heat-generating fluid with phase transitions

    SciTech Connect

    Aksenova, A.E.; Chudanov, V.V.; Strizhov, V.F.; Vabishchevich, P.N.

    1995-09-01

    Unsteady natural convection of a heat-generating fluid with phase transitions in the enclosures of a square section with isothermal rigid walls is investigated numerically for a wide range of dimensionless parameters. The quasisteady state solutions of conjugate heat and mass transfer problem are compared with available experimental results. Correlation relations for heat flux distributions at the domain boundaries depending on Rayleigh and Ostrogradskii numbers are obtained. It is shown that generally heat transfer is governed both by natural circulation and crust formation phenomena. Results of this paper may be used for analysis of experiments with prototypic core materials.

  8. Finite element, stream function-vorticity solution of steady laminar natural convection

    NASA Astrophysics Data System (ADS)

    Stevens, W. N. R.

    1982-12-01

    Stream function-vorticity finite element solution of two-dimensional incompressible viscous flow and natural convection is considered. Steady state solutions of the natural convection problem have been obtained for a wide range of the two independent parameters. Use of boundary vorticity formulae or iterative satisfaction of the no-slip boundary condition is avoided by application of the finite element discretization and a displacement of the appropriate discrete equations. Solution is obtained by Newton-Raphson iteration of all equations simultaneously. The method then appears to give a steady solution whenever the flow is physically steady, but it does not give a steady solution when the flow is physically unsteady. In particular, no form of asymmetric differencing is required. The method offers a degree of economy over primitive variable formulations. Physical results are given for the square cavity convection problem. The paper also reports on earlier work in which the most commonly used boundary vorticity formula was found not to satisfy the no-slip condition, and in which segregated solution procedures were attempted with very minimal success.

  9. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    SciTech Connect

    Triplett, C.E.

    1996-12-01

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.

  10. Wind-chill-equivalent temperatures: regarding the impact due to the variability of the environmental convective heat transfer coefficient.

    PubMed

    Shitzer, Avraham

    2006-03-01

    The wind-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to wind. The index provides a simple and practical means for assessing the thermal effects of wind on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, wind speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state wind-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published "new" WCETs is presented. The variability of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a "gold standard" for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized. PMID:16397760

  11. Wind-chill-equivalent temperatures: regarding the impact due to the variability of the environmental convective heat transfer coefficient

    NASA Astrophysics Data System (ADS)

    Shitzer, Avraham

    2006-03-01

    The wind-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to wind. The index provides a simple and practical means for assessing the thermal effects of wind on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, wind speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state wind-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published “new” WCETs is presented. The variability of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a “gold standard” for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized.

  12. Numerical analysis of two dimensional natural convection heat transfer following a contained explosion

    NASA Astrophysics Data System (ADS)

    Manson, Steven James

    The Pantex facility near Amarillo, Texas, is the only U.S. site charged with the disassembly of nuclear weapons. Concerns over the safety of weapons handling procedures are now being revisited, due to the enhanced safety requirements of the peace time disassembly effort. This research is a detailed examination of one possible nuclear weapons-related accident. In this hypothetical accident, a chemical explosion equivalent to over 50 kilos of TNT destroys unassembled nuclear weapons components, and may potentially result in some amount of plutonium reaching the environment. Previous attempts to simulate this accident have centered around the one-dimensional node and branch approach of the MELCOR code. This approach may be adequate in calculating pressure driven flow through narrow rampways and leak sites, however, its one-dimensionality does not allow it to accurately calculate the multi-dimensional aspects of heat transfer. This research effort uses an axi-symmetric stream function---vorticity formulation of the Navier-Stokes equations to model a Pantex cell building following a successfully contained chemical explosion. This allows direct calculation of the heat transfer within the cell room during the transient. The tool that was developed to perform this analysis is called PET (Post-Explosion Transient), and it simulates natural convection thermal hydraulics taking into account temperature-related fluid density differences, variable fluid transport properties, and a non-linear equation of state. Results obtained using the PET code indicate that previous analyses by other researchers using the MELCOR code have been overly conservative in estimating the effects of cell room heat transfer. An increase in the calculated heat transfer coefficient of approximately 20% is indicated. This has been demonstrated to significantly decrease the projected consequences of the hypothetical accident.

  13. Ramp temperature and Dufour effects on transient MHD natural convection flow past an infinite vertical plate in a porous medium

    NASA Astrophysics Data System (ADS)

    Marneni, Narahari; Tippa, Sowmya; Pendyala, Rajashekhar

    2015-12-01

    Analytical investigation of the unsteady natural convection flow along an infinite vertical plate embedded in a porous medium subjected to a ramped temperature boundary condition has been performed in the presence of magnetic field, thermal radiation, heat generation or absorption, chemical reaction and Dufour effect. The governing equations for momentum, energy and concentration have been solved using the Laplace transform technique. The closed-form exact solutions for the velocity, temperature and concentration fields as well as the skin-friction, Nusselt and Sherwood numbers are obtained without any restrictions. The influence of pertinent parameters on the fluid velocity, temperature, skin-friction and Nusselt number have been discussed in detailed through graphs. The natural convection due to ramped wall temperature (RWT) has also been compared with that of the constant wall temperature (CWT). It is observed that the fluid velocity and temperature profiles are greater in case of CWT than the case of RWT. Also it is noticed that the flow accelerates with increasing values of heat source parameter, permeability parameter and Dufour number while the flow retardation is observed with increasing values of radiation parameter, magnetic field parameter and Schmidt number.

  14. Melting-induced stratification above the Earth's inner core due to convective translation.

    PubMed

    Alboussière, Thierry; Deguen, Renaud; Melzani, Mickaël

    2010-08-01

    In addition to its global North-South anisotropy, there are two other enigmatic seismological observations related to the Earth's inner core: asymmetry between its eastern and western hemispheres and the presence of a layer of reduced seismic velocity at the base of the outer core. This 250-km-thick layer has been interpreted as a stably stratified region of reduced composition in light elements. Here we show that this layer can be generated by simultaneous crystallization and melting at the surface of the inner core, and that a translational mode of thermal convection in the inner core can produce enough melting and crystallization on each hemisphere respectively for the dense layer to develop. The dynamical model we propose introduces a clear asymmetry between a melting and a crystallizing hemisphere which forms a basis for also explaining the East-West asymmetry. The present translation rate is found to be typically 100 million years for the inner core to be entirely renewed, which is one to two orders of magnitude faster than the growth rate of the inner core's radius. The resulting strong asymmetry of buoyancy flux caused by light elements is anticipated to have an impact on the dynamics of the outer core and on the geodynamo. PMID:20686572

  15. Air-Water Gas Exchange in Wetland Water Columns Due To Wind and Thermal Convection

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2011-12-01

    The goal of this work is to provide a parameterization of the air-water gas transfer rate in wetlands, and do so in terms of easily measured environmental variables. This parameterization is intended to support biogeochemical modeling in wetlands by providing an interfacial flux of key importance. Our approach uses laboratory experiments describe the oxygen transfer across an air-water interface in a model wetland. The oxygen transfer is sensitive to the externally imposed wind, vegetation characteristics, and vertical thermal convection. We vary these systematically, determining the gas transfer (or "piston") velocity that describes interfacial gas flux. We measure velocity vector fields near the air-water interface using particle image velocimetry, and use these measurements to help explain the mechanisms behind the measured trends in oxygen transfer. The explanatory power of these measurements includes the relationship between plant geometry and surface divergence. We explore the potential impact of our results on wetland modeling and management, for issues such as carbon sequestration and methane emission.

  16. Numerical modeling of crystal growth on a centrifuge for unstable natural convection configurations

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Downey, J. P.; Curreri, P. A.; Jones, J. C.

    1993-01-01

    The fluid mechanics associated with crystal growth processes on centrifuges is modeled using 2D and 3D models. Two-dimensional calculations show that flow bifurcations exist in such crystal growth configurations where the ampoule is oriented in the same direction as the resultant gravity vector and a temperature gradient is imposed on the melt. A scaling analysis is formulated to predict the flow transition point from the natural convection dominated regime to the Coriolis force dominated regime. Results of 3D calculations are presented for two thermal configurations of the crystal growth cell: top heated and bottom heated with respect to the centrifugal acceleration. In the top heated configuration, a substantial reduction in the convection intensity within the melt can be attained by centrifuge operations, and close to steady diffusion-limited thermal conditions can be achieved over a narrow range of the imposed microgravity level. In the bottom heated configuration the Coriolis force has a stabilizing effect on fluid motion by delaying the onset of unsteady convection.

  17. Numerical Simulation of Natural Convection of a Nanofluid in an Inclined Heated Enclosure Using Two-Phase Lattice Boltzmann Method: Accurate Effects of Thermophoresis and Brownian Forces

    NASA Astrophysics Data System (ADS)

    Ahmed, Mahmoud; Eslamian, Morteza

    2015-07-01

    Laminar natural convection in differentially heated ( β = 0°, where β is the inclination angle), inclined ( β = 30° and 60°), and bottom-heated ( β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number.

  18. Numerical Simulation of Natural Convection of a Nanofluid in an Inclined Heated Enclosure Using Two-Phase Lattice Boltzmann Method: Accurate Effects of Thermophoresis and Brownian Forces.

    PubMed

    Ahmed, Mahmoud; Eslamian, Morteza

    2015-12-01

    Laminar natural convection in differentially heated (β = 0°, where β is the inclination angle), inclined (β = 30° and 60°), and bottom-heated (β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number. PMID:26183389

  19. An analysis of natural convection film boiling from spheres using the spherical coordinate system

    SciTech Connect

    Tso, C.P.; Leong, K.C.; Tan, H.S.

    1995-11-01

    The problem of natural convection film boiling on a sphere was analyzed by solving the momentum and energy equations in spherical coordinates. These solutions were compared to the analytical model of Frederking and Clark based on the Cartesian coordinate system, empirical correlation of Frederking and Clark and recent experimental data of Tso et al. for boiling in various refrigerants and liquid nitrogen. For the average Nusselt number, good agreement with Frederking and Clark`s model was obtained. Results using spherical coordinates yield a limiting value of 2 for the average Nusselt number near a modified Rayleigh number of 1 which could not be extracted from Frederking and Clark`s model.

  20. Soret and chemical reaction effects on unsteady two-dimensional natural convection along a vertical plate

    NASA Astrophysics Data System (ADS)

    Raju, S. Suresh Kumar; Narahari, M.; Pendyala, Rajashekhar

    2014-10-01

    In this paper, a numerical solution of the unsteady two-dimensional natural convection along a vertical plate in the presence of Soret and chemical reaction effects is presented. The governing non-dimensional coupled non-linear partial differential equations have been evaluated by using an implicit finite-difference technique of Crank-Nicolson scheme. Numerical predictions for the velocity, concentration, local and average skin-friction and Sherwood number for distinct values of chemical reaction parameter and Soret number are plotted graphically. It is found that the fluid velocity and concentration decreases while increasing chemical reaction parameter whereas an increase in the Soret number increases the fluid velocity and concentration.

  1. Effect of free surface shape on combined thermocapillary and natural convection

    NASA Technical Reports Server (NTRS)

    Kamotani, Yasuhiro; Platt, Jonathan

    1992-01-01

    Combined thermocapillary and natural convection in an open square cavity with differentially-heated side walls is studied numerically as well as experimentally. The test fluid is silicone oil with Prandtl number of 105. The shape of fluid-free surface is made either flat or curved to study its effect on the flow. A finite difference scheme to deal with a curved free surface is developed. The experimental results shown agree with the numerical results. With the curved-free surface, the flow and local heat transfer rate are reduced in the corner regions, and a sharp peak in heat transfer rate at the top edge of the cold wall disappears.

  2. Passive decay heat removal by natural air convection after severe accidents

    SciTech Connect

    Erbacher, F.J.; Neitzel, H.J.; Cheng, X.

    1995-09-01

    The composite containment proposed by the Research Center Karlsruhe and the Technical University Karlsruhe is to cope with severe accidents. It pursues the goal to restrict the consequences of core meltdown accidents to the reactor plant. One essential of this new containment concept is its potential to remove the decay heat by natural air convection and thermal radiation in a passive way. To investigate the coolability of such a passive cooling system and the physical phenomena involved, experimental investigations are carried out at the PASCO test facility. Additionally, numerical calculations are performed by using different codes. A satisfying agreement between experimental data and numerical results is obtained.

  3. An investigation of transitional Phenomena from Laminar to Turbulent Natural Convection using Compressible Direct Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Li, Chunggang; Tsubokura, Makoto; Complex Phenomena Unified Simulation Research Team

    2014-11-01

    The complete transition from laminar to turbulent natural convection in a long channel is investigated using compressible direct numerical simulation (DNS). Numerical methods of Roe scheme with precontioning and dual time stepping are used for addressing the flow field which is low speed but the density is variable. During the transient development, there are four stages which are laminar, unstable process, relaminarization and turbulence can be obviously identified. After reaching the quasi steady state, the laminar, transition and turbulence simultaneously coexist in the same flow field. Additionally, the comparisons of the statistics with the experimental data are also well consistent.

  4. Anomalies of the natural convection of water near 3.98°C

    NASA Astrophysics Data System (ADS)

    Baturov, L. N.; Govor, I. N.

    2016-02-01

    Natural convection of water in a cylindrical cavity with an open surface at a temperature of about 3.98°C (temperature of the maximum water density) is accompanied by typical anomalies on time dependences of temperatures of water layers. In particular, stabilization of temperature T st is observed in the bottom region of the cavity and duration of such stabilization t st may reach several hours depending on the experimental conditions. The results for solutions of sodium chloride and ethanol at a relatively low rate of water cooling show that temperature T st coincides with temperature T max corresponding to the maximum density of solutions.

  5. Drying characteristic of barley under natural convection in a mixed-mode type solar grain dryer

    SciTech Connect

    Basunia, M.A.; Abe, T.

    1999-07-01

    Thin-layer solar drying characteristics of barley were determined at average natural air flow temperature ranging from 43.4 to 51.7 C and for relative humidities ranging from 16.5% to 37.5%. A mixed-mode type natural convection solar dryer was used for this experiment. The data of sample weight, and dry and wet bulb temperatures of the drying air were recorded continuously throughout the drying period for each test. The drying data were then fitted to the Page model. The model gave a good fit for the moisture content with an average standard error of 0.305% dry basis. The parameter N in Page's equation was assumed as a product-dependent constant which made it easy to compare the effects of independent variables on the natural convection solar drying rate without causing considerable error in predicting the drying rate for barley. A linear relationship was found between the parameter K, temperature T, and relative humidity R{sub H}.

  6. Role of Induced Magnetic Field on Transient Natural Convection Flow in a Vertical Channel: The Riemann Sum Approximation Approach

    NASA Astrophysics Data System (ADS)

    Jha, B. K.; Sani, I.

    2015-02-01

    This paper investigates the role of induced magnetic field on a transient natural convection flow of an electrically conducting, incompressible and viscous fluid in a vertical channel formed by two infinite vertical parallel plates. The transient flow formation inside the channel is due to sudden asymmetric heating of channel walls. The time dependent momentum, energy and magnetic induction equations are solved semi-analytically using the Laplace transform technique along with the Riemann-sum approximation method. The solutions obtained are validated by comparisons with the closed form solutions obtained for the steady states which have been derived separately and also by the implicit finite difference method. Graphical results for the temperature, velocity, induced magnetic field, current density, and skin-friction based on the semi-analytical solutions are presented and discussed.

  7. Effects of walls temperature variation on double diffusive natural convection of Al2O3-water nanofluid in an enclosure

    NASA Astrophysics Data System (ADS)

    Sheikhzadeh, G. A.; Dastmalchi, M.; Khorasanizadeh, H.

    2013-12-01

    The effect of wall temperature variations on double diffusive natural convection of Al2O3-water nanofluid in a differentially heated square enclosure with constant temperature hot and cold vertical walls is studied numerically. Transport mechanisms of nanoparticles including Brownian diffusion and thermophoresis that cause heterogeneity are considered in non-homogeneous model. The hot and cold wall temperatures are varied, but the temperature difference between them is always maintained 5 °C. The thermophysical properties such as thermal conductivity, viscosity and density and thermophoresis diffusion and Brownian motion coefficients are considered variable with temperature and volume fraction of nanoparticles. The governing equations are discretized using the control volume method. The results show that nanoparticle transport mechanisms affect buoyancy force and cause formation of small vortexes near the top and bottom walls of the cavity and reduce the heat transfer. By increasing the temperature of the walls the effect of transport mechanisms decreases and due to enhanced convection the heat transfer rate increases.

  8. Natural Convection Heat Transfer in a Rectangular Liquid Metal Pool With Bottom Heating and Top Cooling

    SciTech Connect

    Lee, Il S.; Yu, Yong H.; Son, Hyoung M.; Hwang, Jin S.; Suh, Kune Y.

    2006-07-01

    An experimental study is performed to investigate the natural convection heat transfer characteristics with subcooled coolant to create engineering database for basic applications in a lead alloy cooled reactor. Tests are performed in the ALTOS (Applied Liquid-metal Thermal Operation Study) apparatus as part of MITHOS (Metal Integrated Thermo Hydrodynamic Operation System). A relationship is determined between the Nusselt number Nu and the Rayleigh number Ra in the liquid metal rectangular pool. Results are compared with correlations and experimental data in the literature. Given the similar Ra condition, the present test results for Nu of the liquid metal pool with top subcooling are found to be similar to those predicted by the existing correlations or experiments. The current test results are utilized to develop natural convection heat transfer correlations applicable to low Prandtl number Pr fluids that are heated from below and cooled by the external coolant above. Results from this study are slated to be used in designing BORIS (Battery Optimized Reactor Integral System), a small lead cooled modular fast reactor for deployment at remote sites cycled with MOBIS (Modular Optimized Brayton Integral System) for electricity generation, tied with NAVIS (Naval Application Vessel Integral System) for ship propulsion, joined with THAIS (Thermochemical Hydrogen Acquisition Integral System) for hydrogen production, and coupled with DORIS (Desalination Optimized Reactor Integral System) for seawater desalination. Tests are performed with Wood's metal (Pb-Bi-Sn-Cd) filling a rectangular pool whose lower surface is heated and upper surface cooled by forced convection of water. The test section is 20 cm long, 11.3 cm high and 15 cm wide. The simulant has a melting temperature of 78 deg. C. The constant temperature and heat flux condition was realized for the bottom heating once the steady state had been met. The test parameters include the heated bottom surface temperature

  9. Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection.

    PubMed

    Mayor, T S; Couto, S; Psikuta, A; Rossi, R M

    2015-12-01

    The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s(-1)) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 10(2)-3 × 10(5)). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow

  10. Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection

    NASA Astrophysics Data System (ADS)

    Mayor, T. S.; Couto, S.; Psikuta, A.; Rossi, R. M.

    2015-12-01

    The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s-1) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 102-3 × 105). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow patterns and

  11. MHD Convective Flow of Jeffrey Fluid Due to a Curved Stretching Surface with Homogeneous-Heterogeneous Reactions.

    PubMed

    Imtiaz, Maria; Hayat, Tasawar; Alsaedi, Ahmed

    2016-01-01

    This paper looks at the flow of Jeffrey fluid due to a curved stretching sheet. Effect of homogeneous-heterogeneous reactions is considered. An electrically conducting fluid in the presence of applied magnetic field is considered. Convective boundary conditions model the heat transfer analysis. Transformation method reduces the governing nonlinear partial differential equations into the ordinary differential equations. Convergence of the obtained series solutions is explicitly discussed. Characteristics of sundry parameters on the velocity, temperature and concentration profiles are analyzed by plotting graphs. Computations for pressure, skin friction coefficient and surface heat transfer rate are presented and examined. It is noted that fluid velocity and temperature through curvature parameter are enhanced. Increasing values of Biot number correspond to the enhancement in temperature and Nusselt number. PMID:27583457

  12. Convection due to surface-tension gradients. [in reduced gravity spacecraft environments

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1978-01-01

    The use of dimensionless parameters to study fluid motions that could occur in a reduced-gravity environment is discussed. The significance of the Marangoni instability is considered, and the use of dimensionless parameters to investigate problems such as thermo and diffusocapillary flows is described. Characteristics of fluid flow in space are described, and the relation and interaction of motions due to capillarity and buoyancy is examined.

  13. Experimental study of natural convection enhancement using a Fe3O4-water based magnetic nanofluid.

    PubMed

    Stoian, Floriana D; Holotescu, Sorin

    2012-10-01

    The effect of nanoparticles dispersed in a carrier fluid on the natural convection heat transfer is still raising controversies. While the reported experimental results show no improvement or even worsening of the heat transfer performance of nanofluids, the numerical simulations show an increase of the heat transfer coefficient, at least for certain ranges of Ra number. We report an experimental investigation regarding the natural convection heat transfer performance of a Fe3O4-water based nanofluid, in a cylindrical enclosure. The fluid was heated linearly from the bottom wall using an electric heater and cooled from the upper wall by a constant flow of water, such that a constant temperature difference between the upper and bottom walls was obtained at steady-state. The experiment was also carried out using water, in order to observe the effect of the addition of Fe3O4 nanoparticles on the heat transfer coefficient. Several regimes were tested, both for water and nanofluid. The experimental results showed that values obtained for the heat transfer coefficient for Fe3O4-water nanofluid were higher than those for water, at the same temperature difference. The present experimental results are also compared with our previous work and the reference literature. PMID:23421199

  14. A new look at natural convection from isothermal vertical parallel plates

    SciTech Connect

    Li, H.H.; Chung, B.T.F.

    1996-12-31

    Natural convection between isothermal plates is solved numerically by applying the full Navier-Stokes equations. The elliptic formulation allows separating the effect of the Rayleigh number, Ra, and the aspect ratio, L/B. Calculations are made on a wide range of the Rayleigh number and the aspect ratio, and the Nusselt number is provided as a function of both Ra and B/L. The conventional correlations in the literature presenting the Nusselt number in terms of a single parameter, RaB/L, have been found inaccurate. At a small value of RaB/L, multiple values of Nusselt number are obtained for different combinations of Ra and B/L. Previous results are found to be the special cases of the present study. A minimum Rayleigh number is also obtained above which a fully-developed flow is possible. To simulate the natural convective flow, the ambient pressure is given at the exit while the pressure at the entrance is related to the ambient pressure by the Bernoulli equation. Velocities at the entrance and exit are also solved from the Navier-Stokes equations.

  15. Comparative measurements of natural convection heat transfer in channels by holographic interferometry and schlieren

    NASA Astrophysics Data System (ADS)

    Ambrosini, Dario; Tanda, Giovanni

    2006-01-01

    In this work, natural convection heat transfer in vertical channels is experimentally investigated by applying different optical techniques, namely holographic interferometry and schlieren. Both these techniques are based on the temperature dependence of the air refractive index but they detect different optical quantities and their use involves different instrumentation and optical components. Optical methods, non-intrusive in nature, are particularly suitable for the visualization of flow and thermal fields as witnessed by their increasing use in a range of scientific and engineering disciplines; for this reason, the introduction of these experimental tools into a laboratory course can be of high value. Physics and engineering students can get familiarized with optical techniques, grasp the basics of thermal phenomena, usually elusive, which can be more easily understood if they are made visible, and begin to master digital image analysis, a key skill in laboratory activities. A didactic description of holographic interferometry and schlieren is provided and experimental results obtained for vertical, smooth and rib-roughened channels with asymmetrical heating are presented. A comparison between distributions of the local heat transfer coefficient (or its dimensionless counterpart, the Nusselt number) revealed good agreement between the results separately obtained by the two techniques, thus proving their suitability for investigating free convection heat transfer in channels.

  16. Experimental study of a constrained vapor bubble fin heat exchanger in the absence of external natural convection.

    PubMed

    Basu, Sumita; Plawsky, Joel L; Wayner, Peter C

    2004-11-01

    In preparation for a microgravity flight experiment on the International Space Station, a constrained vapor bubble fin heat exchanger (CVB) was operated both in a vacuum chamber and in air on Earth to evaluate the effect of the absence of external natural convection. The long-term objective is a general study of a high heat flux, low capillary pressure system with small viscous effects due to the relatively large 3 x 3 x 40 mm dimensions. The current CVB can be viewed as a large-scale version of a micro heat pipe with a large Bond number in the Earth environment but a small Bond number in microgravity. The walls of the CVB are quartz, to allow for image analysis of naturally occurring interference fringes that give the pressure field for liquid flow. The research is synergistic in that the study requires a microgravity environment to obtain a low Bond number and the space program needs thermal control systems, like the CVB, with a large characteristic dimension. In the absence of natural convection, operation of the CVB may be dominated by external radiative losses from its quartz surface. Therefore, an understanding of radiation from the quartz cell is required. All radiative exchange with the surroundings occurs from the outer surface of the CVB when the temperature range renders the quartz walls of the CVB optically thick (lambda > 4 microns). However, for electromagnetic radiation where lambda < 2 microns, the walls are transparent. Experimental results obtained for a cell charged with pentane are compared with those obtained for a dry cell. A numerical model was developed that successfully simulated the behavior and performance of the device observed experimentally. PMID:15644365

  17. Natural and mixed convection in the cylindrical pool of TRIGA reactor

    NASA Astrophysics Data System (ADS)

    Henry, R.; Tiselj, I.; Matkovič, M.

    2016-05-01

    Temperature fields within the pool of the JSI TRIGA MARK II nuclear research reactor were measured to collect data for validation of the thermal hydraulics computational model of the reactor tank. In this context temperature of the coolant was measured simultaneously at sixty different positions within the pool during steady state operation and two transients. The obtained data revealed local peculiarities of the cooling water dynamics inside the pool and were used to estimate the coolant bulk velocity above the reactor core. Mixed natural and forced convection in the pool were simulated with a Computational Fluid Dynamics code. A relatively simple CFD model based on Unsteady RANS turbulence model was found to be sufficient for accurate prediction of the temperature fields in the pool during the reactor operation. Our results show that the simple geometry of the TRIGA pool reactor makes it a suitable candidate for a simple natural circulation benchmark in cylindrical geometry.

  18. Plume generation in natural thermal convection at high Rayleigh and Prandtl numbers

    NASA Astrophysics Data System (ADS)

    Lithgow-Bertelloni, C.; Richards, M. A.; Conrad, C. P.; Griffiths, R. W.

    2001-05-01

    We study natural thermal convection of a fluid (corn syrup) with a large Prandtl number (103 107) and temperature-dependent viscosity. The experimental tank (1 × 1 × 0.3m) is heated from below with insulating top and side boundaries, so that the fluid experiences secular heating as experiments proceed. This setup allows a focused study of thermal plumes from the bottom boundary layer over a range of Rayleigh numbers relevant to convective plumes in the deep interior of the Earth's mantle. The effective value of Ra, based on the viscosity of the fluid at the interior temperature, varies from 105 at the beginning to almost 108 toward the end of the experiments. Thermals (plumes) from the lower boundary layer are trailed by continuous conduits with long residence times. Plumes dominate flow in the tank, although there is a weaker large-scale circulation induced by material cooling at the imperfectly insulating top and sidewalls. At large Ra convection is extremely time-dependent and exhibits episodic bursts of plumes, separated by periods of quiescence. This bursting behaviour probably results from the inability of the structure of the thermal boundary layer and its instabilities to keep pace with the rate of secular change in the value of Ra. The frequency of plumes increases and their size decreases with increasing Ra, and we characterize these changes via in situ thermocouple measurements, shadowgraph videos, and videos of liquid crystal films recorded during several experiments. A scaling analysis predicts observed changes in plume head and tail radii with increasing Ra. Since inertial effects are largely absent no transition to ‘hard’ thermal turbulence is observed, in contrast to a previous conclusion from numerical calculations at similar Rayleigh numbers. We suggest that bursting behaviour similar to that observed may occur in the Earth's mantle as it undergoes secular cooling on the billion-year time scale.

  19. Finite-amplitude double-component convection due to different boundary conditions for two compensating horizontal gradients

    PubMed

    Tsitverblit

    2000-12-01

    Finite-amplitude convective steady flows that do not bifurcate from the respective conduction state are discovered. They arise as the compensating horizontal gradients of two density-affecting components with equal diffusivities but different boundary conditions are applied to the Boussinesq fluid at rest with and without stable vertical stratification. These flows emanate from convection in a laterally heated stably stratified slot. Their relevance to convective states in a horizontal slot with two vertical gradients, emphasizing universality of the underlying type of convection, is discussed. PMID:11138108

  20. Developing natural convection in a fluid layer with localized heating and large viscosity variation

    NASA Astrophysics Data System (ADS)

    Hickox, C. E.; Chu, Tze Yao

    Numerical simulations and laboratory experiments are used to elucidate aspects of transient natural convection in a magma chamber. The magma chamber is modeled as a horizontal fluid layer confined within an enclosure of square planform and heated from below by a strip heater centered on the lower boundary of the enclosure. The width of the strip heater and the depth of the fluid layer are one-fourth of the layer width. Corn syrup is used as the working fluid in order to approximate the large viscosity variation with temperature and the large Prandtl number typical of magma. The quiescent, uniform, fluid layer is subjected to instantaneous heating from the strip heater producing a transient flow which is dominated by two counter-rotating convective cells. Experimentally determined characteristics of the developing flow are compared with numerical simulations carried out with a finite element computer program. The results of numerical simulations are in essential agreement with experimental data. Differences between the numerical simulations and experimental measurements are conjectured to result from non-ideal effects present in the experiment which are difficult to represent accurately in a numerical simulation.

  1. Nature's Grand Experiment: Linkage between magnetospheric convection and the radiation belts

    NASA Astrophysics Data System (ADS)

    Rodger, Craig J.; Cresswell-Moorcock, Kathy; Clilverd, Mark A.

    2016-01-01

    The solar minimum of 2007-2010 was unusually deep and long lived. In the later stages of this period the electron fluxes in the radiation belts dropped to extremely low levels. The flux of relativistic electrons (>1 MeV) was significantly diminished and at times was below instrument thresholds both for spacecraft located in geostationary orbits and also those in low-Earth orbit. This period has been described as a natural "Grand Experiment" allowing us to test our understanding of basic radiation belt physics and in particular the acceleration mechanisms which lead to enhancements in outer belt relativistic electron fluxes. Here we test the hypothesis that processes which initiate repetitive substorm onsets drive magnetospheric convection, which in turn triggers enhancement in whistler mode chorus that accelerates radiation belt electrons to relativistic energies. Conversely, individual substorms would not be associated with radiation belt acceleration. Contrasting observations from multiple satellites of energetic and relativistic electrons with substorm event lists, as well as chorus measurements, show that the data are consistent with the hypothesis. We show that repetitive substorms are associated with enhancements in the flux of energetic and relativistic electrons and enhanced whistler mode wave intensities. The enhancement in chorus wave power starts slightly before the repetitive substorm epoch onset. During the 2009/2010 period the only relativistic electron flux enhancements that occurred were preceded by repeated substorm onsets, consistent with enhanced magnetospheric convection as a trigger.

  2. Developing natural convection in a fluid layer with localized heating and large viscosity variation

    SciTech Connect

    Hickox, C.E.; Chu, Tze Yao.

    1991-01-01

    Numerical simulations and laboratory experiments are used to elucidate aspects of transient natural convection in a magma chamber. The magma chamber is modeled as a horizontal fluid layer confined within an enclosure of square planform and heated from below by a strip heater centered on the lower boundary of the enclosure. The width of the strip heater and the depth of the fluid layer are one-fourth of the layer width. Corn syrup is used as the working fluid in order to approximate the large viscosity variation with temperature and the large Prandtl number typical of magma. The quiescent, uniform, fluid layer is subjected to instantaneous heating from the strip heater producing a transient flow which is dominated by two counter-rotating convective cells. Experimentally determined characteristics of the developing flow are compared with numerical simulations carried out with a finite element computer program. The results of numerical simulations are in essential agreement with experimental data. Differences between the numerical simulations and experimental measurements are conjectured to result from non-ideal effects present in the experiment which are difficult to represent accurately in a numerical simulation.

  3. Blade-to-coolant heat-transfer results and operating data from a natural-convection water-cooled single-stage turbine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Freche, John C

    1951-01-01

    Blade-to-coolant heat-transfer data and operating data were obtained with a natural-convection water-cooled turbine over range of turbine speeds and inlet-gas temperatures. The convective coefficients were correlated by the general relation for natural-convection heat transfer. The turbine data were displaced from a theoretical equation for natural convection heat transfer in the turbulent region and from natural-convection data obtained with vertical cylinders and plates; possible disruption of natural convection circulation within the blade coolant passages was thus indicated. Comparison of non dimensional temperature-ratio parameters for the blade leading edge, midchord, and trailing edge indicated that the blade cooling effectiveness is greatest at the midchord and least at the trailing edge.

  4. Risk Due to Radiological Terror Attacks With Natural Radionuclides

    NASA Astrophysics Data System (ADS)

    Friedrich, Steinhäusler; Stan, Rydell; Lyudmila, Zaitseva

    2008-08-01

    The naturally occurring radionuclides radium (Ra-226) and polonium (Po-210) have the potential to be used for criminal acts. Analysis of international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (CSTO), operated at the University of Salzburg, shows that several acts of murder and terrorism with natural radionuclides have already been carried out in Europe and Russia. Five different modes of attack (T) are possible: (1) Covert irradiation of an individual in order to deliver a high individual dose; (2) Covert irradiation of a group of persons delivering a large collective dose; (3) Contamination of food or drink; (4) Generation of radioactive aerosols or solutions; (5) Combination of Ra-226 with conventional explosives (Dirty Bomb). This paper assesses the risk (R) of such criminal acts in terms of: (a) Probability of terrorist motivation deploying a certain attack mode T; (b) Probability of success by the terrorists for the selected attack mode T; (c) Primary damage consequence (C) to the attacked target (activity, dose); (d) Secondary damage consequence (C') to the attacked target (psychological and socio-economic effects); (e) Probability that the consequences (C, C') cannot be brought under control, resulting in a failure to manage successfully the emergency situation due to logistical and/or technical deficits in implementing adequate countermeasures. Extensive computer modelling is used to determine the potential impact of such a criminal attack on directly affected victims and on the environment.

  5. Risk Due to Radiological Terror Attacks With Natural Radionuclides

    SciTech Connect

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva; Stan, Rydell

    2008-08-07

    The naturally occurring radionuclides radium (Ra-226) and polonium (Po-210) have the potential to be used for criminal acts. Analysis of international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (CSTO), operated at the University of Salzburg, shows that several acts of murder and terrorism with natural radionuclides have already been carried out in Europe and Russia. Five different modes of attack (T) are possible: (1) Covert irradiation of an individual in order to deliver a high individual dose; (2) Covert irradiation of a group of persons delivering a large collective dose; (3) Contamination of food or drink; (4) Generation of radioactive aerosols or solutions; (5) Combination of Ra-226 with conventional explosives (Dirty Bomb).This paper assesses the risk (R) of such criminal acts in terms of: (a) Probability of terrorist motivation deploying a certain attack mode T; (b) Probability of success by the terrorists for the selected attack mode T; (c) Primary damage consequence (C) to the attacked target (activity, dose); (d) Secondary damage consequence (C') to the attacked target (psychological and socio-economic effects); (e) Probability that the consequences (C, C') cannot be brought under control, resulting in a failure to manage successfully the emergency situation due to logistical and/or technical deficits in implementing adequate countermeasures. Extensive computer modelling is used to determine the potential impact of such a criminal attack on directly affected victims and on the environment.

  6. Simultaneous conjugate observations of dynamic variations in high-latitude dayside convection due to changes in IMF By

    NASA Technical Reports Server (NTRS)

    Greenwald, R. A.; Baker, K. B.; Ruohoniemi, J. M.; Dudeney, J. R.; Pinnock, M.; Mattin, N.; Leonard, J. M.; Lepping, R. P.

    1990-01-01

    Data from two conjugate HF radars currently operating at Goose Bay (Labrador) and the Halley Station (Antarctica), obtained for a single 45-min period about local noon on April 22, 1988, were used to study the near-instantaneous conjugate two-dimensional patterns of plasma convection in the vicinity of the cusp. In particular, the response of these plasma convection patterns to changes in the By component of the IMF was examined. Results indicate that, under quasi-stationary IMF conditions, the conjugate convection patterns are quite similar to the synthesized patterns of Heppner and Maynard (1987) and that the patterns respond rapidly to changes in the IMF By component. Results also show that transitions between convection states begin to occur within minutes of the time that an IMF state change is incident on the magnetospheric boundary, and that the convection reconfigurations expand poleward, completely filling the field of view of an HF radar within 6 min of the time of onset.

  7. Computational analysis of non-isothermal temperature distribution on natural convection in nanofluid filled enclosures

    NASA Astrophysics Data System (ADS)

    Oztop, Hakan F.; Abu-Nada, Eiyad; Varol, Yasin; Al-Salem, Khaled

    2011-04-01

    In this study, the problem of steady state natural convection in an enclosure filled with a nanofluid has been analyzed numerically by using heating and cooling by sinusoidal temperature profiles on one side. The governing partial differential equations, in terms of the dimensionless stream function-vorticity and temperature, are solved numerically using the finite volume method for various inclination angles 0∘≤ϕ≤90∘, different types of nanoparticles (TiO 2 and Al 2O 3) and fractions of nanoparticles 0≤φ≤0.1, whereas the range of the Rayleigh number Ra is 10 3-10 5. It is found that the addition of nanoparticles into water affects the fluid flow and temperature distribution especially for higher Rayleigh numbers. An enhancement in heat transfer rate was registered for the whole range of Rayleigh numbers. However, low Rayleigh numbers show more enhancement compared to high Rayleigh numbers.

  8. A numerical solution of variable porosity effects on natural convection in a packed-sphere cavity

    SciTech Connect

    David, E.; Lauriat, G. ); Cheng, P. )

    1991-05-01

    The problem of natural convection in differentially heated vertical cavities filled with spherical particles saturated with Newtonian fluids is investigated numerically. The Brinkman-Darcy-Ergun equation is used as the momentum equation, and the wall effect on porosity variation is approximated by an exponential function. The effect of variable stagnant thermal conductivities is taken into consideration in the energy equation. The formulation of the problem shows that the flow and heat transfer characteristics depend on six dimensionless parameters, namely, the Rayleigh and Prandtl numbers of the fluid phase, the dimensionless particle diameter, the conductivity ratio of the two phases, the bulk porosity, and the aspect ratio of the cavity. The influences of these parameters on the heat transfer rate are thoroughly investigated. The predicted Nusselt numbers are compared with existing experimental results. It is found that the computed Nusselt numbers based on the present model compare the best with experimental data.

  9. Design and Scaling of the Natural Convection Shutdown Heat Removal Test Facility

    SciTech Connect

    Lisowski, Darius D.; Gerardi, Craig D.; Bremer, Nathan C.; Farmer, Mitchell T.

    2014-01-01

    The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (ANL) reflects a 1/2 scale model of one conceptual design for passive safety in advanced reactors. The project was initiated in 2010 primarily to conduct ex-vessel, passive decay heat removal experiments in support of the Advanced Reactor Concepts (ARC), Small Modular Reactor (SMR), and Next Generation Nuclear Plant (NGNP) programs while also generating data for code validation purposes. The facility successfully demonstrated scoping objectives in late 2013, and is expected to begin testing by early 2014. The following paper summarizes some of the key design and scaling considerations used in construction of the experimental facility, along with an overview of the current instrumentation and data acquisition methods. Details of the distributed fiber optic temperature system will be presented, which introduces a level of data density suitable for CFD validation and is a first-of-its-kind for largescale thermal hydraulics facilities.

  10. Natural convection flow in porous enclosure with localized heating from below with heat flux

    NASA Astrophysics Data System (ADS)

    Siddiki, Md. Noor-A.-Alam; Molla, Md. Mamun; Saha, Suvash C.

    2016-07-01

    Unsteady natural convection flow in a two dimensional fluid saturated porous enclosure with localized heating from below with heat flux, symmetrical cooling from the sides and the insulated top wall has been investigated numerically. The governing equations are the Darcy's law for the porous media and the energy equation for the temperature field has been considered. The non-dimensional Darcy's law in terms of the stream function is solved by finite difference method using the successive over-relaxation (SOR) scheme and the energy equation is solved by Alternative Direction Alternative (ADI) scheme. The uniform heat flux source is located centrally at the bottom wall. The numerical results are presented in terms of the streamlines and isotherms, as well as the local and average rate of heat transfer for the wide range of the Darcy's Rayleigh number and the length of the heat flux source at the bottom wall.

  11. MHD natural convection flow along a vertical wavy surface with heat generation and pressure work

    NASA Astrophysics Data System (ADS)

    Alim, M. A.; Kabir, K. H.; Andallah, L. S.

    2016-07-01

    In this paper, the influence of pressure work on MHD natural convection flow of viscous incompressible fluid along a uniformly heated vertical wavy surface with heat generation has been investigated. The governing boundary layer equations are first transformed into a non-dimensional form using suitable set of dimensionless variables. The resulting nonlinear system of partial differential equations are mapped into the domain of a vertical flat plate and then solved numerically employing the implicit finite difference method, known as Keller-box scheme. The numerical results for the velocity profiles, temperature profiles, skin friction coefficient, the rate of heat transfers, the streamlines and the isotherms are shown graphically and skin friction coefficient and rate of heat transfer have been shown in tabular form for different values of the selective set of parameters consisting of pressure work parameter Ge, the magnetic parameter M, Prandtl number Pr, heat generation parameter Q and the amplitude of the wavy surface.

  12. Two- and three-dimensional natural and mixed convection simulation using modular zonal models

    SciTech Connect

    Wurtz, E.; Nataf, J.M.; Winkelmann, F.

    1996-07-01

    We demonstrate the use of the zonal model approach, which is a simplified method for calculating natural and mixed convection in rooms. Zonal models use a coarse grid and use balance equations, state equations, hydrostatic pressure drop equations and power law equations of the form {ital m} = {ital C}{Delta}{sup {ital n}}. The advantage of the zonal approach and its modular implementation are discussed. The zonal model resolution of nonlinear equation systems is demonstrated for three cases: a 2-D room, a 3-D room and a pair of 3-D rooms separated by a partition with an opening. A sensitivity analysis with respect to physical parameters and grid coarseness is presented. Results are compared to computational fluid dynamics (CFD) calculations and experimental data.

  13. Analysis on the similarity between steel ladles and hot-water models regarding natural convection phenomena

    NASA Astrophysics Data System (ADS)

    Liviu, Pascu; Adriana, Putan; Vasile, Putan; Alina, Lascutoni

    2012-09-01

    The similarity between steel ladles and hot water model regarding natural convection phenomena has been analyzed through examination of the numerical solutions of turbulent Navier-Stokes partial differential equations governing the phenomena in question. Key similarity criteria for non-isothermal physical modeling of steel ladles with hot-water models have been derived as Frm = Frp and (β∇T)m = (β∇T)p where the subscript m and p stand for the water model and the prototype steel ladle, respectively. Accordingly, appropriate conditions fulfilling the above criteria, such as model size, water temperature, time scale factor and the scale factor of boundary heat loss fluxes, have been proposed and discussed.

  14. Parallel Computations of Natural Convection Flow in a Tall Cavity Using an Explicit Finite Element Method

    SciTech Connect

    Dunn, T.A.; McCallen, R.C.

    2000-10-17

    The Galerkin Finite Element Method was used to predict a natural convection flow in an enclosed cavity. The problem considered was a differentially heated, tall (8:1), rectangular cavity with a Rayleigh number of 3.4 x 10{sup 5} and Prandtl number of 0.71. The incompressible Navier-Stokes equations were solved using a Boussinesq approximation for the buoyancy force. The algorithm was developed for efficient use on massively parallel computer systems. Emphasis was on time-accurate simulations. It was found that the average temperature and velocity values can be captured with a relatively coarse grid, while the oscillation amplitude and period appear to be grid sensitive and require a refined computation.

  15. Numerical simulation of combined natural and forced convection during thermal-hydraulic transients. [LMFBR

    SciTech Connect

    Domanus, H.M.; Sha, W.T.

    1981-01-01

    The single-phase COMMIX (COMponent MIXing) computer code performs fully three-dimensional, transient, thermal-hydraulic analyses of liquid-sodium LMFBR components. It solves the conservation equations of mass, momentum, and energy as a boundary-value problem in space and as an initial-value problem in time. The concepts of volume porosity, surface permeability and distributed resistance, and heat source have been employed in quasi-continuum (rod-bundle) applications. Results from three transient simulations involving forced and natural convection are presented: (1) a sodium-filled horizontal pipe initially of uniform temperature undergoing an inlet velocity rundown transient, as well as an inlet temperature transient; (2) a 19-pin LMFBR rod bundle undergoing a velocity transient; and, (3) a simulation of a water test of a 1/10-scale outlet plenum undergoing both velocity and temperature transients.

  16. Thermally induced depolarization in terbium gallium garnet ceramics rod with natural convection cooling

    NASA Astrophysics Data System (ADS)

    Slezak, Ondrej; Yasuhara, Ryo; Lucianetti, Antonio; Vojna, David; Mocek, Tomas

    2015-06-01

    Thermal birefringence-induced depolarization in terbium gallium garnet (TGG) ceramic rods has been numerically evaluated for the geometry and heating conditions in a previous experiment. In this model, the spatially resolved heat transfer coefficient corresponding to natural convection cooling and the offset of the beam from the rotational axis of the rod have been incorporated and the realistic beam profile used in the experiment has been considered. A resulting beam depolarization ratio of 4.3 × 10-4 has been calculated for an input power of 117 W. The results were found to be in good agreement with the measured values. Furthermore, a parametric study of the depolarization ratio for higher input powers has been performed leading to a depolarization ratio of 3.3 × 10-2 for 1 kW input power.

