Natural convection in low-g environments
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Bannister, T. C.
1974-01-01
The present state of knowledge in the area of low-g natural convection is reviewed, taking into account a number of experiments conducted during the Apollo 14, 16, and 17 space flights. Convections due to steady low-g accelerations are considered. Steady g-levels result from spacecraft rotation, gravity gradients, solar wind, and solar pressure. Varying g-levels are produced by engine burns, attitude control maneuvers, and onboard vibrations from machinery or astronaut movement. Thermoacoustic convection in a low-g environment is discussed together with g-jitter convection, surface tension-driven convection, electrohydrodynamics under low-g conditions, phase change convection, and approaches for the control and the utilization of convection in space.
Heat distribution by natural convection
Balcomb, J.D.
1985-01-01
Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.
Angirasa, D.; Srinivasan, J. )
1989-08-01
This paper presents a numerical study of laminar doubly diffusive free convection flows adjacent to a vertical surface in a stable thermally stratified medium. The two buoyant mechanisms are thermal diffusion and species diffusion. The species concentration is assumed to be small. Boussinesq approximations are incorporated and the governing conservation equations of mass, momentum, energy, and species are nondimensionalized. These equations are solved using a finite-difference method. The results are explained in terms of the basic physical mechanisms that govern these flows. It is observed that the ambient thermal stratification has a profound influence on the transport characteristics. The results show many interesting aspects of the complex interaction of the two buoyant mechanisms.
Onset of Natural Convection in Saline Aquifers
NASA Astrophysics Data System (ADS)
Riaz, A.
2013-05-01
Sequestration of carbon dioxide in saline aquifers has emerged as the preferred method of permanently storing CO2 in the subsurface. In order to be successful over geologic time scales, sequestration in saline aquifers relies upon enhanced dissolution of CO2 in brine by natural convection. In this talk we review the progress made thus far towards the modeling and prediction of the onset time for natural convection that occurs due to an unstable stratification of aqueous CO2. We show how the onset of natural convection is connected to a preceding event of the onset of instability with respect to small amplitude perturbations that originate within the aqueous boundary layer. Our analysis indicates that the onset time for instability is uncertain within an initial transient period where perturbation growth depends on the specific form of the initial condition. A constrained adjoint based optimization is employed to determine the upper bound and the mean of perturbation growth. With the help of a weakly nonlinear analysis, we show that the time at which convection initiates is associated with fixed perturbation amplitude. The influence of permeability heterogeneity is studied with this approach. For certain permeability structures, the marginal stability curve bifurcates to form multiple stable and unstable zones in the space of the perturbation wavenumber and time. The transition toward bifurcation governs the behavior of the most dangerous mode in the linear regime and determines the route to the onset of natural convection.
Self-propulsion via natural convection
NASA Astrophysics Data System (ADS)
Ardekani, Arezoo; Mercier, Matthieu; Allshouse, Michael; Peacock, Thomas
2014-11-01
Natural convection of a fluid due to a heated or cooled boundary has been studied within a myriad of different contexts due to the prevalence of the phenomenon in environmental systems such as glaciers, katabatic winds, or magmatic chambers; and in engineered problems like natural ventilation of buildings, or cooling of electronic components. It has, however, hitherto gone unrecognized that boundary-induced natural convection can propel immersed objects. We experimentally investigate the motion of a wedge-shaped object, immersed within a two-layer fluid system, due to a heated surface. The wedge resides at the interface between the two fluid layers of different density, and its concomitant motion provides the first demonstration of the phenomenon of propulsion via boundary-induced natural convection. Established theoretical and numerical models are used to rationalize the propulsion speed by virtue of balancing the propulsion force against the appropriate drag force. We successfully verified the influence of various fluid and heat parameters on the predicted speed. now at IMFT (Institut de Mécanique des Fluides de Toulouse).
Bifurcations and unfoldings in natural convection
Decker, W.J.; Dorning, J.
1996-12-31
Extensive numerical studies of bifurcations and unfoldings have been carried out for two important problems in natural convection. These are (a) the Rayleigh-Benard convection (RBC) problem-a rectangular cavity, with insulated sidewalls, heated at constant uniform temperature along the bottom and cooled at constant uniform temperature along the top; and (b) the volumetric heating convection (VHC) problem - a rectangular cavity, with insulated sidewalls and bottom, heated by a constant uniform volumetric heat source and cooled at constant uniform temperature along the top. The information available in the literature on RBC was used to evaluate and justify the approximations made in the current research, which has shed additional light on nonlinear phenomena in RBC and led to new basic information on the bifurcations and unfoldings that occur in VHC for which there were essentially no previous results available. Both problems arise in many important technological and scientific contexts, including reactor safety analysis and meteorological phenomena. In particular, VHC is relevant to the development of an understanding of the natural convective motion driven by the radioactive decay heat in the molten core mixture (corium) in the core catcher following a hypothetical reactor core meltdown accident and of that which occurs in the atmosphere due to the deposition of radiant solar energy. The calculations were done using newly developed versions of the nodal integral method (NIM) for steady-state flows in conjunction with extended system methods for numerical bifurcation analysis for the saddle-node and pitchfork bifurcation computations.
NASA Technical Reports Server (NTRS)
Robertson, S. J.
1981-01-01
Natural convection in a spherical container with cooling at the center was numerically simulated using a numerical fluid dynamics computer program. The numerical analysis was simplified by assuming axisymmetric flow in the spherical container, with the symmetry axis being a sphere diagonal parallel to the gravity vector. This axisymmetric spherical geometry was intended as an idealization of the proposed Lal/Kroes crystal growing experiment to be performed on Spacelab. Results were obtained for a range of Rayleigh numbers from 25 to 10,000. The computed velocities were found to be approximately proportional to the Rayleigh number over the range of Rayleigh numbers investigated.
Natural convection in porous media
Prasad, V.; Hussain, N.A.
1986-01-01
This book presents the papers given at a conference on free convection in porous materials. Topics considered at the conference included heat transfer, nonlinear temperature profiles and magnetic fields, boundary conditions, concentrated heat sources in stratified porous media, free convective flow in a cavity, heat flux, laminar mixed convection flow, and the onset of convection in a porous medium with internal heat generation and downward flow.
Natural convection between concentric spheres
NASA Technical Reports Server (NTRS)
Garg, Vijay K.
1992-01-01
A finite-difference solution for steady natural convective flow in a concentric spherical annulus with isothermal walls has been obtained. The stream function-vorticity formulation of the equations of motion for the unsteady axisymmetric flow is used; interest lying in the final steady solution. Forward differences are used for the time derivatives and second-order central differences for the space derivatives. The alternating direction implicit method is used for solution of the discretization equations. Local one-dimensional grid adaptation is used to resolve the steep gradients in some regions of the flow at large Rayleigh numbers. The break-up into multi-cellular flow is found at high Rayleigh numbers for air and water, and at significantly low Rayleigh numbers for liquid metals. Excellent agreement with previous experimental and numerical data is obtained.
Modelling natural convection of fluid in cuvette
NASA Astrophysics Data System (ADS)
Kucher, D.; Manukhin, B.; Andreeva, O.; Chivilikhin, S.
2014-09-01
Convection is a process of transfer liquid from a hot region to a cool region. This phenomenon is involved in many physical processes. The main characteristic of convection is a temperature field. Modelling of convection allows to get the information about temperature field at any time of process. In this paper the results of modelling natural convection of fluid in cuvette are presented. All results are approved by experimental data. For modelling the process of natural convection Navier-Stokes equations under Boussinesq approximation were used. An experimental setup based on digital holographic interferometry was developedin order to make an experiment. The results for three stadiums of convection, such as: jet initiation, initial jet formation, jet development with formation of mushroom-shaped convective stream, are presented.
Suppression of Natural Convection in a Thermoacoustic Pulse Tube Refrigerator
NASA Astrophysics Data System (ADS)
Han, Jun-Qing; Liu, Qiu-Sheng
2013-05-01
The effects of gravity on the efficiency of thermoacoustic engines are investigated theoretically and experimentally, especially for thermoacoustic pulse tube refrigerators. The significant effects of gravity are found to be due to the presence of natural convection in the thermoacoustic pulse tube when the hot side of the tube is lower than the cold side. This kind of natural convection influences and reduces the efficiency of the thermoacoustic working system. Thus, how to suppress this natural convection becomes important for increasing the efficiency of thermoacoustic engines. Unlike the method of inserting a silk screen in a pulse tube, the present study uses a numerical simulation method to research the natural convection in pulse tubes, and we try to change the shape of the pulse tube to suppress this convection.
Natural convection in nonvertical wells
Denbow, D.A.; Murphy, H.D.; McEligot, D.M.
1985-01-01
Convective instabilities and the shapes of the ensuing convection cells were experimentally studied for nonvertical wellbores. Steady-state temperature distributions were measured for three inclination angles over a wide range of heating rates to demonstrate the effects of drilling angle and Rayleigh number. In addition, velocities were estimated by measuring the time-of-flight of tracers formed by the Thymol blue technique. 8 refs., 6 figs.
NASA Astrophysics Data System (ADS)
Javed, Tariq; Siddiqui, Muhammad Arshad; Mehmood, Ziafat; Pop, Ioan
2015-10-01
In this article, numerical simulations are carried out for fluid flow and heat transfer through natural convection in an isosceles triangular cavity under the effects of uniform magnetic field. The cavity is of cold bottom wall and uniformly/non-uniformly heated side walls and is filled with isotropic porous medium. The governing Navier Stoke's equations are subjected to Penalty finite element method to eliminate pressure term and Galerkin weighted residual method is applied to obtain the solution of the reduced equations for different ranges of the physical parameters. The results are verified as grid independent and comparison is made as a limiting case with the results available in literature, and it is shown that the developed code is highly accurate. Computations are presented in terms of streamlines, isotherms, local Nusselt number and average Nusselt number through graphs and tables. It is observed that, for the case of uniform heating side walls, strength of circulation of streamlines gets increased when Rayleigh number is increased above critical value, but increase in Hartmann number decreases strength of streamlines circulations. For non-uniform heating case, it is noticed that heat transfer rate is maximum at corners of bottom wall.
Mesospheric heating due to intense tropospheric convection
NASA Technical Reports Server (NTRS)
Taylor, L. L.
1979-01-01
A series of rocket measurements made twice daily at Wallops Island, Va., revealed a rapid heating of the mesosphere on the order of 10 K on days when thunderstorms or squall lines were in the area. This heating is explained as the result of frictional dissipation of vertically propagating internal gravity waves generated by intense tropospheric convection. Ray-tracing theory is used to determine the spectrum of gravity wave groups that actually reach mesospheric heights. This knowledge is used in an equation describing the spectral energy density of a penetrative convective element to calculate the fraction of the total energy initially available to excite those waves that do reach the level of heating. This value, converted into a vertical velocity, is used as the lower boundary condition for a multilayer model used to determine the detailed structure of the vertically propagating waves. The amount of frictional dissipation produced by the waves is calculated from the solutions of the frictionless model by use of a vertically varying eddy viscosity coefficient. The heating produced by the dissipation is then calculated from the thermodynamic equation.
VERTICAL REDISTRIBUTION OF A POLLUTANT TRACER DUE TO CUMULUS CONVECTION
Mathematical formalisms that incorporate the physical processes responsible for the vertical redistribution of a conservative pollutant tracer due to a convective cloud field are presented. Two modeling approaches are presented differing in the manner in which the cloud fields ar...
Solar Hot Water Heating by Natural Convection.
ERIC Educational Resources Information Center
Noble, Richard D.
1983-01-01
Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)
A Simple Classroom Demonstration of Natural Convection
ERIC Educational Resources Information Center
Wheeler, Dean R.
2005-01-01
This article explains a simple way to demonstrate natural convection, such as from a lit candle, in the classroom using an overhead projector. The demonstration is based on the principle of schlieren imaging, commonly used to visualize variations in density for gas flows.
Estimation of Reduction in Airspace Capacity Due to Convective Weather
NASA Technical Reports Server (NTRS)
Sheth, Kapil; Sridhar, Banavar; Namjoshi, Leena
2006-01-01
Severe convective weather routinely disrupts normal flow of air traffic in the United States' National Airspace System (NAS). Over the last decade, severe weather has been the most significant cause, accounting for over 70% of air traffic delays in the NAS. Flights incur modification in their nominal routes due to the presence of severe weather, and hence, suffer increased delays. These delays contribute to increased burden on airlines due to extra fuel costs and missed schedules for connecting flights. In this paper, the reduction in air space capacity and the associated air traffic delays due to severe convective weather will be investigated.
Heterogeneous nanofluids: natural convection heat transfer enhancement
2011-01-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755
Heterogeneous nanofluids: natural convection heat transfer enhancement.
Oueslati, Fakhreddine Segni; Bennacer, Rachid
2011-01-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755
Heterogeneous nanofluids: natural convection heat transfer enhancement
NASA Astrophysics Data System (ADS)
Oueslati, Fakhreddine Segni; Bennacer, Rachid
2011-12-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.
The Phenix ultimate natural convection test
Gauthe, P.; Pialla, D.; Tenchine, D.; Vasile, A.; Rochwerger, D.
2012-07-01
The French sodium cooled fast reactor Phenix was shut down in 2009 after 35 years of operation. Before decommissioning, a final set of tests were performed by the CEA during 9 months. Several topics were involved such as thermal hydraulics, core physics and fuel behaviour. Among these ultimate experiments, two thermal hydraulic tests were performed: an asymmetrical test consisting in a trip of one secondary pump and a natural convection test in the primary circuit. Recognizing the unique opportunity offered by these Phenix ultimate tests, IAEA decided in 2007 to launch a Coordinated Research Project (CRP) devoted to benchmarking analyses with system codes on the Phenix natural convection test. One objective of the natural convection test in Phenix reactor is the assessment of the CATHARE system code for safety studies on future and advanced sodium cooled fast reactors. The aim of this paper is to describe this test, which was performed on June 22-23, 2009, and the associated benchmark specifications for the CRP work. The paper reminds briefly the Phenix reactor with the main physical parameters and the instrumentation used during the natural convection test. After that, the test scenario is described: - initial state at a power of 120 MWth, - test beginning resulting from a manual dry out of the two steam generators, - manual scram, - manual trip on the three primary pumps without back-up by pony motors, - setting and development of natural convection in the primary circuit, in a first phase without significant heat sink in the secondary circuits and in a second phase with significant heat sink in the secondary circuits, by opening the casing of steam generators to create an efficient heat sink, by air natural circulation in the steam generators casing. The benchmark case ends after this second phase, which corresponds to the experimental test duration of nearly 7 hours. The paper presents also the benchmark specifications data supplied by the CEA to all
Natural convective heat transfer from square cylinder
NASA Astrophysics Data System (ADS)
Novomestský, Marcel; Smatanová, Helena; Kapjor, Andrej
2016-06-01
This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable
Natural-convection promoter for geothermal wells
Allis, R.G.; James, R.
1980-09-01
Many geothermal wells stand with relatively cold water overlying hot water. If a pipe is inserted into such a well, natural convection will occur and hot water will flow to the top of the well. The convection-promoting pipe enables domestic wells which would normally require the use of a downhole pump or airlift (with attendant environmental problems of fluid disposal) to be satisfactorily operated with a downhole heat exchanger. In potentially powerful steam-water wells which are difficult to discharge, a pipe positioned beneath the water level should raise wellhead pressure to the point where spontaneous discharge is possible. In both cases, the permeability and temperature of the feed zones are the limiting factors for the heat output of the well.
Studies of heat source driven natural convection
NASA Technical Reports Server (NTRS)
Kulacki, F. A.; Nagle, M. E.; Cassen, P.
1974-01-01
Natural convection energy transport in a horizontal layer of internally heated fluid with a zero heat flux lower boundary, and an isothermal upper boundary, has been studied. Quantitative information on the time-mean temperature distribution and the fluctuating component of temperature about the mean temperature in steady turbulent convection are obtained from a small thermocouple inserted into the layer through the upper bounding plate. Data are also presented on the development of temperature at several vertical positions when the layer is subject to both a sudden increase and to a sudden decrease in power input. For changes of power input from zero to a value corresponding to a Rayleigh number much greater than the critical linear stability theory value, a slight hysteresis in temperature profiles near the upper boundary is observed between the heat-up and cool-down modes.
On natural solutal convection in magnetic fluids
NASA Astrophysics Data System (ADS)
Ivanov, A. S.; Pshenichnikov, A. F.
2015-09-01
An experiment was carried out to investigate natural solutal convection in a magnetic fluid caused by non-homogeneous initial distribution of colloidal particles in a vertical Hele-Shaw cell. For experiment, we used a dilute magnetic fluid of the "magnetite-kerosene-oleic acid" type. The initial distribution of particles was formed by magnetophoresis of the drop-like aggregates and their sedimentation on the surface of the diamagnetic disk located in the center of the cell. Application of the magnetic field on the system led to the onset of the Rayleigh-Taylor instability and formation of descending convective jets. The velocity of the flow at the front of descending jets was measured for different values of cell thickness (up to 0.18 mm) and strength of the magnetic field generating the drop-like aggregates (up to 21 kA/m). The solutal Rayleigh numbers varied in the range Ra = 50-105. It was shown that the intensity of the convective flow characterized by the Reynolds number Re, increases with the Rayleigh number according to the power law: Re = 1.16 × 10-5Ra0.86.
Laminar natural convection under nonuniform gravity.
NASA Technical Reports Server (NTRS)
Lienhard, J.; Eichhorn, R.; Dhir, V.
1972-01-01
Laminar natural convection is analyzed for cases in which gravity varies with the distance from the leading edge of an isothermal plate. The study includes situations in which gravity varies by virtue of the varying slope of a surface. A general integral solution method which includes certain known integral solutions as special cases is developed to account for arbitrary position-dependence of gravity. A series method of solution is also developed for the full equations. Although it is more cumbersome it provides verification of the integral method.
Thermocapillary Convection Due to a Stationary Bubble - A Paradox
NASA Technical Reports Server (NTRS)
Balasubramaniam, R.; Subramanian, R. S.
2003-01-01
We analyze the velocity and temperature fields at steady state due to thermocapillary convection around a gas bubble that is stationary in a liquid. A linear temperature field is imposed in the undisturbed liquid. Our interest is in investigating the effect of convective transport of momentum and energy on the velocity and temperature fields. We assume the pertinent physical properties to be constant, and that buoyant convection is negligible. Suitably defined Reynolds and Marangoni numbers are assumed to be small compared with unity. When both the Reynolds and Marangoni numbers are set equal to zero, a solution can be found. In this solution, far from the bubble, the velocity field decays as the inverse of the distance from the bubble, and the disturbance temperature field decays as the inverse of the square of this distance. We now attempt to obtain a solution when the Reynolds number is zero, but the Marangoni number is small, but non-zero, by a perturbation expansion in the Marangoni number. When the temperature field is expanded in a regular perturbation series in the Marangoni number, we show that the problem for the first correction field is ill-posed. The governing equation for this perturbation field contains an inhomogeneity, and the corresponding particular solution neither decays far from the bubble, nor can be canceled by a homogeneous solution. Additional information is included in the original extended abstract.
Conjugate natural convection between horizontal eccentric cylinders
NASA Astrophysics Data System (ADS)
Nasiri, Davood; Dehghan, Ali Akbar; Hadian, Mohammad Reza
2016-06-01
This study involved the numerical investigation of conjugate natural convection between two horizontal eccentric cylinders. Both cylinders were considered to be isothermal with only the inner cylinder having a finite wall thickness. The momentum and energy equations were discretized using finite volume method and solved by employing SIMPLER algorithm. Numerical results were presented for various solid-fluid conductivity ratios (KR) and various values of eccentricities in different thickness of inner cylinder wall and also for different angular positions of inner cylinder. From the results, it was observed that in an eccentric case, and for KR < 10, an increase in thickness of inner cylinder wall resulted in a decrease in the average equivalent conductivity coefficient (overline{{K_{eq} }} ); however, a KR > 10 value caused an increase in overline{{K_{eq} }} . It was also concluded that in any angular position of inner cylinder, the value of overline{{K_{eq} }} increased with increase in the eccentricity.
Prandtl Number Dependent Natural Convection with Internal Heat Sources
Kang Hee Lee; Seung Dong Lee; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim
2004-06-01
Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. Recently, attention is being paid to the feasibility of external vessel flooding as a severe accident management strategy and to the phenomena affecting the success path for retaining the molten core material inside the vessel. The heat transfer inside the molten core material can be characterized by the strong buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of such flow depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, the natural convection heat transfer phenomena involving the internal heat generation are represented by the modified Rayleigh number (Ra’), which quantifies the internal heat source and hence the strength of the buoyancy force. In this study, tests were conducted in a rectangular section 250 mm high, 500 mm long and 160 mm wide. Twenty-four T-type thermocouples were installed in the test section to measure temperatures. Four T-type thermocouples were used to measure the boundary temperatures. The thermocouples were placed in designated locations after calibration. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Ra' between 1.5x106 and 7.42x1015 and the Prandtl number (Pr) between 0.7 and 6.5. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained uniform. The results demonstrated feasibility of the direct heating method to simulate uniform volumetric heat generation. Particular attentions were paid to the effect of Pr on natural convection heat transfer within the rectangular pool.
Theoretical Basis for Convective Invigoration due to Increased Aerosol Concentration
NASA Astrophysics Data System (ADS)
Lebo, Z. J.; Chen, Y.; Seinfeld, J.
2010-12-01
Recent reports using a one-dimensional parcel model suggest that increases in aerosol number concentration may invigorate deep convection by mitigating the autoconversion process until air parcels reach the freezing level. This would lead to an increase in ice water aloft and the potential for enhanced upward heat transport due to phase changes, hence leading to invigorated convection. Other studies have proposed that an increase in aerosol loading may act to increase cloud top height, increasing the liquid water content, which ultimately increases the cumulative precipitation. Here we study the effect of aerosol perturbations on deep convection by employing the Weather Research and Forecasting model as a three-dimensional CRM with a two-moment, six-class bulk microphysics scheme. These results are corroborated using a newly developed bin microphysics scheme. The bulk microphysics scheme is augmented with a state-of-the-art activation scheme based on Köhler Theory and Population Splitting to analyze the effect of CCN perturbations on cloud development. Moreover, we include a physically-based parameterization for homogeneous and heterogeneous freezing to determine the effects of changes in IN number concentration on deep convective cloud development. We perform idealized simulations of deep convection over a wide range of CCN concentrations (i.e., 102 to 103 cm-3), which encompasses clean maritime conditions to polluted continental conditions, respectively. The detailed model calculations reveal that the CCN effect on precipitation in deep convective clouds depends strongly on the ambient water vapor mixing ratio profile. Our simulations suggest that under relatively dry conditions, an increase in aerosol number concentration leads to a decrease in precipitation (-4.2%), while under moist conditions, an increase in aerosol number concentration leads to an increase in precipitation (8.1%). However, when the water vapor in the mid- to upper-troposphere is depleted
Natural and forced convection during solidification
NASA Astrophysics Data System (ADS)
Neufeld, Jerome A.
The following work marries theoretical and experimental approaches to study the interaction of an external shear flow with a solidifying porous medium. The porous medium, a dendritic 'mushy layer', is created when a super-eutectic binary alloy is cooled leading to solid crystals bathed in an interstitial fluid which is compositionally enriched. This compositional enrichment leads to natural buoyant instabilities in the solidifying porous medium coupled with instabilities in the adjoining liquid layer. Theoretically, the effect of an external shear flow on the convective instabilities inherent to this mushy layer is investigated using a linear stability analysis. The external flow is coupled to advective perturbations in the liquid and to flow in the mush through a perturbed mush-liquid interface. A complete numerical solution of the stability of the system is performed and a critical porous medium Rayleigh number is found which is a function of both the external flow speed and the wavenumber of the interfacial perturbations. By neglecting the effects of buoyancy in the liquid and solving only for the pressure perturbations on the corrugated mush-liquid interface induced by the external flow, a reduced model is constructed and solved analytically. These theoretical results are compared with experimental observations obtained in a laboratory flume in which an ammonium-chloride solution is solidified from below at a constant rate. The experimental results reveal that at flow speeds above critical, convection is forced within the mush leading to a series of zero solid fraction tesselations aligned perpendicular to the applied shear flow. The results of the experiments compare favorably to the linear stability analysis.
Natural Convection in Enclosed Porous or Fluid Media
ERIC Educational Resources Information Center
Saatdjian, Esteban; Lesage, François; Mota, José Paulo B.
2014-01-01
In Saatdjian, E., Lesage, F., and Mota, J.P.B, "Transport Phenomena Projects: A Method to Learn and to Innovate, Natural Convection Between Porous, Horizontal Cylinders," "Chemical Engineering Education," 47(1), 59-64, (2013), the numerical solution of natural convection between two porous, concentric, impermeable cylinders was…
Natural convection around the human head.
Clark, R P; Toy, N
1975-01-01
1. Factors determining the convective flow patterns around the human head in 'still' conditions are discussed in relation to body posture. 2. The flow patterns have been visualized using a schlieren optical system which reveals that the head has a thicker 'insulating' layer of convecting air in the erect posture than in the supine position. 3. Local convective and radiative heat transfer measurements from the head have been using surface calorimeters. These results are seen to be closely related to the thickness of the convective boundary layer flows. 4. The total convective and radiative heat loss from the head of a subject in the erect and supine position has been evaluated from the local measurements. For the head of the supine subject the heat loss was found to be 30% more than when the subject was standing. PMID:1142118
Onset of Convection Due to Surface Tension Variations in Multicomponent and Binary Fluid Layers
NASA Technical Reports Server (NTRS)
Skarda, J. Raymond Lee
2000-01-01
Under certain conditions, such as in thin liquid films or microgravity, surface tension variations along a free surface can induce convection. Convection onset due to surface tension variation is important to many terrestrial technological processes in addition to microgravity materials processing applications. Examples include coating, drying crystallization, solidification, liquid surface contamination, and containerless processing. In double-diffusive and multicomponent systems, the spatial variations of surface tension are associated with two or more stratifying agencies, respectively. For example, both temperature and species (concentration) gradients are associated with convection in the solidification of binary alloys or salt ponds. The direction of the two (or more) gradients has a profound effect on the nature of the flow at or slightly beyond the onset of convection. Our recent work at the NASA Lewis Research Center focused on characterizing surface-tension-induced onset of convection, often referred to as Marangoni-Benard convection. Exact solutions for the stationary neutral stability of multicomponent fluid layers with interfacial deformation were derived. These solutions also permit the computation of a boundary curve that separates the long and finite wavelength instabilities. Computing points along this boundary using the exact solution (when possible) is more efficient than the typical numerical approaches, such as finite difference or spectral methods. Above the curve, a long wavelength instability was predicted, suggesting that convection would occur principally through one large flow cell in the layer, whereas below the curve, finite wavelength instabilities occur which suggest multiple finite-sized circulation cells. For many common liquids with layer depths greater than 100 mm, finite wave instability is predicted under terrestrial conditions; however, with little exception, long wavelength instability is predicted in microgravity for the
On Unsteady Natural Convection Between Spherical Shells
NASA Astrophysics Data System (ADS)
Feldman, Yuri; Colonius, Tim
2011-11-01
Natural convection between two concentric spheres is investigated with three-dimensional numerical simulations. Buoyancy is achieved by preserving a temperature difference between the internal hotter and the external colder boundaries of the spherical shell. The numerical simulations were performed for the two basic configurations characterized by external to internal radius ratios of 1.2 and 1.5. Slightly supercritical laminar regimes characterized by the Rayleigh numbers of order Ra ~ O(104-105) were simulated by utilizing a Direct Numerical Simulation (DNS) approach while a Large Eddy Simulation (LES) was used for investigation of turbulent regimes for Ra ~ O (108-109) . We discuss the topological characteristics of the both laminar and turbulent flows. One of the possible scenarios of steady-unsteady transition is proposed as well. Implications of the results for the design of a double-walled Montgolfiere aerobot for the exploration of Titan's atmosphere are discussed. Research supported by Jet Propulsion Laboratory with Dr. Jeffrey Hall as monitor.
Transient natural convection in heated inclined tubes
NASA Astrophysics Data System (ADS)
McEligot, Donald M.; Denbow, David A.; Murphy, Hugh D.
1990-05-01
To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length-to-diameter (L/D) ratio of 36 at angles of 0, 20, and 35 degrees from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Results were primarily qualitative but were useful in providing insight into the phenomena occurring. Steady-state temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. Transient measurements of the temperature distribution were obtained during cooling from a higher temperature without a heat source to calibrate the heat losses. With the electrical heat source, temporal data were taken during heating to examine the approach to steady state. Quasi-steady flow conditions were approached rapidly, but the overall time constant of the apparatus was of the order of one-third of a day. Predictions with the three-dimensional TEMPEST code were first tested by comparison with simple conduction analyses. Comparison with actual data showed good agreement of the predicted temperature levels for the maximum inclination, 35 degrees, and slightly poorer agreement for the other limit, a vertical tube. Trends of temperature level and Nusselt number with heating rate or Rayleigh number were reasonable, but the predicted variation of the end Nusselt number versus inclination was in the opposite direction from the experiment.
