Science.gov

Sample records for natural convection energy

  1. Theoretical analysis of solar-driven natural convection energy conversion systems

    SciTech Connect

    Jacobs, E.W.; Lasier, D.D.

    1984-01-01

    This report presents a theoretical study of solar-powered natural convection tower (chimney) performance. Both heated and cooled towers are analyzed; the latter uses evaporating water as the cooling mechanism. The results, which are applicable to any open-cycle configuration, show that the ideal conversion efficiencies of both heated and cooled natural convection towers are linear functions of height. The performance of a heated tower in an adiabatic atmosphere ideally approaches the Carnot efficiency limit of approx. = 3.4%/km (1.0%/1000 ft). Including water pumping requirements, the ideal limit to cooled tower performance is approx. = 2.75%/km (0.85%/1000 ft). Ambient atmospheric conditions such as vertical temperature gradient (lapse rate) and relative humidity can have significantly adverse effects on natural convection tower performance. The combined effects of lapse rate and ambient relative humidity are especially important to cooled natural convection towers.

  2. Heat distribution by natural convection

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.

  3. Bifurcations and unfoldings in natural convection

    SciTech Connect

    Decker, W.J.; Dorning, J.

    1996-12-31

    Extensive numerical studies of bifurcations and unfoldings have been carried out for two important problems in natural convection. These are (a) the Rayleigh-Benard convection (RBC) problem-a rectangular cavity, with insulated sidewalls, heated at constant uniform temperature along the bottom and cooled at constant uniform temperature along the top; and (b) the volumetric heating convection (VHC) problem - a rectangular cavity, with insulated sidewalls and bottom, heated by a constant uniform volumetric heat source and cooled at constant uniform temperature along the top. The information available in the literature on RBC was used to evaluate and justify the approximations made in the current research, which has shed additional light on nonlinear phenomena in RBC and led to new basic information on the bifurcations and unfoldings that occur in VHC for which there were essentially no previous results available. Both problems arise in many important technological and scientific contexts, including reactor safety analysis and meteorological phenomena. In particular, VHC is relevant to the development of an understanding of the natural convective motion driven by the radioactive decay heat in the molten core mixture (corium) in the core catcher following a hypothetical reactor core meltdown accident and of that which occurs in the atmosphere due to the deposition of radiant solar energy. The calculations were done using newly developed versions of the nodal integral method (NIM) for steady-state flows in conjunction with extended system methods for numerical bifurcation analysis for the saddle-node and pitchfork bifurcation computations.

  4. Natural convection in porous media

    SciTech Connect

    Prasad, V.; Hussain, N.A.

    1986-01-01

    This book presents the papers given at a conference on free convection in porous materials. Topics considered at the conference included heat transfer, nonlinear temperature profiles and magnetic fields, boundary conditions, concentrated heat sources in stratified porous media, free convective flow in a cavity, heat flux, laminar mixed convection flow, and the onset of convection in a porous medium with internal heat generation and downward flow.

  5. Natural convection between concentric spheres

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.

    1992-01-01

    A finite-difference solution for steady natural convective flow in a concentric spherical annulus with isothermal walls has been obtained. The stream function-vorticity formulation of the equations of motion for the unsteady axisymmetric flow is used; interest lying in the final steady solution. Forward differences are used for the time derivatives and second-order central differences for the space derivatives. The alternating direction implicit method is used for solution of the discretization equations. Local one-dimensional grid adaptation is used to resolve the steep gradients in some regions of the flow at large Rayleigh numbers. The break-up into multi-cellular flow is found at high Rayleigh numbers for air and water, and at significantly low Rayleigh numbers for liquid metals. Excellent agreement with previous experimental and numerical data is obtained.

  6. Modelling natural convection of fluid in cuvette

    NASA Astrophysics Data System (ADS)

    Kucher, D.; Manukhin, B.; Andreeva, O.; Chivilikhin, S.

    2014-09-01

    Convection is a process of transfer liquid from a hot region to a cool region. This phenomenon is involved in many physical processes. The main characteristic of convection is a temperature field. Modelling of convection allows to get the information about temperature field at any time of process. In this paper the results of modelling natural convection of fluid in cuvette are presented. All results are approved by experimental data. For modelling the process of natural convection Navier-Stokes equations under Boussinesq approximation were used. An experimental setup based on digital holographic interferometry was developedin order to make an experiment. The results for three stadiums of convection, such as: jet initiation, initial jet formation, jet development with formation of mushroom-shaped convective stream, are presented.

  7. Studies of heat source driven natural convection

    NASA Technical Reports Server (NTRS)

    Kulacki, F. A.; Nagle, M. E.; Cassen, P.

    1974-01-01

    Natural convection energy transport in a horizontal layer of internally heated fluid with a zero heat flux lower boundary, and an isothermal upper boundary, has been studied. Quantitative information on the time-mean temperature distribution and the fluctuating component of temperature about the mean temperature in steady turbulent convection are obtained from a small thermocouple inserted into the layer through the upper bounding plate. Data are also presented on the development of temperature at several vertical positions when the layer is subject to both a sudden increase and to a sudden decrease in power input. For changes of power input from zero to a value corresponding to a Rayleigh number much greater than the critical linear stability theory value, a slight hysteresis in temperature profiles near the upper boundary is observed between the heat-up and cool-down modes.

  8. Natural convection in low-g environments

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Bannister, T. C.

    1974-01-01

    The present state of knowledge in the area of low-g natural convection is reviewed, taking into account a number of experiments conducted during the Apollo 14, 16, and 17 space flights. Convections due to steady low-g accelerations are considered. Steady g-levels result from spacecraft rotation, gravity gradients, solar wind, and solar pressure. Varying g-levels are produced by engine burns, attitude control maneuvers, and onboard vibrations from machinery or astronaut movement. Thermoacoustic convection in a low-g environment is discussed together with g-jitter convection, surface tension-driven convection, electrohydrodynamics under low-g conditions, phase change convection, and approaches for the control and the utilization of convection in space.

  9. Natural convection in nonvertical wells

    SciTech Connect

    Denbow, D.A.; Murphy, H.D.; McEligot, D.M.

    1985-01-01

    Convective instabilities and the shapes of the ensuing convection cells were experimentally studied for nonvertical wellbores. Steady-state temperature distributions were measured for three inclination angles over a wide range of heating rates to demonstrate the effects of drilling angle and Rayleigh number. In addition, velocities were estimated by measuring the time-of-flight of tracers formed by the Thymol blue technique. 8 refs., 6 figs.

  10. NATURAL CONVECTION IN PASSIVE SOLAR BUILDINGS: EXPERIMENTS, ANALYSIS AND RESULTS

    SciTech Connect

    Gadgil, A.; Bauman, F.; Kammerud, R.

    1981-04-01

    Computer programs have been developed to numerically simulate natural convection in two- and three-dimensional room geometries. The programs have been validated using published data from the literature, results from a full-scale experiment performed at the Massachusetts Institute of Technology, and results from a small-scale experiment performed at LBL. One of the computer programs has been used to study the influence of natural convection on the thermal performance of a single zone in a direct-gain passive solar building. It is found that the convective heat transfer coefficients between the air and the enclosure surfaces can be substantially different from the values assumed in the standard building energy analysis methods, and can exhibit significant variations across a given surface. This study implies that the building heating loads calculated by standard building energy analysis methods may have substantial errors as a result of their use of common assumptions regarding the convection processes which occur in an enclosure.

  11. Conjugate natural convection between horizontal eccentric cylinders

    NASA Astrophysics Data System (ADS)

    Nasiri, Davood; Dehghan, Ali Akbar; Hadian, Mohammad Reza

    2016-06-01

    This study involved the numerical investigation of conjugate natural convection between two horizontal eccentric cylinders. Both cylinders were considered to be isothermal with only the inner cylinder having a finite wall thickness. The momentum and energy equations were discretized using finite volume method and solved by employing SIMPLER algorithm. Numerical results were presented for various solid-fluid conductivity ratios (KR) and various values of eccentricities in different thickness of inner cylinder wall and also for different angular positions of inner cylinder. From the results, it was observed that in an eccentric case, and for KR < 10, an increase in thickness of inner cylinder wall resulted in a decrease in the average equivalent conductivity coefficient (overline{{K_{eq} }} ); however, a KR > 10 value caused an increase in overline{{K_{eq} }} . It was also concluded that in any angular position of inner cylinder, the value of overline{{K_{eq} }} increased with increase in the eccentricity.

  12. Onset of Natural Convection in Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Riaz, A.

    2013-05-01

    Sequestration of carbon dioxide in saline aquifers has emerged as the preferred method of permanently storing CO2 in the subsurface. In order to be successful over geologic time scales, sequestration in saline aquifers relies upon enhanced dissolution of CO2 in brine by natural convection. In this talk we review the progress made thus far towards the modeling and prediction of the onset time for natural convection that occurs due to an unstable stratification of aqueous CO2. We show how the onset of natural convection is connected to a preceding event of the onset of instability with respect to small amplitude perturbations that originate within the aqueous boundary layer. Our analysis indicates that the onset time for instability is uncertain within an initial transient period where perturbation growth depends on the specific form of the initial condition. A constrained adjoint based optimization is employed to determine the upper bound and the mean of perturbation growth. With the help of a weakly nonlinear analysis, we show that the time at which convection initiates is associated with fixed perturbation amplitude. The influence of permeability heterogeneity is studied with this approach. For certain permeability structures, the marginal stability curve bifurcates to form multiple stable and unstable zones in the space of the perturbation wavenumber and time. The transition toward bifurcation governs the behavior of the most dangerous mode in the linear regime and determines the route to the onset of natural convection.

  13. Solar Hot Water Heating by Natural Convection.

    ERIC Educational Resources Information Center

    Noble, Richard D.

    1983-01-01

    Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)

  14. A Simple Classroom Demonstration of Natural Convection

    ERIC Educational Resources Information Center

    Wheeler, Dean R.

    2005-01-01

    This article explains a simple way to demonstrate natural convection, such as from a lit candle, in the classroom using an overhead projector. The demonstration is based on the principle of schlieren imaging, commonly used to visualize variations in density for gas flows.

  15. Heterogeneous nanofluids: natural convection heat transfer enhancement

    PubMed Central

    2011-01-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755

  16. Heterogeneous nanofluids: natural convection heat transfer enhancement.

    PubMed

    Oueslati, Fakhreddine Segni; Bennacer, Rachid

    2011-01-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755

  17. Heterogeneous nanofluids: natural convection heat transfer enhancement

    NASA Astrophysics Data System (ADS)

    Oueslati, Fakhreddine Segni; Bennacer, Rachid

    2011-12-01

    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.

  18. The Phenix ultimate natural convection test

    SciTech Connect

    Gauthe, P.; Pialla, D.; Tenchine, D.; Vasile, A.; Rochwerger, D.

    2012-07-01

    The French sodium cooled fast reactor Phenix was shut down in 2009 after 35 years of operation. Before decommissioning, a final set of tests were performed by the CEA during 9 months. Several topics were involved such as thermal hydraulics, core physics and fuel behaviour. Among these ultimate experiments, two thermal hydraulic tests were performed: an asymmetrical test consisting in a trip of one secondary pump and a natural convection test in the primary circuit. Recognizing the unique opportunity offered by these Phenix ultimate tests, IAEA decided in 2007 to launch a Coordinated Research Project (CRP) devoted to benchmarking analyses with system codes on the Phenix natural convection test. One objective of the natural convection test in Phenix reactor is the assessment of the CATHARE system code for safety studies on future and advanced sodium cooled fast reactors. The aim of this paper is to describe this test, which was performed on June 22-23, 2009, and the associated benchmark specifications for the CRP work. The paper reminds briefly the Phenix reactor with the main physical parameters and the instrumentation used during the natural convection test. After that, the test scenario is described: - initial state at a power of 120 MWth, - test beginning resulting from a manual dry out of the two steam generators, - manual scram, - manual trip on the three primary pumps without back-up by pony motors, - setting and development of natural convection in the primary circuit, in a first phase without significant heat sink in the secondary circuits and in a second phase with significant heat sink in the secondary circuits, by opening the casing of steam generators to create an efficient heat sink, by air natural circulation in the steam generators casing. The benchmark case ends after this second phase, which corresponds to the experimental test duration of nearly 7 hours. The paper presents also the benchmark specifications data supplied by the CEA to all

  19. Self-propulsion via natural convection

    NASA Astrophysics Data System (ADS)

    Ardekani, Arezoo; Mercier, Matthieu; Allshouse, Michael; Peacock, Thomas

    2014-11-01

    Natural convection of a fluid due to a heated or cooled boundary has been studied within a myriad of different contexts due to the prevalence of the phenomenon in environmental systems such as glaciers, katabatic winds, or magmatic chambers; and in engineered problems like natural ventilation of buildings, or cooling of electronic components. It has, however, hitherto gone unrecognized that boundary-induced natural convection can propel immersed objects. We experimentally investigate the motion of a wedge-shaped object, immersed within a two-layer fluid system, due to a heated surface. The wedge resides at the interface between the two fluid layers of different density, and its concomitant motion provides the first demonstration of the phenomenon of propulsion via boundary-induced natural convection. Established theoretical and numerical models are used to rationalize the propulsion speed by virtue of balancing the propulsion force against the appropriate drag force. We successfully verified the influence of various fluid and heat parameters on the predicted speed. now at IMFT (Institut de Mécanique des Fluides de Toulouse).