  17. Natural remobilization of multicomponent DNAPL pools due to dissolution.

    PubMed

    Roy, J W; Smith, J E; Gillham, R W

    2002-12-01

    Mixtures of dense nonaqueous phase liquids (DNAPLs) trapped in the subsurface can act as long-term sources of contamination by dissolving into flowing groundwater. If the components have different solubilities then dissolution will alter the composition of the remaining DNAPL. We theorized that a multicomponent DNAPL pool may become mobile due to the natural dissolution process. In this study, we focused on two scenarios: (1) a DNAPL losing light component(s), with the potential for downward migration; and (2) a DNAPL losing dense component(s), with the potential for upward migration following transformation into a less dense than water nonaqueous phase liquid (LNAPL). We considered three binary mixtures of common groundwater contaminants: benzene and tetrachloroethylene (PCE), PCE and dichloromethane (DCM), and DCM and toluene. A number of physical properties that control the retention and transport of DNAPL in porous media were measured for the mixtures, namely: density, interfacial tension, effective solubility, and viscosity. All properties except density exhibited nonlinear relationships with changing molar ratio of the DNAPL. To illustrate the potential for natural remobilization, we modelled the following two primary mechanisms: the reduction in pool height as mass is lost by dissolution, and the changes in fluid properties with changing molar ratio of the DNAPL. The first mechanism always reduces the capillary pressure in the pool, while the second mechanism may increase the capillary pressure or alter the direction of the driving force. The difference between the rate of change of each determines whether the potential for remobilization increases or decreases. Static conditions and horizontal layering were assumed along with a one-dimensional, compositional modelling approach. Our results indicated that for initial benzene/PCE ratios greater than 25:75, the change in density was sufficiently faster than the decline in pool height to promote DNAPL

  18. Exact Solution to Stationary Onset of Convection Due to Surface Tension Variation in a Multicomponent Fluid Layer With Interfacial Deformation

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee; McCaughan, Frances E.

    1998-01-01

    Stationary onset of convection due to surface tension variation in an unbounded multicomponent fluid layer is considered. Surface deformation is included and general flux boundary conditions are imposed on the stratifying agencies (temperature/composition) disturbance equations. Exact solutions are obtained to the general N-component problem for both finite and infinitesimal wavenumbers. Long wavelength instability may coexist with a finite wavelength instability for certain sets of parameter values, often referred to as frontier points. For an impermeable/insulated upper boundary and a permeable/conductive lower boundary, frontier boundaries are computed in the space of Bond number, Bo, versus Crispation number, Cr, over the range 5 x 10(exp -7) less than or equal to Bo less than or equal to 1. The loci of frontier points in (Bo, Cr) space for different values of N, diffusivity ratios, and, Marangoni numbers, collapsed to a single curve in (Bo, D(dimensional variable)Cr) space, where D(dimensional variable) is a Marangoni number weighted diffusivity ratio.

  19. Scalings for unsteady natural convection boundary layers on an evenly heated plate with time-dependent heating flux

    NASA Astrophysics Data System (ADS)

    Lin, Wenxian; Armfield, S. W.

    2013-12-01

    It is of fundamental significance, especially with regard to application, to fully understand the flow behavior of unsteady natural convection boundary layers on a vertical plate heated by a time-dependent heat flux. Such an understanding is currently scarce. In this paper, the scaling analysis by Lin et al. [Phys. Rev. E 79, 066313 (2009), 10.1103/PhysRevE.79.066313] using a simple three-region structure for the unsteady natural convection boundary layer of a homogeneous Newtonian fluid with Pr >1 under isothermal heating was substantially extended for the case when the heating is due to a time-varying sinusoidal heat flux. A series of scalings was developed for the thermal boundary thickness, the plate temperature, the viscous boundary thicknesses, and the maximum vertical velocity within the boundary layer, which are the major parameters representing the flow behavior, in terms of the governing parameters of the flow, i.e., the Rayleigh number Ra, the Prandtl number Pr, and the dimensionless natural frequency fn of the time-varying sinusoidal heat flux, at the start-up stage, at the transition time scale which represents the ending of the start-up stage and the beginning of the transitional stage of the boundary-layer development, and at the quasi-steady stage. These scalings were validated by comparison to 10 full numerical solutions of the governing equations with Ra, Pr, and fn in the ranges 106≤Ra≤109, 3≤Pr≤100, and 0.01≤fn≤0.1 and were shown in general to provide an accurate description of the flow at different development stages, except for high-Pr runs in which a further, although weak, Pr dependence is present, which cannot be accurately predicted by the current scaling analysis using the simple three-region structure, attributed to the non-boundary-layer nature of the velocity field with high-Pr fluids. Some scalings at the transition time scale and at the quasi-steady stage also produce noticeable deviations from the numerical results when

  20. Transport Phenomena Projects: Natural Convection between Porous, Concentric Cylinders--A Method to Learn and to Innovate

    ERIC Educational Resources Information Center

    Saatadjian, Esteban; Lesage, Francois; Mota, Jose Paulo B.

    2013-01-01

    A project that involves the numerical simulation of transport phenomena is an excellent method to teach this subject to senior/graduate chemical engineering students. The subject presented here has been used in our senior/graduate course, it concerns the study of natural convection heat transfer between two concentric, horizontal, saturated porous…

  1. Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase Lattice Boltzmann method.

    PubMed

    Qi, Cong; He, Yurong; Yan, Shengnan; Tian, Fenglin; Hu, Yanwei

    2013-01-01

    Considering interaction forces (gravity and buoyancy force, drag force, interaction potential force, and Brownian force) between nanoparticles and a base fluid, a two-phase Lattice Boltzmann model for natural convection of nanofluid is developed in this work. It is applied to investigate the natural convection in a square enclosure (the left wall is kept at a high constant temperature (TH), and the top wall is kept at a low constant temperature (TC)) filled with Al2O3/H2O nanofluid. This model is validated by comparing numerical results with published results, and a satisfactory agreement is shown between them. The effects of different nanoparticle fractions and Rayleigh numbers on natural convection heat transfer of nanofluid are investigated. It is found that the average Nusselt number of the enclosure increases with increasing nanoparticle volume fraction and increases more rapidly at a high Rayleigh number. Also, the effects of forces on nanoparticle volume fraction distribution in the square enclosure are studied in this paper. It is found that the driving force of the temperature difference has the biggest effect on nanoparticle volume fraction distribution. In addition, the effects of interaction forces on flow and heat transfer are investigated. It is found that Brownian force, interaction potential force, and gravity-buoyancy force have positive effects on the enhancement of natural convective heat transfer, while drag force has a negative effect. PMID:23374509

  2. The nature of the sunspot phenomenon. II - Internal overstable modes. [convectively driven Alfven wave role

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1974-01-01

    It had been pointed out by Parker (1974) that the basic cause of the sunspot phenomenon is the enhanced heat transport in the magnetic field of the sunspot. The enhanced transport occurs through convective overstability which operates as a heat engine generating Alfven waves. The characteristics of the convective forces present are investigated along with questions concerning overstability and convectively driven Alfven waves. Relations regarding instability and convectively driven surface waves are discussed and attention is given to individual overstable Alfven modes. It is found that the form of an Alfven wave in the absence of convective forces is entirely arbitrary, so that waves with any arbitrary profile can be fitted into a vertical column of the field without disturbing the fluid outside. With the introduction of convective forces the situation changes so that the presence of lateral boundaries alters the form of the basic wave modes.

  3. Thermocapillary convection around gas bubbles: an important natural effect for the enhancement of heat transfer in liquids under microgravity.

    PubMed

    Betz, J; Straub, J

    2002-10-01

    In the presence of a temperature gradient at a liquid-gas or liquid-liquid interface, thermocapillary or Marangoni convection develops. This convection is a special type of natural convection that was not paid much attention in heat transfer for a long time, although it is strong enough to drive liquids against the direction of buoyancy on Earth. In a microgravity environment, however, it is the remaining mode of natural convection and supports heat and mass transfer. During boiling in microgravity it was observed at subcooled liquid conditions. Therefore, the question arises about its contribution to heat transfer without phase change. Thermocapillary convection was quantitatively studied at single gas bubbles in various liquids, both experimentally and numerically. A two-dimensional mathematical model described in this article was developed. The coupled mechanism of heat transfer and fluid flow in pure liquids around a single gas bubble was simulated with a control-volume FE-method. The simulation was accompanied and compared with experiments on Earth. The numerical results are in good accordance with the experiments performed on Earth at various Marangoni numbers using various alcohols of varying chain length and Prandtl numbers. As well as calculations on Earth, the numerical method also allows simulations at stationary spherical gas bubbles in a microgravity environment. The results demonstrate that thermocapillary convection is a natural heat transfer mechanism that can partially replace the buoyancy in a microgravity environment, if extreme precautions are taken concerning the purity of the liquids, because impurities accumulate predominantly at the interface. Under Earth conditions, an enhancement of the heat transfer in a liquid volume is even found in the case where thermocapillary flow is counteracted by buoyancy. In particular, the obstructing influence of surface active substances could be observed during the experiments on Earth in water and also in

  4. Comparison of CFD Natural Convection and Conduction-only Models for Heat Transfer in the Yucca Mountain Project Drifts

    SciTech Connect

    T. Hadgu; S. Webb; M. Itamura

    2004-02-12

    Yucca Mountain, Nevada has been designated as the nation's high-level radioactive waste repository and the U.S. Department of Energy has been approved to apply to the U.S. Nuclear Regulatory Commission for a license to construct a repository. Heat transfer in the Yucca Mountain Project (YMP) drift enclosures is an important aspect of repository waste emplacement. Canisters containing radioactive waste are to be emplaced in tunnels drilled 500 m below the ground surface. After repository closure, decaying heat is transferred from waste packages to the host rock by a combination of thermal radiation, natural convection and conduction heat transfer mechanism?. Current YMP mountain-scale and drift-scale numerical models often use a simplified porous medium code to model fluid and heat flow in the drift openings. To account for natural convection heat transfer, the thermal conductivity of the air was increased in the porous medium model. The equivalent thermal conductivity, defined as the ratio of total heat flow to conductive heat flow, used in the porous media models was based on horizontal concentric cylinders. Such modeling does not effectively capture turbulent natural convection in the open spaces as discussed by Webb et al. (2003) yet the approach is still widely used on the YMP project. In order to mechanistically model natural convection conditions in YMP drifts, the computational fluid dynamics (CFD) code FLUENT (Fluent, Incorporated, 2001) has been used to model natural convection heat transfer in the YMP emplacement drifts. A two-dimensional (2D) model representative of YMP geometry (e.g., includes waste package, drip shield, invert and drift wall) has been developed and numerical simulations made (Francis et al., 2003). Using CFD simulation results for both natural convection and conduction-only heat transfer in a single phase, single component fluid, equivalent thermal conductivities have been calculated for different Rayleigh numbers. Correlation

  5. Natural convection flows and associated heat transfer processes in room fires

    NASA Astrophysics Data System (ADS)

    Sargent, William Stapf

    This report presents the results of experimental investigations of natural convection flows and associated heat transfer processes produced by small fires in rooms with a single door or window opening. Calculation procedures have been developed to model the major aspects of these flows.Two distinct sets of experiments were undertaken.First, in a roughly 1/4 scale facility, a slightly dense solution of brine was allowed to flow into a tank of fresh water. The resulting density difference produced a flow which simulated a very small fire in a room with adiabatic walls. Second, in an approximately 1/2 scale test room, a nearly stoichioinetric mixture of air and natural gas was burned at floor level to model moderate strength fires. In this latter facility, we directly measured the heat conducted through the walls, in addition to determining the gas temperature and composition throughout the room.These two facilities complemented each other. The former offered good flow visualization and allowed us to observe the basic flow phenomena in the absence of heat transfer effects. On the other hand, the latter, which involved relatively larger fires, was a more realistic simulation of an actual room fire, and allowed us to calculate the convective heat transfer to the ceiling and walls. In addition, the stronger sources present in these 1/2 scale tests produced significant secondary flows. These secondary flows along with heat transfer effects act to modify the gas temperature or density profiles within the room from those observed in the 1/4 scale experiments.Several calculation procedures have been developed, based on the far field properties of plumes when the density differences are small (the Boussinesq approximation). The simple point source plume solution is used along with hydraulic analysis of flow through an orifice to estimate the temperatures of the hot ceiling layer gas and of the cooler floor zone fluid, as well as the height of the interface between them. A

  6. Utilizing an Extraterrestrial Analogue to Predict Sediment Migration on Frenchman Flat due to Convective Vortex (Dust Devil) Activity

    NASA Astrophysics Data System (ADS)

    McGee, B. W.

    2006-12-01

    A synthesis of terrestrial and Martian data suggests that a convective vortex, or "dust devil," is a significant, non-random terrestrial eolian sediment transport phenomenon, which has implications for sediment-based migration of radionuclides on Frenchman Flat playa, a 20 square-mile mountain-bounded dry lake bed approximately centered in Frenchman Flat on the Nevada Test Site (NTS). Planetary scientists are often forced to rely on terrestrial analogues to begin characterizing extraterrestrial processes. However, as the planetary database matures, an increasing number of well-characterized extraterrestrial analogues for terrestrial processes will become available. Such analogues may provide a convenient means to investigate poorly understood or otherwise inaccessible terrestrial phenomena. Historical atmospheric nuclear experiments conducted from 1951 to 1962 deposited radionuclides into surface sediments across parts of Frenchman Flat playa, where dust devils are known to commonly occur, especially during the summer months. Recent information from both terrestrial and Martian studies yields that dust devils can be significant contributors to both the local eolian sediment transport regime and the regional climate system. Additionally, the use of terrestrial desert environments as Martian analogues, as well as the recent, unique discovery of Mars-like dust devil tracks in Africa, has established a working correlation between Earth, Mars, and the dust devil phenomenon. However, while the difficulty in tracking dust devil paths on Earth has hindered the determination of any net sediment transport due to dust devils, the dramatic albedo contrast in disturbed sediment on Mars lends to the formation of persistent, curvilinear dust devil tracks. These tracks illustrate that in zones of preferential formation, dust devils possess non-random orientations over seasonal timescales with respect to prevailing wind. By calibrating these Martian orientations with meteorological

  7. OXYGEN TRANSFER ACROSS THE AIR-WATER INTERFACE DUE TO NATURAL CONVECTION IN LAKES. (R825428)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Experimental and numerical study of turbulent natural convection in an open cubic cavity

    NASA Astrophysics Data System (ADS)

    Maytorena, V. M.; Piña-Ortiz, A.; Hinojosa, J. F.

    2015-09-01

    Study of natural convection in an open cubic cavity with side length of 1 m is presented. The experimental setup was built with the air as the heat transfer fluid. The vertical wall opposite to the aperture is subjected to uniform heat flux condition with the four different heat flux values in the range 55-333 W/m2, whereas the remaining walls were kept thermally insulated. The temperature at discrete locations inside the cavity was obtained which followed evaluation of heat transfer coefficient and Rayleigh number. The thermal and flow analysis in 3-D was based on the standard k-ɛ turbulence model and implemented using CFD software Fluent 6.3. The spatial distribution for temperature, velocity and turbulent viscosity are determined and analyzed in the perspective of experimental observations. The experimentally determined ranges of Rayleigh number, Nusselt number and heat transfer coefficient are 1.66 × 1011-7.1 × 1011, 185.94-243.31 and 4.88-6.83 W/m2 K, respectively. The observed maximum difference between the experimental and numerical values for heat transfer coefficient and Nusselt number are 10.8 and 14 % respectively.

  9. Characterization of Fuego for laminar and turbulent natural convection heat transfer.

    SciTech Connect

    Francis, Nicholas Donald, Jr.

    2005-08-01

    A computational fluid dynamics (CFD) analysis is conducted for internal natural convection heat transfer using the low Mach number code Fuego. The flow conditions under investigation are primarily laminar, transitional, or low-intensity level turbulent flows. In the case of turbulent boundary layers at low-level turbulence or transitional Reynolds numbers, the use of standard wall functions no longer applies, in general, for wall-bounded flows. One must integrate all the way to the wall in order to account for gradients in the dependent variables in the viscous sublayer. Fuego provides two turbulence models in which resolution of the near-wall region is appropriate. These models are the v2-f turbulence model and a Launder-Sharma, low-Reynolds number turbulence model. Two standard geometries are considered: the annulus formed between horizontal concentric cylinders and a square enclosure. Each geometry emphasizes wall shear flow and complexities associated with turbulent or near turbulent boundary layers in contact with a motionless core fluid. Overall, the Fuego simulations for both laminar and turbulent flows compared well to measured data, for both geometries under investigation, and to a widely accepted commercial CFD code (FLUENT).

  10. Numerical Study of Natural Convection within a Wavy Enclosure Using Meshfree Approach: Effect of Corner Heating

    PubMed Central

    Singh, Sonam; Bhargava, R.

    2014-01-01

    This paper presents a numerical study of natural convection within a wavy enclosure heated via corner heating. The considered enclosure is a square enclosure with left wavy side wall. The vertical wavy wall of the enclosure and both of the corner heaters are maintained at constant temperature, Tc and Th, respectively, with Th > Tc while the remaining horizontal, bottom, top and side walls are insulated. A penalty element-free Galerkin approach with reduced gauss integration scheme for penalty terms is used to solve momentum and energy equations over the complex domain with wide range of parameters, namely, Rayleigh number (Ra), Prandtl number (Pr), and range of heaters in the x- and y-direction. Numerical results are represented in terms of isotherms, streamlines, and Nusselt number. It is observed that the rate of heat transfer depends to a great extent on the Rayleigh number, Prandtl number, length of the corner heaters and the shape of the heat transfer surface. The consistent performance of the adopted numerical procedure is verified by comparison of the results obtained through the present meshless technique with those existing in the literature. PMID:24672383

  11. Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium

    PubMed Central

    2013-01-01

    The unsteady natural convection heat transfer of nanofluid along a vertical plate embedded in porous medium is investigated. The Darcy-Forchheimer model is used to formulate the problem. Thermal conductivity and viscosity models based on a wide range of experimental data of nanofluids and incorporating the velocity-slip effect of the nanoparticle with respect to the base fluid, i.e., Brownian diffusion is used. The effective thermal conductivity of nanofluid in porous media is calculated using copper powder as porous media. The nonlinear governing equations are solved using an unconditionally stable implicit finite difference scheme. In this study, six different types of nanofluids have been compared with respect to the heat transfer enhancement, and the effects of particle concentration, particle size, temperature of the plate, and porosity of the medium on the heat transfer enhancement and skin friction coefficient have been studied in detail. It is found that heat transfer rate increases with the increase in particle concentration up to an optimal level, but on the further increase in particle concentration, the heat transfer rate decreases. For a particular value of particle concentration, small-sized particles enhance the heat transfer rates. On the other hand, skin friction coefficients always increase with the increase in particle concentration and decrease in nanoparticle size. PMID:23391481

  12. Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium

    NASA Astrophysics Data System (ADS)

    Uddin, Ziya; Harmand, Souad

    2013-02-01

    The unsteady natural convection heat transfer of nanofluid along a vertical plate embedded in porous medium is investigated. The Darcy-Forchheimer model is used to formulate the problem. Thermal conductivity and viscosity models based on a wide range of experimental data of nanofluids and incorporating the velocity-slip effect of the nanoparticle with respect to the base fluid, i.e., Brownian diffusion is used. The effective thermal conductivity of nanofluid in porous media is calculated using copper powder as porous media. The nonlinear governing equations are solved using an unconditionally stable implicit finite difference scheme. In this study, six different types of nanofluids have been compared with respect to the heat transfer enhancement, and the effects of particle concentration, particle size, temperature of the plate, and porosity of the medium on the heat transfer enhancement and skin friction coefficient have been studied in detail. It is found that heat transfer rate increases with the increase in particle concentration up to an optimal level, but on the further increase in particle concentration, the heat transfer rate decreases. For a particular value of particle concentration, small-sized particles enhance the heat transfer rates. On the other hand, skin friction coefficients always increase with the increase in particle concentration and decrease in nanoparticle size.

  13. Natural convection in a differentially heated square enclosure with a solid polygon.

    PubMed

    Roslan, R; Saleh, H; Hashim, I

    2014-01-01

    The aim of the present numerical study is to analyze the conjugate natural convection heat transfer in a differentially heated square enclosure containing a conductive polygon object. The left wall is heated and the right wall is cooled, while the horizontal walls are kept adiabatic. The COMSOL Multiphysics software is applied to solve the dimensionless governing equations. The governing parameters considered are the polygon type, 3 ≤ N ≤ ∞, the horizontal position, 0.25 ≤ X 0 ≤ 0.75, the polygon size, 0 ≤ A ≤ π/16, the thermal conductivity ratio, 0.1 ≤ K r ≤ 10.0, and the Rayleigh number, 10(3) ≤ Ra ≤ 10(6). The critical size of the solid polygon was found exists at low conductivities. The heat transfer rate increases with the increase of the size of the solid polygon, until it reaches its maximum value. Here, the size of the solid polygon is reaches its critical value. Further, beyond this critical size of the solid polygon, will decrease the heat transfer rate. PMID:24991643

  14. Numerical and experimental studies of the natural convection within a horizontal cylinder

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Sabol, A. P.; Boney, L. R.

    1974-01-01

    Numerical solutions are obtained for the quasi-compressible Navier-Stokes equations governing the time-dependent natural convection within a horizontal cylinder. The early flow development and wall heat transfer are obtained after a uniformly cold wall is imposed as a boundary condition on the cylinder. Results are also obtained for a time-varying cold wall as a boundary condition with windward explicit differencing used for the numerical solutions. The viscous truncation error associated with this scheme is controlled so that first-order accuracy is maintained in time and space. Experiments within a small-scale instrumented horizontal cylinder revealed the time development of the temperature distribution across the boundary layer as well as the decay of wall heat transfer with time. Agreement between temperature distributions obtained experimentally and numerically was generally good. The time decay of the dimensionless ratio of the Nusselt number to the one-fourth power of the Grashof number is found both numerically and experimentally, and good agreement is obtained between these two results over most of the cylinder wall.

  15. Experimental study of natural convection melting of ice in salt solutions

    SciTech Connect

    Fang, L.J.; Cheung, F.B.; Linehan, J.H.; Pedersen, D.R.

    1984-01-01

    The solid-liquid interface morphology and the micro-physical process near the moving phase boundary during natural convection melting of a horizontal layer of ice by an overlying pool of salt solution were studied experimentally. A cathetometer which amplifies the interface region was used to measure the ice melting rate. Also measured were the temperature transients of the liquid pool. Within the temperature and the density ratio ranges explored, the ice melting rate was found to be very sensitive to the ratio of pool-to-ice melt density but independent of pool-to-ice temperature difference. By varying the density ratio, three different flow regimes and morphologies of the solid-liquid interface were observed, with melt streamers emanating from the crests of the wavy interface into the pool in all three cases. The measured wavelengths (spacing) between the streamers for four different pairs of materials were correlated with the density ratio and found to agree favorably with the predictions of Taylor instability theory.

  16. Radial segregation induced by natural convection and melt/solid interface shape in vertical Bridgman growth

    NASA Technical Reports Server (NTRS)

    Chang, C. J.; Brown, R. A.

    1983-01-01

    The roles of natural convection in the melt and the shape of the melt/solid interface on radial dopant segregation are analyzed for a prototype of vertical Bridgman crystal growth system by finite element methods that solve simultaneously for the velocity field in the melt, the shape of the solidification isotherm, and the temperature distribution in both phases. Results are presented for crystal and melt with thermophysical properties similar to those of gallium-doped germanium in Bridgman configurations with melt below (thermally destabilizing) and above (stabilizing) the crystal. Steady axisymmetric flow are classified according to Rayleigh number as either being nearly the growth velocity, having a weak cellular structure or having large amplitude cellular convention. The flows in the two Bridgman configurations are driven by different temperature gradients and are in opposite directions. Finite element calculations for the transport of a dilute dopant by these flow fields reveal radial segregation levels as large as sixty percent of the mean concentration. Segregation is found most severe at an intermediate value of Rayleigh number above which the dopant distribution along the interface levels as the intensity of the flow increases.

  17. Natural convection inside a porous trapezoidal enclosure with wavy top surface

    NASA Astrophysics Data System (ADS)

    Eshon, Sehrina Muzahid; Mustafa, Rakib; Hasan, Mohammad Nasim

    2016-07-01

    The aim of the present work is analysis of heat flow during natural convection inside a trapezoidal porous cavity having wavy top surface. The bottom wall of the cavity is sinusoidally heated whereas the top wall is kept at constant low temperature and the side walls are maintained adiabatic. The physical problem has been represented mathematically by various governing equations along with the corresponding boundary conditions and hence solved by using Galerkin Finite Element scheme. Numerical simulations were carried out and the flow and thermal fields inside the cavity were analyzed in terms of distribution of isothermal lines (θ), streamlines (ψ) and heatlines (Π). To compare heat transfer characteristics local Nusselt number (Nu), and average Nusselt number (Nuavg) along the hot bottom wall are studied for various system parameters, such as, Rayleigh number (Ra) and Darcy number (Da). The range of Ra, Da considered in the present study are as follows; 104 ≤ Ra ≤ 106, 10-5 ≤ Da ≤ 10-3. The present study has been conducted for the trapezoidal cavity being filled with two different types of fluids; water (Pr = 7.2), and molten gallium (Pr = 0.026). It has been found that an increase in flow intensity and heat transfer occurs at higher Rayleigh number (Ra) and Darcy number (Da) whereas the effect of Prandtl number (Pr) is somewhat negligible.

  18. Experimental study of the steady natural convection in a horizontal annulus with irregular boundaries

    SciTech Connect

    Boyd, R.D.

    1980-01-01

    The natural convective heat transfer across an annulus with irregular boundaries was studied using a Mach-Zehnder interferometer. The annulus was formed by an inner hexagonal cylinder and an outer concentric circular cylinder. This configuration models, in two dimensions, a liquid metal fast breeder reactor spent fuel subassembly inside a shipping container. During the test, the annulus was filled with a single gas, either neon, air, argon, krypton, or xenon, at a pressure of about 0.5 MPa. From temperature measurements, both local and mean Nusselt numbers (Nu/sub ..delta../) at the surface of the inner cylinder were evaluated, with the mean Rayleigh number (anti Ra/sub ..delta../) varying from 4.54 x 10/sup 4/ to 0.915 x 10/sup 6/ (..delta.. is the local gas width). The data correlation for the mean Nusselt and Rayleigh numbers is given by anti Nu/sub ..delta../ = 0.183 anti Ra/sub ..delta..//sup 0/ /sup 310/.

  19. Natural convection heat transfer from a horizontal wavy surface in a porous enclosure

    SciTech Connect

    Murthy, P.V.S.N.; Kumar, B.V.R.; Singh, P.

    1997-02-07

    The effect of surface undulations on the natural convection heat transfer from an isothermal surface in a Darcian fluid-saturated porous enclosure has been numerically analyzed using the finite element method on a graded nonuniform mesh system. The flow-driving Rayleigh number Ra together with the geometrical parameters of wave amplitude a, wave phase {phi}, and the number of waves N considered in the horizontal dimension of the cavity are found to influence the flow and heat transfer process in the enclosure. For Ra around 50 and above, the phenomenon of flow separation and reattachment is noticed on the walls of the enclosure. A periodic shift in the reattachment point from the bottom wall to the adjacent walls in the clockwise direction, leading to the manifestation of cycles of unicellular and bicellular clockwise and counterclockwise flows, is observed, with the phase varying between 0{degree} and 350{degree}. The counterflow in the secondary circulation zone is intensified with the increase in the value of Ra. The counterflow on the wavy wall hinders the heat transfer into the system. An increase in either wave amplitude or the number of waves considered per unit length decreases the global heat flux into the system. Only marginal changes in global heat flux are noticed with increasing Ra. On the whole, the comparison of global heat flux results in the wavy wall case with those of the horizontal flat wall case shows that, in a porous enclosure, the wavy wall reduces the heat transfer into the system.

  20. Natural Convection in a Differentially Heated Square Enclosure with a Solid Polygon

    PubMed Central

    Roslan, R.; Saleh, H.; Hashim, I.

    2014-01-01

    The aim of the present numerical study is to analyze the conjugate natural convection heat transfer in a differentially heated square enclosure containing a conductive polygon object. The left wall is heated and the right wall is cooled, while the horizontal walls are kept adiabatic. The COMSOL Multiphysics software is applied to solve the dimensionless governing equations. The governing parameters considered are the polygon type, 3 ≤ N ≤ ∞, the horizontal position, 0.25 ≤ X 0 ≤ 0.75, the polygon size, 0 ≤ A ≤ π/16, the thermal conductivity ratio, 0.1 ≤ K r ≤ 10.0, and the Rayleigh number, 103 ≤ Ra ≤ 106. The critical size of the solid polygon was found exists at low conductivities. The heat transfer rate increases with the increase of the size of the solid polygon, until it reaches its maximum value. Here, the size of the solid polygon is reaches its critical value. Further, beyond this critical size of the solid polygon, will decrease the heat transfer rate. PMID:24991643

  1. Temperature-Programmed Natural Convection for Micromixing and Biochemical Reaction in a Single Microfluidic Chamber

    PubMed Central

    Kim, Sung-Jin; Wang, Fang; Burns, Mark A.; Kurabayashi, Katsuo

    2009-01-01

    Micromixing is a crucial step for biochemical reactions in microfluidic networks. A critical challenge is that the system containing micromixers needs numerous pumps, chambers, and channels not only for the micromixing but also for the biochemical reactions and detections. Thus, a simple and compatible design of the micromixer element for the system is essential. Here, we propose a simple, yet effective, scheme that enables micromixing and a biochemical reaction in a single microfluidic chamber without using any pumps. We accomplish this process by using natural convection in conjunction with alternating heating of two heaters for efficient micromixing, and by regulating capillarity for sample transport. As a model application, we demonstrate micromixing and subsequent polymerase chain reaction (PCR) for an influenza viral DNA fragment. This process is achieved in a platform of a microfluidic cartridge and a microfabricated heating-instrument with a fast thermal response. Our results will significantly simplify micromixing and a subsequent biochemical reaction that involves reagent heating in microfluidic networks. PMID:19419189

  2. Numerical modeling of a lead melting front under the influence of natural convection

    NASA Astrophysics Data System (ADS)

    Coulson, Ryan

    This work presents a study of the Effective Heat Capacity (EHC) method applied to the numerical simulation of the interface between a solid and a naturally convecting pool of liquid lead under pseudo-steady-state and transient conditions using COMSOL Multiphysics. The EHC method is implemented as a temperature dependent pseudo-material with discontinuities in the heat capacity, dynamic viscosity, and thermal conductivity to simulate the melting front. The approach is validated with experimental data for a vertical melting front between two walls. The hot wall heat flux and the cold wall temperature are adjusted until the numerical model that best matches the experimental data is found. The best case boundary conditions then serve as the control in subsequent studies of key modeling parameters, including the mesh refinement, the discontinuity width and location, the maximum allowable time step, and the jump in dynamic viscosity. An extra fine mesh with a maximum element size of 1.24 * 10--3 m2 results in the most accurate model. For pseudo-steady-state models the width and location of the discontinuity does not affect the results substantially but it does affect the settling times and transient behavior of the models. The maximum allowable time step is dependent on the mesh resolution. The behavior of the pseudo-solid transitions from solid to liquid when the dynamic viscosity is less then 1.0 * 104 Pa · s.

  3. Study of natural convection cooling of a nanofluid subjected to a magnetic field

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Ahmed; Mejri, Imen; Omri, Ahmed

    2016-06-01

    This paper presents a numerical study of natural convection cooling of water-Al2O3 nanofluid by two heat sinks vertically attached to the horizontal walls of a cavity subjected to a magnetic field. The left wall is hot, the right wall is cold, while the horizontal walls are insulated. Lattice Boltzmann method (LBM) is applied to solve the coupled equations of flow and temperature fields. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number of the base fluid, Ra =103 to 105, Hartmann number varied from Ha = 0 to 60 and the solid volume fraction of nanoparticles between ϕ = 0 and 6%. In order to investigate the effect of heat sinks location, three different configurations of heat sinks are considered. The effects of Rayleigh numbers, Hartmann number and heat sinks location on the streamlines, isotherms, Nusselt number are investigated. Results show that the heat transfer rate decreases with the increase of Hartmann number and increases with the rise of Rayleigh number. In addition it is observed that the average Nusselt number increases linearly with the increase of the nanoparticles solid volume fraction. Also, results show that the heat sinks positions greatly influence the heat transfer rate depending on the Hartmann number, Rayleigh number and nanoparticle solid volume fraction.

  4. Natural convection from a heat source in a top-vented enclosure

    SciTech Connect

    Myrum, T.A. )

    1990-08-01

    Natural convection from a heated disk situated at the bottom of a top-vented enclosure was studied experimentally. The experiments were performed in water (Pr {congruent} 5) for parametric variations of the vent opening size, inner enclosure height, and disk-to-enclosure-wall temperature difference (Rayleigh number). For comparison purposes, baseline data were obtained for an unvented enclosure and for the infinite case (no enclosure). The heat transfer data were supplemented by cross-vent temperature measurements and by flow visualization using the thymol-blue electrochemical technique. The experiments demonstrated that, for the range of parameters considered, the average Nusselt numbers could be correlate using a single correlation to within 8%. It was also found that the presence of the enclosure (vented or unvented) acted to reduce the Nusselt number, especially at the lower Rayleigh numbers. Flow visualization experiments revealed an unstable flow pattern in the vicinity of the vent that fluctuated in a nonperiodic manner between four basic modes. Temperature measurements revealed asymmetric mean cross-vent temperature profiles, with the mean temperature level increasing with decreasing vent size. The intensity of the temperature fluctuations in the vent opening also increased with decreasing vent size.

  5. CFD Calculation of Internal Natural Convection in the Annulus between Horizontal Concentric Cylinders

    SciTech Connect

    N.D. Francis, Jr; M.T. Itamura; S.W. Webb; D.L. James

    2002-10-01

    The objective of this heat transfer and fluid flow study is to assess the ability of a computational fluid dynamics (CFD) code to reproduce the experimental results, numerical simulation results, and heat transfer correlation equations developed in the literature for natural convection heat transfer within the annulus of horizontal concentric cylinders. In the literature, a variety of heat transfer expressions have been developed to compute average equivalent thermal conductivities. However, the expressions have been primarily developed for very small inner and outer cylinder radii and gap-widths. In this comparative study, interest is primarily focused on large gap widths (on the order of half meter or greater) and large radius ratios. From the steady-state CFD analysis it is found that the concentric cylinder models for the larger geometries compare favorably to the results of the Kuehn and Goldstein correlations in the Rayleigh number range of about 10{sup 5} to 10{sup 8} (a range that encompasses the laminar to turbulent transition). For Rayleigh numbers greater than 10{sup 8}, both numerical simulations and experimental data (from the literature) are consistent and result in slightly lower equivalent thermal conductivities than those obtained from the Kuehn and Goldstein correlations.

  6. Natural convection in power-law fluids from two square cylinders in tandem arrangement at moderate Grashof numbers

    NASA Astrophysics Data System (ADS)

    Shyam, Radhe; Chhabra, R. P.

    2013-06-01

    In this work, free convective flow and heat transfer in power-law fluids from two heated square cylinders in tandem arrangement is studied. The governing differential equations have been solved numerically over wide ranges of Grashof number, 10 ≤ Gr ≤ 1,000, Prandtl number, 0.71 ≤ Pr ≤ 50 and power-law index, 0.4 ≤ n ≤ 1.8. In order to elucidate the extent of inter-cylinder interaction, the non-dimensional inter-cylinder spacing, L/d is varied in the range, 2 ≤ L/d ≤ 6. The results are interpreted in terms of streamline and isotherm contours in the proximity of two cylinders to gain physical insights into the nature of flow. At the next level, the distribution of the local Nusselt number along the surface of the cylinders is presented. At the minimum inter-cylinder spacing due to the intense interference, the downstream cylinder contributes much less to the overall heat transfer whereas it experiences much higher hydrodynamic drag than the upstream cylinder. Broadly, the local and average Nusselt number for both cylinders show a positive dependence on both Grashof and Prandtl numbers. Also, all else being equal, shear-thinning fluid behaviour promotes the rate of heat transfer and shear-thickening fluid behaviour impedes it. Finally, the present numerical results have been correlated by using simple forms of equations thereby enabling the estimation of Nusselt number in a new application.

  7. Development and validation of a new LBM-MRT hybrid model with enthalpy formulation for melting with natural convection

    NASA Astrophysics Data System (ADS)

    Miranda Fuentes, Johann; Kuznik, Frédéric; Johannes, Kévyn; Virgone, Joseph

    2014-01-01

    This article presents a new model to simulate melting with natural convection of a phase change material. For the phase change problem, the enthalpy formulation is used. Energy equation is solved by a finite difference method, whereas the fluid flow is solved by the multiple relaxation time (MRT) lattice Boltzmann method. The model is first verified and validated using the data from the literature. Then, the model is applied to a tall brick filled with a fatty acid eutectic mixture and the results are presented. The main results are (1) the spatial convergence rate is of second order, (2) the new model is validated against data from the literature and (3) the natural convection plays an important role in the melting process of the fatty acid mixture considered in our work.

  8. Spatial Durbin model analysis macroeconomic loss due to natural disasters

    NASA Astrophysics Data System (ADS)

    Kusrini, D. E.; Mukhtasor

    2015-03-01

    Magnitude of the damage and losses caused by natural disasters is huge for Indonesia, therefore this study aimed to analyze the effects of natural disasters for macroeconomic losses that occurred in 115 cities/districts across Java during 2012. Based on the results of previous studies it is suspected that it contains effects of spatial dependencies in this case, so that the completion of this case is performed using a regression approach to the area, namely Analysis of Spatial Durbin Model (SDM). The obtained significant predictor variable is population, and predictor variable with a significant weighting is the number of occurrences of disasters, i.e., disasters in the region which have an impact on other neighboring regions. Moran's I index value using the weighted Queen Contiguity also showed significant results, meaning that the incidence of disasters in the region will decrease the value of GDP in other.

  9. The halt of deep convection in the Greenland Sea: A natural experiment for the study of their causes and effects.

    NASA Astrophysics Data System (ADS)

    Somavilla Cabrillo, Raquel; Schauer, Ursula; Budeus, Gedeon; Latarius, Katrin

    2015-04-01

    There are only a few sites where the deep ocean is ventilated from the surface. The responsible process known as deep convection is recognized to be a key process on the Earth's climate system, but still it is scarcely observed, and its good representation by global oceanographic and climate models remains unclear. In the Arctic Ocean, the halt of deep convection in the Greenland Sea during the last three decades serves as a natural experiment to study: (1) the conditions that drive the occurrence or not of deep convection and (2) the effects of the halt of deep convection on the thermohaline properties of the deep water masses and circulation both locally and in adjacent ocean basins. Combining oceanic and atmospheric in-situ data together with reanalysis data, we observe that not only on average the winter net heat losses from the ocean to the atmosphere (Qo) have decreased during the last three decades in the Greenland Sea (ΔQo (before the 1980s- after the 1980s) = 25 Wm-2) but the intensity and number of strong cooling events (Qo ≥ 800Wm-2). This last value for convection reaching 2000 m in the Greenland Sea seems critical to make the mixed layer deepening from being a non-penetrative process to one arrested by baroclinic instabilities. Besides, changes in the wind stress curl and preconditioning for deep convection have occurred, hindering also the occurrence of deep convection. Concerning the effects of the halt of deep convection, hydrographic data reveal that the temperature between 2000 meters depth and the sea floor has risen by 0.3 °C in the last 30 years, which is ten times higher than the temperature increase in the global ocean on average, and salinity rose by 0.02 because import of relatively warm and salty Arctic Ocean deep waters continued. The necessary transports to explain the observed changes suggest an increase of Arctic Ocean deep water transport that would have compensated the decrease in deep water formation rate after the 1980s. The

  10. Supersonic Jet Mixing Enhancement due to Natural and Induced Screech

    NASA Technical Reports Server (NTRS)

    Rice, E. J.; Raman, G.

    1999-01-01

    Outline of presentation are: (1) Review of experimental apparatus. (2) Effect of natural screech of jet mixing; converging nozzle, underexpanded jet and converging-diverging nozzle, design pressure.(3) Effect of induced screech on jet mixing: produced by paddles in shear layers, similar to edge tones, and converging-diverging nozzle, design pressure. (4) Effect of paddles on near-field jet noise. and (5) Concluding remarks.

  11. Specific differential phase observations of multicell convection during natural and triggered lightning strikes at the International Center for Lightning Research and Testing

    NASA Astrophysics Data System (ADS)

    Hyland, P.; Biggerstaff, M. I.; Uman, M. A.; Hill, J. D.; Krehbiel, P. R.; Rison, W.

    2012-12-01

    During the summers of 2011-2012, a C-band polarimetric Shared Mobile Atmospheric Research and Teaching (SMART) radar from the University of Oklahoma was deployed to Keystone Heights, FL to study the relationship between cloud structure and the propagation of triggered and natural lightning channels. The radar was operated in Range-Height-Indicator (RHI) volume scanning mode over a narrow azimuthal sector that provided high spatial vertical resolution every 90 seconds over the rocket launch facility at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, FL. In this presentation, we will focus on observations collected in 2011. Seven successful triggers (with return strokes) out of 20 attempts were sampled by the SMART-R from June to August. Most of the trigger attempts occurred during the dissipating stages of convection with steady ground electric field values. Specific differential phase (KDP) showed evidence of ice crystal alignment due to strong electric fields within the upper portions of the convection over ICLRT around the time of launch attempts. Consecutive RHI sweeps over ICLRT revealed changes in KDP that suggested the building of electric fields and subsequent relaxation after a triggered flash. KDP signatures relative to other radar variables will also be investigated to determine the microphysical and convective nature of the storms in which natural and triggered lightning strikes occurred. Lightning Mapping Array (LMA) sources of the triggered flash channels showed a preference for horizontal propagation just above the radar bright band associated with the melting layer. This finding agrees with several past studies that used balloon soundings and found intense layers of charge near the 0°C isotherm. The propagation path also seemed to be related to the vertical distribution of KDP in some of the triggered flashes. A preferred path through areas of generally positive values of KDP suggests that triggered lightning

  12. Geohazards due to technologically enhanced natural radioactive wastes

    NASA Astrophysics Data System (ADS)

    Steinhäusler, Friedrich

    2010-10-01

    Human activities can modify naturally occurring radioactive material (NORM) into technologically enhanced naturally occurring radioactive material (TENORM) as a result of industrial activities. Most of these industries do not intend to work with radioactive material a priori. However, whenever a uranium- or thorium-bearing mineral is exploited, NORM-containing by-products and TENORM-contaminated wastes are created. The industrial use of NORM can result in non-negligible radiation exposure of workers and members of the public, exceeding by far the radiation exposure from nuclear technologies. For decades, millions of tons of NORM have been released into the environment without adequate control or even with the lack of any control. Various technologies have been developed for the control of NORM wastes. The paper discusses the merits and limitations of different NORM-waste management techniques, such as Containment, Immobilization, Dilution/Dispersion, Natural Attenuation, Separation, and - as an alternative - Cleaner Technologies. Each of these methods requires a comprehensive risk-benefit-cost analysis.

  13. Natural Convection in a rotating multilayer spherical shell system with self gravity

    NASA Astrophysics Data System (ADS)

    Lira Rangel, Francisco Javier; Avila Rodriguez, Ruben; Cabello Gonzalez, Ares

    2015-11-01

    The onset of thermal convection in rotating multilayer spherical shells is investigated. Similar to the the terrestrial planets structure (core-mantle-ocean/atmosphere), the system is composed of three concentric shells. The first spherical gap has an aspect ratio equal to 0.35, the middle gap has an aspect ratio of 0.44 and the third gap has an aspect ratio equal to 0.8.The inner and the outer spherical gaps confine Boussinesq fluids while the middle spherical gap is treated as a thermal conductor solid. The investigation shows the Taylor and Rayleigh numbers that allows the onset of thermal convection in the two fluid gaps. Additionally the convective patterns, the temperature fields and the heat fluxes are presented in the most inner and outer spherical gaps. Convection is driven by the temperature difference between the most inner and outer spheres and a gravitational field which varies like 1 / r and 1 /r3 . The fluid equations are solved by using the spectral element method (SEM) and the mesh is generated by using the cubed-sphere algorithm to avoid the singularity at the poles. To the knowledge of the authors the convection-conduction-convection problem presented in this paper has not been investigated previously. This project is sponsored by PAPIIT DGAPA UNAM.

  14. Geometric aspect and buoyancy effects on nature convection flow in the complex annuli filled with micropolar fluids

    NASA Astrophysics Data System (ADS)

    Chen, Wen Ruey

    2015-11-01

    This paper studies the steady laminar natural convection of micropolar fluids in the complex annuli between the inner sphere and outer vertical cylinder to present a numerical analysis of the flow and heat transfer characteristics with buoyancy effects. Computations were carried out systematically by the several different parameters of geometric ratio, micropolar material parameter and Rayleigh number to determine the average Nusselt number and the skin friction coefficient on the flow and the thermal fields.

  15. Laminar natural convection heat transfer and air flow in three-dimensional cubic enclosures with a partially heated wall

    NASA Astrophysics Data System (ADS)

    Mellah, S.; Ben-Cheikh, N.; Ben-Beya, B.; Lili, T.

    2015-03-01

    In the present study, a finite volume computational procedure and a full multigrid technique are used to investigate laminar natural convection in partially heated cubic enclosures. Effects of heated strip disposition in the enclosure on the heat transfer rate are studied. Results are presented in the form of flow lines, isotherms plots, average Nusselt numbers, and average temperature on the heat source surface. Statistical distributions of temperature and average velocity fields and their root-mean-square values are presented and discussed.