Transient natural convection in heated inclined tubes
McEligot, D.M. . Oceanic Div.); Denbow, D.A. ); Murphy, H.D. )
1990-05-01
To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length-to-diameter (L/D) ratio of 36 at angles of 0{degree}, 20{degree}, and 35{degree} from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Results were primarily qualitative but were useful in providing insight into the phenomena occurring. Steady-state temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. transient measurements of the temperature distribution were obtained during cooling from a higher temperature without a heat source to calibrate the heat losses. With the electrical heat source, temporal data were taken during heating to examine the approach to steady state. Quasi-steady flow conditions were approached rapidly, but the overall time constant of the apparatus was of the order of one-third of a day. Predictions with the three-dimensional TEMPEST code were first tested by comparison with simple conduction analyses. Comparison with actual data showed good agreement of the predicted temperature levels for the maximum inclination, 35{degree}, and slightly poorer agreement for the other limit, a vertical tube. Trends of temperature level and Nusselt number with heating rate or Rayleigh number were reasonable, but the predicted variation of the end Nusselt number versus inclination was in the opposite direction from the experiment. 75 refs., 20 figs., 8 tabs.
Numerical prediction of natural convection in square partitioned enclosures
Kelkar, K.M. ); Patankar, S.V. . Dept. of Mechanical Engineering)
1990-01-01
This paper provides a detailed study of flow and heat transfer phenomena in partitioned enclosures that is useful in understanding the more complex processes that occur in natural convection flows in passive solar heated buildings, solar collectors, and other applications. Two-dimensional natural convection flows in square enclosures with partitions are analyzed for laminar flow. Side walls are assumed to be isothermal, while the top and bottom walls are adiabatic.
Analysis of natural convection in a low gravity environment
NASA Technical Reports Server (NTRS)
Mattor, Ethan E.; Durgin, William W.; Bloznalis, Peter; Schoenberg, Richard
1992-01-01
Natural convection inside a spherical container was studied experimentally with two apparatuses at low buoyancy levels. The data generated by these experiments, plotted nondimensionally as the Nusselt versus Rayleigh numbers, give correlations for Rayleigh numbers between 1000 and 10 exp 8, a range previously untested. These results show that natural convection has significant effects at a Rayleigh number of 1000 and higher, although the behavior of the Nusselt number as the conduction limit is approached is still unknown for a spherical geometry.
SST Variation Due to Interactive Convective-Radiative Processes
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Shie, C.-L.; Johnson, D.; Simpson, J.; Li, X.; Sui, C.-H.
2000-01-01
The recent linking of Cloud-Resolving Models (CRMs) to Ocean-Mixed Layer (OML) models has provided a powerful new means of quantifying the role of cloud systems in ocean-atmosphere coupling. This is due to the fact that the CRM can better resolve clouds and cloud systems and allow for explicit cloud-radiation interaction. For example, Anderson (1997) applied an atmospheric forcing associated with a CRM simulated squall line to a 3-D OML model (one way or passive interaction). His results suggested that the spatial variability resulting from the squall forcing can last at least 24 hours when forced with otherwise spatially uniform fluxes. In addition, the sea surface salinity (SSS) variability continuously decreased following the forcing, while some of the SST variability remained when a diurnal mixed layer capped off the surface structure. The forcing used in the OML model, however, focused on shorter time (8 h) and smaller spatial scales (100-120 km). In this study, the 3-D Goddard Cumulus Ensemble Model (GCE; 512 x 512 x 23 cu km, 2-km horizontal resolution) is used to simulate convective active episodes occurring in the Western Pacific warm pool and Eastern Atlantic regions. The model is integrated for seven days, and the simulated results are coupled to an OML model to better understand the impact of precipitation and changes in the planetary boundary layer upon SST variation. We will specifically examine and compare the results of linking the OML model with various spatially-averaged outputs from GCE simulations (i.e., 2 km vs. 10-50 km horizontal resolutions), in order to help understand the SST sensitivity to multi-scale influences. This will allow us to assess the importance of explicitly simulated deep and shallow clouds, as well as the subgrid-scale effects (in coarse-model runs) upon SST variation. Results using both 1-D and 2-D OML models will be evaluated to assess the effects of horizontal advection.
Nature versus nurture in shallow convection
NASA Astrophysics Data System (ADS)
Romps, D. M.; Kuang, Z.
2009-12-01
We use tracers in a large-eddy simulation of shallow convection to show that stochastic entrainment, not cloud-base properties, determine the fate of convecting parcels. The tracers are used to diagnose the correlations between a parcel's state above the cloud base and both the parcel's state at the cloud base and its entrainment history. We find that the correlation with the cloud-base state goes to zero a few hundred meters above the cloud base. On the other hand, correlations between a parcel's state and its net entrainment are large. Evidence is found that the entrainment events may be described as a stochastic Poisson process. We construct a parcel model with stochastic entrainment that is able to replicate flux profiles and, more importantly, the observed variability. Turning off cloud-base variability has little effect on the results, which suggests that stochastic mass-flux models may be initialized with a single set of properties. The success of the stochastic parcel model suggests that it holds promise as the framework for a convective parameterization.
A decoupled monolithic projection method for natural convection problems
NASA Astrophysics Data System (ADS)
Pan, Xiaomin; Kim, Kyoungyoun; Lee, Changhoon; Choi, Jung-Il
2016-06-01
We propose an efficient monolithic numerical procedure based on a projection method for solving natural convection problems. In the present monolithic method, the buoyancy, linear diffusion, and nonlinear convection terms are implicitly advanced by applying the Crank-Nicolson scheme in time. To avoid an otherwise inevitable iterative procedure in solving the monolithic discretized system, we use a linearization of the nonlinear convection terms and approximate block lower-upper (LU) decompositions along with approximate factorization. Numerical simulations demonstrate that the proposed method is more stable and computationally efficient than other semi-implicit methods, preserving temporal second-order accuracy.
NATURAL CONVECTION IN PASSIVE SOLAR BUILDINGS: EXPERIMENTS, ANALYSIS AND RESULTS
Gadgil, A.; Bauman, F.; Kammerud, R.
1981-04-01
Computer programs have been developed to numerically simulate natural convection in two- and three-dimensional room geometries. The programs have been validated using published data from the literature, results from a full-scale experiment performed at the Massachusetts Institute of Technology, and results from a small-scale experiment performed at LBL. One of the computer programs has been used to study the influence of natural convection on the thermal performance of a single zone in a direct-gain passive solar building. It is found that the convective heat transfer coefficients between the air and the enclosure surfaces can be substantially different from the values assumed in the standard building energy analysis methods, and can exhibit significant variations across a given surface. This study implies that the building heating loads calculated by standard building energy analysis methods may have substantial errors as a result of their use of common assumptions regarding the convection processes which occur in an enclosure.
Special session: computational predictability of natural convection flows in enclosures
Christon, M A; Gresho, P M; Sutton, S B
2000-08-14
Modern thermal design practices often rely on a ''predictive'' simulation capability--although predictability is rarely quantified and often difficult to confidently achieve in practice. The computational predictability of natural convection in enclosures is a significant issue for many industrial thermal design problems. One example of this is the design for mitigation of optical distortion due to buoyancy-driven flow in large-scale laser systems. In many instances the sensitivity of buoyancy-driven enclosure flows can be linked to the presence of multiple bifurcation points that yield laminar thermal convective processes that transition from steady to various modes of unsteady flow. This behavior is brought to light by a problem as ''simple'' as a differentially-heated tall rectangular cavity (8:1 height/width aspect ratio) filled with a Boussinesq fluid with Pr = 0.71--which defines, at least partially, the focus of this special session. For our purposes, the differentially-heated cavity provides a virtual fluid dynamics laboratory.
Natural convection heat transfer within horizontal spent nuclear fuel assemblies
Canaan, R.E.
1995-12-01
Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.
Thermally induced natural convection effects in Yucca Mountain drifts.
Webb, Stephen W; Francis, Nicholas D; Dunn, Sandra Dalvit; Itamura, Michael T; James, Darryl L
2003-01-01
Thermally induced natural convection from the heat produced by emplaced waste packages is an important heat and mass transfer mechanism within the Yucca Mountain Project (YMP) drifts. Various models for analyzing natural convection have been employed. The equivalent porous medium approach using Darcy's law has been used in many YMP applications. However, this approach has questionable fidelity, especially for turbulent flow conditions. Computational fluid dynamics (CFD), which is based on the fundamental Navier-Stokes equations, is currently being evaluated as a technique to calculate thermally induced natural convection in YMP. Data-model comparisons for turbulent flow conditions show good agreement of CFD predictions with existing experiments including YMP-specific data. PMID:12714318
Numerical Solution of Natural Convection in Eccentric Annuli
Pepper, D.W.
2001-09-18
The governing equations for transient natural convection in eccentric annular space are solved with two high-order accurate numerical algorithms. The equation set is transformed into bipolar coordinates and split into two one-dimensional equations: finite elements are used in the direction normal to the cylinder surfaces; the pseudospectral technique is used in the azimuthal direction. This report discusses those equations.
Natural convection of a magnetic fluid in a cubic enclosure
NASA Astrophysics Data System (ADS)
Kikura, H.; Sawada, T.; Tanahashi, T.
1993-04-01
Laminar natural convection heat transfer of a magnetic fluid in a cubic enclosure is examined experimentally. Wall-temperature distributions are visualized by thermosensitive liquid crystal sheets. The effect of the magnetic field on the transient temperature distributions, and the local and averaged Nusselt numbers are discussed.
On the convective-absolute nature of river bedform instabilities
NASA Astrophysics Data System (ADS)
Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca; Chomaz, Jean Marc
2014-12-01
River dunes and antidunes are induced by the morphological instability of stream-sediment boundary. Such bedforms raise a number of subtle theoretical questions and are crucial for many engineering and environmental problems. Despite their importance, the absolute/convective nature of the instability has never been addressed. The present work fills this gap as we demonstrate, by the cusp map method, that dune instability is convective for all values of the physical control parameters, while the antidune instability exhibits both behaviors. These theoretical predictions explain some previous experimental and numerical observations and are important to correctly plan flume experiments, numerical simulations, paleo-hydraulic reconstructions, and river works.
Coupled three-dimensional conduction and natural convection heat transfer
NASA Astrophysics Data System (ADS)
Tolpadi, Anil Kumar
1987-09-01
A numerical and experimental investigation of three-dimensional natural convection heat transfer coupled with conduction was performed. This general problem is of great importance because of its widespread applicability in areas such as compact natural convection heat exchangers, cooling of electronic equipment, and porous media flows. The determination of flow patterns and heat transfer coefficients in such situations is necessary because of its practical use in various industries. A vectorized finite difference code was developed for the Cray-2 supercomputer which has the capability of simulating a wide class of three-dimensional coupled conduction-convection problems. This program numerically solves the transient form of the complete laminar Navier-Stokes equations of motion using the vorticity-vector potential methods. Using this program, numerical solutions were obtained for 3-D natural convection from a horizontal isothermal heat exchanger tube with an attached circular cooling fin array. Experiments were performed to measure three-dimensional temperature fields using Mach-Zehnder interferometry. Software was developed to digitize and process fringe patterns and inversion algorithms used to compute the 3-D temperature field.
NASA Astrophysics Data System (ADS)
Tsitverblit, Naftali
The effects of different boundary conditions on the behavior of double-component fluid are of basic significance for the ocean processes up to the scales of the global ocean thermohaline circulation [Walin, Palaeogeogr. Palaeoclimatol. Palaeoecol. 50, 323 (1985)]. One major aspect of such flows is that the effect of different boundary conditions can be conceptually analogous to that of different diffusivities in the classi- cal double-diffusion [Welander, Tellus, Ser. A 41, 66 (1989); Tsitverblit, Phys. Fluids 9, 2458 (1997); ibid. 11, 2516 (1999); Phys. Rev. E 62, R7591 (2000)]. This work reports the existence of a novel mechanism of double-component convection resulting from different boundary conditions, whose nature is unrelated to differential diffu- sion. This mechanism emerges in a horizontal layer of Boussinesq fluid as a stable stratification due to flux boundary conditions is added to an unstable gradient speci- fied by fixed boundary values. A large enough perturbation substantially decreases the stable flux gradient but fails to mix the unstable fixed-value gradient. Steady finite- amplitude flows reminiscent of Rayleigh--Benard convection then arise even as the net background stratification is stable. At sufficiently large Rayleigh numbers, con- tinuation of such flows into the finite-amplitude states in Tsitverblit (2000) exhibits a hysteresis region in the slot inclination angle, due to the dissimilar nature of these two convective flows. Welander's (1989) oscillatory instability is also analyzed with the focus on the compensating across-slot gradients. In the inviscid fluid, k = 0 is the most unstable wave number, with the perturbation frequency c = 0. The long- wavelength expansion yields the critical (joint) Rayleigh number, Rac, and group ve- locity, k (c/k), for k = 0 as Rac = 12(k) and k = c c 2 c 60/7. [Generally, at k = 0, the critical (fixed-value) Rayleigh number Rac = (2Ras + 5040)/51 and 12(k) = Ras; Ras being the flux Rayleigh number
Drift natural convection and seepage at the Yucca Mountain repository
NASA Astrophysics Data System (ADS)
Halecky, Nicholaus Eugene
The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock, from the hot drift center to the cool drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water- induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity values, with reduced local seepage, form a more desirable waste package environment.
Validation of PARET for the modeling of heat transfer under natural convection core cooling
Ibrahim, J.K.; Kassim, M.S.; Mohammed, F.
1995-12-31
The PARET code is a one-dimensional, coupled thermal-hydraulic and point-kinetics code, which was originally developed for the analysis of SPERT-I transients and later adapted for the analysis of transient behavior in research reactors. Due to its ease of transportability and relative simplicity of input preparation, it is widely used internationally and is particularly attractive for research reactors with limited computational facilities. The thermal-hydraulic modeling of the current version of PARET accounts for buoyancy forces in the core and external pressure gradients that may arise from density differences between the core inlet and outlet. This feature of PARET makes it a useful tool for the analysis of research reactors cooled by natural convection as well as those cooled by forced convection. Since PARET has been applied to the analysis of the International Atomic Energy Agency 10-MW benchmark cores for protected and unprotected transients and also for the analysis of SPERT-I transients, its forced convection heat-removal model is reliable. However, there has been little experience with the capability of PARET to model heat removal in cores cooled by natural convection. This paper reports the results of some experiments performed at the Malaysian PUSPATI reactor to compare PARET predictions for power increases under natural convection core cooling to measured data.
Temporal response of laser power standards with natural convective cooling.
Xu, Tao; Gan, Haiyong; Yu, Jing; Zang, Erjun
2016-01-25
Laser power detectors with natural convective cooling are convenient to use and hence widely applicable in a power range below 150 W. However, the temporal response characteristics of the laser power detectors need to be studied in detail for accurate measurement. The temporal response based on the absolute laser power standards with natural convective cooling is studied through theoretical analysis, numerical simulations, and experimental verifications. Our results show that the response deviates from a single exponential function and that an ultimate response balance is difficult to achieve because the temperature rise of the heat sink leads to continuous increase of the response. To determine the measurement values, an equal time reading method is proposed and validated by the laser power calibrations. PMID:26832477
Influence of geometry on natural convection in buildings
White, M.D.; Winn, C.B.; Jones, G.F.; Balcomb, J.D.
1985-01-01
Strong free convection airflows occur within passive solar buildings resulting from elevated temperatures of surfaces irradiated by solar energy compared with the cooler surfaces not receiving radiation. The geometry of a building has a large influence on the directions and magnitudes of natural airflows, and thus heat transfer between zones. This investigation has utilized a variety of reduced-scale building configurations to study the effects of geometry on natural convection heat transfer. Similarity between the reduced-scale model and a full-scale passive solar building is achieved by having similar geometries and by replacing air with Freon-12 gas as the model's working fluid. Filling the model with Freon-12 gas results in similarity in Prandtl numbers and Rayleigh numbers based on temperature differences in the range from 10/sup 9/ to 10/sup 11/. Results from four geometries are described with an emphasis placed on the effects of heat loss on zone temperature stratification shifts.
Numerical investigation of natural convection heat transfer in a three-dimensional annular enclosure
NASA Astrophysics Data System (ADS)
Yung, Chain-Nan; de Witt, Kenneth J.; Keith, Theo G., Jr.
Natural convective flow and heat transfer in a three-dimensional annular enclose have been investigated numerically. The analysis uses dimensionless equations of continuity, momentum, and energy in Cartesian coordinates, which are cast into a generalized curvilinear system and solved by using a prediction-correction algorithm. For short horizontal cylinders, the local heat transfer rate is found to decrease sharply near the end walls due to convective velocity suppression; the overall heat transfer rate is less than that predicted by a two-dimensional model. Heat transfer rates are presented as a function of the Rayleigh number and compared with the available experimental data.
Verification of a numerical simulation technique for natural convection
Gadgil, A.; Bauman, F.; Altmayer, E.; Kammerud, R.C.
1983-03-01
The present paper describes a verification of CONVEC2 for single-zone geometries by comparison with the results of two natural convection experiments performed in small-scale rectangular enclosures. These experiments were selected because of the high Rayleigh numbers obtained and the small heat loss through the insulated surfaces. Comparisons are presented for (1) heat transfer rates, (2) fluid temperature profiles, and (3) surface heat flux distributions.
NASA Astrophysics Data System (ADS)
Missoum, Abdelkrim; Elmir, Mohamed; Bouanini, Mohamed; Belkacem, Abdellah; Draoui, Belkacem
2016-03-01
This study focuses on the numerical simulation of heat transfer by natural convection in a rectangular enclosure, filled with a liquid metal (low Prandtl number) partially heated from below with a sinusoidal temperature. The value of the study lies in its involvement in the crystal growth for the manufacture of semiconductors and electronics cooling. Indeed, the occurrence of convection during crystal growth can lead to in homogeneities that lead to striations and defects that affect the quality of the crystals obtained by the Bridgman techniques or Chochrawlski. Temperature of the oscillations, due to the instabilities of the convective flow in the liquid metal, also induces non-uniform cooling in the solidification front. Convection is then studied in order to reduce it. A modelling of the problem in two dimensions was conducted using Comsol computer code that is based on the finite element method, by varying the configuration of the control parameters, namely, the Rayleigh number, the nature of fluid (Prandtl number) and amplitude of temperature on heat transfer rate (Nusselt number) on convective structures that appear.
Topological analysis of a mixing flow generated by natural convection
NASA Astrophysics Data System (ADS)
Contreras, Pablo Sebastián; de la Cruz, Luis Miguel; Ramos, Eduardo
2016-01-01
We use topological tools to describe the natural convective motion and the Lagrangian trajectories of a flow generated by stepwise, alternating heating and cooling protocol of opposite vertical walls of a cubic container. The working fluid considered is Newtonian and the system is in presence of the acceleration of gravity but the nonlinear terms are neglected, i.e., we study the piece-wise steady and linear problem. For this convective mixing flow, we identify invariant surfaces formed by the Lagrangian orbits of massless tracers that are topologically equivalent to spherical shells and period-1 lines with elliptic and hyperbolic segments that are located on symmetry planes. We describe the previous features as functions of the Rayleigh number in the range 3 × 104 ≤ Ra ≤ 5 × 105. We show that this system shares properties with other systems with non-toroidal invariant surfaces.
The Fractional Step Method Applied to Simulations of Natural Convective Flows
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Heinrich, Juan C.; Saxon, Jeff (Technical Monitor)
2002-01-01
This paper describes research done to apply the Fractional Step Method to finite-element simulations of natural convective flows in pure liquids, permeable media, and in a directionally solidified metal alloy casting. The Fractional Step Method has been applied commonly to high Reynold's number flow simulations, but is less common for low Reynold's number flows, such as natural convection in liquids and in permeable media. The Fractional Step Method offers increased speed and reduced memory requirements by allowing non-coupled solution of the pressure and the velocity components. The Fractional Step Method has particular benefits for predicting flows in a directionally solidified alloy, since other methods presently employed are not very efficient. Previously, the most suitable method for predicting flows in a directionally solidified binary alloy was the penalty method. The penalty method requires direct matrix solvers, due to the penalty term. The Fractional Step Method allows iterative solution of the finite element stiffness matrices, thereby allowing more efficient solution of the matrices. The Fractional Step Method also lends itself to parallel processing, since the velocity component stiffness matrices can be built and solved independently of each other. The finite-element simulations of a directionally solidified casting are used to predict macrosegregation in directionally solidified castings. In particular, the finite-element simulations predict the existence of 'channels' within the processing mushy zone and subsequently 'freckles' within the fully processed solid, which are known to result from macrosegregation, or what is often referred to as thermo-solutal convection. These freckles cause material property non-uniformities in directionally solidified castings; therefore many of these castings are scrapped. The phenomenon of natural convection in an alloy under-going directional solidification, or thermo-solutal convection, will be explained. The
Transient Convection Due to Imposed Heat Flux: Application to Liquid-Acquisition Devices
NASA Technical Reports Server (NTRS)
Duval, Walter M. B.; Chato, David J.; Doherty, Michael P.
2014-01-01
A model problem is considered that addresses the effect of heat load from an ambient laboratory environment on the temperature rise of liquid nitrogen inside an enclosure. This model has applications to liquid acquisition devices inside the cryogenic storage tanks used to transport vapor-free propellant to the main engine. We show that heat loads from Q = 0.001 to 10 W, with corresponding Rayleigh numbers from Ra = 109 to 1013, yield a range of unsteady convective states and temperature rise in the liquid. The results show that Q = 1 to 10 W (Ra = 1012 to 1013) yield temperature distributions along the enclosure height that are similar in trend to experimental measurements. Unsteady convection, which shows selfsimilarity in its planforms, is predicted for the range of heat-load conditions. The onset of convection occurs from a free-convection-dominated base flow that becomes unstable against convective instability generated at the bottom of the enclosure while the top of the enclosure is convectively stable. A number of modes are generated with small-scale thermals at the bottom of the enclosure in which the flow selforganizes into two symmetric modes prior to the onset of the propagation of the instability. These symmetric vertical modes transition to asymmetric modes that propagate as a traveling-wave-type motion of convective modes and are representative of the asymptotic convective state of the flow field. Intense vorticity production is created in the core of the flow field due to the fact that there is shear instability between the vertical and horizontal modes. For the higher Rayleigh numbers, 1012 to 1013, there is a transition from a stationary to a nonstationary response time signal of the flow and temperature fields with a mean value that increases with time over various time bands and regions of the enclosure.
An experimental investigation of a natural convection solar air loop
Mastrullo, R.; Mazzei, P.; Vanoli, R.
1983-12-01
The interest that has been shown in the use of solar energy to heat dwellings following the ''passive'' design criteria does not correspond to the development of accurate theoretical and experimental analysis. This is particularly true for natural circulation solar air heaters. A significant application of these components is wall panel to complement south-facing windows in supplying solar heat directly to buildings. This idea, formerly suggested by Trombe et al., leads to various realizations, one of which was theoretically investigated by present authors. A convective loop panel consists of a glass layer and a black absorber that is backed by insulation. In the configuration shown the air flows in the channel in front of the absorber and the deflecting panel allows cool air to settle to the bottom of the U channel, preventing reverse thermocirculation during night or very low insolation periods. Since thermocirculation is the primary mode of heat transfer for the solar air heaters, the definition of an accurate convection model for the channel is essential for performance predictions. Studies on this subject - free convection between asymmetrically heated vertical planes - deal mainly with theoretical solutions for laminar flow, with the two usual boundary conditions. As the heat transfer process in the solar air loop cannot be expected to follow this model, there is the need of extensive experimental investigation.
Instabilities of Natural Convection in a Periodically Heated Layer
NASA Astrophysics Data System (ADS)
Hossain, M. Z.; Floryan, Jerzy M.
2013-11-01
Natural convection in a horizontal layer subject to a spatially periodic heating along the lower wall has been investigated. The heating produces sinusoidal temperature variations characterized by the wave number α and the Rayleigh number Rap. The primary response has the form of stationary rolls with axis orthogonal to the heating wave vector. For large α convection is limited to a thin layer adjacent to the lower wall with a uniform conduction above it. Linear stability was used to determine conditions leading to a secondary convection. Two mechanisms of instability have been identified. For α = 0(1), the parametric resonance dominates and leads to the pattern of instability that is locked-in with the pattern of the heating according to the relation δcr = α /2, where δcr denotes the component of the critical disturbance wave vector parallel to the heating wave vector. The second mechanism, Rayleigh-Bénard (RB) mechanism, dominates for large α. Competition between these mechanisms gives rise to non-commensurable states and appearance of soliton lattices, to the formation of distorted transverse rolls, and to the appearance of the wave vector component in the direction perpendicular to the forcing direction.
Natural convection within a vertical finite-length channel in free space
Lin, S.C.; Chang, K.P.; Hung, Y.H. )
1994-04-01
Natural convection within a vertical finite length channel in free space is studied in this article to remove assumptions that need to be made on velocity and temperature profiles at the channel entrance. For small channel aspect ratios and low Rayleigh numbers, significant deviations of the Nusselt number and temperature distributions exist due to the effects of vertical thermal diffusion and free space stratification in the channel. A new correlation was proposed on induced Reynolds number for vertical finite length channel. 8 refs.
Thermally optimum spacing of vertical, natural convection cooled, parallel plates
NASA Astrophysics Data System (ADS)
Bar-Cohen, A.; Rohsenow, W. M.
Vertical two-dimensional channels formed by parallel plates or fins are a frequently encountered configuration in natural convection cooling in air of electronic equipment. In connection with the complexity of heat dissipation in vertical parallel plate arrays, little theoretical effort is devoted to thermal optimization of the relevant packaging configurations. The present investigation is concerned with the establishment of an analytical structure for analyses of such arrays, giving attention to useful relations for heat distribution patterns. The limiting relations for fully-developed laminar flow, in a symmetric isothermal or isoflux channel as well as in a channel with an insulated wall, are derived by use of a straightforward integral formulation.
NASA Astrophysics Data System (ADS)
Britz, Dieter
Convection has long been coupled with electrochemistry, and the name hydrodynamic voltammetry has become standard. In electroanalytical chemistry we mainly seek reproducible conditions. These are almost always attained by systems in which a steady convective state is achieved, although not always. Thus, the once popular dropping mercury electrode (see texts such as [74, 257]) has convection around it, but is never in steady state; it might be called a reproducible periodic dynamic state.
Particle filter based on thermophoretic deposition from natural convection flow
Sasse, A.G.B.M.; Nazaroff, W.W. ); Gadgil, A.J. )
1994-04-01
We present an analysis of particle migration in a natural convection flow between parallel plates and within the annulus of concentric tubes. The flow channel is vertically oriented with one surface maintained at a higher temperature than the other. Particle migration is dominated by advection in the vertical direction and thermophoresis in the horizontal direction. From scale analysis it is demonstrated that particles are completely removed from air flowing through the channel if its length exceeds L[sub c] = (b[sup 4]g/24K[nu][sup 2]), where b is the width of the channel, g is the acceleration of gravity, K is a thermophoretic coefficient of order 0.5, and [nu] is the kinematic viscosity of air. Precise predictions of particle removal efficiency as a function of system parameters are obtained by numerical solution of the governing equations. Based on the model results, it appears feasible to develop a practical filter for removing smoke particles from a smoldering cigarette in an ashtray by using natural convection in combination with thermophoresis. 22 refs., 8 figs., 1 tab.
Effect of enclosure shape on natural convection velocities
NASA Technical Reports Server (NTRS)
Robertson, S. J.; Nicholson, L. A.
1982-01-01
A numerical analysis was performed to compare natural convection velocities in two dimensional enclosures of various shape. The following shapes were investigated: circle, square, horizontal and upright 2 x 1 aspect ratio rectangles, horizontal and upright half circles, diamond. In all cases, the length scale in the various dimensionless parameters, such as Rayleigh number, is defined as the diameter of the equal area circle. Natural convection velocities were calculated for Rayleigh numbers of 1000 and 5000 with the temperature difference taken to be across (1) the maximum horizontal dimension, (2) the median horizontal line (line through centroid) and (3) the horizontal distance such that the temperature gradient is the same for shapes of equal area. For the class of shapes including the square, upright half circle and upright rectangle, the computed velocities were found to agree very closely with that of the equal area circle when the temperature difference is taken to be across the maximum horizontal dimension (condition (a)). The velocities for the horizontal rectangle and half circle were found to be approximately one half that of the equal area circle for the same condition. Better overall agreement among all shapes was obtained by setting the temperature difference across a distance such that the temperature gradients were equal for shapes of equal area.
NASA Astrophysics Data System (ADS)
Tsitverblit, N.