  20. Natural convective heat transfer from square cylinder

    NASA Astrophysics Data System (ADS)

    Novomestský, Marcel; Smatanová, Helena; Kapjor, Andrej

    2016-06-01

    This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable

  1. Kinetic energy budgets in areas of convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.

    1979-01-01

    Synoptic scale budgets of kinetic energy are computed using 3 and 6 h data from three of NASA's Atmospheric Variability Experiments (AVE's). Numerous areas of intense convection occurred during the three experiments. Large kinetic energy variability, with periods as short as 6 h, is observed in budgets computed over each entire experiment area and over limited volumes that barely enclose the convection and move with it. Kinetic energy generation and transport processes in the smaller volumes are often a maximum when the enclosed storms are near peak intensity, but the nature of the various energy processes differs between storm cases and seems closely related to the synoptic conditions. A commonly observed energy budget for peak storm intensity indicates that generation of kinetic energy by cross-contour flow is the major energy source while dissipation to subgrid scales is the major sink. Synoptic scale vertical motion transports kinetic energy from lower to upper levels of the atmosphere while low-level horizontal flux convergence and upper-level horizontal divergence also occur. Spatial fields of the energy budget terms show that the storm environment is a major center of energy activity for the entire area.

  2. Natural-convection promoter for geothermal wells

    SciTech Connect

    Allis, R.G.; James, R.

    1980-09-01

    Many geothermal wells stand with relatively cold water overlying hot water. If a pipe is inserted into such a well, natural convection will occur and hot water will flow to the top of the well. The convection-promoting pipe enables domestic wells which would normally require the use of a downhole pump or airlift (with attendant environmental problems of fluid disposal) to be satisfactorily operated with a downhole heat exchanger. In potentially powerful steam-water wells which are difficult to discharge, a pipe positioned beneath the water level should raise wellhead pressure to the point where spontaneous discharge is possible. In both cases, the permeability and temperature of the feed zones are the limiting factors for the heat output of the well.

  3. On natural solutal convection in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Ivanov, A. S.; Pshenichnikov, A. F.

    2015-09-01

    An experiment was carried out to investigate natural solutal convection in a magnetic fluid caused by non-homogeneous initial distribution of colloidal particles in a vertical Hele-Shaw cell. For experiment, we used a dilute magnetic fluid of the "magnetite-kerosene-oleic acid" type. The initial distribution of particles was formed by magnetophoresis of the drop-like aggregates and their sedimentation on the surface of the diamagnetic disk located in the center of the cell. Application of the magnetic field on the system led to the onset of the Rayleigh-Taylor instability and formation of descending convective jets. The velocity of the flow at the front of descending jets was measured for different values of cell thickness (up to 0.18 mm) and strength of the magnetic field generating the drop-like aggregates (up to 21 kA/m). The solutal Rayleigh numbers varied in the range Ra = 50-105. It was shown that the intensity of the convective flow characterized by the Reynolds number Re, increases with the Rayleigh number according to the power law: Re = 1.16 × 10-5Ra0.86.

  4. Laminar natural convection under nonuniform gravity.

    NASA Technical Reports Server (NTRS)

    Lienhard, J.; Eichhorn, R.; Dhir, V.

    1972-01-01

    Laminar natural convection is analyzed for cases in which gravity varies with the distance from the leading edge of an isothermal plate. The study includes situations in which gravity varies by virtue of the varying slope of a surface. A general integral solution method which includes certain known integral solutions as special cases is developed to account for arbitrary position-dependence of gravity. A series method of solution is also developed for the full equations. Although it is more cumbersome it provides verification of the integral method.

  5. Influence of geometry on natural convection in buildings

    SciTech Connect

    White, M.D.; Winn, C.B.; Jones, G.F.; Balcomb, J.D.

    1985-01-01

    Strong free convection airflows occur within passive solar buildings resulting from elevated temperatures of surfaces irradiated by solar energy compared with the cooler surfaces not receiving radiation. The geometry of a building has a large influence on the directions and magnitudes of natural airflows, and thus heat transfer between zones. This investigation has utilized a variety of reduced-scale building configurations to study the effects of geometry on natural convection heat transfer. Similarity between the reduced-scale model and a full-scale passive solar building is achieved by having similar geometries and by replacing air with Freon-12 gas as the model's working fluid. Filling the model with Freon-12 gas results in similarity in Prandtl numbers and Rayleigh numbers based on temperature differences in the range from 10/sup 9/ to 10/sup 11/. Results from four geometries are described with an emphasis placed on the effects of heat loss on zone temperature stratification shifts.

  6. Natural and forced convection during solidification

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome A.

    The following work marries theoretical and experimental approaches to study the interaction of an external shear flow with a solidifying porous medium. The porous medium, a dendritic 'mushy layer', is created when a super-eutectic binary alloy is cooled leading to solid crystals bathed in an interstitial fluid which is compositionally enriched. This compositional enrichment leads to natural buoyant instabilities in the solidifying porous medium coupled with instabilities in the adjoining liquid layer. Theoretically, the effect of an external shear flow on the convective instabilities inherent to this mushy layer is investigated using a linear stability analysis. The external flow is coupled to advective perturbations in the liquid and to flow in the mush through a perturbed mush-liquid interface. A complete numerical solution of the stability of the system is performed and a critical porous medium Rayleigh number is found which is a function of both the external flow speed and the wavenumber of the interfacial perturbations. By neglecting the effects of buoyancy in the liquid and solving only for the pressure perturbations on the corrugated mush-liquid interface induced by the external flow, a reduced model is constructed and solved analytically. These theoretical results are compared with experimental observations obtained in a laboratory flume in which an ammonium-chloride solution is solidified from below at a constant rate. The experimental results reveal that at flow speeds above critical, convection is forced within the mush leading to a series of zero solid fraction tesselations aligned perpendicular to the applied shear flow. The results of the experiments compare favorably to the linear stability analysis.

  7. Convective Available Potential Energy of World Ocean

    NASA Astrophysics Data System (ADS)

    Su, Z.; Ingersoll, A. P.; Thompson, A. F.

    2012-12-01

    Here, for the first time, we propose the concept of Ocean Convective Available Potential Energy (OCAPE), which is the maximum kinetic energy (KE) per unit seawater mass achievable by ocean convection. OCAPE occurs through a different mechanism from atmospheric CAPE, and involves the interplay of temperature and salinity on the equation of state of seawater. The thermobaric effect, which arises because the thermal coefficient of expansion increases with depth, is an important ingredient of OCAPE. We develop an accurate algorithm to calculate the OCAPE for a given temperature and salinity profile. We then validate our calculation of OCAPE by comparing it with the conversion of OCAPE to KE in a 2-D numerical model. We propose that OCAPE is an important energy source of ocean deep convection and contributes to deep water formation. OCAPE, like Atmospheric CAPE, can help predict deep convection and may also provide a useful constraint for modelling deep convection in ocean GCMs. We plot the global distribution of OCAPE using data from the World Ocean Atlas 2009 (WOA09) and see many important features. These include large values of OCAPE in the Labrador, Greenland, Weddell and Mediterranean Seas, which are consistent with our present observations and understanding, but also identify some new features like the OCAPE pattern in the Antarctic Circumpolar Current (ACC). We propose that the diagnosis of OCAPE can improve our understanding of global patterns of ocean convection and deep water formation as well as ocean stratification, the meridional overturning circulation and mixed layer processes. The background of this work is briefly introduced as below. Open-ocean deep convection can significantly modify water properties both at the ocean surface and throughout the water column (Gordon 1982). Open-ocean convection is also an important mechanism for Ocean Deep Water formation and the transport of heat, freshwater and nutrient (Marshall and Schott 1999). Open

  8. Natural Convection in Enclosed Porous or Fluid Media

    ERIC Educational Resources Information Center

    Saatdjian, Esteban; Lesage, François; Mota, José Paulo B.

    2014-01-01

    In Saatdjian, E., Lesage, F., and Mota, J.P.B, "Transport Phenomena Projects: A Method to Learn and to Innovate, Natural Convection Between Porous, Horizontal Cylinders," "Chemical Engineering Education," 47(1), 59-64, (2013), the numerical solution of natural convection between two porous, concentric, impermeable cylinders was…

  9. Natural convection around the human head.

    PubMed

    Clark, R P; Toy, N

    1975-01-01

    1. Factors determining the convective flow patterns around the human head in 'still' conditions are discussed in relation to body posture. 2. The flow patterns have been visualized using a schlieren optical system which reveals that the head has a thicker 'insulating' layer of convecting air in the erect posture than in the supine position. 3. Local convective and radiative heat transfer measurements from the head have been using surface calorimeters. These results are seen to be closely related to the thickness of the convective boundary layer flows. 4. The total convective and radiative heat loss from the head of a subject in the erect and supine position has been evaluated from the local measurements. For the head of the supine subject the heat loss was found to be 30% more than when the subject was standing. PMID:1142118

  10. Suppression of Natural Convection in a Thermoacoustic Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Han, Jun-Qing; Liu, Qiu-Sheng

    2013-05-01

    The effects of gravity on the efficiency of thermoacoustic engines are investigated theoretically and experimentally, especially for thermoacoustic pulse tube refrigerators. The significant effects of gravity are found to be due to the presence of natural convection in the thermoacoustic pulse tube when the hot side of the tube is lower than the cold side. This kind of natural convection influences and reduces the efficiency of the thermoacoustic working system. Thus, how to suppress this natural convection becomes important for increasing the efficiency of thermoacoustic engines. Unlike the method of inserting a silk screen in a pulse tube, the present study uses a numerical simulation method to research the natural convection in pulse tubes, and we try to change the shape of the pulse tube to suppress this convection.

  11. On Unsteady Natural Convection Between Spherical Shells

    NASA Astrophysics Data System (ADS)

    Feldman, Yuri; Colonius, Tim

    2011-11-01

    Natural convection between two concentric spheres is investigated with three-dimensional numerical simulations. Buoyancy is achieved by preserving a temperature difference between the internal hotter and the external colder boundaries of the spherical shell. The numerical simulations were performed for the two basic configurations characterized by external to internal radius ratios of 1.2 and 1.5. Slightly supercritical laminar regimes characterized by the Rayleigh numbers of order Ra ~ O(104-105) were simulated by utilizing a Direct Numerical Simulation (DNS) approach while a Large Eddy Simulation (LES) was used for investigation of turbulent regimes for Ra ~ O (108-109) . We discuss the topological characteristics of the both laminar and turbulent flows. One of the possible scenarios of steady-unsteady transition is proposed as well. Implications of the results for the design of a double-walled Montgolfiere aerobot for the exploration of Titan's atmosphere are discussed. Research supported by Jet Propulsion Laboratory with Dr. Jeffrey Hall as monitor.

  12. An experimental investigation of a natural convection solar air loop

    SciTech Connect

    Mastrullo, R.; Mazzei, P.; Vanoli, R.

    1983-12-01

    The interest that has been shown in the use of solar energy to heat dwellings following the ''passive'' design criteria does not correspond to the development of accurate theoretical and experimental analysis. This is particularly true for natural circulation solar air heaters. A significant application of these components is wall panel to complement south-facing windows in supplying solar heat directly to buildings. This idea, formerly suggested by Trombe et al., leads to various realizations, one of which was theoretically investigated by present authors. A convective loop panel consists of a glass layer and a black absorber that is backed by insulation. In the configuration shown the air flows in the channel in front of the absorber and the deflecting panel allows cool air to settle to the bottom of the U channel, preventing reverse thermocirculation during night or very low insolation periods. Since thermocirculation is the primary mode of heat transfer for the solar air heaters, the definition of an accurate convection model for the channel is essential for performance predictions. Studies on this subject - free convection between asymmetrically heated vertical planes - deal mainly with theoretical solutions for laminar flow, with the two usual boundary conditions. As the heat transfer process in the solar air loop cannot be expected to follow this model, there is the need of extensive experimental investigation.

  13. Transient natural convection in heated inclined tubes

    NASA Astrophysics Data System (ADS)

    McEligot, Donald M.; Denbow, David A.; Murphy, Hugh D.

    1990-05-01

    To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length-to-diameter (L/D) ratio of 36 at angles of 0, 20, and 35 degrees from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Results were primarily qualitative but were useful in providing insight into the phenomena occurring. Steady-state temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. Transient measurements of the temperature distribution were obtained during cooling from a higher temperature without a heat source to calibrate the heat losses. With the electrical heat source, temporal data were taken during heating to examine the approach to steady state. Quasi-steady flow conditions were approached rapidly, but the overall time constant of the apparatus was of the order of one-third of a day. Predictions with the three-dimensional TEMPEST code were first tested by comparison with simple conduction analyses. Comparison with actual data showed good agreement of the predicted temperature levels for the maximum inclination, 35 degrees, and slightly poorer agreement for the other limit, a vertical tube. Trends of temperature level and Nusselt number with heating rate or Rayleigh number were reasonable, but the predicted variation of the end Nusselt number versus inclination was in the opposite direction from the experiment.

  14. Transient natural convection in heated inclined tubes

    SciTech Connect

    McEligot, D.M. . Oceanic Div.); Denbow, D.A. ); Murphy, H.D. )

    1990-05-01

    To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length-to-diameter (L/D) ratio of 36 at angles of 0{degree}, 20{degree}, and 35{degree} from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Results were primarily qualitative but were useful in providing insight into the phenomena occurring. Steady-state temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. transient measurements of the temperature distribution were obtained during cooling from a higher temperature without a heat source to calibrate the heat losses. With the electrical heat source, temporal data were taken during heating to examine the approach to steady state. Quasi-steady flow conditions were approached rapidly, but the overall time constant of the apparatus was of the order of one-third of a day. Predictions with the three-dimensional TEMPEST code were first tested by comparison with simple conduction analyses. Comparison with actual data showed good agreement of the predicted temperature levels for the maximum inclination, 35{degree}, and slightly poorer agreement for the other limit, a vertical tube. Trends of temperature level and Nusselt number with heating rate or Rayleigh number were reasonable, but the predicted variation of the end Nusselt number versus inclination was in the opposite direction from the experiment. 75 refs., 20 figs., 8 tabs.

  15. Numerical prediction of natural convection in square partitioned enclosures

    SciTech Connect

    Kelkar, K.M. ); Patankar, S.V. . Dept. of Mechanical Engineering)

    1990-01-01

    This paper provides a detailed study of flow and heat transfer phenomena in partitioned enclosures that is useful in understanding the more complex processes that occur in natural convection flows in passive solar heated buildings, solar collectors, and other applications. Two-dimensional natural convection flows in square enclosures with partitions are analyzed for laminar flow. Side walls are assumed to be isothermal, while the top and bottom walls are adiabatic.