  16. Analytical solution of steady natural convection in an annular porous medium evaluated with a symbolic algebra code

    SciTech Connect

    Mojtabi, A. ); Charrier-Mojtabi, M.C. )

    1992-11-01

    Natural convection flows in a cylindrical annular porous medium have been studied extensively over the last twenty years. The main results concern the two-dimensional steady state. Several techniques have been developed, such as the finite difference method (Caltagirone, 1976), the finite element method (Mojtabi et al., 1987), and the spectral method (Charrier-Mojtabi and Caltagirone, 1980; Rao et al., 1987; Himasekhar and Bau, 1988; Charrier-Mojtabi et al., 1991). 6 refs., 3 tabs.

  17. Transitional regimes of natural convection in a differentially heated cubical cavity under the effects of wall and molecular gas radiation

    SciTech Connect

    Soucasse, L.; Rivière, Ph.; Soufiani, A.; Xin, S.

    2014-02-15

    The transition to unsteadiness and the dynamics of weakly turbulent natural convection, coupled to wall or gas radiation in a differentially heated cubical cavity with adiabatic lateral walls, are studied numerically. The working fluid is air with small contents of water vapor and carbon dioxide whose infrared spectral radiative properties are modelled by the absorption distribution function model. A pseudo spectral Chebyshev collocation method is used to solve the flow field equations and is coupled to a direct ray tracing method for radiation transport. Flow structures are identified by means of either the proper orthogonal decomposition or the dynamic mode decomposition methods. We first retrieve the classical mechanism of transition to unsteadiness without radiation, characterized by counter-rotating streamwise-oriented vortices generated at the exit of the vertical boundary layers. Wall radiation through a transparent medium leads to a homogenization of lateral wall temperatures and the resulting transition mechanism is similar to that obtained with perfectly conducting lateral walls. The transition is due to an unstable stratification upstream the vertical boundary layers and is characterized by periodically oscillating transverse rolls of axis perpendicular to the main flow. When molecular gas radiation is accounted for, no periodic solution is found and the transition to unsteadiness displays complex structures with chimneys-like rolls whose axes are again parallel to the main flow. The origin of this instability is probably due to centrifugal forces, as suggested previously for the case without radiation. Above the transition to unsteadiness, at Ra = 3 × 10{sup 8}, it is shown that both wall and gas radiation significantly intensify turbulent fluctuations, decrease the thermal stratification in the core of the cavity, and increase the global circulation.

  18. The effect of heterogeneity on the character of density-driven natural convection of CO 2 overlying a brine layer

    NASA Astrophysics Data System (ADS)

    Farajzadeh, R.; Ranganathan, P.; Zitha, P. L. J.; Bruining, J.

    2011-03-01

    The efficiency of mixing in density-driven natural-convection is largely governed by the aquifer permeability, which is heterogeneous in practice. The character (fingering, stable mixing or channeling) of flow-driven mixing processes depends primarily on the permeability heterogeneity character of the aquifer, i.e., on its degree of permeability variance (Dykstra-Parsons coefficient) and the correlation length. Here we follow the ideas of Waggoner et al. (1992) [13] to identify different flow regimes of a density-driven natural convection flow by numerical simulation. Heterogeneous fields are generated with the spectral method of Shinozuka and Jan (1972) [13], because the method allows the use of power-law variograms. In this paper, we extended the classification of Waggoner et al. (1992) [13] for the natural convection phenomenon, which can be used as a tool in selecting optimal fields with maximum transfer rates of CO 2 into water. We observe from our simulations that the rate of mass transfer of CO 2 into water is higher for heterogeneous media.

  19. The study and development of the empirical correlations equation of natural convection heat transfer on vertical rectangular sub-channels

    NASA Astrophysics Data System (ADS)

    Kamajaya, Ketut; Umar, Efrizon; Sudjatmi, K. S.

    2012-06-01

    This study focused on natural convection heat transfer using a vertical rectangular sub-channel and water as the coolant fluid. To conduct this study has been made pipe heaters are equipped with thermocouples. Each heater is equipped with five thermocouples along the heating pipes. The diameter of each heater is 2.54 cm and 45 cm in length. The distance between the central heating and the pitch is 29.5 cm. Test equipment is equipped with a primary cooling system, a secondary cooling system and a heat exchanger. The purpose of this study is to obtain new empirical correlations equations of the vertical rectangular sub-channel, especially for the natural convection heat transfer within a bundle of vertical cylinders rectangular arrangement sub-channels. The empirical correlation equation can support the thermo-hydraulic analysis of research nuclear reactors that utilize cylindrical fuel rods, and also can be used in designing of baffle-free vertical shell and tube heat exchangers. The results of this study that the empirical correlation equations of natural convection heat transfer coefficients with rectangular arrangement is Nu = 6.3357 (Ra.Dh/x)0.0740.

  20. An evaluation of gas transfer velocity parameterizations during natural convection using DNS

    NASA Astrophysics Data System (ADS)

    Fredriksson, Sam T.; Arneborg, Lars; Nilsson, Hâkan; Zhang, Qi; Handler, Robert A.

    2016-02-01

    Direct numerical simulations (DNS) of free surface flows driven by natural convection are used to evaluate different methods of estimating air-water gas exchange at no-wind conditions. These methods estimate the transfer velocity as a function of either the horizontal flow divergence at the surface, the turbulent kinetic energy dissipation beneath the surface, the heat flux through the surface, or the wind speed above the surface. The gas transfer is modeled via a passive scalar. The Schmidt number dependence is studied for Schmidt numbers of 7, 150 and 600. The methods using divergence, dissipation and heat flux estimate the transfer velocity well for a range of varying surface heat flux values, and domain depths. The two evaluated empirical methods using wind (in the limit of no wind) give reasonable estimates of the transfer velocity, depending however on the surface heat flux and surfactant saturation. The transfer velocity is shown to be well represented by the expression, ks=A |Bν|1/4 Sc-n, where A is a constant, B is the buoyancy flux, ν is the kinematic viscosity, Sc is the Schmidt number, and the exponent n depends on the water surface characteristics. The results suggest that A=0.39 and n≈1/2 and n≈2/3 for slip and no-slip boundary conditions at the surface, respectively. It is further shown that slip and no-slip boundary conditions predict the heat transfer velocity corresponding to the limits of clean and highly surfactant contaminated surfaces, respectively. This article was corrected on 22 MAR 2016. See the end of the full text for details.

  1. Multiple Solutions in Natural Convection in an Air Filled Square Enclosure: Fractal Dimension of Attractors

    NASA Astrophysics Data System (ADS)

    Aklouche Benouaguef, S.; Zeghmati, B.; Bouhadef, K.; Daguenet, M.

    In this study, we investigated numerically the transient natural convection in a square cavity with two horizontal adiabatic sides and vertical walls composed of two regions of same size maintained at different temperatures. The flow has been assumed to be laminar and bi-dimensional. The governing equations written in dimensionless form and expressed in terms of stream function and vorticity, have been solved using the Alternating Direction Implicit (ADI) method and the GAUSS elimination method. Calculations were performed for air (Pr = 0.71), with a Rayleigh number varying from 2.5x105 to 3.7x106. We analysed the effect of the Rayleigh number on the route to the chaos of the system. The first transition has been found from steady-state to oscillatory flow and the second is a subharmonic bifurcation as the Rayleigh number is increased further. For sufficiently small Rayleigh numbers, present results show that the flow is characterized by four cells with horizontal and vertical symmetric axes. The attractor bifurcates from a stable fixed point to a limit cycle for a Rayleigh number varying from 2.5x105 to 2.51x105. A limit cycle settles from Ra = 3x105 and persists until Ra = 5x105. At a Rayleigh number of 2.5x105 the temporal evolution of the Nusselt number Nu(t) was stationary. As the Rayleigh number increases, the flow becomes unstable and bifurcates to a time periodic solution at a critical Rayleigh number between 2.5x105 and 2.51x105. After the first HOPF bifurcation at Ra = 2.51x105, the oscillatory flow undergoes several bifurcations and ultimately evolves into a chaotic flow.

  2. Convective radial energy flux due to resonant magnetic perturbations and magnetic curvature at the tokamak plasma edge

    SciTech Connect

    Marcus, F. A.; Beyer, P.; Fuhr, G.; Monnier, A.; Benkadda, S.

    2014-08-15

    With the resonant magnetic perturbations (RMPs) consolidating as an important tool to control the transport barrier relaxation, the mechanism on how they work is still a subject to be clearly understood. In this work, we investigate the equilibrium states in the presence of RMPs for a reduced MHD model using 3D electromagnetic fluid numerical code with a single harmonic RMP (single magnetic island chain) and multiple harmonics RMPs in cylindrical and toroidal geometry. Two different equilibrium states were found in the presence of the RMPs with different characteristics for each of the geometries used. For the cylindrical geometry in the presence of a single RMP, the equilibrium state is characterized by a strong convective radial thermal flux and the generation of a mean poloidal velocity shear. In contrast, for toroidal geometry, the thermal flux is dominated by the magnetic flutter. For multiple RMPs, the high amplitude of the convective flux and poloidal rotation are basically the same in cylindrical geometry, but in toroidal geometry the convective thermal flux and the poloidal rotation appear only with the islands overlapping of the linear coupling between neighbouring poloidal wavenumbers m, m – 1, and m + 1.

  3. Evolutionary stasis in pollen morphogenesis due to natural selection.

    PubMed

    Matamoro-Vidal, Alexis; Prieu, Charlotte; Furness, Carol A; Albert, Béatrice; Gouyon, Pierre-Henri

    2016-01-01

    The contribution of developmental constraints and selective forces to the determination of evolutionary patterns is an important and unsolved question. We test whether the long-term evolutionary stasis observed for pollen morphogenesis (microsporogenesis) in eudicots is due to developmental constraints or to selection on a morphological trait shaped by microsporogenesis: the equatorial aperture pattern. Most eudicots have three equatorial apertures but several taxa have independently lost the equatorial pattern and have microsporogenesis decoupled from aperture pattern determination. If selection on the equatorial pattern limits variation, we expect to see increased variation in microsporogenesis in the nonequatorial clades. Variation of microsporogenesis was studied using phylogenetic comparative analyses in 83 species dispersed throughout eudicots including species with and without equatorial apertures. The species that have lost the equatorial pattern have highly variable microsporogenesis at the intra-individual and inter-specific levels regardless of their pollen morphology, whereas microsporogenesis remains stable in species with the equatorial pattern. The observed burst of variation upon loss of equatorial apertures shows that there are no strong developmental constraints precluding variation in microsporogenesis, and that the stasis is likely to be due principally to selective pressure acting on pollen morphogenesis because of its implication in the determination of the equatorial aperture pattern. PMID:26248868

  4. Natural frequency changes due to damage in composite beams

    NASA Astrophysics Data System (ADS)

    Negru, I.; Gillich, G. R.; Praisach, Z. I.; Tufoi, M.; Gillich, N.

    2015-07-01

    Transversal cracks in structures affect their stiffness as well as the natural frequency values. This paper presents a research performed to find the way how frequencies of sandwich beams change by the occurrence of damage. The influence of the locally stored energy, for ten transverse vibration modes, on the frequency shifts is derived from a study regarding the effect of stiffness decrease, realized by means of the finite element analysis. The relation between the local value of the bending moment and the frequency drop is exemplified by a concrete case. It is demonstrated that a reference curve representing the damage severity exists whence any frequency shift is derivable in respect to damage depth and location. This curve is obtained, for isotropic and multi-layer beams as well, from the stored energy (i.e. stiffness decrease), and is similar to that attained using the stress intensity factor in fracture mechanics. Also, it is proved that, for a given crack, irrespective to its depth, the frequency drop ratio of any two transverse modes is similar. This permitted separating the effect of damage location from that of its severity and to define a Damage Location Indicator as a sequence of squared of the normalized mode shape curvatures.

  5. The nature and geochemical role of density convection in the East European evaporite basin

    NASA Astrophysics Data System (ADS)

    Popov, V. G.; Abdrakhmanov, R. F.; Puchkov, V. N.

    2015-09-01

    The role of the gravitation factor in the formation of the hydrostratisphere in the East European evaporate basin is considered. The features of Paleozoic sedimentation are characterized, as are the mechanism and litho-hydrogeochemical effects of the density concentration convection of mother brines of the Low-Permian salt-bearing basin to the underlying terrigenous-carbonate Paleozoic and Proterozoic layers. It is shown that the convection processes resulted in the formation of multicomponent calcium chloride brines prevailing in the sedimentary layer of the basis; they also caused the metasomatic dolomitization of limestones with growth of their filtration capacity.

  6. Porous media flow problems: natural convection and one-dimensional flow of a non-Newtonian fluid

    SciTech Connect

    Walker, K.L.

    1980-01-01

    Two fluid problems in porous media are studied: natural convection of a Newtonian fluid and one-dimensional flow of a non-Newtonian fluid. Convection in a rectangular porous cavity driven by heating in the horizontal is analyzed by a number of different techniques which yield a fairly complete description of the 2-dimensional solutions. The solutions are governed by 2 dimensionless parameters: the Darcy-Rayleigh number R and cavity aspect ratio A. The flow behavior of a dilute solution of polyacrylamide in corn syrup flowing through porous media also is studied. Measurements of the pressure drop and flow rate are made for the solution flowing through a packed bed of glass beads. At low velocities the pressure drop as a function of velocity is the same as that for a Newtonian fluid of equal viscosity. At higher flow rates the non-Newtonian fluid exhibited significantly higher pressure drops than a Newtonian fluid.

  7. Performance Analysis and Parametric Study of a Natural Convection Solar Air Heater With In-built Oil Storage

    NASA Astrophysics Data System (ADS)

    Dhote, Yogesh; Thombre, Shashikant

    2016-05-01

    This paper presents the thermal performance of the proposed double flow natural convection solar air heater with in-built liquid (oil) sensible heat storage. Unused engine oil was used as thermal energy storage medium due to its good heat retaining capacity even at high temperatures without evaporation. The performance evaluation was carried out for a day of the month March for the climatic conditions of Nagpur (India). A self reliant computational model was developed using computational tool as C++. The program developed was self reliant and compute the performance parameters for any day of the year and would be used for major cities in India. The effect of change in storage oil quantity and the inclination (tilt angle) on the overall efficiency of the solar air heater was studied. The performance was tested initially at different storage oil quantities as 25, 50, 75 and 100 l for a plate spacing of 0.04 m with an inclination of 36o. It has been found that the solar air heater gives the best performance at a storage oil quantity of 50 l. The performance of the proposed solar air heater is further tested for various combinations of storage oil quantity (50, 75 and 100 l) and the inclination (0o, 15o, 30o, 45o, 60o, 75o, 90o). It has been found that the proposed solar air heater with in-built oil storage shows its best performance for the combination of 50 l storage oil quantity and 60o inclination. Finally the results of the parametric study was also presented in the form of graphs carried out for a fixed storage oil quantity of 25 l, plate spacing of 0.03 m and at an inclination of 36o to study the behaviour of various heat transfer and fluid flow parameters of the solar air heater.

  8. Nature of Convective Instabilities in Explosive Volcanic Clouds Inferred by Analog Experiments

    NASA Astrophysics Data System (ADS)

    Carazzo, G.; Jellinek, M.

    2009-12-01

    Understanding the mechanisms controlling the dynamics of a volcanic cloud generated by the rise and spread of an explosive eruption is a central issue in volcanology for the assessment of associated hazards. The last decades have seen the development of sophisticated numerical simulations and particle-tracking models with the aim of better understanding and forecasting the transport and sedimentation of the solid fraction in the cloud. In these models, the lateral spreading of an umbrella cloud is strongly influenced by stratospheric winds and its loss of mass with time is assumed be controlled by the opposing effects of particles settling and turbulent diffusion. However, recent observations suggest that additional spatially complex and time-dependent phenomena may govern the dynamics in a volcanic cloud. Here we investigate the mechanisms governing the lateral transport and residence time of ash in the atmosphere using analog experiments. In these experiments, a mixture of small particles and fresh water is injected upwards at a fixed rate into a chamber containing a salt water layer beneath a fresh water layer. Our results show that the formation of a thin particle-rich layer at the base of the cloud (a particle boundary layer) can dramatically modify its dynamics and lead to a variety of behaviors not detected previously. Depending on the conditions imposed at the source and on the magnitude of the density gradient in the environment, the cloud may either break up into discrete layers or release material as dense batches of particle-laden fluid. In natural eruptions the formation of this dense layer is found to be mainly controlled by the grain size distribution and to a lesser extent the altitude reached by the plume. An exhaustive review of field data available in the literature suggests that several past eruptions meet the required conditions to form a particle boundary layer. This study shows that large convective instabilities induced by the presence of a

  9. Eulerian-Lagrangian solution of the convection-dispersion equation in natural co-ordinates.

    USGS Publications Warehouse

    Cheng, R.T.; Casulli, V.; Milford, S.N.

    1984-01-01

    The vast majority of numerical investigations of transport phenomena use an Eulerian formulation for the convenience that the computational grids are fixed in space. An Eulerian-Lagrangian method (ELM) of solution for the convection-dispersion equation is discussed and analyzed. The ELM uses the Lagrangian concept in an Eulerian computational grid system.-from Authors

  10. Dynamical consequences on fast subducting slabs from a self-regulating mechanism due to viscous heating in variable viscosity convection

    NASA Technical Reports Server (NTRS)

    Larsen, Tine B.; Yuen, David A.; Malevsky, Andrei V.

    1995-01-01

    We have studied 2-D time-dependent convection for a rheology which is both non-Newtonian and temperature-dependent. Strong effects associated with viscous heating are found in the downwelling sheets, which are heated on both sides with an intensity around O(100) times the chondritic value. The magnitude of viscous heating increases strongly with the subduction speed. The slab interior is weakened by viscous heating and slab breakoff then takes place. This process provides a self-regulating mechanism for governing the speed of intact slabs able to reach the deep mantle. Timescales associated with viscous heating are quite short, a few million years. Internal heating by radioactivity decreases the amount of shear heating.

  11. Studies of heat-source driven natural convection: A numerical investigation

    NASA Technical Reports Server (NTRS)

    Emara, A. A.; Kulacki, F. A.

    1977-01-01

    Thermal convection driven by uniform volumetric energy sources was studied in a horizontal fluid layer bounded from above by a rigid, isothermal surface and from below by a rigid, zero heat-flux surface. The side walls of the fluid domain were assumed to be rigid and perfectly insulating. The computations were formally restricted to two-dimensional laminar convection but were carried out for a range of Rayleigh numbers which spans the regimes of laminar and turbulent flow. The results of the computations consists of streamline and isotherm patterns, horizontally averaged temperature distributions, and horizontally averaged Nusselt numbers at the upper surface. Flow and temperature fields do not exhibit a steady state, but horizontally averaged Nusselt numbers reach limiting, quasi-steady values for all Rayleigh numbers considered. Correlations of the Nusselt number in terms of the Rayleigh and Prandtl numbers were determined.

  12. On the episodic nature of derecho-producing convective systems in the United States

    NASA Astrophysics Data System (ADS)

    Ashley, Walker S.; Mote, Thomas L.; Bentley, Mace L.

    2005-11-01

    Convectively generated windstorms occur over broad temporal and spatial scales; however, one of the larger-scale and most intense of these windstorms has been given the name derecho. This study illustrates the tendency for derecho-producing mesoscale convective systems to group together across the United States - forming a derecho series. The derecho series is recognized as any succession of derechos that develop within a similar synoptic environment with no more than 72 h separating individual events. A derecho dataset for the period 1994-2003 was assembled to investigate the groupings of these extremely damaging convective wind events. Results indicate that over 62% of the derechos in the dataset were members of a derecho series. On average, nearly six series affected the United States annually. Most derecho series consisted of two or three events; though, 14 series during the period of record contained four or more events. Two separate series involved nine derechos within a period of nine days. Analyses reveal that derecho series largely frequent regions of the Midwest, Ohio Valley, and the south-central Great Plains during May, June, and July. Results suggest that once a derecho occurred during May, June, or July, there was a 58% chance that this event was the first of a series of two or more, and about a 46% chance that this was the first of a derecho series consisting of three or more events. The derecho series climatology reveals that forecasters in regions frequented by derechos should be prepared for the probable regeneration of a derecho-producing convective system after an initial event occurs. Copyright

  13. The nature of symmetric instability and its similarity to convective and inertial instability

    NASA Technical Reports Server (NTRS)

    Xu, Q.; Clark, J. H. E.

    1985-01-01

    It is shown that there exists a local similarity among SI (Symmetric Instability), BI (Buoyancy or Convective Instability), and II (Inertial Instability) even for fully nonlinear viscous motion. The most unstable slope angles for SI and Moist SI motions are analyzed based on parcel energetics. These considerations also suggest qualitatively that CSI (Conditional SI) circulations will be slantwise and lie between the moist most unstable slope and dry least stable slope of the basic state.

  14. Three-dimensional natural convection of a fluid with temperature-dependent viscosity in an enclosure with localized heating

    SciTech Connect

    Torczynski, J.R.; Henderson, J.A.; O`Hern, T.J.; Chu, T.Y.; Blanchat, T.K.

    1994-01-01

    Three-dimensional natural convection of a fluid in an enclosure is examined. The geometry is motivated by a possible magmaenergy extraction system, and the fluid is a magma simulant and has a highly temperature-dependent viscosity. Flow simulations are performed for enclosures with and without a cylinder, which represents the extractor, using the finite-element code FIDAP (Fluid Dynamics International). The presence of the cylinder completely alters the flow pattern. Flow-visualization and PIV experiments are in qualitative agreement wit the simulations.

  15. Film boiling heat transfer from a sphere in natural and forced convection of freon-113

    SciTech Connect

    Dix, D.; Orozco, J. )

    1990-01-01

    Boiling heat transfer fluxes were measured on a 3.84-cm hollow copper sphere, in both forced convection and pool boiling, as a function of angular position in Freon 113. This paper reports on forced-convection tests run at speeds of 0.5 to 1.9 m/s. These tests were conducted in the stable film boiling region of the boiling curve. Significant heat transfer rates were measured in the vapor wake region of the sphere for flow film boiling. Video observations of the boiling process revealed that the flow film boiling vapor removal mechanism consisted of periodic formation and detachment of a vapor wake in the rear of the sphere. For pool boiling it was found that the heated surface had a uniform rate of energy dissipation in the stable film boiling regime, whereas in forced convection the film boiling rate was dependent on angular position. Pool film boiling tests also showed multiple humps (more than one maximum heat flux) in the boiling curve when the liquid was subcooled.

  16. Emissivity measurements in support of experiments on natural convection between a vertical cylinder and a surrounding array

    SciTech Connect

    O`Brien, J.E.

    1991-12-01

    Experimental measurements of surface emissivities of three metallic samples have been obtained in support of an experiment aimed at determining natural convection and total heat transfer for a heated vertical cylinder surrounded by an array of cooled vertical tubes. In some cases, the heated stainless steel cylinder was shrouded by a perforated aluminum outer cylinder. The surrounding cooled tubes were also aluminum. In this experiment, heat transfer from the heated tube and the surrounding outer cylinder will occur by a combination of natural convection and radiation. At temperatures near the melting point of aluminum, the radiant contribution is particularly important, accounting for 50% or more of the total heat transfer. Consequently, accurate knowledge of surface emissivities of the heated rods, outer cylinders and surrounding structures is needed in order to predict the system thermal response during the transient. Direct measurements of surface emissivities have been obtained for one stainless steel and two aluminum samples. The measurements were obtained using an infrared pyrometer sensitive to the 8--14 {mu}m wavelength range. A procedure for estimating total hemispherical emissivities based on the measured spectral, normal results is also provided.

  17. Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure

    NASA Astrophysics Data System (ADS)

    Beckermann, C.; Ramadhyani, S.; Viskanta, R.

    1987-05-01

    A numerical and experimental study is performed to analyze the steady-state natural convection fluid flow and heat transfer in a vertical rectangular enclosure that is partially filled with a vertical layer of a fluid-saturated porous medium. The flow in the porous layer is modeled utilizing the Brinkman-Forchheimer-extended Darcy equations. The numerical model is verified by conducting a number of experiments, with spherical glass beads as the porous medium and water and glycerin as the fluids, in rectangular test cells. The agreement between the flow visualization results and temperature measurements and the numerical model is, in general, good. It is found that the amount of fluid penetrating from the fluid region into the porous layer depends strongly on the Darcy (Da) and Rayleigh (Ra) numbers. For a relatively low product of Ra x Da, the flow takes place primarily in the fluid layer, and heat transfer in the porous layer is by conduction only. On other hand, fluid penetration into a relatively highly permeable porous layer has a significant impact on the natural convection flow patterns in the entire enclosure.

  18. Emissivity measurements in support of experiments on natural convection between a vertical cylinder and a surrounding array

    NASA Astrophysics Data System (ADS)

    Obrien, J. E.

    1991-12-01

    Experimental measurements of surface emissivities of three metallic samples have been obtained in support of an experiment aimed at determining natural convection and total heat transfer for a heated vertical cylinder surrounded by an array of cooled vertical tubes. In some cases, the heated stainless steel cylinder was shrouded by a perforated aluminum outer cylinder. The surrounding cooled tubes were also aluminum. In this experiment, heat transfer from the heated tube and the surrounding outer cylinder will occur by a combination of natural convection and radiation. At temperatures near the melting point of aluminum, the radiant contribution is particularly important, accounting for 50 percent or more of the total heat transfer. Consequently, accurate knowledge of surface emissivities of the heated rods, outer cylinders and surrounding structures is needed in order to predict the system thermal response during the transient. Direct measurements of surface emissivities have been obtained for one stainless steel and two aluminum samples. The measurements were obtained using an infrared pyrometer sensitive to the 8-14 micron wavelength range. A procedure for estimating total hemispherical emissivities based on the measured spectral, normal results is also provided.

  19. Hydromagnetic natural convection flow between vertical parallel plates with time-periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Adesanya, S. O.; Oluwadare, E. O.; Falade, J. A.; Makinde, O. D.

    2015-12-01

    In this paper, the free convective flow of magnetohydrodynamic fluid through a channel with time periodic boundary condition is investigated by taking the effects of Joule dissipation into consideration. Based on simplifying assumptions, the coupled governing equations are reduced to a set of nonlinear boundary valued problem. Approximate solutions are obtained by using semi-analytical Adomian decomposition method. The effect of pertinent parameters on the fluid velocity, temperature distribution, Nusselt number and skin friction are presented graphically and discussed. The result of the computation shows that an increase in the magnetic field intensity has significant influence on the fluid flow.

  20. Influence of Natural Convection and Thermal Radiation Multi-Component Transport in MOCVD Reactors

    NASA Technical Reports Server (NTRS)

    Lowry, S.; Krishnan, A.; Clark, I.

    1999-01-01

    The influence of Grashof and Reynolds number in Metal Organic Chemical Vapor (MOCVD) reactors is being investigated under a combined empirical/numerical study. As part of that research, the deposition of Indium Phosphide in an MOCVD reactor is modeled using the computational code CFD-ACE. The model includes the effects of convection, conduction, and radiation as well as multi-component diffusion and multi-step surface/gas phase chemistry. The results of the prediction are compared with experimental data for a commercial reactor and analyzed with respect to the model accuracy.

  1. Numerical Bifurcation Study of Natural Convection in a Layer of Fluid Subject to Spatially Distributed Heating

    NASA Astrophysics Data System (ADS)

    Asgarian, A.; Hossain, M. Z.; Floryan, J. M.

    2011-11-01

    We present the numerical investigation of Rayleigh-Benard convection (RBC) in a slot whose bottom wall is subject to a long-wavelength heating and the upper wall is isothermal. It is shown that multiple flow structures associated with the same conditions can be produced by changing the history of the heating; this history can be controlled by using different initialization conditions, different continuation strategies in the parameters space as well as by using different numerical solvers. The observed flow structures can be categorized into two generic groups, i.e. symmetric and asymmetric flow structures.

  2. Natural convection for supercritical conditions in oscillatory microgravity environment (g-jitter)

    NASA Astrophysics Data System (ADS)

    Wadih, M.; Roux, B.

    The onset condition of convective motions is analyzed for unsteady (periodic) microgravity environment (g-jitter). The method developed in a previous work by the authors is applied to the case of homogeneous fluid layer confined in a long vertical cylinder submitted to an adverse axial temperature gradient. The residual gravity is assumed to be a combination of sinusoidal oscillations around a nonzero mean value and periodic fluctuations (peaks) of small amplitudes. The critical conditions are determined for two different wall conductances (a perfectly conducting and insulating-wall), and the effect of the Prandtl number is emphasized for a large range of modulation frequencies from g to 1 Khz.

  3. Investigate the MM5 model ability to simulate and predict convective precipitation over soutwest of Iran

    NASA Astrophysics Data System (ADS)

    Ghandhari, S.; Meshkatee, A.; Mazraee Farahani, M.; Jafari, S.; Khazanehdari, L.

    2009-09-01

    Among weather phenomena, convection, due to its complexity and destructive nature, has been subject of many studies and researches through out the world. For decades, generating different types of models were attempted by scientists to provide possibility of abating or at least reducing convective weather phenomena effects on people's life. People in south and southwest of Iran are familiar with convective phenomena and their effects. Due to Socio-Economic importance of convective phenomena and availability of a meso-scale (MM5) model in Iranian meteorological Organization it has been tried to investigate the model ability to simulate and to predict convective precipitation in south and southwest of the country. Outcome of the study indicates that the model produces acceptable results on convection that arises from sharp baroclinic conditions; but it has failed to produce acceptable results where convection is due to local conditions. Keywords: Convection, Numerical Weather Prediction, MM5 model, Baroclinic

  4. Natural convection in horizontal porous layers with localized heating from below

    SciTech Connect

    Prasad, V. ); Kulacki, F.A. )

    1987-08-01

    Convective flow of fluid through saturated porous media heated from below is of considerable interest, and has been extensively studied. Most of these studies are concerned with either infinite horizontal porous layers or rectangular (or cylindrical) porous cavities with adiabatic vertical walls. A related problem of practical importance occurs when only a portion of the bottom surface is heated and the rest of it is either adiabatic or isothermally cooled. This situation is encountered in several geothermal areas which consists of troughs of volcanic debris contained by walls of nonfragmented ignimbrite. Thus, the model region considered is a locally heated long trough of isotropic porous medium confined by impermeable and insulating surroundings. Also, the recent motivation to study this problem has come from the efforts to identify a geologic repository for nuclear waste disposal. The purpose of the present work is to consider the effects of aspect ratio and Rayleigh number on free convection heat transfer from an isothermal heat source centrally located on the bottom surface of a horizontal porous cavity.

  5. Buoyancy-Driven Natural Convection of Liquid Helium in an Electron Bubble Chamber

    SciTech Connect

    Ju, Y. L.; Dodd, J. R.; Willis, W. J.

    2006-04-27

    A small liquid helium test chamber with 1.5 L active volume has been designed and constructed, to make the fundamental measurements of physical properties of electron bubble transports in liquid helium, aimed at developing a new cryogenic neutrino detector, using liquid helium as the detecting medium, for the detection of solar neutrinos. The test chamber is a double-walled cylindrical container equipped with five optical windows and ten high voltage cables. A LN2/LHe cryostat and a needle valve for vapor helium cooling are used to provide a 1.7{approx}4.5 K low temperature environments for the test chamber. One of key issues for the cryogenic design and experimental sensitivity of electron bubble tracking is that of keeping a thermally uniform liquid helium bath. The external heat loads to the chamber will generate a buoyancy-induced convection of liquid helium, which will carry the electron bubbles and accelerate or decelerate their transportation and therefore must be reduced to the minimum, so that the slow motion of the electron bubbles will not be confused by this effect. This paper will present the computational simulation and analysis on thermal convection and uniformity of the test chamber.

  6. Turbulent natural convection between a perforated vertical cylinder and a surrounding array

    SciTech Connect

    McEligot, D.M.; Stoots, C.M.; Christenson, W.A.; O'Brien, J.E.; Mecham, D.C.; Lussie, W.G.

    1992-01-01

    A number of situations can be hypothesized to occur in an advanced or special purpose nuclear reactor such that the core is filled with a gas but there is no forced flow to remove the thermal energy evolved. Experiments were conducted by resistively hearing a vertical circular cylinder of length-to-diameter ratio of about 160 centered inside a concentric perforated tube which was, in turn, surrounded by three larger diameter tubes cooled internally with water flow. The ratio of the test section temperature to the cooling tube temperature was varied up to 2.6; and the Rayleigh number, based on tube diameter and properties evaluated at the cooling tube temperature, ranged from 2.9 x 10{sup 4} to 9.2 x 10{sup 5}. Results indicate that the convective heat transfer parameters for the perforated tube are about fifteen per cent higher than for the smooth bare tube centered in the same position relative to the array. The Nusselt number for convective heat transfer across the annulus between the heated test section and the perforated tube corresponded to parallel laminar flow.

  7. Turbulent natural convection between a perforated vertical cylinder and a surrounding array

    SciTech Connect

    McEligot, D.M.; Stoots, C.M.; Christenson, W.A.; O`Brien, J.E.; Mecham, D.C.; Lussie, W.G.

    1992-09-01

    A number of situations can be hypothesized to occur in an advanced or special purpose nuclear reactor such that the core is filled with a gas but there is no forced flow to remove the thermal energy evolved. Experiments were conducted by resistively hearing a vertical circular cylinder of length-to-diameter ratio of about 160 centered inside a concentric perforated tube which was, in turn, surrounded by three larger diameter tubes cooled internally with water flow. The ratio of the test section temperature to the cooling tube temperature was varied up to 2.6; and the Rayleigh number, based on tube diameter and properties evaluated at the cooling tube temperature, ranged from 2.9 x 10{sup 4} to 9.2 x 10{sup 5}. Results indicate that the convective heat transfer parameters for the perforated tube are about fifteen per cent higher than for the smooth bare tube centered in the same position relative to the array. The Nusselt number for convective heat transfer across the annulus between the heated test section and the perforated tube corresponded to parallel laminar flow.

  8. EXPERIMENTAL INVESTIGATION OF NATURAL CONVECTION HEAT TRANSFER OF IONIC LIQUID IN A RECTANGULAR ENCLOSURE HEATED FROM BELOW

    SciTech Connect

    Fox, E.; Visser, A.; Bridges, N.

    2011-07-18

    This paper presents an experimental study of natural convection heat transfer for an Ionic Liquid. The experiments were performed for 1-butyl-2, 3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, ([C{sub 4}mmim][NTf{sub 2}]) at a Raleigh number range of 1.26 x 10{sup 7} to 8.3 x 10{sup 7}. In addition to determining the convective heat transfer coefficients, this study also included experimental determination of thermophysical properties of [C{sub 4}mmim][NTf{sub 2}] such as, density, viscosity, heat capacity, and thermal conductivity. The results show that the density of [C{sub 4}mmim][NTf{sub 2}] varies from 1.437-1.396 g/cm{sup 3} within the temperature range of 10-50 C, the thermal conductivity varies from 0.105-0.116 W/m.K between a temperature of 10 to 60 C, the heat capacity varies from 1.015 J/g.K - 1.760 J/g.K within temperature range of 25-340 C and the viscosity varies from 18cp-243cp within temperature range 10-75 C. The results for density, thermal conductivity, heat capacity, and viscosity were in close agreement with the values in the literature. Measured dimensionless Nusselt number was observed to be higher for the ionic liquid than that of DI water. This is expected as Nusselt number is the ratio of heat transfer by convection to conduction and the ionic liquid has lower thermal conductivity (approximately 18%) than DI water.

  9. Experimental Technique and Assessment for Measuring the Convective Heat Transfer Coefficient from Natural Ice Accretions

    NASA Technical Reports Server (NTRS)

    Masiulaniec, K. Cyril; Vanfossen, G. James, Jr.; Dewitt, Kenneth J.; Dukhan, Nihad

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Nine flat plates, 18 inches square, were obtained from which aluminum castings were made that gave good ice shape characterizations. Test strips taken from these plates were outfitted with heat flux gages, such that when placed in a dry wind tunnel, can be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for both parallel and accelerating flow will be studied. The smooth plate model verification baseline data as well as one ice roughened test case are presented.

  10. Schlieren visualization of water natural convection in a vertical ribbed channel

    NASA Astrophysics Data System (ADS)

    Fossa, M.; Misale, M.; Tanda, G.

    2015-11-01

    Schlieren techniques are valuable tools for the qualitative and quantitative visualizations of flows in a wide range of scientific and engineering disciplines. A large number of schlieren systems have been developed and documented in the literature; majority of applications involve flows of gases, typically air. In this work, a schlieren technique is applied to visualize the buoyancy-induced flow inside vertical ribbed channels using water as convective fluid. The test section consists of a vertical plate made of two thin sheets of chrome-plated copper with a foil heater sandwiched between them; the external sides of the plate are roughened with transverse, square-cross-sectioned ribs. Two parallel vertical walls, smooth and unheated, form with the heated ribbed plate two adjacent, identical and asymmetrically heated, vertical channels. Results include flow schlieren visualizations with colour-band filters, reconstructions of the local heat transfer coefficient distributions along the ribbed surfaces and comparisons with past experiments performed using air as working fluid.

  11. Forced- and natural-convection studies on solar collectors for heating and cooling applications

    NASA Astrophysics Data System (ADS)

    Pearson, J. T.

    1983-03-01

    Convection in air heating solar collectors for heating and cooling applications was studied. It was determined that improvement in the overall conductance between the absorber and the flowing air was an area that needed much improvement. Studies were performed to obtain several absorber convector configurations which have superior heat transfer performance, modest drop penalties, and a high potential for economical manufacturing. Four surfaces which may be fabricated from aluminum or steel are recommended. Three utilize corrugated sheets bonded to the backplate and/or the back side of the absorber. These three surfaces are recommended for applications where airflow behind the absorber is appropriate. For those applications where airflow above the absorber is appropriate, a louvered surface which can be fabricated from metal or plastic is recommended.

  12. Natural convection on a vertical plate in a saturated porous medium with internal heat generation

    NASA Astrophysics Data System (ADS)

    Guedda, M.; Sriti, M.; Achemlal, D.

    2014-08-01

    The main goal of this paper is to re-exam a class of exact solutions for the two-dimensional free convection boundary layers induced by a heated vertical plate embedded in a saturated porous medium with an exponential decaying heat generation. The temperature distribution of the plate has been assumed to vary as a power of the axial coordinate measured from the leading edge of the plate and subjected to an applied lateral mass flux. The boundary layer equations are solved analytically and numerically using a fifth-order Runge-Kutta scheme coupled with the shooting iteration method. As for the classical problem without internal heat generation, it is proved that multiple (unbounded) solutions arise for any and for any suction/injection parameter. For such solutions, the asymptotic behavior as the similarity variable approaches infinity is determined.

  13. Heat transfer and flow visualization in natural convection in rapidly spinning systems

    NASA Astrophysics Data System (ADS)

    Sobel, L.; El-Masri, M.; Smith, J. L.

    1986-08-01

    Steady and transient free convection in liquid contained in a rotating annular reservoir having two radial baffles and a small heat source mounted on the outer cylinder wall is investigated experimentally, using electrolysis of thymol-blue/HC1 solution by a Pt wire to visualize the flow. The heater is turned on either after solid-body rotation is established or just as the reservoir is impulsively accelerated to a higher rotational velocity. The results are presented in photographs and graphs and discussed in detail. It is found that weak buoyant plumes with radial trajectories relative to the spinning container generate axially invariant two-dimensional motions even when the heat source is much shorter than the cylinder. Spin-up simultaneous with the application of heat is shown to enhance the heat-transfer coefficient over a short time period. The applicability of these findings to the design of airborne superconducting generators with rotating liquid-He baths is indicated.

  14. Double diffusive natural convection in solar ponds with nonlinear temperature and salinity profiles

    SciTech Connect

    Kirkpatrick, A.T.; Gordon, R.F.; Johnson, D.H.

    1986-08-01

    A solar pond can be used as a thermal energy source provided that convective instabilities do not occur. This paper experimentally examines the stability of a fluid layer with nonlinear salinity and temperature profiles. A nonlinear salt profile was set up in a fluid layer, and the water was heated by a solar radiation simulator. Three stability experiments were conducted. Instabilities occurred at the location of the weakest salinity gradient, and were confined to a thin region, as predicted by theory. A local length scale was used to produce a stability parameter, the ratio of thermal to solute Rayleigh numbers. It is shown that for nonconstant solute and temperature gradients, the appropriate length scale is based on the radius of curvature of the salinity distribution. With this choice of a length scale, good agreement was found between theory and experiment for the onset of an instability.

  15. Application of dynamic global-coefficient subgrid-scale models to turbulent natural convection in an enclosed tall cavity

    NASA Astrophysics Data System (ADS)

    Lau, G. E.; Yeoh, G. H.; Timchenko, V.; Reizes, J. A.

    2012-09-01

    Large-eddy simulations examining natural convection in an enclosed cavity with the simultaneous presence of laminar, transitional, and turbulent flow regimes were conducted. The Rayleigh number based on height of the cavity is 4.6 × 1010. Different dynamic global-coefficient procedures to compute the Vreman [A. W. Vreman, "An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications," Phys. Fluids 16, 3670 (2004)] model coefficient were implemented for the subgrid-scale tensors in both the momentum and energy equations. Based on comparison with experimental and existing numerical data, it is shown that the dynamic model derived from the "global equilibrium" hypothesis gives favorable results in the mean flow and turbulence quantities. Nevertheless, because of higher subgrid-scale dissipation, transition to a turbulent flow is postponed when the Vreman model coefficient is either uniform or determined dynamically using the Germano identity approach. This suggests that much finer grid is desired when using these models in order to better capture the weak transitional boundary layer. Further, by exploring the instantaneous flow dynamics, it is demonstrated that characteristics of the coherent structures which resemble streaks in forced convection boundary layers are somewhat dissimilar in the different models.

  16. Effect of adiabatic wall on the natural convection heat transfer from a wavy surface created by attached horizontal cylinders

    SciTech Connect

    Harsini, I.; Ashjaee, M.

    2010-09-15

    The effect of a vertical adiabatic wall on the natural convection heat transfer from vertical array of attached cylinders, which can be considered as wavy surface, was investigated experimentally and numerically. The experiments were carried out using Mach-Zehnder interferometer and the commercial FLUENT code was used for numerical study. This paper focuses on the effect of wall-wavy surface spacing and Rayleigh number variation on the local and average free convection heat transfer coefficients from the each cylinder and the wavy surface. Rayleigh number ranges from 2400 to 10,000 and from 300,000 to 1,250,000 based on cylinder diameter and wavy surface height respectively. The local and average Nusselt numbers were determined for the different Rayleigh numbers, and the ratio of wall- wavy surface spacing to cylinder diameter 0.75, 1, 1.5, 2, 3, 4, 5, and {infinity}. Results are indicated with a single correlation which gives the average Nusselt number as a function of the ratio of the wall-wavy surface spacing to cylinder diameter and the Rayleigh numbers. There is an optimum distance between the wall and wavy surface in which the Nusselt number attain its maximum value. This optimum distance depends on the Rayleigh number. (author)

  17. Analysis of Phenix end-of-life natural convection test with the MARS-LMR code

    SciTech Connect

    Jeong, H. Y.; Ha, K. S.; Lee, K. L.; Chang, W. P.; Kim, Y. I.

    2012-07-01

    The end-of-life test of Phenix reactor performed by the CEA provided an opportunity to have reliable and valuable test data for the validation and verification of a SFR system analysis code. KAERI joined this international program for the analysis of Phenix end-of-life natural circulation test coordinated by the IAEA from 2008. The main objectives of this study were to evaluate the capability of existing SFR system analysis code MARS-LMR and to identify any limitation of the code. The analysis was performed in three stages: pre-test analysis, blind posttest analysis, and final post-test analysis. In the pre-test analysis, the design conditions provided by the CEA were used to obtain a prediction of the test. The blind post-test analysis was based on the test conditions measured during the tests but the test results were not provided from the CEA. The final post-test analysis was performed to predict the test results as accurate as possible by improving the previous modeling of the test. Based on the pre-test analysis and blind test analysis, the modeling for heat structures in the hot pool and cold pool, steel structures in the core, heat loss from roof and vessel, and the flow path at core outlet were reinforced in the final analysis. The results of the final post-test analysis could be characterized into three different phases. In the early phase, the MARS-LMR simulated the heat-up process correctly due to the enhanced heat structure modeling. In the mid phase before the opening of SG casing, the code reproduced the decrease of core outlet temperature successfully. Finally, in the later phase the increase of heat removal by the opening of the SG opening was well predicted with the MARS-LMR code. (authors)

  18. Simultaneous effects of partial slip and thermal-diffusion and diffusion-thermo on steady MHD convective flow due to a rotating disk

    NASA Astrophysics Data System (ADS)

    Rashidi, M. M.; Hayat, T.; Erfani, E.; Mohimanian Pour, S. A.; Hendi, Awatif A.

    2011-11-01

    The purpose of present research is to derive analytical expressions for the solution of steady MHD convective and slip flow due to a rotating disk. Viscous dissipation and Ohmic heating are taken into account. The nonlinear partial differential equations for MHD laminar flow of the homogeneous fluid are reduced to a system of five coupled ordinary differential equations by using similarity transformation. The derived solution is expressed in series of exponentially-decaying functions using homotopy analysis method (HAM). The convergence of the obtained series solutions is examined. Finally some figures are sketched to show the accuracy of the applied method and assessment of various slip parameter γ, magnetic field parameter M, Eckert Ec, Schmidt Sc and Soret Sr numbers on the profiles of the dimensionless velocity, temperature and concentration distributions. Validity of the obtained results are verified by the numerical results.

  19. Numerical investigation of heat transfer enhancement of natural convection in a square cavity filled with a Water-CuO nanofluid

    NASA Astrophysics Data System (ADS)

    Nunez Gonzalez, Jose; Beltran, Alberto

    2014-11-01

    We presents a numerical study of natural convection heat transfer in a square cavity filled a water-CuO nanofluid. The governing equations for natural convection are solved numerically with a Chebyshev pseudo spectral method using and projection method as a decoupling strategy. The Nusselt number is determined as a function of Rayleigh number and the solid volume fraction. The high conductivity of the CuO nanoparticles modifies the overall thermal conductivity of the fluid, even with a decrement of the Nusselt number the effective thermal conductivity increase therefore higher heat transfer rate is obtained with the numerical model.