2007-08-01
Onset of small-amplitude oscillatory and both small- and finite-amplitude steady double-component convection arising due to component different boundary conditions in an infinite slot is studied for various slot orientations to the gravity. The main focus is on two compensating background gradients of the components. The physical mechanisms underlying steady and oscillatory convection are analyzed from the perspective of a universally consistent understanding of the effects of different boundary conditions. In a horizontal slot with inviscid fluid addressed by Welander [P. Welander, Tellus Ser. A 41 (1989) 66], oscillatory convection sets in with the most unstable wave number and oscillation frequency being zero. Exact expressions for the critical fixed-value background gradient and the respective group velocity at zero wave number are derived from the long-wavelength expansion both for the horizontal slot with independently varying background gradients and for the inclined slot with the compensating gradients. In the horizontal slot with viscous fluid, the dissipation of along-slot perturbation-cell motion reduces efficiency of the oscillatory instability feedback and thus prevents the most unstable wavelength from being infinite. Based on this interpretation, the oscillatory instability of a three-dimensional (3D) nature is predicted for an interval of long two-dimensional (2D) wavelengths in an inclined slot, and such 3D instability is indeed shown to arise. Related general conditions for three-dimensionality of most unstable disturbances are also formulated. As the slot orientation changes from the horizontal by angle θ (⩾π/2), the oscillatory 2D marginal-stability boundaries in inviscid and viscous fluid are expected to eventually transform into respective steady ones. Oscillatory instability in the vertical slot with viscous fluid, first reported by Tsitverblit [N. Tsitverblit, Phys. Rev. E 62 (2000) R7591], is of a quasi-steady nature. Its (new
Tsitverblit, N. . E-mail: naftali@eng.tau.ac.il
2007-08-15
Onset of small-amplitude oscillatory and both small- and finite-amplitude steady double-component convection arising due to component different boundary conditions in an infinite slot is studied for various slot orientations to the gravity. The main focus is on two compensating background gradients of the components. The physical mechanisms underlying steady and oscillatory convection are analyzed from the perspective of a universally consistent understanding of the effects of different boundary conditions. In a horizontal slot with inviscid fluid addressed by Welander [P. Welander, Tellus Ser. A 41 (1989) 66], oscillatory convection sets in with the most unstable wave number and oscillation frequency being zero. Exact expressions for the critical fixed-value background gradient and the respective group velocity at zero wave number are derived from the long-wavelength expansion both for the horizontal slot with independently varying background gradients and for the inclined slot with the compensating gradients. In the horizontal slot with viscous fluid, the dissipation of along-slot perturbation-cell motion reduces efficiency of the oscillatory instability feedback and thus prevents the most unstable wavelength from being infinite. Based on this interpretation, the oscillatory instability of a three-dimensional (3D) nature is predicted for an interval of long two-dimensional (2D) wavelengths in an inclined slot, and such 3D instability is indeed shown to arise. Related general conditions for three-dimensionality of most unstable disturbances are also formulated. As the slot orientation changes from the horizontal by angle {theta} ({>=}{pi}/2), the oscillatory 2D marginal-stability boundaries in inviscid and viscous fluid are expected to eventually transform into respective steady ones. Oscillatory instability in the vertical slot with viscous fluid, first reported by Tsitverblit [N. Tsitverblit, Phys. Rev. E 62 (2000) R7591], is of a quasi-steady nature. Its (new
Porous media flow problems: Natural convection and non-Newtonian
NASA Astrophysics Data System (ADS)
Walker, K. L.
1980-03-01
Natural convection of a Newtonian fluid and one dimensional flow of a nonNewtonian fluid are studied. Convection in a rectangular porous cavity driven by heating in the horizontal is analyzed by a number of different techniques which yield a fairly complete description of the two dimensional solutions. The solutions are governed by two dimensionless parameters: the Darcy-Rayleigh number R and cavity aspect ratio A. The flow behavior of a dilute solution of polyacrylamide in corn syrup flowing through porous media is also studied. Measurement of the pressure drop and flow rate are made for the solution flowing through a packed bed of glass beads. At low velocities the pressure drop as a function of velocity is the same as that for a Newtonian fluid of equal viscosity. At high flow rates the nonNewtonian fluid exhibited significantly higher pressure drops than a Newtonian fluid. Careful rheological measurements of the fluid are made using a Weissenberg rheogoniometer. From measurements of the dynamic viscosity shear it is determined that elastic effects are negligible. It is believed that the increased pressure gradients are caused by nonlinear viscous effects resulting from the extensional components of the flow.
Adjoint optimization of natural convection problems: differentially heated cavity
NASA Astrophysics Data System (ADS)
Saglietti, Clio; Schlatter, Philipp; Monokrousos, Antonios; Henningson, Dan S.
2016-06-01
Optimization of natural convection-driven flows may provide significant improvements to the performance of cooling devices, but a theoretical investigation of such flows has been rarely done. The present paper illustrates an efficient gradient-based optimization method for analyzing such systems. We consider numerically the natural convection-driven flow in a differentially heated cavity with three Prandtl numbers (Pr=0.15{-}7 ) at super-critical conditions. All results and implementations were done with the spectral element code Nek5000. The flow is analyzed using linear direct and adjoint computations about a nonlinear base flow, extracting in particular optimal initial conditions using power iteration and the solution of the full adjoint direct eigenproblem. The cost function for both temperature and velocity is based on the kinetic energy and the concept of entransy, which yields a quadratic functional. Results are presented as a function of Prandtl number, time horizons and weights between kinetic energy and entransy. In particular, it is shown that the maximum transient growth is achieved at time horizons on the order of 5 time units for all cases, whereas for larger time horizons the adjoint mode is recovered as optimal initial condition. For smaller time horizons, the influence of the weights leads either to a concentric temperature distribution or to an initial condition pattern that opposes the mean shear and grows according to the Orr mechanism. For specific cases, it could also been shown that the computation of optimal initial conditions leads to a degenerate problem, with a potential loss of symmetry. In these situations, it turns out that any initial condition lying in a specific span of the eigenfunctions will yield exactly the same transient amplification. As a consequence, the power iteration converges very slowly and fails to extract all possible optimal initial conditions. According to the authors' knowledge, this behavior is illustrated here
Air cooling of a vented enclosure by combined conduction, natural convection and radiation
Yu, E.; Joshi, Y.K.
1996-12-31
A three-dimensional investigation of combined conduction, natural convection and radiation in vented enclosures is carried out. A discrete flush type heat source mounted on a vertical substrate is used to simulate an electronic component. A uniform volumetric generation rate is assumed within the heat source. Combined natural convection in the air, conduction in the heat source, the substrate and the enclosure walls, and surface radiation are solved for Rayleigh numbers at 2.6 {times} 10{sup 6} and 2.0 {times} 10{sup 7}. Radiation is incorporated based on the radiosity/irradiation approach. The resulting flow and temperature patterns are discussed, focusing on radiation and three-dimensional effects. The relative contributions of natural convection and radiation are investigated for different emissivities of internal surface of the substrate. Heat transfer rates from the substrate and other internal walls are presented to illustrate conjugate heat transfer due to combined modes. The numerical solutions are found in reasonably good agreement with the data.
STARSPOTS DUE TO LARGE-SCALE VORTICES IN ROTATING TURBULENT CONVECTION
Kaepylae, Petri J.; Mantere, Maarit J.; Hackman, Thomas
2011-11-20
We study the generation of large-scale vortices in rotating turbulent convection by means of Cartesian direct numerical simulations. We find that for sufficiently rapid rotation, cyclonic structures on a scale large in comparison to that of the convective eddies emerge, provided that the fluid Reynolds number exceeds a critical value. For slower rotation, cool cyclonic vortices are preferred, whereas for rapid rotation, warm anti-cyclonic vortices are favored. In some runs in the intermediate regime both types of cyclones coexist for thousands of convective turnover times. The temperature contrast between the vortices and the surrounding atmosphere is of the order of 5%. We relate the simulation results to observations of rapidly rotating late-type stars that are known to exhibit large high-latitude spots from Doppler imaging. In many cases, cool spots are accompanied with spotted regions with temperatures higher than the average. In this paper, we investigate a scenario according to which of the spots observed in the temperature maps could have a non-magnetic origin due to large-scale vortices in the convection zones of the stars.
Natural Convection and Boiling for Cooling SRP Reactors During Loss of Circulation Conditions
Buckner, M.R.
2001-06-26
This study investigated natural convection and boiling as a means of cooling SRP reactors in the event of a loss of circulation accident. These studies show that single phase natural convection cooling of SRP reactors in shutdown conditions with the present piping geometry is probably not feasible.
Three-dimensional, transient natural convection in inclined wellbores
McEligot, D.M. . Oceanic Div.); Denbow, D.A. ); Murphy, H.D. )
1990-01-01
The occurrence of natural conduction in a wellbore can affect geothermal gradient measurements and heat flow estimates. In the Hot Dry Rock geothermal concept, the wellbores are purposely inclined in the deep regions to enhance heat production. To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length to diameter (L/D) ratio of 36 at angles of 0{degrees}, 20{degrees}, and 35{degrees} from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. Comparison with measurements showed good agreement of the predicted temperature levels for the maximum inclination and slightly poorer agreement for the other limit, a vertical tube. 50 refs., 9 figs.
Torrance, K.E.; Catton, I.
1980-01-01
Natural convection in low aspect ratio rectangular enclosures is considered along with three-dimensional convection within rectangular boxes, natural convection flow visualization in irradiated water cooled by air flow over the surface, free convection in vertical slots, the stratification in natural convection in vertical enclosures, the flow structure with natural convection in inclined air-filled enclosures, and natural convection across tilted, rectangular enclosures of small aspect ratio. Attention is given to the effect of wall conduction and radiation on natural convection in a vertical slot with uniform heat generation of the heated wall, a numerical study of thermal insulation enclosure, free convection in a piston-cylinder enclosure with sinusoidal piston motion, natural convection heat transfer between bodies and their spherical enclosure, an experimental study of the steady natural convection in a horizontal annulus with irregular boundaries, three-dimensional natural convection in a porous medium between concentric inclined cylinders, a numerical solution for natural convection in concentric spherical annuli, and heat transfer by natural convection in porous media between two concentric spheres.
Natural convection in a horizontal cylinder with axial rotation.
Sánchez, Odalys; Mercader, Isabel; Batiste, Oriol; Alonso, Arantxa
2016-06-01
We study the problem of thermal convection in a laterally heated horizontal cylinder rotating about its axis. A cylinder of aspect ratio Γ=H/2R=2 containing a small Prandtl number fluid (σ=0.01) representative of molten metals and molten semiconductors at high temperature is considered. We focus on a slow rotation regime (Ω<8), where the effects of rotation and buoyancy forces are comparable. The Navier-Stokes and energy equations with the Boussinesq approximation are solved numerically to calculate the basic states, analyze their linear stability, and compute several secondary flows originated from the instabilities. Due to the confined cylindrical geometry-the presence of lateral walls and lids-all the flows are completely three dimensional, even the basic steady states. Results characterizing the basic states as the rotation rate increases are presented. As it occurred in the nonrotating case for higher values of the Prandtl number, two curves of steady states with the same symmetric character coexist for moderate values of the Rayleigh number. In the range of Ω considered, rotation has a stabilizing effect only for very small values. As the value of the rotation rate approaches Ω=3.5 and Ω=4.5, the scenario of bifurcations becomes more complex due to the existence in both cases of very close bifurcations of codimension 2, which in the latter case involve both curves of symmetric solutions. PMID:27415364
Natural convection in a horizontal cylinder with axial rotation
NASA Astrophysics Data System (ADS)
Sánchez, Odalys; Mercader, Isabel; Batiste, Oriol; Alonso, Arantxa
2016-06-01
We study the problem of thermal convection in a laterally heated horizontal cylinder rotating about its axis. A cylinder of aspect ratio Γ =H /2 R =2 containing a small Prandtl number fluid (σ =0.01 ) representative of molten metals and molten semiconductors at high temperature is considered. We focus on a slow rotation regime (Ω <8 ), where the effects of rotation and buoyancy forces are comparable. The Navier-Stokes and energy equations with the Boussinesq approximation are solved numerically to calculate the basic states, analyze their linear stability, and compute several secondary flows originated from the instabilities. Due to the confined cylindrical geometry—the presence of lateral walls and lids—all the flows are completely three dimensional, even the basic steady states. Results characterizing the basic states as the rotation rate increases are presented. As it occurred in the nonrotating case for higher values of the Prandtl number, two curves of steady states with the same symmetric character coexist for moderate values of the Rayleigh number. In the range of Ω considered, rotation has a stabilizing effect only for very small values. As the value of the rotation rate approaches Ω =3.5 and Ω =4.5 , the scenario of bifurcations becomes more complex due to the existence in both cases of very close bifurcations of codimension 2, which in the latter case involve both curves of symmetric solutions.
NASA Astrophysics Data System (ADS)
Haddad, Zoubida; Abid, Chérifa; Mohamad, A. A.; Rahli, O.; Bawazer, S.
2016-08-01
An experimental and numerical study was performed to investigate the effect of different formulas for nanofluid thermal conductivity and dynamic viscosity on natural convective heat transfer. It was found that the heat transfer across the enclosure using different models can be enhanced or deteriorated with respect to the base fluid. Also, it was found that the inconsistencies in the reported thermal conductivity and dynamic viscosity from different research groups are mainly due to the characterization of the nanofluid, including determination of colloidal stability and particle size, (i.e., aggregates size) within nanofluid.
Evolving Views on the Scale and Nature of Mantle Convection
NASA Astrophysics Data System (ADS)
van der Hilst, R. D.
2014-12-01
Since seminal studies of transition zone discontinuities in the 1960ies and the advent of seismic tomography a decade later much progress has been made with the understanding of the scale and nature of mantle convection. First order questions remain, however, about the fluxes between the canonical upper and lower parts of Earth's mantle and the origin and nature of deep mantle heterogeneity. The first generation of tomographic models depicted fast shear wave propagation in the lowermost mantle beneath the circum-Pacific subduction zones and large low shear wspeed anomalies beneath Africa and the central Pacific. In P-wave models these structures are less apparent, and the anomalous Vp/Vs ratios and related variables are suggestive of chemical heterogeneity. Later tomographic studies revealed the pattern of subducted oceanic lithosphere in more detail and discovered that some slabs sink deep into the lower mantle whereas others remain, at least temporarily, in the transition zone. The complex flow trajectories and the evidence for compositional heterogeneity render simple end-member models of strict layering or unobstructed mantle flow untenable. Various seismic imaging methods have been used to map with increasing precision the variations in depth to the major mantle discontinuities, and also these results are not fully consistent with expectations for simple convection models. In addition, renewed scrutiny with more data and better methods suggest that the models of phase transitions around 410 and 660 km depth in the olivine component of a pyrolitic mantle composition are oversimplifications. Indeed, interfaces are also found at other depths, and many exceptions to the expected anti correlation of the interface topographies have been reported. Some of these observations can be explained with experimental and computational studies of the mineralogy and phase chemistry of deep mantle assemblages, but with such studies still restricted to fairly simple bulk
Fire risk due to convective drying at forest edges in Rondonia
NASA Astrophysics Data System (ADS)
Baidya Roy, S.; Rastogi, D.
2010-12-01
Fire in tropical forests is a severe and growing problem that is exacerbated by forest fragmentation and selective logging. Despite the importance of uncontrolled forest fires in the tropics, there is currently little understanding of the processes by which disturbances alter the moisture dynamics of these normally near-fire-immune ecosystems. In this project we show that horizontal temperature gradients due to forest fragmentation generate organized mesoscale convective circulations. These circulations are anchored within the gaps and pump moisture away from the forest edges, effectively acting in opposition to the moisture-trapping evapotranspiration process. We conducted a set of 12-hour simulations and a 2-month-long simulation with the RAMS model to study the impact of these convective cells on the temperature and humidity of canopy air. These simulations show that during the 2004 dry season (June-July) the convective cells lead to a rapid drying of the forest edges to the point of fire susceptibility. This difference between intact and disturbed forests must be accounted for while predicting fire susceptibility in the tropics.
Delay in convection in nocturnal boundary layer due to aerosol-induced cooling
NASA Astrophysics Data System (ADS)
Singh, Dhiraj Kumar; Ponnulakshmi, V. K.; Subramanian, G.; Sreenivas, K. R.
2012-11-01
Heat transfer processes in the nocturnal boundary layer (NBL) influence the surface energy budget, and play an important role in many micro-meteorological processes including the formation of inversion layers, radiation fog, and in the control of air-quality near the ground. Under calm clear-sky conditions, radiation dominates over other transport processes, and as a result, the air layers just above ground cool the fastest after sunset. This leads to an anomalous post-sunset temperature profile characterized by a minimum a few decimeters above ground (Lifted temperature minimum). We have designed a laboratory experimental setup to simulate LTM, involving an enclosed layer of ambient air, and wherein the boundary condition for radiation is decoupled from those for conduction and convection. The results from experiments involving both ambient and filtered air indicate that the high cooling rates observed are due to the presence of aerosols. Calculated Rayleigh number of LTM-type profiles is of the order 105-107 in the field and of order 103-105 in the laboratory. In the LTM region, there is convective motion when the Rayleigh number is greater than 104 rather than the critical Rayleigh number (Rac = 1709). The diameter of convection rolls is a function of height of minimum of LTM-type profiles. The results obtained should help in the parameterization of transport process in the nocturnal boundary layer, and highlight the need to accounting the effects of aerosols and ground emissivity in climate models.
NASA Astrophysics Data System (ADS)
Chang, Yeon S.; Park, Young-Gyu
2016-03-01
We analyzed the motions of small sediment particles over a sinusoidal ripple due to an unsteady turbulent boundary layer flow using Large Eddy Simulation. The motions of sediment particles are described in terms of the Lagrangian framework as it is helpful in studying the structure of sediment suspension in detail. Strong coherent vortical structures are well developed along the upslope of the ripple surface during the accelerating flow phase, which effectively drag the particles to the ripple crest. At the maximum flow rate and at the decelerating flow phase, a cloud of vortical structures is developed vertically in the lee area of the ripple. Sediment particles render strong dispersion in the vertical direction when they are captured by these turbulent vortices, causing convective sediment flux that cannot be explained by the mean flows. The convective sediment suspension is strongest at the time of flow deceleration, while over a flat bed at the time of flow reversal. This observation suggests that bed form effect should be considered in modeling convective sediment flux.
Polar vortex formation in giant-planet atmospheres due to moist convection
NASA Astrophysics Data System (ADS)
O'Neill, Morgan E.; Emanuel, Kerry A.; Flierl, Glenn R.
2015-07-01
A strong cyclonic vortex has been observed on each of Saturn’s poles, coincident with a local maximum in observed tropospheric temperature. Neptune also exhibits a relatively warm, although much more transient, region on its south pole. Whether similar features exist on Jupiter will be resolved by the 2016 Juno mission. Energetic, small-scale storm-like features that originate from the water-cloud level or lower have been observed on each of the giant planets and attributed to moist convection, suggesting that these storms play a significant role in global heat transfer from the hot interior to space. Nevertheless, the creation and maintenance of Saturn’s polar vortices, and their presence or absence on the other giant planets, are not understood. Here we use simulations with a shallow-water model to show that storm generation, driven by moist convection, can create a strong polar cyclone throughout the depth of a planet’s troposphere. We find that the type of shallow polar flow that occurs on a giant planet can be described by the size ratio of small eddies to the planetary radius and the energy density of its atmosphere due to latent heating from moist convection. We suggest that the observed difference in these parameters between Saturn and Jupiter may preclude a Jovian polar cyclone.
Experimental analysis of natural convection within a thermosyphon
Clarksean, R.
1993-09-01
The heat transfer characteristics of a thermosyphon designed to passively cool cylindrical heat sources are experimentally studied. The analysis is based on recognizing the physics of the flow within different regions of the thermosyphon to develop empirical heat transfer correlations. The basic system consists of three concentric cylinders, with an outer channel between the outer two cylinders, and an inner channel between the inner two cylinders. Tests were conducted. with two different process material container diameters, representing the inner cylinder, and several different power levels. The experimentally determined local and average Nu numbers for the inner channel are in good agreement with previous work for natural convection between vertical parallel plates, one uniformly heated and the other thermally insulated. The implication is that the heat transfer off of each surface is independent of the adjacent surface for sufficiently high Ra numbers. The heat transfer is independent because of limited interaction between the boundary layers at sufficiently high Ra numbers. As a result of the limited interaction, the maximum temperature within the system remained constant, or decreased slightly when the radii of the inner cylinders increased for the same amount of heat removal.
Conjugate natural convection flow over a vertical surface with radiation
NASA Astrophysics Data System (ADS)
Siddiqa, Sadia; Hossain, Md. Anwar; Gorla, Rama Subba Reddy
2016-06-01
Numerical study of conjugate natural convection flow over a finite vertical surface with radiation is reported in this article. Rosseland diffusion approximation is used to express the radiative heat flux term. The governing boundary-layer equations are made dimensionless by means of a suitable form of non-similarity transformation. These equations are obtained in three regimes: (1) upstream (when ξ → 0), (2) downstream (when ξ → ∞ ) and (3) entire regime and are solved numerically. The solutions in the upstream and downstream regimes are obtained via shooting method whereas two-point implicit finite difference method is used to get the solutions for the entire regime. It is seen that asymptotic solutions give accurate results when compared with the numerical solution of the entire regime. The results indicate that the flow field and the temperature distributions are greatly influenced by thermal radiation parameter , R_d, surface temperature parameter, θ _w and Prandtl number Pr. It is established from the analysis that recirculation occurs in the flow specifically for R_d=1.5.
Analysis of Phenix natural convection test with the TRACE code
Chenu, A.; Mikityuk, K.; Chawla, R.
2012-07-01
Experimental data from the Natural Convection (NC) test performed in the Phenix reactor prior to its final shutdown have been used to further validate the single-phase sodium flow modeling in TRACE. The experimental data for the benchmark have been shared by the CEA in the frame of a Coordinated Research Project (CRP), initiated by the IAEA Technical Working Group on Fast Reactors (TWG-FR). This paper presents a complete TRACE model of the Phenix primary circuit developed for the analysis. Steady-state calculations at nominal (350 MWth) and reduced (120 MWth) power are compared to the experimental data for the validation of the model. We presents results from the 'blind' comparison, i.e. the comparison of the test results with those computed prior to the communication of the experimental data, so-called 'pre-test' results. 'Post-test' results, calculated from a model improved on the basis of the discrepancies identified from the blind comparison, are also presented. The analysis highlights the need to accurately simulate the reactor structures, since these define the thermal inertia of the system during the first phase of the transient. Furthermore, it shows the limitations of computed 1D-results when applied to the simulation of highly-stratified temperature fields. Nevertheless, the simulated reactor behavior and temperatures are found to match very well with the experimental data after the first two hours and, in general, the TRACE blind predictions may be considered as having been quite satisfactory. (authors)
Natural convection of ferrofluids in partially heated square enclosures
NASA Astrophysics Data System (ADS)
Selimefendigil, Fatih; Öztop, Hakan F.; Al-Salem, Khaled
2014-12-01
In this study, natural convection of ferrofluid in a partially heated square cavity is numerically investigated. The heater is located to the left vertical wall and the right vertical wall is kept at constant temperature lower than that of the heater. Other walls of the square enclosure are assumed to be adiabatic. Finite element method is utilized to solve the governing equations. The influence of the Rayleigh number (104≤Ra≤5×105), heater location (0.25H≤yh≤0.75H), strength of the magnetic dipole (0≤γ≤2), horizontal and vertical location of the magnetic dipole (-2H≤a≤-0.5H, 0.2H≤b≤0.8H) on the fluid flow and heat transfer characteristics are investigated. It is observed that different velocity components within the square cavity are sensitive to the magnetic dipole source strength and its position. The length and size of the recirculation zones adjacent to the heater can be controlled with magnetic dipole strength. Averaged heat transfer increases with decreasing values of horizontal position of the magnetic dipole source. Averaged heat transfer value increases from middle towards both ends of the vertical wall when the vertical location of the dipole source is varied. When the heater location is changed, a symmetrical behavior in the averaged heat transfer plot is observed and the minimum value of the averaged heat transfer is attained when the heater is located at the mid of vertical wall.
Transient natural convection of cold water in a vertical channel
NASA Astrophysics Data System (ADS)
Chiba, Ryoichi
2016-05-01
The two-dimensional differential transform method (DTM) is applied to analyse the transient natural convection of cold water in a vertical channel. The cold water gives rise to a density variation with temperature that may not be linearized. The vertical channel is composed of doubly infinite parallel plates, one of which has a constant prescribed temperature and the other of which is insulated. Considering the temperature-dependent viscosity and thermal conductivity of the water, approximate analytical (series) solutions for the temperature and flow velocity are derived. The transformed functions included in the solutions are obtained through a simple recursive procedure. Numerical computation is performed for the entire range of water temperature conditions around the temperature at the density extremum point, i.e. 4°C. Numerical results illustrate the effects of the temperature-dependent properties on the transient temperature and flow velocity profiles, volumetric flow rate, and skin friction. The DTM is a powerful tool for solving nonlinear transient problems as well as steady problems.
Role of natural convection in the dissolution of sessile droplets
NASA Astrophysics Data System (ADS)
Dietrich, Erik; Wildeman, Sander; Visser, Claas Willem; Hofhuis, Kevin; Kooij, E. Stefan; Zandvliet, Harold J. W.; Lohse, Detlef
2016-05-01
The dissolution process of small (initial (equivalent) radius $R_0 < 1$ mm) long-chain alcohol (of various types) sessile droplets in water is studied, disentangling diffusive and convective contributions. The latter can arise for high solubilities of the alcohol, as the density of the alcohol-water mixture is then considerably less as that of pure water, giving rise to buoyancy driven convection. The convective flow around the droplets is measured, using micro-particle image velocimetry ($\\mu$PIV) and the schlieren technique. When nondimensionalizing the system, we fnd a universal $Sh\\sim Ra^1/4$ scaling relation for all alcohols (of different solubilities) and all droplets in the convective regime. Here Sh is the Sherwood number (dimensionless mass flux) and Ra the Rayleigh number (dimensionless density difference between clean and alcohol-saturated water). This scaling implies the scaling relation $\\tau_c \\sim R^5/4$ of the convective dissolution time $\\tau_c$, which is found to agree with experimental data. We show that in the convective regime the plume Reynolds number (the dimensionless velocity) of the detaching alcohol-saturated plume follows $Re_p \\sim Sc^-1 Ra^5/8$, which is confirmed by the $\\mu$PIV data. Here, Sc is the Schmidt number. The convective regime exists when $Ra > Ra_t$, where $Ra_t = 12$ is the transition Ra-number as extracted from the data. For $Ra < Ra_t$ and smaller, convective transport is progressively overtaken by diffusion and the above scaling relations break down.
Joosik Yoo; Jun Young Choi; Moonuhn Kim . Dept. of Mechanical Engineering)
1994-01-01
Two-dimensional natural convection of a fluid of low Prandtl number (Pr = 0.02) in an annulus between two concentric horizontal cylinders is numerically investigated in a wide range of gap widths. For low Grashof numbers, a steady unicellular convection is obtained. Above a transition Grashof number that depends on the gap width, a steady bicellular flow occurs. With further increase of the Grashof number, steady or time-periodic multicellular convection occurs, and finally, complex unsteady convective flow appears. A plot is presented that predicts the type of flow patterns for various combination of gap widths and Grashof numbers.
Theoretical analysis of solar-driven natural convection energy conversion systems
Jacobs, E.W.; Lasier, D.D.
1984-01-01
This report presents a theoretical study of solar-powered natural convection tower (chimney) performance. Both heated and cooled towers are analyzed; the latter uses evaporating water as the cooling mechanism. The results, which are applicable to any open-cycle configuration, show that the ideal conversion efficiencies of both heated and cooled natural convection towers are linear functions of height. The performance of a heated tower in an adiabatic atmosphere ideally approaches the Carnot efficiency limit of approx. = 3.4%/km (1.0%/1000 ft). Including water pumping requirements, the ideal limit to cooled tower performance is approx. = 2.75%/km (0.85%/1000 ft). Ambient atmospheric conditions such as vertical temperature gradient (lapse rate) and relative humidity can have significantly adverse effects on natural convection tower performance. The combined effects of lapse rate and ambient relative humidity are especially important to cooled natural convection towers.
NASA Technical Reports Server (NTRS)
Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.
1972-01-01
Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.
Kang, S.; Ha, K. S.; Lee, S. W.; Park, S. D.; Kim, S. M.; Seo, H.; Kim, J. H.; Bang, I. C.
2012-07-01
The safety issues of the SFRs are important due to the fact that it uses sodium as a nuclear coolant, reacting vigorously with water and air. For that reason, there are efforts to seek for alternative candidates of liquid metal coolants having excellent heat transfer property and to adopt improved safety features to the SFR concepts. This study considers gallium as alternative liquid metal coolant applicable to safety features in terms of chemical activity issue of the sodium and aims to experimentally investigate the natural convection capability of gallium as a feasibility study for the development of gallium-based passive safety features in SFRs. In this paper, the design and construction of the liquid gallium natural convection loop were carried out. The experimental results of heat transfer coefficient of liquid gallium resulting in heat removal {approx}2.53 kW were compared with existing correlations and they were much lower than the correlations. To comparison of the experimental data with computer code analysis, gallium property code was developed for employing MARS-LMR (Korea version of RELAP) based on liquid gallium as working fluid. (authors)
Barthold, W.P.
1984-08-01
The scope of work is to summarize inherent safety advantages that are unique to the use of a carbide based fuel system and to summarize the technical issues regarding natural convection flow in LMFBR cores. As discussed in this report, carbide fuel provides the designer with far greater flexibility than oxide fuel. Carbide fuel systems can be designed to eliminate major accident initiators. They turn quantitative advantages into a qualitative advantage. The author proposed to LANL a series of core design and component concepts that would greatly enhance the safety of carbide over oxide systems. This report cites a series of safety advantages which potentially exist for a carbide fuel system. Natural convection issues have not been given much attention in the past. Only during the last few years has this issue been addressed in some detail. Despite claims to the contrary by some of the LMR contractors, the author does not think that the natural convection phenomena is fully understood. Some of the approximations made in natural convection transient analyses have probably a greater impact on calculated transient temperatures than the effects under investigation. Only integral in-pile experimental data and single assembly out-of-pile detailed data are available for comparisons with analytical models and correlations. Especially for derated cores, the natural convection capability of a LMR should be far superior to that of a LWR. The author ranks the natural convection capability of the LMR as the most important inherent safety feature.