  16. Analysis of natural convection in a low gravity environment

    NASA Technical Reports Server (NTRS)

    Mattor, Ethan E.; Durgin, William W.; Bloznalis, Peter; Schoenberg, Richard

    1992-01-01

    Natural convection inside a spherical container was studied experimentally with two apparatuses at low buoyancy levels. The data generated by these experiments, plotted nondimensionally as the Nusselt versus Rayleigh numbers, give correlations for Rayleigh numbers between 1000 and 10 exp 8, a range previously untested. These results show that natural convection has significant effects at a Rayleigh number of 1000 and higher, although the behavior of the Nusselt number as the conduction limit is approached is still unknown for a spherical geometry.

  17. Thermal modeling of phase change solidification in thermal control devices including natural convection effects

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.

    1972-01-01

    Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.

  18. Nature versus nurture in shallow convection

    NASA Astrophysics Data System (ADS)

    Romps, D. M.; Kuang, Z.

    2009-12-01

    We use tracers in a large-eddy simulation of shallow convection to show that stochastic entrainment, not cloud-base properties, determine the fate of convecting parcels. The tracers are used to diagnose the correlations between a parcel's state above the cloud base and both the parcel's state at the cloud base and its entrainment history. We find that the correlation with the cloud-base state goes to zero a few hundred meters above the cloud base. On the other hand, correlations between a parcel's state and its net entrainment are large. Evidence is found that the entrainment events may be described as a stochastic Poisson process. We construct a parcel model with stochastic entrainment that is able to replicate flux profiles and, more importantly, the observed variability. Turning off cloud-base variability has little effect on the results, which suggests that stochastic mass-flux models may be initialized with a single set of properties. The success of the stochastic parcel model suggests that it holds promise as the framework for a convective parameterization.

  19. Study of plasma natural convection induced by electron beam in atmosphere [

    SciTech Connect

    Deng, Yongfeng Han, Xianwei; Tan, Yonghua

    2014-06-15

    Using high-energy electron beams to ionize air is an effective way to produce a large-size plasma in the atmosphere. In particular, with a steady-state high power generator, some unique phenomena can be achieved, including natural convection of the plasma. The characteristics of this convection are studied both experimentally and numerically. The results show that an asymmetrical temperature field develops with magnitudes that vary from 295 K to 389 K at a pressure of 100 Torr. Natural convection is greatly enhanced under 760 Torr. Nevertheless, plasma transport is negligible in this convection flow field and only the plasma core tends to move upward. Parameter analysis is performed to discern influencing factors on this phenomenon. The beam current, reflecting the Rayleigh number Ra effect, correlates with convection intensity, which indicates that energy deposition is the underlying key factor in determining such convections. Finally, natural convection is concluded to be an intrinsic property of the electron beam when focused into dense air, and can be achieved by carefully adjusting equipment operations parameters.

  20. Convection, helioseismology and solar energy: personal reminiscence

    NASA Astrophysics Data System (ADS)

    Unno, Wasaburo

    2014-08-01

    This article is a brief history of my life from childhood and describes how I became interested in astronomy. Starting from researches using radiative transfer as a main tool, I gradually expanded my research field to hydrodynamics (particularly convection, turbulence, pulsation, waves and helioseismology), magnetohydrodynamics and chaotic systems. My recent interest is to develop a sustainable society using solar energy.

  1. A decoupled monolithic projection method for natural convection problems

    NASA Astrophysics Data System (ADS)

    Pan, Xiaomin; Kim, Kyoungyoun; Lee, Changhoon; Choi, Jung-Il

    2016-06-01

    We propose an efficient monolithic numerical procedure based on a projection method for solving natural convection problems. In the present monolithic method, the buoyancy, linear diffusion, and nonlinear convection terms are implicitly advanced by applying the Crank-Nicolson scheme in time. To avoid an otherwise inevitable iterative procedure in solving the monolithic discretized system, we use a linearization of the nonlinear convection terms and approximate block lower-upper (LU) decompositions along with approximate factorization. Numerical simulations demonstrate that the proposed method is more stable and computationally efficient than other semi-implicit methods, preserving temporal second-order accuracy.

  2. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  3. Adjoint optimization of natural convection problems: differentially heated cavity

    NASA Astrophysics Data System (ADS)

    Saglietti, Clio; Schlatter, Philipp; Monokrousos, Antonios; Henningson, Dan S.

    2016-06-01

    Optimization of natural convection-driven flows may provide significant improvements to the performance of cooling devices, but a theoretical investigation of such flows has been rarely done. The present paper illustrates an efficient gradient-based optimization method for analyzing such systems. We consider numerically the natural convection-driven flow in a differentially heated cavity with three Prandtl numbers (Pr=0.15{-}7 ) at super-critical conditions. All results and implementations were done with the spectral element code Nek5000. The flow is analyzed using linear direct and adjoint computations about a nonlinear base flow, extracting in particular optimal initial conditions using power iteration and the solution of the full adjoint direct eigenproblem. The cost function for both temperature and velocity is based on the kinetic energy and the concept of entransy, which yields a quadratic functional. Results are presented as a function of Prandtl number, time horizons and weights between kinetic energy and entransy. In particular, it is shown that the maximum transient growth is achieved at time horizons on the order of 5 time units for all cases, whereas for larger time horizons the adjoint mode is recovered as optimal initial condition. For smaller time horizons, the influence of the weights leads either to a concentric temperature distribution or to an initial condition pattern that opposes the mean shear and grows according to the Orr mechanism. For specific cases, it could also been shown that the computation of optimal initial conditions leads to a degenerate problem, with a potential loss of symmetry. In these situations, it turns out that any initial condition lying in a specific span of the eigenfunctions will yield exactly the same transient amplification. As a consequence, the power iteration converges very slowly and fails to extract all possible optimal initial conditions. According to the authors' knowledge, this behavior is illustrated here

  4. Thermally induced natural convection effects in Yucca Mountain drifts.

    PubMed

    Webb, Stephen W; Francis, Nicholas D; Dunn, Sandra Dalvit; Itamura, Michael T; James, Darryl L

    2003-01-01

    Thermally induced natural convection from the heat produced by emplaced waste packages is an important heat and mass transfer mechanism within the Yucca Mountain Project (YMP) drifts. Various models for analyzing natural convection have been employed. The equivalent porous medium approach using Darcy's law has been used in many YMP applications. However, this approach has questionable fidelity, especially for turbulent flow conditions. Computational fluid dynamics (CFD), which is based on the fundamental Navier-Stokes equations, is currently being evaluated as a technique to calculate thermally induced natural convection in YMP. Data-model comparisons for turbulent flow conditions show good agreement of CFD predictions with existing experiments including YMP-specific data. PMID:12714318

  5. Energy analysis of convectively induced wind perturbations

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.; Buechler, Dennis E.

    1989-01-01

    Budgets of divergent and rotational components of kinetic energy (KD and KR) are examined for four upper level wind speed maxima that develop during the fourth Atmospheric Variability Experiment (AVE IV) and the first AVE-Severe Environmental Storms and Mesoscale Experiment (AVE-SESAME I). A similar budget analysis is performed for a low-level jet stream during AVE-SESAME I. The energetics of the four upper level speed maxima is found to have several similarities. The dominant source of KD is cross-contour flow by the divergent wind, and KD provides a major source of KR via a conversion process. Conversion from available potential energy provides an additional source of KR in three of the cases. Horizontal maps reveal that the conversions involving KD are maximized in regions poleward of the convection. Low-level jet development during AVE-SESAME I appears to be assisted by convective activity to the west.

  6. Numerical Solution of Natural Convection in Eccentric Annuli

    SciTech Connect

    Pepper, D.W.

    2001-09-18

    The governing equations for transient natural convection in eccentric annular space are solved with two high-order accurate numerical algorithms. The equation set is transformed into bipolar coordinates and split into two one-dimensional equations: finite elements are used in the direction normal to the cylinder surfaces; the pseudospectral technique is used in the azimuthal direction. This report discusses those equations.

  7. Natural convection of a magnetic fluid in a cubic enclosure

    NASA Astrophysics Data System (ADS)

    Kikura, H.; Sawada, T.; Tanahashi, T.

    1993-04-01

    Laminar natural convection heat transfer of a magnetic fluid in a cubic enclosure is examined experimentally. Wall-temperature distributions are visualized by thermosensitive liquid crystal sheets. The effect of the magnetic field on the transient temperature distributions, and the local and averaged Nusselt numbers are discussed.

  8. On the convective-absolute nature of river bedform instabilities

    NASA Astrophysics Data System (ADS)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca; Chomaz, Jean Marc

    2014-12-01

    River dunes and antidunes are induced by the morphological instability of stream-sediment boundary. Such bedforms raise a number of subtle theoretical questions and are crucial for many engineering and environmental problems. Despite their importance, the absolute/convective nature of the instability has never been addressed. The present work fills this gap as we demonstrate, by the cusp map method, that dune instability is convective for all values of the physical control parameters, while the antidune instability exhibits both behaviors. These theoretical predictions explain some previous experimental and numerical observations and are important to correctly plan flume experiments, numerical simulations, paleo-hydraulic reconstructions, and river works.

  9. Coupled three-dimensional conduction and natural convection heat transfer

    NASA Astrophysics Data System (ADS)

    Tolpadi, Anil Kumar

    1987-09-01

    A numerical and experimental investigation of three-dimensional natural convection heat transfer coupled with conduction was performed. This general problem is of great importance because of its widespread applicability in areas such as compact natural convection heat exchangers, cooling of electronic equipment, and porous media flows. The determination of flow patterns and heat transfer coefficients in such situations is necessary because of its practical use in various industries. A vectorized finite difference code was developed for the Cray-2 supercomputer which has the capability of simulating a wide class of three-dimensional coupled conduction-convection problems. This program numerically solves the transient form of the complete laminar Navier-Stokes equations of motion using the vorticity-vector potential methods. Using this program, numerical solutions were obtained for 3-D natural convection from a horizontal isothermal heat exchanger tube with an attached circular cooling fin array. Experiments were performed to measure three-dimensional temperature fields using Mach-Zehnder interferometry. Software was developed to digitize and process fringe patterns and inversion algorithms used to compute the 3-D temperature field.

  10. Analysis and measurements of interzonal natural convection heat transfer in buildings

    SciTech Connect

    Hill, D.; Kirkpatrick, A.; Burns, P.

    1986-08-01

    Natural convection heat transfer through doorways can be an important process by which thermal energy is transferred from one zone to another zone of a building. The topic of this paper is interzonal natural convection in a two zone and a three zone multilevel full scale building. Aperture velocity and temperature distributions are measured and the experimental interzonal mass flow rate and heat transfer are determined. A Bernoulli model is derived to predict the neutral heights, velocity profiles, and interzonal heat transfer. The measured and predicted interzonal flow rate and heat transfer are compared and found to be in good agreement.

  11. Transient natural convection inside rigid drops in a liquid-liquid direct-contact heat exchanger

    SciTech Connect

    Hutchins, J.F.

    1988-01-01

    Natural convection was simulated inside spherical container and drops. The transient Navier-Stokes and energy equations were solved by employing finite-difference techniques. Pseudosteady-state natural convection inside spheres was simulated. Pseudosteady state was maintained by keeping the driving force for natural convection constant. To obtain pseudosteady state conditions, the temperature at the inside surface of the sphere was steadily increased so that the temperature difference between the surface and the center remained constant. The results were compared to experimental data found in the literature. It was found that the Nusselt number (Pr > 0.7) for pseudosteady state correlated to the Raleigh number by the following relation: Nu = 1.19Ra{sup .2215}, 10{sup 5} < Ra < 10{sup 8}. The simulation results were compared to experimental data of two other researchers who measured drop-temperature profiles in direct-contact heat-exchange columns. The simulation results demonstrate good correlation to the experimental data.

  12. Drift natural convection and seepage at the Yucca Mountain repository

    NASA Astrophysics Data System (ADS)

    Halecky, Nicholaus Eugene

    The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock, from the hot drift center to the cool drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water- induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity values, with reduced local seepage, form a more desirable waste package environment.

  13. Temporal response of laser power standards with natural convective cooling.

    PubMed

    Xu, Tao; Gan, Haiyong; Yu, Jing; Zang, Erjun

    2016-01-25

    Laser power detectors with natural convective cooling are convenient to use and hence widely applicable in a power range below 150 W. However, the temporal response characteristics of the laser power detectors need to be studied in detail for accurate measurement. The temporal response based on the absolute laser power standards with natural convective cooling is studied through theoretical analysis, numerical simulations, and experimental verifications. Our results show that the response deviates from a single exponential function and that an ultimate response balance is difficult to achieve because the temperature rise of the heat sink leads to continuous increase of the response. To determine the measurement values, an equal time reading method is proposed and validated by the laser power calibrations. PMID:26832477

  14. Weight and water loss in the neonate in natural and forced convection.

    PubMed Central

    Thompson, M H; Stothers, J K; McLellan, N J

    1984-01-01

    We describe a simple method of determining weight loss and hence water loss of infants in incubators. Unlike previously reported methods, it does not interfere with the microenvironment surrounding the infant. Weight loss of 16 term and 32 preterm infants was measured in both forced and natural convection. No significant increase in water loss was observed in the term infants but in the preterm infants the mean loss in natural convection was 0.85 g/kg/hour compared with 1.26 g/kg/hour in forced convection: in the most extreme situation it was doubled. This water loss represents a substantial energy loss and suggestions to minimise it are discussed. Images Fig. 1 PMID:6497432

  15. Validation of PARET for the modeling of heat transfer under natural convection core cooling

    SciTech Connect

    Ibrahim, J.K.; Kassim, M.S.; Mohammed, F.