  20. Analysis of the Phenix end-of-life natural convection test with SAS4A/SASSYS-1

    SciTech Connect

    Thomas, J. W.; Fanning, T. H.; Dunn, F. E.; Sofu, T.

    2012-07-01

    From a reduced power and flow condition, the 2009 Phenix Natural Convection Test mimics a protected loss-of-heat sink event. The measured transient response of the Phenix reactor to such an event provides an important data set for validating safety analysis codes. A model of the Phenix reactor and primary coolant system was developed using the reactor safety analysis code system SAS4A/SASSYS-1. While the overall global response of the reactor was predicted reasonably well, there were some non-negligible discrepancies in the temperature predictions during the transient and work continues to improve the model. Some modeling issues have been identified, and will be addressed as improvements to the model continue. (authors)

  1. Numerical analysis of natural convection for non-Newtonian fluid conveying nanoparticles between two vertical parallel plates

    NASA Astrophysics Data System (ADS)

    Sahebi, S. A. R.; Pourziaei, H.; Feizi, A. R.; Taheri, M. H.; Rostamiyan, Y.; Ganji, D. D.

    2015-12-01

    In this paper, natural convection of non-Newtonian bio-nanofluids flow between two vertical flat plates is investigated numerically. Sodium Alginate (SA) and Sodium Carboxymethyl Cellulose (SCMC) are considered as the base non-Newtonian fluid, and nanoparticles such as Titania ( TiO2 and Alumina ( Al2O3 were added to them. The effective thermal conductivity and viscosity of nanofluids are calculated through Maxwell-Garnetts (MG) and Brinkman models, respectively. A fourth-order Runge-Kutta numerical method (NUM) and three Weighted Residual Methods (WRMs), Collocation (CM), Galerkin (GM) and Least-Square Method (LSM) and Finite-Element Method (FEM), are used to solve the present problem. The influence of some physical parameters such as nanofluid volume friction on non-dimensional velocity and temperature profiles are discussed. The results show that SCMC- TiO2 has higher velocity and temperature values than other nanofluid structures.

  2. Effect of viscous dissipation on natural convection flow between vertical parallel plates with time-periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Jha, Basant K.; Ajibade, Abiodun O.

    2012-04-01

    This article investigates the natural convection flow of viscous incompressible fluid in a channel formed by two infinite vertical parallel plates. Fully developed laminar flow is considered in a vertical channel with steady-periodic temperature regime on the boundaries. The effect of internal heating by viscous dissipation is taken into consideration. Separating the velocity and temperature fields into steady and periodic parts, the resulting second order ordinary differential equations are solved to obtain the expressions for velocity, and temperature. The amplitudes and phases of temperature and velocity are also obtained as well as the rate of heat transfer and the skin-friction on the plates. In presence of viscous dissipation, fluids of relatively small Prandtl number has higher temperature than the channel plates and as such, heat is being transferred from the fluid to the plate.

  3. Effect of viscous dissipation on natural convection flow between vertical parallel plates with time-periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Jha, B. K.; Ajibade, A. O.

    2011-12-01

    This article investigates the natural convection flow of viscous incompressible fluid in a channel formed by two infinite vertical parallel plates. Fully developed laminar flow is considered in a vertical channel with steady-periodic temperature regime on the boundaries. The effect of internal heating by viscous dissipation is taken into consideration. Separating the velocity and temperature fields into steady and periodic parts, the resulting second order ordinary differential equations are solved to obtain the expressions for velocity, and temperature. The amplitudes and phases of temperature and velocity are also obtained as well as the rate of heat transfer and the skin friction on the plates. In presence of viscous dissipation, fluids of relatively small Prandtl number has higher temperature than the channel plates and as such, heat is being transferred from the fluid to the plate.

  4. Thermal analysis of a fully wet porous radial fin with natural convection and radiation using the spectral collocation method

    NASA Astrophysics Data System (ADS)

    Khani, F.; Darvishi, M. T.; Gorla, R. S.. R.; Gireesha, B. J.

    2016-05-01

    Heat transfer with natural convection and radiation effect on a fully wet porous radial fin is considered. The radial velocity of the buoyancy driven flow at any radial location is obtained by applying Darcy's law. The obtained non-dimensionalized ordinary differential equation involving three highly nonlinear terms is solved numerically with the spectral collocation method. In this approach, the dimensionless temperature is approximated by Chebyshev polynomials and discretized by Chebyshev-Gausse-Lobatto collocation points. A particular algorithm is used to reduce the nonlinearity of the conservation of energy equation. The present analysis characterizes the effect of ambient temperature in different ways and it provides a better picture regarding the effect of ambient temperature on the thermal performance of the fin. The profiles for temperature distributions and dimensionless base heat flow are obtained for different parameters which influence the heat transfer rate.

  5. Studies of heat source driven natural convection. Ph.D. Thesis. Technical Report, Jul. 1974 - Aug. 1975

    NASA Technical Reports Server (NTRS)

    Kulacki, F. A.; Emara, A. A.

    1975-01-01

    Natural convection energy transport in a horizontal layer of internally heated fluid was measured for Rayleigh numbers from 1890 to 2.17 x 10 to the 12th power. The fluid layer is bounded below by a rigid zero-heat-flux surface and above by a rigid constant-temperature surface. Joule heating by an alternating current passing horizontally through the layer provides the uniform volumetric energy source. The overall steady-state heat transfer coefficient at the upper surface was determined by measuring the temperature difference across the layer and power input to the fluid. The correlation between the Nusselt and Rayleigh numbers for the data of the present study and the data of the Kulacki study is given.

  6. Natural convection flow of Cu-H2O nanofluid along a vertical wavy surface with uniform heat flux

    NASA Astrophysics Data System (ADS)

    Habiba, Farjana; Molla, Md. Mamun; Khan, M. A. Hakim

    2016-07-01

    A numerical study on natural convection flow of Cu-Water nanofluid along a vertical wavy surface with uniform heat flux has been carried out. The governing boundary layer equations are transformed into parabolic partial differential equations by applying a suitable set of variables. The resulting nonlinear system of equations are then mapped into a regular rectangular computational domain and solved numerically by using an implicit finite difference method. Numerical results are thoroughly discussed in terms of velocity and temperature distributions, surface temperature distribution, skin friction coefficient and Nusselt number coefficient for selected key parameters such as solid volume fraction of nanofluid (ϕ) and amplitude (α) of surface waviness. In addition, velocity vectors, streamlines and isotherms are plotted to visualize momentum and thermal flow pattern within the boundary layer region.

  7. Application of a Differential Transform Method to the Transient Natural Convection Problem in a Vertical Tube with Variable Fluid Properties

    NASA Astrophysics Data System (ADS)

    Chiba, Ryoichi

    2016-02-01

    The transient natural convection of a viscous fluid in a heated vertical tube is studied using the two-dimensional differential transform method (DTM). A time-dependent Dirichlet boundary condition is imposed for tube wall temperature. The partial differential equations for the velocity and temperature fields within the tube are solved by the DTM while considering temperature-dependent viscosity and thermal conductivity of the fluid. As a result, tractable solutions in double-series form are derived for the temperature and flow velocity. The transformed functions included in the solutions are obtained through a simple recursive procedure. Numerical results illustrate the effects of temperature-dependent properties on transient temperature and flow behaviour, including the Nusselt number and volumetric flow rate. The DTM gives accurate series solutions without any special functions for nonlinear transient heat transfer problems which are advantageous in finding the derivative or integral.

  8. Numerical Investigations of the Deposition of Unattached {sup 218}Po and {sup 212}Pb from Natural Convection Enclosure Flow

    SciTech Connect

    Nazaroff, W.W.; Kong, D.; Gadgil, A.J.

    1992-02-01

    We report numerical predictions of the deposition to enclosure surfaces of unattached {sup 218}Po and {sup 212}Pb, short-lived decay products of {sup 222}Rn and {sup 220}Rn, respectively. The simulations are conducted for square and rectangular two-dimensional enclosures under laminar natural convection flow with Grashof numbers in the range 7 x 10{sup 7} to 8 x 10{sup 10}. The predictions are based upon a finite-difference natural-convection fluid-mechanics model that has been extended to simulate the behavior of indoor radon decay products. In the absence of airborne particles, the deposition velocity averaged over the enclosure surface was found to be in the range (2-4) x 10{sup -4} m s{sup -1} for {sup 218}Po and (1-3) x 10{sup -4} m s{sup -1} for {sup 212}Pb. In each simulation, the deposition rate varied by more than an order of magnitude around the surface of the enclosure with the largest rates occurring near corners. Attachment of decay products to airborne particles increased the deposition velocity; for example, attachment of {sup 218}Po at a rate of 50 h{sup -1} increased the predicted average deposition velocity by 30-70% over values in the absence of attachment. The simulation results have significance for assessing the health risk associated with indoor exposure to {sup 222}Rn and {sup 220}Rn decay products and for investigating the more general problem of the interaction of air pollutants with indoor surfaces.

  9. Natural Convection Heat Transfer in a Rectangular Water Pool with Internal Heating and Top and Bottom Cooling

    SciTech Connect

    Lee, Jong K.; Lee, Seung D.; Suh, Kune Y.

    2006-07-01

    During a severe accident, the reactor core may melt and be relocated to the lower plenum to form a hemispherical pool. If there is no effective cooling mechanism, the core debris may heat up and the molten pool run into natural convection. Natural convection heat transfer was examined in SIGMA RP (Simulant Internal Gravitated Material Apparatus Rectangular Pool). The SIGMA RP apparatus comprises a rectangular test section, heat exchanger, cartridge heaters, cooling jackets, thermocouples and a data acquisition system. The internal heater heating method was used to simulate uniform heat source which is related to the modified Rayleigh number Ra'. The test procedure started with water, the working fluid, filling in the test section. There were two boundary conditions: one dealt with both walls being cooled isothermally, while the other had to with only the upper wall being cooled isothermally. The heat exchanger was utilized to maintain the isothermal boundary condition. Four side walls were surrounded by the insulating material to minimize heat loss. Tests were carried out at 10{sup 11} < Ra' < 10{sup 13}. The SIGMA RP tests with an appropriate cartridge heater arrangement showed excellent uniform heat generation in the pool. The steady state was defined such that the temperature fluctuation stayed within {+-}0.2 K over a time period of 5,000 s. The conductive heat transfer was dominant below the critical Rayleigh number Ra'c, whereas the convective heat transfer picked up above Ra'{sub c}. In the top and bottom boundary cooling condition, the upward Nusselt number Nu{sub up} was greater than the downward Nusselt number Nu{sub dn}. In particular, the discrepancy between Nu{sub up} and Nu{sub dn} widened with Ra'. The Nu{sub up} to Nu{sub dn} ratio was varied from 7.75 to 16.77 given 1.45 x 10{sup 12} < Ra' < 9.59 x 10{sup 13}. On the other hand, Nu{sub up} was increased in absence of downward heat transfer for the case of top cooling. The current rectangular pool

  10. Influences of surface hydrophilicity on frost formation on a vertical cold plate under natural convection conditions

    SciTech Connect

    Liu, Zhongliang; Zhang, Xinghua; Wang, Hongyan; Meng, Sheng; Cheng, Shuiyuan

    2007-07-15

    Surface hydrophilicity has a strong influence on frost nucleation according to phase transition theory. To study this effect, a close observation of frost formation and deposition processes on a vertical plate was made under free convection conditions. The formation and shape variation of frost crystals during the initial period are described and the frost thickness variation with time on both hydrophobic and plain copper cold surfaces are presented. The various influencing factors are discussed in depth. The mechanism of surface hydrophilicity influence on frost formation was analyzed theoretically. This revealed that increasing the contact angle can increase the potential barrier and restrain crystal nucleation and growth and thus frost deposition. The experimental results show that the initial water drops formed on a hydrophobic surface are smaller and remain in the liquid state for a longer time compared with ones formed on a plain copper surface. It is also observed that the frost layer deposited on a hydrophobic surface is loose and weak. Though the hydrophobic surface can retard frost formation to a certain extent and causes a looser frost layer, our experimental results show that it does not depress the growth of the frost layer. (author)

  11. Experimental observations of double diffusive natural convection in solar ponds with nonlinear salinity profiles

    SciTech Connect

    Kirkpatrick, A.T.; Gordon, R.F.; Johnson, D.H.

    1985-04-01

    A solar pond can be used as a thermal energy source provided that convective instabilities do not occur. This paper experimentally examines the stability of a fluid layer with nonlinear salinity profiles. A nonlinear salt profile was set up in a 0.7m x 0.7m x 1.4m deep tank, and the water was heated by a solar radiation simulator. Three experiments were conducted, each over a time scale of about one week. An instability was produced in two of the experiments. The instabilities occurred at the location of the weakest salinity gradient, and were confined to a narrow depth, as predicted by theory. A local length scale was used to produce a stability parameter, the ratio of thermal to solute Rayleigh numbers. It is shown that for nonlinear solute gradients, the appropriate length scale is based on the radius of curvature of the salinity distribution. With this choice of a length scale, good agreement was found between theory and experiment for the onset of an instability. However, only fair agreement was obtained for the disturbance frequency.

  12. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS – A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not

  13. On the effect of natural convection on solute segregation in the horizontal Bridgman configuration: Convergence of a theoretical model with numerical and experimental data

    NASA Astrophysics Data System (ADS)

    Kaddeche, S.; Garandet, J. P.; Henry, D.; Hadid, H. Ben; Mojtabi, A.

    2015-01-01

    The effect of natural convection on solute segregation in the horizontal Bridgman configuration is studied. The objective is to check whether a single non-dimensional number, based on the fluid flow induced interface shear stress, is able to capture the physics of the mass transport phenomena. A number of heat and mass transfer numerical simulations are carried out in the laminar convection regime, and the segregation results are found to be in good agreement with the predictions of the scaling analysis. At the higher convective levels relevant for the comparison with existing experimental data, a direct computation of the segregation phenomena is not possible, but numerical simulations accounting for turbulence modeling can provide the interface shear stress. With this procedure, a good agreement between the experimentally measured segregation and the predictions of the scaling analysis is again observed, thus validating the choice of the interface shear stress as a key parameter for the segregation studies.

  14. An experimental study of natural convection in open-cell aluminum foam

    NASA Astrophysics Data System (ADS)

    De Jaeger, P.; Reynders, R.; De Schampheleire, S.; T'Joen, C.; Huisseune, H.; Amee, B.; De Paepe, M.

    2012-11-01

    Natural convecton n air-saturated alumnum foam has been measured. A carefully designed experimental setup is built for his ask. The calibraton is done by comparing he results of a flat plate wh literature data, revealing excellent agreement. The nvestigated foams have a pore densiy of 10 and 20 PPI. The bondng of the foam is performed via brazing, or by applying a single epoxy which is enriched wh highly conductve alumna particles. The Rayleigh number is varied between 2500 and 6000, wh he rato of he surface area o he perimeter of he substrate as characteristc length. The foam height is varied between 12 and 25.4 mm. A major difference between both he bondng methods is observed. The brazed samples showed a beter heat ransfer n all cases. Furthermore, when ncreasing he foam height, a clear augmentaton of he heat ransfer is observed. Based on hese results, a correlaton is presented.

  15. Computational fluid dynamics for modeling the turbulent natural convection in a double air-channel solar chimney system

    NASA Astrophysics Data System (ADS)

    Zavala-Guillén, I.; Xamán, J.; Álvarez, G.; Arce, J.; Hernández-Pérez, I.; Gijón-Rivera, M.

    2016-03-01

    This study reports the modeling of the turbulent natural convection in a double air-channel solar chimney (SC-DC) and its comparison with a single air-channel solar chimney (SC-C). Prediction of the mass flow and the thermal behavior of the SC-DC were obtained under three different climates of Mexico during one summer day. The climates correspond to: tropical savannah (Mérida), arid desert (Hermosillo) and temperate with warm summer (Mexico City). A code based on the Finite Volume Method was developed and a k‑ω turbulence model has been used to model air turbulence in the solar chimney (SC). The code was validated against experimental data. The results indicate that during the day the SC-DC extracts about 50% more mass flow than the SC-C. When the SC-DC is located in Mérida, Hermosillo and Mexico City, the air-changes extracted along the day were 60, 63 and 52, respectively. The air temperature at the outlet of the chimney increased up to 33%, 38% and 61% with respect to the temperature it has at the inlet for Mérida, Hermosillo and Mexico City, respectively.

  16. Natural convection of non-Newtonian fluid along a vertical thin cylinder using modified power-law model

    NASA Astrophysics Data System (ADS)

    Thohura, Sharaban; Molla, Md. Mamun; Sarker, M. M. A.

    2016-07-01

    A study on the natural convection flow of non-Newtonian fluid along a vertical thin cylinder with constant wall temperature using modified power law viscosity model has been done. The basic equations are transformed to non dimensional boundary layer equations and the resulting systems of nonlinear partial differential equations are then solved employing marching order implicit finite difference method. The evolution of the surface shear stress in terms of local skin-friction, the rate of heat transfer in terms of local Nusselt number, velocity and temperature profiles for shear thinning as well as shear-thickening fluid considering the different values of Prandtl number have been focused. For the Newtonian fluids the present numerical results are compared with available published results which show a good agreement indeed. From the results it can be concluded that, at the leading edge, a Newtonian-like solution exists as the shear rate is not large enough to trigger non-Newtonian effects. Non-Newtonian effects can be found when the shear-rate increases beyond a threshold value.

  17. Natural convection in steady solidification - Finite element analysis of a two-phase Rayleigh-Benard problem

    NASA Technical Reports Server (NTRS)

    Chang, C. J.; Brown, R. A.

    1984-01-01

    Galerkin finite-element approximations and Newton's method for solving free boundary problems are combined with computer-implemented techniques from nonlinear perturbation analysis to study solidification problems with natural convection in the melt. The Newton method gives rapid convergence to steady state velocity, temperature and pressure fields and melt-solid interface shapes, and forms the basis for algebraic methods for detecting multiple steady flows and assessing their stability. The power of this combination is demonstrated for a two-phase Rayleigh-Benard problem composed of melt and solid in a veritical cylinder with the thermal boundary conditions arranged so that a static melt with a flat melt-solid interface is always a solution. Multiple cellular flows bifurcating from the static state are detected and followed as Rayleigh number is varied. Changing the boundary conditions to approach those appropriate for the vertical Bridgman solidification system causes imperfections that eliminate the static state. The flow structure in the Bridgman system is related to those for the Rayleigh-Benard system by a continuous evolution of the boundary conditions.

  18. Natural convective heat and mass transfer in a porous triangular enclosure filled with nanofluid in presence of heat generation

    NASA Astrophysics Data System (ADS)

    Chowdhury, Raju; Parvin, Salma; Khan, Md. Abdul Hakim

    2016-07-01

    The problem of natural convective heat and mass transfer in a triangular enclosure filled with nanofluid saturated porous medium in presence of heat generation has been studied in this paper. The bottom wall of the cavity is heated uniformly, the left inclined wall is heated linearly and the right inclined wall is considered to be cold. The concentration is higher at bottom wall, lower at right inclined wall and linearly concentrated at left inclined wall of the cavity. The governing equations are transformed to the dimensionless form and solved numerically using Galerkin weighted residual technique of finite element method. The results are obtained in terms of streamline, isotherms, isoconcentrations, Nusselt number (Nu) and Sherwood number (Sh) for the parameters thermal Rayleigh number (RaT), Heat generation parameter (λ) and Lewis number (Le) while Prandtl number (Pr), Buoyancy ratio (N) and Darcy number (Da) are considered to be fixed. It is observed that flow pattern, temperature fields and concentration fields are affected by the variation of above considered parameters.

  19. Experimental study on natural-convection boiling burnout in an annulus. [PWR; BWR

    SciTech Connect

    Mishima, K.; Ishii, M.

    1982-01-01

    An experimental study was performed on burnout heat flux at low flow rates for low-pressure steam-water upward flow in an annulus. The data indicated that a premature burnout occurred due to flow-regime transition from churn-turbulent to annular flow. It is shown that the burnout observed in the experiment is essentially a flooding-limited burnout and the burnout heat flux can be well reproduced by a nondimensional correlation derived from the previously obtained criterion for flow-regime transition. It is also shown that the conventional correlations for burnout heat flux at low mass velocities agree well with the data on circulation and entrainment-limited burnout.

  20. Mixed convective boundary layer flow over a vertical wedge embedded in a porous medium saturated with a nanofluid: Natural Convection Dominated Regime

    PubMed Central

    2011-01-01

    A boundary layer analysis is presented for the mixed convection past a vertical wedge in a porous medium saturated with a nano fluid. The governing partial differential equations are transformed into a set of non-similar equations and solved numerically by an efficient, implicit, iterative, finite-difference method. A parametric study illustrating the influence of various physical parameters is performed. Numerical results for the velocity, temperature, and nanoparticles volume fraction profiles, as well as the friction factor, surface heat and mass transfer rates have been presented for parametric variations of the buoyancy ratio parameter Nr, Brownian motion parameter Nb, thermophoresis parameter Nt, and Lewis number Le. The dependency of the friction factor, surface heat transfer rate (Nusselt number), and mass transfer rate (Sherwood number) on these parameters has been discussed. PMID:21711715

  1. CATHARE thermal-hydraulic system code for HLM preliminary validation in natural convection tests

    SciTech Connect

    Polidori, M.; Meloni, P.; Lombardo, C.; Bandini, G.; Geffraye, G.; Kadri, D.

    2012-07-01

    The innovative nuclear systems cooled by Heavy Liquid Metal (HLM) are the subject of an ongoing interest both in Europe and outside, evidenced by a number of projects in progress. In the frame of the European Framework Programmes have been evidenced the need to adopt a thermalhydraulic system code capable to treat lead and Lead-Bismuth Eutectic (LBE) systems, with a particular interest in developing a 'European' code. Considering this scenario, within a specific collaboration between ENEA and CEA, the CATHARE French system code has been modified extending its capabilities to simulate HLM systems. In the present paper, the state of the validation process of CATHARE-HLM is discussed. The activity aims to assess the capabilities and limitations of the code to simulate the behavior of integral facilities, in particular in natural circulation conditions. The experimental data come from NACIE LBE-cooled facility sited at the ENEA Brasimone laboratories. The results obtained show a good capability in reproducing the systems behavior, despite some uncertainties on the experimental measurements. Future improvements on the code are going to be planned within the collaboration ENEA/CEA. (authors)

  2. Effective gamma-ray doses due to natural radiation from soils of southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Silveira, M. A. G.; Medina, N. H.; Moreira, R. H.; Bellini, B. S.; Aguiar, V. A. P.

    2010-08-01

    We have used gamma-ray spectrometry to study the distribution of natural radiation from soils of southeastern Brazil: Billings reservoir, Sa~o Bernardo do Campo Parks, Diadema Parks, Interlagos region, Sa~o Paulo, and soil from Sa~o Paulo and Rio de Janeiro beaches. In most of the regions studied we have found that the dose due the external exposure to gamma-rays, proceeding from natural terrestrial elements, are between the values 0.3 and 0.6 mSv/year, established by the United Nations Scientific Committee on the Effects of Atomic Radiation.

  3. Effective gamma-ray doses due to natural radiation from soils of southeastern Brazil

    SciTech Connect

    Silveira, M. A. G.; Moreira, R. H.; Bellini, B. S.; Medina, N. H.; Aguiar, V. A. P.

    2010-08-04

    We have used gamma-ray spectrometry to study the distribution of natural radiation from soils of southeastern Brazil: Billings reservoir, Sao Bernardo do Campo Parks, Diadema Parks, Interlagos region, Sao Paulo, and soil from Sao Paulo and Rio de Janeiro beaches. In most of the regions studied we have found that the dose due the external exposure to gamma-rays, proceeding from natural terrestrial elements, are between the values 0.3 and 0.6 mSv/year, established by the United Nations Scientific Committee on the Effects of Atomic Radiation.

  4. Experimental validation benchmark data for CFD of transient convection from forced to natural with flow reversal on a vertical flat plate

    DOE PAGESBeta

    Lance, Blake W.; Smith, Barton L.

    2016-06-23

    Transient convection has been investigated experimentally for the purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. A specialized facility for validation benchmark experiments called the Rotatable Buoyancy Tunnel was used to acquire thermal and velocity measurements of flow over a smooth, vertical heated plate. The initial condition was forced convection downward with subsequent transition to mixed convection, ending with natural convection upward after a flow reversal. Data acquisition through the transient was repeated for ensemble-averaged results. With simple flow geometry, validation data were acquired at the benchmark level. All boundary conditions (BCs) were measured and their uncertainties quantified.more » Temperature profiles on all four walls and the inlet were measured, as well as as-built test section geometry. Inlet velocity profiles and turbulence levels were quantified using Particle Image Velocimetry. System Response Quantities (SRQs) were measured for comparison with CFD outputs and include velocity profiles, wall heat flux, and wall shear stress. Extra effort was invested in documenting and preserving the validation data. Details about the experimental facility, instrumentation, experimental procedure, materials, BCs, and SRQs are made available through this paper. As a result, the latter two are available for download and the other details are included in this work.« less

  5. Scalability of the natural convection shutdown heat removal test facility (NSTF) data to VHTR/NGNP RCCS designs.

    SciTech Connect

    Vilim, R .B.; Feldman, E. E.; Nuclear Engineering Division

    2007-08-07

    Passive safety in the Very High Temperature Reactor (VHTR) is strongly dependent on the thermal performance of the Reactor Cavity Cooling System (RCCS). Scaled experiments performed in the Natural Shutdown Test Facility (NSTF) are to provide data for assessing and/or improving computer code models for RCCS phenomena. Design studies and safety analyses that are to support licensing of the VHTR will rely on these models to achieve a high degree of certainty in predicted design heat removal rate. To guide in the selection and development of an appropriate set of experiments a scaling analysis has been performed for the air-cooled RCCS option. The goals were to (1) determine the phenomena that dominate the behavior of the RCCS, (2) determine the general conditions that must be met so that these phenomena and their relative importance are preserved in the experiments, (3) identify constraints specific to the NSTF that potentially might prevent exact similitude, and (4) then to indicate how the experiments can be scaled to prevent distortions in the phenomena of interest. The phenomena identified as important to RCCS operation were also the subject of a recent PIRT study. That work and the present work collectively indicate that the main phenomena influencing RCCS heat removal capability are (1) radiation heat transport from the vessel to the air ducts, (2) the integral effects of momentum and heat transfer in the air duct, (3) buoyancy at the wall inside the air duct giving rise to mixed convection, and (4) multidimensional effects inside the air duct caused by non-uniform circumferential heat flux and non-circular geometry.

  6. Natural Convection in a rotating multilayer spherical shell system with self gravity: A simplified global circulation model

    NASA Astrophysics Data System (ADS)

    Lira Rangel, Francisco Javier; Avila Rodriguez, Ruben; Cabello, Ares

    2014-11-01

    The onset of thermal convection in rotating multilayer spherical shells is investigated. The system consist of six concentric shells. The first spherical gap has an aspect ratio equal to 0.35, the following four spherical gaps have different aspect ratio and the sixth gap has an aspect ratio equal to 0.8. The inner and the outer spherical gaps confine Boussinesq fluids while the middle spherical gaps are treated as a thermal conductor solid. The investigation is performed for Taylor numbers between 7.E4 and 1.E6 and Rayleigh numbers between 3.E3 and 1.E6. The convective patterns and the temperature fields are presented in the most inner and outer spherical gaps. Convection is driven by the temperature difference between the inner and outer spheres and a gravitational field wich varies like r and 1 /r2 . The fluid equations are solved by using the spectral element method (SEM). The mesh is generated by using the cubed-sphere algorithm to avoid the singularity at the poles. To the knowledge of the autors the convection-conduction-convection problem presented in this paper has not been investigated previously. Acknowledgment: DGAPA-PAPIIT Project: IN117314-3.

  7. Feasibility study for use of the natural convection shutdown heat removal test facility (NSTF) for VHTR water-cooled RCCS shutdown.

    SciTech Connect

    Tzanos, C.P.; Farmer, M.T.; Nuclear Engineering Division

    2007-08-31

    -normal operating conditions. The standpipes are headered (in groups of four in the prototype) to water supply (header) tanks that are situated well above the reactor vessel to facilitate natural convection cooling during a loss of forced flow event. During normal operations, the water is pumped from a heat sink located outside the containment to the headered inlets to the standpipes. The water is then delivered to each standpipe through a centrally located downcomer that passes the coolant to the bottom of each pipe. The water then turns 180{sup o} and rises up through the annular gap while extracting heat from the reactor cavity due to a combination of natural convection and radiation across the gap between the reactor vessel and standpipes. The water exits the standpipes at the top where it is headered (again in groups of four) into a return line that passes the coolant to the top of the header tank. Coolant is drawn from each tank through a fitting located near the top of the tank where it flows to the heat rejection system located outside the containment. This completes the flow circuit for normal operations. During off-normal conditions, forced convection water cooling in the RCCS is presumed to be lost, as well as the ultimate heat sink outside the containment. In this case, water is passively drawn from an open line located at the bottom of the header tank. This line is orificed so that flow bypass during normal operations is small, yet the line is large enough to provide adequate flow during passive operations to remove decay heat while maintaining acceptable fuel temperatures. In the passive operating mode, water flows by natural convection from the bottom of the supply tank to the standpipes, and returns through the normal pathway to the top of the tanks. After the water reaches saturation and boiling commences, steam will pass through the top of the tanks and be vented to atmosphere. In the experiment system shown in Fig. 4, a steam condensation and collection system is

  8. POWER GENERATION USING MEGNETOHYDRODYNAMIC GENERATOR WITH A CIRCULATION FLOW DRIVEN BY SOLAR-HEAT-INDUCED NATURAL CONVECTION

    EPA Science Inventory

    The project team has theoretically studied the mechanism of magnetohydrodynamic generator, the coupling of heat transfer and buoyancy-driven free convection, and radiation heat transfer. A number of ideas for the projects have been brainstormed in the team. The underline physi...

  9. Unsteady laminar mixed convection boundary layer flow near a vertical wedge due to oscillations in the free-stream and surface temperature

    NASA Astrophysics Data System (ADS)

    Roy, N. C.; Hossain, Md. A.; Hussain, S.

    2016-02-01

    The unsteady laminar boundary layer characteristics of mixed convection flow past a vertical wedge have been investigated numerically. The free-stream velocity and surface temperature are assumed to be oscillating in the magnitude but not in the direction of the oncoming flow velocity. The governing equations have been solved by two distinct methods, namely, the straightforward finite difference method for the entire frequency range, and the extended series solution for low frequency range and the asymptotic series expansion method for high frequency range. The results demonstrate the effects of the Richardson number, Ri, introduced to quantify the influence of mixed convection and the Prandtl number, Pr, on the amplitudes and phase angles of the skin friction and heat transfer. In addition, the effects of these parameters are examined in terms of the transient skin friction and heat transfer.

  10. Analysis of hazardous material releases due to natural hazards in the United States.

    PubMed

    Sengul, Hatice; Santella, Nicholas; Steinberg, Laura J; Cruz, Ana Maria

    2012-10-01

    Natural hazards were the cause of approximately 16,600 hazardous material (hazmat) releases reported to the National Response Center (NRC) between 1990 and 2008-three per cent of all reported hazmat releases. Rain-induced releases were most numerous (26 per cent of the total), followed by those associated with hurricanes (20 per cent), many of which resulted from major episodes in 2005 and 2008. Winds, storms or other weather-related phenomena were responsible for another 25 per cent of hazmat releases. Large releases were most frequently due to major natural disasters. For instance, hurricane-induced releases of petroleum from storage tanks account for a large fraction of the total volume of petroleum released during 'natechs' (understood here as a natural hazard and the hazardous materials release that results). Among the most commonly released chemicals were nitrogen oxides, benzene, and polychlorinated biphenyls. Three deaths, 52 injuries, and the evacuation of at least 5,000 persons were recorded as a consequence of natech events. Overall, results suggest that the number of natechs increased over the study period (1990-2008) with potential for serious human and environmental impacts. PMID:22329456

  11. Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2001-01-01

    Global simulations of the composition of and direct forcing due to aerosols containing natural and/or anthropogenic sulfate, nitrate, chloride, carbonate, ammonium, sodium, calcium, magnesium, potassium, black carbon, organic matter, silica, ferrous oxide, and aluminum oxide were carried out. Chloride and natural sulfate were found to be the most important natural aerosol constituents in the atmosphere in terms of solar plus thermal-infrared forcing. Sea spray was the most important natural aerosol type, indicating that it should be accounted for in weather and climate calculations. Ammonium was found to have a positive direct forcing, since it reduces water uptake in sulfate-containing solutions; thus, anthropogenic ammonium contributes to global warming. The magnitudes of ammonium and nitrate forcing were smaller than those of chloride or sulfate forcing. When organics were divided into three groups with different assumed UV absorption characteristics, total aerosol direct forcing at the tropopause increased by about +0.03 to +0.05 W m-2 (direct forcing by organics remained negative), suggesting that UV absorption by organics is a nontrivial component of the global energy balance. Gypsum [CaSO4-2H2O], sal ammoniac [NH4Cl], halite [NaCl], halite, and nitrum [KNO3] were estimated to be the most common sulfate-, ammonium-, sodium-, chloride-, and nitrate-containing solid-phase aerosol constituents, respectively, in the global atmosphere. Solid formation in aerosols was found to increase total-aerosol direct forcing by +0.03 to +0.05 W m-2. Spatial and vertical forcing estimates, sensitivities of forcing to relative humidity and concentration, and estimates of global aerosol liquid water content are given. Modeled aerosol optical properties are compared with satellite and field measurements.

  12. Imbalance of Nature due to Contaminant Loads in the Culiacan River Watershed, Sinaloa, México

    NASA Astrophysics Data System (ADS)

    García Páez, F.; Ley-Aispuro, E.

    2013-05-01

    The Culiacan River discharges runoff from a large agricultural watershed into the wetlands at Ensenada de Pabellones ranked as a priority marine region of Mexico due to its high biodiversity and the economic importance of its fishing resources. This research estimated potential contaminant loads for BOD5, TSS, N and P from stormwater runoff and associated land use in the watershed. Previous studies had demonstrated the imbalance of nature due to land use change causing contamination by heavy metals, pesticides, sediment, phosphorus and eutrophication (Lopez and Osuna, 2002; Green and Paez, 2004, Gonzalez et al., 2006; Osuna et al., 2007). The methodology included: Characterizing the watershed according to land use, soil, vegetation, annual runoff and population density by sub-watershed; estimating the potential contaminant load and annual average concentrations of contaminants using the PLOAD program, comparing the result with monitored contaminant concentrations; and identifying the impact of pollutant loads in the watershed and coastal ecosystems and proposing management strategies to reduce or reverse the imbalance of nature caused by contamination in the Culiacan River watershed. Calculated contaminant loads in tonne/year were 13,682.4 of BOD5; 503,621.8 of TSS; 5,975.7 of N and 1,789.1 of P. The Tamazula and Humaya rivers watersheds provide 72% of the total load of BOD5, 68.5% of TSS, 77.6% of N and 62.7% of P discharged to the wetlands. Monitored results include: 89% of temperature observations were above 21°C, which is stressful to aquatic life due to a subsequent decrease in dissolved oxygen; 100% of the observations of P exceeded the ecological criteria for water quality; 71.5% of the observations for DO from 2001 to 2011, were above the ecological criteria for protection of aquatic life and 91.5% met the criteria for use in drinking water; 100% of the observations for BOD5 values remained in the range of Excellent to Good; 22% of the observations for the

  13. OBSERVATIONS OF TRANSPORT OF TRACE GASES BY VIGOROUS CONVECTIVE CLOUDS

    EPA Science Inventory

    Cumulus convective clouds provide an important link between the mixed layer and the upper levels of the troposphere. resh boundary layer pollutants emitted naturally and anthropogenically can be transported to high altitudes during deep convective activity. he convective transpor...

  14. Micro-gravity: Superconducting coils for crystal growth. Influence of the levitation force on natural convection in the fluid

    NASA Astrophysics Data System (ADS)

    Quettier, L.; Vincent-Viry, O.; Mailfert, A.; Juster, F. P.

    2003-04-01

    This paper presents a novel design of superconducting coils able to generate a micro-gravity environment for protein crystal growth in aqueous solution. The structures have been calculated thanks to a method for “inverse source synthesis problem" developed at the GREEN Choice of the angular offset between the directions of magnetic force field and magnetic field in the working area as well as convection phenomena are also studied.

  15. The 5 key questions coping with risks due to natural hazards, answered by a case study

    NASA Astrophysics Data System (ADS)

    Hardegger, P.; Sausgruber, J. T.; Schiegg, H. O.

    2009-04-01

    Based on Maslow's hierarchy of needs, human endeavours concern primarily existential needs, consequently, to be safeguarded against both natural as well as man made threads. The subsequent needs are to realize chances in a variety of fields, as economics and many others. Independently, the 5 crucial questions are the same as for coping with risks due to natural hazards specifically. These 5 key questions are I) What is the impact in function of space and time ? II) What protection measures comply with the general opinion and how much do they mitigate the threat? III) How can the loss be adequately quantified and monetized ? IV) What budget for prevention and reserves for restoration and compensation are to be planned ? V) Which mix of measures and allocation of resources is sustainable, thus, optimal ? The 5 answers, exemplified by a case study, concerning the sustainable management of risk due to the debris flows by the Enterbach / Inzing / Tirol / Austria, are as follows : I) The impact, created by both the propagation of flooding and sedimentation, has been forecasted by modeling (numerical simulation) the 30, 50, 100, 150, 300 and 1000 year debris flow. The input was specified by detailed studies in meteorology, precipitation and runoff, in geology, hydrogeology, geomorphology and slope stability, in hydraulics, sediment transport and debris flow, in forestry, agriculture and development of communal settlement and infrastructure. All investigations were performed according to the method of ETAlp (Erosion and Transport in Alpine systems). ETAlp has been developed in order to achieve a sustainable development in alpine areas and has been evaluated by the research project "nab", within the context of the EU-Interreg IIIb projects. II) The risk mitigation measures of concern are in hydraulics at the one hand and in forestry at the other hand. Such risk management is evaluated according to sustainability, which means economic, ecologic and social, in short, "triple

  16. Transient natural and surface-tension-driven convection in a two-layer gas-and-liquid enclosure with nonuniform radiative transfer

    NASA Technical Reports Server (NTRS)

    Abramzon, B.; Edwards, D. K.; Sirignano, W. A.

    1986-01-01

    A numerical study has been made of transient heat transfer and fluid flow in a cylindrical enclosure containing a two-layer gas-and-liquid system. The geometric configuration and the boundary conditions of the problem are relevant to the analysis of the preignition processes during the fire accident situation involving a pool of liquid fuel in the vicinity of an ignition source. It is demonstrated that the effects of the natural and thermocapillary convection, radiative transfer, thermal inertia and conduction of the walls bounding the enclosure, as well as, the magnitude of the gravity field play important roles in the development of the temperature and velocity fields in the container.

  17. Predicting natural-convection-dominated phase change problems by control volume unstructured triangular grid: Applications to the melting of pure metal

    SciTech Connect

    Hong, Z.C.; Liou, J.H.

    1998-02-20

    Control volume methods have recently been developed for fluid flow and heat transfer on unstructured meshes. In this study, the authors extend these methods to implement the solution of natural-convection-dominated melting of gallium by a fixed-grid method. A simple, robust, and reliable explicit numerical method (MAC method) is applied for an unstructured triangular grid. This investigation also applies the implicit SIMPLER method for an unstructured triangular grid. Results obtained from the unstructured triangular grid correlate well with the structured mesh computations and experimental data. Also, the feasibility of applying the triangular grid to complex geometric problems is demonstrated by calculating two different triangular domains.

  18. Effect of the buoyancy force on natural convection in a cubical cavity with a heat source of triangular cross-section

    NASA Astrophysics Data System (ADS)

    Gibanov, N. S.; Sheremet, M. A.

    2016-04-01

    Numerical analysis of laminar natural convection inside a cubical cavity with a local heat source of triangular cross-section has been conducted. The mathematical model formulated in dimensionless variables such as "vector potential functions - vorticity vector" has been solved by the finite difference method of the second order accuracy. The three-dimensional temperature fields, 2D streamlines and isotherms in a wide range of the Rayleigh number from 104 to 106 have been presented illustrating variations of the fluid flow and heat transfer.

  19. External exposure doses due to gamma emitting natural radionuclides in some Egyptian building materials.

    PubMed

    Moharram, B M; Suliman, M N; Zahran, N F; Shennawy, S E; El Sayed, A R

    2012-01-01

    Using of building materials containing naturally occurring radionuclides as (238)U, (232)Th and (40)K and their progeny results in an external exposures of the housing of such buildings. In the present study, indoor dose rates for typical Egyptian rooms are calculated using the analytical method and activity concentrations of natural radionuclides in some building materials. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling assumed. Different room models are assumed to discuss variation of indoor dose rates according to variation in room construction. Activity concentrations of (238)U, (232)Th and (40)K content in eight samples representative Clay soil and different building materials used in most recent Egyptian building were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The specific activity for (238)U, (232)Th and (40)K, from the selected samples, were in the range 14.15-60.64, 2.75-84.66 and 7.35-554.4Bqkg(-1), respectively. The average indoor absorbed dose rates in air ranged from 0.005μGyh(-1) to 0.071μGyh(-1) and the corresponding population-weighted annual effective dose due to external gamma radiation varies from 0.025 to 0.345mSv. An outdoor dose rate for typical building samples in addition to some radiological hazards has been introduced for comparison. PMID:21839645

  20. Temporal Variation in Natural Methane Seep Rate Due to Tides, Coal Oil Point Area, California

    NASA Astrophysics Data System (ADS)

    Boles, J. R.; Clark, J. F.; Leifer, I.; Washburn, L.

    2001-12-01

    Two large steel tents (each 30m by 30m) open at the bottom to the sea floor, capture about 16,800 m{3{ day -1 (594 MCF) of primarily methane from a large natural hydrocarbon seep, occurring a kilometer offshore in 67m of water. Hourly monitoring for 9 months shows the tidal forcing causes the flow rate to vary by 4-7% around the mean. These results are the first quantitative documentation of the effect of tides on natural gas seepage in relatively deep water. High tide correlates with reduced flow, low tide correlates with increased flow. The correlation indicates that each meter increase of sea height results in a decrease of 10 to 15 m3 hr-1 or 1.5 to 2.2% of the hourly flow rate. The observed cahnges are best accounted for by a pore activation mechanism, whereby gas is released from small pores at low pressure but is inhibited at higher pressure. Pressure dependent gas solubility changes are a less likely cause of flow variation. Our study implies that sea level differences, on a tidal time scale, can significantly change the gas seepage rate from sediments. Lower sea level in the last hundred thousand years would presumably allow higher gas loss from the sediment, assuming sufficient gas present, due to reduced hudrostatic pressure at the sediment-sea interface. The magnitude of this long term change cannot be extrapolated from our tidal data.

  1. Estimation of collective effective dose due to natural background radiation in Egypt

    NASA Astrophysics Data System (ADS)

    Henaish, B. A.; Tawfik, A. A.; Abu Zaid, H.; Gomaa, M. A.

    1994-07-01

    During the last few years, worldwide attention has been directed towards the estimation of natural background radiation levels. Several environmental monitoring networks have been established for systematic data collection and exchange of information.In the present study, measurements of annual effective dose from terrestrial γ-rays are carried out at pre-selected sites within several Egyptian governorates by using a calibrated gas-filled GM-detector connected to a microcomputer system. Contribution of the secondary cosmic-rays, which is of prime importance at sea level, is achieved by carrying out computation based on theoretical considerations.Terrestrial effective dose in Egypt is found to be between 106 and 371 μSv/yr, meanwhile the computed cosmic rays contribution is 260-296 μSv/yr. Accordingly, the annual collective effective dose due to natural background radiation is about 27,253 Man Sv for the last Egyptian population count (1989) considering 0.8 and 0.2 indoor and outdoor occupancy factors.

  2. Development of heterogeneity in proppant distribution due to engineered and natural processes during hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Morris, J.; Roy, P.; Walsh, S.

    2015-12-01

    Proppant, such as sand, is injected during hydraulic fracturing to maintain fracture aperture and conductivity. Proppant performance is a complex result of fluid flow, discrete particle mechanics and geomechanical deformation. We present investigations into these phenomena at scales ranging from millimeters to meters. Traditionally, the design goal for proppant placement is uniform distribution by using viscous carrier fluids that keep the proppant suspended and maintain conductivity over the full area of the fracture. Large volume hydraulic fracturing in shales typically use low viscosity fluids, resulting in proppant settling out from the carrier fluid. Consequently, the proppant occupies the lower portion of the fracture. In addition, many shale plays host natural fractures that take up injected carrier fluid, but may not develop sufficient aperture to accommodate proppant. We present simulations investigating natural development of heterogeneity in proppant distribution within fracture networks due to settling and network flow. In addition to natural development of heterogeneity, the petroleum industry has sought to engineer heterogeneity to generate isolated propped portions of the fracture that maintain aperture in adjacent, open channels. We present two examples of such heterogeneous proppant placement (HPP) technologies. The first involves pulsating proppant at the wellhead and the second utilizes a homogenous composite fluid that develops heterogeneity spontaneously through hydrodynamic instabilities. We present simulation results that compare these approaches and conclude that spontaneous creation of heterogeneity has distinct geomechanical advantages. Finally, we present simulations at the scale of individual proppant particles that emphasize the complexity of dynamic instabilities and their influence upon proppant fate. Disclaimer: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under

  3. Thermodynamics of convective circulations

    NASA Astrophysics Data System (ADS)

    Adams, D. K.; Renno, N. O.