Study of plasma natural convection induced by electron beam in atmosphere [
Deng, Yongfeng Han, Xianwei; Tan, Yonghua
2014-06-15
Using high-energy electron beams to ionize air is an effective way to produce a large-size plasma in the atmosphere. In particular, with a steady-state high power generator, some unique phenomena can be achieved, including natural convection of the plasma. The characteristics of this convection are studied both experimentally and numerically. The results show that an asymmetrical temperature field develops with magnitudes that vary from 295 K to 389 K at a pressure of 100 Torr. Natural convection is greatly enhanced under 760 Torr. Nevertheless, plasma transport is negligible in this convection flow field and only the plasma core tends to move upward. Parameter analysis is performed to discern influencing factors on this phenomenon. The beam current, reflecting the Rayleigh number Ra effect, correlates with convection intensity, which indicates that energy deposition is the underlying key factor in determining such convections. Finally, natural convection is concluded to be an intrinsic property of the electron beam when focused into dense air, and can be achieved by carefully adjusting equipment operations parameters.
Nature, theory and modelling of geophysical convective planetary boundary layers
NASA Astrophysics Data System (ADS)
Zilitinkevich, Sergej
2015-04-01
Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in
Numerical simulation of natural convection in a sessile liquid droplet
NASA Astrophysics Data System (ADS)
Bartashevich, M. V.; Marchuk, I. V.; Kabov, O. A.
2012-06-01
Heat transfer in a sessile liquid droplet was studied with numerical methods. A computer code was developed for solving the problem of convection in an axisymmetric hemispherical droplet and in a spherical layer as well. The problem of establishing an equilibrium state in a droplet was solved using several variables: temperature, stream function, and vorticity. Simulation was performed for droplets of water, ethyl alcohol, and model liquids. Variable parameters: intensity of heat transfer from droplet surface, Rayleigh and Marangoni dimensionless criteria, and the characteristic temperature difference. It was revealed that the curve of convective flow intensity versus heat transfer intensity at droplet surface has a maximum. A dual-vortex structure was obtained in a stationary hemispherical profile of liquid droplet for the case of close values for thermocapillary and thermogravitational forces. Either thermocapillary or thermogravitational vortex might be dominating phenomena in the flow structure.
Environmental exposures due to natural disasters.
Knap, Anthony H; Rusyn, Ivan
2016-03-01
The environmental mobilization of contaminants by "natural disasters" is a subject of much interest, however, little has been done to address these concerns, especially in the developing world. Frequencies and predictability of events, both globally and regionally as well as the intensity, vary widely. It is clear that there are greater probabilities for mobilization of modern contaminants in sediments. Over the past 100 years of industrialization many chemicals are buried in riverine, estuarine and coastal sediments. There are a few studies, which have investigated this potential risk especially to human health. Studies that focus on extreme events need to determine the pre-existing baseline, determine the medium to long term fate and transport of contaminants and investigate aquatic and terrestrial pathways. Comprehensive studies are required to investigate the disease pathways and susceptibility for human health concerns. PMID:26982607
Environmental exposures due to natural disasters
Knap, Anthony H.; Rusyn, Ivan
2016-01-01
The environmental mobilization of contaminants by “natural disasters” is a subject of much interest; however, little has been done to address these concerns, especially in the developing world. Frequencies and predictability of events, both globally and regionally as well as the intensity, vary widely. It is clear that there are greater probabilities for mobilization of modern contaminants in sediments. Over the past 100 years of industrialization many chemicals are buried in riverine, estuarine and coastal sediments. There are a few studies, which have investigated this potential risk especially to human health. Studies that focus on extreme events need to determine the pre-existing baseline, determine the medium to long term fate and transport of contaminants and investigate aquatic and terrestrial pathways. Comprehensive studies are required to investigate the disease pathways and susceptibility for human health concerns. PMID:26982607
Natural convection mass transfer on a vertical steel structure submerged in a molten aluminum pool
Cheung, F.B.; Yang, B.C.; Shiah, S.W.; Cho, D.H.; Tan, M.J.
1995-02-01
The process of dissolution mass transport along a vertical steel structure submerged in a large molten aluminum pool is studied theoretically. A mathematical model is developed from the conservation laws and thermodynamic principles, taking full account of the density variation in the dissolution boundary layer due to concentration differences. Also accounted for are the influence of the solubility of the wall material on species transfer and the motion of the solid/liquid interface at the dissolution front. The governing equations are solved by a combined analytical-numerical technique to determine the characteristics of the dissolution boundary layer and the rate of natural convection mass transfer. Based upon the numerical results, a correlation for the average Sherwood number is obtained. It is found that the Sherwood number depends strongly on the saturated concentration of the substrate at the moving dissolution front but is almost independent of the freestream velocity.
Weaver, J.A.; Viskanta, R. )
1992-01-01
An investigation of natural convection is presented to examine the influence of a horizontal temperature gradient and a concentration gradient occurring from the bottom to the cold wall in a cavity. As the solutal buoyancy force changes from augmenting to opposing the thermal buoyancy force, the fluid motion switches from unicellular to multicellular flow (fluid motion is up the cold wall and down the hot wall for the bottom counterrotating flow cell). Qualitatively, the agreement between predicted streamlines and smoke flow patterns is generally good. In contrast, agreement between measured and predicted temperature and concentration distributions ranges from fair to poor. Part of the discrepancy can be attributed to experimental error. However, there remains considerable discrepancy between data and predictions due to the idealizations of the mathematical model, which examines only first-order physical effects. An unsteady flow, variable thermophysical properties, conjugate effects, species interdiffusion, and radiation were not accounted for in the model. 31 refs.
NASA Astrophysics Data System (ADS)
Barakos, G.; Mitsoulis, E.; Assimacopoulos, D.
1994-04-01
Numerical simulations have been undertaken for the benchmark problem of natural convection flow in a square cavity. The control volume method is used to solve the conservation equations for laminar and turbulent flows for a series of Rayleigh numbers (Ra) reaching values up to 10(exp 10). The k-epsilon model has been used for turbulence modelling with and without logarithmic wall functions. Uniform and non-uniform (stretched) grids have been employed with increasing density to guarantee accurate solutions, especially near the walls for high Ra-values. ADI and SIP solvers are implemented to accelerate convergence. Excellent agreement is obtained with previous numerical solutions, while some discrepancies with others for high Ra-values may be due to a possibly different implementation of the wall functions. Comparisons with experimental data for heat transfer (Nusselt number) clearly demonstrates the limitations of the standard k-epsilon model with logarithmic wall functions, which gives significant overpredictions.
Natural-convection heat transfer of a spherical lighting fixture
Ikeda, Takamasa; Fujii, Tetsu
1994-09-01
The surface temperatures of the inner lamp and the outer globe of a spherical lighting fixture, the surfaces of which are painted black, were measured. From the results, the average convective heat-transfer coefficients between the inner lamp and the outer globe and on the outer surface of the globe were obtained. These data are correlated with the aid of existing equations for two concentric spheres and the outer surface of a single sphere. The relationships between the maximum and mean temperatures on the lamp and the globe were also obtained. By the use of these equations, a method for the optimal thermal design of spherical lighting fixtures is proposed.
NASA Technical Reports Server (NTRS)
Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.
2000-01-01
Natural convection, driven by temperature-or concentration gradients or both, is an inherent phenomenon during solidification of materials on Earth. This convection has practical consequences (e.g effecting macrosegregation) but also renders difficult the scientific examination of diffusive/conductive phenomena during solidification. It is possible to halt, or even reverse, natural convection by exploiting the variation (with temperature, for example) of the susceptibility of a material. If the material is placed in a vertical magnetic field gradient, a buoyancy force of magnetic origin arises and, at a critical field gradient, can balance the normal buoyancy forces to halt convection. At higher field gradients the convection can be reversed. The effect has been demonstrated in experiments at Marshall Space Flight Center where flow was measured by PIV in MnCl2 solution in a superconducting magnet. In auxiliary experiments the field in the magnet and the properties of the solution were measured. Computations of the natural convection, its halting and reversal, using the commercial software FLUENT were in good agreement with the measurements.
Onset of convection in a finite two-dimensional container due to unipolar injection of ions.
Wu, Jian; Traoré, Philippe; Vázquez, Pedro A; Pérez, Alberto T
2013-11-01
This work addresses the stability of a two-dimensional plane layer of a dielectric liquid enclosed in wall bounded cavities of different aspect ratios and subjected to unipolar injection of ions. Numerical simulations have been conducted to investigate the effect of lateral walls, especially in the development of the electroconvective instability. It is found that an unexpected change of the bifurcation nature occurs for certain cavity aspect ratios. We show that above the linear stability threshold for the rest state a supercritical bifurcation arises. This bifurcation takes place at a given value T(c1) of the parameter T (the electric Rayleigh number). Then, a second subcritical bifurcation occurs at a second threshold T(c2), featuring a typical hysteresis loop with an associated nonlinear criterion T(f), which is very characteristic of the Coulomb-driven convection. This behavior has been confirmed by different numerical codes based on different numerical methods. The physical mechanism which leads to this situation is analyzed and discussed. The evolution of the bifurcation diagrams with the aspect ratio of the cavity is also provided and analyzed. PMID:24329362
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi; Romeshkani, Mohsen
2015-11-01
Sub-lithospheric stress due to mantle convection can be determined from gravimetric data based on Runcorn's theory. In this paper, the satellite gradiometric data of the recent European satellite mission, the Gravity field and steady-state Ocean Circulation Explorer (GOCE) is used to determine the sub-lithospheric stress locally in Iran. The method of S function (SF) with numerical differentiation is developed further and an integral equation connecting satellite gradiometric data to SF is presented. The integral equation will be used to invert the real gradiometric data of GOCE to recover the SF. Later on, the sub-lithospheric shear stresses, which are the northward and eastward derivatives of the SF, are computed numerically. Our numerical results show that the mean squares error of the recovered SF is smaller than the values of the SF meaning that the recovery process is successful. Also, the recovered stress has a good agreement with the tectonic boundaries and active seismic points of the world stress map (WSM) database. This stress reaches amplitude of 100 MPa in the territory.
Thermocapillary flow and natural convection in a melt column with an unknown melt/solid interface
NASA Technical Reports Server (NTRS)
Lan, C. W.; Kou, Sindo
1991-01-01
A vertical melt column set up between an upper heating rod and a lower sample rod, i.e., the so-called half-zone system, is a convenient experimental tool for studying convection in the melt in floating-zone crystal growth. In order to help understand the convection observed in the melt column, a computer model has been developed to describe steady state, axisymmetrical thermocapillary flow and natural convection in the melt. The governing equations and boundary conditions are expressed in general non-orthogonal curvilinear coordinates in order to accurately treat the unknown melt/solid interface as well as all other physical boundaries in the system. The effects of key dimensionless variables on the following items are discussed: (1) convection and temperature distribution in the melt; (2) the shape of the melt/solid interface; (3) the height of the melt column. These dimensionless variables are the Grashof, Marangoni and Prandtl numbers.
Transient natural convection inside rigid drops in a liquid-liquid direct-contact heat exchanger
Hutchins, J.F.
1988-01-01
Natural convection was simulated inside spherical container and drops. The transient Navier-Stokes and energy equations were solved by employing finite-difference techniques. Pseudosteady-state natural convection inside spheres was simulated. Pseudosteady state was maintained by keeping the driving force for natural convection constant. To obtain pseudosteady state conditions, the temperature at the inside surface of the sphere was steadily increased so that the temperature difference between the surface and the center remained constant. The results were compared to experimental data found in the literature. It was found that the Nusselt number (Pr > 0.7) for pseudosteady state correlated to the Raleigh number by the following relation: Nu = 1.19Ra{sup .2215}, 10{sup 5} < Ra < 10{sup 8}. The simulation results were compared to experimental data of two other researchers who measured drop-temperature profiles in direct-contact heat-exchange columns. The simulation results demonstrate good correlation to the experimental data.
Natural convection heat transfer on two horizontal cylinders in liquid sodium
Hata, K.; Shiotsu, M.; Takeuchi, Y.
1995-09-01
Natural convection heat transfer on two horizontal 7.6 mm diameter test cylinders assembled with the ratio of the distance between each cylinder axis to the cylinder diameter, S/D, of 2 in liquid sodium was studied experimentally and theoretically. The heat transfer coefficients on the cylinder surface due to the same heat inputs ranging from 1.0 X 10{sup 7} to 1.0 x 10{sup 9} W/m{sup 3} were obtained experimentally for various setting angeles, {gamma}, between vertical direction and the plane including both of these cylinder axis over the range of zero to 90{degrees}. Theoretical equations for laminar natural convection heat transfer from the two horizontal cylinders were numerically solved for the same conditions as the experimental ones considering the temperature dependence of thermophysical properties concerned. The average Nusselt numbers, Nu, values on the Nu versus modified Rayleigh number, R{sub f}, graph. The experimental values of Nu for the upper cylinder are about 20% lower than those for the lower cylinder at {gamma} = 0{degrees} for the range of R{sub f} tested here. The value of Nu for the upper cylinder becomes higher and approaches that for the lower cylinder with the increase in {gamma} over range of 0 to 90{degrees}. The values of Nu for the lower cylinder at each {gamma} are almost in agreement with those for a single cylinder. The theoretical values of Nu on two cylinders except those for R{sub f}<4 at {gamma} = 0{degrees} are in agreement with the experimental data at each {gamma} with the deviations less than 15%. Correlations for Nu on the upper and lower cylinders were obtained as functions of S/D and {gamma} based n the theoretical solutions for the S/D ranged over 1.5 to 4.0.
Transient testing of the FFTF for decay-heat removal by natural convection
Beaver, T R; Johnson, H G; Stover, R L
1982-06-01
This paper reports on the series of transient tests performed in the FFTF as a major part of the pre-operations testing program. The structure of the transient test program was designed to verify the capability of the FFTF to safely remove decay heat by natural convection. The series culminated in a scram from full power to complete natural convection in the plant, simulating a loss of all electrical power. Test results and acceptance criteria related to the verification of safe decay heat removal are presented.
Analysis and measurements of interzonal natural convection heat transfer in buildings
Hill, D.; Kirkpatrick, A.; Burns, P.
1986-08-01
Natural convection heat transfer through doorways can be an important process by which thermal energy is transferred from one zone to another zone of a building. The topic of this paper is interzonal natural convection in a two zone and a three zone multilevel full scale building. Aperture velocity and temperature distributions are measured and the experimental interzonal mass flow rate and heat transfer are determined. A Bernoulli model is derived to predict the neutral heights, velocity profiles, and interzonal heat transfer. The measured and predicted interzonal flow rate and heat transfer are compared and found to be in good agreement.
NASA Astrophysics Data System (ADS)
Doumenc, F.; Boeck, T.; Guerrier, B.; Rossi, M.
2010-04-01
The convective instability in a plane liquid layer with time-dependent temperature profile is investigated by means of a general method suitable for linear stability analysis of an unsteady basic flow. The method is based on a non-normal approach, and predicts the onset of instability, critical wave number and time. The method is applied to transient Rayleigh-Benard-Marangoni convection due to cooling by evaporation. Numerical results as well as theoretical scalings for the critical parameters as function of the Biot number are presented for the limiting cases of purely buoyancy-driven and purely surface-tension-driven convection. Critical parameters from calculations are in good agreement with those from experiments on drying polymer solutions, where the surface cooling is induced by solvent evaporation.
Natural Convection Cooling of the Advanced Stirling Radioisotope Generator Engineering Unit
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Hill, Dennis
2011-01-01
After fueling and prior to launch, the Advanced Stirling Radioisotope Generator (ASRG) will be stored for a period of time then moved to the launch pad for integration with the space probe and mounting on the launch vehicle. During this time, which could be as long as 3 years, the ASRG will operate continuously with heat rejected from the housing and fins. Typically, the generator will be cooled by forced convection using fans. During some of the ground operations, maintaining forced convection may add significant complexity, so allowing natural convection may simplify operations. A test was conducted on the ASRG Engineering Unit (EU) to quantify temperatures and operating parameters with natural convection only and determine if the EU could be safely operated in such an environment. The results show that with natural convection cooling the ASRG EU Stirling convertor pressure vessel temperatures and other parameters had significant margins while the EU was operated for several days in this configuration. Additionally, an update is provided on ASRG EU testing at NASA Glenn Research Center, where the ASRG EU has operated for over 16,000 hr and underwent extensive testing.
Weight and water loss in the neonate in natural and forced convection.
Thompson, M H; Stothers, J K; McLellan, N J
1984-01-01
We describe a simple method of determining weight loss and hence water loss of infants in incubators. Unlike previously reported methods, it does not interfere with the microenvironment surrounding the infant. Weight loss of 16 term and 32 preterm infants was measured in both forced and natural convection. No significant increase in water loss was observed in the term infants but in the preterm infants the mean loss in natural convection was 0.85 g/kg/hour compared with 1.26 g/kg/hour in forced convection: in the most extreme situation it was doubled. This water loss represents a substantial energy loss and suggestions to minimise it are discussed. Images Fig. 1 PMID:6497432
Pebay, Cécile; Sella, Catherine; Thouin, Laurent; Amatore, Christian
2013-12-17
Mass transport at infinite regular arrays of microband electrodes was investigated theoretically and experimentally in unstirred solutions. Even in the absence of forced hydrodynamics, natural convection limits the convection-free domain up to which diffusion layers may expand. Hence, several regimes of mass transport may take place according to the electrode size, gap between electrodes, time scale of the experiment, and amplitude of natural convection. They were identified through simulation by establishing zone diagrams that allowed all relative contributions to mass transport to be delineated. Dynamic and steady-state regimes were compared to those achieved at single microband electrodes. These results were validated experimentally by monitoring the chronoamperometric responses of arrays with different ratios of electrode width to gap distance and by mapping steady-state concentration profiles above their surface through scanning electrochemical microscopy. PMID:24283775
Levin, A.E. ); Montgomery, B.H. )
1990-01-01
The Thermal-Hydraulic Out of Reactor Safety (THORS) Program at Oak Ridge National Laboratory (ORNL) had as its objective the testing of simulated, electrically heated liquid metal reactor (LMR) fuel assemblies in an engineering-scale, sodium loop. Between 1971 and 1985, the THORS Program operated 11 simulated fuel bundles in conditions covering a wide range of normal and off-normal conditions. The last test series in the Program, THORS-SHRS Assembly 1, employed two parallel, 19-pin, full-length, simulated fuel assemblies of a design consistent with the large LMR (Large Scale Prototype Breeder -- LSPB) under development at that time. These bundles were installed in the THORS Facility, allowing single- and parallel-bundle testing in thermal-hydraulic conditions up to and including sodium boiling and dryout. As the name SHRS (Shutdown Heat Removal System) implies, a major objective of the program was testing under conditions expected during low-power reactor operation, including low-flow forced convection, natural convection, and forced-to-natural convection transition at various powers. The THORS-SHRS Assembly 1 experimental program was divided up into four phases. Phase 1 included preliminary and shakedown tests, including the collection of baseline steady-state thermal-hydraulic data. Phase 2 comprised natural convection testing. Forced convection testing was conducted in Phase 3. The final phase of testing included forced-to-natural convection transition tests. Phases 1, 2, and 3 have been discussed in previous papers. The fourth phase is described in this paper. 3 refs., 2 figs.
NASA Astrophysics Data System (ADS)
Bayani Cardenas, M.; Lagmay, Alfredo Mahar F.; Andrews, Benjamin J.; Rodolfo, Raymond S.; Cabria, Hillel B.; Zamora, Peter B.; Lapus, Mark R.
2012-01-01
Thermal springs are ubiquitous features whose underground kinematic structure is mostly unknown but are typically thought to originate from deep sources. We documented a type of thermal springs at the banks of a volcanic lake that are discharge zones of hydrothermal convection cells circulating groundwater within the near shore environment. The convection captures lake water through the lakebed, mixes it with deeper groundwater at velocities of 100s of m d-1, then returns the water to the lake via the spring. The convection cell is flushed in a few hours and turns over the lake's volume in a few days. Most volcanic lakes and other relatively cool surface water bodies in areas of elevated geothermal heat fluxes meet the conditions for the occurrence of local hydrothermal circulation of groundwater. The type of spring we studied, the terrestrial version of black smokers, is likely present but perhaps unrecognized at many areas.
NASA Astrophysics Data System (ADS)
Meng, Xiangyin; Li, Yan
2015-03-01
Natural heat convection of water-based alumina (Al2O3/water) nanofluids (with volume fraction 1% and 4%) in a horizontal cylinder is numerically investigated. The whole three-dimensional computational fluid dynamics (CFD) procedure is performed in a completely open-source way. Blender, enGrid, OpenFOAM and ParaView are employed for geometry creation, mesh generation, case simulation and post process, respectively. Original solver `buoyantBoussinesqSimpleFoam' is selected for the present study, and a temperature-dependent solver `buoyantBoussinesqSimpleTDFoam' is developed to ensure the simulation is more realistic. The two solvers are used for same cases and compared to corresponding experimental results. The flow regime in these cases is laminar (Reynolds number is 150) and the Rayleigh number range is 0.7 × 107 ~ 5 × 107. By comparison, the average natural Nusselt numbers of water and Al2O3/water nanofluids are found to increase with the Rayleigh number. At the same Rayleigh number, the Nusselt number is found to decrease with nanofluid volume fraction. The temperature-dependent solver is found better for water and 1% Al2O3/water nanofluid cases, while the original solver is better for 4% Al2O3/water nanofluid cases. Furthermore, due to strong three-dimensional flow features in the horizontal cylinder, three-dimensional CFD simulation is recommended instead of two-dimensional simplifications.
Effects of electrode location on EHD-enhanced natural convection in an enclosure
Liu, K.S.; Lai, F.C.
1997-07-01
Numerical results are presented for natural convection in an enclosure under the influence of electric field. The geometry considered is a two-dimensional cavity with an aspect ratio of 5. The electrical field is generated by positive corona from an electrode wire charged with a high dc voltage. Three wire locations have been considered, which result in symmetric and non-symmetric electric fields. Numerical calculations have covered a wide range of parameters (i.e., V{sub o} = 12, 15 and 18 kV, 10{sup 3} {le} Ra {le} 10{sup 6}). In the presence of electric field, the flow and temperature fields may reach a steady, steady-periodic or non-periodic state. For low Rayleigh numbers, it is observed that the flow and temperature fields are basically oscillatory in nature. When the Rayleigh number is sufficiently increased, a steady state may be reached. Due to the oscillatory flows, there is a significant increase in heat transfer. It is found that heat transfer enhancement increases with the applied voltage but decreases with the Rayleigh number. In addition, it is found that heat transfer enhancement can be maximized by placing the electrode toward the leading edge of the heat transfer surface, that is, to perturb the thermal boundary layer as early as it begins to develop.
Pressure transfer function of a JT15D nozzle due to acoustic and convected entropy fluctuations
NASA Technical Reports Server (NTRS)
Miles, J. H.
1982-01-01
An acoustic transmission matrix analysis of sound propagation in a variable area duct with and without flow is extended to include convected entropy fluctuations. The boundary conditions used in the analysis are a transfer function relating entropy and pressure at the nozzle inlet and the nozzle exit impedance. The nozzle pressure transfer function calculated is compared with JT15D turbofan engine nozzle data. The one dimensional theory for sound propagation in a variable area nozzle with flow but without convected entropy is good at the low engine speeds where the nozzle exit Mach number is low (M=0.2) and the duct exit impedance model is good. The effect of convected entropy appears to be so negligible that it is obscured by the inaccuracy of the nozzle exit impedance model, the lack of information on the magnitude of the convected entropy and its phase relationship with the pressure, and the scatter in the data. An improved duct exit impedance model is required at the higher engine speeds where the nozzle exit Mach number is high (M=0.56) and at low frequencies (below 120 Hz).
Frequency Shifts of Resonant Modes of the Sun due to Near-Surface Convective Scattering
NASA Astrophysics Data System (ADS)
Bhattacharya, J.; Hanasoge, S.; Antia, H. M.
2015-06-01
Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt-Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.
NASA Astrophysics Data System (ADS)
Danaila, Ionut; Moglan, Raluca; Hecht, Frédéric; Le Masson, Stéphane
2014-10-01
We present a new numerical system using finite elements with mesh adaptivity for the simulation of solid-liquid phase change systems. In the liquid phase, the natural convection flow is simulated by solving the incompressible Navier-Stokes equations with Boussinesq approximation. A variable viscosity model allows the velocity to progressively vanish in the solid phase, through an intermediate mushy region. The phase change is modeled by introducing an implicit enthalpy source term in the heat equation. The final system of equations describing the liquid-solid system by a single domain approach is solved using a Newton iterative algorithm. The space discretization is based on a P2-P1 Taylor-Hood finite elements and mesh adaptivity by metric control is used to accurately track the solid-liquid interface or the density inversion interface for water flows. The numerical method is validated against classical benchmarks that progressively add strong non-linearities in the system of equations: natural convection of air, natural convection of water, melting of a phase-change material and water freezing. Very good agreement with experimental data is obtained for each test case, proving the capability of the method to deal with both melting and solidification problems with convection. The presented numerical method is easy to implement using FreeFem++ software using a syntax close to the mathematical formulation.
Campbell, A N
2015-07-14
When any exothermic reaction proceeds in an unstirred vessel, natural convection may develop. This flow can significantly alter the heat transfer from the reacting fluid to the environment and hence alter the balance between heat generation and heat loss, which determines whether or not the system will explode. Previous studies of the effects of natural convection on thermal explosion have considered reactors where the temperature of the wall of the reactor is held constant. This implies that there is infinitely fast heat transfer between the wall of the vessel and the surrounding environment. In reality, there will be heat transfer resistances associated with conduction through the wall of the reactor and from the wall to the environment. The existence of these additional heat transfer resistances may alter the rate of heat transfer from the hot region of the reactor to the environment and hence the stability of the reaction. This work presents an initial numerical study of thermal explosion in a spherical reactor under the influence of natural convection and external heat transfer, which neglects the effects of consumption of reactant. Simulations were performed to examine the changing behaviour of the system as the intensity of convection and the importance of external heat transfer were varied. It was shown that the temporal development of the maximum temperature in the reactor was qualitatively similar as the Rayleigh and Biot numbers were varied. Importantly, the maximum temperature in a stable system was shown to vary with Biot number. This has important consequences for the definitions used for thermal explosion in systems with significant reactant consumption. Additionally, regions of parameter space where explosions occurred were identified. It was shown that reducing the Biot number increases the likelihood of explosion and reduces the stabilising effect of natural convection. Finally, the results of the simulations were shown to compare favourably with
Effects of finiteness on the thermo-fluid-dynamics of natural convection above horizontal plates
NASA Astrophysics Data System (ADS)
Guha, Abhijit; Sengupta, Sayantan
2016-06-01
A rigorous and systematic computational and theoretical study, the first of its kind, for the laminar natural convective flow above rectangular horizontal surfaces of various aspect ratios ϕ (from 1 to ∞) is presented. Two-dimensional computational fluid dynamic (CFD) simulations (for ϕ → ∞) and three-dimensional CFD simulations (for 1 ≤ ϕ < ∞) are performed to establish and elucidate the role of finiteness of the horizontal planform on the thermo-fluid-dynamics of natural convection. Great care is taken here to ensure grid independence and domain independence of the presented solutions. The results of the CFD simulations are compared with experimental data and similarity theory to understand how the existing simplified results fit, in the appropriate limiting cases, with the complex three-dimensional solutions revealed here. The present computational study establishes the region of a high-aspect-ratio planform over which the results of the similarity theory are approximately valid, the extent of this region depending on the Grashof number. There is, however, a region near the edge of the plate and another region near the centre of the plate (where a plume forms) in which the similarity theory results do not apply. The sizes of these non-compliance zones decrease as the Grashof number is increased. The present study also shows that the similarity velocity profile is not strictly obtained at any location over the plate because of the entrainment effect of the central plume. The 3-D CFD simulations of the present paper are coordinated to clearly reveal the separate and combined effects of three important aspects of finiteness: the presence of leading edges, the presence of planform centre, and the presence of physical corners in the planform. It is realised that the finiteness due to the presence of physical corners in the planform arises only for a finite value of ϕ in the case of 3-D CFD simulations (and not in 2-D CFD simulations or similarity theory
Luo, Kang; Yi, Hong-Liang Tan, He-Ping
2014-05-15
Transitions and bifurcations of transient natural convection in a horizontal annulus with radiatively participating medium are numerically investigated using the coupled lattice Boltzmann and direct collocation meshless (LB-DCM) method. As a hybrid approach based on a common multi-scale Boltzmann-type model, the LB-DCM scheme is easy to implement and has an excellent flexibility in dealing with the irregular geometries. Separate particle distribution functions in the LBM are used to calculate the density field, the velocity field and the thermal field. In the radiatively participating medium, the contribution of thermal radiation to natural convection must be taken into account, and it is considered as a radiative term in the energy equation that is solved by the meshless method with moving least-squares (MLS) approximation. The occurrence of various instabilities and bifurcative phenomena is analyzed for different Rayleigh number Ra and Prandtl number Pr with and without radiation. Then, bifurcation diagrams and dual solutions are presented for relevant radiative parameters, such as convection-radiation parameter Rc and optical thickness τ. Numerical results show that the presence of volumetric radiation changes the static temperature gradient of the fluid, and generally results in an increase in the flow critical value. Besides, the existence and development of dual solutions of transient convection in the presence of radiation are greatly affected by radiative parameters. Finally, the advantage of LB-DCM combination is discussed, and the potential benefits of applying the LB-DCM method to multi-field coupling problems are demonstrated.
Critical heat flux in natural convection cooled TRIGA reactors with hexagonal bundle
Yang, J.; Avery, M.; De Angelis, M.; Anderson, M.; Corradini, M.; Feldman, E. E.; Dunn, F. E.; Matos, J. E.