    1995-12-31

    The PARET code is a one-dimensional, coupled thermal-hydraulic and point-kinetics code, which was originally developed for the analysis of SPERT-I transients and later adapted for the analysis of transient behavior in research reactors. Due to its ease of transportability and relative simplicity of input preparation, it is widely used internationally and is particularly attractive for research reactors with limited computational facilities. The thermal-hydraulic modeling of the current version of PARET accounts for buoyancy forces in the core and external pressure gradients that may arise from density differences between the core inlet and outlet. This feature of PARET makes it a useful tool for the analysis of research reactors cooled by natural convection as well as those cooled by forced convection. Since PARET has been applied to the analysis of the International Atomic Energy Agency 10-MW benchmark cores for protected and unprotected transients and also for the analysis of SPERT-I transients, its forced convection heat-removal model is reliable. However, there has been little experience with the capability of PARET to model heat removal in cores cooled by natural convection. This paper reports the results of some experiments performed at the Malaysian PUSPATI reactor to compare PARET predictions for power increases under natural convection core cooling to measured data.

  16. Verification of a numerical simulation technique for natural convection

    SciTech Connect

    Gadgil, A.; Bauman, F.; Altmayer, E.; Kammerud, R.C.

    1983-03-01

    The present paper describes a verification of CONVEC2 for single-zone geometries by comparison with the results of two natural convection experiments performed in small-scale rectangular enclosures. These experiments were selected because of the high Rayleigh numbers obtained and the small heat loss through the insulated surfaces. Comparisons are presented for (1) heat transfer rates, (2) fluid temperature profiles, and (3) surface heat flux distributions.

  17. Prandtl Number Dependent Natural Convection with Internal Heat Sources

    SciTech Connect

    Kang Hee Lee; Seung Dong Lee; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-06-01

    Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. Recently, attention is being paid to the feasibility of external vessel flooding as a severe accident management strategy and to the phenomena affecting the success path for retaining the molten core material inside the vessel. The heat transfer inside the molten core material can be characterized by the strong buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of such flow depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, the natural convection heat transfer phenomena involving the internal heat generation are represented by the modified Rayleigh number (Ra’), which quantifies the internal heat source and hence the strength of the buoyancy force. In this study, tests were conducted in a rectangular section 250 mm high, 500 mm long and 160 mm wide. Twenty-four T-type thermocouples were installed in the test section to measure temperatures. Four T-type thermocouples were used to measure the boundary temperatures. The thermocouples were placed in designated locations after calibration. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Ra' between 1.5x106 and 7.42x1015 and the Prandtl number (Pr) between 0.7 and 6.5. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained uniform. The results demonstrated feasibility of the direct heating method to simulate uniform volumetric heat generation. Particular attentions were paid to the effect of Pr on natural convection heat transfer within the rectangular pool.

  18. Numerical investigation of natural convection heat transfer in a three-dimensional annular enclosure

    NASA Astrophysics Data System (ADS)

    Yung, Chain-Nan; de Witt, Kenneth J.; Keith, Theo G., Jr.

    Natural convective flow and heat transfer in a three-dimensional annular enclose have been investigated numerically. The analysis uses dimensionless equations of continuity, momentum, and energy in Cartesian coordinates, which are cast into a generalized curvilinear system and solved by using a prediction-correction algorithm. For short horizontal cylinders, the local heat transfer rate is found to decrease sharply near the end walls due to convective velocity suppression; the overall heat transfer rate is less than that predicted by a two-dimensional model. Heat transfer rates are presented as a function of the Rayleigh number and compared with the available experimental data.

  19. Topological analysis of a mixing flow generated by natural convection

    NASA Astrophysics Data System (ADS)

    Contreras, Pablo Sebastián; de la Cruz, Luis Miguel; Ramos, Eduardo

    2016-01-01

    We use topological tools to describe the natural convective motion and the Lagrangian trajectories of a flow generated by stepwise, alternating heating and cooling protocol of opposite vertical walls of a cubic container. The working fluid considered is Newtonian and the system is in presence of the acceleration of gravity but the nonlinear terms are neglected, i.e., we study the piece-wise steady and linear problem. For this convective mixing flow, we identify invariant surfaces formed by the Lagrangian orbits of massless tracers that are topologically equivalent to spherical shells and period-1 lines with elliptic and hyperbolic segments that are located on symmetry planes. We describe the previous features as functions of the Rayleigh number in the range 3 × 104 ≤ Ra ≤ 5 × 105. We show that this system shares properties with other systems with non-toroidal invariant surfaces.

  20. Nature, theory and modelling of geophysical convective planetary boundary layers

    NASA Astrophysics Data System (ADS)

    Zilitinkevich, Sergej

    2015-04-01

    Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in

  1. Instabilities of Natural Convection in a Periodically Heated Layer

    NASA Astrophysics Data System (ADS)

    Hossain, M. Z.; Floryan, Jerzy M.

    2013-11-01

    Natural convection in a horizontal layer subject to a spatially periodic heating along the lower wall has been investigated. The heating produces sinusoidal temperature variations characterized by the wave number α and the Rayleigh number Rap. The primary response has the form of stationary rolls with axis orthogonal to the heating wave vector. For large α convection is limited to a thin layer adjacent to the lower wall with a uniform conduction above it. Linear stability was used to determine conditions leading to a secondary convection. Two mechanisms of instability have been identified. For α = 0(1), the parametric resonance dominates and leads to the pattern of instability that is locked-in with the pattern of the heating according to the relation δcr = α /2, where δcr denotes the component of the critical disturbance wave vector parallel to the heating wave vector. The second mechanism, Rayleigh-Bénard (RB) mechanism, dominates for large α. Competition between these mechanisms gives rise to non-commensurable states and appearance of soliton lattices, to the formation of distorted transverse rolls, and to the appearance of the wave vector component in the direction perpendicular to the forcing direction.

  2. Convection

    NASA Astrophysics Data System (ADS)

    Britz, Dieter

    Convection has long been coupled with electrochemistry, and the name hydrodynamic voltammetry has become standard. In electroanalytical chemistry we mainly seek reproducible conditions. These are almost always attained by systems in which a steady convective state is achieved, although not always. Thus, the once popular dropping mercury electrode (see texts such as [74, 257]) has convection around it, but is never in steady state; it might be called a reproducible periodic dynamic state.

  3. Thermally optimum spacing of vertical, natural convection cooled, parallel plates

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, A.; Rohsenow, W. M.

    Vertical two-dimensional channels formed by parallel plates or fins are a frequently encountered configuration in natural convection cooling in air of electronic equipment. In connection with the complexity of heat dissipation in vertical parallel plate arrays, little theoretical effort is devoted to thermal optimization of the relevant packaging configurations. The present investigation is concerned with the establishment of an analytical structure for analyses of such arrays, giving attention to useful relations for heat distribution patterns. The limiting relations for fully-developed laminar flow, in a symmetric isothermal or isoflux channel as well as in a channel with an insulated wall, are derived by use of a straightforward integral formulation.

  4. Particle filter based on thermophoretic deposition from natural convection flow

    SciTech Connect

    Sasse, A.G.B.M.; Nazaroff, W.W. ); Gadgil, A.J. )

    1994-04-01

    We present an analysis of particle migration in a natural convection flow between parallel plates and within the annulus of concentric tubes. The flow channel is vertically oriented with one surface maintained at a higher temperature than the other. Particle migration is dominated by advection in the vertical direction and thermophoresis in the horizontal direction. From scale analysis it is demonstrated that particles are completely removed from air flowing through the channel if its length exceeds L[sub c] = (b[sup 4]g/24K[nu][sup 2]), where b is the width of the channel, g is the acceleration of gravity, K is a thermophoretic coefficient of order 0.5, and [nu] is the kinematic viscosity of air. Precise predictions of particle removal efficiency as a function of system parameters are obtained by numerical solution of the governing equations. Based on the model results, it appears feasible to develop a practical filter for removing smoke particles from a smoldering cigarette in an ashtray by using natural convection in combination with thermophoresis. 22 refs., 8 figs., 1 tab.

  5. Effect of enclosure shape on natural convection velocities

    NASA Technical Reports Server (NTRS)

    Robertson, S. J.; Nicholson, L. A.

    1982-01-01

    A numerical analysis was performed to compare natural convection velocities in two dimensional enclosures of various shape. The following shapes were investigated: circle, square, horizontal and upright 2 x 1 aspect ratio rectangles, horizontal and upright half circles, diamond. In all cases, the length scale in the various dimensionless parameters, such as Rayleigh number, is defined as the diameter of the equal area circle. Natural convection velocities were calculated for Rayleigh numbers of 1000 and 5000 with the temperature difference taken to be across (1) the maximum horizontal dimension, (2) the median horizontal line (line through centroid) and (3) the horizontal distance such that the temperature gradient is the same for shapes of equal area. For the class of shapes including the square, upright half circle and upright rectangle, the computed velocities were found to agree very closely with that of the equal area circle when the temperature difference is taken to be across the maximum horizontal dimension (condition (a)). The velocities for the horizontal rectangle and half circle were found to be approximately one half that of the equal area circle for the same condition. Better overall agreement among all shapes was obtained by setting the temperature difference across a distance such that the temperature gradients were equal for shapes of equal area.

  6. Radiation effects on bifurcation and dual solutions in transient natural convection in a horizontal annulus

    SciTech Connect

    Luo, Kang; Yi, Hong-Liang Tan, He-Ping

    2014-05-15

    Transitions and bifurcations of transient natural convection in a horizontal annulus with radiatively participating medium are numerically investigated using the coupled lattice Boltzmann and direct collocation meshless (LB-DCM) method. As a hybrid approach based on a common multi-scale Boltzmann-type model, the LB-DCM scheme is easy to implement and has an excellent flexibility in dealing with the irregular geometries. Separate particle distribution functions in the LBM are used to calculate the density field, the velocity field and the thermal field. In the radiatively participating medium, the contribution of thermal radiation to natural convection must be taken into account, and it is considered as a radiative term in the energy equation that is solved by the meshless method with moving least-squares (MLS) approximation. The occurrence of various instabilities and bifurcative phenomena is analyzed for different Rayleigh number Ra and Prandtl number Pr with and without radiation. Then, bifurcation diagrams and dual solutions are presented for relevant radiative parameters, such as convection-radiation parameter Rc and optical thickness τ. Numerical results show that the presence of volumetric radiation changes the static temperature gradient of the fluid, and generally results in an increase in the flow critical value. Besides, the existence and development of dual solutions of transient convection in the presence of radiation are greatly affected by radiative parameters. Finally, the advantage of LB-DCM combination is discussed, and the potential benefits of applying the LB-DCM method to multi-field coupling problems are demonstrated.

  7. Numerical investigation of transient flow-mode transition of laminar natural convection in an inclined enclosure

    SciTech Connect

    Tzeng, P.Y.; Soong, C.Y.; Sheu, T.S.

    1997-02-07

    The present work is concerned with a numerical investigation of transient laminar natural convection and the associated flow-mode transition in a two-dimensional rectangular enclosure. Navier-Stokes/Boussinesq equations for fluid flow and energy balance are solved by using the SIMPLE-C algorithm. Air of Pr = 0.71 in a differentially heated enclose of length-to-height aspect ratio As = 4 and at Ra = 5,000 is chosen as the flow model to examine the influences of the inclination. Calculations of time accuracy are performed to investigate the transient procedure of the flow-mode transition with increasing or decreasing inclination. The present results reveal that, at some critical situations, natural convection in inclined enclosures is very sensitive to the change in tilt angle, and the associated heat transfer rates are closely related to the correspondent cellular flow patterns.

  8. Porous media flow problems: Natural convection and non-Newtonian

    NASA Astrophysics Data System (ADS)

    Walker, K. L.

    1980-03-01

    Natural convection of a Newtonian fluid and one dimensional flow of a nonNewtonian fluid are studied. Convection in a rectangular porous cavity driven by heating in the horizontal is analyzed by a number of different techniques which yield a fairly complete description of the two dimensional solutions. The solutions are governed by two dimensionless parameters: the Darcy-Rayleigh number R and cavity aspect ratio A. The flow behavior of a dilute solution of polyacrylamide in corn syrup flowing through porous media is also studied. Measurement of the pressure drop and flow rate are made for the solution flowing through a packed bed of glass beads. At low velocities the pressure drop as a function of velocity is the same as that for a Newtonian fluid of equal viscosity. At high flow rates the nonNewtonian fluid exhibited significantly higher pressure drops than a Newtonian fluid. Careful rheological measurements of the fluid are made using a Weissenberg rheogoniometer. From measurements of the dynamic viscosity shear it is determined that elastic effects are negligible. It is believed that the increased pressure gradients are caused by nonlinear viscous effects resulting from the extensional components of the flow.

  9. Special session: computational predictability of natural convection flows in enclosures

    SciTech Connect

    Christon, M A; Gresho, P M; Sutton, S B

    2000-08-14

    Modern thermal design practices often rely on a ''predictive'' simulation capability--although predictability is rarely quantified and often difficult to confidently achieve in practice. The computational predictability of natural convection in enclosures is a significant issue for many industrial thermal design problems. One example of this is the design for mitigation of optical distortion due to buoyancy-driven flow in large-scale laser systems. In many instances the sensitivity of buoyancy-driven enclosure flows can be linked to the presence of multiple bifurcation points that yield laminar thermal convective processes that transition from steady to various modes of unsteady flow. This behavior is brought to light by a problem as ''simple'' as a differentially-heated tall rectangular cavity (8:1 height/width aspect ratio) filled with a Boussinesq fluid with Pr = 0.71--which defines, at least partially, the focus of this special session. For our purposes, the differentially-heated cavity provides a virtual fluid dynamics laboratory.