    2003-04-01

    The heat engine framework has proven successful for studies of atmospheric phenomena ranging from small to large scales. At large scales, the heat engine framework provides estimates of convective available potential energy, convective velocities, and fractional area covered by convection. At the smaller end of the spectrum, the framework provides estimates of the intensity of convective vortices such as dust devils and waterspouts. The heat engine framework sheds light on the basic physics of planetary atmospheres. In particular, it allows the calculation of their thermodynamic efficiency. Indeed, this is a fundamental number for atmospheric circulations because it quantifies the amount of heat that is converted into kinetic energy. As such, it is a valuable number not only for comparison of models with nature, but also for the intercomparison of models. In the present study, we generalize the heat engine framework to large-scale circulations, both open (e.g., the Hadley circulation) and closed (e.g., the general circulation) and apply it to an idealized global climate model to ascertain the thermodynamic efficiency of model circulations, both global and regional. Our results show that the thermodynamic efficiency is sensitive to model resolution and provides a baseline for minimum model resolution in climate studies. The value of the thermodynamic efficiency of convective circulations in nature is controversial. It has been suggested that both nature and numerical models are extremely irreversible. We show that both the global and the Hadley circulation of the idealized model are, to a first approximation, reversible.

  4. Application of Karhunen-Loève Expansions for the Dynamic Analysis of a Natural Convection Loop for Known Heat Flux

    NASA Astrophysics Data System (ADS)

    Hummel, Tobias; Pacheco-Vega, Arturo

    2012-11-01

    In the present study we use Karhunen-Loève (KL) expansions to model the dynamic behavior of a single-phase natural convection loop. The loop is filled with an incompressible fluid that exchanges heat through the walls of its toroidal shape. Influx and efflux of energy take place at different parts of the loop. The focus here is a sinusoidal variation of the heat flux exchanged with the environment for three different scenarios; i.e., stable, limit cycles and chaos. For the analysis, one-dimensional models, in which the tilt angle and the amplitude of the heat flux are used as parameters, were first developed under suitable assumptions and then solved numerically to generate the data from which the KL-based models could be constructed. The method of snapshots, along with a Galerkin projection, was then used to find the basis functions and corresponding constants of each expansion, thus producing the optimal representation of the system. Results from this study indicate that the dimension of the KL-based dynamical system depends on the linear stability of the steady states; the number of basis functions necessary to describe the system increases with increased complexity of the system operation. When compared to typical dynamical systems based on Fourier expansions the KL-based models are, in general, more compact and equally accurate in the dynamic description of the natural convection loop.

  5. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)

    SciTech Connect

    Lisowski, D. D.; Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Bremer, N.; Aeschlimann, R. W.

    2014-06-01

    The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m2 to accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.

  6. Probabilistic Forecasting of Life and Economic Losses due to Natural Disasters

    NASA Astrophysics Data System (ADS)

    Barton, C. C.; Tebbens, S. F.

    2014-12-01

    The magnitude of natural hazard events such as hurricanes, tornadoes, earthquakes, and floods are traditionally measured by wind speed, energy release, or discharge. In this study we investigate the scaling of the magnitude of individual events of the 20th and 21stcentury in terms of economic and life losses in the United States and worldwide. Economic losses are subdivided into insured and total losses. Some data sets are inflation or population adjusted. Forecasts associated with these events are of interest to insurance, reinsurance, and emergency management agencies. Plots of cumulative size-frequency distributions of economic and life loss are well-fit by power functions and thus exhibit self-similar scaling. This self-similar scaling property permits use of frequent small events to estimate the rate of occurrence of less frequent larger events. Examining the power scaling behavior of loss data for disasters permits: forecasting the probability of occurrence of a disaster over a wide range of years (1 to 10 to 1,000 years); comparing losses associated with one type of disaster to another; comparing disasters in one region to similar disasters in another region; and, measuring the effectiveness of planning and mitigation strategies. In the United States, life losses due to flood and tornado cumulative-frequency distributions have steeper slopes, indicating that frequent smaller events contribute the majority of losses. In contrast, life losses due to hurricanes and earthquakes have shallower slopes, indicating that the few larger events contribute the majority of losses. Disaster planning and mitigation strategies should incorporate these differences.

  7. On the double diffusive convection flow of Eyring-Powell fluid due to cone through a porous medium with Soret and Dufour effects

    NASA Astrophysics Data System (ADS)

    Khan, Najeeb Alam; Sultan, Faqiha

    2015-05-01

    This paper devotedly study the double diffusive Darcian convection flow of Eyring-Powell fluid from a cone embedded in a homogeneous porous medium with the effects of Soret and Dufour. Arising set of non-linear partial differential equations are transformed through a suitable self-similar transformation into a set of nonlinear ordinary differential equations. Further, the numerical and the analytical solutions of the governing equations are elucidated by using numerical method as well as non-perturbation scheme. Numerical values are presented through tables for the skin friction coefficients, Nusselt number and Sherwood number. The obtained results are validated by comparing the analytical results with previously published results obtained by bvp4c for the numerical values of physical quantities. The effect of various parameters on the velocity, temperature and concentration profiles is discussed and also shown graphically.

  8. Assessment of doses and risk due to natural radionuclides in edible biota of Domiasiat, Meghalaya.

    PubMed

    Kumar, N; Chaturvedi, S S; Jha, S K

    2012-07-01

    A radiation dose assessment exercise was carried out for the edible biota Solanum nigrum, Carica papaya, Raphnus sativum and Phaseolus domesticus due to naturally available radionuclides (40)K, (238)U and (232)Th in the Domiasiat area in Meghalaya, India. The concentration of radionuclides in biota and corresponding soil was measured by the NaI(Tl) detector having a minimum detection limit (efficiency, 32.4%) and machine counting time of 3000 s. The obtained transfer factor for (40)K was 0.3061, 0.7163, 0.1988 and 0.1279, for (232)Th 0.0003, 2.22E-05, 2.71E-05 and 3.45E-05 and for (238)U 1.46E-05, 9.73E-05, 1.46E-05 and 3.11E-05 (ratio) in each biota, respectively. The detailed physiological and morphological study of the biota was carried out. The point source dose distribution (source↔target) hypothesis was applied for the radiation absorbed fraction. The generated data were modelled using FASSET and obtained un-weighted total dose was 1.78E-04, 6.84E-03, 8.46E-03 and 1.73E-04 μGy h(-1), respectively, finally compared with the IAEA and UNSCEAR data set for screening level dose risk assessment. PMID:22155750

  9. Changes in Seismic Response of the Natural Resources Building, Olympia, WA Due to Earthquake Shaking

    NASA Astrophysics Data System (ADS)

    Bodin, P.; Vidale, J. E.; Walsh, T.; Cakir, R.; Celebi, M.

    2008-12-01

    The Natural Resources Building (NRB) in Olympia was shaken by three earthquakes (Mw=5.8, 6.8, and 5.0) between 1999 and 2001. Building motions were recorded on digital accelerographs, which comprise one of the best dense digital recordings to date of repeated strong shaking an a building. N-S motions dominate the fundamental mode of vibration of the building. In the 1999 earthquake, the frequency of this fundamental mode was 1.3Hz during motions of 10%g. The frequency dropped to 0.7Hz during the 2001 Nisqually strong motions, in which the strongest shaking included high-frequency transients of up to 0.18 g, several of which are visible on widely spaced stations. The weaker 2001 Satsop earthquake motions showed the frequency remained depressed at less than 1Hz for the eastern side of the structure, although the western side had recovered to 1.3Hz. An ambient noise survey in 2008 showed the fundamental frequency of N/S vibrations remains about 1.0Hz for the eastern side of the building and 1.3Hz for the western side. These results suggest that in the Nisqually earthquake, the east side of the NRB suffered a permanent reduction in fundamental mode frequency of 37% due to loss of stiffness by undetermined mechanism.

  10. Boundary-layer receptivity due to distributed surface imperfections of a deterministic or random nature

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1992-01-01

    Acoustic receptivity of a Blasius boundary layer in the presence of distributed surface irregularities is investigated analytically. It is shown that, out of the entire spatial spectrum of the surface irregularities, only a small band of Fourier components can lead to an efficient conversion of the acoustic input at any given frequency to an unstable eigenmode of the boundary layer flow. The location, and width, of this most receptive band of wavenumbers corresponds to a relative detuning of O(R sub l.b.(exp -3/8)) with respect to the lower-neutral instability wavenumber at the frequency under consideration, R sub l.b. being the Reynolds number based on a typical boundary-layer thickness at the lower branch of the neutral stability curve. Surface imperfections in the form of discrete mode waviness in this range of wavenumbers lead to initial instability amplitudes which are O(R sub l.b.(exp 3/8)) larger than those caused by a single, isolated roughness element. In contrast, irregularities with a continuous spatial spectrum produce much smaller instability amplitudes, even compared to the isolated case, since the increase due to the resonant nature of the response is more than that compensated for by the asymptotically small band-width of the receptivity process. Analytical expressions for the maximum possible instability amplitudes, as well as their expectation for an ensemble of statistically irregular surfaces with random phase distributions, are also presented.

  11. Imbalance of Nature due to Anthropogenic Activities in the Bay of Bacorehuis, Sinaloa, Mexico

    NASA Astrophysics Data System (ADS)

    Torrecillas Nunez, C.; Cárdenas Cota, H.

    2013-05-01

    Pollution is further enhancing water scarcity by reducing water usability downstream, globally the most prevalent water quality problem is eutrophication, a result of high-nutrient loads, which substantially impairs beneficial uses of water. Projected food production needs and increasing wastewater effluents associated with an increasing population over the next three decades suggest a 10%-15% increase in the river input of nitrogen loads into coastal ecosystems (UNO, 2009). Our study in the Bay of Bacorehuis in the State of Sinaloa, which was carried out due to a request from local fishermen who wanted to find out the reason for fishing stocks depletion, confirmed this trend with the consequent imbalance of nature. Sinaloa depends heavily on intensive agricultural production to support its economy which in turn relies on water irrigation and the application of agro-chemicals. The research project included a desk top study of geophysical and environmental factors as well as sampling and testing of the water. In addition we carried out socio-economic research to find out the impact on the local community of the imbalance caused by anthropogenic activities in the watershed upstream from the Bay. Our research established that the Bay of Bacorehuis is contaminated by organic matter, bacteria coliforms, pesticides and mercury due to the discharge of surplus runoff generated by irrigation of farmlands into drainage networks as well as the discharge of untreated industrial and domestic wastewater form more than 24,000 inhabitants. The main contaminants detected in the water bodies were organic matter, faecal coliforms, mercury, dimethoate, endosulfan, heptachlor, DDE, DDT, organonitrogen, synthetic pyrethroid, chlorothalonil, ethion, endosulfan, diazinon, malathion and chlorpyrifos. Contaminants in sediments included the pesticides endosulfan, heptachlor, DDE, DDT, organophosphates, organonitrogen and synthetic pyrethroids. Natural water courses have been highly modified

  12. Rotating convection in elliptical geometries

    NASA Astrophysics Data System (ADS)

    Evonuk, M.

    2014-12-01

    Tidal interactions between hot jupiter planets and their host stars are likely to result in non-spherical geometries. These elliptical instabilities may have interesting effects on interior fluid convective patterns, which in turn influence the nature of the magnetic dynamo within these planets. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine to first order the effect of ellipticity on convection for varying density contrasts with differing convective vigor and rotation rate. This survey is conducted in two dimensions in order to simulate a broad range of ellipticities and to maximize the parameter space explored.

  13. Double multiple-relaxation-time lattice Boltzmann model for solid-liquid phase change with natural convection in porous media

    NASA Astrophysics Data System (ADS)

    Liu, Qing; He, Ya-Ling

    2015-11-01

    In this paper, a double multiple-relaxation-time lattice Boltzmann model is developed for simulating transient solid-liquid phase change problems in porous media at the representative elementary volume scale. The model uses two different multiple-relaxation-time lattice Boltzmann equations, one for the flow field and the other for the temperature field with nonlinear latent heat source term. The model is based on the generalized non-Darcy formulation, and the solid-liquid interface is traced through the liquid fraction which is determined by the enthalpy-based method. The present model is validated by numerical simulations of conduction melting in a semi-infinite space, solidification in a semi-infinite corner, and convection melting in a square cavity filled with porous media. The numerical results demonstrate the efficiency and accuracy of the present model for simulating transient solid-liquid phase change problems in porous media.

  14. Analysis of Radiation-natural Convection Interactions in 1-g and low-g Environments using the Discrete Exchange Factor Method

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Naraghi, M. H. N.

    1993-01-01

    A new numerical method is presented for the analysis of combined natural convection and radiation heat transfer with applications in many engineering situations such as materials processing, combustion and fire research. Because of the recent interest in the low gravity environment of space, attention is devoted to both 1-g and low-g applications. The two-dimensional mathematical model is represented by a set of coupled nonlinear integro-partial differential equations. Radiative exchange is formulated using the Discrete Exchange Factor method (DEF). This method considers point to point exchange and provides accurate results over a wide range of radiation parameters. Numerical results show that radiation significantly influences the flow and heat transfer in both low-g and 1-g applications. In the low-g environment, convection is weak, and radiation can easily become the dominant heat transfer mode. It is also shown that volumetric heating by radiation gives rise to an intricate cell pattern in the top heated enclosure.

  15. Supergranular Convection

    NASA Astrophysics Data System (ADS)

    Udayashankar, Paniveni

    2015-12-01

    Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Here the opacity is so large that heat flux transport is mainly by convection rather than by photon diffusion. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection , Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni

  16. Numerical study of entropy generation due to coupled laminar and turbulent mixed convection and thermal radiation in an enclosure filled with a semitransparent medium.

    PubMed

    Goodarzi, M; Safaei, M R; Oztop, Hakan F; Karimipour, A; Sadeghinezhad, E; Dahari, M; Kazi, S N; Jomhari, N

    2014-01-01

    The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (10⁴) and turbulent flow (10⁸). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible. PMID:24778601

  17. Numerical Study of Entropy Generation due to Coupled Laminar and Turbulent Mixed Convection and Thermal Radiation in an Enclosure Filled with a Semitransparent Medium

    PubMed Central

    Goodarzi, M.; Safaei, M. R.; Oztop, Hakan F.; Karimipour, A.; Sadeghinezhad, E.; Dahari, M.; Kazi, S. N.; Jomhari, N.

    2014-01-01

    The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (104) and turbulent flow (108). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible. PMID:24778601

  18. Combined effects of suction/injection and wall surface curvature on natural convection flow in a vertical micro-porous annulus

    NASA Astrophysics Data System (ADS)

    Jha, B. K.; Aina, B.; Muhammad, S. A.

    2015-03-01

    This study investigates analytically the hydrodynamic and thermal behaviour of a fully developed natural convection flow in a vertical micro-porous-annulus (MPA) taking into account the velocity slip and temperature jump at the outer surface of inner porous cylinder and inner surface of outer porous cylinder. A closed — form solution is presented for velocity, temperature, volume flow rate, skin friction and rate of heat transfer expressed as a Nusselt number. The influence of each governing parameter on hydrodynamic and thermal behaviour is discussed with the aid of graphs. During the course of investigation, it is found that as suction/injection on the cylinder walls increases, the fluid velocity and temperature is enhanced. In addition, it is observed that wall surface curvature has a significant effect on flow and thermal characteristics.

  19. Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection.

    PubMed

    Jeong, Y; Baek, S; Dupriez, P; Maran, J-N; Sahu, J K; Nilsson, J; Lee, B

    2008-11-24

    We investigate the thermal characteristics of a polymer-clad fiber laser under natural convection when it is strongly pumped up to the damage point of the fiber. For this, we utilize a temperature sensing technique based on a fiber Bragg grating sensor array. We have measured the longitudinal temperature distribution of a 2.4-m length ytterbium-sensitized erbium-doped fiber laser that was end-pumped at approximately 975 nm. The measured temperature distribution decreases exponentially, approximately, decaying away from the pump-launch end. We attribute this to the heat dissipation of absorbed pump power. The maximum temperature difference between the fiber ends was approximately 190 K at the maximum pump power of 60.8 W. From this, we estimate that the core temperature reached approximately 236 degrees C. PMID:19030073

  20. Nonlinear Radiation Heat Transfer Effects in the Natural Convective Boundary Layer Flow of Nanofluid Past a Vertical Plate: A Numerical Study

    PubMed Central

    Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir

    2014-01-01

    The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge–Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter. PMID:25251242

  1. Non-Darcy natural convection from a vertical plate with a uniform wall temperature and concentration in a doubly stratified porous medium

    NASA Astrophysics Data System (ADS)

    Srinivasacharya, D.; Surender, O.

    2015-07-01

    In this paper, non-similarity solutions for natural convection heat and mass transfer along a vertical plate with a uniform wall temperature and concentration in a doubly stratified porous medium saturated by a fluid are obtained. The Darcy-Forchheimer-based model is employed to describe the flow in the porous medium. The nonlinear governing equations and their associated boundary conditions are initially cast into dimensionless forms by using pseudo-similarity variables. The resulting system of nonlinear partial differential equations is then solved numerically by using the Keller-box method. The effects of the buoyancy parameter, Forchheimer number, and thermal and solutal stratification parameters on the dimensionless velocity, temperature, concentration, and heat and mass transfer coefficients are studied.

  2. Natural convection in a horizontal cylindrical annulus filled with a porous medium saturated by a nanofluid using Tiwari and Das' nanofluid model

    NASA Astrophysics Data System (ADS)

    Sheremet, M. A.; Pop, Ioan

    2015-06-01

    This paper deals with a numerical study of natural convection flow and heat transfer inside a concentric horizontal annulus filled with a porous medium saturated by a cuprum (Cu)-water nanofluid. The inner and outer cylinders are kept at different constant temperatures. First, the governing partial differential equations in dimensional formulation in a polar coordinate system for the physical domain are transformed in dimensionless form in terms of stream function-temperature formulation. These equations along with the corresponding boundary conditions were solved numerically by the finite difference method. Particular efforts have been focused on the effects of the Rayleigh number, porosity of the porous medium, solid volume fraction parameter of nanoparticles, annulus radius ratio, and the solid matrix of the porous medium (glass balls and aluminum foam) on the local and average Nusselt numbers, streamlines and isotherms. It is found that a very good agreement exists between the present results and those from the open literature.

  3. A heat exchanger between forced flow helium gas at 14 to 18 K andliquid hydrogen at 20 K circulated by natural convection

    SciTech Connect

    Green, M.A.; Ishimoto, S.; Lau, W.; Yang, S.

    2003-09-15

    The Muon Ionization Cooling Experiment (MICE) has three 350-mm long liquid hydrogen absorbers to reduce the momentum of 200 MeV muons in all directions. The muons are then re-accelerated in the longitudinal direction by 200 MHz RF cavities. The result is cooled muons with a reduced emittance. The energy from the muons is taken up by the liquid hydrogen in the absorber. The hydrogen in the MICE absorbers is cooled by natural convection to the walls of the absorber that are in turn cooled by helium gas that enters at 14 K. This report describes the MICE liquid hydrogen absorber and the heat exchanger between the liquid hydrogen and the helium gas that flows through passages in the absorber wall.

  4. Study of turbulent natural convection in a tall differentially heated cavity filled with either non-participating, participating grey and participating semigrey media

    NASA Astrophysics Data System (ADS)

    Capdevila, R.; Lehmkuhl, O.; Colomer, G.; Perez-Segarra, C. D.

    2012-11-01

    Turbulent natural convection in a tall differentially heated cavity of aspect ratio 5:1, filled with air under a Rayleigh number based on the height of 4.5·1010 is studied numerically. Three different situations have been analysed. In the first one, the cavity is filled with a transparent medium. In the second one, the cavity is filled with a semigrey participating mixture of air and water vapour. In the last one the cavity contains a grey participating gas. The turbulent flow is described by means of Large Eddy Simulation (LES) using symmetry-preserving discretizations. Simulations are compared with experimental data available in the literature and with Direct Numerical Simulations (DNS). Surface and gas radiation have been simulated using the Discrete Ordinates Method (DOM). The influence of radiation on fluid flow behaviour has been analysed.

  5. Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: a numerical study.

    PubMed

    Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir

    2014-01-01

    The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge-Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter. PMID:25251242

  6. Influence of non steady gravity on natural convection during micro-gravity solidification of semiconductors. I - Time scale analysis. II - Implications for crystal growth experiments

    NASA Technical Reports Server (NTRS)

    Griffin, P. R.; Motakef, S.

    1989-01-01

    Consideration is given to the influence of temporal variations in the magnitude of gravity on natural convection during unidirectional solidification of semiconductors. It is shown that the response time to step changes in g at low Rayleigh numbers is controlled by the momentum diffusive time scale. At higher Rayleigh numbers, the response time to increases in g is reduced because of inertial effects. The degree of perturbation of flow fields by transients in the gravitational acceleration on the Space Shuttle and the Space Station is determined. The analysis is used to derive the requirements for crystal growth experiments conducted on low duration low-g vehicles. Also, the effectiveness of sounding rockets and KC-135 aircraft for microgravity experiments is examined.

  7. Active control of convection

    SciTech Connect

    Bau, H.H.

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  8. Comparative Analysis of Natural Convection Flows Simulated by both the Conservation and Incompressible Forms of the Navier-Stokes Equations in a Differentially-Heated Square Cavity

    SciTech Connect

    Richard C. Martineau; Ray A. Berry; Aurélia Esteve; Kurt D. Hamman; Dana A. Knoll; Ryosuke Park; William Taitano

    2009-01-01

    This report illustrates a comparative study to analyze the physical differences between numerical simulations obtained with both the conservation and incompressible forms of the Navier-Stokes equations for natural convection flows in simple geometries. The purpose of this study is to quantify how the incompressible flow assumption (which is based upon constant density advection, divergence-free flow, and the Boussinesq gravitational body force approximation) differs from the conservation form (which only assumes that the fluid is a continuum) when solving flows driven by gravity acting upon density variations resulting from local temperature gradients. Driving this study is the common use of the incompressible flow assumption in fluid flow simulations for nuclear power applications in natural convection flows subjected to a high heat flux (large temperature differences). A series of simulations were conducted on two-dimensional, differentially-heated rectangular geometries and modeled with both hydrodynamic formulations. From these simulations, the selected characterization parameters of maximum Nusselt number, average Nusselt number, and normalized pressure reduction were calculated. Comparisons of these parameters were made with available benchmark solutions for air with the ideal gas assumption at both low and high heat fluxes. Additionally, we generated body force, velocity, and divergence of velocity distributions to provide a basis for further analysis. The simulations and analysis were then extended to include helium at the Very High Temperature gas-cooled Reactor (VHTR) normal operating conditions. Our results show that the consequences of incorporating the incompressible flow assumption in high heat flux situations may lead to unrepresentative results. The results question the use of the incompressible flow assumption for simulating fluid flow in an operating nuclear reactor, where large temperature variations are present. The results show that the use of

  9. Comparison of Natural Convection Flows Under VHTR Type Conditions Modeled by both the Conservation and Incompressible Forms of the Navier-Stokes Equations

    SciTech Connect

    Richard C. Martineau; Ray A. Berry; Aur´elia Esteve; Kurt D. Hamman; Dana A. Knoll; Ryosuke Park; William Taitano

    2010-06-01

    This manuscript illustrates a comparative study to analyze the physical differences between numerical simulations obtained with both the conservation and incompressible forms of the Navier-Stokes equations for natural convection flows in simple geometries. The purpose of this study is to quantify how the incompressible flow assumption (which is based upon constant density advection, divergence-free flow, and the Boussinesq gravitational body force approximation) differs from the conservation form (which only assumes that the fluid is a continuum) when solving flows driven by gravity acting upon density variations resulting from local temperature gradients. Driving this study is the common use of the incompressible flow assumption in fluid flow simulations for nuclear power applications in natural convection flows subjected to a high heat flux (large temperature differences). A series of simulations were conducted on two-dimensional, differentially-heated rectangular geometries and modeled with both hydrodynamic formulations. From these simulations, the selected characterization parameters of maximum Nusselt number, average Nusselt number, and normalized pressure reduction were calculated. Comparisons of these parameters were made with available benchmark solutions for air with the ideal gas assumption at both low and high heat fluxes. Additionally, we generated specific force quantities and velocity and temperature distributions to provide a basis for further analysis. The simulations and analysis were then extended to include helium at the Very High Temperature gas-cooled Reactor (VHTR) normal operating conditions. Our results show that the consequences of incorporating the incompressible flow assumption in high heat flux situations may lead to unrepresentative results. The results question the use of the incompressible flow assumption for simulating fluid flow in an operating nuclear reactor, where large temperature variations are present.

  10. Natural convection mass transfer at a vertical array of closely-spaced horizontal cylinders with special reference to electrochemical reactor design

    SciTech Connect

    Sedahmed, G.H.; Nirdosh, I.

    1995-06-01

    Many industrial electrochemical processes such as electrowinning of metals, electrochemical pollution control, and electroorganic and electroinorganic syntheses are diffusion-controlled processes whose rates depend on the geometry of the working electrode as well as the prevailing hydrodynamic conditions. Recently much work has been done to develop new electrochemical reactors which are more efficient than the traditional parallel plate electrochemical reactor used in conducting such processes. In line with this, the object of the present work was to study the natural convection mass transfer behavior of a new electrode geometry, namely an array of closely-spaced horizontal tubes. Natural convection mass transfer at a vertical array of closely-spaced horizontal cylinders was studied by an electrochemical technique involving the measurement of the limiting current of the cathodic deposition of copper from acidified copper sulfate solution. Various combinations of solution concentration, cylinder diameter, and number of cylinders per array were used including experiments on single cylinders. The mass transfer coefficient at the array was found to decrease with increasing number of cylinders, pass through a minimum, and then increase with further increase in the number of cylinders per array; the mass transfer coefficient increased with increasing cylinder diameter in the array. Mass transfer data for different arrays were correlated for the range 6.3 {times} 10{sup 9} < ScGr < 3.63 {times} 10{sup 10} by the equation Sh = 0.455(ScGr){sup 0.25} and for the range 6.3 {times} 10{sup 10} < ScGr < 3.63 {times} 10{sup 12} by the equation Sh = 0.0064(ScGr){sup 0.42}. The characteristic length used in the above correlations was obtained by dividing the array area by the perimeter projected onto a horizontal plane. Practical implications of the present results in designing electrochemical reactors with heat transfer facilities are highlighted.

  11. Natural convection heat exchangers for solar water heating systems. Technical progress report, August 1, 1995--September 30, 1995

    SciTech Connect

    Davidson, J.H.

    1998-06-01

    The goals of this project are: (1) to develop guidelines for the design and use of thermosyphon side-arm heat exchangers in solar domestic water heating systems, and (2) to establish appropriate modeling and testing criteria for evaluating the performance of systems using this type of heat exchanger. The tasks for the project are as follows: (1) Develop a model of the thermal performance of thermosyphon heat exchangers in solar water heating applications. A test protocol will be developed which minimizes the number of tests required to adequately account for mixed convection effects. The TRNSYS component model will be fully integrated in a system component model and will use data acquired with the specified test protocol. (2) Conduct a fundamental study to establish friction and heat transfer correlations for conditions and geometries typical of thermosyphon heat exchangers in solar systems. Data will be obtained as a function of a buoyancy parameter based on Grashof and Reynolds numbers. The experimental domain will encompass the ranges expected in solar water heating systems.

  12. Natural convection heat exchangers for solar water heating systems. Techniacl progress report, June 1, 1995--July 31, 1995

    SciTech Connect

    Davidson, J.H.

    1998-06-01

    The goals of this project are: (1) to develop guidelines for the design and use of thermosyphon side-arm heat exchangers in solar domestic water heating systems, and (2) to establish appropriate modeling and testing criteria for evaluating the performance of systems using this type of heat exchanger. The tasks for the project are as follows: (1) Develop a model of the thermal performance of thermosyphon heat exchangers in solar water heating applications. A test protocol will be developed which minimizes the number of tests required to adequately account for mixed convection effects. The TRNSYS component model will be fully integrated in a system component model and will use data acquired with the specified test protocol. (2) Conduct a fundamental study to establish friction and heat transfer correlations for conditions and geometries typical of thermosyphon heat exchangers in solar systems. Data will be obtained as a function of a buoyancy parameter based on Grashof and Reynolds numbers. The experimental domain will encompass the ranges expected in solar water heating systems.

  13. Natural convection heat exchangers for solar water heating systems. Technical progress report, February 1, 1996--March 31, 1996

    SciTech Connect

    Davidson, J.H.

    1998-06-01

    This progress report describes the thermodynamic testing and modeling of a thermosyphon heat exchanger used in solar water heating systems. Testing of a four tube-in-shell thermosyphon heat exchanger was performed in two parts. The first portion of the test increased the collector fluid while the storage tank remained isothermal. After the collector fluid temperature was raised to 95 C, the second part of the test allowed the storage tank to gain heat. The test was performed for two collector flow rates. Measured values included collector side forced flow rate, temperature differences across the heat exchanger, vertical temperature distribution in the storage tank, vertical water temperature profile in the heat exchanger, and pressure drop on the thermosyphon side of the heat exchanger. The overall heat transfer coefficient-area product (UA) values obtained confirmed that models which assume UA depends solely on thermosyphon flow rate do not adequately characterize thermosyphon heat exchangers. This is because heat transfer in thermosyphon exchangers occurs in the mixed convection, rather than forced flow, regime. A linear regression equation was developed to better predict UA using the Prandtl, Reynolds, and Grashof numbers and dimensionless parameters based on fluid properties calculated for the average hot and cold leg temperatures. 9 figs.

  14. Natural convection heat exchangers for solar water heating systems. Technical progress report, December 31, 1995--January 31, 1996

    SciTech Connect

    Davidson, J.H.

    1998-06-01

    The goals of this project are: (1) to develop guidelines for the design and use of thermosyphon side-arm heat exchangers in solar domestic water heating systems, and (2) to establish appropriate modeling and testing criteria for evaluating the performance of systems using this type of heat exchanger. The tasks for the project are as follows: (1) Develop a model of the thermal performance of thermosyphon heat exchangers in solar water heating applications. A test protocol will be developed which minimizes the number of tests required to adequately account for mixed convection effects. The TRNSYS component model will be fully integrated in a system component model and will use data acquired with the specified test protocol. (2) Conduct a fundamental study to establish friction and heat transfer correlations for conditions and geometries typical of thermosyphon heat exchangers in solar systems. Data will be obtained as a function of a buoyancy parameter based on Grashof and Reynolds numbers. The experimental domain will encompass the ranges expected in solar water heating systems.

  15. A fast algorithm for Direct Numerical Simulation of natural convection flows in arbitrarily-shaped periodic domains

    NASA Astrophysics Data System (ADS)

    Angeli, D.; Stalio, E.; Corticelli, M. A.; Barozzi, G. S.

    2015-11-01

    A parallel algorithm is presented for the Direct Numerical Simulation of buoyancy- induced flows in open or partially confined periodic domains, containing immersed cylindrical bodies of arbitrary cross-section. The governing equations are discretized by means of the Finite Volume method on Cartesian grids. A semi-implicit scheme is employed for the diffusive terms, which are treated implicitly on the periodic plane and explicitly along the homogeneous direction, while all convective terms are explicit, via the second-order Adams-Bashfort scheme. The contemporary solution of velocity and pressure fields is achieved by means of a projection method. The numerical resolution of the set of linear equations resulting from discretization is carried out by means of efficient and highly parallel direct solvers. Verification and validation of the numerical procedure is reported in the paper, for the case of flow around an array of heated cylindrical rods arranged in a square lattice. Grid independence is assessed in laminar flow conditions, and DNS results in turbulent conditions are presented for two different grids and compared to available literature data, thus confirming the favorable qualities of the method.

  16. Natural convection heat exchangers for solar water heating systems. Technical progress report, September 15, 1996--November 14, 1996

    SciTech Connect

    Davidson, J.H.

    1998-06-01

    The goals of this project are: (1) to develop guidelines for the design and use of thermosyphon side-arm heat exchangers in solar domestic water heating systems, and (2) to establish appropriate modeling and testing criteria for evaluating the performance of systems using this type of heat exchanger. The tasks for the project are as follows: (1) Develop a model of the thermal performance of thermosyphon heat exchangers in solar water heating applications. A test protocol will be developed which minimizes the number of tests required to adequately account for mixed convection effects. The TRNSYS component model will be fully integrated in a system component model and will use data acquired with the specified test protocol. (2) Conduct a fundamental study to establish friction and heat transfer correlations for conditions and geometries typical of thermosyphon heat exchangers in solar systems. Data will be obtained as a function of a buoyancy parameter based on Grashof and Reynolds numbers. The experimental domain will encompass the ranges expected in solar water heating systems.

  17. Prevention and Treatment of Traumatic Brain Injury Due to Rapid-Onset Natural Disasters

    PubMed Central

    Regens, James L.; Mould, Nick

    2014-01-01

    The prevention and treatment of traumatic brain injury (TBI) attributable to rapid-onset natural disasters is a major challenge confronting disaster preparedness planners and emergency medical personnel responding to those incidents. The kinetic energy released by rapid-onset natural disasters such as earthquakes, hurricanes or typhoons, and tornadoes can cause mild, moderate, or severe TBIs. As a result, neurotrauma is a major risk factor for mortality and morbidity outcomes within the spatial domain impacted by a rapid-onset natural disaster. This review article elucidates major challenges associated with immediate emergency medical response, long-term care, and prevention of post-event increases in pediatric TBIs because of child abuse when rapid-onset natural disasters occur. PMID:24783188

  18. Prevention and treatment of traumatic brain injury due to rapid-onset natural disasters.

    PubMed

    Regens, James L; Mould, Nick

    2014-01-01

    The prevention and treatment of traumatic brain injury (TBI) attributable to rapid-onset natural disasters is a major challenge confronting disaster preparedness planners and emergency medical personnel responding to those incidents. The kinetic energy released by rapid-onset natural disasters such as earthquakes, hurricanes or typhoons, and tornadoes can cause mild, moderate, or severe TBIs. As a result, neurotrauma is a major risk factor for mortality and morbidity outcomes within the spatial domain impacted by a rapid-onset natural disaster. This review article elucidates major challenges associated with immediate emergency medical response, long-term care, and prevention of post-event increases in pediatric TBIs because of child abuse when rapid-onset natural disasters occur. PMID:24783188

  19. [Carbon monoxide poisoning due to lack of maintenance of a natural gas boiler].

    PubMed

    Nielsen, H; Johannessen, A C

    1994-01-17

    Carbon monoxide causes one third of all poisoning deaths in Denmark, but is probably grossly underdiagnosed. We present a case where an elderly couple was admitted on several occasions to local hospitals with a variety of symptoms and signs; e.g. flu-like symptoms, generalized seizures, polycythaemia, chest pain, and ventricular tachycardia. The correct diagnosis, carbon monoxide poisoning, was made when the dog in the family was found dead; examination of the natural gas boiler revealed sooting, clogging of the flue, and a carbon monoxide concentration above 0.2 percent. The natural gas boiler had not been checked after installation five years earlier. Natural gas installations are becoming still more prevalent in Danish homes, but present regulations regarding the installations are apparently not yet able to prevent new incidents of carbon monoxide poisoning. PMID:8296426

  20. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  1. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  2. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  3. Convection towers

    DOEpatents

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  4. Modeling Convection

    ERIC Educational Resources Information Center

    Ebert, James R.; Elliott, Nancy A.; Hurteau, Laura; Schulz, Amanda

    2004-01-01

    Students must understand the fundamental process of convection before they can grasp a wide variety of Earth processes, many of which may seem abstract because of the scales on which they operate. Presentation of a very visual, concrete model prior to instruction on these topics may facilitate students' understanding of processes that are largely…

  5. Energy saving due to natural ventilation in housing blocks in Madrid

    NASA Astrophysics Data System (ADS)

    González-Lezcano, RA; Hormigos-Jiménez, S.

    2016-07-01

    Getting a healthy and comfortable indoor environment in homes in southern Europe is a complicated task. In continental climates, with very cold temperatures in winter and very hot in summer, energy consumption greatly increases with air conditioning significant spending. To propose action guidelines for use of natural ventilation and to develop effective design strategies is essential. Therefore, and given a specific building type block of flats in Madrid, this article focuses on establishing what periods of the year natural ventilation is required to reduce energy consumption in air conditioning, also considering the quality of the outdoor environment and the design of the building. To develop this, a statistical study of the chosen type, that allows studying the direction and the wind speed in the area, is performed. Analysis of wind pressures in holes in the facade is performed by means of numerical simulations of fluid flow (CFD) inside to later infer in the natural ventilation rate required within policy parameters. With the data obtained, a study of energy saving is made as a function of natural ventilation rate established for the building type.

  6. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  7. CFD analysis for the applicability of the natural convection shutdown heat removal test facility (NSTF) for the simulation of the VHTR RCCS. Topical report.

    SciTech Connect

    Tzanos, C. P.; Nuclear Engineering Division

    2007-05-16

    The Very High Temperature gas cooled reactor (VHTR) is one of the GEN IV reactor concepts that have been proposed for thermochemical hydrogen production and other process-heat applications like coal gasification. The USDOE has selected the VHTR for further research and development, aiming to demonstrate emissions-free electricity and hydrogen production at a future time. One of the major safety advantages of the VHTR is the potential for passive decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-side of the RCCS is very similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that has been proposed for the PRISM reactor design. The design and safety analysis of the RVACS have been based on extensive analytical and experimental work performed at ANL. The Natural Convective Shutdown Heat Removal Test Facility (NSTF) at ANL that simulates at full scale the air-side of the RVACS was built to provide experimental support for the design and analysis of the PRISM RVACS system. The objective of this work is to demonstrate that the NSTF facility can be used to generate RCCS experimental data: to validate CFD and systems codes for the analysis of the RCCS; and to support the design and safety analysis of the RCCS.

  8. Numerical Analysis of Convection/Transpiration Cooling

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Dilley, Arthur D.; Kelly, H. Neale

    1999-01-01

    An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.

  9. Numerical Analysis of Convection/Transpiration Cooling

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Dilley, Arthur D.; Kelly, H. Neale

    1999-01-01

    An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux, high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary, layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.

  10. Formation and dynamics of hazardous convective weather events in Ukraine

    NASA Astrophysics Data System (ADS)

    Balabukh, Vera; Malytska, Liudmyla; Bazalieieva, Iuliana

    2013-04-01

    Atmospheric circulation change observed from the middle of the 70s of the twentieth century in the Northern Hemisphere resulted in changes of weather events formation conditions in different regions. The degree of influence of various factors on the formation of weather events also has changed. This eventually led to an increase in number and intensity of weather events and their variations in time and space. Destructions and damages associated with these events have increased recently and the biggest damages are mainly results of complex convective weather events: showers, hail, squall. Therefore, one of the main tasks of climatology is to study the mechanisms of change repeatability and intensity of these events. The paper considers the conditions of formation of hazardous convective weather phenomena (strong showers, hail, squalls, tornadoes) in Ukraine and their spatial and temporal variability during 1981 - 2010. Research of convection processes was based on daily radiosonde data for the warm season (May-September 1981 - 2010s), reanalysis ERA-Interim ECMWF data for 1989 - 2010 years , daily observations at 187 meteorological stations in Ukraine, as well as observations of the natural phenomena in other regions (different from the meteorological stations). Indices of atmospheric instability, the magnitude of the Convective Available Potential Energy (CAPE), the moisture, the height of the condensation and equilibrium level was used to quantify the intensity of convection. The criteria for the intensity of convection for Ukrainian territory were refined on the basis of these data. Features of the development of convection for various hazardous convective weather events were investigated and identified the necessary conditions for the occurrence of showers, hail, tornadoes and squall in Ukraine. Spatio-temporal variability of convection intensity in Ukraine, its regional characteristics and dynamics for the past 30 year was analyzed. Significant tendency to an

  11. Heterogeneous in situ stress magnitudes due to the presence of weak natural discontinuities in granitic rocks

    NASA Astrophysics Data System (ADS)

    Chang, Chandong; Jo, Yeonguk

    2015-11-01

    Two field examples of hydraulic fracturing stress measurements are reported, in which the determined stress magnitudes exhibit severe variations with depth. The stress measurements were conducted in vertical boreholes drilled in granites in two different locations in South Korea. Several isolated intervals of intact rocks in the boreholes were vertically fractured by injecting water. The magnitudes of the minimum horizontal principal compressive stress (Shmin) were determined from shut-in pressures. The magnitudes of the maximum horizontal principal compressive stress (SHmax) were estimated based on the Kirsch equation using tensile strengths determined from hollow cylinder tests and Brazilian tests, in which pressurization-rate effects on tensile strength were taken into account. The stress states in both locations are in reverse-faulting stress regimes. The magnitudes of SHmax are generally within a stress range defined by frictional limits of favorably oriented fractures having frictional coefficients of 0.6 and 1.0. However, SHmax magnitudes do not increase linearly with depth, but rather scatter quite severely. It is noted that near the depths where the measured stresses are relatively low, natural discontinuities with wide apertures containing weak filling material exist, whereas near the depths of high stress, such wide discontinuities are scarce. Wide aperture discontinuities are predominantly oriented such that their slip tendency is high under the given stress conditions, meaning that if excessive shear stress is exerted, the weak discontinuities would slip to release the excessive stress. Such local processes would restrict SHmax magnitudes within values that can only be sustained by the shear strengths of the discontinuities, leading to severe variations of SHmax with depth. This result suggests that stress magnitudes are controlled quite locally by the frictional property of natural discontinuities, and that the stress state in granitic rock might be

  12. Absorbed Gamma-Ray Doses due to Natural Radionuclides in Building Materials

    SciTech Connect

    Aguiar, Vitor A. P.; Medina, Nilberto H.; Moreira, Ramon H.; Silveira, Marcilei A. G.

    2010-05-21

    This work is devoted to the application of high-resolution gamma-ray spectrometry in the study of the effective dose coming from naturally occurring radionuclides, namely {sup 40}K, {sup 232}Th and {sup 238}U, present in building materials such as sand, cement, and granitic gravel. Four models were applied to estimate the effective dose and the hazard indices. The maximum estimated effective dose coming from the three reference rooms considered is 0.90(45) mSv/yr, and maximum internal hazard index is 0.77(24), both for the compact clay brick reference room. The principal gamma radiation sources are cement, sand and bricks.

  13. Convection towers

    DOEpatents

    Prueitt, M.L.

    1994-02-08

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  14. Nonlinear Convection in Mushy Layers

    NASA Technical Reports Server (NTRS)

    Worster, M. Grae; Anderson, Daniel M.; Schulze, T. P.

    1996-01-01

    When alloys solidify in a gravitational field there are complex interactions between solidification and natural, buoyancy-driven convection that can alter the composition and impair the structure of the solid product. The particular focus of this project has been the compositional convection within mushy layers that occurs in situations where the lighter component of the alloy is rejected into the melt during solidification by cooling from below. The linear stability of such a situation was previously described and has been further elucidated in a number of published articles. Here we describe some recent developments in the study of nonlinear evolution of convection in mushy layers.

  15. Form drag in rivers due to small-scale natural topographic features: 1. Regular sequences

    USGS Publications Warehouse

    Kean, J.W.; Smith, J.D.

    2006-01-01

    Small-scale topographic features are commonly found on the boundaries of natural rivers, streams, and floodplains. A simple method for determining the form drag on these features is presented, and the results of this model are compared to laboratory measurements. The roughness elements are modeled as Gaussian-shaped features defined in terms of three parameters: a protrusion height, H; a streamwise length scale, ??; and a spacing between crests, ??. This shape is shown to be a good approximation to a wide variety of natural topographic bank features. The form drag on an individual roughness element embedded in a series of identical elements is determined using the drag coefficient of the individual element and a reference velocity that includes the effects of roughness elements further upstream. In addition to calculating the drag on each element, the model determines the spatially averaged total stress, skin friction stress, and roughness height of the boundary. The effects of bank roughness on patterns of velocity and boundary shear stress are determined by combining the form drag model with a channel flow model. The combined model shows that drag on small-scale topographic features substantially alters the near-bank flow field. These methods can be used to improve predictions of flow resistance in rivers and to form the basis for fully predictive (no empirically adjusted parameters) channel flow models. They also provide a foundation for calculating the near-bank boundary shear stress fields necessary for determining rates of sediment transport and lateral erosion.

  16. Mimicking bubble use in nature: propulsion of Janus particles due to hydrophobic-hydrophilic interactions.

    PubMed

    Pinchasik, Bat-El; Möhwald, Helmuth; Skirtach, Andre G

    2014-07-01

    Bubbles are widely used by animals in nature in order to fulfill important functions. They are used by animals in order to walk underwater or to stabilize themselves at the water/air interface. The main aim of this work is to imitate such phenomena, which is the essence of biomimetics. Here, bubbles are used to propel and to control the location of Janus particles in an aqueous medium. The synthesis of Janus SiO2-Ag and polystyrene-Ag (PS-Ag) particles through embedment in Parafilm is presented. The Janus particles, partially covered with catalytically active Ag nanoparticles, are redispersed in water and placed on a glass substrate. The active Ag sites are used for the splitting of H2O2 into water and oxygen. As a result, an oxygen bubble is formed on one side of the particle and promotes its propulsion. Once formed, the bubble-particle complex is stable and therefore, can be manipulated by tuning hydrophilic-hydrophobic interactions with the surface. In this way a transition between two- and three- dimensional motion is possible by changing the hydrophobicity of the substrate. Similar principles are used in nature. PMID:24664591

  17. Prediction of natural frequency variability due to uncertainty in material properties

    NASA Technical Reports Server (NTRS)

    Li, Y. W.