2012-07-01
A three-rod bundle Critical Heat Flux (CHF) study at low flow, low pressure, and natural convection condition has been conducted, simulating TRIGA reactors with the hexagonally configured core. The test section is a custom-made trefoil shape tube with three identical fuel pin heater rods located symmetrically inside. The full scale fuel rod is electrically heated with a chopped-cosine axial power profile. CHF experiments were carried out with the following conditions: inlet water subcooling from 30 K to 95 K; pressure from 110 kPa to 230 kPa; mass flux up to 150 kg/m{sup 2}s. About 50 CHF data points were collected and compared with a few existing CHF correlations whose application ranges are close to the testing conditions. Some tests were performed with the forced convection to identify the potential difference between the CHF under the natural convection and forced convection. The relevance of the CHF to test parameters is investigated. (authors)
Natural convection in tunnels at Yucca Mountain and impact on drift seepage
Halecky, N.; Birkholzer, J.T.; Peterson, P.
2010-04-15
The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock in the drift center to the drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water-induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity values, with reduced local seepage, form a more desirable waste package environment.
NASA Astrophysics Data System (ADS)
Paul, Titan C.; Morshed, A. K. M. M.; Khan, Jamil A.
2016-07-01
The paper presents the numerical simulation of natural convection heat transfer of Al2O3 nanoparticle enhanced N-butyl-N-methylpyrrolidinium bis{trifluoromethyl)sulfonyl} imide ([C4mpyrr][NTf2]) ionic liquid. The simulation was performed in three different enclosures (aspect ratio: 0.5, 1, and 1.5) with heated from below. The temperature dependent thermophysical properties of base ionic liquids (ILs) and nanoparticle enhanced ionic liquids (NEILs) were applied in the numerical simulation. The numerical results were compared with the experimental result. The numerical results show that at a certain Rayleigh number NEILs has a lower Nusselt number compared to the base IL which are consistent with the experimental results. But the percentage of degradation is much less on the numerical results compared to the experimental. However the numerical results match well with the predicted model of using thermophysical properties of NEILs. From these observations it can be concluded that the extra degradation in the experimental results may occur due the particle-fluid interaction, clustering and sedimentation of nanoparticles.
Uvarov, A. V.; Sakharova, N. A.; Vinnichenko, N. A.
2011-12-15
The parameters of the positive column of a glow discharge in neon are calculated with allowance for the induced hydrodynamic motion. It is shown that natural convection in the pressure range of {approx}0.1 atm significantly affects the profiles of the parameters of the positive column and its current-voltage characteristic. The convection arising at large deposited energies improves heat removal, due to which the temperature in the central region of the discharge becomes lower than that calculated from the heat conduction equation. As a result, the current-voltage characteristic is shifted. With allowance for convection, the current-voltage characteristic changes at currents much lower than the critical current at which a transition into the constricted state is observed. This change is uniquely related to the Rayleigh number in the discharge. Thus, a simplified analysis of thermal conduction and diffusion, even with detailed account of kinetic processes occurring in the positive column, does not allow one to accurately calculate the current-voltage characteristic and other discharge parameters at intermediate gas pressures.
Generation of coronal electric currents due to convective motions on the photosphere
NASA Technical Reports Server (NTRS)
Sakurai, T.; Levine, R. H.
1981-01-01
Generation of electric currents in a magnetized plasma overlying a dense convective layer is studied, assuming that the magnetic field perturbation is small and satisfies the force-free equation. Currents are produced by rotational motions on the boundary in the case of a uniform equilibrium field. In a simple two-dimensional bipolar configuration, however, both irrotational and incompressible motions give rise to currents, and the current density has a peak at the magnetic neutral line. Scaling laws for the current density as well as for the stored magnetic energy are derived, and the possibility of heating the solar corona through the dissipation of coronal currents generated in this way is discussed.
On the convectively unstable nature of optimal streaks in boundary layers
NASA Astrophysics Data System (ADS)
Brandt, Luca; Cossu, Carlo; Chomaz, Jean-Marc; Huerre, Patrick; Henningson, Dan S.
2003-06-01
The objective of the study is to determine the absolute/convective nature of the secondary instability experienced by finite-amplitude streaks in the flat-plate boundary layer. A family of parallel streaky base flows is defined by extracting velocity profiles from direct numerical simulations of nonlinearly saturated optimal streaks. The computed impulse response of the streaky base flows is then determined as a function of streak amplitude and streamwise station. Both the temporal and spatio-temporal instability properties are directly retrieved from the impulse response wave packet, without solving the dispersion relation or applying the pinching point criterion in the complex wavenumber plane. The instability of optimal streaks is found to be unambiguously convective for all streak amplitudes and streamwise stations. It is more convective than the Blasius boundary layer in the absence of streaks; the trailing edge-velocity of a Tollmien Schlichting wave packet in the Blasius boundary layer is around 35% of the free-stream velocity, while that of the wave packet riding on the streaky base flow is around 70%. This is because the streak instability is primarily induced by the spanwise shear and the associated Reynolds stress production term is located further away from the wall, in a larger velocity region, than for the Tollmien Schlichting instability. The streak impulse response consists of the sinuous mode of instability triggered by the spanwise wake-like profile, as confirmed by comparing the numerical results with the absolute/convective instability properties of the family of two-dimensional wakes introduced by Monkewitz (1988). The convective nature of the secondary streak instability implies that the type of bypass transition studied here involves streaks that behave as amplifiers of external noise.
Dudek, D.; Fletcher, T.H.
1987-02-01
When a heated solid sphere is introduced into an ambient fluid, a natural convective flow occurs which results in a drag force on the sphere. This study involves the numerical calculation of both the steady-state and the transient natural convective drag force around spheres at low Grashof numbers. Numerical techniques are taken from Geoola and Cornish. An empirical expression is suggested for the total drag coefficient for Grashof numbers ranging from 4 x 10/sup -4/ to 0.5 and Prandtl number = 0.72: log C/sub DT/ = 1.25 + 0.31 log Gr - 0.097(log Gr)/sup 2/. The dimensionless time required to reach 90% of the steady-state drag force can be approximated by the second-order polynomial: log t/sub 90%/ = 1.32 - log Gr - 0.11(Gr)/sup 2/.
Tzeng, P.Y.; Soong, C.Y.; Sheu, T.S.
1997-02-07
The present work is concerned with a numerical investigation of transient laminar natural convection and the associated flow-mode transition in a two-dimensional rectangular enclosure. Navier-Stokes/Boussinesq equations for fluid flow and energy balance are solved by using the SIMPLE-C algorithm. Air of Pr = 0.71 in a differentially heated enclose of length-to-height aspect ratio As = 4 and at Ra = 5,000 is chosen as the flow model to examine the influences of the inclination. Calculations of time accuracy are performed to investigate the transient procedure of the flow-mode transition with increasing or decreasing inclination. The present results reveal that, at some critical situations, natural convection in inclined enclosures is very sensitive to the change in tilt angle, and the associated heat transfer rates are closely related to the correspondent cellular flow patterns.
Scaling of the turbulent natural convection flow in a heated square cavity
NASA Astrophysics Data System (ADS)
Henkes, R. A. W. M.; Hoogendoorn, C. J.
1994-05-01
By numerically solving the Reynolds equations for air and water in a square cavity, with differentially heated vertical walls, at Rayleigh numbers up to 10(exp 20) the scalings of the turbulent natural convection flow are derived. Turbulence is modeled by the standard k-epsilon model and by the low-Reynolds-number k-epsilon models of Chien and of Jones and Launder. Both the scalings with respect to the Rayleigh number (based on the cavity size H) and with respect to the local height (y/H) are considered. The scalings are derived for the inner layer, outer layer, and core region. The Rayleigh number scalings are almost the same as the scalings for the natural convection boundary layer along a hot vertical plate. The scalings found are almost independent of the k-epsilon model used.
Meng, Xiangyin; Li, Yan
2015-01-01
Natural heat convection of water-based alumina (Al2O3/water) nanofluids (with volume fraction 1% and 4%) in a horizontal cylinder is numerically investigated. The whole three-dimensional computational fluid dynamics (CFD) procedure is performed in a completely open-source way. Blender, enGrid, OpenFOAM and ParaView are employed for geometry creation, mesh generation, case simulation and post process, respectively. Original solver 'buoyantBoussinesqSimpleFoam' is selected for the present study, and a temperature-dependent solver 'buoyantBoussinesqSimpleTDFoam' is developed to ensure the simulation is more realistic. The two solvers are used for same cases and compared to corresponding experimental results. The flow regime in these cases is laminar (Reynolds number is 150) and the Rayleigh number range is 0.7 × 10(7) ~ 5 × 10(7). By comparison, the average natural Nusselt numbers of water and Al2O3/water nanofluids are found to increase with the Rayleigh number. At the same Rayleigh number, the Nusselt number is found to decrease with nanofluid volume fraction. The temperature-dependent solver is found better for water and 1% Al2O3/water nanofluid cases, while the original solver is better for 4% Al2O3/water nanofluid cases. Furthermore, due to strong three-dimensional flow features in the horizontal cylinder, three-dimensional CFD simulation is recommended instead of two-dimensional simplifications. PMID:25852431
Calculation of Post-Closure Natural Convection Heat and Mass Transfer in Yucca Mountain Drifts
S. Webb; M. Itamura
2004-03-16
Natural convection heat and mass transfer under post-closure conditions has been calculated for Yucca Mountain drifts using the computational fluid dynamics (CFD) code FLUENT. Calculations have been performed for 300, 1000, 3000, and 10,000 years after repository closure. Effective dispersion coefficients that can be used to calculate mass transfer in the drift have been evaluated as a function of time and boundary temperature tilt.
CFD numerical simulation of air natural convection over a heated cylindrical surface
NASA Astrophysics Data System (ADS)
Flori, M.; Vîlceanu, L.
2015-06-01
In this study a CFD numerical simulation is used to describe the fluid flow and heat transfer in air surrounding a heated horizontal cylinder. The model is created in 2D space dimension involving a finite element solver of Navier-Stokes equations. As natural convection phenomenon is induced by a variable fluid density field with temperature rising, the Boussinesq approximation was coupled to the model.
Simulation of natural convection in a rectangular loop using finite elements
Pepper, D W; Hamm, L L; Kehoe, A B
1984-01-01
A two-dimensional finite-element analysis of natural convection in a rectangular loop is presented. A psi-omega formulation of the Boussinesque approximation to the Navier-Stokes equation is solved by the false transient technique. Streamlines and isotherms at Ra = 10/sup 4/ are shown for three different modes of heating. The results indicate that corner effects should be considered when modeling flow patterns in thermosyphons.
Delmas, A.A.; Wilkes, K.E.
1992-04-01
A two-dimensional code for solving equations of convective heat transfer in porous media is used to analyze heat transfer by conduction and convection in the attic insulation configuration. The particular cases treated correspond to loose-fill fiberglass insulation, which is characterized by high porosity and air permeability. The effects of natural convection on the thermal performance of the insulation are analyzed for various densities, permeabilities, and thicknesses of insulation. With convection increasing the total heat transfer through the insulation, the thermal resistance was found to decrease as the temperature difference across the insulating material increases. The predicted results for the thermal resistance are compared with data obtained in the large-scale climate simulator at the Roof Research Center using the attic test module, where the same phenomenon has already been observed. The way the wood joists within the insulation influence the start of convection is studied for differing thermophysical and dynamic properties of the insulating material. The presence of wood joists induces convection at a lower temperature difference.
NASA Astrophysics Data System (ADS)
Bower, S. M.; Saylor, J. R.
2009-11-01
Presented are the results from an experimental investigation of the effects of surface conditions at an air/water interface on transport phenomena within the context of natural convection-driven evaporation. Experiments were conducted using tanks of heated water under several different surface conditions: 1) contamination with an oleyl alcohol monolayer, 2) contamination with a stearic acid monolayer, and 3) ``clean'' or surfactant-free. These surface conditions create the following hydrodynamic boundary conditions: 1) constant elasticity, 2) no-slip, and 3) shear-free. The effect of these boundary conditions on evaporation and air-side natural convection heat transfer is presented via the power law relationships between the Sherwood and Rayleigh numbers (for evaporation) and the Nusselt and Rayleigh numbers (for natural convection heat transfer). Additionally, infrared imagery of the water surface was collected during these experiments, yielding qualitative information on the effect of these boundary conditions on the flow near the interface. Few studies exist in which the effects of surface conditions on interfacial heat and mass transfer are investigated, making this work particularly relevant.
Emergency cooling down of fast-neutron reactors by natural convection (a review)
NASA Astrophysics Data System (ADS)
Zhukov, A. V.; Sorokin, A. P.; Kuzina, Yu. A.
2013-05-01
Various methods for emergency cooling down of fast-neutron reactors by natural convection are discussed. The effectiveness of using natural convection for these purposes is demonstrated. The operating principles of different passive decay heat removal systems intended for cooling down a reactor are explained. Experimental investigations carried out in Russia for substantiating the removal of heat in cooling down fast-neutron reactors are described. These investigations include experimental works on studying thermal hydraulics in small-scale simulation facilities containing the characteristic components of a reactor (reactor core elements, above-core structure, immersed and intermediate heat exchangers, pumps, etc.). It is pointed out that a system that uses leaks of coolant between fuel assemblies holds promise for fast-neutron reactor cooldown purposes. Foreign investigations on this problem area are considered with making special emphasis on the RAMONA and NEPTUN water models. A conclusion is drawn about the possibility of using natural convection as the main method for passively removing heat in cooling down fast-neutron reactors, which is confirmed experimentally both in Russia and abroad.
The Prediction of Noise Due to Jet Turbulence Convecting Past Flight Vehicle Trailing Edges
NASA Technical Reports Server (NTRS)
Miller, Steven A. E.
2014-01-01
High intensity acoustic radiation occurs when turbulence convects past airframe trailing edges. A mathematical model is developed to predict this acoustic radiation. The model is dependent on the local flow and turbulent statistics above the trailing edge of the flight vehicle airframe. These quantities are dependent on the jet and flight vehicle Mach numbers and jet temperature. A term in the model approximates the turbulent statistics of single-stream heated jet flows and is developed based upon measurement. The developed model is valid for a wide range of jet Mach numbers, jet temperature ratios, and flight vehicle Mach numbers. The model predicts traditional trailing edge noise if the jet is not interacting with the airframe. Predictions of mean-flow quantities and the cross-spectrum of static pressure near the airframe trailing edge are compared with measurement. Finally, predictions of acoustic intensity are compared with measurement and the model is shown to accurately capture the phenomenon.
CYCLIC MAGNETIC ACTIVITY DUE TO TURBULENT CONVECTION IN SPHERICAL WEDGE GEOMETRY
Kaepylae, Petri J.; Mantere, Maarit J.; Brandenburg, Axel
2012-08-10
We report on simulations of turbulent, rotating, stratified, magnetohydrodynamic convection in spherical wedge geometry. An initially small-scale, random, weak-amplitude magnetic field is amplified by several orders of magnitude in the course of the simulation to form oscillatory large-scale fields in the saturated state of the dynamo. The differential rotation is solar-like (fast equator), but neither coherent meridional poleward circulation nor near-surface shear layer develop in these runs. In addition to a poleward branch of magnetic activity beyond 50 Degree-Sign latitude, we find for the first time a pronounced equatorward branch at around 20 Degree-Sign latitude, reminiscent of the solar cycle.
Aksenova, A.E.; Chudanov, V.V.; Strizhov, V.F.; Vabishchevich, P.N.
1995-09-01
Unsteady natural convection of a heat-generating fluid with phase transitions in the enclosures of a square section with isothermal rigid walls is investigated numerically for a wide range of dimensionless parameters. The quasisteady state solutions of conjugate heat and mass transfer problem are compared with available experimental results. Correlation relations for heat flux distributions at the domain boundaries depending on Rayleigh and Ostrogradskii numbers are obtained. It is shown that generally heat transfer is governed both by natural circulation and crust formation phenomena. Results of this paper may be used for analysis of experiments with prototypic core materials.
Finite element, stream function-vorticity solution of steady laminar natural convection
NASA Astrophysics Data System (ADS)
Stevens, W. N. R.
1982-12-01
Stream function-vorticity finite element solution of two-dimensional incompressible viscous flow and natural convection is considered. Steady state solutions of the natural convection problem have been obtained for a wide range of the two independent parameters. Use of boundary vorticity formulae or iterative satisfaction of the no-slip boundary condition is avoided by application of the finite element discretization and a displacement of the appropriate discrete equations. Solution is obtained by Newton-Raphson iteration of all equations simultaneously. The method then appears to give a steady solution whenever the flow is physically steady, but it does not give a steady solution when the flow is physically unsteady. In particular, no form of asymmetric differencing is required. The method offers a degree of economy over primitive variable formulations. Physical results are given for the square cavity convection problem. The paper also reports on earlier work in which the most commonly used boundary vorticity formula was found not to satisfy the no-slip condition, and in which segregated solution procedures were attempted with very minimal success.
Triplett, C.E.
1996-12-01
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.
Shitzer, Avraham
2006-03-01
The wind-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to wind. The index provides a simple and practical means for assessing the thermal effects of wind on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, wind speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state wind-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published "new" WCETs is presented. The variability of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a "gold standard" for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized. PMID:16397760
NASA Astrophysics Data System (ADS)
Shitzer, Avraham
2006-03-01
The wind-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to wind. The index provides a simple and practical means for assessing the thermal effects of wind on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, wind speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state wind-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published “new” WCETs is presented. The variability of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a “gold standard” for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized.
NASA Astrophysics Data System (ADS)
Manson, Steven James
The Pantex facility near Amarillo, Texas, is the only U.S. site charged with the disassembly of nuclear weapons. Concerns over the safety of weapons handling procedures are now being revisited, due to the enhanced safety requirements of the peace time disassembly effort. This research is a detailed examination of one possible nuclear weapons-related accident. In this hypothetical accident, a chemical explosion equivalent to over 50 kilos of TNT destroys unassembled nuclear weapons components, and may potentially result in some amount of plutonium reaching the environment. Previous attempts to simulate this accident have centered around the one-dimensional node and branch approach of the MELCOR code. This approach may be adequate in calculating pressure driven flow through narrow rampways and leak sites, however, its one-dimensionality does not allow it to accurately calculate the multi-dimensional aspects of heat transfer. This research effort uses an axi-symmetric stream function---vorticity formulation of the Navier-Stokes equations to model a Pantex cell building following a successfully contained chemical explosion. This allows direct calculation of the heat transfer within the cell room during the transient. The tool that was developed to perform this analysis is called PET (Post-Explosion Transient), and it simulates natural convection thermal hydraulics taking into account temperature-related fluid density differences, variable fluid transport properties, and a non-linear equation of state. Results obtained using the PET code indicate that previous analyses by other researchers using the MELCOR code have been overly conservative in estimating the effects of cell room heat transfer. An increase in the calculated heat transfer coefficient of approximately 20% is indicated. This has been demonstrated to significantly decrease the projected consequences of the hypothetical accident.
NASA Astrophysics Data System (ADS)
Marneni, Narahari; Tippa, Sowmya; Pendyala, Rajashekhar
2015-12-01
Analytical investigation of the unsteady natural convection flow along an infinite vertical plate embedded in a porous medium subjected to a ramped temperature boundary condition has been performed in the presence of magnetic field, thermal radiation, heat generation or absorption, chemical reaction and Dufour effect. The governing equations for momentum, energy and concentration have been solved using the Laplace transform technique. The closed-form exact solutions for the velocity, temperature and concentration fields as well as the skin-friction, Nusselt and Sherwood numbers are obtained without any restrictions. The influence of pertinent parameters on the fluid velocity, temperature, skin-friction and Nusselt number have been discussed in detailed through graphs. The natural convection due to ramped wall temperature (RWT) has also been compared with that of the constant wall temperature (CWT). It is observed that the fluid velocity and temperature profiles are greater in case of CWT than the case of RWT. Also it is noticed that the flow accelerates with increasing values of heat source parameter, permeability parameter and Dufour number while the flow retardation is observed with increasing values of radiation parameter, magnetic field parameter and Schmidt number.
Melting-induced stratification above the Earth's inner core due to convective translation.
Alboussière, Thierry; Deguen, Renaud; Melzani, Mickaël
2010-08-01
In addition to its global North-South anisotropy, there are two other enigmatic seismological observations related to the Earth's inner core: asymmetry between its eastern and western hemispheres and the presence of a layer of reduced seismic velocity at the base of the outer core. This 250-km-thick layer has been interpreted as a stably stratified region of reduced composition in light elements. Here we show that this layer can be generated by simultaneous crystallization and melting at the surface of the inner core, and that a translational mode of thermal convection in the inner core can produce enough melting and crystallization on each hemisphere respectively for the dense layer to develop. The dynamical model we propose introduces a clear asymmetry between a melting and a crystallizing hemisphere which forms a basis for also explaining the East-West asymmetry. The present translation rate is found to be typically 100 million years for the inner core to be entirely renewed, which is one to two orders of magnitude faster than the growth rate of the inner core's radius. The resulting strong asymmetry of buoyancy flux caused by light elements is anticipated to have an impact on the dynamics of the outer core and on the geodynamo. PMID:20686572
Air-Water Gas Exchange in Wetland Water Columns Due To Wind and Thermal Convection
NASA Astrophysics Data System (ADS)
Poindexter, C.; Variano, E. A.
2011-12-01
The goal of this work is to provide a parameterization of the air-water gas transfer rate in wetlands, and do so in terms of easily measured environmental variables. This parameterization is intended to support biogeochemical modeling in wetlands by providing an interfacial flux of key importance. Our approach uses laboratory experiments describe the oxygen transfer across an air-water interface in a model wetland. The oxygen transfer is sensitive to the externally imposed wind, vegetation characteristics, and vertical thermal convection. We vary these systematically, determining the gas transfer (or "piston") velocity that describes interfacial gas flux. We measure velocity vector fields near the air-water interface using particle image velocimetry, and use these measurements to help explain the mechanisms behind the measured trends in oxygen transfer. The explanatory power of these measurements includes the relationship between plant geometry and surface divergence. We explore the potential impact of our results on wetland modeling and management, for issues such as carbon sequestration and methane emission.
Numerical modeling of crystal growth on a centrifuge for unstable natural convection configurations
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Downey, J. P.; Curreri, P. A.; Jones, J. C.
1993-01-01
The fluid mechanics associated with crystal growth processes on centrifuges is modeled using 2D and 3D models. Two-dimensional calculations show that flow bifurcations exist in such crystal growth configurations where the ampoule is oriented in the same direction as the resultant gravity vector and a temperature gradient is imposed on the melt. A scaling analysis is formulated to predict the flow transition point from the natural convection dominated regime to the Coriolis force dominated regime. Results of 3D calculations are presented for two thermal configurations of the crystal growth cell: top heated and bottom heated with respect to the centrifugal acceleration. In the top heated configuration, a substantial reduction in the convection intensity within the melt can be attained by centrifuge operations, and close to steady diffusion-limited thermal conditions can be achieved over a narrow range of the imposed microgravity level. In the bottom heated configuration the Coriolis force has a stabilizing effect on fluid motion by delaying the onset of unsteady convection.
NASA Astrophysics Data System (ADS)
Ahmed, Mahmoud; Eslamian, Morteza
2015-07-01
Laminar natural convection in differentially heated ( β = 0°, where β is the inclination angle), inclined ( β = 30° and 60°), and bottom-heated ( β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number.
Ahmed, Mahmoud; Eslamian, Morteza
2015-12-01
Laminar natural convection in differentially heated (β = 0°, where β is the inclination angle), inclined (β = 30° and 60°), and bottom-heated (β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number. PMID:26183389
An analysis of natural convection film boiling from spheres using the spherical coordinate system
Tso, C.P.; Leong, K.C.; Tan, H.S.
1995-11-01
The problem of natural convection film boiling on a sphere was analyzed by solving the momentum and energy equations in spherical coordinates. These solutions were compared to the analytical model of Frederking and Clark based on the Cartesian coordinate system, empirical correlation of Frederking and Clark and recent experimental data of Tso et al. for boiling in various refrigerants and liquid nitrogen. For the average Nusselt number, good agreement with Frederking and Clark`s model was obtained. Results using spherical coordinates yield a limiting value of 2 for the average Nusselt number near a modified Rayleigh number of 1 which could not be extracted from Frederking and Clark`s model.
NASA Astrophysics Data System (ADS)
Raju, S. Suresh Kumar; Narahari, M.; Pendyala, Rajashekhar
2014-10-01
In this paper, a numerical solution of the unsteady two-dimensional natural convection along a vertical plate in the presence of Soret and chemical reaction effects is presented. The governing non-dimensional coupled non-linear partial differential equations have been evaluated by using an implicit finite-difference technique of Crank-Nicolson scheme. Numerical predictions for the velocity, concentration, local and average skin-friction and Sherwood number for distinct values of chemical reaction parameter and Soret number are plotted graphically. It is found that the fluid velocity and concentration decreases while increasing chemical reaction parameter whereas an increase in the Soret number increases the fluid velocity and concentration.
Effect of free surface shape on combined thermocapillary and natural convection
NASA Technical Reports Server (NTRS)
Kamotani, Yasuhiro; Platt, Jonathan
1992-01-01
Combined thermocapillary and natural convection in an open square cavity with differentially-heated side walls is studied numerically as well as experimentally. The test fluid is silicone oil with Prandtl number of 105. The shape of fluid-free surface is made either flat or curved to study its effect on the flow. A finite difference scheme to deal with a curved free surface is developed. The experimental results shown agree with the numerical results. With the curved-free surface, the flow and local heat transfer rate are reduced in the corner regions, and a sharp peak in heat transfer rate at the top edge of the cold wall disappears.
Passive decay heat removal by natural air convection after severe accidents
Erbacher, F.J.; Neitzel, H.J.; Cheng, X.
1995-09-01
The composite containment proposed by the Research Center Karlsruhe and the Technical University Karlsruhe is to cope with severe accidents. It pursues the goal to restrict the consequences of core meltdown accidents to the reactor plant. One essential of this new containment concept is its potential to remove the decay heat by natural air convection and thermal radiation in a passive way. To investigate the coolability of such a passive cooling system and the physical phenomena involved, experimental investigations are carried out at the PASCO test facility. Additionally, numerical calculations are performed by using different codes. A satisfying agreement between experimental data and numerical results is obtained.
NASA Astrophysics Data System (ADS)
Li, Chunggang; Tsubokura, Makoto; Complex Phenomena Unified Simulation Research Team
2014-11-01
The complete transition from laminar to turbulent natural convection in a long channel is investigated using compressible direct numerical simulation (DNS). Numerical methods of Roe scheme with precontioning and dual time stepping are used for addressing the flow field which is low speed but the density is variable. During the transient development, there are four stages which are laminar, unstable process, relaminarization and turbulence can be obviously identified. After reaching the quasi steady state, the laminar, transition and turbulence simultaneously coexist in the same flow field. Additionally, the comparisons of the statistics with the experimental data are also well consistent.
Anomalies of the natural convection of water near 3.98°C
NASA Astrophysics Data System (ADS)
Baturov, L. N.; Govor, I. N.
2016-02-01
Natural convection of water in a cylindrical cavity with an open surface at a temperature of about 3.98°C (temperature of the maximum water density) is accompanied by typical anomalies on time dependences of temperatures of water layers. In particular, stabilization of temperature T st is observed in the bottom region of the cavity and duration of such stabilization t st may reach several hours depending on the experimental conditions. The results for solutions of sodium chloride and ethanol at a relatively low rate of water cooling show that temperature T st coincides with temperature T max corresponding to the maximum density of solutions.
Drying characteristic of barley under natural convection in a mixed-mode type solar grain dryer
Basunia, M.A.; Abe, T.
1999-07-01
Thin-layer solar drying characteristics of barley were determined at average natural air flow temperature ranging from 43.4 to 51.7 C and for relative humidities ranging from 16.5% to 37.5%. A mixed-mode type natural convection solar dryer was used for this experiment. The data of sample weight, and dry and wet bulb temperatures of the drying air were recorded continuously throughout the drying period for each test. The drying data were then fitted to the Page model. The model gave a good fit for the moisture content with an average standard error of 0.305% dry basis. The parameter N in Page's equation was assumed as a product-dependent constant which made it easy to compare the effects of independent variables on the natural convection solar drying rate without causing considerable error in predicting the drying rate for barley. A linear relationship was found between the parameter K, temperature T, and relative humidity R{sub H}.
NASA Astrophysics Data System (ADS)
Jha, B. K.; Sani, I.
2015-02-01
This paper investigates the role of induced magnetic field on a transient natural convection flow of an electrically conducting, incompressible and viscous fluid in a vertical channel formed by two infinite vertical parallel plates. The transient flow formation inside the channel is due to sudden asymmetric heating of channel walls. The time dependent momentum, energy and magnetic induction equations are solved semi-analytically using the Laplace transform technique along with the Riemann-sum approximation method. The solutions obtained are validated by comparisons with the closed form solutions obtained for the steady states which have been derived separately and also by the implicit finite difference method. Graphical results for the temperature, velocity, induced magnetic field, current density, and skin-friction based on the semi-analytical solutions are presented and discussed.
NASA Astrophysics Data System (ADS)
Sheikhzadeh, G. A.; Dastmalchi, M.; Khorasanizadeh, H.