  10. Estimating convective energy losses from solar central receivers

    SciTech Connect

    Siebers, D L; Kraabel, J S

    1984-04-01

    This report outlines a method for estimating the total convective energy loss from a receiver of a solar central receiver power plant. Two types of receivers are considered in detail: a cylindrical, external-type receiver and a cavity-type receiver. The method is intended to provide the designer with a tool for estimating the total convective energy loss that is based on current knowledge of convective heat transfer from receivers to the environment and that is adaptable to new information as it becomes available. The current knowledge consists of information from two recent large-scale experiments, as well as information already in the literature. Also outlined is a method for estimating the uncertainty in the convective loss estimates. Sample estimations of the total convective energy loss and the uncertainties in those convective energy loss estimates for the external receiver of the 10 MWe Solar Thermal Central Receiver Plant (Barstow, California) and the cavity receiver of the International Energy Agency Small Solar Power Systems Project (Almeria, Spain) are included in the appendices.

  11. Natural Convection and Boiling for Cooling SRP Reactors During Loss of Circulation Conditions

    SciTech Connect

    Buckner, M.R.

    2001-06-26

    This study investigated natural convection and boiling as a means of cooling SRP reactors in the event of a loss of circulation accident. These studies show that single phase natural convection cooling of SRP reactors in shutdown conditions with the present piping geometry is probably not feasible.

  12. Three-dimensional, transient natural convection in inclined wellbores

    SciTech Connect

    McEligot, D.M. . Oceanic Div.); Denbow, D.A. ); Murphy, H.D. )

    1990-01-01

    The occurrence of natural conduction in a wellbore can affect geothermal gradient measurements and heat flow estimates. In the Hot Dry Rock geothermal concept, the wellbores are purposely inclined in the deep regions to enhance heat production. To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length to diameter (L/D) ratio of 36 at angles of 0{degrees}, 20{degrees}, and 35{degrees} from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. Comparison with measurements showed good agreement of the predicted temperature levels for the maximum inclination and slightly poorer agreement for the other limit, a vertical tube. 50 refs., 9 figs.

  13. Natural convection in enclosures. Proceedings of the nineteenth national heat transfer conference, Orlando, FL, July 27-30, 1980

    SciTech Connect

    Torrance, K.E.; Catton, I.

    1980-01-01

    Natural convection in low aspect ratio rectangular enclosures is considered along with three-dimensional convection within rectangular boxes, natural convection flow visualization in irradiated water cooled by air flow over the surface, free convection in vertical slots, the stratification in natural convection in vertical enclosures, the flow structure with natural convection in inclined air-filled enclosures, and natural convection across tilted, rectangular enclosures of small aspect ratio. Attention is given to the effect of wall conduction and radiation on natural convection in a vertical slot with uniform heat generation of the heated wall, a numerical study of thermal insulation enclosure, free convection in a piston-cylinder enclosure with sinusoidal piston motion, natural convection heat transfer between bodies and their spherical enclosure, an experimental study of the steady natural convection in a horizontal annulus with irregular boundaries, three-dimensional natural convection in a porous medium between concentric inclined cylinders, a numerical solution for natural convection in concentric spherical annuli, and heat transfer by natural convection in porous media between two concentric spheres.

  14. Evolving Views on the Scale and Nature of Mantle Convection

    NASA Astrophysics Data System (ADS)

    van der Hilst, R. D.

    2014-12-01

    Since seminal studies of transition zone discontinuities in the 1960ies and the advent of seismic tomography a decade later much progress has been made with the understanding of the scale and nature of mantle convection. First order questions remain, however, about the fluxes between the canonical upper and lower parts of Earth's mantle and the origin and nature of deep mantle heterogeneity. The first generation of tomographic models depicted fast shear wave propagation in the lowermost mantle beneath the circum-Pacific subduction zones and large low shear wspeed anomalies beneath Africa and the central Pacific. In P-wave models these structures are less apparent, and the anomalous Vp/Vs ratios and related variables are suggestive of chemical heterogeneity. Later tomographic studies revealed the pattern of subducted oceanic lithosphere in more detail and discovered that some slabs sink deep into the lower mantle whereas others remain, at least temporarily, in the transition zone. The complex flow trajectories and the evidence for compositional heterogeneity render simple end-member models of strict layering or unobstructed mantle flow untenable. Various seismic imaging methods have been used to map with increasing precision the variations in depth to the major mantle discontinuities, and also these results are not fully consistent with expectations for simple convection models. In addition, renewed scrutiny with more data and better methods suggest that the models of phase transitions around 410 and 660 km depth in the olivine component of a pyrolitic mantle composition are oversimplifications. Indeed, interfaces are also found at other depths, and many exceptions to the expected anti correlation of the interface topographies have been reported. Some of these observations can be explained with experimental and computational studies of the mineralogy and phase chemistry of deep mantle assemblages, but with such studies still restricted to fairly simple bulk

  15. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    NASA Astrophysics Data System (ADS)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact

  16. Natural convection of ferrofluids in partially heated square enclosures

    NASA Astrophysics Data System (ADS)

    Selimefendigil, Fatih; Öztop, Hakan F.; Al-Salem, Khaled

    2014-12-01

    In this study, natural convection of ferrofluid in a partially heated square cavity is numerically investigated. The heater is located to the left vertical wall and the right vertical wall is kept at constant temperature lower than that of the heater. Other walls of the square enclosure are assumed to be adiabatic. Finite element method is utilized to solve the governing equations. The influence of the Rayleigh number (104≤Ra≤5×105), heater location (0.25H≤yh≤0.75H), strength of the magnetic dipole (0≤γ≤2), horizontal and vertical location of the magnetic dipole (-2H≤a≤-0.5H, 0.2H≤b≤0.8H) on the fluid flow and heat transfer characteristics are investigated. It is observed that different velocity components within the square cavity are sensitive to the magnetic dipole source strength and its position. The length and size of the recirculation zones adjacent to the heater can be controlled with magnetic dipole strength. Averaged heat transfer increases with decreasing values of horizontal position of the magnetic dipole source. Averaged heat transfer value increases from middle towards both ends of the vertical wall when the vertical location of the dipole source is varied. When the heater location is changed, a symmetrical behavior in the averaged heat transfer plot is observed and the minimum value of the averaged heat transfer is attained when the heater is located at the mid of vertical wall.

  17. Experimental analysis of natural convection within a thermosyphon

    SciTech Connect

    Clarksean, R.

    1993-09-01

    The heat transfer characteristics of a thermosyphon designed to passively cool cylindrical heat sources are experimentally studied. The analysis is based on recognizing the physics of the flow within different regions of the thermosyphon to develop empirical heat transfer correlations. The basic system consists of three concentric cylinders, with an outer channel between the outer two cylinders, and an inner channel between the inner two cylinders. Tests were conducted. with two different process material container diameters, representing the inner cylinder, and several different power levels. The experimentally determined local and average Nu numbers for the inner channel are in good agreement with previous work for natural convection between vertical parallel plates, one uniformly heated and the other thermally insulated. The implication is that the heat transfer off of each surface is independent of the adjacent surface for sufficiently high Ra numbers. The heat transfer is independent because of limited interaction between the boundary layers at sufficiently high Ra numbers. As a result of the limited interaction, the maximum temperature within the system remained constant, or decreased slightly when the radii of the inner cylinders increased for the same amount of heat removal.

  18. Conjugate natural convection flow over a vertical surface with radiation

    NASA Astrophysics Data System (ADS)

    Siddiqa, Sadia; Hossain, Md. Anwar; Gorla, Rama Subba Reddy

    2016-06-01

    Numerical study of conjugate natural convection flow over a finite vertical surface with radiation is reported in this article. Rosseland diffusion approximation is used to express the radiative heat flux term. The governing boundary-layer equations are made dimensionless by means of a suitable form of non-similarity transformation. These equations are obtained in three regimes: (1) upstream (when ξ → 0), (2) downstream (when ξ → ∞ ) and (3) entire regime and are solved numerically. The solutions in the upstream and downstream regimes are obtained via shooting method whereas two-point implicit finite difference method is used to get the solutions for the entire regime. It is seen that asymptotic solutions give accurate results when compared with the numerical solution of the entire regime. The results indicate that the flow field and the temperature distributions are greatly influenced by thermal radiation parameter , R_d, surface temperature parameter, θ _w and Prandtl number Pr. It is established from the analysis that recirculation occurs in the flow specifically for R_d=1.5.

  19. Transient natural convection of cold water in a vertical channel

    NASA Astrophysics Data System (ADS)

    Chiba, Ryoichi

    2016-05-01

    The two-dimensional differential transform method (DTM) is applied to analyse the transient natural convection of cold water in a vertical channel. The cold water gives rise to a density variation with temperature that may not be linearized. The vertical channel is composed of doubly infinite parallel plates, one of which has a constant prescribed temperature and the other of which is insulated. Considering the temperature-dependent viscosity and thermal conductivity of the water, approximate analytical (series) solutions for the temperature and flow velocity are derived. The transformed functions included in the solutions are obtained through a simple recursive procedure. Numerical computation is performed for the entire range of water temperature conditions around the temperature at the density extremum point, i.e. 4°C. Numerical results illustrate the effects of the temperature-dependent properties on the transient temperature and flow velocity profiles, volumetric flow rate, and skin friction. The DTM is a powerful tool for solving nonlinear transient problems as well as steady problems.

  20. Analysis of Phenix natural convection test with the TRACE code

    SciTech Connect

    Chenu, A.; Mikityuk, K.; Chawla, R.

    2012-07-01

    Experimental data from the Natural Convection (NC) test performed in the Phenix reactor prior to its final shutdown have been used to further validate the single-phase sodium flow modeling in TRACE. The experimental data for the benchmark have been shared by the CEA in the frame of a Coordinated Research Project (CRP), initiated by the IAEA Technical Working Group on Fast Reactors (TWG-FR). This paper presents a complete TRACE model of the Phenix primary circuit developed for the analysis. Steady-state calculations at nominal (350 MWth) and reduced (120 MWth) power are compared to the experimental data for the validation of the model. We presents results from the 'blind' comparison, i.e. the comparison of the test results with those computed prior to the communication of the experimental data, so-called 'pre-test' results. 'Post-test' results, calculated from a model improved on the basis of the discrepancies identified from the blind comparison, are also presented. The analysis highlights the need to accurately simulate the reactor structures, since these define the thermal inertia of the system during the first phase of the transient. Furthermore, it shows the limitations of computed 1D-results when applied to the simulation of highly-stratified temperature fields. Nevertheless, the simulated reactor behavior and temperatures are found to match very well with the experimental data after the first two hours and, in general, the TRACE blind predictions may be considered as having been quite satisfactory. (authors)

  1. An analysis of natural convection film boiling from spheres using the spherical coordinate system

    SciTech Connect

    Tso, C.P.; Leong, K.C.; Tan, H.S.

    1995-11-01

    The problem of natural convection film boiling on a sphere was analyzed by solving the momentum and energy equations in spherical coordinates. These solutions were compared to the analytical model of Frederking and Clark based on the Cartesian coordinate system, empirical correlation of Frederking and Clark and recent experimental data of Tso et al. for boiling in various refrigerants and liquid nitrogen. For the average Nusselt number, good agreement with Frederking and Clark`s model was obtained. Results using spherical coordinates yield a limiting value of 2 for the average Nusselt number near a modified Rayleigh number of 1 which could not be extracted from Frederking and Clark`s model.

  2. The efficiency of convective energy transport in the sun

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    Mixing length theory (MLT) utilizes adiabatic expansion (as well as radiative transport) to diminish the energy content of rising convective elements. Thus in MLT, the rising elements lose their energy to the environment most efficiently and consequently transport heat with the least efficiency. On the other hand Malkus proposed that convection would maximize the efficiency of energy transport. A new stellar envelope code is developed to first examine this other extreme, wherein rising turbulent elements transport heat with the greatest possible efficiency. This other extreme model differs from MLT by providing a small reduction in the upper convection zone temperatures but greatly diminished turbulent velocities below the top few hundred kilometers. Using the findings of deep atmospheric models with the Navier-Stokes equation allows the calculation of an intermediate solar envelope model. Consideration is given to solar observations, including recent helioseismology, to examine the position of the solar envelope compared with the envelope models.

  3. Natural convection in a horizontal cylinder with axial rotation.

    PubMed

    Sánchez, Odalys; Mercader, Isabel; Batiste, Oriol; Alonso, Arantxa

    2016-06-01

    We study the problem of thermal convection in a laterally heated horizontal cylinder rotating about its axis. A cylinder of aspect ratio Γ=H/2R=2 containing a small Prandtl number fluid (σ=0.01) representative of molten metals and molten semiconductors at high temperature is considered. We focus on a slow rotation regime (Ω<8), where the effects of rotation and buoyancy forces are comparable. The Navier-Stokes and energy equations with the Boussinesq approximation are solved numerically to calculate the basic states, analyze their linear stability, and compute several secondary flows originated from the instabilities. Due to the confined cylindrical geometry-the presence of lateral walls and lids-all the flows are completely three dimensional, even the basic steady states. Results characterizing the basic states as the rotation rate increases are presented. As it occurred in the nonrotating case for higher values of the Prandtl number, two curves of steady states with the same symmetric character coexist for moderate values of the Rayleigh number. In the range of Ω considered, rotation has a stabilizing effect only for very small values. As the value of the rotation rate approaches Ω=3.5 and Ω=4.5, the scenario of bifurcations becomes more complex due to the existence in both cases of very close bifurcations of codimension 2, which in the latter case involve both curves of symmetric solutions. PMID:27415364

  4. Natural convection in a horizontal cylinder with axial rotation

    NASA Astrophysics Data System (ADS)

    Sánchez, Odalys; Mercader, Isabel; Batiste, Oriol; Alonso, Arantxa

    2016-06-01

    We study the problem of thermal convection in a laterally heated horizontal cylinder rotating about its axis. A cylinder of aspect ratio Γ =H /2 R =2 containing a small Prandtl number fluid (σ =0.01 ) representative of molten metals and molten semiconductors at high temperature is considered. We focus on a slow rotation regime (Ω <8 ), where the effects of rotation and buoyancy forces are comparable. The Navier-Stokes and energy equations with the Boussinesq approximation are solved numerically to calculate the basic states, analyze their linear stability, and compute several secondary flows originated from the instabilities. Due to the confined cylindrical geometry—the presence of lateral walls and lids—all the flows are completely three dimensional, even the basic steady states. Results characterizing the basic states as the rotation rate increases are presented. As it occurred in the nonrotating case for higher values of the Prandtl number, two curves of steady states with the same symmetric character coexist for moderate values of the Rayleigh number. In the range of Ω considered, rotation has a stabilizing effect only for very small values. As the value of the rotation rate approaches Ω =3.5 and Ω =4.5 , the scenario of bifurcations becomes more complex due to the existence in both cases of very close bifurcations of codimension 2, which in the latter case involve both curves of symmetric solutions.