    1994-01-01

    Composite materials are widely used in various types of modern engineering structures. Traditional studies on composite structures have been based on the assumption that the material properties of the composites are characterized by a priori known elastic moduli, and no uncertainties of these moduli have been considered. However, the composite materials are invariably subject to a certain amount of scatter in their measured elastic moduli. To a large extent, the properties of composite materials are dependent on the fabrication process. But even the composite materials manufactured by the same process demonstrate differences in their elastic properties. This paper proposes a new, non-probabilistic method to predict the variability in the natural frequencies of the composite cylindrical shell, resulting from the unavoidable scatter in elastic moduli. The available measurements of elastic moduli are fitted by the four-dimensional uncertainty ellipsoid. The upper and lower bounds of the natural frequency are derived. With these bounds, designers will have a better understanding of the real dynamic behavior of the structure.

  18. Temporal variation in natural methane seep rate due to tides, Coal Oil Point area, California

    NASA Astrophysics Data System (ADS)

    Boles, J. R.; Clark, J. F.; Leifer, I.; Washburn, L.

    2001-11-01

    Two large steel tents (each 30 m by 30 m), open at the bottom to the seafloor, capture ˜16,800 m3 d-1 (594 MCF) of primarily methane from a large natural hydrocarbon seep, occurring a kilometer offshore in 67 m of water. The gas is piped to shore where it is metered and processed. The seep flow rate was monitored hourly for 9 months. Our results show that the tidal forcing causes the flow rate to vary by 4-7% around the mean. These results are the first quantitative documentation of the effect of tides on natural gas seepage in relatively deep water. Time series analyses of the 9 month record clearly show four principal tidal components with periods of 12.0, 12.4, 23.9, and 25.8 hours. High tide correlates with reduced flow, and low tide correlates with increased flow. The correlation indicates that each meter increase of sea height results in a decrease of 10-15 m3 hr-1 or 1.5-2.2% of the hourly flow rate. The observed changes are best accounted for by a pore activation model, whereby gas is released from small pores at low pressures but is inhibited at higher pressure. Pressure-dependent gas solubility changes are a less likely cause of flow variation. Our study implies that sea level differences, on a tidal timescale, can significantly change the gas seepage rate from sediments. Lower sea level in the last hundred thousand years would presumably allow higher gas loss from the sediment, assuming sufficient gas present, because of reduced hydrostatic pressure at the sediment-sea interface. The magnitude of this long-term change cannot be extrapolated from our tidal data.

  19. Differential susceptibility to colorectal cancer due to naturally occurring gut microbiota

    PubMed Central

    Ericsson, Aaron C.; Akter, Sadia; Hanson, Marina M.; Busi, Susheel B.; Parker, Taybor W.; Schehr, Rebecca J.; Hankins, Miriam A.; Ahner, Carin E.; Davis, Justin W.; Franklin, Craig L.; Amos-Landgraf, James M.; Bryda, Elizabeth C.

    2015-01-01

    Recent studies investigating the human microbiome have identified particular bacterial species that correlate with the presence of colorectal cancer. To evaluate the role of qualitatively different but naturally occurring gut microbiota and the relationship with colorectal cancer development, genetically identical embryos from the Polyposis in Rat Colon (Pirc) rat model of colorectal cancer were transferred into recipients of three different genetic backgrounds (F344/NHsd, LEW/SsNHsd, and Crl:SD). Tumor development in the pups was tracked longitudinally via colonoscopy, and end-stage tumor burden was determined. To confirm vertical transmission and identify associations between the gut microbiota and disease phenotype, the fecal microbiota was characterized in recipient dams 24 hours pre-partum, and in Pirc rat offspring prior to and during disease progression. Our data show that the gut microbiota varies between rat strains, with LEW/SsNHsd having a greater relative abundance of the bacteria Prevotella copri. The mature gut microbiota of pups resembled the profile of their dams, indicating that the dam is the primary determinant of the developing microbiota. Both male and female F344-Pirc rats harboring the Lewis microbiota had decreased tumor burden relative to genetically identical rats harboring F344 or SD microbiota. Significant negative correlations were detected between tumor burden and the relative abundance of specific taxa from samples taken at weaning and shortly thereafter, prior to observable adenoma development. Notably, this naturally occurring variation in the gut microbiota is associated with a significant difference in severity of colorectal cancer, and the abundance of certain taxa is associated with decreased tumor burden. PMID:26378041

  20. Experimental and Numerical Investigation of Buoyancy Driven Convection During PDAMNA Thin Film Growth

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Witherow, William K.; Paley, Mark S.; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    This paper presents results from numerical simulations as well as laboratory experiments of buoyancy driven convection in an ampoule under varying heating and gravitational acceleration loadings. The modeling effort in this work resolves the large scale natural convective motion that occurs in the fluid during photodeposition of polydiacetelene films which is due to energy absorbed by the growth solution from a UV source. Consequently, the growth kinetics of the film are ignored in the model discussed here, and also a much simplified ampoule geometry is considered. The objective of this work is to validate the numerical prediction on the strength and structure of buoyancy driven convection that could occur under terrestrial conditions during nonlinear optical film growth. The validation is used to enable a reliable predictive capability on the nature and strength of the convective motion under low gravity conditions. The ampoule geometry is in the form of a parallelepiped with rectangular faces. The numerical results obtained from the solution to the Boussinesq equations show that natural convection will occur regardless of the orientation of the UV source with respect to the gravity vector. The least strong convective motion occurred with the UV beam directed at the top face of the parallelepiped. The strength of the convective motion was found to be almost linearly proportional to the total power of the UV source. Also, it was found that the strength of the convective motion decreased linearly with the gravity due to acceleration. The pattern of the convective flow on the other hand, depended on the source location.

  1. Convection Compensated Electrophoretic NMR

    NASA Astrophysics Data System (ADS)

    He, Qiuhong; Wei, Zhaohui

    2001-06-01

    A novel method of convection compensated ENMR (CC-ENMR) has been developed to detect electrophoretic motion of ionic species in the presence of bulk solution convection. This was accomplished using a gradient moment nulling technique to remove spectral artifacts from heat-induced convection and using the polarity switch of the applied electric field to retain spin phase modulations due to electrophoretic flow. Experiments were carried out with a mixture of 100 mM L-aspartic acid and 100 mM 4,9-dioxa-1,12-dodecanediamine to demonstrate this new method of ENMR. CC-ENMR enhances our previously developed capillary array ENMR (CA-ENMR) in solving the convection problem. The combined CA- and CC-ENMR approach strengthens the potential of multidimensional ENMR in simultaneous structural determination of coexisting proteins and protein conformations in biological buffer solutions of high ionic strength. Structural mapping of interacting proteins during biochemical reactions becomes possible in the future using ENMR techniques, which may have a profound impact on the understanding of biological events, including protein folding, genetic control, and signal transduction in general.

  2. Permeability evolution due to dissolution of natural shale fractures reactivated by fracking

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Kamil; Kwiatkowski, Tomasz; Szymczak, Piotr

    2015-04-01

    Investigation of cores drilled from gas-bearing shale formations reveals a relatively large number of calcite-cemented fractures. During fracking, some of these fractures will be reactivated [1-2] and may become important flow paths in the resulting fracture system. In this communication, we investigate numerically the effect of low-pH reactive fluid on such fractures. The low-pH fluids can either be pumped during the initial fracking stage (as suggested e.g. by Grieser et al., [3]) or injected later, as part of enhanced gas recovery (EGR) processes. In particular, it has been suggested that CO2 injection can be considered as a method of EGR [4], which is attractive as it can potentially be combined with simultaneous CO2 sequestration. However, when mixed with brine, CO2 becomes acidic and thus can be a dissolving agent for the carbonate cement in the fractures. The dissolution of the cement leads to the enhancement of permeability and interconnectivity of the fracture network and, as a result, increases the overall capacity of the reservoir. Importantly, we show that the dissolution of such fractures proceeds in a highly non-homogeneous manner - a positive feedback between fluid transport and mineral dissolution leads to the spontaneous formation of pronounced flow channels, frequently referred to as "wormholes". The wormholes carry the chemically active fluid deeper inside the system, which dramatically speeds up the overall permeability increase. If the low-pH fluids are used during fracking, then the non-uniform dissolution becomes important for retaining the fracture permeability, even in the absence of the proppant. Whereas a uniformly etched fracture will close tightly under the overburden once the fluid pressure is removed, the nonuniform etching will tend to maintain the permeability since the less dissolved regions will act as supports to keep more dissolved regions open. [1] Gale, J. F., Reed, R. M., Holder, J. (2007). Natural fractures in the Barnett

  3. Assessing the indirect effects due to natural hazards on a mesoscale

    NASA Astrophysics Data System (ADS)

    Pfurtscheller, C.; Schwarze, R.

    2009-04-01

    Measuring indirect economic costs and other effects from natural hazards, especially floods in alpine and other mountainous regions, are a necessary part of a comprehensive economic assessment. Their omission seriously affects the relative economic benefits of structural or non structural measures of flood defence. Surpassing controversial, IO-model-based economic estimates, analysing indirect economic effects lead to the key question of identifying and evaluating the drivers of indirect economic effects and resilience to system effects in the regional economy, i.e. at the meso-level. This investigation takes place for the catastrophic floods in summer 2005 in the provinces of Tyrol and Vorarlberg, Austria, which caused an estimated € 670 Mio direct loss on private and public assets and severe interruptions in lifeline services. The paper starts out with differentiating the concept of indirect economic costs from direct costs, examing different temporal (short vs. long-term) and spatial (macro-, meso- vs. microeconomic) system boundaries. It surveys common theories of economic resilience and vulnerability at the regional economy level. Indirect effects at the regional economy level can be defined as interferences of the economic exchange of goods and services triggered by breakdowns of transport lines and critical production inputs. The extent and persistence of indirect effects of natural hazards is not only by parameters of the extreme event, such as duration and amplitude of the flood, but much more by resilience parameters of the regional economy such as size of enterprises, the network structure (linkages) of the regional economy, availability of insurance and relief funds, and the stock of inventory. These effects can only be dissected by means of expert judgement and event studies. This paper presents the results of a survey conducted among business practioneers, members of chamber of commerce, civil protection agencies to identify and scale the drivers of

  4. The Behaviour of Naturally Debonded Composites Due to Bending Using a Meso-Level Model

    NASA Astrophysics Data System (ADS)

    Lord, C. E.; Rongong, J. A.; Hodzic, A.

    2012-06-01

    Numerical simulations and analytical models are increasingly being sought for the design and behaviour prediction of composite materials. The use of high-performance composite materials is growing in both civilian and defence related applications. With this growth comes the necessity to understand and predict how these new materials will behave under their exposed environments. In this study, the displacement behaviour of naturally debonded composites under out-of-plane bending conditions has been investigated. An analytical approach has been developed to predict the displacement response behaviour. The analytical model supports multi-layered composites with full and partial delaminations. The model can be used to extract bulk effective material properties in which can be represented, later, as an ESL (Equivalent Single Layer). The friction between each of the layers is included in the analytical model and is shown to have distinct behaviour for these types of composites. Acceptable agreement was observed between the model predictions, the ANSYS finite element model, and the experiments.

  5. Form drag in rivers due to small-scale natural topographic features: 2. Irregular sequences

    USGS Publications Warehouse

    Kean, J.W.; Smith, J.D.

    2006-01-01

    The size, shape, and spacing of small-scale topographic features found on the boundaries of natural streams, rivers, and floodplains can be quite variable. Consequently, a procedure for determining the form drag on irregular sequences of different-sized topographic features is essential for calculating near-boundary flows and sediment transport. A method for carrying out such calculations is developed in this paper. This method builds on the work of Kean and Smith (2006), which describes the flow field for the simpler case of a regular sequence of identical topographic features. Both approaches model topographic features as two-dimensional elements with Gaussian-shaped cross sections defined in terms of three parameters. Field measurements of bank topography are used to show that (1) the magnitude of these shape parameters can vary greatly between adjacent topographic features and (2) the variability of these shape parameters follows a lognormal distribution. Simulations using an irregular set of topographic roughness elements show that the drag on an individual element is primarily controlled by the size and shape of the feature immediately upstream and that the spatial average of the boundary shear stress over a large set of randomly ordered elements is relatively insensitive to the sequence of the elements. In addition, a method to transform the topography of irregular surfaces into an equivalently rough surface of regularly spaced, identical topographic elements also is given. The methods described in this paper can be used to improve predictions of flow resistance in rivers as well as quantify bank roughness.

  6. Changing pattern of natural hazards due to extreme hydro-meteorological conditions (Apulia, southern Italy)

    NASA Astrophysics Data System (ADS)

    Polemio, Maurizio; Lonigro, Teresa

    2013-04-01

    Recent international researches have underlined the evidences of climate changes throughout the world. Among the consequences of climate change, there is the increase in the frequency and magnitude of natural disasters, such as droughts, windstorms, heat waves, landslides, floods and secondary floods (i.e. rapid accumulation or pounding of surface water with very low flow velocity). The Damaging Hydrogeological Events (DHEs) can be defined as the occurrence of one or more simultaneous aforementioned phenomena causing damages. They represent a serious problem, especially in DHE-prone areas with growing urbanisation. In these areas the increasing frequency of extreme hydrological events could be related to climate variations and/or urban development. The historical analysis of DHEs can support decision making and land-use planning, ultimately reducing natural risks. The paper proposes a methodology, based on both historical and time series approaches, used for describing the influence of climatic variability on the number of phenomena observed. The historical approach is finalised to collect phenomenon historical data. The historical flood and landslide data are important for the comprehension of the evolution of a study area and for the estimation of risk scenarios as a basis for civil protection purposes. Phenomenon historical data is useful for expanding the historical period of investigation in order to assess the occurrence trend of DHEs. The time series approach includes the collection and the statistical analysis of climatic and rainfall data (monthly rainfall, wet days, rainfall intensity, and temperature data together with the annual maximum of short-duration rainfall data, from 1 hour to 5 days), which are also used as a proxy for floods and landslides. The climatic and rainfall data are useful to characterise the climate variations and trends and to roughly assess the effects of these trends on river discharge and on the triggering of landslides. The time

  7. Estimated trichloroethene transformation rates due to naturally occurring biodegradation in a fractured-rock aquifer

    USGS Publications Warehouse

    Chapelle, Francis H.; Lacombe, Pierre J.; Bradley, Paul M.

    2012-01-01

    Rates of trichloroethene (TCE) mass transformed by naturally occurring biodegradation processes in a fractured rock aquifer underlying a former Naval Air Warfare Center (NAWC) site in West Trenton, New Jersey, were estimated. The methodology included (1) dividing the site into eight elements of equal size and vertically integrating observed concentrations of two daughter products of TCE biodegradation–cis-dichloroethene (cis-DCE) and chloride–using water chemistry data from a network of 88 observation wells; (2) summing the molar mass of cis-DCE, the first biodegradation product of TCE, to provide a probable underestimate of reductive biodegradation of TCE, (3) summing the molar mass of chloride, the final product of chlorinated ethene degradation, to provide a probable overestimate of overall biodegradation. Finally, lower and higher estimates of aquifer porosities and groundwater residence times were used to estimate a range of overall transformation rates. The highest TCE transformation rates estimated using this procedure for the combined overburden and bedrock aquifers was 945 kg/yr, and the lowest was 37 kg/yr. However, hydrologic considerations suggest that approximately 100 to 500 kg/yr is the probable range for overall TCE transformation rates in this system. Estimated rates of TCE transformation were much higher in shallow overburden sediments (approximately 100 to 500 kg/yr) than in the deeper bedrock aquifer (approximately 20 to 0.15 kg/yr), which reflects the higher porosity and higher contaminant mass present in the overburden. By way of comparison, pump-and-treat operations at the NAWC site are estimated to have removed between 1,073 and 1,565 kg/yr of TCE between 1996 and 2009.

  8. Finite element analysis of double-diffusive natural convection in a porous triangular enclosure filled with Al2O3 -water nanofluid in presence of heat generation.

    PubMed

    Chowdhury, Raju; Parvin, Salma; Khan, Md Abdul Hakim

    2016-08-01

    The problem of double-diffusive natural convection of Al2O3 -water nanofluid in a porous triangular enclosure in presence of heat generation has been studied numerically in this paper. The bottom wall of the cavity is heated isothermally, the left inclined wall is non-isothermal and the right inclined wall is considered to be cold. The concentration is higher at bottom wall, lower at right inclined wall and non-isoconcentration at left inclined wall of the cavity. The governing equations are transformed to the dimensionless form and solved numerically using Galerkin weighted residual technique of finite element method. The results are obtained in terms of streamlines, isotherms, isoconcentrations, average Nueeslt number (Nu) and average Sherwood number (Sh) for the parameters thermal Rayleigh number (RaT ), dimensionless heat generation parameter (λ), solid volume fraction (ϕ) and Lewis number (Le) while Prandtl number (Pr), Buoyancy ratio (N) and Darcy number (Da) are considered to be fixed. It is observed that flow pattern, temperature fields and concentration fields are affected by the variation of above considered parameters. PMID:27579447

  9. Numerical computation of natural convection in an isosceles triangular cavity with a partially active base and filled with a Cu-water nanofluid

    NASA Astrophysics Data System (ADS)

    Rezaiguia, Issam; Kadja, Mahfoud; mebrouk, Ridha; Belghar, Noureddine

    2013-09-01

    This paper discusses the results of a study related to natural convection cooling of a heat source located on the bottom wall of an inclined isosceles triangular enclosure filled with a Cu water-nanofluid. The right and left walls of the enclosure are both maintained cold at constant equal temperatures, while the remaining parts of the bottom wall are insulated. The study has been carried out for a Rayleigh number in the range 104 ≤ Ra ≤ 106, for a heat source length in the range 0.2 ≤ ɛ ≤0.8, for a solid volume fraction in the range 0 ≤ ϕ≤0.06 and for an inclination angle in the range 0° ≤ δ≤45°. Results are presented in the form of streamline contours, isotherms, maximum temperature at the heat source surface and average Nusselt number. It is noticed that the addition of Cu nanoparticles enhances the heat transfer rate and therefore cooling effectiveness for all values of Rayleigh number, especially at low values of Ra. The effect of the inclination angle becomes more noticeable as one increases the value of Ra. For high Rayleigh numbers, a critical value for the inclination angle of δ = 15° is found for which the heat source maximum temperature is highest.

  10. Natural radioactivity due to RaDEF and beryllium-7 in the environment

    SciTech Connect

    Banavali, A.D.

    1983-01-01

    Sharp increases in the /sup 210/Po//sup 210/Pb activity ratios were observed during the year 1981, one year after Mount St. Helens erupted on May 18, 1980. However, individual /sup 210/Pb and /sup 210/Po concentrations and fallout profiles did not alter markedly before or after this volcanic event. Bimonthly average /sup 210/Po//sup 210/Pb activity ratio of 0.77 was observed for the months of January-February, 1981. Results obtained from our data for 134 samples of rain and snow analyzed for /sup 210/Pb and /sup 210/Po between November 1, 1979, and December 31, 1981, show that the high /sup 210/Pb activity ratios were accompanied by high /sup 7/Be//sup 210/Pb and /sup 90/Sr//sup 210/Pb ratios for the same period indicating a stratospheric fallout. Infinity values obtained for aerosol residence times may have been the result of ash and fine debris enrichment of the stratosphere, and not due to any /sup 210/Po excess. /sup 210/Pb and /sup 210/Po flux from the Fayetteville soil samples being negligible, soil entrainment of the sampling site seems to be minimal. The concentrations of /sup 7/Be and /sup 210/Pb (RaD) were measured in sequentially sampled rainstorm of March 15, 1982, that occurred over Fayetteville (36/sup 0/N, 94/sup 0/W), Arkansas. /sup 7/Be//sup 210/Pb ratios ranged from 1.8 to 16.7 (Ci/Ci) and covered the entire range of values observed for individual samples of rain and snow (Ali Saleh, 1983). Two air-masses may have dominated the Northwest Arkansas region temporarily during this period.

  11. Laboratory evidence of natural remobilization of multicomponent DNAPL pools due to dissolution

    NASA Astrophysics Data System (ADS)

    Roy, J. W.; Smith, J. E.; Gillham, R. W.

    2004-10-01

    , shape. The experimental results were simulated using the model developed by Roy et al. [J. Contam. Hydrol. 2002 (59) 163]. The model matched the observations well, suggesting that it accurately represents the primary mechanisms involved with natural remobilization under the conditions of the study.

  12. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  13. Inherited erythromelalgia due to mutations in SCN9A: natural history, clinical phenotype and somatosensory profile.

    PubMed

    McDonnell, Aoibhinn; Schulman, Betsy; Ali, Zahid; Dib-Hajj, Sulayman D; Brock, Fiona; Cobain, Sonia; Mainka, Tina; Vollert, Jan; Tarabar, Sanela; Waxman, Stephen G

    2016-04-01

    Inherited erythromelalgia, the first human pain syndrome linked to voltage-gated sodium channels, is widely regarded as a genetic model of human pain. Because inherited erythromelalgia was linked to gain-of-function changes of sodium channel Na(v)1.7 only a decade ago, the literature has mainly consisted of reports of genetic and/or clinical characterization of individual patients. This paper describes the pattern of pain, natural history, somatosensory profile, psychosocial status and olfactory testing of 13 subjects with primary inherited erythromelalgia with mutations of SCN9A, the gene encoding Na(v)1.7. Subjects were clinically profiled using questionnaires, quantitative sensory testing and olfaction testing during the in-clinic phase of the study. In addition, a detailed pain phenotype for each subject was obtained over a 3-month period at home using diaries, enabling subjects to self-report pain attacks, potential triggers, duration and severity of pain. All subjects reported pain and heat in the extremities (usually feet and/or hands), with pain attacks triggered by heat or exercise and relieved mainly by non-pharmacological manoeuvres such as cooling. A large proportion of pain attacks (355/1099; 32%) did not involve a specific trigger. There was considerable variability in the number, duration and severity of pain attacks between subjects, even those carrying the same mutation within a family, and within individuals over the 12-13 week observation period. Most subjects (11/13) had pain between attacks. For these subjects, mean pain severity between pain attacks was usually lower than that during an attack. Olfaction testing using the Sniffin'T test did not demonstrate hyperosmia. One subject had evidence of orthostatic hypotension. Overall, there was a statistically significant correlation between total Hospital Anxiety and Depression Scale scores (P= 0.005) and pain between attacks and for Hospital Anxiety and Depression Scale Depression scores and pain

  14. Turbulent Convection: Old and New Models

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.

    1996-08-01

    This paper contains (1) a physical argument to show that the one-eddy MLT model underestimates the convective flux Fc in the high-efficiency regime, while it overestimates Fc in the low-efficiency regime, and (2) a new derivation of the Fc(MLT) using a turbulence model in the one-eddy approximation. (3) We forsake the one-eddy approximation and adopt the Kolmogorov spectrum to represent the turbulent energy spectrum. The resulting Fc > Fc(MLT) in the high-efficiency regime, and Fc convection, we show that the CM model provides a better fit than the MLT to recent high Rayleigh number (Ra) laboratory data on convection. (6) Concerning nonlocal convection, the most complete model available is the one-point closure model (Reynolds stress model), which entails five differential equations for the five second-order moments. We present the solution corresponding to the local, stationary case. The results are expressed analytically in terms of Ko (Kolmogorov constant), Pe (Peclet number), and S (convective efficiency). (7) We find that the superadiabatic temperature gradient is given by - ∂T/∂r - cp-1gr where the renormalized gr = g(1 + g-1p-1dpt/dz) and Pt is the turbulent pressure. This result, which follows naturally from the Reynolds stress approach, contrasts with previous empirical suggestions to include Pt. (8) We derive new expressions for the turbulence pressure using two different turbulence models and (9) we show that the often used Kolmogorov-Prandtl expression for the turbulent diffusivity is valid only in the high

  15. Distribution of natural disturbance due to wave and tidal bed currents around the UK

    NASA Astrophysics Data System (ADS)

    Bricheno, Lucy M.; Wolf, Judith; Aldridge, John

    2015-10-01

    The UK continental shelf experiences large tidal ranges and winter storm events, which can both generate strong near-bed currents. The regular tidal bottom currents from tides plus wind driven 'benthic storms' (dominated by wave-driven oscillatory currents in shallow water) are a major source of disturbance to benthic communities, particularly in shallow waters. We aim to identify and map the relative impact of the tides and storm events on the shallower parts of the North West European continental shelf. A 10-year simulation of waves, tides and surges on the continental shelf was performed. The shelf model was validated against current meter observations and the Centre for Environmental, Fisheries and Aquaculture Science (CEFAS) network of SmartBuoys. Next, the model performance was assessed against seabed lander data from two sites in the Southern North Sea; one in deep water and another shallow water site at Sea Palling, and a third in Liverpool Bay. Both waves and currents are well simulated at the offshore Southern North Sea site. A large storm event was also well captured, though the model tends to underpredict bottom orbital velocity. Poorer results were achieved at the Sea Palling site, thought to be due to an overly deep model water depth, and missing wave-current interactions. In Liverpool Bay tides were well modelled and good correlations (average R2=0.89) are observed for significant wave height, with acceptable values (average R2=0.79) for bottom orbital velocity. Using the full 10-year dataset, return periods can be calculated for extreme waves and currents. Mapping these return periods presents a spatial picture of extreme bed disturbance, highlighting the importance of rare wave disturbances (e.g. with a return period of 1 in 10 years). Annual maximum currents change little in their magnitude and distribution from year to year, with mean speeds around 0.04 m s-1, and maximums exceeding 3 m s-1. Wave conditions however are widely variable throughout

  16. Seismic Constraints on Interior Solar Convection

    NASA Technical Reports Server (NTRS)

    Hanasoge, Shravan M.; Duvall, Thomas L.; DeRosa, Marc L.

    2010-01-01

    We constrain the velocity spectral distribution of global-scale solar convective cells at depth using techniques of local helioseismology. We calibrate the sensitivity of helioseismic waves to large-scale convective cells in the interior by analyzing simulations of waves propagating through a velocity snapshot of global solar convection via methods of time-distance helioseismology. Applying identical analysis techniques to observations of the Sun, we are able to bound from above the magnitudes of solar convective cells as a function of spatial convective scale. We find that convection at a depth of r/R(solar) = 0.95 with spatial extent l < 30, where l is the spherical harmonic degree, comprise weak flow systems, on the order of 15 m/s or less. Convective features deeper than r/R(solar) = 0.95 are more difficult to image due to the rapidly decreasing sensitivity of helioseismic waves.

  17. Convection, nucleosynthesis, and core collapse

    NASA Technical Reports Server (NTRS)

    Bazan, Grant; Arnett, David

    1994-01-01

    We use a piecewise parabolic method hydrodynamics code (PROMETHEUS) to study convective burning in two dimensions in an oxygen shell prior to core collapse. Significant mixing beyond convective boundaries determined by mixing-length theory brings fuel (C-12) into the convective regon, causing hot spots of nuclear burning. Plumes dominate the velocity structure. Finite perturbations arise in a region in which O-16 will be explosively burned to Ni-56 when the star explodes; the resulting instabilities and mixing are likely to distribute Ni-56 throughout the supernova envelope. Inhomogeneities in Y(sub e) may be large enough to affect core collapse and will affect explosive nucleosynthesis. The nature of convective burning is dramatically different from that assumed in one-dimensional simulations; quantitative estimates of nucleosynthetic yields, core masses, and the approach to core collapse will be affected.

  18. Convective heater

    DOEpatents

    Thorogood, R.M.

    1983-12-27

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.

  19. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1986-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  20. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  1. Application and Refinement of a Method to Achieve Uniform Convective Response on Variable-Resolution Meshes

    NASA Astrophysics Data System (ADS)

    Walko, R. L.; Medvigy, D.; Avissar, R.

    2013-12-01

    Variable-resolution computational grids can substantially improve the benefit-to-cost ratio in many environmental modeling applications, but they can also introduce unwanted and unrealistic numerical anomalies if not properly utilized. For example, we showed in previous studies that resolved (non-parameterized) atmospheric convection develops more quickly as resolution increases. Furthermore, on variable grids that transition from resolved to parameterized convection, timing and intensity of the convection in both regimes is generally disparate unless special care is taken to tune the parameterization. In both cases, the convection that develops first (due to purely numerical reasons) tends to suppress convection elsewhere by inducing subsidence in the surrounding environment. This highly nonlinear competition, while desirable when induced by natural causes such as surface inhomogeneity, is highly undesirable when it is a numerical artifact of variable grid resolution and/or selective application of convective parameterization. Our current research is aimed at leveling the playing field for convection across a variable resolution grid so that the above problems are avoided. The underlying idea is to apply the same or very similar 'convective machinery' to all areas of the grid. For convection-resolving regions of the grid, this machinery is simply the model grid itself, along with explicit representation of dynamics and a bulk microphysics parameterization. For coarser regions of the grid, the local environment is sampled from one or more grid columns (depending on local resolution) and fed to a separate 'convective processor', which determines the convective response to that environment and feeds the result back to the host grid. The convective processor chooses to either (1) explicitly resolve convective activity in the given environment on a separate (independent) limited-area 3D computational grid of comparable resolution to the convection-resolving part of the

  2. Heat transport in bubbling turbulent convection.

    PubMed

    Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-06-01

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection. PMID:23696657

  3. Large eddy simulation of natural ventilation for idealized terrace houses due to the effect of setback distance

    NASA Astrophysics Data System (ADS)

    Tuan, L.; Abd Razak, A.; Zaki, S. A.; Mohammad, A. F.; Hassan, M. K.

    2015-09-01

    Similar to most tropical countries, Malaysia have low wind speed and airflow characteristics to provide an effective natural ventilation system for comfortable living especially in terrace houses. Even so, by designing them with suitable threshold height/width, H/W, ratio may help reduce heat sink, or even the accumulation of contaminants within the setback distance. Through this study, the downstream building of these terrace houses will be investigated due to the effects from an upstream building. With the use of Large-Eddy Simulation (LES) method, the formation of the vortex within the threshold H/W ratio will be clearly simulated and allow the observation of flow regimes developed by each model. With increasing threshold H/W ratios the models will exhibit some wake interference flow and skimming flow which will determine the negative or positive effect of ventilation from the upstream building towards the downstream building. The airflow characteristics of the downstream house will also be analysed and the most effective layout in providing a better air circulation may be determined. Improving the natural ventilation of such houses could significantly reduce these negative effects such as the accumulation of dust, smoke or bacteria. In turn, with the alarming rate of depletion in natural resources and its effects to the environment, this study can significantly reduce energy usage for ventilation and space cooling.

  4. Doses of external exposure in Jordan house due to gamma-emitting natural radionuclides in building materials.

    PubMed

    Al-Jundi, J; Ulanovsky, A; Pröhl, G

    2009-10-01

    The use of building materials containing naturally occurring radionuclides as (40)K, (232)Th, and (238)U and their progeny results in external exposures of the residents of such buildings. In the present study, indoor dose rates for a typical Jordan concrete room are calculated using Monte Carlo method. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling are assumed. Using activity concentrations of natural radionuclides typical for the Jordan houses and assuming them to be in secular equilibrium with their progeny, the maximum annual effective doses are estimated to be 0.16, 0.12 and 0.22 mSv a(-1) for (40)K, (232)Th- and (238)U-series, respectively. In a total, the maximum annual effective indoor dose due to external gamma-radiation is 0.50 mSv a(-1). Additionally, organ dose coefficients are calculated for all organs considered in ICRP Publication 74. Breast, skin and eye lenses have the maximum equivalent dose rate values due to indoor exposures caused by the natural radionuclides, while equivalent dose rates for uterus, colon (LLI) and small intestine are found to be the smallest. More specifically, organ dose rates (nSv a(-1)per Bq kg(-1)) vary from 0.044 to 0.060 for (40)K, from 0.44 to 0.60 for radionuclides from (238)U-series and from 0.60 to 0.81 for radionuclides from (232)Th-series. The obtained organ and effective dose conversion coefficients can be conveniently used in practical dose assessment tasks for the rooms of similar geometry and varying activity concentrations and local-specific occupancy factors. PMID:19628312

  5. Pattern Formation in Convective Instabilities

    NASA Astrophysics Data System (ADS)

    Friedrich, R.; Bestehorn, M.; Haken, H.

    The present article reviews recent progress in the study of pattern formation in convective instabilities. After a brief discussion of the relevant basic hydrodynamic equations as well as a short outline of the mathematical treatment of pattern formation in complex systems the self-organization of spatial and spatio-temporal structures due to convective instabilities is considered. The formation of various forms of convective patterns arising in the Bénard experiment, i.e. in a horizontal fluid layer heated from below, is discussed. Then the review considers pattern formation in the Bénard instability in spherical geometries. In that case it can be demonstrated how the interaction among several convective cells may lead to time dependent as well as chaotic evolution of the spatial structures. Finally, the convective instability in a binary fluid mixture is discussed. In contrast to the instability in a single component fluid the instability may be oscillatory. In that case convection sets in in the form of travelling wave patterns which in addition to a complicated and chaotic temporal behaviour exhibit more or less spatial irregularity already close to threshold.

  6. Isentropic Analysis of Convective Motions

    NASA Technical Reports Server (NTRS)

    Pauluis, Olivier M.; Mrowiec, Agnieszka A.

    2013-01-01

    This paper analyzes the convective mass transport by sorting air parcels in terms of their equivalent potential temperature to determine an isentropic streamfunction. By averaging the vertical mass flux at a constant value of the equivalent potential temperature, one can compute an isentropic mass transport that filters out reversible oscillatory motions such as gravity waves. This novel approach emphasizes the fact that the vertical energy and entropy transports by convection are due to the combination of ascending air parcels with high energy and entropy and subsiding air parcels with lower energy and entropy. Such conditional averaging can be extended to other dynamic and thermodynamic variables such as vertical velocity, temperature, or relative humidity to obtain a comprehensive description of convective motions. It is also shown how this approach can be used to determine the mean diabatic tendencies from the three-dimensional dynamic and thermodynamic fields. A two-stream approximation that partitions the isentropic circulation into a mean updraft and a mean downdraft is also introduced. This offers a straightforward way to identify the mean properties of rising and subsiding air parcels. The results from the two-stream approximation are compared with two other definitions of the cloud mass flux. It is argued that the isentropic analysis offers a robust definition of the convective mass transport that is not tainted by the need to arbitrarily distinguish between convection and its environment, and that separates the irreversible convective overturning fromoscillations associated with gravity waves.

  7. Non-Darcian effects on double-diffusive convection within a porous medium

    SciTech Connect

    Karimi-Fard, M.; Charrier-Mojtabi, M.C.; Vafai, K.

    1997-06-01

    Natural convection in porous media is widely encountered in nature and technological processes. Water movement in geothermal reservoirs, underground spreading of chemical wastes and other pollutants, thermal insulation, and solidification are just a few examples where the thermal natural convection or the combined thermosolutal natural convection in porous media are observed. This work describes a numerical study of double-diffusive natural convection in a square cavity filled with a porous medium. The flow is driven by a combined buoyancy effect due to both temperature and concentration variations. Several different flow models for porous media, such as Darcy flow, Forchheimer`s extension, Brinkman`s extension, and the generalized flow are considered. The coupled equations are solved using a finite volume approach with a projection algorithm for the momentum equation. Non-Darcian effects are analyzed through investigating the average heat and mass transfer rates. This study consists of a global analysis of each model and the comparison between them when the Darcy number varies. This work also focuses on the influence of the Lewis number on the inertial and boundary effects. It is shown that the inertial and boundary effects have a profound effect on the double-diffusive convection.

  8. Parameterization of precipitating shallow convection

    NASA Astrophysics Data System (ADS)

    Seifert, Axel

    2015-04-01

    Shallow convective clouds play a decisive role in many regimes of the atmosphere. They are abundant in the trade wind regions and essential for the radiation budget in the sub-tropics. They are also an integral part of the diurnal cycle of convection over land leading to the formation of deeper modes of convection later on. Errors in the representation of these small and seemingly unimportant clouds can lead to misforecasts in many situations. Especially for high-resolution NWP models at 1-3 km grid spacing which explicitly simulate deeper modes of convection, the parameterization of the sub-grid shallow convection is an important issue. Large-eddy simulations (LES) can provide the data to study shallow convective clouds and their interaction with the boundary layer in great detail. In contrast to observation, simulations provide a complete and consistent dataset, which may not be perfectly realistic due to the necessary simplifications, but nevertheless enables us to study many aspects of those clouds in a self-consistent way. Today's supercomputing capabilities make it possible to use domain sizes that not only span several NWP grid boxes, but also allow for mesoscale self-organization of the cloud field, which is an essential behavior of precipitating shallow convection. By coarse-graining the LES data to the grid of an NWP model, the sub-grid fluctuations caused by shallow convective clouds can be analyzed explicitly. These fluctuations can then be parameterized in terms of a PDF-based closure. The necessary choices for such schemes like the shape of the PDF, the number of predicted moments, etc., will be discussed. For example, it is shown that a universal three-parameter distribution of total water may exist at scales of O(1 km) but not at O(10 km). In a next step the variance budgets of moisture and temperature in the cloud-topped boundary layer are studied. What is the role and magnitude of the microphysical correlation terms in these equations, which

  9. Studies of convection in a solidifying binary mixture at reduced gravity

    NASA Technical Reports Server (NTRS)

    Antar, B. N.; Collins, F.

    1983-01-01

    A great deal of interest was generated recently in the possibility of producing new materials in the reduced gravity environment provided during the forthcoming missions of Spacelab. The range of possibilities extend from producing large crystals of uniform properties to manufacturing materials with unique properties. Most of these processes involve the solidification of materials from the liquid state. Convective motions within the liquid during solidification can influence the local material composite and the shape of the solid-liquid interface which may result in solids with non-uniform properties and crystal defects. The microgravity environment of Spacelab is being viewed as one in which the buoyancy forces are eliminated so that convection driven by thermal gradients does occur, resulting in an improved solidification process. However, convection may occur for other reasons and whether convection is negligible or not during solidification constitutes processing in low-gravity environment. Little information exists presently on convection during solidification under such circumstances. A continuation of an analytical investigation into the nature of convective motion in a binary liquid layer due to surface tension forces during its solidification is reported. The onset of convection will be determined through a stability analysis which is described.

  10. 2D Mixed Convection Thermal Incompressible Viscous Flows

    NASA Astrophysics Data System (ADS)

    Bermudez, Blanca; Nicolas, Alfredo

    2005-11-01

    Mixed convection thermal incomprressible viscous fluid flows in rectangular cavities are presented. These kind of flows may be governed by the time-dependent Boussinesq approximation in terms of the stream function-vorticity variables formulation. The results are obtained with a simple numerical scheme based mainly on a fixed point iterative process applied to the non-linear system of elliptic equations that is obtained after a second order time discretization. Numerical experiments are reported for the problem of a cavity with fluid boundary motion on the top. Some results correspond to validation examples and others, to the best of our knowledge, correspond to new results. To show that the new results are correct, a mesh size and time independence studies are carried out, and the acceptable errors are measured point-wise. For the optimal mesh size and time step the final times when the steady state is reached, as solution from the unsteady problem, are reported; it should be seen that they are larger than the ones for natural convection which, physically speaking, show the agreement that mixed convection flows are more active than those of natural convection due to the fluid boundary motion on the top of the cavity. The flow parameters are: the Reynolds number, the Grashof number and the aspect ratio.

  11. Calculation of indoor effective dose factors in ORNL phantoms series due to natural radioactivity in building materials.

    PubMed

    Krstic, D; Nikezic, D

    2009-10-01

    In this paper the effective dose in the age-dependent ORNL phantoms series, due to naturally occurring radionuclides in building materials, was calculated. The absorbed doses for various organs or human tissues have been calculated. The MCNP-4B computer code was used for this purpose. The effective dose was calculated according to ICRP Publication 74. The obtained values of dose conversion factors for a standard room are: 1.033, 0.752 and 0.0538 nSv h-1 per Bq kg-1 for elements of the U and Th decay series and for the K isotope, respectively. The values of effective dose agreed generally with those found in the literature, although the values estimated here for elements of the U series were higher in some cases. PMID:19741358

  12. Imbalance of Nature due to Greenhouse Gases from Land-Use Change and Forestry in the State of Sinaloa, Mexico

    NASA Astrophysics Data System (ADS)

    Guzman Galindo, T. D.; Plata Rocha, W. D.; Aguilar-Villegas, J. M.

    2013-05-01

    The imbalance of nature in recent years has been highlighted throughout the world due to the consequences of population and economic growth and changes land use in general. These changes are the result of complex processes between the human and natural environment. This is a very important phenomenon, especially from the point of view of sustainability, as these changes have been considered as one of the most important components of global change (Plata et al., 2009). In the same way the process of deforestation and forest degradation as a result of human activities are a major source of emissions of greenhouse gases in Mexico (Masera et al., 1997). However, forests in Mexico have great potential to become carbon sinks by adopting appropriate support policies, and implementation of sustainable forestry management techniques to improve their production. From this perspective, forest management and reforestation of forests are presented as options for short and medium term climate change mitigation (Sheinbaum and Masera, 2000). Based on the foregoing, the research updates emissions from the Land-Cover and Land-Use Change (LCLUC) for the period 2000 to 2005 for the State of Sinaloa, Mexico, from activity data and national emission factors, reliable and updated to improve certainty and to determine the emissions of greenhouse gases for the sector. This paper examines the updated statewide LCLUC inventory using the gradation level 2 of the IPCC and recommends climate change mitigation and adaptation strategies.t;

  13. Mesoscale aspects of convective storms

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1981-01-01

    The structure, evolution and mechanisms of mesoscale convective disturbances are reviewed and observation techniques for "nowcasting" their nature are discussed. A generalized mesometeorological scale is given, classifying both low and high pressure systems. Mesoscale storms are shown often to induce strong winds, but their wind speeds are significantly less than those accompanied by submesoscale disturbances, such as tornadoes, downbursts, and microbursts. Mesoscale convective complexes, severe storm wakes, and flash floods are considered. The understanding of the evolution of supercells is essential for improving nowcasting capabilities and a very accurate combination of radar and satellite measurements is required.

  14. Microstructural indicators of convection in sills and dykes

    NASA Astrophysics Data System (ADS)

    Holness, Marian; Neufeld, Jerome; Gilbert, Andrew

    2016-04-01

    . In mafic sills, the average apparent aspect ratio (AR), as measured in thin-section, varies smoothly with model crystallization times (calculated assuming diffusive heat loss), consistent with in situ growth in solidification fronts. However, AR is invariant across individual mafic dykes, with decreasing values (i.e. more blocky grains) as the dyke width increases. This difference can be accounted for by the plagioclase in dykes growing as individual grains and clusters suspended in a convecting magma. Cooling at a vertical wall, as is the case for dykes, will always result in a gravitational convective instability, and therefore crystal-poor magma in dykes will always convect. As solidification proceeds, the increasing volume fraction of suspended crystals will eventually damp convection: the final stages of solidification occur in static crystal-rich magma, containing a well-mixed grain population. That the Shiant Isles Main Sill exhibits evidence for prolonged convection of sufficient vigour to suspend 5 mm olivine clusters, while other sills of comparable thickness contain plagioclase with grain shapes indicative of growth predominantly in solidification fronts, is most likely due to the composite nature of the Shiant. The 140m unit is underlain by 23m of picrite which intruded shortly before - this heat source would have acted as a strong driver for convection.

  15. A stochastic parameterization for deep convection using cellular automata

    NASA Astrophysics Data System (ADS)

    Bengtsson, L.; Steinheimer, M.; Bechtold, P.; Geleyn, J.

    2012-12-01

    Cumulus parameterizations used in most operational weather and climate models today are based on the mass-flux concept which took form in the early 1970's. In such schemes it is assumed that a unique relationship exists between the ensemble-average of the sub-grid convection, and the instantaneous state of the atmosphere in a vertical grid box column. However, such a relationship is unlikely to be described by a simple deterministic function (Palmer, 2011). Thus, because of the statistical nature of the parameterization challenge, it has been recognized by the community that it is important to introduce stochastic elements to the parameterizations (for instance: Plant and Craig, 2008, Khouider et al. 2010, Frenkel et al. 2011, Bentsson et al. 2011, but the list is far from exhaustive). There are undoubtedly many ways in which stochastisity can enter new developments. In this study we use a two-way interacting cellular automata (CA), as its intrinsic nature possesses many qualities interesting for deep convection parameterization. In the one-dimensional entraining plume approach, there is no parameterization of horizontal transport of heat, moisture or momentum due to cumulus convection. In reality, mass transport due to gravity waves that propagate in the horizontal can trigger new convection, important for the organization of deep convection (Huang, 1988). The self-organizational characteristics of the CA allows for lateral communication between adjacent NWP model grid-boxes, and temporal memory. Thus the CA scheme used in this study contain three interesting components for representation of cumulus convection, which are not present in the traditional one-dimensional bulk entraining plume method: horizontal communication, memory and stochastisity. The scheme is implemented in the high resolution regional NWP model ALARO, and simulations show enhanced organization of convective activity along squall-lines. Probabilistic evaluation demonstrate an enhanced spread in

  16. Regional analysis of convective systems during the West African monsoon

    NASA Astrophysics Data System (ADS)

    Guy, Bradley Nicholas

    characteristics (e.g. total precipitation and vertical reflectivity profiles) at the inland and maritime sites. The wave regime also resulted in an increased population of the largest observed mesoscale convective systems observed near the coast, which led to an increase in stratiform precipitation. Despite this increase, differentiation of convective strength characteristics was less obvious between wave and no-wave regimes at the coast. Due to the propagating nature of these advecting mesoscale convective systems, interaction with the regional thermodynamic and dynamic environment appears to result in more variability than enhancements due to the wave regime, independent of location. A 13-year (1998-2010) climatology of mesoscale convective characteristics associated with the West African monsoon are also investigated using precipitation radar and passive microwave data from the NASA Tropical Rainfall Measuring Mission satellite. Seven regions defined as continental northeast and northwest, southeast and southwest, coastal, and maritime north and south are compared to analyze zonal and meridional differences. Data are categorized according to identified African easterly wave (AEW) phase and when no wave is present. While some enhancements are observed in association with AEW regimes, regional differences were generally more apparent than wave vs. no-wave differences. Convective intensity metrics confirm that land-based systems exhibit stronger characteristics, such as higher storm top and maximum 30-dBZ heights and significant 85-GHz brightness temperature depressions. Continental systems also contain a lower fraction of points identified as stratiform. Results suggest that precipitation processes also varied depending upon region and AEW regime, with warm-rain processes more apparent over the ocean and the southwest continental region and ice-based microphysics more dominant over land, including mixed-phase processes. AEW regimes did show variability in stratiform fraction and

  17. Topical report : CFD analysis for the applicability of the natural convection shutdown heat removal test facility (NSTF) for the simulation of the VHTR RCCS.