2013-12-01
The effect of wall temperature variations on double diffusive natural convection of Al2O3-water nanofluid in a differentially heated square enclosure with constant temperature hot and cold vertical walls is studied numerically. Transport mechanisms of nanoparticles including Brownian diffusion and thermophoresis that cause heterogeneity are considered in non-homogeneous model. The hot and cold wall temperatures are varied, but the temperature difference between them is always maintained 5 °C. The thermophysical properties such as thermal conductivity, viscosity and density and thermophoresis diffusion and Brownian motion coefficients are considered variable with temperature and volume fraction of nanoparticles. The governing equations are discretized using the control volume method. The results show that nanoparticle transport mechanisms affect buoyancy force and cause formation of small vortexes near the top and bottom walls of the cavity and reduce the heat transfer. By increasing the temperature of the walls the effect of transport mechanisms decreases and due to enhanced convection the heat transfer rate increases.
Lee, Il S.; Yu, Yong H.; Son, Hyoung M.; Hwang, Jin S.; Suh, Kune Y.
2006-07-01
An experimental study is performed to investigate the natural convection heat transfer characteristics with subcooled coolant to create engineering database for basic applications in a lead alloy cooled reactor. Tests are performed in the ALTOS (Applied Liquid-metal Thermal Operation Study) apparatus as part of MITHOS (Metal Integrated Thermo Hydrodynamic Operation System). A relationship is determined between the Nusselt number Nu and the Rayleigh number Ra in the liquid metal rectangular pool. Results are compared with correlations and experimental data in the literature. Given the similar Ra condition, the present test results for Nu of the liquid metal pool with top subcooling are found to be similar to those predicted by the existing correlations or experiments. The current test results are utilized to develop natural convection heat transfer correlations applicable to low Prandtl number Pr fluids that are heated from below and cooled by the external coolant above. Results from this study are slated to be used in designing BORIS (Battery Optimized Reactor Integral System), a small lead cooled modular fast reactor for deployment at remote sites cycled with MOBIS (Modular Optimized Brayton Integral System) for electricity generation, tied with NAVIS (Naval Application Vessel Integral System) for ship propulsion, joined with THAIS (Thermochemical Hydrogen Acquisition Integral System) for hydrogen production, and coupled with DORIS (Desalination Optimized Reactor Integral System) for seawater desalination. Tests are performed with Wood's metal (Pb-Bi-Sn-Cd) filling a rectangular pool whose lower surface is heated and upper surface cooled by forced convection of water. The test section is 20 cm long, 11.3 cm high and 15 cm wide. The simulant has a melting temperature of 78 deg. C. The constant temperature and heat flux condition was realized for the bottom heating once the steady state had been met. The test parameters include the heated bottom surface temperature
Mayor, T S; Couto, S; Psikuta, A; Rossi, R M
2015-12-01
The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s(-1)) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 10(2)-3 × 10(5)). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow
NASA Astrophysics Data System (ADS)
Mayor, T. S.; Couto, S.; Psikuta, A.; Rossi, R. M.
2015-12-01
The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s-1) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 102-3 × 105). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow patterns and
Imtiaz, Maria; Hayat, Tasawar; Alsaedi, Ahmed
2016-01-01
This paper looks at the flow of Jeffrey fluid due to a curved stretching sheet. Effect of homogeneous-heterogeneous reactions is considered. An electrically conducting fluid in the presence of applied magnetic field is considered. Convective boundary conditions model the heat transfer analysis. Transformation method reduces the governing nonlinear partial differential equations into the ordinary differential equations. Convergence of the obtained series solutions is explicitly discussed. Characteristics of sundry parameters on the velocity, temperature and concentration profiles are analyzed by plotting graphs. Computations for pressure, skin friction coefficient and surface heat transfer rate are presented and examined. It is noted that fluid velocity and temperature through curvature parameter are enhanced. Increasing values of Biot number correspond to the enhancement in temperature and Nusselt number. PMID:27583457
Convection due to surface-tension gradients. [in reduced gravity spacecraft environments
NASA Technical Reports Server (NTRS)
Ostrach, S.
1978-01-01
The use of dimensionless parameters to study fluid motions that could occur in a reduced-gravity environment is discussed. The significance of the Marangoni instability is considered, and the use of dimensionless parameters to investigate problems such as thermo and diffusocapillary flows is described. Characteristics of fluid flow in space are described, and the relation and interaction of motions due to capillarity and buoyancy is examined.
Experimental study of natural convection enhancement using a Fe3O4-water based magnetic nanofluid.
Stoian, Floriana D; Holotescu, Sorin
2012-10-01
The effect of nanoparticles dispersed in a carrier fluid on the natural convection heat transfer is still raising controversies. While the reported experimental results show no improvement or even worsening of the heat transfer performance of nanofluids, the numerical simulations show an increase of the heat transfer coefficient, at least for certain ranges of Ra number. We report an experimental investigation regarding the natural convection heat transfer performance of a Fe3O4-water based nanofluid, in a cylindrical enclosure. The fluid was heated linearly from the bottom wall using an electric heater and cooled from the upper wall by a constant flow of water, such that a constant temperature difference between the upper and bottom walls was obtained at steady-state. The experiment was also carried out using water, in order to observe the effect of the addition of Fe3O4 nanoparticles on the heat transfer coefficient. Several regimes were tested, both for water and nanofluid. The experimental results showed that values obtained for the heat transfer coefficient for Fe3O4-water nanofluid were higher than those for water, at the same temperature difference. The present experimental results are also compared with our previous work and the reference literature. PMID:23421199
A new look at natural convection from isothermal vertical parallel plates
Li, H.H.; Chung, B.T.F.
1996-12-31
Natural convection between isothermal plates is solved numerically by applying the full Navier-Stokes equations. The elliptic formulation allows separating the effect of the Rayleigh number, Ra, and the aspect ratio, L/B. Calculations are made on a wide range of the Rayleigh number and the aspect ratio, and the Nusselt number is provided as a function of both Ra and B/L. The conventional correlations in the literature presenting the Nusselt number in terms of a single parameter, RaB/L, have been found inaccurate. At a small value of RaB/L, multiple values of Nusselt number are obtained for different combinations of Ra and B/L. Previous results are found to be the special cases of the present study. A minimum Rayleigh number is also obtained above which a fully-developed flow is possible. To simulate the natural convective flow, the ambient pressure is given at the exit while the pressure at the entrance is related to the ambient pressure by the Bernoulli equation. Velocities at the entrance and exit are also solved from the Navier-Stokes equations.
NASA Astrophysics Data System (ADS)
Ambrosini, Dario; Tanda, Giovanni
2006-01-01
In this work, natural convection heat transfer in vertical channels is experimentally investigated by applying different optical techniques, namely holographic interferometry and schlieren. Both these techniques are based on the temperature dependence of the air refractive index but they detect different optical quantities and their use involves different instrumentation and optical components. Optical methods, non-intrusive in nature, are particularly suitable for the visualization of flow and thermal fields as witnessed by their increasing use in a range of scientific and engineering disciplines; for this reason, the introduction of these experimental tools into a laboratory course can be of high value. Physics and engineering students can get familiarized with optical techniques, grasp the basics of thermal phenomena, usually elusive, which can be more easily understood if they are made visible, and begin to master digital image analysis, a key skill in laboratory activities. A didactic description of holographic interferometry and schlieren is provided and experimental results obtained for vertical, smooth and rib-roughened channels with asymmetrical heating are presented. A comparison between distributions of the local heat transfer coefficient (or its dimensionless counterpart, the Nusselt number) revealed good agreement between the results separately obtained by the two techniques, thus proving their suitability for investigating free convection heat transfer in channels.
Basu, Sumita; Plawsky, Joel L; Wayner, Peter C
2004-11-01
In preparation for a microgravity flight experiment on the International Space Station, a constrained vapor bubble fin heat exchanger (CVB) was operated both in a vacuum chamber and in air on Earth to evaluate the effect of the absence of external natural convection. The long-term objective is a general study of a high heat flux, low capillary pressure system with small viscous effects due to the relatively large 3 x 3 x 40 mm dimensions. The current CVB can be viewed as a large-scale version of a micro heat pipe with a large Bond number in the Earth environment but a small Bond number in microgravity. The walls of the CVB are quartz, to allow for image analysis of naturally occurring interference fringes that give the pressure field for liquid flow. The research is synergistic in that the study requires a microgravity environment to obtain a low Bond number and the space program needs thermal control systems, like the CVB, with a large characteristic dimension. In the absence of natural convection, operation of the CVB may be dominated by external radiative losses from its quartz surface. Therefore, an understanding of radiation from the quartz cell is required. All radiative exchange with the surroundings occurs from the outer surface of the CVB when the temperature range renders the quartz walls of the CVB optically thick (lambda > 4 microns). However, for electromagnetic radiation where lambda < 2 microns, the walls are transparent. Experimental results obtained for a cell charged with pentane are compared with those obtained for a dry cell. A numerical model was developed that successfully simulated the behavior and performance of the device observed experimentally. PMID:15644365
Natural and mixed convection in the cylindrical pool of TRIGA reactor
NASA Astrophysics Data System (ADS)
Henry, R.; Tiselj, I.; Matkovič, M.
2016-05-01
Temperature fields within the pool of the JSI TRIGA MARK II nuclear research reactor were measured to collect data for validation of the thermal hydraulics computational model of the reactor tank. In this context temperature of the coolant was measured simultaneously at sixty different positions within the pool during steady state operation and two transients. The obtained data revealed local peculiarities of the cooling water dynamics inside the pool and were used to estimate the coolant bulk velocity above the reactor core. Mixed natural and forced convection in the pool were simulated with a Computational Fluid Dynamics code. A relatively simple CFD model based on Unsteady RANS turbulence model was found to be sufficient for accurate prediction of the temperature fields in the pool during the reactor operation. Our results show that the simple geometry of the TRIGA pool reactor makes it a suitable candidate for a simple natural circulation benchmark in cylindrical geometry.
Plume generation in natural thermal convection at high Rayleigh and Prandtl numbers
NASA Astrophysics Data System (ADS)
Lithgow-Bertelloni, C.; Richards, M. A.; Conrad, C. P.; Griffiths, R. W.
2001-05-01
We study natural thermal convection of a fluid (corn syrup) with a large Prandtl number (103 107) and temperature-dependent viscosity. The experimental tank (1 × 1 × 0.3m) is heated from below with insulating top and side boundaries, so that the fluid experiences secular heating as experiments proceed. This setup allows a focused study of thermal plumes from the bottom boundary layer over a range of Rayleigh numbers relevant to convective plumes in the deep interior of the Earth's mantle. The effective value of Ra, based on the viscosity of the fluid at the interior temperature, varies from 105 at the beginning to almost 108 toward the end of the experiments. Thermals (plumes) from the lower boundary layer are trailed by continuous conduits with long residence times. Plumes dominate flow in the tank, although there is a weaker large-scale circulation induced by material cooling at the imperfectly insulating top and sidewalls. At large Ra convection is extremely time-dependent and exhibits episodic bursts of plumes, separated by periods of quiescence. This bursting behaviour probably results from the inability of the structure of the thermal boundary layer and its instabilities to keep pace with the rate of secular change in the value of Ra. The frequency of plumes increases and their size decreases with increasing Ra, and we characterize these changes via in situ thermocouple measurements, shadowgraph videos, and videos of liquid crystal films recorded during several experiments. A scaling analysis predicts observed changes in plume head and tail radii with increasing Ra. Since inertial effects are largely absent no transition to ‘hard’ thermal turbulence is observed, in contrast to a previous conclusion from numerical calculations at similar Rayleigh numbers. We suggest that bursting behaviour similar to that observed may occur in the Earth's mantle as it undergoes secular cooling on the billion-year time scale.
Tsitverblit
2000-12-01
Finite-amplitude convective steady flows that do not bifurcate from the respective conduction state are discovered. They arise as the compensating horizontal gradients of two density-affecting components with equal diffusivities but different boundary conditions are applied to the Boussinesq fluid at rest with and without stable vertical stratification. These flows emanate from convection in a laterally heated stably stratified slot. Their relevance to convective states in a horizontal slot with two vertical gradients, emphasizing universality of the underlying type of convection, is discussed. PMID:11138108
Developing natural convection in a fluid layer with localized heating and large viscosity variation
NASA Astrophysics Data System (ADS)
Hickox, C. E.; Chu, Tze Yao
Numerical simulations and laboratory experiments are used to elucidate aspects of transient natural convection in a magma chamber. The magma chamber is modeled as a horizontal fluid layer confined within an enclosure of square planform and heated from below by a strip heater centered on the lower boundary of the enclosure. The width of the strip heater and the depth of the fluid layer are one-fourth of the layer width. Corn syrup is used as the working fluid in order to approximate the large viscosity variation with temperature and the large Prandtl number typical of magma. The quiescent, uniform, fluid layer is subjected to instantaneous heating from the strip heater producing a transient flow which is dominated by two counter-rotating convective cells. Experimentally determined characteristics of the developing flow are compared with numerical simulations carried out with a finite element computer program. The results of numerical simulations are in essential agreement with experimental data. Differences between the numerical simulations and experimental measurements are conjectured to result from non-ideal effects present in the experiment which are difficult to represent accurately in a numerical simulation.
Nature's Grand Experiment: Linkage between magnetospheric convection and the radiation belts
NASA Astrophysics Data System (ADS)
Rodger, Craig J.; Cresswell-Moorcock, Kathy; Clilverd, Mark A.
2016-01-01
The solar minimum of 2007-2010 was unusually deep and long lived. In the later stages of this period the electron fluxes in the radiation belts dropped to extremely low levels. The flux of relativistic electrons (>1 MeV) was significantly diminished and at times was below instrument thresholds both for spacecraft located in geostationary orbits and also those in low-Earth orbit. This period has been described as a natural "Grand Experiment" allowing us to test our understanding of basic radiation belt physics and in particular the acceleration mechanisms which lead to enhancements in outer belt relativistic electron fluxes. Here we test the hypothesis that processes which initiate repetitive substorm onsets drive magnetospheric convection, which in turn triggers enhancement in whistler mode chorus that accelerates radiation belt electrons to relativistic energies. Conversely, individual substorms would not be associated with radiation belt acceleration. Contrasting observations from multiple satellites of energetic and relativistic electrons with substorm event lists, as well as chorus measurements, show that the data are consistent with the hypothesis. We show that repetitive substorms are associated with enhancements in the flux of energetic and relativistic electrons and enhanced whistler mode wave intensities. The enhancement in chorus wave power starts slightly before the repetitive substorm epoch onset. During the 2009/2010 period the only relativistic electron flux enhancements that occurred were preceded by repeated substorm onsets, consistent with enhanced magnetospheric convection as a trigger.
Developing natural convection in a fluid layer with localized heating and large viscosity variation
Hickox, C.E.; Chu, Tze Yao.
1991-01-01
Numerical simulations and laboratory experiments are used to elucidate aspects of transient natural convection in a magma chamber. The magma chamber is modeled as a horizontal fluid layer confined within an enclosure of square planform and heated from below by a strip heater centered on the lower boundary of the enclosure. The width of the strip heater and the depth of the fluid layer are one-fourth of the layer width. Corn syrup is used as the working fluid in order to approximate the large viscosity variation with temperature and the large Prandtl number typical of magma. The quiescent, uniform, fluid layer is subjected to instantaneous heating from the strip heater producing a transient flow which is dominated by two counter-rotating convective cells. Experimentally determined characteristics of the developing flow are compared with numerical simulations carried out with a finite element computer program. The results of numerical simulations are in essential agreement with experimental data. Differences between the numerical simulations and experimental measurements are conjectured to result from non-ideal effects present in the experiment which are difficult to represent accurately in a numerical simulation.
NASA Technical Reports Server (NTRS)
Diaguila, Anthony J; Freche, John C
1951-01-01
Blade-to-coolant heat-transfer data and operating data were obtained with a natural-convection water-cooled turbine over range of turbine speeds and inlet-gas temperatures. The convective coefficients were correlated by the general relation for natural-convection heat transfer. The turbine data were displaced from a theoretical equation for natural convection heat transfer in the turbulent region and from natural-convection data obtained with vertical cylinders and plates; possible disruption of natural convection circulation within the blade coolant passages was thus indicated. Comparison of non dimensional temperature-ratio parameters for the blade leading edge, midchord, and trailing edge indicated that the blade cooling effectiveness is greatest at the midchord and least at the trailing edge.
Risk Due to Radiological Terror Attacks With Natural Radionuclides
NASA Astrophysics Data System (ADS)
Friedrich, Steinhäusler; Stan, Rydell; Lyudmila, Zaitseva
2008-08-01
The naturally occurring radionuclides radium (Ra-226) and polonium (Po-210) have the potential to be used for criminal acts. Analysis of international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (CSTO), operated at the University of Salzburg, shows that several acts of murder and terrorism with natural radionuclides have already been carried out in Europe and Russia. Five different modes of attack (T) are possible: (1) Covert irradiation of an individual in order to deliver a high individual dose; (2) Covert irradiation of a group of persons delivering a large collective dose; (3) Contamination of food or drink; (4) Generation of radioactive aerosols or solutions; (5) Combination of Ra-226 with conventional explosives (Dirty Bomb). This paper assesses the risk (R) of such criminal acts in terms of: (a) Probability of terrorist motivation deploying a certain attack mode T; (b) Probability of success by the terrorists for the selected attack mode T; (c) Primary damage consequence (C) to the attacked target (activity, dose); (d) Secondary damage consequence (C') to the attacked target (psychological and socio-economic effects); (e) Probability that the consequences (C, C') cannot be brought under control, resulting in a failure to manage successfully the emergency situation due to logistical and/or technical deficits in implementing adequate countermeasures. Extensive computer modelling is used to determine the potential impact of such a criminal attack on directly affected victims and on the environment.
Risk Due to Radiological Terror Attacks With Natural Radionuclides
Friedrich, Steinhaeusler; Lyudmila, Zaitseva; Stan, Rydell
2008-08-07
The naturally occurring radionuclides radium (Ra-226) and polonium (Po-210) have the potential to be used for criminal acts. Analysis of international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (CSTO), operated at the University of Salzburg, shows that several acts of murder and terrorism with natural radionuclides have already been carried out in Europe and Russia. Five different modes of attack (T) are possible: (1) Covert irradiation of an individual in order to deliver a high individual dose; (2) Covert irradiation of a group of persons delivering a large collective dose; (3) Contamination of food or drink; (4) Generation of radioactive aerosols or solutions; (5) Combination of Ra-226 with conventional explosives (Dirty Bomb).This paper assesses the risk (R) of such criminal acts in terms of: (a) Probability of terrorist motivation deploying a certain attack mode T; (b) Probability of success by the terrorists for the selected attack mode T; (c) Primary damage consequence (C) to the attacked target (activity, dose); (d) Secondary damage consequence (C') to the attacked target (psychological and socio-economic effects); (e) Probability that the consequences (C, C') cannot be brought under control, resulting in a failure to manage successfully the emergency situation due to logistical and/or technical deficits in implementing adequate countermeasures. Extensive computer modelling is used to determine the potential impact of such a criminal attack on directly affected victims and on the environment.
NASA Technical Reports Server (NTRS)
Greenwald, R. A.; Baker, K. B.; Ruohoniemi, J. M.; Dudeney, J. R.; Pinnock, M.; Mattin, N.; Leonard, J. M.; Lepping, R. P.
1990-01-01
Data from two conjugate HF radars currently operating at Goose Bay (Labrador) and the Halley Station (Antarctica), obtained for a single 45-min period about local noon on April 22, 1988, were used to study the near-instantaneous conjugate two-dimensional patterns of plasma convection in the vicinity of the cusp. In particular, the response of these plasma convection patterns to changes in the By component of the IMF was examined. Results indicate that, under quasi-stationary IMF conditions, the conjugate convection patterns are quite similar to the synthesized patterns of Heppner and Maynard (1987) and that the patterns respond rapidly to changes in the IMF By component. Results also show that transitions between convection states begin to occur within minutes of the time that an IMF state change is incident on the magnetospheric boundary, and that the convection reconfigurations expand poleward, completely filling the field of view of an HF radar within 6 min of the time of onset.
NASA Astrophysics Data System (ADS)
Oztop, Hakan F.; Abu-Nada, Eiyad; Varol, Yasin; Al-Salem, Khaled
2011-04-01
In this study, the problem of steady state natural convection in an enclosure filled with a nanofluid has been analyzed numerically by using heating and cooling by sinusoidal temperature profiles on one side. The governing partial differential equations, in terms of the dimensionless stream function-vorticity and temperature, are solved numerically using the finite volume method for various inclination angles 0∘≤ϕ≤90∘, different types of nanoparticles (TiO 2 and Al 2O 3) and fractions of nanoparticles 0≤φ≤0.1, whereas the range of the Rayleigh number Ra is 10 3-10 5. It is found that the addition of nanoparticles into water affects the fluid flow and temperature distribution especially for higher Rayleigh numbers. An enhancement in heat transfer rate was registered for the whole range of Rayleigh numbers. However, low Rayleigh numbers show more enhancement compared to high Rayleigh numbers.
A numerical solution of variable porosity effects on natural convection in a packed-sphere cavity
David, E.; Lauriat, G. ); Cheng, P. )
1991-05-01
The problem of natural convection in differentially heated vertical cavities filled with spherical particles saturated with Newtonian fluids is investigated numerically. The Brinkman-Darcy-Ergun equation is used as the momentum equation, and the wall effect on porosity variation is approximated by an exponential function. The effect of variable stagnant thermal conductivities is taken into consideration in the energy equation. The formulation of the problem shows that the flow and heat transfer characteristics depend on six dimensionless parameters, namely, the Rayleigh and Prandtl numbers of the fluid phase, the dimensionless particle diameter, the conductivity ratio of the two phases, the bulk porosity, and the aspect ratio of the cavity. The influences of these parameters on the heat transfer rate are thoroughly investigated. The predicted Nusselt numbers are compared with existing experimental results. It is found that the computed Nusselt numbers based on the present model compare the best with experimental data.
Design and Scaling of the Natural Convection Shutdown Heat Removal Test Facility
Lisowski, Darius D.; Gerardi, Craig D.; Bremer, Nathan C.; Farmer, Mitchell T.
2014-01-01
The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (ANL) reflects a 1/2 scale model of one conceptual design for passive safety in advanced reactors. The project was initiated in 2010 primarily to conduct ex-vessel, passive decay heat removal experiments in support of the Advanced Reactor Concepts (ARC), Small Modular Reactor (SMR), and Next Generation Nuclear Plant (NGNP) programs while also generating data for code validation purposes. The facility successfully demonstrated scoping objectives in late 2013, and is expected to begin testing by early 2014. The following paper summarizes some of the key design and scaling considerations used in construction of the experimental facility, along with an overview of the current instrumentation and data acquisition methods. Details of the distributed fiber optic temperature system will be presented, which introduces a level of data density suitable for CFD validation and is a first-of-its-kind for largescale thermal hydraulics facilities.
Natural convection flow in porous enclosure with localized heating from below with heat flux
NASA Astrophysics Data System (ADS)
Siddiki, Md. Noor-A.-Alam; Molla, Md. Mamun; Saha, Suvash C.
2016-07-01
Unsteady natural convection flow in a two dimensional fluid saturated porous enclosure with localized heating from below with heat flux, symmetrical cooling from the sides and the insulated top wall has been investigated numerically. The governing equations are the Darcy's law for the porous media and the energy equation for the temperature field has been considered. The non-dimensional Darcy's law in terms of the stream function is solved by finite difference method using the successive over-relaxation (SOR) scheme and the energy equation is solved by Alternative Direction Alternative (ADI) scheme. The uniform heat flux source is located centrally at the bottom wall. The numerical results are presented in terms of the streamlines and isotherms, as well as the local and average rate of heat transfer for the wide range of the Darcy's Rayleigh number and the length of the heat flux source at the bottom wall.
MHD natural convection flow along a vertical wavy surface with heat generation and pressure work
NASA Astrophysics Data System (ADS)
Alim, M. A.; Kabir, K. H.; Andallah, L. S.
2016-07-01
In this paper, the influence of pressure work on MHD natural convection flow of viscous incompressible fluid along a uniformly heated vertical wavy surface with heat generation has been investigated. The governing boundary layer equations are first transformed into a non-dimensional form using suitable set of dimensionless variables. The resulting nonlinear system of partial differential equations are mapped into the domain of a vertical flat plate and then solved numerically employing the implicit finite difference method, known as Keller-box scheme. The numerical results for the velocity profiles, temperature profiles, skin friction coefficient, the rate of heat transfers, the streamlines and the isotherms are shown graphically and skin friction coefficient and rate of heat transfer have been shown in tabular form for different values of the selective set of parameters consisting of pressure work parameter Ge, the magnetic parameter M, Prandtl number Pr, heat generation parameter Q and the amplitude of the wavy surface.
Two- and three-dimensional natural and mixed convection simulation using modular zonal models
Wurtz, E.; Nataf, J.M.; Winkelmann, F.
1996-07-01
We demonstrate the use of the zonal model approach, which is a simplified method for calculating natural and mixed convection in rooms. Zonal models use a coarse grid and use balance equations, state equations, hydrostatic pressure drop equations and power law equations of the form {ital m} = {ital C}{Delta}{sup {ital n}}. The advantage of the zonal approach and its modular implementation are discussed. The zonal model resolution of nonlinear equation systems is demonstrated for three cases: a 2-D room, a 3-D room and a pair of 3-D rooms separated by a partition with an opening. A sensitivity analysis with respect to physical parameters and grid coarseness is presented. Results are compared to computational fluid dynamics (CFD) calculations and experimental data.
NASA Astrophysics Data System (ADS)
Liviu, Pascu; Adriana, Putan; Vasile, Putan; Alina, Lascutoni
2012-09-01
The similarity between steel ladles and hot water model regarding natural convection phenomena has been analyzed through examination of the numerical solutions of turbulent Navier-Stokes partial differential equations governing the phenomena in question. Key similarity criteria for non-isothermal physical modeling of steel ladles with hot-water models have been derived as Frm = Frp and (β∇T)m = (β∇T)p where the subscript m and p stand for the water model and the prototype steel ladle, respectively. Accordingly, appropriate conditions fulfilling the above criteria, such as model size, water temperature, time scale factor and the scale factor of boundary heat loss fluxes, have been proposed and discussed.
Dunn, T.A.; McCallen, R.C.
2000-10-17
The Galerkin Finite Element Method was used to predict a natural convection flow in an enclosed cavity. The problem considered was a differentially heated, tall (8:1), rectangular cavity with a Rayleigh number of 3.4 x 10{sup 5} and Prandtl number of 0.71. The incompressible Navier-Stokes equations were solved using a Boussinesq approximation for the buoyancy force. The algorithm was developed for efficient use on massively parallel computer systems. Emphasis was on time-accurate simulations. It was found that the average temperature and velocity values can be captured with a relatively coarse grid, while the oscillation amplitude and period appear to be grid sensitive and require a refined computation.
Domanus, H.M.; Sha, W.T.
1981-01-01
The single-phase COMMIX (COMponent MIXing) computer code performs fully three-dimensional, transient, thermal-hydraulic analyses of liquid-sodium LMFBR components. It solves the conservation equations of mass, momentum, and energy as a boundary-value problem in space and as an initial-value problem in time. The concepts of volume porosity, surface permeability and distributed resistance, and heat source have been employed in quasi-continuum (rod-bundle) applications. Results from three transient simulations involving forced and natural convection are presented: (1) a sodium-filled horizontal pipe initially of uniform temperature undergoing an inlet velocity rundown transient, as well as an inlet temperature transient; (2) a 19-pin LMFBR rod bundle undergoing a velocity transient; and, (3) a simulation of a water test of a 1/10-scale outlet plenum undergoing both velocity and temperature transients.
NASA Astrophysics Data System (ADS)
Slezak, Ondrej; Yasuhara, Ryo; Lucianetti, Antonio; Vojna, David; Mocek, Tomas
2015-06-01
Thermal birefringence-induced depolarization in terbium gallium garnet (TGG) ceramic rods has been numerically evaluated for the geometry and heating conditions in a previous experiment. In this model, the spatially resolved heat transfer coefficient corresponding to natural convection cooling and the offset of the beam from the rotational axis of the rod have been incorporated and the realistic beam profile used in the experiment has been considered. A resulting beam depolarization ratio of 4.3 × 10-4 has been calculated for an input power of 117 W. The results were found to be in good agreement with the measured values. Furthermore, a parametric study of the depolarization ratio for higher input powers has been performed leading to a depolarization ratio of 3.3 × 10-2 for 1 kW input power.
Natural remobilization of multicomponent DNAPL pools due to dissolution.
Roy, J W; Smith, J E; Gillham, R W
2002-12-01
Mixtures of dense nonaqueous phase liquids (DNAPLs) trapped in the subsurface can act as long-term sources of contamination by dissolving into flowing groundwater. If the components have different solubilities then dissolution will alter the composition of the remaining DNAPL. We theorized that a multicomponent DNAPL pool may become mobile due to the natural dissolution process. In this study, we focused on two scenarios: (1) a DNAPL losing light component(s), with the potential for downward migration; and (2) a DNAPL losing dense component(s), with the potential for upward migration following transformation into a less dense than water nonaqueous phase liquid (LNAPL). We considered three binary mixtures of common groundwater contaminants: benzene and tetrachloroethylene (PCE), PCE and dichloromethane (DCM), and DCM and toluene. A number of physical properties that control the retention and transport of DNAPL in porous media were measured for the mixtures, namely: density, interfacial tension, effective solubility, and viscosity. All properties except density exhibited nonlinear relationships with changing molar ratio of the DNAPL. To illustrate the potential for natural remobilization, we modelled the following two primary mechanisms: the reduction in pool height as mass is lost by dissolution, and the changes in fluid properties with changing molar ratio of the DNAPL. The first mechanism always reduces the capillary pressure in the pool, while the second mechanism may increase the capillary pressure or alter the direction of the driving force. The difference between the rate of change of each determines whether the potential for remobilization increases or decreases. Static conditions and horizontal layering were assumed along with a one-dimensional, compositional modelling approach. Our results indicated that for initial benzene/PCE ratios greater than 25:75, the change in density was sufficiently faster than the decline in pool height to promote DNAPL
NASA Technical Reports Server (NTRS)
Skarda, J. Raymond Lee; McCaughan, Frances E.