  5. Role of natural convection in the dissolution of sessile droplets

    NASA Astrophysics Data System (ADS)

    Dietrich, Erik; Wildeman, Sander; Visser, Claas Willem; Hofhuis, Kevin; Kooij, E. Stefan; Zandvliet, Harold J. W.; Lohse, Detlef

    2016-05-01

    The dissolution process of small (initial (equivalent) radius $R_0 < 1$ mm) long-chain alcohol (of various types) sessile droplets in water is studied, disentangling diffusive and convective contributions. The latter can arise for high solubilities of the alcohol, as the density of the alcohol-water mixture is then considerably less as that of pure water, giving rise to buoyancy driven convection. The convective flow around the droplets is measured, using micro-particle image velocimetry ($\\mu$PIV) and the schlieren technique. When nondimensionalizing the system, we fnd a universal $Sh\\sim Ra^1/4$ scaling relation for all alcohols (of different solubilities) and all droplets in the convective regime. Here Sh is the Sherwood number (dimensionless mass flux) and Ra the Rayleigh number (dimensionless density difference between clean and alcohol-saturated water). This scaling implies the scaling relation $\\tau_c \\sim R^5/4$ of the convective dissolution time $\\tau_c$, which is found to agree with experimental data. We show that in the convective regime the plume Reynolds number (the dimensionless velocity) of the detaching alcohol-saturated plume follows $Re_p \\sim Sc^-1 Ra^5/8$, which is confirmed by the $\\mu$PIV data. Here, Sc is the Schmidt number. The convective regime exists when $Ra > Ra_t$, where $Ra_t = 12$ is the transition Ra-number as extracted from the data. For $Ra < Ra_t$ and smaller, convective transport is progressively overtaken by diffusion and the above scaling relations break down.

  6. Multicellular natural convection of a low Prandlt number fluid between horizontal concentric cylinders

    SciTech Connect

    Joosik Yoo; Jun Young Choi; Moonuhn Kim . Dept. of Mechanical Engineering)

    1994-01-01

    Two-dimensional natural convection of a fluid of low Prandtl number (Pr = 0.02) in an annulus between two concentric horizontal cylinders is numerically investigated in a wide range of gap widths. For low Grashof numbers, a steady unicellular convection is obtained. Above a transition Grashof number that depends on the gap width, a steady bicellular flow occurs. With further increase of the Grashof number, steady or time-periodic multicellular convection occurs, and finally, complex unsteady convective flow appears. A plot is presented that predicts the type of flow patterns for various combination of gap widths and Grashof numbers.

  7. Precipitation correlation between convective available potential energy, convective inhibition and saturation fraction in middle latitudes

    NASA Astrophysics Data System (ADS)

    Barkiđija, Sanda; Fuchs, Željka

    2013-04-01

    Saturation fraction (SF), convective inhibition (CIN) and convective available potential energy (CAPE) are discussed to see with which of these parameters' precipitation rate is better correlated in the middle latitudes. The study is based on measurements from 20 European stations for the period of 1972-2009. We also use the results of the Global Forecasting System (GFS) model to see how mentioned parameters behave in numerical models. Our research results indicate that CAPE is not a good measure of precipitation rate for all latitudes, although, in model results, CAPE and precipitation rate are found to be better correlated for middle latitudes then in higher latitudes and tropical regions. The best correlation with precipitation rate in middle latitudes is one with SF. Our results suggest that moisture is underestimated in numerical models for middle latitudes and encourage further work in including SF or similar parameter into precipitation parameterization in addition to the current one.

  8. Numerical Modeling of Conjugate Thermogravitational Convection in a Closed System with a Radiant Energy Source in Conditions of Convective-Radiative Heat Exchange at the External Boundary

    NASA Astrophysics Data System (ADS)

    Nee, Alexander

    2016-02-01

    Mathematical modeling of conjugate natural convection in a closed rectangular cavity with a radiant energy source in conditions of convective-radiative heat exchange at the external boundary was conducted. The radiant energy distribution was set by the Lambert's law. Conduction and convection processes analysis showed that the air masses flow pattern is modified slightly over the time. The temperature increases in the gas cavity, despite the heat removal from the one of the external boundary. According to the results of the integral heat transfer analysis were established that the average Nusselt number (Nuav) increasing occurs up to τ = 200 (dimensionless time). Further Nuav has changed insignificantly due to the temperature field equalization near the interfaces "gas - wall".

  9. Inherent safety advantages of carbide fuel systems and technical issues regarding natural convection in LMRs

    SciTech Connect

    Barthold, W.P.

    1984-08-01

    The scope of work is to summarize inherent safety advantages that are unique to the use of a carbide based fuel system and to summarize the technical issues regarding natural convection flow in LMFBR cores. As discussed in this report, carbide fuel provides the designer with far greater flexibility than oxide fuel. Carbide fuel systems can be designed to eliminate major accident initiators. They turn quantitative advantages into a qualitative advantage. The author proposed to LANL a series of core design and component concepts that would greatly enhance the safety of carbide over oxide systems. This report cites a series of safety advantages which potentially exist for a carbide fuel system. Natural convection issues have not been given much attention in the past. Only during the last few years has this issue been addressed in some detail. Despite claims to the contrary by some of the LMR contractors, the author does not think that the natural convection phenomena is fully understood. Some of the approximations made in natural convection transient analyses have probably a greater impact on calculated transient temperatures than the effects under investigation. Only integral in-pile experimental data and single assembly out-of-pile detailed data are available for comparisons with analytical models and correlations. Especially for derated cores, the natural convection capability of a LMR should be far superior to that of a LWR. The author ranks the natural convection capability of the LMR as the most important inherent safety feature.

  10. Relationship between the kinetic energy budget and intensity of convection. [in atmosphere

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Scoggins, J. R.

    1977-01-01

    Synoptic data collected over the eastern United States during the fourth Atmospheric Variability Experiment, April 24 and 25, 1975, is used to study the relationship between the kinetic energy budget and the intensity of convective activity. It is found that areas of intense convective activity are also major centers of kinetic energy activity. Energy processes increase in magnitude with an increase in convection intensity. Large generation of kinetic energy is associated with intense convection, but large quantities of energy are transported out of the area of convection. The kinetic energy budget associated with grid points having no convection differs greatly from the budgets of the three categories of convection. Weak energy processes are not associated with convection.

  11. Natural convection flow in porous enclosure with localized heating from below with heat flux

    NASA Astrophysics Data System (ADS)

    Siddiki, Md. Noor-A.-Alam; Molla, Md. Mamun; Saha, Suvash C.

    2016-07-01

    Unsteady natural convection flow in a two dimensional fluid saturated porous enclosure with localized heating from below with heat flux, symmetrical cooling from the sides and the insulated top wall has been investigated numerically. The governing equations are the Darcy's law for the porous media and the energy equation for the temperature field has been considered. The non-dimensional Darcy's law in terms of the stream function is solved by finite difference method using the successive over-relaxation (SOR) scheme and the energy equation is solved by Alternative Direction Alternative (ADI) scheme. The uniform heat flux source is located centrally at the bottom wall. The numerical results are presented in terms of the streamlines and isotherms, as well as the local and average rate of heat transfer for the wide range of the Darcy's Rayleigh number and the length of the heat flux source at the bottom wall.

  12. Numerical simulation of natural convection in a sessile liquid droplet

    NASA Astrophysics Data System (ADS)

    Bartashevich, M. V.; Marchuk, I. V.; Kabov, O. A.

    2012-06-01

    Heat transfer in a sessile liquid droplet was studied with numerical methods. A computer code was developed for solving the problem of convection in an axisymmetric hemispherical droplet and in a spherical layer as well. The problem of establishing an equilibrium state in a droplet was solved using several variables: temperature, stream function, and vorticity. Simulation was performed for droplets of water, ethyl alcohol, and model liquids. Variable parameters: intensity of heat transfer from droplet surface, Rayleigh and Marangoni dimensionless criteria, and the characteristic temperature difference. It was revealed that the curve of convective flow intensity versus heat transfer intensity at droplet surface has a maximum. A dual-vortex structure was obtained in a stationary hemispherical profile of liquid droplet for the case of close values for thermocapillary and thermogravitational forces. Either thermocapillary or thermogravitational vortex might be dominating phenomena in the flow structure.

  13. Comparison of CFD Natural Convection and Conduction-only Models for Heat Transfer in the Yucca Mountain Project Drifts

    SciTech Connect

    T. Hadgu; S. Webb; M. Itamura

    2004-02-12

    Yucca Mountain, Nevada has been designated as the nation's high-level radioactive waste repository and the U.S. Department of Energy has been approved to apply to the U.S. Nuclear Regulatory Commission for a license to construct a repository. Heat transfer in the Yucca Mountain Project (YMP) drift enclosures is an important aspect of repository waste emplacement. Canisters containing radioactive waste are to be emplaced in tunnels drilled 500 m below the ground surface. After repository closure, decaying heat is transferred from waste packages to the host rock by a combination of thermal radiation, natural convection and conduction heat transfer mechanism?. Current YMP mountain-scale and drift-scale numerical models often use a simplified porous medium code to model fluid and heat flow in the drift openings. To account for natural convection heat transfer, the thermal conductivity of the air was increased in the porous medium model. The equivalent thermal conductivity, defined as the ratio of total heat flow to conductive heat flow, used in the porous media models was based on horizontal concentric cylinders. Such modeling does not effectively capture turbulent natural convection in the open spaces as discussed by Webb et al. (2003) yet the approach is still widely used on the YMP project. In order to mechanistically model natural convection conditions in YMP drifts, the computational fluid dynamics (CFD) code FLUENT (Fluent, Incorporated, 2001) has been used to model natural convection heat transfer in the YMP emplacement drifts. A two-dimensional (2D) model representative of YMP geometry (e.g., includes waste package, drip shield, invert and drift wall) has been developed and numerical simulations made (Francis et al., 2003). Using CFD simulation results for both natural convection and conduction-only heat transfer in a single phase, single component fluid, equivalent thermal conductivities have been calculated for different Rayleigh numbers. Correlation

  14. Suppression/Reversal of Natural Convection by Exploiting the Temperature/Composition Dependence of Magnetic Susceptibility

    NASA Technical Reports Server (NTRS)

    Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.

    2000-01-01

    Natural convection, driven by temperature-or concentration gradients or both, is an inherent phenomenon during solidification of materials on Earth. This convection has practical consequences (e.g effecting macrosegregation) but also renders difficult the scientific examination of diffusive/conductive phenomena during solidification. It is possible to halt, or even reverse, natural convection by exploiting the variation (with temperature, for example) of the susceptibility of a material. If the material is placed in a vertical magnetic field gradient, a buoyancy force of magnetic origin arises and, at a critical field gradient, can balance the normal buoyancy forces to halt convection. At higher field gradients the convection can be reversed. The effect has been demonstrated in experiments at Marshall Space Flight Center where flow was measured by PIV in MnCl2 solution in a superconducting magnet. In auxiliary experiments the field in the magnet and the properties of the solution were measured. Computations of the natural convection, its halting and reversal, using the commercial software FLUENT were in good agreement with the measurements.

  15. Nature's Grand Experiment: Linkage between magnetospheric convection and the radiation belts

    NASA Astrophysics Data System (ADS)

    Rodger, Craig J.; Cresswell-Moorcock, Kathy; Clilverd, Mark A.

    2016-01-01

    The solar minimum of 2007-2010 was unusually deep and long lived. In the later stages of this period the electron fluxes in the radiation belts dropped to extremely low levels. The flux of relativistic electrons (>1 MeV) was significantly diminished and at times was below instrument thresholds both for spacecraft located in geostationary orbits and also those in low-Earth orbit. This period has been described as a natural "Grand Experiment" allowing us to test our understanding of basic radiation belt physics and in particular the acceleration mechanisms which lead to enhancements in outer belt relativistic electron fluxes. Here we test the hypothesis that processes which initiate repetitive substorm onsets drive magnetospheric convection, which in turn triggers enhancement in whistler mode chorus that accelerates radiation belt electrons to relativistic energies. Conversely, individual substorms would not be associated with radiation belt acceleration. Contrasting observations from multiple satellites of energetic and relativistic electrons with substorm event lists, as well as chorus measurements, show that the data are consistent with the hypothesis. We show that repetitive substorms are associated with enhancements in the flux of energetic and relativistic electrons and enhanced whistler mode wave intensities. The enhancement in chorus wave power starts slightly before the repetitive substorm epoch onset. During the 2009/2010 period the only relativistic electron flux enhancements that occurred were preceded by repeated substorm onsets, consistent with enhanced magnetospheric convection as a trigger.

  16. Natural-convection heat transfer of a spherical lighting fixture

    SciTech Connect

    Ikeda, Takamasa; Fujii, Tetsu

    1994-09-01

    The surface temperatures of the inner lamp and the outer globe of a spherical lighting fixture, the surfaces of which are painted black, were measured. From the results, the average convective heat-transfer coefficients between the inner lamp and the outer globe and on the outer surface of the globe were obtained. These data are correlated with the aid of existing equations for two concentric spheres and the outer surface of a single sphere. The relationships between the maximum and mean temperatures on the lamp and the globe were also obtained. By the use of these equations, a method for the optimal thermal design of spherical lighting fixtures is proposed.