    SciTech Connect

    Tzanos, C. P.

    2007-05-16

    The Very High Temperature gas cooled reactor (VHTR) is one of the GEN IV reactor concepts that have been proposed for thermochemical hydrogen production and other process-heat applications like coal gasification. The United States Department of Energy has selected the VHTR for further research and development, aiming to demonstrate emissions-free electricity and hydrogen production at a future time. One of the major safety advantages of the VHTR is the potential for passive decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-side of the RCCS is very similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that has been proposed for the PRISM reactor design. The design and safety analysis of the RVACS have been based on extensive analytical and experimental work performed at ANL. The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at ANL that simulates at full scale the air-side of the RVACS was built to provide experimental support for the design and analysis of the PRISM RVACS system. The objective of this work is to demonstrate that the NSTF facility can be used to generate RCCS experimental data: to validate CFD and systems codes for the analysis of the RCCS; and to support the design and safety analysis of the RCCS. At this time no reference design is available for the NGNP. The General Atomics (GA) gas turbine - modular helium reactor (GT-MHR) has been used in many analyses as a starting reference design. In the GT-MHR the reactor outlet temperature is 850 C, while the target outlet reactor temperature in VHTR is 1000 C. VHTR scoping studies with a reactor outlet temperature of 1000 C have been performed at GA and INEL. Although the reactor outlet temperature in the VHTR is significantly higher than in the GT-MHR, the peak temperature in the reactor vessel (which is the heat source for the RCCS) is not drastically different. In this work, analyses have been performed using reactor vessel

  18. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-19

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  19. The potential for free and mixed convection in sedimentary basins

    USGS Publications Warehouse

    Raffensperger, J.P.; Vlassopoulos, D.

    1999-01-01

    Free thermal convection and mixed convection are considered as potential mechanisms for mass and heat transport in sedimentary basins. Mixed convection occurs when horizontal flows (forced convection) are superimposed on thermally driven flows. In cross section, mixed convection is characterized by convection cells that migrate laterally in the direction of forced convective flow. Two-dimensional finite-element simulations of variable-density groundwater flow and heat transport in a horizontal porous layer were performed to determine critical mean Rayleigh numbers for the onset of free convection, using both isothermal and semi-conductive boundaries. Additional simulations imposed a varying lateral fluid flux on the free-convection pattern. Results from these experiments indicate that forced convection becomes dominant, completely eliminating buoyancy-driven circulation, when the total forced-convection fluid flux exceeds the total flux possible due to free convection. Calculations of the thermal rock alteration index (RAI=q????T) delineate the patterns of potential diagenesis produced by fluid movement through temperature gradients. Free convection produces a distinct pattern of alternating positive and negative RAIs, whereas mixed convection produces a simpler layering of positive and negative values and in general less diagenetic alteration. ?? Springer-Verlag.

  20. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Eisa, Gaber Faheem; Chandrasekhar, S.; Larrousse, Mark; Banan, Mohsen

    1988-01-01

    The influence was studied of convection during directional solidification on the resulting microstructure of eutectics, specifically lead/tin and manganese/bismuth. A theory was developed for the influence of convection on the microstructure of lamellar and fibrous eutectics, through the effect of convection on the concentration field in the melt in front of the growing eutectic. While the theory agrees with the experimental spin-up spin-down results, it predicts that the weak convection expected due to buoyancy will not produce a measurable change in eutectic microstructure. Thus, this theory does not explain the two fold decrease in MnBi fiber size and spacing observed when MnBi-Bi is solidified in space or on Earth with a magnetic field applied. Attention was turned to the morphology of the MnBi-Bi interface and to the generation of freezing rate fluctuations by convection. Decanting the melt during solidification of MnBi-Bi eutectic showed that the MnBi phase projects into the melt ahead of the Bi matrix. Temperature measurements in a Bi melt in the vertical Bridgman-Stockbarger configuration showed temperature variations of up to 25 C. Conclusions are drawn and discussed.

  1. Marangoni Convection and Deviations from Maxwells' Evaporation Model

    NASA Technical Reports Server (NTRS)

    Segre, P. N.; Snell, E. H.; Adamek, D. H.

    2003-01-01

    We investigate the convective dynamics of evaporating pools of volatile liquids using an ultra-sensitive thermal imaging camera. During evaporation, there are significant convective flows inside the liquid due to Marangoni forces. We find that Marangoni convection during evaporation can dramatically affect the evaporation rates of volatile liquids. A simple heat balance model connects the convective velocities and temperature gradients to the evaporation rates.

  2. Reduced Tyk2 gene expression in β-cells due to natural mutation determines susceptibility to virus-induced diabetes.

    PubMed

    Izumi, Kenichi; Mine, Keiichiro; Inoue, Yoshitaka; Teshima, Miho; Ogawa, Shuichiro; Kai, Yuji; Kurafuji, Toshinobu; Hirakawa, Kanako; Miyakawa, Daiki; Ikeda, Haruka; Inada, Akari; Hara, Manami; Yamada, Hisakata; Akashi, Koichi; Niho, Yoshiyuki; Ina, Keisuke; Kobayashi, Takashi; Yoshikai, Yasunobu; Anzai, Keizo; Yamashita, Teruo; Minagawa, Hiroko; Fujimoto, Shuji; Kurisaki, Hironori; Shimoda, Kazuya; Katsuta, Hitoshi; Nagafuchi, Seiho

    2015-01-01

    Accumulating evidence suggests that viruses play an important role in the development of diabetes. Although the diabetogenic encephalomyocarditis strain D virus induces diabetes in restricted lines of inbred mice, the susceptibility genes to virus-induced diabetes have not been identified. We report here that novel Tyrosine kinase 2 (Tyk2) gene mutations are present in virus-induced diabetes-sensitive SJL and SWR mice. Mice carrying the mutant Tyk2 gene on the virus-resistant C57BL/6 background are highly sensitive to virus-induced diabetes. Tyk2 gene expression is strongly reduced in Tyk2-mutant mice, associated with low Tyk2 promoter activity, and leads to decreased expression of interferon-inducible genes, resulting in significantly compromised antiviral response. Tyk2-mutant pancreatic β-cells are unresponsive even to high dose of Type I interferon. Reversal of virus-induced diabetes could be achieved by β-cell-specific Tyk2 gene expression. Thus, reduced Tyk2 gene expression in pancreatic β-cells due to natural mutation is responsible for susceptibility to virus-induced diabetes. PMID:25849081

  3. Reduced Tyk2 gene expression in β-cells due to natural mutation determines susceptibility to virus-induced diabetes

    PubMed Central

    Izumi, Kenichi; Mine, Keiichiro; Inoue, Yoshitaka; Teshima, Miho; Ogawa, Shuichiro; Kai, Yuji; Kurafuji, Toshinobu; Hirakawa, Kanako; Miyakawa, Daiki; Ikeda, Haruka; Inada, Akari; Hara, Manami; Yamada, Hisakata; Akashi, Koichi; Niho, Yoshiyuki; Ina, Keisuke; Kobayashi, Takashi; Yoshikai, Yasunobu; Anzai, Keizo; Yamashita, Teruo; Minagawa, Hiroko; Fujimoto, Shuji; Kurisaki, Hironori; Shimoda, Kazuya; Katsuta, Hitoshi; Nagafuchi, Seiho

    2015-01-01

    Accumulating evidence suggests that viruses play an important role in the development of diabetes. Although the diabetogenic encephalomyocarditis strain D virus induces diabetes in restricted lines of inbred mice, the susceptibility genes to virus-induced diabetes have not been identified. We report here that novel Tyrosine kinase 2 (Tyk2) gene mutations are present in virus-induced diabetes-sensitive SJL and SWR mice. Mice carrying the mutant Tyk2 gene on the virus-resistant C57BL/6 background are highly sensitive to virus-induced diabetes. Tyk2 gene expression is strongly reduced in Tyk2-mutant mice, associated with low Tyk2 promoter activity, and leads to decreased expression of interferon-inducible genes, resulting in significantly compromised antiviral response. Tyk2-mutant pancreatic β-cells are unresponsive even to high dose of Type I interferon. Reversal of virus-induced diabetes could be achieved by β-cell-specific Tyk2 gene expression. Thus, reduced Tyk2 gene expression in pancreatic β-cells due to natural mutation is responsible for susceptibility to virus-induced diabetes. PMID:25849081

  4. Atmospheric convective transport contribution to evaporative sessile droplets

    NASA Astrophysics Data System (ADS)

    Carle, Florian; Semenov, Sergey; Medale, Marc; Brutin, David

    2014-11-01

    The scientific community struggles with the creation of an accurate quantitative description of sessile droplet evaporation flux rate. The classically used description considers evaporation as a quasi-steady process controlled by the diffusion of vapor into the air, and the whole system is assumed to be isothermal at the ambient temperature. However, when two types of fluids (alcohols and alkanes) are let to evaporate on heated substrates while a side view camera measures their evaporation flux rate, droplets tend to see their evaporation flux rate underestimated by this model mostly due to convection. This experimental study aims to understand how atmospheric convective transport in the vapor phase influences evaporation in order to developed an empirical model that describes with accuracy the evaporation flux rate. The Rayleigh number is used to analyze the contribution of natural convection and an empirical model is developed combining diffusive and convective transport for each type of fluid. The influence of the molecular chain length (and the increasing number of carbon atoms) is also being discussed.

  5. How stratified is mantle convection?

    NASA Astrophysics Data System (ADS)

    Puster, Peter; Jordan, Thomas H.

    1997-04-01

    We quantify the flow stratification in the Earth's mid-mantle (600-1500 km) in terms of a stratification index for the vertical mass flux, Sƒ (z) = 1 - ƒ(z) / ƒref (z), in which the reference value ƒref(z) approximates the local flux at depth z expected for unstratified convection (Sƒ=0). Although this flux stratification index cannot be directly constrained by observations, we show from a series of two-dimensional convection simulations that its value can be related to a thermal stratification index ST(Z) defined in terms of the radial correlation length of the temperature-perturbation field δT(z, Ω). ST is a good proxy for Sƒ at low stratifications (Sƒ<0.2), where it rises with stratification strength much more rapidly than Sƒ. Assuming that the shear-speed variations δβ(z, Ω) imaged by seismic tomography are primarily due to convective temperature fluctuations, we can approximate ST by Sβ, the analogous index for the radial correlation length of δβ, and thereby construct bounds on Sƒ. We discuss several key issues regarding the implementation of this strategy, including finite resolution of the seismic data, biases due to the parameterization of the tomographic models, and the bias and variance due to noise. From the comparison of the numerical simulations with recent tomographic structures, we conclude that it is unlikely that convection in the Earth's mantle has Sƒ≳0.15. We consider the possibility that this estimate is biased because mantle convection is intermittent and therefore that the present-day tomographic snapshot may differ from its time average. Although this possibility cannot be dismissed completely, we argue that values of Sƒ≳0.2 can be discounted under a weak version of the Uniformitarian Principle. The bound obtained here from global tomography is consistent with local seismological evidence for slab flux into the lower mantle; however, the total material flux has to be significantly greater (by a factor of 2-3) than that

  6. The effect of density-driven convection on temperature logs - detection, differentiation and pitfalls

    NASA Astrophysics Data System (ADS)

    Berthold, Susann

    2013-04-01

    exceed the velocity of the horizontal natural groundwater (through) flow. Density-driven convection causes anomalies and patterns in temperature and water quality logs. These include e.g., stratification and staircase structures or oscillations caused by convection cells. Overturning thermal, solutale or thermosolutale convection leads to spatially and temporarily oscillations in the otherwise smooth temperature log. The affected water column acts as a mixing reactor. Due to the high velocity of the revolving convection, this mixing is very effective. The so-called double-diffusion is accompanied by the formation of typical step structures in temperature logs which originate from the change from convective to well mixed layers with intervening diffusive transitional layers. The layers of convective transport are characterized by relatively steady values and the layers by diffusive transport are characterized by jump-like changes in temperature, forming the staircase structures. These anomalies and patterns can be qualitatively evaluated (e.g., by the Synthetic Convection Log) to assess falsifying effects on temperature logs due to mixture, heat and mass transport.

  7. Stochastic Thermal Convection

    NASA Astrophysics Data System (ADS)

    Venturi, Daniele

    2005-11-01

    Stochastic bifurcations and stability of natural convective flows in 2d and 3d enclosures are investigated by the multi-element generalized polynomial chaos (ME-gPC) method (Xiu and Karniadakis, SISC, vol. 24, 2002). The Boussinesq approximation for the variation of physical properties is assumed. The stability analysis is first carried out in a deterministic sense, to determine steady state solutions and primary and secondary bifurcations. Stochastic simulations are then conducted around discontinuities and transitional regimes. It is found that these highly non-linear phenomena can be efficiently captured by the ME-gPC method. Finally, the main findings of the stochastic analysis and their implications for heat transfer will be discussed.

  8. Spatial localization in rotating convection and magnetoconvection

    NASA Astrophysics Data System (ADS)

    Kao, H.-C.; Knobloch, E.

    2014-01-01

    Stationary spatially localized states are present in both rotating convection and magnetoconvection. In two-dimensional convection with stress-free boundary conditions, the formation of such states is due to the interaction between convection and a large scale mode: zonal velocity in rotating convection and magnetic potential in magnetoconvection. We develop a higher order theory, a nonlocal fifth order Ginzburg-Landau equation, to describe the effects of spatial modulation near a codimension-two point. Two different bifurcation scenarios are identified. Our results shed light on numerical studies of two-dimensional convective systems with stress-free boundary conditions. This paper is dedicated to Professor Helmut Brand on the occasion of his 60th birthday.

  9. Finite element analysis of natural convective heat transfer in a porous square cavity filled with nanofluids in the presence of thermal radiation

    NASA Astrophysics Data System (ADS)

    Shekar, Balla Chandra; Kishan, Naikoti

    2015-12-01

    Free convection heat transfer in a square cavity filled with nanofluid-saturated porous medium with the effects of different nanoparticles in the presence of thermal radiation is investigated in this paper. The top and bottom horizontal walls of cavity are considered adiabatic, while the vertical walls are kept at constant temperatures. The governing partial differential equations are solved by finite element method of Galerkin weighted residual scheme. Numerical results are obtained for different values of the Rayleigh number, radiation parameter and nanofluid volume fraction. The overall investigation of variation of streamlines, isotherms and Nusselt numbers is presented graphically. To examine the accuracy, the present results are compared with the available results.

  10. Studies of Forced-Convection Heat Transfer Augmentation in Large Containment Enclosures

    SciTech Connect

    Kuhn, S.Z.; Peterson, P.F.

    2001-06-17

    Heat transfer enhancement due to jet mixing inside a cylindrical enclosure is discussed. This work addresses conservative heat transfer assumptions regarding mixing and condensation that have typically been incorporated into passive containment design analyses. This research presents the possibility for increasing decay heat removal of passive containment systems under combined natural and forced convection. Eliminating these conservative assumptions could result in a changed containment design and reduce the construction cost. It is found that the ratio of forced- and free-convection Nusselt numbers can be predicted as a function of the Archimedes number and a correlated factor accounting for jet orientation and enclosure geometry.

  11. Numerical Modeling of Conjugate Thermogravitational Convection in a Closed System with a Radiant Energy Source in Conditions of Convective-Radiative Heat Exchange at the External Boundary

    NASA Astrophysics Data System (ADS)

    Nee, Alexander

    2016-02-01

    Mathematical modeling of conjugate natural convection in a closed rectangular cavity with a radiant energy source in conditions of convective-radiative heat exchange at the external boundary was conducted. The radiant energy distribution was set by the Lambert's law. Conduction and convection processes analysis showed that the air masses flow pattern is modified slightly over the time. The temperature increases in the gas cavity, despite the heat removal from the one of the external boundary. According to the results of the integral heat transfer analysis were established that the average Nusselt number (Nuav) increasing occurs up to τ = 200 (dimensionless time). Further Nuav has changed insignificantly due to the temperature field equalization near the interfaces "gas - wall".

  12. Regional Variability in Convection and Rain Retrievals from the TRMM Microwave Imager (TMI)

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.

    2003-01-01

    Precipitation Radar (PR) on board the TRMM satellite shows that the average height of 30 dBz in convective rain areas of the tropics varies significantly from one region to the other. When the convection is weak this height is shallow and when convection is strong this height extends deeper into the troposphere. The brightness temperature (Tb) measured by the microwave radiometer by itself does not reflect this nature of convection satisfactorily. Radiative transfer simulations of Tbs reveal that this could be due to the variations in the vertical distribution of optically active water and ice hydrometeors and their density, shape, and size. These variations are not coupled uniquely to the strength of the convective updrafts, and as a result the Tbs do not reflect properly the convective strength indicated by PR. Because of this deficiency in the Tbs the rain rate deduced from them differs from that of PR. For this reason, to improve the estimation of rain rate we have developed an empirical method. In this method a parameter based on the areal extent of the Tbs that exceed a certain magnitude is included along with the Tbs. Rain rate deduced with this approach is better correlated with that of PR when compared to the current Version 5 operational algorithm. The percentage of rain volume as a function of rain rate, for a given region of 5deg lat. X 5deg long. over a period of three months, deduced from this method, is also in better agreement with that of the PR.

  13. Using Jupiter's gravitational field to probe the Jovian convective dynamo.

    PubMed

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2016-01-01

    Convective motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the convective motion are unknown. A promising way of probing the Jovian convective dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric convective motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep convection. PMID:27005472

  14. Transition to chaos of thermocapillary convection

    NASA Astrophysics Data System (ADS)

    Li, Kai; Tang, Ze Mei; Aa, Yan; Hu, Wen-Rui

    Transition of fluid convection to chaos in dissipative dynamical systems is a subject of great interest for both its theoretical and practical aspects in the fluid mechanics. Extensive studies have shown that there are several routes of the buoyant natural convection to chaos depending on parameters of the dissipative dynamical systems such as the Rayleigh number, the Prandtl number and geometry aspect. Another important type of natural convection is thermocapillary convection driven by the surface-tension gradient prominent in fluid systems with interface in the microgravity condition or in small-scaled terrestrial configurations (The relative importance of the gravity effect to the capillary effect is scaled by the static Bond number, , and the dynamic Bond number, , the geometrical scale of the system in the terrestrial experiments, therefore, was significantly reduced to make the capillary effect dominant). The thermocapillary convection has become one of the fundamental subjects in the microgravity fluid physics and space fluid/heat management. However, most studies now available were focused on the onset of oscillatory thermocapillary convection, the initial regime of the route to chaos. A complete route to chaos in such a new sort of dissipative system is still an attractive open question, especially in the experimental study. In present study, the route to chaos of the thermocapillary convection has been investigated. Several routes to chaos, e.g. period oscillatory convection to quasi-period oscillatory convection with 2 to 3 major frequencies, a series of successive period doubling bifurcations and their combination, of the thermocapillary flow is reported through the temperature measurements and the corresponding real time analysis of frequency spectra accomplished by Fast-Fourier-Transformation (FFT) or numerically. The corresponding phase diagrams are also provided.

  15. Vigorous convection in a sunspot granular light bridge

    NASA Astrophysics Data System (ADS)

    Lagg, Andreas; Solanki, Sami K.; van Noort, Michiel; Danilovic, Sanja

    2014-08-01

    Context. Light bridges are the most prominent manifestation of convection in sunspots. The brightest representatives are granular light bridges composed of features that appear to be similar to granules. Aims: An in-depth study of the convective motions, temperature stratification, and magnetic field vector in and around light bridge granules is presented with the aim of identifying similarities and differences to typical quiet-Sun granules. Methods: Spectropolarimetric data from the Hinode Solar Optical Telescope were analyzed using a spatially coupled inversion technique to retrieve the stratified atmospheric parameters of light bridge and quiet-Sun granules. Results: Central hot upflows surrounded by cooler fast downflows reaching 10 km s-1 clearly establish the convective nature of the light bridge granules. The inner part of these granules in the near surface layers is field free and is covered by a cusp-like magnetic field configuration. We observe hints of field reversals at the location of the fast downflows. The quiet-Sun granules in the vicinity of the sunspot are covered by a low-lying canopy field extending radially outward from the spot. Conclusions: The similarities between quiet-Sun and light bridge granules point to the deep anchoring of granular light bridges in the underlying convection zone. The fast, supersonic downflows are most likely a result of a combination of invigorated convection in the light bridge granule due to radiative cooling into the neighboring umbra and the fact that we sample deeper layers, since the downflows are immediately adjacent to the slanted walls of the Wilson depression. The two movies are available in electronic form at http://www.aanda.org

  16. Turbulent convective flows in the solar photospheric plasma

    NASA Astrophysics Data System (ADS)

    Caroli, A.; Giannattasio, F.; Fanfoni, M.; Del Moro, D.; Consolini, G.; Berrilli, F.

    2015-10-01

    > The origin of the 22-year solar magnetic cycle lies below the photosphere where multiscale plasma motions, due to turbulent convection, produce magnetic fields. The most powerful intensity and velocity signals are associated with convection cells, called granules, with a scale of typically 1 Mm and a lifetime of a few minutes. Small-scale magnetic elements (SMEs), ubiquitous on the solar photosphere, are passively transported by associated plasma flows. This advection makes their traces very suitable for defining the convective regime of the photosphere. Therefore the solar photosphere offers an exceptional opportunity to investigate convective motions, associated with compressible, stratified, magnetic, rotating and large Rayleigh number stellar plasmas. The magnetograms used here come from a Hinode/SOT uninterrupted 25-hour sequence of spectropolarimetric images. The mean-square displacement of SMEs has been modelled with a power law with spectral index . We found for times up to and for times up to . An alternative way to investigate the advective-diffusive motion of SMEs is to look at the evolution of the two-dimensional probability distribution function (PDF) for the displacements. Although at very short time scales the PDFs are affected by pixel resolution, for times shorter than the PDFs seem to broaden symmetrically with time. In contrast, at longer times a multi-peaked feature of the PDFs emerges, which suggests the non-trivial nature of the diffusion-advection process of magnetic elements. A Voronoi distribution analysis shows that the observed small-scale distribution of SMEs involves the complex details of highly nonlinear small-scale interactions of turbulent convective flows detected in solar photospheric plasma.

  17. Magnetic Control of Solutal Buoyancy Driven Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    Volumetric forces resulting from local density variations and gravitational acceleration cause buoyancy induced convective motion in melts and solutions. Solutal buoyancy is a result of concentration differences in an otherwise isothermal fluid. If the fluid also exhibits variations in magnetic susceptibility with concentration then convection control by external magnetic fields can be hypothesized. Magnetic control of thermal buoyancy induced convection in ferrofluids (dispersions of ferromagnetic particles in a carrier fluid) and paramagnetic fluids have been demonstrated. Here we show the nature of magnetic control of solutal buoyancy driven convection of a paramagnetic fluid, an aqueous solution of Manganese Chloride hydrate. We predict the critical magnetic field required for balancing gravitational solutal buoyancy driven convection and validate it through a simple experiment. We demonstrate that gravity driven flow can be completely reversed by a magnetic field but the exact cancellation of the flow is not possible. This is because the phenomenon is unstable. The technique can be applied to crystal growth processes in order to reduce convection and to heat exchanger devices for enhancing convection. The method can also be applied to impose a desired g-level in reduced gravity applications.

  18. Near-surface physics during convection affecting air-water gas transfer

    NASA Astrophysics Data System (ADS)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-05-01

    The gas flux at the water surface is affected by physical processes including turbulence from wind shear, microscale wave breaking, large-scale breaking, and convection due to heat loss at the surface. The main route in the parameterizations of the gas flux has been to use the wind speed as a proxy for the gas flux velocity, indirectly taking into account the dependency of the wind shear and the wave processes. The interest in the contributions from convection processes has increased as the gas flux from inland waters (with typically lower wind and sheltered conditions) now is believed to play a substantial role in the air-water gas flux budget. The gas flux is enhanced by convection through the mixing of the mixed layer as well as by decreasing the diffusive boundary layer thickness. The direct numerical simulations performed in this study are shown to be a valuable tool to enhance the understanding of this flow configuration often present in nature.

  19. Magnetohydrodynamic convection in liquid gallium.

    NASA Astrophysics Data System (ADS)

    Juel, Anne; Mullin, Tom

    1996-11-01

    Results are presented from a study of convective flow of liquid gallium confined in a rectangular cavity of length/depth ratio 4, subject to a horizontal temperature gradient. The origin of the problem lies in the area of crystal growth, where it is known that the dynamics of the fluid flow in semiconductor geometries are of vital importance in determining the quality of the crystal. Application of a magnetic field, for instance, damps out the time-dependent convection in the liquid phase that creates striations in the crystal and reduces its quality. Prior to the study of dynamical phenomena, the nature of the steady flow is investigated. In the absence of a magnetic field, a direct comparison between experimental results, the Hadley cell model and two and three-dimensional numerical simulations clearly shows that the flow is three-dimensional in nature. The effect of a uniform transverse magnetic field is then examined. Direct comparison between experimental results and three dimensional simulations shows identical damping of the convective circulation. Numerically, it is found that the magnetic field restricts the flow to 2d motion. Experimentally, this is confirmed from the measurement of isotherms. Hence, the detailed knowledge of the steady flow provides us with a robust basis for studies of time dependent behaviour.

  20. Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production

    NASA Astrophysics Data System (ADS)

    Helmig, Detlev; Rossabi, Samuel; Hueber, Jacques; Tans, Pieter; Montzka, Stephen A.; Masarie, Ken; Thoning, Kirk; Plass-Duelmer, Christian; Claude, Anja; Carpenter, Lucy J.; Lewis, Alastair C.; Punjabi, Shalini; Reimann, Stefan; Vollmer, Martin K.; Steinbrecher, Rainer; Hannigan, James W.; Emmons, Louisa K.; Mahieu, Emmanuel; Franco, Bruno; Smale, Dan; Pozzer, Andrea

    2016-07-01

    Non-methane hydrocarbons such as ethane are important precursors to tropospheric ozone and aerosols. Using data from a global surface network and atmospheric column observations we show that the steady decline in the ethane mole fraction that began in the 1970s halted between 2005 and 2010 in most of the Northern Hemisphere and has since reversed. We calculate a yearly increase in ethane emissions in the Northern Hemisphere of 0.42 (+/-0.19) Tg yr-1 between mid-2009 and mid-2014. The largest increases in ethane and the shorter-lived propane are seen over the central and eastern USA, with a spatial distribution that suggests North American oil and natural gas development as the primary source of increasing emissions. By including other co-emitted oil and natural gas non-methane hydrocarbons, we estimate a Northern Hemisphere total non-methane hydrocarbon yearly emission increase of 1.2 (+/-0.8) Tg yr-1. Atmospheric chemical transport modelling suggests that these emissions could augment summertime mean surface ozone by several nanomoles per mole near oil and natural gas production regions. Methane/ethane oil and natural gas emission ratios could suggest a significant increase in associated methane emissions; however, this increase is inconsistent with observed leak rates in production regions and changes in methane's global isotopic ratio.

  1. Natural Variation in "Drosophila" Larval Reward Learning and Memory Due to a cGMP-Dependent Protein Kinase

    ERIC Educational Resources Information Center

    Kaun, Karla R.; Hendel, Thomas; Gerber, Bertram; Sokolowski, Marla B.

    2007-01-01

    Animals must be able to find and evaluate food to ensure survival. The ability to associate a cue with the presence of food is advantageous because it allows an animal to quickly identify a situation associated with a good, bad, or even harmful food. Identifying genes underlying these natural learned responses is essential to understanding this…

  2. Numerical and Experimental Studies of the Natural Convection Flow Within a Horizontal Cylinder Subjected to a Uniformly Cold Wall Boundary Condition. Ph.D. Thesis - Va. Poly. Inst. and State Univ.

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.

    1972-01-01

    Numberical solutions are obtained for the quasi-compressible Navier-Stokes equations governing the time dependent natural convection flow within a horizontal cylinder. The early time flow development and wall heat transfer is obtained after imposing a uniformly cold wall boundary condition on the cylinder. Solutions are also obtained for the case of a time varying cold wall boundary condition. Windware explicit differ-encing is used for the numerical solutions. The viscous truncation error associated with this scheme is controlled so that first order accuracy is maintained in time and space. The results encompass a range of Grashof numbers from 8.34 times 10,000 to 7 times 10 to the 7th power which is within the laminar flow regime for gravitationally driven fluid flows. Experiments within a small scale instrumented horizontal cylinder revealed the time development of the temperature distribution across the boundary layer and also the decay of wall heat transfer with time.

  3. Cloud formation, convection, and stratospheric dehydration

    NASA Astrophysics Data System (ADS)

    Schoeberl, Mark R.; Dessler, Andrew E.; Wang, Tao; Avery, Melody A.; Jensen, Eric J.

    2014-12-01

    Using the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds, temperatures, and anvil cloud ice, we use our domain-filling, forward trajectory model combined with a new cloud module to show that convective transport of saturated air and ice to altitudes below the tropopause has a significant impact on stratospheric water vapor and upper tropospheric clouds. We find that including cloud microphysical processes (rather than assuming that parcel water vapor never exceeds saturation) increases the lower stratospheric average H2O by 10-20%. Our model-computed cloud fraction shows reasonably good agreement with tropical upper troposphere (TUT) cloud frequency observed by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument in boreal winter with poorer agreement in summer. Our results suggest that over 40% of TUT cirrus is due to convection, and it is the saturated air from convection rather than injected cloud ice that primarily contributes to this increase. Convection can add up to 13% more water to the stratosphere. With just convective hydration (convection adds vapor up to saturation), the global lower stratospheric modeled water vapor is close to Microwave Limb Sounder observations. Adding convectively injected ice increases the modeled water vapor to ~8% over observations. Improving the representation of MERRA tropopause temperatures fields reduces stratospheric water vapor by ~4%.

  4. Convective Available Potential Energy of World Ocean

    NASA Astrophysics Data System (ADS)

    Su, Z.; Ingersoll, A. P.; Thompson, A. F.

    2012-12-01

    -ocean convection may arise through strong surface buoyancy fluxes (Schott et al. 1996), or by thermobaric instability (Akitomo 1999a, b). Ingersoll (2005) demonstrated that thermobaric-induced deep convection is due to the abrupt release of ocean potential energy into kinetic energy. In atmospheric dynamics, Convective Available Potential Energy (CAPE) has long been an important thermodynamic variable (Arakawa and Schubert 1974) that has been used to forecast moist convection (Doswell and Rasmussen 1994) and to test the performance of GCMs (Ye et al. 1998). However, the development of a similar diagnostic in the ocean has received little attention.; World Ocean Convective Available Potential Energy distribution in North-Hemisphere Autumn (J/kg)

  5. Magnetic field effect on natural convection and entropy generation in a half-moon shaped cavity with semi-circular bottom heater having different ferrofluid inside

    NASA Astrophysics Data System (ADS)

    Mojumder, Satyajit; Rabbi, Khan Md.; Saha, Sourav; Hasan, MN; Saha, Suvash C.

    2016-06-01

    In this study magneto-hydrodynamic convection in a half-moon shaped cavity filled with ferrofluid has been analyzed numerically. The cavity has two semi-circular bottom heaters and effect of the distance between these two heaters (λ = 0.1 , 0.4) has been thoroughly investigated. Numerical simulation has been carried out for a wide range of Rayleigh number (Ra =103 ∼107), Hartmann number (Ha = 0 ∼ 100) and inclination angle of magnetic field (γ = 0 ° ∼ 90 °) to understand the flow field, thermal field and entropy generation respectively. Cobalt-kerosene and Fe3 O4 -water ferrofluids are used for the present investigation and considered as a single phase fluid. Galerkin weighted residual method of finite element analysis has been used for numerical solution. The code validation and grid independency test have been carried out to justify the numerical accuracy. It has been observed that increment of magnetic field reduces the heat transfer rate, whereas increment of heater distance augments the heat transfer rate significantly. Results are discussed on the basis of Nusselt number (Nu), Bejan number (Be) and shown by contours and 3D plots. It has also been found that λ = 0.4 always shows better heat transfer rate and entropy optimization.

  6. Ice Nucleation in Deep Convection

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The processes controlling production of ice crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of ice crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the ice surface area decreases, the relative humidity can increase well above ice saturation, resulting in bursts of ice nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, ice crystals, and mixed-phase (ice/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous ice nucleation. We are focusing on the importance of ice nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these ice nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.

  7. Stochastic Convection Parameterizations

    NASA Technical Reports Server (NTRS)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  8. Characterization of residuals from ice particles and droplets sampled in mid-latitude natural and aviation-influenced cirrus and in tropical deep convective cloud systems during ML-CIRRUS and ACRIDICON

    NASA Astrophysics Data System (ADS)

    Mertes, Stephan; Kästner, Udo; Schulz, Christiane; Klimach, Thomas; Krüger, Mira; Schneider, Johannes

    2015-04-01

    Airborne sampling of cloud particles inside different cirrus cloud types and inside deep convective clouds was conducted during the HALO missions ML-CIRRUS over Europe in March/April 2014 and ACRIDICON over Amazonia in September 2014. ML-CIRRUS aims at the investigation of the for-mation, evolution, microphysical state and radiative effects of different natural and aviation-induced cirrus clouds in the mid-latitudes. The main objectives of ACRIDICON are the microphysical vertical profiling, vertical aerosol transport and the cloud processing of aerosol particles (compari-son in- and outflow) of tropical deep convective cloud systems in clean and polluted air masses and over forested and deforested regions. The hydrometeors (drops and ice particles) are sampled by a counterflow virtual impactor (CVI) which has to be installed in the front part of the upper fuselage of the HALO aircraft. Such an intake position implies a size dependent abundance of cloud particles with respect to ambient conditions that was studied by particle trajectory simulations (Katrin Witte, HALO Technical Note 2008-003-A). On the other hand, this sampling location avoids that large ice crystals which could potentially bias the cloud particle sampling by shattering and break-up at the inlet shroud and tip enter the inlet. Both aspects as well as the flight conditions of HALO were taken into account for an optimized CVI design for HALO (HALO-CVI). Interstitial particles are pre-segregated and the condensed phase is evaporated/sublimated by the CVI, such that the residuals from cloud droplets and ice particles (CDR and IPR) can be microphysically and chemically analyzed by respective aerosol sensors located in the cabin. Although an even more comprehensive characterization of CDR and IPR was carried out, we like to report on the following measurements of certain aerosol properties. Particle number concentra-tion and size distribution are measured by a condensation particle counter (CPC) and an

  9. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  10. Effects of Deep Convection on Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.

    2007-01-01

    This presentation will trace the important research developments of the last 20+ years in defining the roles of deep convection in tropospheric chemistry. The role of deep convection in vertically redistributing trace gases was first verified through field experiments conducted in 1985. The consequences of deep convection have been noted in many other field programs conducted in subsequent years. Modeling efforts predicted that deep convection occurring over polluted continental regions would cause downstream enhancements in photochemical ozone production in the middle and upper troposphere due to the vertical redistribution of ozone precursors. Particularly large post-convective enhancements of ozone production were estimated for convection occurring over regions of pollution from biomass burning and urban areas. These estimates were verified by measurements taken downstream of biomass burning regions of South America. Models also indicate that convective transport of pristine marine boundary layer air causes decreases in ozone production rates in the upper troposphere and that convective downdrafts bring ozone into the boundary layer where it can be destroyed more rapidly. Additional consequences of deep convection are perturbation of photolysis rates, effective wet scavenging of soluble species, nucleation of new particles in convective outflow, and the potential fix stratosphere-troposphere exchange in thunderstorm anvils. The remainder of the talk will focus on production of NO by lightning, its subsequent transport within convective clouds . and its effects on downwind ozone production. Recent applications of cloud/chemistry model simulations combined with anvil NO and lightning flash observations in estimating NO Introduction per flash will be described. These cloud-resolving case-study simulations of convective transport and lightning NO production in different environments have yielded results which are directly applicable to the design of lightning

  11. Lineage extinction and replacement in dengue type 1 virus populations are due to stochastic events rather than to natural selection

    SciTech Connect

    Hlaing Myat Thu; Lowry, Kym; Jiang Limin; Thaung Hlaing; Holmes, Edward C.; Aaskov, John . E-mail: j.aaskov@qut.edu.au

    2005-06-05

    Between 1996 and 1998, two clades (B and C; genotype I) of dengue virus type 1 (DENV-1) appeared in Myanmar (Burma) that were new to that location. Between 1998 and 2000, a third clade (A; genotype III) of DENV-1, which had been circulating at that locality for at least 25 years, became extinct. These changes preceded the largest outbreak of dengue recorded in Myanmar, in 2001, in which more than 95% of viruses recovered from patients were DENV-1, but where the incidence of severe disease was much less than in previous years. Phylogenetic analyses of viral genomes indicated that the two new clades of DENV-1 did not arise from the, now extinct, clade A viruses nor was the extinction of this clade due to differences in the fitness of the viral populations. Since the extinction occurred during an inter-epidemic period, we suggest that it was due to a stochastic event attributable to the low rate of virus transmission in this interval.

  12. Hemorrhagic stomatitis in a natural hybrid of Vipera ammodytes × Vipera berus due to inappropriate substrate in terrarium

    PubMed Central

    CZIRJÁK, Gábor Árpád; KÖBÖLKUTI, Lóránd Béla; TENK, Miklós; SZAKÁCS, Attila; KELEMEN, Attila; SPÎNU, Marina

    2015-01-01

    A natural hybrid of Vipera ammodytes × Vipera berus was presented having low body weight, seizures and generalized swelling of the cephalic region. Based on the history of the case and clinical examination, hemorrhagic stomatitis of traumatic origin was diagnosed. The snake was kept in a terrarium with wood chips as a substrate, and the material had induced trauma in the oral mucosa which was further complicated with Salmonella Arizonae and Morganella morganii co-infection, abscessation and osteomyelitis. To the best of the authors’ knowledge, this is the first reported case of bacterial infection in European snake hybrids and one of a few case reports in European snakes. Although wood chips are an inexpensive substrate, based on our findings, they should be avoided when keeping and breeding European vipers. PMID:25715871

  13. On the nature of canopy illumination due to differences in elemental orientation and aggregation for radiative transfer

    NASA Astrophysics Data System (ADS)

    Govind, Ajit

    2014-10-01

    The nature of canopy radiative transfer mechanism (CRTM) describes the amount of beam penetration through a canopy and governs the nature of canopy illumination, i.e. the abundance of sunlit and shaded portions. Realistic representation of canopy illumination is critical for simulating various canopy biophysical processes associated with vegetated land surfaces. The adequate representation of CRTM can be attributed to the parameterizations of the two main canopy characteristics: the foliage projection (G-function) and the clumping effect (Ω function). Herein, using various types of G and Ω functions developed in a previous study, I tested 15 CRTM scenarios that combine different types of G and Ω functions to predict the dynamics of sunlit fraction (ɛ) of canopies having a wide range of plant area index (Ptotal) at various solar zenith angles (SZAs). It was observed that, for a given Ptotal, ɛ decreases as the SZA increases. However, ɛ significantly changed in accordance with the type of G and Ω functions used. Scenarios that employed random distribution of elements in space (S-4, S-9, and S-14) consistently returned larger ɛ values even at lower SZAs. This means that ignoring the clumping behavior of canopies could result in greater proportion of sunlit elements thereby reducing the beam penetration deeper into the canopy as opposed to those canopies where the elements are more aggregated. Beyond 70° SZA, almost all the scenarios returned similar ɛ values for a given Ptotal, which implied that the methods used is less sensitive at higher SZAs. The values of ɛ calculated by all the scenarios were significantly different from the S-6 (the ideal case). This observation highlights the importance of explicitly describing the G and Ω functions to adequately depict canopy illumination conditions.

  14. Magneto-convection.

    PubMed

    Stein, Robert F

    2012-07-13

    Convection is the transport of energy by bulk mass motions. Magnetic fields alter convection via the Lorentz force, while convection moves the fields via the curl(v×B) term in the induction equation. Recent ground-based and satellite telescopes have increased our knowledge of the solar magnetic fields on a wide range of spatial and temporal scales. Magneto-convection modelling has also greatly improved recently as computers become more powerful. Three-dimensional simulations with radiative transfer and non-ideal equations of state are being performed. Flux emergence from the convection zone through the visible surface (and into the chromosphere and corona) has been modelled. Local, convectively driven dynamo action has been studied. The alteration in the appearance of granules and the formation of pores and sunspots has been investigated. Magneto-convection calculations have improved our ability to interpret solar observations, especially the inversion of Stokes spectra to obtain the magnetic field and the use of helioseismology to determine the subsurface structure of the Sun. PMID:22665893

  15. Effects of rotation and mid-troposphere moisture on organized convection and convectively coupled gravity waves

    NASA Astrophysics Data System (ADS)

    Majda, Andrew J.; Khouider, Boualem; Frenkel, Yevgeniy

    2015-02-01

    Atmospheric convection has the striking capability to organize itself into a hierarchy of cloud clusters and super-clusters on scales ranging from the convective cell of a few kilometres to planetary scale disturbances such as the Madden-Julian oscillation. It is widely accepted that this phenomenon is due in large part to the two-way coupling between convective processes and equatorially trapped waves and planetary scale flows in general. However, the physical mechanisms responsible for this multiscale organization and the associated across-scale interactions are poorly understood. The two main peculiarities of the tropics are the vanishing of the Coriolis force at the equator and the abundance of mid-level moisture. Here we test the effect of these two physical properties on the organization of convection and its interaction with gravity waves in a simplified primitive equation model for flows parallel to the equator. Convection is represented by deterministic as well as stochastic multicloud models that are known to represent organized convection and convectively coupled waves quite well. It is found here that both planetary rotation and mid-troposphere moisture are important players in the diminishing of organized convection and convectively coupled gravity wave activity in the subtropics and mid-latitudes. The meridional mean circulation increases with latitude while the mean zonal circulation is much shallower and is dominated by mid-level jets, reminiscent of a second baroclinic mode circulation associated with a congestus mode instability in the model. This is consistent with the observed shallow Hadley and Walker circulations accompanied by congestus cloud decks in the higher latitude tropics and sub-tropics. Moreover, deep convection activity in the stochastic model simulations becomes very patchy and unorganized as the computational domain is pushed towards the subtropics and mid-latitudes. This is consistent with previous work based on cloud resolving

  16. Multidimensional hydrodynamic convection in full amplitude RR Lyrae models

    NASA Astrophysics Data System (ADS)

    Deupree, R.; Geroux, C.

    2016-05-01

    Multidimensional (both 2D and 3D) hydrodynamic calculations have been performed to compute full amplitude RR Lyrae models. The multi- dimensional nature allows convection to be treated in a more realistic way than simple 1D formulations such as the local mixing length theory. We focus on some aspects of multidimensional calculations and on the model for treating convection.

  17. Diarrhea burden due to natural infection with enterotoxigenic Escherichia coli in a birth cohort in a rural Egyptian community.

    PubMed

    Mansour, A; Shaheen, H I; Amine, M; Hassan, K; Sanders, J W; Riddle, M S; Armstrong, A W; Svennerholm, A M; Sebeny, P J; Klena, J D; Young, S Y N; Frenck, R W

    2014-07-01

    Enterotoxigenic Escherichia coli (ETEC) is commonly associated with diarrhea in Egyptian children. Children less than 3 years old in Abu Homos, Egypt, had approximately five diarrheal episodes per child every year, and at least one of these episodes was due to ETEC. The epidemiology of ETEC diarrhea among children living in a rural Egyptian community was further evaluated in this study. Between January 2004 and April 2007, 348 neonates were enrolled and followed for 2 years. Children were visited twice weekly, and a stool sample was obtained every 2 weeks regardless of symptomatology. A stool sample was obtained whenever a child had diarrhea. From the routine stool culture, five E. coli-like colonies were selected and screened for heat-labile and heat-stable toxins by GM1 enzyme-linked immunosorbent assay (ELISA) and further typed for colonization factor antigens by dot blot assay. Incidence of ETEC infection was estimated among children with diarrhea (symptomatic) and without diarrhea (asymptomatic). Incidence of diarrhea and ETEC-associated diarrhea was 7.8 and 1.48 per child-year, respectively. High risk of repeated ETEC diarrhea was associated with being over 6 months of age, warm season, male gender, and crowded sleeping conditions. Exclusive breast-feeding was protective for repeated ETEC infection. ETEC-associated diarrhea remains common among children living in the Nile Delta. The protective role of breast-feeding demonstrates the importance of promoting exclusive breast-feeding during, at least, the first 6 months of life. PMID:24829232

  18. Evaluation of radiological risks due to natural radioactivity around Lynas Advanced Material Plant environment, Kuantan, Pahang, Malaysia.