1998-01-01
Stationary onset of convection due to surface tension variation in an unbounded multicomponent fluid layer is considered. Surface deformation is included and general flux boundary conditions are imposed on the stratifying agencies (temperature/composition) disturbance equations. Exact solutions are obtained to the general N-component problem for both finite and infinitesimal wavenumbers. Long wavelength instability may coexist with a finite wavelength instability for certain sets of parameter values, often referred to as frontier points. For an impermeable/insulated upper boundary and a permeable/conductive lower boundary, frontier boundaries are computed in the space of Bond number, Bo, versus Crispation number, Cr, over the range 5 x 10(exp -7) less than or equal to Bo less than or equal to 1. The loci of frontier points in (Bo, Cr) space for different values of N, diffusivity ratios, and, Marangoni numbers, collapsed to a single curve in (Bo, D(dimensional variable)Cr) space, where D(dimensional variable) is a Marangoni number weighted diffusivity ratio.
NASA Astrophysics Data System (ADS)
Lin, Wenxian; Armfield, S. W.
2013-12-01
It is of fundamental significance, especially with regard to application, to fully understand the flow behavior of unsteady natural convection boundary layers on a vertical plate heated by a time-dependent heat flux. Such an understanding is currently scarce. In this paper, the scaling analysis by Lin et al. [Phys. Rev. E 79, 066313 (2009), 10.1103/PhysRevE.79.066313] using a simple three-region structure for the unsteady natural convection boundary layer of a homogeneous Newtonian fluid with Pr >1 under isothermal heating was substantially extended for the case when the heating is due to a time-varying sinusoidal heat flux. A series of scalings was developed for the thermal boundary thickness, the plate temperature, the viscous boundary thicknesses, and the maximum vertical velocity within the boundary layer, which are the major parameters representing the flow behavior, in terms of the governing parameters of the flow, i.e., the Rayleigh number Ra, the Prandtl number Pr, and the dimensionless natural frequency fn of the time-varying sinusoidal heat flux, at the start-up stage, at the transition time scale which represents the ending of the start-up stage and the beginning of the transitional stage of the boundary-layer development, and at the quasi-steady stage. These scalings were validated by comparison to 10 full numerical solutions of the governing equations with Ra, Pr, and fn in the ranges 106≤Ra≤109, 3≤Pr≤100, and 0.01≤fn≤0.1 and were shown in general to provide an accurate description of the flow at different development stages, except for high-Pr runs in which a further, although weak, Pr dependence is present, which cannot be accurately predicted by the current scaling analysis using the simple three-region structure, attributed to the non-boundary-layer nature of the velocity field with high-Pr fluids. Some scalings at the transition time scale and at the quasi-steady stage also produce noticeable deviations from the numerical results when
ERIC Educational Resources Information Center
Saatadjian, Esteban; Lesage, Francois; Mota, Jose Paulo B.
2013-01-01
A project that involves the numerical simulation of transport phenomena is an excellent method to teach this subject to senior/graduate chemical engineering students. The subject presented here has been used in our senior/graduate course, it concerns the study of natural convection heat transfer between two concentric, horizontal, saturated porous…
Qi, Cong; He, Yurong; Yan, Shengnan; Tian, Fenglin; Hu, Yanwei
2013-01-01
Considering interaction forces (gravity and buoyancy force, drag force, interaction potential force, and Brownian force) between nanoparticles and a base fluid, a two-phase Lattice Boltzmann model for natural convection of nanofluid is developed in this work. It is applied to investigate the natural convection in a square enclosure (the left wall is kept at a high constant temperature (TH), and the top wall is kept at a low constant temperature (TC)) filled with Al2O3/H2O nanofluid. This model is validated by comparing numerical results with published results, and a satisfactory agreement is shown between them. The effects of different nanoparticle fractions and Rayleigh numbers on natural convection heat transfer of nanofluid are investigated. It is found that the average Nusselt number of the enclosure increases with increasing nanoparticle volume fraction and increases more rapidly at a high Rayleigh number. Also, the effects of forces on nanoparticle volume fraction distribution in the square enclosure are studied in this paper. It is found that the driving force of the temperature difference has the biggest effect on nanoparticle volume fraction distribution. In addition, the effects of interaction forces on flow and heat transfer are investigated. It is found that Brownian force, interaction potential force, and gravity-buoyancy force have positive effects on the enhancement of natural convective heat transfer, while drag force has a negative effect. PMID:23374509
NASA Technical Reports Server (NTRS)
Parker, E. N.
1974-01-01
It had been pointed out by Parker (1974) that the basic cause of the sunspot phenomenon is the enhanced heat transport in the magnetic field of the sunspot. The enhanced transport occurs through convective overstability which operates as a heat engine generating Alfven waves. The characteristics of the convective forces present are investigated along with questions concerning overstability and convectively driven Alfven waves. Relations regarding instability and convectively driven surface waves are discussed and attention is given to individual overstable Alfven modes. It is found that the form of an Alfven wave in the absence of convective forces is entirely arbitrary, so that waves with any arbitrary profile can be fitted into a vertical column of the field without disturbing the fluid outside. With the introduction of convective forces the situation changes so that the presence of lateral boundaries alters the form of the basic wave modes.
Betz, J; Straub, J
2002-10-01
In the presence of a temperature gradient at a liquid-gas or liquid-liquid interface, thermocapillary or Marangoni convection develops. This convection is a special type of natural convection that was not paid much attention in heat transfer for a long time, although it is strong enough to drive liquids against the direction of buoyancy on Earth. In a microgravity environment, however, it is the remaining mode of natural convection and supports heat and mass transfer. During boiling in microgravity it was observed at subcooled liquid conditions. Therefore, the question arises about its contribution to heat transfer without phase change. Thermocapillary convection was quantitatively studied at single gas bubbles in various liquids, both experimentally and numerically. A two-dimensional mathematical model described in this article was developed. The coupled mechanism of heat transfer and fluid flow in pure liquids around a single gas bubble was simulated with a control-volume FE-method. The simulation was accompanied and compared with experiments on Earth. The numerical results are in good accordance with the experiments performed on Earth at various Marangoni numbers using various alcohols of varying chain length and Prandtl numbers. As well as calculations on Earth, the numerical method also allows simulations at stationary spherical gas bubbles in a microgravity environment. The results demonstrate that thermocapillary convection is a natural heat transfer mechanism that can partially replace the buoyancy in a microgravity environment, if extreme precautions are taken concerning the purity of the liquids, because impurities accumulate predominantly at the interface. Under Earth conditions, an enhancement of the heat transfer in a liquid volume is even found in the case where thermocapillary flow is counteracted by buoyancy. In particular, the obstructing influence of surface active substances could be observed during the experiments on Earth in water and also in
T. Hadgu; S. Webb; M. Itamura
2004-02-12
Yucca Mountain, Nevada has been designated as the nation's high-level radioactive waste repository and the U.S. Department of Energy has been approved to apply to the U.S. Nuclear Regulatory Commission for a license to construct a repository. Heat transfer in the Yucca Mountain Project (YMP) drift enclosures is an important aspect of repository waste emplacement. Canisters containing radioactive waste are to be emplaced in tunnels drilled 500 m below the ground surface. After repository closure, decaying heat is transferred from waste packages to the host rock by a combination of thermal radiation, natural convection and conduction heat transfer mechanism?. Current YMP mountain-scale and drift-scale numerical models often use a simplified porous medium code to model fluid and heat flow in the drift openings. To account for natural convection heat transfer, the thermal conductivity of the air was increased in the porous medium model. The equivalent thermal conductivity, defined as the ratio of total heat flow to conductive heat flow, used in the porous media models was based on horizontal concentric cylinders. Such modeling does not effectively capture turbulent natural convection in the open spaces as discussed by Webb et al. (2003) yet the approach is still widely used on the YMP project. In order to mechanistically model natural convection conditions in YMP drifts, the computational fluid dynamics (CFD) code FLUENT (Fluent, Incorporated, 2001) has been used to model natural convection heat transfer in the YMP emplacement drifts. A two-dimensional (2D) model representative of YMP geometry (e.g., includes waste package, drip shield, invert and drift wall) has been developed and numerical simulations made (Francis et al., 2003). Using CFD simulation results for both natural convection and conduction-only heat transfer in a single phase, single component fluid, equivalent thermal conductivities have been calculated for different Rayleigh numbers. Correlation
Natural convection flows and associated heat transfer processes in room fires
NASA Astrophysics Data System (ADS)
Sargent, William Stapf
This report presents the results of experimental investigations of natural convection flows and associated heat transfer processes produced by small fires in rooms with a single door or window opening. Calculation procedures have been developed to model the major aspects of these flows.Two distinct sets of experiments were undertaken.First, in a roughly 1/4 scale facility, a slightly dense solution of brine was allowed to flow into a tank of fresh water. The resulting density difference produced a flow which simulated a very small fire in a room with adiabatic walls. Second, in an approximately 1/2 scale test room, a nearly stoichioinetric mixture of air and natural gas was burned at floor level to model moderate strength fires. In this latter facility, we directly measured the heat conducted through the walls, in addition to determining the gas temperature and composition throughout the room.These two facilities complemented each other. The former offered good flow visualization and allowed us to observe the basic flow phenomena in the absence of heat transfer effects. On the other hand, the latter, which involved relatively larger fires, was a more realistic simulation of an actual room fire, and allowed us to calculate the convective heat transfer to the ceiling and walls. In addition, the stronger sources present in these 1/2 scale tests produced significant secondary flows. These secondary flows along with heat transfer effects act to modify the gas temperature or density profiles within the room from those observed in the 1/4 scale experiments.Several calculation procedures have been developed, based on the far field properties of plumes when the density differences are small (the Boussinesq approximation). The simple point source plume solution is used along with hydraulic analysis of flow through an orifice to estimate the temperatures of the hot ceiling layer gas and of the cooler floor zone fluid, as well as the height of the interface between them. A
NASA Astrophysics Data System (ADS)
McGee, B. W.
2006-12-01
A synthesis of terrestrial and Martian data suggests that a convective vortex, or "dust devil," is a significant, non-random terrestrial eolian sediment transport phenomenon, which has implications for sediment-based migration of radionuclides on Frenchman Flat playa, a 20 square-mile mountain-bounded dry lake bed approximately centered in Frenchman Flat on the Nevada Test Site (NTS). Planetary scientists are often forced to rely on terrestrial analogues to begin characterizing extraterrestrial processes. However, as the planetary database matures, an increasing number of well-characterized extraterrestrial analogues for terrestrial processes will become available. Such analogues may provide a convenient means to investigate poorly understood or otherwise inaccessible terrestrial phenomena. Historical atmospheric nuclear experiments conducted from 1951 to 1962 deposited radionuclides into surface sediments across parts of Frenchman Flat playa, where dust devils are known to commonly occur, especially during the summer months. Recent information from both terrestrial and Martian studies yields that dust devils can be significant contributors to both the local eolian sediment transport regime and the regional climate system. Additionally, the use of terrestrial desert environments as Martian analogues, as well as the recent, unique discovery of Mars-like dust devil tracks in Africa, has established a working correlation between Earth, Mars, and the dust devil phenomenon. However, while the difficulty in tracking dust devil paths on Earth has hindered the determination of any net sediment transport due to dust devils, the dramatic albedo contrast in disturbed sediment on Mars lends to the formation of persistent, curvilinear dust devil tracks. These tracks illustrate that in zones of preferential formation, dust devils possess non-random orientations over seasonal timescales with respect to prevailing wind. By calibrating these Martian orientations with meteorological
OXYGEN TRANSFER ACROSS THE AIR-WATER INTERFACE DUE TO NATURAL CONVECTION IN LAKES. (R825428)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Experimental and numerical study of turbulent natural convection in an open cubic cavity
NASA Astrophysics Data System (ADS)
Maytorena, V. M.; Piña-Ortiz, A.; Hinojosa, J. F.
2015-09-01
Study of natural convection in an open cubic cavity with side length of 1 m is presented. The experimental setup was built with the air as the heat transfer fluid. The vertical wall opposite to the aperture is subjected to uniform heat flux condition with the four different heat flux values in the range 55-333 W/m2, whereas the remaining walls were kept thermally insulated. The temperature at discrete locations inside the cavity was obtained which followed evaluation of heat transfer coefficient and Rayleigh number. The thermal and flow analysis in 3-D was based on the standard k-ɛ turbulence model and implemented using CFD software Fluent 6.3. The spatial distribution for temperature, velocity and turbulent viscosity are determined and analyzed in the perspective of experimental observations. The experimentally determined ranges of Rayleigh number, Nusselt number and heat transfer coefficient are 1.66 × 1011-7.1 × 1011, 185.94-243.31 and 4.88-6.83 W/m2 K, respectively. The observed maximum difference between the experimental and numerical values for heat transfer coefficient and Nusselt number are 10.8 and 14 % respectively.
Characterization of Fuego for laminar and turbulent natural convection heat transfer.
Francis, Nicholas Donald, Jr.
2005-08-01
A computational fluid dynamics (CFD) analysis is conducted for internal natural convection heat transfer using the low Mach number code Fuego. The flow conditions under investigation are primarily laminar, transitional, or low-intensity level turbulent flows. In the case of turbulent boundary layers at low-level turbulence or transitional Reynolds numbers, the use of standard wall functions no longer applies, in general, for wall-bounded flows. One must integrate all the way to the wall in order to account for gradients in the dependent variables in the viscous sublayer. Fuego provides two turbulence models in which resolution of the near-wall region is appropriate. These models are the v2-f turbulence model and a Launder-Sharma, low-Reynolds number turbulence model. Two standard geometries are considered: the annulus formed between horizontal concentric cylinders and a square enclosure. Each geometry emphasizes wall shear flow and complexities associated with turbulent or near turbulent boundary layers in contact with a motionless core fluid. Overall, the Fuego simulations for both laminar and turbulent flows compared well to measured data, for both geometries under investigation, and to a widely accepted commercial CFD code (FLUENT).
Singh, Sonam; Bhargava, R.
2014-01-01
This paper presents a numerical study of natural convection within a wavy enclosure heated via corner heating. The considered enclosure is a square enclosure with left wavy side wall. The vertical wavy wall of the enclosure and both of the corner heaters are maintained at constant temperature, Tc and Th, respectively, with Th > Tc while the remaining horizontal, bottom, top and side walls are insulated. A penalty element-free Galerkin approach with reduced gauss integration scheme for penalty terms is used to solve momentum and energy equations over the complex domain with wide range of parameters, namely, Rayleigh number (Ra), Prandtl number (Pr), and range of heaters in the x- and y-direction. Numerical results are represented in terms of isotherms, streamlines, and Nusselt number. It is observed that the rate of heat transfer depends to a great extent on the Rayleigh number, Prandtl number, length of the corner heaters and the shape of the heat transfer surface. The consistent performance of the adopted numerical procedure is verified by comparison of the results obtained through the present meshless technique with those existing in the literature. PMID:24672383
Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium
2013-01-01
The unsteady natural convection heat transfer of nanofluid along a vertical plate embedded in porous medium is investigated. The Darcy-Forchheimer model is used to formulate the problem. Thermal conductivity and viscosity models based on a wide range of experimental data of nanofluids and incorporating the velocity-slip effect of the nanoparticle with respect to the base fluid, i.e., Brownian diffusion is used. The effective thermal conductivity of nanofluid in porous media is calculated using copper powder as porous media. The nonlinear governing equations are solved using an unconditionally stable implicit finite difference scheme. In this study, six different types of nanofluids have been compared with respect to the heat transfer enhancement, and the effects of particle concentration, particle size, temperature of the plate, and porosity of the medium on the heat transfer enhancement and skin friction coefficient have been studied in detail. It is found that heat transfer rate increases with the increase in particle concentration up to an optimal level, but on the further increase in particle concentration, the heat transfer rate decreases. For a particular value of particle concentration, small-sized particles enhance the heat transfer rates. On the other hand, skin friction coefficients always increase with the increase in particle concentration and decrease in nanoparticle size. PMID:23391481
Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium
NASA Astrophysics Data System (ADS)
Uddin, Ziya; Harmand, Souad
2013-02-01
The unsteady natural convection heat transfer of nanofluid along a vertical plate embedded in porous medium is investigated. The Darcy-Forchheimer model is used to formulate the problem. Thermal conductivity and viscosity models based on a wide range of experimental data of nanofluids and incorporating the velocity-slip effect of the nanoparticle with respect to the base fluid, i.e., Brownian diffusion is used. The effective thermal conductivity of nanofluid in porous media is calculated using copper powder as porous media. The nonlinear governing equations are solved using an unconditionally stable implicit finite difference scheme. In this study, six different types of nanofluids have been compared with respect to the heat transfer enhancement, and the effects of particle concentration, particle size, temperature of the plate, and porosity of the medium on the heat transfer enhancement and skin friction coefficient have been studied in detail. It is found that heat transfer rate increases with the increase in particle concentration up to an optimal level, but on the further increase in particle concentration, the heat transfer rate decreases. For a particular value of particle concentration, small-sized particles enhance the heat transfer rates. On the other hand, skin friction coefficients always increase with the increase in particle concentration and decrease in nanoparticle size.
Natural convection in a differentially heated square enclosure with a solid polygon.
Roslan, R; Saleh, H; Hashim, I
2014-01-01
The aim of the present numerical study is to analyze the conjugate natural convection heat transfer in a differentially heated square enclosure containing a conductive polygon object. The left wall is heated and the right wall is cooled, while the horizontal walls are kept adiabatic. The COMSOL Multiphysics software is applied to solve the dimensionless governing equations. The governing parameters considered are the polygon type, 3 ≤ N ≤ ∞, the horizontal position, 0.25 ≤ X 0 ≤ 0.75, the polygon size, 0 ≤ A ≤ π/16, the thermal conductivity ratio, 0.1 ≤ K r ≤ 10.0, and the Rayleigh number, 10(3) ≤ Ra ≤ 10(6). The critical size of the solid polygon was found exists at low conductivities. The heat transfer rate increases with the increase of the size of the solid polygon, until it reaches its maximum value. Here, the size of the solid polygon is reaches its critical value. Further, beyond this critical size of the solid polygon, will decrease the heat transfer rate. PMID:24991643
Numerical and experimental studies of the natural convection within a horizontal cylinder
NASA Technical Reports Server (NTRS)
Stewart, R. B.; Sabol, A. P.; Boney, L. R.
1974-01-01
Numerical solutions are obtained for the quasi-compressible Navier-Stokes equations governing the time-dependent natural convection within a horizontal cylinder. The early flow development and wall heat transfer are obtained after a uniformly cold wall is imposed as a boundary condition on the cylinder. Results are also obtained for a time-varying cold wall as a boundary condition with windward explicit differencing used for the numerical solutions. The viscous truncation error associated with this scheme is controlled so that first-order accuracy is maintained in time and space. Experiments within a small-scale instrumented horizontal cylinder revealed the time development of the temperature distribution across the boundary layer as well as the decay of wall heat transfer with time. Agreement between temperature distributions obtained experimentally and numerically was generally good. The time decay of the dimensionless ratio of the Nusselt number to the one-fourth power of the Grashof number is found both numerically and experimentally, and good agreement is obtained between these two results over most of the cylinder wall.
Experimental study of natural convection melting of ice in salt solutions
Fang, L.J.; Cheung, F.B.; Linehan, J.H.; Pedersen, D.R.
1984-01-01
The solid-liquid interface morphology and the micro-physical process near the moving phase boundary during natural convection melting of a horizontal layer of ice by an overlying pool of salt solution were studied experimentally. A cathetometer which amplifies the interface region was used to measure the ice melting rate. Also measured were the temperature transients of the liquid pool. Within the temperature and the density ratio ranges explored, the ice melting rate was found to be very sensitive to the ratio of pool-to-ice melt density but independent of pool-to-ice temperature difference. By varying the density ratio, three different flow regimes and morphologies of the solid-liquid interface were observed, with melt streamers emanating from the crests of the wavy interface into the pool in all three cases. The measured wavelengths (spacing) between the streamers for four different pairs of materials were correlated with the density ratio and found to agree favorably with the predictions of Taylor instability theory.
NASA Technical Reports Server (NTRS)
Chang, C. J.; Brown, R. A.
1983-01-01
The roles of natural convection in the melt and the shape of the melt/solid interface on radial dopant segregation are analyzed for a prototype of vertical Bridgman crystal growth system by finite element methods that solve simultaneously for the velocity field in the melt, the shape of the solidification isotherm, and the temperature distribution in both phases. Results are presented for crystal and melt with thermophysical properties similar to those of gallium-doped germanium in Bridgman configurations with melt below (thermally destabilizing) and above (stabilizing) the crystal. Steady axisymmetric flow are classified according to Rayleigh number as either being nearly the growth velocity, having a weak cellular structure or having large amplitude cellular convention. The flows in the two Bridgman configurations are driven by different temperature gradients and are in opposite directions. Finite element calculations for the transport of a dilute dopant by these flow fields reveal radial segregation levels as large as sixty percent of the mean concentration. Segregation is found most severe at an intermediate value of Rayleigh number above which the dopant distribution along the interface levels as the intensity of the flow increases.
Natural convection inside a porous trapezoidal enclosure with wavy top surface
NASA Astrophysics Data System (ADS)
Eshon, Sehrina Muzahid; Mustafa, Rakib; Hasan, Mohammad Nasim
2016-07-01
The aim of the present work is analysis of heat flow during natural convection inside a trapezoidal porous cavity having wavy top surface. The bottom wall of the cavity is sinusoidally heated whereas the top wall is kept at constant low temperature and the side walls are maintained adiabatic. The physical problem has been represented mathematically by various governing equations along with the corresponding boundary conditions and hence solved by using Galerkin Finite Element scheme. Numerical simulations were carried out and the flow and thermal fields inside the cavity were analyzed in terms of distribution of isothermal lines (θ), streamlines (ψ) and heatlines (Π). To compare heat transfer characteristics local Nusselt number (Nu), and average Nusselt number (Nuavg) along the hot bottom wall are studied for various system parameters, such as, Rayleigh number (Ra) and Darcy number (Da). The range of Ra, Da considered in the present study are as follows; 104 ≤ Ra ≤ 106, 10-5 ≤ Da ≤ 10-3. The present study has been conducted for the trapezoidal cavity being filled with two different types of fluids; water (Pr = 7.2), and molten gallium (Pr = 0.026). It has been found that an increase in flow intensity and heat transfer occurs at higher Rayleigh number (Ra) and Darcy number (Da) whereas the effect of Prandtl number (Pr) is somewhat negligible.
Boyd, R.D.
1980-01-01
The natural convective heat transfer across an annulus with irregular boundaries was studied using a Mach-Zehnder interferometer. The annulus was formed by an inner hexagonal cylinder and an outer concentric circular cylinder. This configuration models, in two dimensions, a liquid metal fast breeder reactor spent fuel subassembly inside a shipping container. During the test, the annulus was filled with a single gas, either neon, air, argon, krypton, or xenon, at a pressure of about 0.5 MPa. From temperature measurements, both local and mean Nusselt numbers (Nu/sub ..delta../) at the surface of the inner cylinder were evaluated, with the mean Rayleigh number (anti Ra/sub ..delta../) varying from 4.54 x 10/sup 4/ to 0.915 x 10/sup 6/ (..delta.. is the local gas width). The data correlation for the mean Nusselt and Rayleigh numbers is given by anti Nu/sub ..delta../ = 0.183 anti Ra/sub ..delta..//sup 0/ /sup 310/.
Natural convection heat transfer from a horizontal wavy surface in a porous enclosure
Murthy, P.V.S.N.; Kumar, B.V.R.; Singh, P.
1997-02-07
The effect of surface undulations on the natural convection heat transfer from an isothermal surface in a Darcian fluid-saturated porous enclosure has been numerically analyzed using the finite element method on a graded nonuniform mesh system. The flow-driving Rayleigh number Ra together with the geometrical parameters of wave amplitude a, wave phase {phi}, and the number of waves N considered in the horizontal dimension of the cavity are found to influence the flow and heat transfer process in the enclosure. For Ra around 50 and above, the phenomenon of flow separation and reattachment is noticed on the walls of the enclosure. A periodic shift in the reattachment point from the bottom wall to the adjacent walls in the clockwise direction, leading to the manifestation of cycles of unicellular and bicellular clockwise and counterclockwise flows, is observed, with the phase varying between 0{degree} and 350{degree}. The counterflow in the secondary circulation zone is intensified with the increase in the value of Ra. The counterflow on the wavy wall hinders the heat transfer into the system. An increase in either wave amplitude or the number of waves considered per unit length decreases the global heat flux into the system. Only marginal changes in global heat flux are noticed with increasing Ra. On the whole, the comparison of global heat flux results in the wavy wall case with those of the horizontal flat wall case shows that, in a porous enclosure, the wavy wall reduces the heat transfer into the system.
Natural Convection in a Differentially Heated Square Enclosure with a Solid Polygon
Roslan, R.; Saleh, H.; Hashim, I.
2014-01-01
The aim of the present numerical study is to analyze the conjugate natural convection heat transfer in a differentially heated square enclosure containing a conductive polygon object. The left wall is heated and the right wall is cooled, while the horizontal walls are kept adiabatic. The COMSOL Multiphysics software is applied to solve the dimensionless governing equations. The governing parameters considered are the polygon type, 3 ≤ N ≤ ∞, the horizontal position, 0.25 ≤ X 0 ≤ 0.75, the polygon size, 0 ≤ A ≤ π/16, the thermal conductivity ratio, 0.1 ≤ K r ≤ 10.0, and the Rayleigh number, 103 ≤ Ra ≤ 106. The critical size of the solid polygon was found exists at low conductivities. The heat transfer rate increases with the increase of the size of the solid polygon, until it reaches its maximum value. Here, the size of the solid polygon is reaches its critical value. Further, beyond this critical size of the solid polygon, will decrease the heat transfer rate. PMID:24991643
Kim, Sung-Jin; Wang, Fang; Burns, Mark A.; Kurabayashi, Katsuo
2009-01-01
Micromixing is a crucial step for biochemical reactions in microfluidic networks. A critical challenge is that the system containing micromixers needs numerous pumps, chambers, and channels not only for the micromixing but also for the biochemical reactions and detections. Thus, a simple and compatible design of the micromixer element for the system is essential. Here, we propose a simple, yet effective, scheme that enables micromixing and a biochemical reaction in a single microfluidic chamber without using any pumps. We accomplish this process by using natural convection in conjunction with alternating heating of two heaters for efficient micromixing, and by regulating capillarity for sample transport. As a model application, we demonstrate micromixing and subsequent polymerase chain reaction (PCR) for an influenza viral DNA fragment. This process is achieved in a platform of a microfluidic cartridge and a microfabricated heating-instrument with a fast thermal response. Our results will significantly simplify micromixing and a subsequent biochemical reaction that involves reagent heating in microfluidic networks. PMID:19419189
Numerical modeling of a lead melting front under the influence of natural convection
NASA Astrophysics Data System (ADS)
Coulson, Ryan
This work presents a study of the Effective Heat Capacity (EHC) method applied to the numerical simulation of the interface between a solid and a naturally convecting pool of liquid lead under pseudo-steady-state and transient conditions using COMSOL Multiphysics. The EHC method is implemented as a temperature dependent pseudo-material with discontinuities in the heat capacity, dynamic viscosity, and thermal conductivity to simulate the melting front. The approach is validated with experimental data for a vertical melting front between two walls. The hot wall heat flux and the cold wall temperature are adjusted until the numerical model that best matches the experimental data is found. The best case boundary conditions then serve as the control in subsequent studies of key modeling parameters, including the mesh refinement, the discontinuity width and location, the maximum allowable time step, and the jump in dynamic viscosity. An extra fine mesh with a maximum element size of 1.24 * 10--3 m2 results in the most accurate model. For pseudo-steady-state models the width and location of the discontinuity does not affect the results substantially but it does affect the settling times and transient behavior of the models. The maximum allowable time step is dependent on the mesh resolution. The behavior of the pseudo-solid transitions from solid to liquid when the dynamic viscosity is less then 1.0 * 104 Pa · s.
Study of natural convection cooling of a nanofluid subjected to a magnetic field
NASA Astrophysics Data System (ADS)
Mahmoudi, Ahmed; Mejri, Imen; Omri, Ahmed
2016-06-01
This paper presents a numerical study of natural convection cooling of water-Al2O3 nanofluid by two heat sinks vertically attached to the horizontal walls of a cavity subjected to a magnetic field. The left wall is hot, the right wall is cold, while the horizontal walls are insulated. Lattice Boltzmann method (LBM) is applied to solve the coupled equations of flow and temperature fields. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number of the base fluid, Ra =103 to 105, Hartmann number varied from Ha = 0 to 60 and the solid volume fraction of nanoparticles between ϕ = 0 and 6%. In order to investigate the effect of heat sinks location, three different configurations of heat sinks are considered. The effects of Rayleigh numbers, Hartmann number and heat sinks location on the streamlines, isotherms, Nusselt number are investigated. Results show that the heat transfer rate decreases with the increase of Hartmann number and increases with the rise of Rayleigh number. In addition it is observed that the average Nusselt number increases linearly with the increase of the nanoparticles solid volume fraction. Also, results show that the heat sinks positions greatly influence the heat transfer rate depending on the Hartmann number, Rayleigh number and nanoparticle solid volume fraction.