  17. A numerical solution of variable porosity effects on natural convection in a packed-sphere cavity

    SciTech Connect

    David, E.; Lauriat, G. ); Cheng, P. )

    1991-05-01

    The problem of natural convection in differentially heated vertical cavities filled with spherical particles saturated with Newtonian fluids is investigated numerically. The Brinkman-Darcy-Ergun equation is used as the momentum equation, and the wall effect on porosity variation is approximated by an exponential function. The effect of variable stagnant thermal conductivities is taken into consideration in the energy equation. The formulation of the problem shows that the flow and heat transfer characteristics depend on six dimensionless parameters, namely, the Rayleigh and Prandtl numbers of the fluid phase, the dimensionless particle diameter, the conductivity ratio of the two phases, the bulk porosity, and the aspect ratio of the cavity. The influences of these parameters on the heat transfer rate are thoroughly investigated. The predicted Nusselt numbers are compared with existing experimental results. It is found that the computed Nusselt numbers based on the present model compare the best with experimental data.

  18. Numerical simulation of combined natural and forced convection during thermal-hydraulic transients. [LMFBR

    SciTech Connect

    Domanus, H.M.; Sha, W.T.

    1981-01-01

    The single-phase COMMIX (COMponent MIXing) computer code performs fully three-dimensional, transient, thermal-hydraulic analyses of liquid-sodium LMFBR components. It solves the conservation equations of mass, momentum, and energy as a boundary-value problem in space and as an initial-value problem in time. The concepts of volume porosity, surface permeability and distributed resistance, and heat source have been employed in quasi-continuum (rod-bundle) applications. Results from three transient simulations involving forced and natural convection are presented: (1) a sodium-filled horizontal pipe initially of uniform temperature undergoing an inlet velocity rundown transient, as well as an inlet temperature transient; (2) a 19-pin LMFBR rod bundle undergoing a velocity transient; and, (3) a simulation of a water test of a 1/10-scale outlet plenum undergoing both velocity and temperature transients.

  19. Kinetic energy cascades in quasi-geostrophic convection

    NASA Astrophysics Data System (ADS)

    Hejda, P.; Reshetnyak, M.

    2012-04-01

    The rapid rotation of planets causes cyclonic thermal turbulence in their cores, which may generate the large-scale magnetic fields observed outside the planets. In spite of the recent progress in modeling planetary dynamos, the models cannot cover the enormous span of scales required for a realistic parameter set. Our contribution is devoted to the study of geostrophic convection by tools of the turbulent community. This approach helps understanding of the origin of kinetic transport in the system as well as of the locality of energy transfer. We investigate numerically a model of thermal convection in two geometries: Cartesian coordinates (rectangular box) and a spherical shell. For the 3D homogeneous isotropic turbulence (in the absence of rotation) there is a direct cascade of the kinetic energy from the large scales to the small scales, where dissipation takes place. The fluxes of kinetic energy are negative for large scales and positive for small scales, i.e. the large scales are donors and provide energy to the system, whereas the small scales absorb energy. The situation changes in 2D, where the cascade of kinetic energy is inverse: from the small to the large scales. Quasi-geostrophic flow is somewhere between 3D and 2D. In such a flow, one has still 3 dimensions, but the dependence of the fields on the vertical direction along the axis of rotation is degenerated. This flow is known by its columnar structures elongated along axis of rotation. The leading order wave number corresponds to the diameter of the columns. Two cascades of the energy (direct and inverse) thus take place simultaneously (Reshetnyak and Hejda, 2008; Hejda and Reshetnyak, 2009). The spherical geometry changes partly the previous picture. Near the onset of convection, the graph of spectra of kinetic energy of quasi-geostrophic flow has saw-like shape with the largest maximum corresponding to the diameter of the vertical columns. Increase of Rayleigh number leads to the filling of the

  20. Thermocapillary flow and natural convection in a melt column with an unknown melt/solid interface

    NASA Technical Reports Server (NTRS)

    Lan, C. W.; Kou, Sindo

    1991-01-01

    A vertical melt column set up between an upper heating rod and a lower sample rod, i.e., the so-called half-zone system, is a convenient experimental tool for studying convection in the melt in floating-zone crystal growth. In order to help understand the convection observed in the melt column, a computer model has been developed to describe steady state, axisymmetrical thermocapillary flow and natural convection in the melt. The governing equations and boundary conditions are expressed in general non-orthogonal curvilinear coordinates in order to accurately treat the unknown melt/solid interface as well as all other physical boundaries in the system. The effects of key dimensionless variables on the following items are discussed: (1) convection and temperature distribution in the melt; (2) the shape of the melt/solid interface; (3) the height of the melt column. These dimensionless variables are the Grashof, Marangoni and Prandtl numbers.

  1. Development and validation of a new LBM-MRT hybrid model with enthalpy formulation for melting with natural convection

    NASA Astrophysics Data System (ADS)

    Miranda Fuentes, Johann; Kuznik, Frédéric; Johannes, Kévyn; Virgone, Joseph

    2014-01-01

    This article presents a new model to simulate melting with natural convection of a phase change material. For the phase change problem, the enthalpy formulation is used. Energy equation is solved by a finite difference method, whereas the fluid flow is solved by the multiple relaxation time (MRT) lattice Boltzmann method. The model is first verified and validated using the data from the literature. Then, the model is applied to a tall brick filled with a fatty acid eutectic mixture and the results are presented. The main results are (1) the spatial convergence rate is of second order, (2) the new model is validated against data from the literature and (3) the natural convection plays an important role in the melting process of the fatty acid mixture considered in our work.

  2. Stratification and energy fluxes in the anelastic convection model

    NASA Astrophysics Data System (ADS)

    Hejda, Pavel; Reshetnyak, Maxim

    2013-04-01

    Convection in the planetary cores is usually connected with the geostrophic state. At the onset of convection, the ratio of horizontal scale to the scale along the axis of rotation is proportional to the cube root of the Ekman number, which characterises the ratio of the viscous forces to the Coriolis force. The Ekman number is extremely small in the liquid cores, which is a source of strong anisotropy. Even if further increase of the heat sources leads to decrease of anisotropy, the final state is still highly anisotropic. The influence of the rapid rotation on the structure of the flows in the physical space is also manifested by a substantial change of the spectral properties of the turbulence in the core (Reshetnyak and Hejda, 2008; Hejda and Reshetnyak, 2009). If for the non-rotating flow the kinetic energy in the wave space propagates from the large scales to the small dissipative scales (the so-called direct Richardson-Kolmogorov cascade), then in presence of rotation the turbulence degenerates to the quasi two-dimensional state and the inverse cascade of the kinetic energy is observed. Having in mind that Cartesian and spherical geometries exhibit similar results and reproduce the inverse cascades of the kinetic energy (Reshetnyak and Hejda, 2012), there is an open question how this cascade contributes to the more general energy balance, which includes the heat flux equation. As the heat energy definition in the Boussinesq model is quite questionable, we consider the anelastic model, where the heat fluxes can be compared with the kinetic energy fluxes in the adequate way. Here we consider the spherical geometry model in the shell that limits our study to the cascades in the azimuthal wave-number. As the self-consistent anelastic model includes new term, the adiabatic cooling, which produces "stratification" in the outer part of the core, we consider its influence on convection in the physical and wave spaces. We show that even small cooling can change the

  3. Transient testing of the FFTF for decay-heat removal by natural convection

    SciTech Connect

    Beaver, T R; Johnson, H G; Stover, R L

    1982-06-01

    This paper reports on the series of transient tests performed in the FFTF as a major part of the pre-operations testing program. The structure of the transient test program was designed to verify the capability of the FFTF to safely remove decay heat by natural convection. The series culminated in a scram from full power to complete natural convection in the plant, simulating a loss of all electrical power. Test results and acceptance criteria related to the verification of safe decay heat removal are presented.

  4. Natural Convection Cooling of the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Hill, Dennis

    2011-01-01

    After fueling and prior to launch, the Advanced Stirling Radioisotope Generator (ASRG) will be stored for a period of time then moved to the launch pad for integration with the space probe and mounting on the launch vehicle. During this time, which could be as long as 3 years, the ASRG will operate continuously with heat rejected from the housing and fins. Typically, the generator will be cooled by forced convection using fans. During some of the ground operations, maintaining forced convection may add significant complexity, so allowing natural convection may simplify operations. A test was conducted on the ASRG Engineering Unit (EU) to quantify temperatures and operating parameters with natural convection only and determine if the EU could be safely operated in such an environment. The results show that with natural convection cooling the ASRG EU Stirling convertor pressure vessel temperatures and other parameters had significant margins while the EU was operated for several days in this configuration. Additionally, an update is provided on ASRG EU testing at NASA Glenn Research Center, where the ASRG EU has operated for over 16,000 hr and underwent extensive testing.

  5. Energy spectrum of stably-stratified and convective turbulent flows

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra; Kumar, Abhishek

    2015-11-01

    In the inertial range of fluid turbulence, the energy flux is constant, while the energy spectrum scales as k - 5 / 3 (k=wavenumber). The buoyancy however could change the phenomenology dramatically. Bolgiano and Obukhov (1959) had conjectured that stably stratified flows (as in atmosphere) exhibits a decrease in the energy flux as k - 4 / 5 due to the conversion of kinetic energy to the potential energy, consequently, the energy spectrum scales as k - 11 / 5. We show using detailed numerical analysis that the stably stratified flows indeed exhibit k - 11 / 5 energy spectrum for Froude numbers Fr near unity. The flow becomes anisotropic for small Froude numbers. For weaker buoyancy (large Fr), the kinetic energy follows Kolmogorov's spectrum with a constant energy flux. However, in convective turbulence, the energy flux is a nondecreasing function of wavenumber since the buoyancy feeds positively into the kinetic energy. Hence, the kinetic energy spectrum is Kolmogorov-like (k - 5 / 3) or shallower. We also demonstrate the above scaling using a shell model of buoyancy-driven turbulence.

  6. Mass transport at infinite regular arrays of microband electrodes submitted to natural convection: theory and experiments.

    PubMed

    Pebay, Cécile; Sella, Catherine; Thouin, Laurent; Amatore, Christian

    2013-12-17

    Mass transport at infinite regular arrays of microband electrodes was investigated theoretically and experimentally in unstirred solutions. Even in the absence of forced hydrodynamics, natural convection limits the convection-free domain up to which diffusion layers may expand. Hence, several regimes of mass transport may take place according to the electrode size, gap between electrodes, time scale of the experiment, and amplitude of natural convection. They were identified through simulation by establishing zone diagrams that allowed all relative contributions to mass transport to be delineated. Dynamic and steady-state regimes were compared to those achieved at single microband electrodes. These results were validated experimentally by monitoring the chronoamperometric responses of arrays with different ratios of electrode width to gap distance and by mapping steady-state concentration profiles above their surface through scanning electrochemical microscopy. PMID:24283775

  7. The Fractional Step Method Applied to Simulations of Natural Convective Flows

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Heinrich, Juan C.; Saxon, Jeff (Technical Monitor)

    2002-01-01

    This paper describes research done to apply the Fractional Step Method to finite-element simulations of natural convective flows in pure liquids, permeable media, and in a directionally solidified metal alloy casting. The Fractional Step Method has been applied commonly to high Reynold's number flow simulations, but is less common for low Reynold's number flows, such as natural convection in liquids and in permeable media. The Fractional Step Method offers increased speed and reduced memory requirements by allowing non-coupled solution of the pressure and the velocity components. The Fractional Step Method has particular benefits for predicting flows in a directionally solidified alloy, since other methods presently employed are not very efficient. Previously, the most suitable method for predicting flows in a directionally solidified binary alloy was the penalty method. The penalty method requires direct matrix solvers, due to the penalty term. The Fractional Step Method allows iterative solution of the finite element stiffness matrices, thereby allowing more efficient solution of the matrices. The Fractional Step Method also lends itself to parallel processing, since the velocity component stiffness matrices can be built and solved independently of each other. The finite-element simulations of a directionally solidified casting are used to predict macrosegregation in directionally solidified castings. In particular, the finite-element simulations predict the existence of 'channels' within the processing mushy zone and subsequently 'freckles' within the fully processed solid, which are known to result from macrosegregation, or what is often referred to as thermo-solutal convection. These freckles cause material property non-uniformities in directionally solidified castings; therefore many of these castings are scrapped. The phenomenon of natural convection in an alloy under-going directional solidification, or thermo-solutal convection, will be explained. The

  8. Forced-to-natural convection transition tests in parallel simulated liquid metal reactor fuel assemblies

    SciTech Connect

    Levin, A.E. ); Montgomery, B.H. )

    1990-01-01

    The Thermal-Hydraulic Out of Reactor Safety (THORS) Program at Oak Ridge National Laboratory (ORNL) had as its objective the testing of simulated, electrically heated liquid metal reactor (LMR) fuel assemblies in an engineering-scale, sodium loop. Between 1971 and 1985, the THORS Program operated 11 simulated fuel bundles in conditions covering a wide range of normal and off-normal conditions. The last test series in the Program, THORS-SHRS Assembly 1, employed two parallel, 19-pin, full-length, simulated fuel assemblies of a design consistent with the large LMR (Large Scale Prototype Breeder -- LSPB) under development at that time. These bundles were installed in the THORS Facility, allowing single- and parallel-bundle testing in thermal-hydraulic conditions up to and including sodium boiling and dryout. As the name SHRS (Shutdown Heat Removal System) implies, a major objective of the program was testing under conditions expected during low-power reactor operation, including low-flow forced convection, natural convection, and forced-to-natural convection transition at various powers. The THORS-SHRS Assembly 1 experimental program was divided up into four phases. Phase 1 included preliminary and shakedown tests, including the collection of baseline steady-state thermal-hydraulic data. Phase 2 comprised natural convection testing. Forced convection testing was conducted in Phase 3. The final phase of testing included forced-to-natural convection transition tests. Phases 1, 2, and 3 have been discussed in previous papers. The fourth phase is described in this paper. 3 refs., 2 figs.