    PubMed

    Kolo, Matthew Tikpangi; Aziz, Siti Aishah Binti Abdul; Khandaker, Mayeen Uddin; Asaduzzaman, Khandoker; Amin, Yusoff Mohd

    2015-09-01

    Understanding the public awareness concerning the Lynas Advanced Material Plant (LAMP), an Australian rare earths processing plant located in Malaysia, a radiological study in soil and water samples collected at random surrounding the LAMP environment was undertaken using HPGe gamma-ray spectrometry. The mean soil activities for (226)Ra, (232)Th, and (40)K were found to be 6.56 ± 0.20, 10.62 ± 0.42, and 41.02 ± 0.67 Bq/kg, respectively, while for water samples were 0.33 ± 0.05, 0.18 ± 0.04, and 4.72 ± 0.29 Bq/l, respectively. The studied areas show typical local level of radioactivity from natural background radiation. The mean gamma absorbed dose rate in soils at 1 m above the ground was found to be 11.16 nGy/h. Assuming a 20 % outdoor occupancy factor, the corresponding annual effective dose showed a mean value of 0.014 mSv year(-1), significantly lower than the worldwide average value of 0.07 mSv year(-1) for the annual outdoor effective dose as reported by UNSCEAR (2000). Some other representative radiation indices such as activity utilization index (AUI), H ex, H in, excess lifetime cancer risk (ELCR), and annual gonadal dose equivalent (AGDE) were derived and also compared with the world average values. Statistical analysis performed on the obtained data showed a strong positive correlation between the radiological variables and (226)Ra and (232)Th. PMID:25925148

  19. Mantle Convection in a Microwave Oven: New Perspectives for the Internally Heated Convection

    NASA Astrophysics Data System (ADS)

    Limare, A.; Fourel, L.; Surducan, E.; Neamtu, C.; Surducan, V.; Vilella, K.; Farnetani, C. G.; Kaminski, E. C.; Jaupart, C. P.

    2015-12-01

    The thermal evolution of silicate planets is primarily controlled by the balance between internal heating - due to radioactive decay - and heat transport by mantle convection. In the Earth, the problem is particularly complex due to the heterogeneous distribution of heat sources in the mantle and the non-linear coupling between this distribution and convective mixing. To investigate the behaviour of such systems, we have developed a new technology based on microwave absorption to study internally-heated convection in the laboratory. This prototype offers the ability to reach the high Rayleigh-Roberts and Prandtl numbers that are relevant for planetary convection. Our experimental results obtained for a uniform distribution of heat sources were compared to numerical calculations reproducing exactly experimental conditions (3D Cartesian geometry and temperature-dependent physical properties), thereby providing the first cross validation of experimental and numerical studies of convection in internally-heated systems. We find that the thermal boundary layer thickness and interior temperature scale with RaH-1/4, where RaH is the Rayleigh-Roberts number, as theoretically predicted by scaling arguments on the dissipation of kinetic energy. Our microwave-based method offers new perspectives for the study of internally-heated convection in heterogeneous systems which have been out of experimental reach until now. We are able to selectively heat specific regions in the convecting layer, through the careful control of the absorption properties of different miscible fluids. This is analogous to convection in the presence of chemical reservoirs with different concentration of long-lived radioactive isotopes. We shall show results for two different cases: the stability of continental lithosphere over a convective fluid and the evolution of a hidden enriched reservoir in the lowermost mantle.

  20. Stochasticity of convection in Giga-LES data

    NASA Astrophysics Data System (ADS)

    De La Chevrotière, Michèle; Khouider, Boualem; Majda, Andrew J.

    2015-12-01

    The poor representation of tropical convection in general circulation models (GCMs) is believed to be responsible for much of the uncertainty in the predictions of weather and climate in the tropics. The stochastic multicloud model (SMCM) was recently developed by Khouider et al. (Commun Math Sci 8(1):187-216, 2010) to represent the missing variability in GCMs due to unresolved features of organized tropical convection. The SMCM is based on three cloud types (congestus, deep and stratiform), and transitions between these cloud types are formalized in terms of probability rules that are functions of the large-scale environment convective state and a set of seven arbitrary cloud timescale parameters. Here, a statistical inference method based on the Bayesian paradigm is applied to estimate these key cloud timescales from the Giga-LES dataset, a 24-h large-eddy simulation (LES) of deep tropical convection (Khairoutdinov et al. in J Adv Model Earth Syst 1(12), 2009) over a domain comparable to a GCM gridbox. A sequential learning strategy is used where the Giga-LES domain is partitioned into a few subdomains, and atmospheric time series obtained on each subdomain are used to train the Bayesian procedure incrementally. Convergence of the marginal posterior densities for all seven parameters is demonstrated for two different grid partitions, and sensitivity tests to other model parameters are also presented. A single column model simulation using the SMCM parameterization with the Giga-LES inferred parameters reproduces many important statistical features of the Giga-LES run, without any further tuning. In particular it exhibits intermittent dynamical behavior in both the stochastic cloud fractions and the large scale dynamics, with periods of dry phases followed by a coherent sequence of congestus, deep, and stratiform convection, varying on timescales of a few hours consistent with the Giga-LES time series. The chaotic variations of the cloud area fractions were

  1. Convective dynamics - Panel report

    NASA Technical Reports Server (NTRS)

    Carbone, Richard; Foote, G. Brant; Moncrieff, Mitch; Gal-Chen, Tzvi; Cotton, William; Heymsfield, Gerald

    1990-01-01

    Aspects of highly organized forms of deep convection at midlatitudes are reviewed. Past emphasis in field work and cloud modeling has been directed toward severe weather as evidenced by research on tornadoes, hail, and strong surface winds. A number of specific issues concerning future thrusts, tactics, and techniques in convective dynamics are presented. These subjects include; convective modes and parameterization, global structure and scale interaction, convective energetics, transport studies, anvils and scale interaction, and scale selection. Also discussed are analysis workshops, four-dimensional data assimilation, matching models with observations, network Doppler analyses, mesoscale variability, and high-resolution/high-performance Doppler. It is also noted, that, classical surface measurements and soundings, flight-level research aircraft data, passive satellite data, and traditional photogrammetric studies are examples of datasets that require assimilation and integration.

  2. Global aerosol effects on convective clouds

    NASA Astrophysics Data System (ADS)

    Wagner, Till; Stier, Philip

    2013-04-01

    Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep convective clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on convective clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard convection parameterisation, which uses one mean convective cloud for each grid column, with the convective cloud field model (CCFM), which simulates a spectrum of convective clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in convective updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the convective microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.

  3. Evaluation of Brine Migration Risks Due to CO2 Injection - an Integrated Natural and Social Science Modeling Approach

    NASA Astrophysics Data System (ADS)

    Noack, V.; Kissinger, A.; Class, H.; Knopf, S.; Konrad, W.; Scheer, D.

    2014-12-01

    Evaluation of possible risks for shallow groundwater systems caused by brine displacement due to CO2 injection requires an investigation of possible vertical pathways in regional-scale structural settings. The project CO2BRIM investigates this crucial issue in collaboration with external stakeholders to integrate expert feedback on migration scenarios. To evaluate possible brine displacement scenarios we construct a regional-scale 3D structural model based on data which represent a typical geological setting of the North German Basin. The model has a horizontal size of 39 km times 58 km and includes 11 geological layers from the Permian Zechstein salt up to the Quaternary. It comprises an anticlinal structure on top of a salt pillow and an elongated salt wall that dissect the overburden. For the risk scenarios we include discontinuities in the regionally important Rupelian aquitard (Tertiary) and a transition zone along the salt flank as such discontinuities are supposed to provide permeable pathways for brines which could reach shallow drinking water horizons. Based on this model we develop scenarios in which we vary for example hydro-geological parameters of the geological discontinuities, the injection rate and the initial state of the system in terms of the salinity distribution. Furthermore we compare different levels of model complexity with regard to the physical processes considered and their effects on our results. During the process of scenario development, external experts were invited to participate and share knowledge and concerns on both brine migration risks and possible migration paths and mechanisms. The results may help in site selection as they provide improved knowledge of pressure build-up in the reservoir and the overburden for such complex geological systems. Additionally, we want to identify the level of model complexity which is sufficient for this kind of setting with regard to the limited data availability at hand for the far field.

  4. Hematocrit alterations and its effects in naturally infected indigenous cattle breeds due to Trypanosoma spp. on the Adamawa Plateau - Cameroon

    PubMed Central

    Mamoudou, A.; Payne, V. K.; Sevidzem, S. L.

    2015-01-01

    Aim: An experimental study was carried out on 148 naturally infected indigenous cattle breeds with either single or mix infections of various species of trypanosomes. The objectives of this study were to determine the species of trypanosomes, observe their hematopathological consequences on host-related risk factors and to determine the packed cell volume (PCV) of the infected group. Materials and Methods: The buffy coat method (BCM) which is a variant of the hematocrit centrifugation method was used for the parasitological and hematological analysis. The May Grünwald-Giemsa method was also used for the identification of different trypanosome species. Results: The infection rate in accordance with the various trypanosomes was as follows: Trypanosoma congolense + Trypanosoma brucei (1.35%), Trypanosoma vivax + T. brucei (1.35%), T. congolense + T. vivax (8.11%), T. congolense + T. vivax + T. brucei (8.78%), T. brucei brucei (11.48%), T. vivax (20.94%), T. congolense (47.97%). The infection rate with respect to breeds showed the following results - Brahman (1.0%), Red Fulani (5.2%), White Fulani (6.5%) and Gudali (16.7%), with no statistical significant difference (p>0.05). The combined mean PCV of single as well as mix infections was not statistically significant (p>0.05). The mean PCV of males (25.64±5.08 standard deviation [SD]) which was lower than that of females (30.82±4.94 SD) was statistically significant (p<0.05). The body condition of infected animals with sex showed that a greater proportion of males with “Poor” and “Medium” conditions showed high prevalence than females with the same conditions, with a significant difference (p<0.05). However, females showed a “Good” condition than males even though it was not statistically significant (p>0.05). The PCV profile of the infected group showed that the highest proportion of infected animals had PCV of ≤31% than PCV >31%. The mean weight of the animals was (265.41±95.36 SD). A scatter

  5. Vulnerability Assessment of Natural Disasters for Small and Mid-Sized Streams due to Climate Change and Stream Improvement

    NASA Astrophysics Data System (ADS)

    Choi, D.; Jun, H. D.; Kim, S.

    2012-04-01

    Vulnerability assessment plays an important role in drawing up climate change adaptation plans. Although there are some studies on broad vulnerability assessment in Korea, there have been very few studies to develop and apply locally focused and specific sector-oriented climate change vulnerability indicators. Especially, there has seldom been any study to investigate the effect of an adaptation project on assessing the vulnerability status to climate change for fundamental local governments. In order to relieve adverse effects of climate change, Korean government has performed the project of the Major Four Rivers (Han, Geum, Nakdong and Yeongsan river) Restoration since 2008. It is expected that water level in main stream of 4 rivers will be dropped through this project, but flood effect will be mainly occurred in small and mid-sized streams which flows in main stream. Hence, we examined how much the project of the major four rivers restoration relieves natural disasters. Conceptual framework of vulnerability-resilience index to climate change for the Korean fundamental local governments is defined as a function of climate exposure, sensitivity, and adaptive capacity. Then, statistical data on scores of proxy variables assumed to comprise climate change vulnerability for local governments are collected. Proxy variables and estimated temporary weights of them are selected by surveying a panel of experts using Delphi method, and final weights are determined by modified Entropy method. Developed vulnerability-resilience index was applied to Korean fundamental local governments and it is calculated under each scenario as follows. (1) Before the major four rivers restoration, (2) 100 years after represented climate change condition without the major four rivers restoration, (3) After the major four rivers restoration without representing climate change (this means present climate condition) and (4) After the major four rivers restoration and 100 years after represented

  6. Deep convection in mesoscale convective systems

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.

    1985-01-01

    A study was undertaken to examine the evolution of radar echoes and lightning attending the convective storms in mesoscale convective systems (MCS) and the relationships between the spatial and temporal evolution of deep convection and the storm environment, precipitation, severe weather, and lightning. The total number of ground discharges ranges from 10,000 to 30,000 over the life cycle of the MCS with peak sustained rates (for up to 10 consecutive hours) in excess of 2000 per hour. The peak lightning activity occurs from 5 to 20 hours after the first storms and anywhere from 7 hours prior to 7 hours after the time of the maximum areal extent of the MCS for very similar synoptic environments. Thus, it appears that mesoscale and sub-synoptic scale mechanisms are responsible for these large temporal variation in lightning activity. In addition, we have found that the lightning rates in MCS's are not related to either the size or the duration of the MCS. Preliminary results suggest that the MCA's with embedded squall lines produce the greatest flash rates.

  7. Health and ecological hazards due to natural radioactivity in soil from mining areas of Nasarawa State, Nigeria.

    PubMed

    Aliyu, Abubakar Sadiq; Ibrahim, Umar; Akpa, Chidozie Timothy; Garba, Nuraddeen Nasiru; Ramli, Ahmad Termizi

    2015-01-01

    terrestrial reference organisms are lichen and bryophytes. In all cases, the radio ecological risks are not likely to be discernible. This paper presents a pioneer data for ecological risk from ionizing contaminants due to mining activity in Nasarawa State, Nigeria. Its methodology could be adopted for future work on radioecology of mining. PMID:25848858

  8. Heterogeneity in diurnal variation of tropospheric convection over Indian region

    NASA Astrophysics Data System (ADS)

    Muhammed, Muhsin; Sunilkumar, S. V.

    2016-07-01

    The tropical Tropopause and the features of the Tropical Tropopause Layer (TTL) are governed by troposheric convection from below and radiative heating from above (stratosphere). The brightness temperature in the thermal infrared channel (IRBT) is used as a proxy for identifying tropospheric convection and deep convective clouds. IRBT from Very High Resolution Radiometer (VHRR) onboard KALPANA-1 during different seasons of 2008 to 2014 is being used to examine the heterogeneity of tropospheric convection. Over Indian peninsula, 36 regions have been identified with a spatial resolution of ±0.7° (81 pixels) with equal distance in both longitude and latitude. During monsoon season, a clear diurnal variation in convection is noticed over land when compared with over ocean. Over inland regions, the occurrence of deeper convection occurs during evening and early morning with different diurnal patterns. This can be due to the inhomogeneity of the terrain. It can be noted that the diurnal convection pattern over Arabian Sea is different than Bay of Bengal diurnal convection pattern. Regions near to the western-ghat do not show a clear diurnal variation and shows high occurrence of midlevel clouds (IRBT<265K). During winter (DJF), the occurrence of IRBT below 280K is very less at any time of the day over both land and ocean, which indicates the occurrence of deeper convection is rare. Hence, during winter, the diurnal variations of convection over both land and ocean has insignificant diurnal pattern.

  9. Benard and Marangoni convection in multiple liquid layers

    NASA Technical Reports Server (NTRS)

    Koster, Jean N.; Prakash, A.; Fujita, D.; Doi, T.

    1992-01-01

    Convective fluid dynamics of immiscible double and triple liquid layers are considered. First results on multilayer convective flow, in preparation for spaceflight experiment aboard IML-2 (International Microgravity Laboratory), are discussed. Convective flow in liquid layers with one or two horizontal interfaces with heat flow applied parallel to them is one of the systems investigated. The second system comprises two horizontally layered immiscible liquids heated from below and cooled from above, that is, heat flow orthogonal to the interface. In this system convection results due to the classical Benard instability.

  10. On the Influence of Surface Heterogeneities onto Roll Convection

    NASA Astrophysics Data System (ADS)

    Gryschka, M.; Drüe, C.; Raasch, S.; Etling, D.

    2009-04-01

    Roll convection is a common phenomenon in atmospheric convective boundary layers (CBL) with background wind. Roll convection is observed both over land and over sea for different synoptic situations. There is still some debate about the different types of roll convection and their causes or rather the necessary conditions for their appearance. The stability parameter ζ = -zi•L (zi: boundary layer height, L: Monin-Obukhov stability length) is widely used as a predictor for roll convection, since numerous studies suggest that convective rolls only appear when 0 < ζ < 20. In other words, roll development becomes unlikely for strong surface heating and weak vertical wind shear. In contrast to those studies the presence of roll convection in almost any polar cold air outbreak (as can be seen in numerous satellite images as cloud streets) reveals that even for large ζ roll convection can develop. Some studies report roll convection in cold air outbreaks for ζ = 250. Our large eddy simulations (LES) on roll convection suggests that the contrasting results concerning the dependency of roll convection on ζ are due to two different types of roll convection: One type which develops purely by self organization if ζ < 20 ("free rolls") and another type which is triggered by heterogeneities in surface temperature and develops also for large ζ ("forced rolls"). We think that most of the cloud streets observed in polar cold air outbreaks over open water are due to rolls of forced type which are tied to upstream located heterogeneities in the sea-ice distribution. The results of this study suggests that the omission of surface inhomogeneities in previous LES is the reason for the absence of rolls in all LES with strong surface heating and weak vertical wind shear so far. In this contribution we will present a large eddy simulation which successfully represents forced rolls under such conditions.

  11. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  12. Convective, intrusive geothermal plays: what about tectonics?

    NASA Astrophysics Data System (ADS)

    Santilano, A.; Manzella, A.; Gianelli, G.; Donato, A.; Gola, G.; Nardini, I.; Trumpy, E.; Botteghi, S.

    2015-09-01

    We revised the concept of convective, intrusive geothermal plays, considering that the tectonic setting is not, in our opinion, a discriminant parameter suitable for a classification. We analysed and compared four case studies: (i) Larderello (Italy), (ii) Mt Amiata (Italy), (iii) The Geysers (USA) and (iv) Kizildere (Turkey). The tectonic settings of these geothermal systems are different and a matter of debate, so it is hard to use this parameter, and the results of classification are ambiguous. We suggest a classification based on the age and nature of the heat source and the related hydrothermal circulation. Finally we propose to distinguish the convective geothermal plays as volcanic, young intrusive and amagmatic.

  13. Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor using RELAP5 and TEMPEST: Part 1, Models and simulation results

    SciTech Connect

    Morris, D.G.; Wendel, M.W.; Chen, N.C.J.; Ruggles, A.E.; Cook, D.H.

    1989-01-01

    A study was conducted to examine decay heat removal requirements in the High Flux Isotope Reactor (HFIR) following shutdown from 85 MW. The objective of the study was to determine when forced flow through the core could be terminated without causing the fuel to melt. This question is particularly relevant when a station blackout caused by an external event is considered. Analysis of natural circulation in the core, vessel upper plenum, and reactor pool indicates that 12 h of forced flow will permit a safe shutdown with some margin. However, uncertainties in the analysis preclude conclusive proof that 12 h is sufficient. As a result of the study, two seismically qualified diesel generators were installed in HFIR. 9 refs., 4 figs.

  14. Supergranulation, a convective phenomenon

    NASA Astrophysics Data System (ADS)

    Udayashankar, Paniveni

    2015-08-01

    Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection ,Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni , U., Krishan, V., Singh, J., Srikanth, R., 2004, MNRAS, 347, 1279-12814) Paniveni , U., Krishan, V., Singh, J

  15. The influence of convection parameterisations under alternate climate conditions

    NASA Astrophysics Data System (ADS)

    Rybka, Harald; Tost, Holger

    2013-04-01

    In the last decades several convection parameterisations have been developed to consider the impact of small-scale unresolved processes in Earth System Models associated with convective clouds. Global model simulations, which have been performed under current climate conditions with different convection schemes, significantly differ among each other in the simulated precipitation patterns due to the parameterisation assumptions and formulations, e.g. the simplified treatment of the cloud microphysics. Additionally, the simulated transport of short-lived trace gases strongly depends on the chosen convection parameterisation due to the differences in the vertical redistribution of mass. Furthermore, other meteorological parameters like the temperature or the specific humidity show substantial differences in convectively active regions. This study presents uncertainties of climate change scenarios caused by different convection parameterisations. For this analysis two experiments (reference simulation with a CO2 concentration of 348 ppm; 2xCO2-simulation with a CO2 concentration of 696 ppm) are calculated with the ECHAM/MESSy atmospheric chemistry (EMAC) model applying four different convection schemes (Tiedtke, ECMWF, Emanuel and Zhang-McFarlane - Hack) and two resolutions (T42 and T63), respectively. The results indicate that the equilibrium climate sensitivity is independent of the chosen convection parameterisation. However, the regional temperature increase, induced by a doubling of the carbon dioxide concentration, demonstrates differences of up to a few Kelvin at the surface as well as in the UTLS for the ITCZ region depending on the selected convection parameterisation. The interaction between cloud and convection parameterisations results in a large disagreement of precipitation patterns. Although every 2xCO2 -experiment simulates an increase in global mean precipitation rates, the change of regional precipitation patterns differ widely. Finally, analysing

  16. Mechanisms initiating deep convection over complex terrain during COPS.

    SciTech Connect

    Kottmeier, C.; Kalthoff, N.; Barthlott, C.; Corsmeier, U.; Van Baelen, J.; Coulter, R.; Environmental Science Division; Inst. for Meteorology and Climate Research; Lab. de Meteorologie Physique; Inst. of Physics and Meteorology

    2008-12-01

    Precipitating convection in a mountain region of moderate topography is investigated, with particular emphasis on its initiation in response to boundary-layer and mid- and upper-tropospheric forcing mechanisms. The data used in the study are from COPS (Convective and Orographically-induced Precipitation Study) that took place in southwestern Germany and eastern France in the summer of 2007. It is found that the initiation of precipitating convection can be roughly classified as being due to either: (i) surface heating and low-level flow convergence; (ii) surface heating and moisture supply overcoming convective inhibition during latent and/or potential instability; or (iii) mid-tropospheric dynamical processes due to mesoscale convergence lines and forced mean vertical motion. These phenomena have to be adequately represented in models in order to improve quantitative precipitation forecast. Selected COPS cases are analyzed and classified into these initiation categories. Although only a subset of COPS data (mainly radiosondes, surface weather stations, radar and satellite data) are used here, it is shown that convective systems are captured in considerable detail by sensor synergy. Convergence lines were observed by Doppler radar in the location where deep convection is triggered several hours later. The results suggest that in many situations, observations of the location and timing of convergence lines will facilitate the nowcasting of convection. Further on, forecasting of the initiation of convection is significantly complicated if advection of potentially convective air masses over changing terrain features plays a major role. The passage of a frontal structure over the Vosges - Rhine valley - Black Forest orography was accompanied by an intermediate suppression of convection over the wide Rhine valley. Further downstream, an intensification of convection was observed over the Black Forest due to differential surface heating, a convergence line, and the flow

  17. Natural convection immersion cooling of an array of vertically oriented heated protrusions in an enclosure filled with a dielectric liquid: Effects of enclosure width, Prandtl number and component orientation

    NASA Astrophysics Data System (ADS)

    Matthews, Scott T.

    1991-12-01

    The natural convection heat transfer characteristics of a 3 x 3 array of vertically oriented heated protrusions, immersed in a dielectric liquid, were investigated. Aluminum blocks, 24 x 8 x 6 mm, were used to simulate 20 pin dual in-line packages. Surface temperature measurements of the components were made by imbedding copper-constantan thermocouples below the surface of each component face. A constant heat flux was provided to each component using an Inconel foil heating element. Power supplied to each component varied from 0.115 to 2.90 W. The aluminum blocks were mounted on a plexiglass substrate to form a 3 x 3 array of simulated electronic components. The circuit board containing the components was placed in a rectangular, plexiglass enclosure with inner dimensions: L = 203.2 mm H = 152.0 mm W = 82.6 mm, and a wall thickness of 25.4 mm. The upper boundary was maintained at 10 C, while all other exterior surfaces were insulated. The chamber width, measured from the surface of the circuit board to the opposite, inner wall of the enclosure, was varied from 42 to 7 mm by inserting plexiglass spacers into the enclosure. Two dielectric liquids, FC-75 and FC-43, were used as working fluids. Nondimensional data from this study was combined with the data obtained for a horizontal component orientation, to develop an empirical correlation which predicts the Nusselt number as a function of Rayleigh number, Prandtl number, component orientation, and chamber width.

  18. Experimental Study of Convective Dissolution of Carbon Dioxide in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Liang, Y.; DiCarlo, D. A.; Hesse, M. A.

    2013-12-01

    Carbon capture and storage in deep geological formations has the potential to reduce anthropogenic carbon dioxide (CO2) emissions from industrial point sources. The technology is only viable, if the long-term security of the geological CO2 storage can be demonstrated. Dissolution of CO2 into the brine, resulting in stable stratification, has been identified as the key to long-term storage security. Here we present new analogue laboratory experiments to characterize convective dissolution and to study the effect of porosity and permeability heterogeneity on the CO2 dissolution rate. Understanding the effect of heterogeneity is essential to evaluate if convective dissolution occurs in the field and, in turn, to estimate the security of geological CO2 storage fields. In particular we want to test if the strong heterogeneity observed at the Bravo Dome natural CO2 field can prevent convective currents, which may explain the persistence of free phase CO2 over millennia. Initial laboratory experiments in homogeneous media confirm that the non-classical scaling of the convective flux scales with the 4/5 power of the Rayleigh number that has recently been reported. The large experimental assembly will allow us to quantify for the first time the relationship between wavenumber of the convective motion and the Rayleigh number of the system, which could be essential to trapping process at Bravo Dome. Figure 1 shows the number of fingers that we can observe in our new experimental setup. Figure 2 shows the same photograph that has been processed to enhance the visibility of the dense plumes descending from the interface. Also we plan to complement the homogeneous experiments with a detailed study of the scaling law of the convective flux in heterogeneous, layered media; in particular. Low permeability layers are ubiquitous in geological storage formations and have been observed at Bravo Dome. We plan to measure the reduction in the convective flux due to these barriers compared

  19. Anomalously Weak Solar Convection

    NASA Technical Reports Server (NTRS)

    Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l < 60, convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l < 60, with Rossby numbers smaller than approximately 10(exp -2) at r/R-solar = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.

  20. Convection patterns and temperature fields of ammonothermal GaN bulk crystal growth process

    NASA Astrophysics Data System (ADS)

    Masuda, Yoshio; Sato, Osamu; Tomida, Daisuke; Yokoyama, Chiaki

    2016-05-01

    The natural convection heat transfer in an ammonothermal process for growing GaN bulk single crystals has been examined numerically. We consider only one crystal to simplify the calculation and discuss the relationship between convection patterns and temperature fields. Two types of convection patterns are observed owing to the difference in the crystal radius. When the convection pattern is transformed, the crystal surface temperature decreases as the crystal radius increases.

  1. Simulating deep convection with a shallow convection scheme

    NASA Astrophysics Data System (ADS)

    Hohenegger, C.; Bretherton, C. S.

    2011-03-01

    Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES) as a benchmark to test and refine a unified convection scheme implemented in the Single-Column Community Atmosphere Model (SCAM). Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle. Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  2. Simulating deep convection with a shallow convection scheme

    NASA Astrophysics Data System (ADS)

    Hohenegger, C.; Bretherton, C. S.

    2011-10-01

    Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES) as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM). Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle. Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  3. Intermittent flow regimes near the convection threshold in ferromagnetic nanofluids

    NASA Astrophysics Data System (ADS)

    Krauzina, Marina T.; Bozhko, Alexandra A.; Putin, Gennady F.; Suslov, Sergey A.

    2015-01-01

    The onset and decay of convection in a spherical cavity filled with ferromagnetic nanofluid and heated from below are investigated experimentally. It is found that, unlike in a single-component Newtonian fluid where stationary convection sets in as a result of supercritical bifurcation and where convection intensity increases continuously with the degree of supercriticality, convection in a multicomponent ferromagnetic nanofluid starts abruptly and has an oscillatory nature. The hysteresis is observed in the transition between conduction and convection states. In moderately supercritical regimes, the arising fluid motion observed at a fixed temperature difference intermittently transitions from quasiharmonic to essentially irregular oscillations that are followed by periods of a quasistationary convection. The observed oscillations are shown to result from the precession of the axis of a convection vortex in the equatorial plane. When the vertical temperature difference exceeds the convection onset value by a factor of 2.5, the initially oscillatory convection settles to a steady-state regime with no intermittent behavior detected afterward. The performed wavelet and Fourier analyses of thermocouple readings indicate the presence of various oscillatory modes with characteristic periods ranging from one hour to several days.

  4. Intermittent flow regimes near the convection threshold in ferromagnetic nanofluids.

    PubMed

    Krauzina, Marina T; Bozhko, Alexandra A; Putin, Gennady F; Suslov, Sergey A

    2015-01-01

    The onset and decay of convection in a spherical cavity filled with ferromagnetic nanofluid and heated from below are investigated experimentally. It is found that, unlike in a single-component Newtonian fluid where stationary convection sets in as a result of supercritical bifurcation and where convection intensity increases continuously with the degree of supercriticality, convection in a multicomponent ferromagnetic nanofluid starts abruptly and has an oscillatory nature. The hysteresis is observed in the transition between conduction and convection states. In moderately supercritical regimes, the arising fluid motion observed at a fixed temperature difference intermittently transitions from quasiharmonic to essentially irregular oscillations that are followed by periods of a quasistationary convection. The observed oscillations are shown to result from the precession of the axis of a convection vortex in the equatorial plane. When the vertical temperature difference exceeds the convection onset value by a factor of 2.5, the initially oscillatory convection settles to a steady-state regime with no intermittent behavior detected afterward. The performed wavelet and Fourier analyses of thermocouple readings indicate the presence of various oscillatory modes with characteristic periods ranging from one hour to several days. PMID:25679711

  5. CFD study of natural convection mixing in a steam generator mock-up: Comparison between full geometry and porous media approaches

    SciTech Connect

    Dehbi, A.; Badreddine, H.

    2012-07-01

    In CFD simulations of flow mixing in a steam generator (SG) during natural circulation, one is faced with the problem of representing the thousands of SG U-tubes. Typically simplifications are made to render the problem computationally tractable. In particular, one or a number of tubes are lumped in one volume which is treated as a single porous medium. This approach dramatically reduces the computational size of the problem and hence simulation time. In this work, we endeavor to investigate the adequacy of this approach by performing two separate simulations of flow in a mock-up with 262 U-tubes, i.e. one in which the porous media model is used for the tube bundle, and another in which the full geometry is represented. In both simulations, the Reynolds Stress (RMS) model of turbulence is used. We show that in steady state conditions, the porous media treatment yields results which are comparable to those of the full geometry representation (temperature distribution, recirculation ratio, hot plume spread, etc). Hence, the porous media approach can be extended with a good degree of confidence to the full scale SG. (authors)

  6. Thermal convection in a liquid metal battery

    NASA Astrophysics Data System (ADS)

    Shen, Yuxin; Zikanov, Oleg

    2016-08-01

    Generation of thermal convection flow in the liquid metal battery, a device recently proposed as a promising solution for the problem of the short-term energy storage, is analyzed using a numerical model. It is found that convection caused by Joule heating of electrolyte during charging or discharging is virtually unavoidable. It exists in laboratory prototypes larger than a few centimeters in size and should become much stronger in larger-scale batteries. The phenomenon needs further investigation in view of its positive (enhanced mixing of reactants) and negative (loss of efficiency and possible disruption of operation due to the flow-induced deformation of the electrolyte layer) effects.

  7. Structures, profile consistency, and transport scaling in electrostatic convection

    SciTech Connect

    Bian, N.H.; Garcia, O.E.

    2005-04-15

    Two mechanisms at the origin of profile consistency in models of electrostatic turbulence in magnetized plasmas are considered. One involves turbulent diffusion in collisionless plasmas and the subsequent turbulent equipartition of Lagrangian invariants. By the very nature of its definition, this state can only be reached in the absence of imposed fluxes of the transported quantities. As such, the concept of turbulent equipartition cannot be used to interpret profiles in numerical simulations of interchange modes, as it has nevertheless been done in the past. It is shown in this article that for interchange modes, profile consistency is in fact due to mixing by persistent large-scale convective cells. This mechanism is not a turbulent diffusion, cannot occur in collisionless systems, and is the analog of the well-known laminar 'magnetic flux expulsion' in magnetohydrodynamics. This expulsion process involves a 'pinch' across closed streamlines and further results in the formation of pressure fingers along the separatrix of the convective cells. By nature, these coherent structures are dissipative because the mixing process that leads to their formation relies on a finite amount of collisional diffusion. Numerical simulations of two-dimensional interchange modes confirm the role of laminar expulsion by convective cells for profile consistency and structure formation. They also show that the fingerlike pressure structures ultimately control the rate of heat transport across the plasma layer and thus the transport scaling at large Rayleigh numbers. This contradicts mixing-length arguments which do not account for collisional processes. For interchange modes, the problem of coherent structure formation, profile consistency, and transport scaling are thus intimately linked.

  8. Gravity wave initiated convection

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1990-01-01

    The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.

  9. Convective Regimes in Crystallizing Basaltic Magma Chambers

    NASA Astrophysics Data System (ADS)

    Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.

    2015-12-01

    Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a

  10. State space approach to unsteady magnetohydrodynamics natural convection heat and mass transfer through a porous medium saturated with a viscoelastic fluid

    NASA Astrophysics Data System (ADS)

    Ezzat, M. A.; El-Bary, A. A.; Hatem, A. S.

    2014-07-01

    A technique of the state space approach and the inversion of the Laplace transform method are applied to dimensionless equations of an unsteady one-dimensional boundary-layer flow due to heat and mass transfer through a porous medium saturated with a viscoelastic fluid bounded by an infinite vertical plate in the presence of a uniform magnetic field is described. Complete analytical solutions for the temperature, concentration, velocity, and induced magnetic and electric fields are presented. The inversion of the Laplace transforms is carried out by using a numerical approach. The proposed method is used to solve two problems: boundary-layer flow in a viscoelastic fluid near a vertical wall subjected to the initial conditions of a stepwise temperature and concentration and viscoelastic fluid flow between two vertical walls. The solutions are found to be dependent on the governing parameters including the Prandtl number, the Schmidt number, the Grashof number, reaction rate coefficient, viscoelastic parameter, and permeability of the porous medium. Effects of these major parameters on the transport behavior are investigated methodically, and typical results are illustrated to reveal the tendency of the solutions. Representative results are presented for the velocity, temperature, concentration, and induced magnetic and electric field distributions, as well as the local skin-friction coefficient and the local Nusselt and Sherwood numbers.

  11. Role of deep convection on anthropogenic CO2 sequestration in the Gulf of Lions (northwestern Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Touratier, F.; Goyet, C.; Houpert, L.; de Madron, X. Durrieu; Lefèvre, D.; Stabholz, M.; Guglielmi, V.

    2016-07-01

    The most active deep convection area in the western Mediterranean Sea is located in the Gulf of Lions. Recent studies in this area provides some insights on the complexity of the physical dynamics of convective regions, but very little is known about their impacts on the biogeochemical properties. The CASCADE (CAscading, Surge, Convection, Advection and Downwelling Events) cruise, planed in winter 2011, give us the opportunity to compare vertical profiles of properties sampled either during stratified conditions or after/during a convection event. In the present study, we focus on the distributions of the carbonate system properties (mainly total alkalinity, AT; and total dissolved inorganic carbon, CT) because, in the context of the climate change, deep convection areas are suspected to significantly increase the sequestration of anthropogenic CO2 (CANT). Given its limited size, the impact of the Mediterranean Sea on the global carbon budget is probably minor but this marginal sea can be used as a laboratory to better understand carbon sequestration and its transfer to the basin interior by deep convection processes. Distributions of AT and CT, both measured from bottle samples, and that of CANT (estimated with the TrOCA approach) are first analyzed in the light of other key properties (salinity, temperature, and dissolved oxygen). An objective interpolation procedure is then applied to estimate CT and AT from CTD measured properties. With this procedure, the vertical resolution goes from a maximum of 32 samples per station to one property estimate every meter (more detailed distributions are obtained). Results provide arguments to conclude that CANT is rapidly transferred to the deepest layer due to deep convection events. During deep convection events, the increase of CANT in the water column is positively correlated to that of potential density and oxygen content. The challenge of quantifying the amount of sequestered carbon is however not resolved due to the

  12. Physics of Stellar Convection

    NASA Astrophysics Data System (ADS)

    Arnett, W. David

    2009-05-01

    We review recent progress using numerical simulations as a testbed for development of a theory of stellar convection, much as envisaged by John von Newmann. Necessary features of the theory, non-locality and fluctuations, are illustrated by computer movies. It is found that the common approximation of convection as a diffusive process presents the wrong physical picture, and improvements are suggested. New observational results discussed at the conference are gratifying in their validation of some of our theoretical ideas, especially the idea that SNIb and SNIc events are related to the explosion of massive star cores which have been stripped by mass loss and binary interactions [1

  13. Are steady magnetospheric convection events prolonged substorms?

    NASA Astrophysics Data System (ADS)

    Walach, M.-T.; Milan, S. E.

    2015-03-01

    Magnetospheric modes, including substorms, sawtooth events, and steady magnetospheric convection events, have in the past been described as different responses of the magnetosphere to coupling with the solar wind. Using previously determined event lists for sawtooth events, steady magnetospheric convection events, and substorms, we produce a statistical study of these event types to examine their similarities and behavior in terms of solar wind parameters, auroral brightness, open magnetospheric flux, and geomagnetic indices. A superposed epoch analysis shows that individual sawteeth show the same signatures as substorms but occur during more extreme cases of solar wind driving as well as geomagnetic activity. We also explore the limitations of current methods of identifying steady magnetospheric convection events and explain why some of those events are flagged inappropriately. We show that 58% of the steady magnetospheric convection events considered, as identified by criteria defined in previous studies are part of a prolonged version of substorms due to continued dayside driving during expansion phase. The remaining 42% are episodes of enhanced magnetospheric convection, occurring after extended periods of dayside driving.

  14. Estimation of annual effective dose due to natural and man-made radionuclides in the metropolitan area of the Bay of Cadiz (SW of Spain).

    PubMed

    Casas-Ruiz, M; Ligero, R A; Barbero, L

    2012-06-01

    In order to investigate the radiological hazard of naturally occurring radioactive material (NORM) and man-made (137)Cs radionuclide in the Bay of Cádiz, 149 samples of sediments have been analysed. Activity concentration in all the samples was determined using a HPGe detection system. Activity concentrations values of (226)Ra, (232)Th, (40)K and (137)Cs in the samples were 12.6±2.6 (2.5-40.6), 18.5±4.0 (2.8-73.4), 451±45 (105-1342) and 3.2±1.3 (0.2-16.0) Bq kg(-1), respectively. Outdoor external dose rate due to natural and man-made radionuclides was calculated to be 35.79±1.69 (4.71-119.16) nGy h(-1) and annual effective dose was estimated to be 43.89±2.27 (5.78-146.14) µSv y(-1). Results showed low levels of radioactivity due to NORM and man-made (137)Cs radionuclide in marine sediments recovered from the Bay of Cádiz (Spain), discarding any significant radiological risks related to human activities of the area. Furthermore, the obtained data set could be used as background levels for future research. PMID:21896553

  15. Natural HCV variants with increased replicative fitness due to NS3 helicase mutations in the C-terminal helix α18

    PubMed Central

    Stross, Claudia; Shimakami, Tetsuro; Haselow, Katrin; Ahmad, Monazza Q.; Zeuzem, Stefan; Lange, Christian M.; Welsch, Christoph

    2016-01-01

    High replicative fitness is a general determinant of a multidrug resistance phenotype and may explain lower sensitivity to direct-acting antiviral agents (DAAs) in some hepatitis C virus genotypes. Genetic diversity in the molecular target site of peptidomimetic NS3 protease inhibitors could impact variant replicative fitness and potentially add to virologic treatment failure. We selected NS3 helicase residues near the protease natural substrate in the NS3 domain interface and identified natural variants from a public database. Sequence diversity among different genotypes was identified and subsequently analyzed for potential effects of helicase variants on protein structure and function, and phenotypic effects on RNA replication and DAA resistance. We found increased replicative fitness in particular for amino acid substitutions at the NS3 helicase C-terminal helix α18. A network of strongly coupled residue pairs is identified. Helix α18 is part of this regulatory network and connects several NS3 functional elements involved in RNA replication. Among all genotypes we found distinct sequence diversity at helix α18 in particular for the most difficult-to-treat genotype 3. Our data suggest sequence diversity with implications for virus replicative fitness due to natural variants in helicase helix α18. PMID:26787124

  16. Evaluation of total effective dose due to certain environmentally placed naturally occurring radioactive materials using a procedural adaptation of RESRAD code.

    PubMed

    Beauvais, Z S; Thompson, K H; Kearfott, K J

    2009-07-01

    Due to a recent upward trend in the price of uranium and subsequent increased interest in uranium mining, accurate modeling of baseline dose from environmental sources of radioactivity is of increasing interest. Residual radioactivity model and code (RESRAD) is a program used to model environmental movement and calculate the dose due to the inhalation, ingestion, and exposure to radioactive materials following a placement. This paper presents a novel use of RESRAD for the calculation of dose from non-enhanced, or ancient, naturally occurring radioactive material (NORM). In order to use RESRAD to calculate the total effective dose (TED) due to ancient NORM, a procedural adaptation was developed to negate the effects of time progressive distribution of radioactive materials. A dose due to United States' average concentrations of uranium, actinium, and thorium series radionuclides was then calculated. For adults exposed in a residential setting and assumed to eat significant amounts of food grown in NORM concentrated areas, the annual dose due to national average NORM concentrations was 0.935 mSv y(-1). A set of environmental dose factors were calculated for simple estimation of dose from uranium, thorium, and actinium series radionuclides for various age groups and exposure scenarios as a function of elemental uranium and thorium activity concentrations in groundwater and soil. The values of these factors for uranium were lowest for an adult exposed in an industrial setting: 0.00476 microSv kg Bq(-1) y(-1) for soil and 0.00596 microSv m(3) Bq(-1) y(-1) for water (assuming a 1:1 234U:238U activity ratio in water). The uranium factors were highest for infants exposed in a residential setting and assumed to ingest food grown onsite: 34.8 microSv kg Bq(-1) y(-1) in soil and 13.0 microSv m(3) Bq(-1) y(-1) in water. PMID:19509509

  17. Combined buoyancy-thermocapillary convection

    NASA Technical Reports Server (NTRS)

    Homsy, G. M.

    1990-01-01

    Combined buoyancy-thermocapillary convection was studied in 2D and 3D. Fluid motion caused by thermally induced tension gradients on the free surface of a fluid is termed thermocapillary convection. It is well-known that in containerless processing of materials in space, thermocapillary convection is a dominant mechanism of fluid flow. Welding and crystal growth processes are terrestrial applications where thermocapillary convection has direct relevance.

  18. Log-Law scaling of a convective boundary layer in an unstably stratified turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Scagliarini, Andrea; Einarsson, Halldor; Gylfason, Armann; Toschi, Federico

    2014-11-01

    Turbulent convection is ubiquitous in a variety of natural and industrial flows. In particular, convective motions may play a role in sheared flows. In this work, we are concerned with the interplay of buoyancy and shear in the dynamical boundary layer structure. The lattice Boltzmann Method (LBM) is applied to study numerically an unstably-stratified, fully developed, turbulent channel flow, driven by a longitudinal pressure gradient and with an imposed transverse wall temperature difference along the direction of gravity. Spanning the friction Reynolds (Retau <= 205) and Rayleigh numbers (Ra <= 1 . 3 ×107) we could systematically study the influence of the convection on the boundary layer structure and mean profiles of flow quantities in the channel. Our focus is on providing physical understanding of the deviations observed from the logarithmic law of the wall due to the buoyant motions as well as providing a model of this behavior, and link with fundamental quantities of heat transfer in the convective channel flow. Our findings show that the introduction of an unstably stratified thermal field results in an effective drag increase in the channel flow, quantified in the logarithmic region by a modified log-law, with model parameters dependent on Ra , Retau .

  19. Lattice Boltzmann model for the correct convection-diffusion equation with divergence-free velocity field

    NASA Astrophysics Data System (ADS)

    Huang, Rongzong; Wu, Huiying

    2015-03-01

    A lattice Boltzmann (LB) model for the convection-diffusion equation (CDE) with divergence-free velocity field is proposed, and the Chapman-Enskog analysis shows that the CDE can be recovered correctly. In the present model, the convection term is treated as a source term in the lattice Boltzmann equation (LBE) rather than being directly recovered by LBE; thus the CDE is intrinsically solved as a pure diffusion equation with a corresponding source term. To avoid the adoption of a nonlocal finite-difference scheme for computing the convection term, a local scheme is developed based on the Chapman-Enskog analysis. Most importantly, by properly specifying the discrete source term in the moment space, the local scheme can reach the same order (ɛ2) at which the CDE is recovered by a LB model. Numerical tests, including a one-dimensional periodic problem, diffusion of a Gaussian hill, diffusion of a rectangular pulse, and natural convection in a square cavity, are carried out to verify the present model. Numerical results are satisfactorily consistent with analytical solutions or previous numerical results, and show higher accuracy due to the correct recovery of CDE.

  20. Thermal Boundary Layer Equation for Turbulent Rayleigh-Bénard Convection

    NASA Astrophysics Data System (ADS)

    Ching, Emily Sc; Shishkina, Olga; Horn, Susanne; Wagner, Sebastian

    Turbulent Rayleigh-Bénard convection, consisting of a fluid confined between two horizontal plates, heated from below and cooled from above, is a paradigm system for studying turbulent thermal convection, which is ubiquitous in nature. In turbulent Rayleigh-Bénard convection, there are viscous boundary layers near all rigid walls and two thermal boundary layers, one above the bottom plate and one below the top plate. The classical Prandtl-Blasius-Pohlhausen theory has often been used to describe the mean velocity and temperature boundary layer profiles but systematic deviations are known to exist. These deviations are due to turbulent fluctuations. In this talk, we report a new thermal boundary layer equation for turbulent Rayleigh-Bénard convection derived for Prandtl number (Pr) greater than 1, which takes into account the effects of turbulent fluctuations by using the idea of an eddy thermal diffusivity. Solving this equation, we have obtained two analytical mean temperature profiles for Pr ~ 1 and Pr >> 1 . These two theoretical predictions are shown to be in excellent agreement with the results of our direct numerical simulations for Pr=4.38 (water) and Pr=2547.9 (glycerol). Work of ESCC was supported by the Hong Kong Research Grants Council under Grant No. CUHK-400311.