Natural convection from a heat source in a top-vented enclosure
Myrum, T.A. )
1990-08-01
Natural convection from a heated disk situated at the bottom of a top-vented enclosure was studied experimentally. The experiments were performed in water (Pr {congruent} 5) for parametric variations of the vent opening size, inner enclosure height, and disk-to-enclosure-wall temperature difference (Rayleigh number). For comparison purposes, baseline data were obtained for an unvented enclosure and for the infinite case (no enclosure). The heat transfer data were supplemented by cross-vent temperature measurements and by flow visualization using the thymol-blue electrochemical technique. The experiments demonstrated that, for the range of parameters considered, the average Nusselt numbers could be correlate using a single correlation to within 8%. It was also found that the presence of the enclosure (vented or unvented) acted to reduce the Nusselt number, especially at the lower Rayleigh numbers. Flow visualization experiments revealed an unstable flow pattern in the vicinity of the vent that fluctuated in a nonperiodic manner between four basic modes. Temperature measurements revealed asymmetric mean cross-vent temperature profiles, with the mean temperature level increasing with decreasing vent size. The intensity of the temperature fluctuations in the vent opening also increased with decreasing vent size.
N.D. Francis, Jr; M.T. Itamura; S.W. Webb; D.L. James
2002-10-01
The objective of this heat transfer and fluid flow study is to assess the ability of a computational fluid dynamics (CFD) code to reproduce the experimental results, numerical simulation results, and heat transfer correlation equations developed in the literature for natural convection heat transfer within the annulus of horizontal concentric cylinders. In the literature, a variety of heat transfer expressions have been developed to compute average equivalent thermal conductivities. However, the expressions have been primarily developed for very small inner and outer cylinder radii and gap-widths. In this comparative study, interest is primarily focused on large gap widths (on the order of half meter or greater) and large radius ratios. From the steady-state CFD analysis it is found that the concentric cylinder models for the larger geometries compare favorably to the results of the Kuehn and Goldstein correlations in the Rayleigh number range of about 10{sup 5} to 10{sup 8} (a range that encompasses the laminar to turbulent transition). For Rayleigh numbers greater than 10{sup 8}, both numerical simulations and experimental data (from the literature) are consistent and result in slightly lower equivalent thermal conductivities than those obtained from the Kuehn and Goldstein correlations.
NASA Astrophysics Data System (ADS)
Shyam, Radhe; Chhabra, R. P.
2013-06-01
In this work, free convective flow and heat transfer in power-law fluids from two heated square cylinders in tandem arrangement is studied. The governing differential equations have been solved numerically over wide ranges of Grashof number, 10 ≤ Gr ≤ 1,000, Prandtl number, 0.71 ≤ Pr ≤ 50 and power-law index, 0.4 ≤ n ≤ 1.8. In order to elucidate the extent of inter-cylinder interaction, the non-dimensional inter-cylinder spacing, L/d is varied in the range, 2 ≤ L/d ≤ 6. The results are interpreted in terms of streamline and isotherm contours in the proximity of two cylinders to gain physical insights into the nature of flow. At the next level, the distribution of the local Nusselt number along the surface of the cylinders is presented. At the minimum inter-cylinder spacing due to the intense interference, the downstream cylinder contributes much less to the overall heat transfer whereas it experiences much higher hydrodynamic drag than the upstream cylinder. Broadly, the local and average Nusselt number for both cylinders show a positive dependence on both Grashof and Prandtl numbers. Also, all else being equal, shear-thinning fluid behaviour promotes the rate of heat transfer and shear-thickening fluid behaviour impedes it. Finally, the present numerical results have been correlated by using simple forms of equations thereby enabling the estimation of Nusselt number in a new application.
NASA Astrophysics Data System (ADS)
Miranda Fuentes, Johann; Kuznik, Frédéric; Johannes, Kévyn; Virgone, Joseph
2014-01-01
This article presents a new model to simulate melting with natural convection of a phase change material. For the phase change problem, the enthalpy formulation is used. Energy equation is solved by a finite difference method, whereas the fluid flow is solved by the multiple relaxation time (MRT) lattice Boltzmann method. The model is first verified and validated using the data from the literature. Then, the model is applied to a tall brick filled with a fatty acid eutectic mixture and the results are presented. The main results are (1) the spatial convergence rate is of second order, (2) the new model is validated against data from the literature and (3) the natural convection plays an important role in the melting process of the fatty acid mixture considered in our work.
Spatial Durbin model analysis macroeconomic loss due to natural disasters
NASA Astrophysics Data System (ADS)
Kusrini, D. E.; Mukhtasor
2015-03-01
Magnitude of the damage and losses caused by natural disasters is huge for Indonesia, therefore this study aimed to analyze the effects of natural disasters for macroeconomic losses that occurred in 115 cities/districts across Java during 2012. Based on the results of previous studies it is suspected that it contains effects of spatial dependencies in this case, so that the completion of this case is performed using a regression approach to the area, namely Analysis of Spatial Durbin Model (SDM). The obtained significant predictor variable is population, and predictor variable with a significant weighting is the number of occurrences of disasters, i.e., disasters in the region which have an impact on other neighboring regions. Moran's I index value using the weighted Queen Contiguity also showed significant results, meaning that the incidence of disasters in the region will decrease the value of GDP in other.
NASA Astrophysics Data System (ADS)
Somavilla Cabrillo, Raquel; Schauer, Ursula; Budeus, Gedeon; Latarius, Katrin
2015-04-01
There are only a few sites where the deep ocean is ventilated from the surface. The responsible process known as deep convection is recognized to be a key process on the Earth's climate system, but still it is scarcely observed, and its good representation by global oceanographic and climate models remains unclear. In the Arctic Ocean, the halt of deep convection in the Greenland Sea during the last three decades serves as a natural experiment to study: (1) the conditions that drive the occurrence or not of deep convection and (2) the effects of the halt of deep convection on the thermohaline properties of the deep water masses and circulation both locally and in adjacent ocean basins. Combining oceanic and atmospheric in-situ data together with reanalysis data, we observe that not only on average the winter net heat losses from the ocean to the atmosphere (Qo) have decreased during the last three decades in the Greenland Sea (ΔQo (before the 1980s- after the 1980s) = 25 Wm-2) but the intensity and number of strong cooling events (Qo ≥ 800Wm-2). This last value for convection reaching 2000 m in the Greenland Sea seems critical to make the mixed layer deepening from being a non-penetrative process to one arrested by baroclinic instabilities. Besides, changes in the wind stress curl and preconditioning for deep convection have occurred, hindering also the occurrence of deep convection. Concerning the effects of the halt of deep convection, hydrographic data reveal that the temperature between 2000 meters depth and the sea floor has risen by 0.3 °C in the last 30 years, which is ten times higher than the temperature increase in the global ocean on average, and salinity rose by 0.02 because import of relatively warm and salty Arctic Ocean deep waters continued. The necessary transports to explain the observed changes suggest an increase of Arctic Ocean deep water transport that would have compensated the decrease in deep water formation rate after the 1980s. The
Supersonic Jet Mixing Enhancement due to Natural and Induced Screech
NASA Technical Reports Server (NTRS)
Rice, E. J.; Raman, G.
1999-01-01
Outline of presentation are: (1) Review of experimental apparatus. (2) Effect of natural screech of jet mixing; converging nozzle, underexpanded jet and converging-diverging nozzle, design pressure.(3) Effect of induced screech on jet mixing: produced by paddles in shear layers, similar to edge tones, and converging-diverging nozzle, design pressure. (4) Effect of paddles on near-field jet noise. and (5) Concluding remarks.
NASA Astrophysics Data System (ADS)
Hyland, P.; Biggerstaff, M. I.; Uman, M. A.; Hill, J. D.; Krehbiel, P. R.; Rison, W.
2012-12-01
During the summers of 2011-2012, a C-band polarimetric Shared Mobile Atmospheric Research and Teaching (SMART) radar from the University of Oklahoma was deployed to Keystone Heights, FL to study the relationship between cloud structure and the propagation of triggered and natural lightning channels. The radar was operated in Range-Height-Indicator (RHI) volume scanning mode over a narrow azimuthal sector that provided high spatial vertical resolution every 90 seconds over the rocket launch facility at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, FL. In this presentation, we will focus on observations collected in 2011. Seven successful triggers (with return strokes) out of 20 attempts were sampled by the SMART-R from June to August. Most of the trigger attempts occurred during the dissipating stages of convection with steady ground electric field values. Specific differential phase (KDP) showed evidence of ice crystal alignment due to strong electric fields within the upper portions of the convection over ICLRT around the time of launch attempts. Consecutive RHI sweeps over ICLRT revealed changes in KDP that suggested the building of electric fields and subsequent relaxation after a triggered flash. KDP signatures relative to other radar variables will also be investigated to determine the microphysical and convective nature of the storms in which natural and triggered lightning strikes occurred. Lightning Mapping Array (LMA) sources of the triggered flash channels showed a preference for horizontal propagation just above the radar bright band associated with the melting layer. This finding agrees with several past studies that used balloon soundings and found intense layers of charge near the 0°C isotherm. The propagation path also seemed to be related to the vertical distribution of KDP in some of the triggered flashes. A preferred path through areas of generally positive values of KDP suggests that triggered lightning
Geohazards due to technologically enhanced natural radioactive wastes
NASA Astrophysics Data System (ADS)
Steinhäusler, Friedrich
2010-10-01
Human activities can modify naturally occurring radioactive material (NORM) into technologically enhanced naturally occurring radioactive material (TENORM) as a result of industrial activities. Most of these industries do not intend to work with radioactive material a priori. However, whenever a uranium- or thorium-bearing mineral is exploited, NORM-containing by-products and TENORM-contaminated wastes are created. The industrial use of NORM can result in non-negligible radiation exposure of workers and members of the public, exceeding by far the radiation exposure from nuclear technologies. For decades, millions of tons of NORM have been released into the environment without adequate control or even with the lack of any control. Various technologies have been developed for the control of NORM wastes. The paper discusses the merits and limitations of different NORM-waste management techniques, such as Containment, Immobilization, Dilution/Dispersion, Natural Attenuation, Separation, and - as an alternative - Cleaner Technologies. Each of these methods requires a comprehensive risk-benefit-cost analysis.
Natural Convection in a rotating multilayer spherical shell system with self gravity
NASA Astrophysics Data System (ADS)
Lira Rangel, Francisco Javier; Avila Rodriguez, Ruben; Cabello Gonzalez, Ares
2015-11-01
The onset of thermal convection in rotating multilayer spherical shells is investigated. Similar to the the terrestrial planets structure (core-mantle-ocean/atmosphere), the system is composed of three concentric shells. The first spherical gap has an aspect ratio equal to 0.35, the middle gap has an aspect ratio of 0.44 and the third gap has an aspect ratio equal to 0.8.The inner and the outer spherical gaps confine Boussinesq fluids while the middle spherical gap is treated as a thermal conductor solid. The investigation shows the Taylor and Rayleigh numbers that allows the onset of thermal convection in the two fluid gaps. Additionally the convective patterns, the temperature fields and the heat fluxes are presented in the most inner and outer spherical gaps. Convection is driven by the temperature difference between the most inner and outer spheres and a gravitational field which varies like 1 / r and 1 /r3 . The fluid equations are solved by using the spectral element method (SEM) and the mesh is generated by using the cubed-sphere algorithm to avoid the singularity at the poles. To the knowledge of the authors the convection-conduction-convection problem presented in this paper has not been investigated previously. This project is sponsored by PAPIIT DGAPA UNAM.
NASA Astrophysics Data System (ADS)
Chen, Wen Ruey
2015-11-01
This paper studies the steady laminar natural convection of micropolar fluids in the complex annuli between the inner sphere and outer vertical cylinder to present a numerical analysis of the flow and heat transfer characteristics with buoyancy effects. Computations were carried out systematically by the several different parameters of geometric ratio, micropolar material parameter and Rayleigh number to determine the average Nusselt number and the skin friction coefficient on the flow and the thermal fields.
NASA Astrophysics Data System (ADS)
Mellah, S.; Ben-Cheikh, N.; Ben-Beya, B.; Lili, T.
2015-03-01
In the present study, a finite volume computational procedure and a full multigrid technique are used to investigate laminar natural convection in partially heated cubic enclosures. Effects of heated strip disposition in the enclosure on the heat transfer rate are studied. Results are presented in the form of flow lines, isotherms plots, average Nusselt numbers, and average temperature on the heat source surface. Statistical distributions of temperature and average velocity fields and their root-mean-square values are presented and discussed.
Mojtabi, A. ); Charrier-Mojtabi, M.C. )
1992-11-01
Natural convection flows in a cylindrical annular porous medium have been studied extensively over the last twenty years. The main results concern the two-dimensional steady state. Several techniques have been developed, such as the finite difference method (Caltagirone, 1976), the finite element method (Mojtabi et al., 1987), and the spectral method (Charrier-Mojtabi and Caltagirone, 1980; Rao et al., 1987; Himasekhar and Bau, 1988; Charrier-Mojtabi et al., 1991). 6 refs., 3 tabs.
Soucasse, L.; Rivière, Ph.; Soufiani, A.; Xin, S.
2014-02-15
The transition to unsteadiness and the dynamics of weakly turbulent natural convection, coupled to wall or gas radiation in a differentially heated cubical cavity with adiabatic lateral walls, are studied numerically. The working fluid is air with small contents of water vapor and carbon dioxide whose infrared spectral radiative properties are modelled by the absorption distribution function model. A pseudo spectral Chebyshev collocation method is used to solve the flow field equations and is coupled to a direct ray tracing method for radiation transport. Flow structures are identified by means of either the proper orthogonal decomposition or the dynamic mode decomposition methods. We first retrieve the classical mechanism of transition to unsteadiness without radiation, characterized by counter-rotating streamwise-oriented vortices generated at the exit of the vertical boundary layers. Wall radiation through a transparent medium leads to a homogenization of lateral wall temperatures and the resulting transition mechanism is similar to that obtained with perfectly conducting lateral walls. The transition is due to an unstable stratification upstream the vertical boundary layers and is characterized by periodically oscillating transverse rolls of axis perpendicular to the main flow. When molecular gas radiation is accounted for, no periodic solution is found and the transition to unsteadiness displays complex structures with chimneys-like rolls whose axes are again parallel to the main flow. The origin of this instability is probably due to centrifugal forces, as suggested previously for the case without radiation. Above the transition to unsteadiness, at Ra = 3 × 10{sup 8}, it is shown that both wall and gas radiation significantly intensify turbulent fluctuations, decrease the thermal stratification in the core of the cavity, and increase the global circulation.
NASA Astrophysics Data System (ADS)
Farajzadeh, R.; Ranganathan, P.; Zitha, P. L. J.; Bruining, J.
2011-03-01
The efficiency of mixing in density-driven natural-convection is largely governed by the aquifer permeability, which is heterogeneous in practice. The character (fingering, stable mixing or channeling) of flow-driven mixing processes depends primarily on the permeability heterogeneity character of the aquifer, i.e., on its degree of permeability variance (Dykstra-Parsons coefficient) and the correlation length. Here we follow the ideas of Waggoner et al. (1992) [13] to identify different flow regimes of a density-driven natural convection flow by numerical simulation. Heterogeneous fields are generated with the spectral method of Shinozuka and Jan (1972) [13], because the method allows the use of power-law variograms. In this paper, we extended the classification of Waggoner et al. (1992) [13] for the natural convection phenomenon, which can be used as a tool in selecting optimal fields with maximum transfer rates of CO 2 into water. We observe from our simulations that the rate of mass transfer of CO 2 into water is higher for heterogeneous media.
NASA Astrophysics Data System (ADS)
Kamajaya, Ketut; Umar, Efrizon; Sudjatmi, K. S.
2012-06-01
This study focused on natural convection heat transfer using a vertical rectangular sub-channel and water as the coolant fluid. To conduct this study has been made pipe heaters are equipped with thermocouples. Each heater is equipped with five thermocouples along the heating pipes. The diameter of each heater is 2.54 cm and 45 cm in length. The distance between the central heating and the pitch is 29.5 cm. Test equipment is equipped with a primary cooling system, a secondary cooling system and a heat exchanger. The purpose of this study is to obtain new empirical correlations equations of the vertical rectangular sub-channel, especially for the natural convection heat transfer within a bundle of vertical cylinders rectangular arrangement sub-channels. The empirical correlation equation can support the thermo-hydraulic analysis of research nuclear reactors that utilize cylindrical fuel rods, and also can be used in designing of baffle-free vertical shell and tube heat exchangers. The results of this study that the empirical correlation equations of natural convection heat transfer coefficients with rectangular arrangement is Nu = 6.3357 (Ra.Dh/x)0.0740.
An evaluation of gas transfer velocity parameterizations during natural convection using DNS
NASA Astrophysics Data System (ADS)
Fredriksson, Sam T.; Arneborg, Lars; Nilsson, Hâkan; Zhang, Qi; Handler, Robert A.
2016-02-01
Direct numerical simulations (DNS) of free surface flows driven by natural convection are used to evaluate different methods of estimating air-water gas exchange at no-wind conditions. These methods estimate the transfer velocity as a function of either the horizontal flow divergence at the surface, the turbulent kinetic energy dissipation beneath the surface, the heat flux through the surface, or the wind speed above the surface. The gas transfer is modeled via a passive scalar. The Schmidt number dependence is studied for Schmidt numbers of 7, 150 and 600. The methods using divergence, dissipation and heat flux estimate the transfer velocity well for a range of varying surface heat flux values, and domain depths. The two evaluated empirical methods using wind (in the limit of no wind) give reasonable estimates of the transfer velocity, depending however on the surface heat flux and surfactant saturation. The transfer velocity is shown to be well represented by the expression, ks=A |Bν|1/4 Sc-n, where A is a constant, B is the buoyancy flux, ν is the kinematic viscosity, Sc is the Schmidt number, and the exponent n depends on the water surface characteristics. The results suggest that A=0.39 and n≈1/2 and n≈2/3 for slip and no-slip boundary conditions at the surface, respectively. It is further shown that slip and no-slip boundary conditions predict the heat transfer velocity corresponding to the limits of clean and highly surfactant contaminated surfaces, respectively. This article was corrected on 22 MAR 2016. See the end of the full text for details.
NASA Astrophysics Data System (ADS)
Aklouche Benouaguef, S.; Zeghmati, B.; Bouhadef, K.; Daguenet, M.
In this study, we investigated numerically the transient natural convection in a square cavity with two horizontal adiabatic sides and vertical walls composed of two regions of same size maintained at different temperatures. The flow has been assumed to be laminar and bi-dimensional. The governing equations written in dimensionless form and expressed in terms of stream function and vorticity, have been solved using the Alternating Direction Implicit (ADI) method and the GAUSS elimination method. Calculations were performed for air (Pr = 0.71), with a Rayleigh number varying from 2.5x105 to 3.7x106. We analysed the effect of the Rayleigh number on the route to the chaos of the system. The first transition has been found from steady-state to oscillatory flow and the second is a subharmonic bifurcation as the Rayleigh number is increased further. For sufficiently small Rayleigh numbers, present results show that the flow is characterized by four cells with horizontal and vertical symmetric axes. The attractor bifurcates from a stable fixed point to a limit cycle for a Rayleigh number varying from 2.5x105 to 2.51x105. A limit cycle settles from Ra = 3x105 and persists until Ra = 5x105. At a Rayleigh number of 2.5x105 the temporal evolution of the Nusselt number Nu(t) was stationary. As the Rayleigh number increases, the flow becomes unstable and bifurcates to a time periodic solution at a critical Rayleigh number between 2.5x105 and 2.51x105. After the first HOPF bifurcation at Ra = 2.51x105, the oscillatory flow undergoes several bifurcations and ultimately evolves into a chaotic flow.
Marcus, F. A.; Beyer, P.; Fuhr, G.; Monnier, A.; Benkadda, S.
2014-08-15
With the resonant magnetic perturbations (RMPs) consolidating as an important tool to control the transport barrier relaxation, the mechanism on how they work is still a subject to be clearly understood. In this work, we investigate the equilibrium states in the presence of RMPs for a reduced MHD model using 3D electromagnetic fluid numerical code with a single harmonic RMP (single magnetic island chain) and multiple harmonics RMPs in cylindrical and toroidal geometry. Two different equilibrium states were found in the presence of the RMPs with different characteristics for each of the geometries used. For the cylindrical geometry in the presence of a single RMP, the equilibrium state is characterized by a strong convective radial thermal flux and the generation of a mean poloidal velocity shear. In contrast, for toroidal geometry, the thermal flux is dominated by the magnetic flutter. For multiple RMPs, the high amplitude of the convective flux and poloidal rotation are basically the same in cylindrical geometry, but in toroidal geometry the convective thermal flux and the poloidal rotation appear only with the islands overlapping of the linear coupling between neighbouring poloidal wavenumbers m, m – 1, and m + 1.
Evolutionary stasis in pollen morphogenesis due to natural selection.
Matamoro-Vidal, Alexis; Prieu, Charlotte; Furness, Carol A; Albert, Béatrice; Gouyon, Pierre-Henri
2016-01-01
The contribution of developmental constraints and selective forces to the determination of evolutionary patterns is an important and unsolved question. We test whether the long-term evolutionary stasis observed for pollen morphogenesis (microsporogenesis) in eudicots is due to developmental constraints or to selection on a morphological trait shaped by microsporogenesis: the equatorial aperture pattern. Most eudicots have three equatorial apertures but several taxa have independently lost the equatorial pattern and have microsporogenesis decoupled from aperture pattern determination. If selection on the equatorial pattern limits variation, we expect to see increased variation in microsporogenesis in the nonequatorial clades. Variation of microsporogenesis was studied using phylogenetic comparative analyses in 83 species dispersed throughout eudicots including species with and without equatorial apertures. The species that have lost the equatorial pattern have highly variable microsporogenesis at the intra-individual and inter-specific levels regardless of their pollen morphology, whereas microsporogenesis remains stable in species with the equatorial pattern. The observed burst of variation upon loss of equatorial apertures shows that there are no strong developmental constraints precluding variation in microsporogenesis, and that the stasis is likely to be due principally to selective pressure acting on pollen morphogenesis because of its implication in the determination of the equatorial aperture pattern. PMID:26248868
Natural frequency changes due to damage in composite beams
NASA Astrophysics Data System (ADS)
Negru, I.; Gillich, G. R.; Praisach, Z. I.; Tufoi, M.; Gillich, N.
2015-07-01
Transversal cracks in structures affect their stiffness as well as the natural frequency values. This paper presents a research performed to find the way how frequencies of sandwich beams change by the occurrence of damage. The influence of the locally stored energy, for ten transverse vibration modes, on the frequency shifts is derived from a study regarding the effect of stiffness decrease, realized by means of the finite element analysis. The relation between the local value of the bending moment and the frequency drop is exemplified by a concrete case. It is demonstrated that a reference curve representing the damage severity exists whence any frequency shift is derivable in respect to damage depth and location. This curve is obtained, for isotropic and multi-layer beams as well, from the stored energy (i.e. stiffness decrease), and is similar to that attained using the stress intensity factor in fracture mechanics. Also, it is proved that, for a given crack, irrespective to its depth, the frequency drop ratio of any two transverse modes is similar. This permitted separating the effect of damage location from that of its severity and to define a Damage Location Indicator as a sequence of squared of the normalized mode shape curvatures.
The nature and geochemical role of density convection in the East European evaporite basin
NASA Astrophysics Data System (ADS)
Popov, V. G.; Abdrakhmanov, R. F.; Puchkov, V. N.
2015-09-01
The role of the gravitation factor in the formation of the hydrostratisphere in the East European evaporate basin is considered. The features of Paleozoic sedimentation are characterized, as are the mechanism and litho-hydrogeochemical effects of the density concentration convection of mother brines of the Low-Permian salt-bearing basin to the underlying terrigenous-carbonate Paleozoic and Proterozoic layers. It is shown that the convection processes resulted in the formation of multicomponent calcium chloride brines prevailing in the sedimentary layer of the basis; they also caused the metasomatic dolomitization of limestones with growth of their filtration capacity.
Porous media flow problems: natural convection and one-dimensional flow of a non-Newtonian fluid
Walker, K.L.
1980-01-01
Two fluid problems in porous media are studied: natural convection of a Newtonian fluid and one-dimensional flow of a non-Newtonian fluid. Convection in a rectangular porous cavity driven by heating in the horizontal is analyzed by a number of different techniques which yield a fairly complete description of the 2-dimensional solutions. The solutions are governed by 2 dimensionless parameters: the Darcy-Rayleigh number R and cavity aspect ratio A. The flow behavior of a dilute solution of polyacrylamide in corn syrup flowing through porous media also is studied. Measurements of the pressure drop and flow rate are made for the solution flowing through a packed bed of glass beads. At low velocities the pressure drop as a function of velocity is the same as that for a Newtonian fluid of equal viscosity. At higher flow rates the non-Newtonian fluid exhibited significantly higher pressure drops than a Newtonian fluid.
NASA Astrophysics Data System (ADS)
Dhote, Yogesh; Thombre, Shashikant
2016-05-01
This paper presents the thermal performance of the proposed double flow natural convection solar air heater with in-built liquid (oil) sensible heat storage. Unused engine oil was used as thermal energy storage medium due to its good heat retaining capacity even at high temperatures without evaporation. The performance evaluation was carried out for a day of the month March for the climatic conditions of Nagpur (India). A self reliant computational model was developed using computational tool as C++. The program developed was self reliant and compute the performance parameters for any day of the year and would be used for major cities in India. The effect of change in storage oil quantity and the inclination (tilt angle) on the overall efficiency of the solar air heater was studied. The performance was tested initially at different storage oil quantities as 25, 50, 75 and 100 l for a plate spacing of 0.04 m with an inclination of 36o. It has been found that the solar air heater gives the best performance at a storage oil quantity of 50 l. The performance of the proposed solar air heater is further tested for various combinations of storage oil quantity (50, 75 and 100 l) and the inclination (0o, 15o, 30o, 45o, 60o, 75o, 90o). It has been found that the proposed solar air heater with in-built oil storage shows its best performance for the combination of 50 l storage oil quantity and 60o inclination. Finally the results of the parametric study was also presented in the form of graphs carried out for a fixed storage oil quantity of 25 l, plate spacing of 0.03 m and at an inclination of 36o to study the behaviour of various heat transfer and fluid flow parameters of the solar air heater.
Nature of Convective Instabilities in Explosive Volcanic Clouds Inferred by Analog Experiments
NASA Astrophysics Data System (ADS)
Carazzo, G.; Jellinek, M.
2009-12-01
Understanding the mechanisms controlling the dynamics of a volcanic cloud generated by the rise and spread of an explosive eruption is a central issue in volcanology for the assessment of associated hazards. The last decades have seen the development of sophisticated numerical simulations and particle-tracking models with the aim of better understanding and forecasting the transport and sedimentation of the solid fraction in the cloud. In these models, the lateral spreading of an umbrella cloud is strongly influenced by stratospheric winds and its loss of mass with time is assumed be controlled by the opposing effects of particles settling and turbulent diffusion. However, recent observations suggest that additional spatially complex and time-dependent phenomena may govern the dynamics in a volcanic cloud. Here we investigate the mechanisms governing the lateral transport and residence time of ash in the atmosphere using analog experiments. In these experiments, a mixture of small particles and fresh water is injected upwards at a fixed rate into a chamber containing a salt water layer beneath a fresh water layer. Our results show that the formation of a thin particle-rich layer at the base of the cloud (a particle boundary layer) can dramatically modify its dynamics and lead to a variety of behaviors not detected previously. Depending on the conditions imposed at the source and on the magnitude of the density gradient in the environment, the cloud may either break up into discrete layers or release material as dense batches of particle-laden fluid. In natural eruptions the formation of this dense layer is found to be mainly controlled by the grain size distribution and to a lesser extent the altitude reached by the plume. An exhaustive review of field data available in the literature suggests that several past eruptions meet the required conditions to form a particle boundary layer. This study shows that large convective instabilities induced by the presence of a
Eulerian-Lagrangian solution of the convection-dispersion equation in natural co-ordinates.
Cheng, R.T.; Casulli, V.; Milford, S.N.
1984-01-01
The vast majority of numerical investigations of transport phenomena use an Eulerian formulation for the convenience that the computational grids are fixed in space. An Eulerian-Lagrangian method (ELM) of solution for the convection-dispersion equation is discussed and analyzed. The ELM uses the Lagrangian concept in an Eulerian computational grid system.-from Authors
NASA Technical Reports Server (NTRS)
Larsen, Tine B.; Yuen, David A.; Malevsky, Andrei V.
1995-01-01
We have studied 2-D time-dependent convection for a rheology which is both non-Newtonian and temperature-dependent. Strong effects associated with viscous heating are found in the downwelling sheets, which are heated on both sides with an intensity around O(100) times the chondritic value. The magnitude of viscous heating increases strongly with the subduction speed. The slab interior is weakened by viscous heating and slab breakoff then takes place. This process provides a self-regulating mechanism for governing the speed of intact slabs able to reach the deep mantle. Timescales associated with viscous heating are quite short, a few million years. Internal heating by radioactivity decreases the amount of shear heating.