  9. Numerical simulation heat transfer by natural convection in liquid metal with a sinusoidal temperature

    NASA Astrophysics Data System (ADS)

    Missoum, Abdelkrim; Elmir, Mohamed; Bouanini, Mohamed; Belkacem, Abdellah; Draoui, Belkacem

    2016-03-01

    This study focuses on the numerical simulation of heat transfer by natural convection in a rectangular enclosure, filled with a liquid metal (low Prandtl number) partially heated from below with a sinusoidal temperature. The value of the study lies in its involvement in the crystal growth for the manufacture of semiconductors and electronics cooling. Indeed, the occurrence of convection during crystal growth can lead to in homogeneities that lead to striations and defects that affect the quality of the crystals obtained by the Bridgman techniques or Chochrawlski. Temperature of the oscillations, due to the instabilities of the convective flow in the liquid metal, also induces non-uniform cooling in the solidification front. Convection is then studied in order to reduce it. A modelling of the problem in two dimensions was conducted using Comsol computer code that is based on the finite element method, by varying the configuration of the control parameters, namely, the Rayleigh number, the nature of fluid (Prandtl number) and amplitude of temperature on heat transfer rate (Nusselt number) on convective structures that appear.

  10. A Newton method with adaptive finite elements for solving phase-change problems with natural convection

    NASA Astrophysics Data System (ADS)

    Danaila, Ionut; Moglan, Raluca; Hecht, Frédéric; Le Masson, Stéphane

    2014-10-01

    We present a new numerical system using finite elements with mesh adaptivity for the simulation of solid-liquid phase change systems. In the liquid phase, the natural convection flow is simulated by solving the incompressible Navier-Stokes equations with Boussinesq approximation. A variable viscosity model allows the velocity to progressively vanish in the solid phase, through an intermediate mushy region. The phase change is modeled by introducing an implicit enthalpy source term in the heat equation. The final system of equations describing the liquid-solid system by a single domain approach is solved using a Newton iterative algorithm. The space discretization is based on a P2-P1 Taylor-Hood finite elements and mesh adaptivity by metric control is used to accurately track the solid-liquid interface or the density inversion interface for water flows. The numerical method is validated against classical benchmarks that progressively add strong non-linearities in the system of equations: natural convection of air, natural convection of water, melting of a phase-change material and water freezing. Very good agreement with experimental data is obtained for each test case, proving the capability of the method to deal with both melting and solidification problems with convection. The presented numerical method is easy to implement using FreeFem++ software using a syntax close to the mathematical formulation.

  11. The effect of external heat transfer on thermal explosion in a spherical vessel with natural convection.

    PubMed

    Campbell, A N

    2015-07-14

    When any exothermic reaction proceeds in an unstirred vessel, natural convection may develop. This flow can significantly alter the heat transfer from the reacting fluid to the environment and hence alter the balance between heat generation and heat loss, which determines whether or not the system will explode. Previous studies of the effects of natural convection on thermal explosion have considered reactors where the temperature of the wall of the reactor is held constant. This implies that there is infinitely fast heat transfer between the wall of the vessel and the surrounding environment. In reality, there will be heat transfer resistances associated with conduction through the wall of the reactor and from the wall to the environment. The existence of these additional heat transfer resistances may alter the rate of heat transfer from the hot region of the reactor to the environment and hence the stability of the reaction. This work presents an initial numerical study of thermal explosion in a spherical reactor under the influence of natural convection and external heat transfer, which neglects the effects of consumption of reactant. Simulations were performed to examine the changing behaviour of the system as the intensity of convection and the importance of external heat transfer were varied. It was shown that the temporal development of the maximum temperature in the reactor was qualitatively similar as the Rayleigh and Biot numbers were varied. Importantly, the maximum temperature in a stable system was shown to vary with Biot number. This has important consequences for the definitions used for thermal explosion in systems with significant reactant consumption. Additionally, regions of parameter space where explosions occurred were identified. It was shown that reducing the Biot number increases the likelihood of explosion and reduces the stabilising effect of natural convection. Finally, the results of the simulations were shown to compare favourably with

  12. Numerical computations of natural convection heat transfer in irregular geometries

    NASA Astrophysics Data System (ADS)

    Glakpe, E. K.

    1987-01-01

    This report explains the determination of buoyancy driven flow characteristics and heat transfer in enclosures of complex geometrical shapes. Applications of buoyancy driven flows can be found in solar collector devices, energy conservation technologies, cooling of micro-electronic chips, and nuclear reactor spent fuel shipping configurations. The problem is further complicated when three dimensional effects, non-Boussinesq effects, turbulence, and heat transfer by radiation are accounted for in the overall balance of energy transfer. This study developed a capability to model and predict the heat transfer and flow characteristics in shipping cask configurations involving light water and fast reactor fuel assemblies. We explored the complex flow phenomena involved in these configurations to develop numerical prediction capabilities to obtain data for the design and/or thermal analysis of such shipping casks.

  13. Critical heat flux in natural convection cooled TRIGA reactors with hexagonal bundle

    SciTech Connect

    Yang, J.; Avery, M.; De Angelis, M.; Anderson, M.; Corradini, M.; Feldman, E. E.; Dunn, F. E.; Matos, J. E.

    2012-07-01

    A three-rod bundle Critical Heat Flux (CHF) study at low flow, low pressure, and natural convection condition has been conducted, simulating TRIGA reactors with the hexagonally configured core. The test section is a custom-made trefoil shape tube with three identical fuel pin heater rods located symmetrically inside. The full scale fuel rod is electrically heated with a chopped-cosine axial power profile. CHF experiments were carried out with the following conditions: inlet water subcooling from 30 K to 95 K; pressure from 110 kPa to 230 kPa; mass flux up to 150 kg/m{sup 2}s. About 50 CHF data points were collected and compared with a few existing CHF correlations whose application ranges are close to the testing conditions. Some tests were performed with the forced convection to identify the potential difference between the CHF under the natural convection and forced convection. The relevance of the CHF to test parameters is investigated. (authors)

  14. Natural convection in tunnels at Yucca Mountain and impact on drift seepage

    SciTech Connect

    Halecky, N.; Birkholzer, J.T.; Peterson, P.

    2010-04-15

    The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock in the drift center to the drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water-induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity values, with reduced local seepage, form a more desirable waste package environment.

  15. Turbulent natural convection in vertical parallel-plate channels

    NASA Astrophysics Data System (ADS)

    Badr, H. M.; Habib, M. A.; Anwar, S.; Ben-Mansour, R.; Said, S. A. M.

    2006-11-01

    The problem of buoyancy driven turbulent flow in parallel-plate channels is investigated. The investigation is limited to vertical channels of uniform cross-section with different modes of heating. The details of the flow and thermal fields are obtained from the solution of the conservation equations of mass, momentum, and energy in addition to equations of the low Reynolds number turbulence model. The study covers Rayleigh number ranging from 105 to 107 and focuses on the effect of channel geometry on the characteristic of the flow and thermal fields as well as the local and average Nusselt number variation. A Nusselt number correlation has been developed in terms of a modified Rayleigh number and channel aspect ratio for the cases of symmetrically heated isothermal and isoflux conditions.

  16. Numerical Study of Natural Convection within a Wavy Enclosure Using Meshfree Approach: Effect of Corner Heating

    PubMed Central

    Singh, Sonam; Bhargava, R.

    2014-01-01

    This paper presents a numerical study of natural convection within a wavy enclosure heated via corner heating. The considered enclosure is a square enclosure with left wavy side wall. The vertical wavy wall of the enclosure and both of the corner heaters are maintained at constant temperature, Tc and Th, respectively, with Th > Tc while the remaining horizontal, bottom, top and side walls are insulated. A penalty element-free Galerkin approach with reduced gauss integration scheme for penalty terms is used to solve momentum and energy equations over the complex domain with wide range of parameters, namely, Rayleigh number (Ra), Prandtl number (Pr), and range of heaters in the x- and y-direction. Numerical results are represented in terms of isotherms, streamlines, and Nusselt number. It is observed that the rate of heat transfer depends to a great extent on the Rayleigh number, Prandtl number, length of the corner heaters and the shape of the heat transfer surface. The consistent performance of the adopted numerical procedure is verified by comparison of the results obtained through the present meshless technique with those existing in the literature. PMID:24672383

  17. On the convectively unstable nature of optimal streaks in boundary layers

    NASA Astrophysics Data System (ADS)

    Brandt, Luca; Cossu, Carlo; Chomaz, Jean-Marc; Huerre, Patrick; Henningson, Dan S.

    2003-06-01

    The objective of the study is to determine the absolute/convective nature of the secondary instability experienced by finite-amplitude streaks in the flat-plate boundary layer. A family of parallel streaky base flows is defined by extracting velocity profiles from direct numerical simulations of nonlinearly saturated optimal streaks. The computed impulse response of the streaky base flows is then determined as a function of streak amplitude and streamwise station. Both the temporal and spatio-temporal instability properties are directly retrieved from the impulse response wave packet, without solving the dispersion relation or applying the pinching point criterion in the complex wavenumber plane. The instability of optimal streaks is found to be unambiguously convective for all streak amplitudes and streamwise stations. It is more convective than the Blasius boundary layer in the absence of streaks; the trailing edge-velocity of a Tollmien Schlichting wave packet in the Blasius boundary layer is around 35% of the free-stream velocity, while that of the wave packet riding on the streaky base flow is around 70%. This is because the streak instability is primarily induced by the spanwise shear and the associated Reynolds stress production term is located further away from the wall, in a larger velocity region, than for the Tollmien Schlichting instability. The streak impulse response consists of the sinuous mode of instability triggered by the spanwise wake-like profile, as confirmed by comparing the numerical results with the absolute/convective instability properties of the family of two-dimensional wakes introduced by Monkewitz (1988). The convective nature of the secondary streak instability implies that the type of bypass transition studied here involves streaks that behave as amplifiers of external noise.

  18. Numerical calculation of the drag force induced by natural convection of spheres at low Grashof numbers

    SciTech Connect

    Dudek, D.; Fletcher, T.H.

    1987-02-01

    When a heated solid sphere is introduced into an ambient fluid, a natural convective flow occurs which results in a drag force on the sphere. This study involves the numerical calculation of both the steady-state and the transient natural convective drag force around spheres at low Grashof numbers. Numerical techniques are taken from Geoola and Cornish. An empirical expression is suggested for the total drag coefficient for Grashof numbers ranging from 4 x 10/sup -4/ to 0.5 and Prandtl number = 0.72: log C/sub DT/ = 1.25 + 0.31 log Gr - 0.097(log Gr)/sup 2/. The dimensionless time required to reach 90% of the steady-state drag force can be approximated by the second-order polynomial: log t/sub 90%/ = 1.32 - log Gr - 0.11(Gr)/sup 2/.

  19. Scaling of the turbulent natural convection flow in a heated square cavity

    NASA Astrophysics Data System (ADS)

    Henkes, R. A. W. M.; Hoogendoorn, C. J.

    1994-05-01

    By numerically solving the Reynolds equations for air and water in a square cavity, with differentially heated vertical walls, at Rayleigh numbers up to 10(exp 20) the scalings of the turbulent natural convection flow are derived. Turbulence is modeled by the standard k-epsilon model and by the low-Reynolds-number k-epsilon models of Chien and of Jones and Launder. Both the scalings with respect to the Rayleigh number (based on the cavity size H) and with respect to the local height (y/H) are considered. The scalings are derived for the inner layer, outer layer, and core region. The Rayleigh number scalings are almost the same as the scalings for the natural convection boundary layer along a hot vertical plate. The scalings found are almost independent of the k-epsilon model used.

  20. Effect of natural convection on the current-voltage characteristic of a DC discharge in neon at intermediate pressures

    SciTech Connect

    Uvarov, A. V.; Sakharova, N. A.; Vinnichenko, N. A.

    2011-12-15

    The parameters of the positive column of a glow discharge in neon are calculated with allowance for the induced hydrodynamic motion. It is shown that natural convection in the pressure range of {approx}0.1 atm significantly affects the profiles of the parameters of the positive column and its current-voltage characteristic. The convection arising at large deposited energies improves heat removal, due to which the temperature in the central region of the discharge becomes lower than that calculated from the heat conduction equation. As a result, the current-voltage characteristic is shifted. With allowance for convection, the current-voltage characteristic changes at currents much lower than the critical current at which a transition into the constricted state is observed. This change is uniquely related to the Rayleigh number in the discharge. Thus, a simplified analysis of thermal conduction and diffusion, even with detailed account of kinetic processes occurring in the positive column, does not allow one to accurately calculate the current-voltage characteristic and other discharge parameters at intermediate gas pressures.

  1. Numerical analysis of heat transfer by conduction and natural convection in loose-fill fiberglass insulation--effects of convection on thermal performance

    SciTech Connect

    Delmas, A.A.; Wilkes, K.E.

    1992-04-01

    A two-dimensional code for solving equations of convective heat transfer in porous media is used to analyze heat transfer by conduction and convection in the attic insulation configuration. The particular cases treated correspond to loose-fill fiberglass insulation, which is characterized by high porosity and air permeability. The effects of natural convection on the thermal performance of the insulation are analyzed for various densities, permeabilities, and thicknesses of insulation. With convection increasing the total heat transfer through the insulation, the thermal resistance was found to decrease as the temperature difference across the insulating material increases. The predicted results for the thermal resistance are compared with data obtained in the large-scale climate simulator at the Roof Research Center using the attic test module, where the same phenomenon has already been observed. The way the wood joists within the insulation influence the start of convection is studied for differing thermophysical and dynamic properties of the insulating material. The presence of wood joists induces convection at a lower temperature difference.

  2. Calculation of Post-Closure Natural Convection Heat and Mass Transfer in Yucca Mountain Drifts

    SciTech Connect

    S. Webb; M. Itamura

    2004-03-16

    Natural convection heat and mass transfer under post-closure conditions has been calculated for Yucca Mountain drifts using the computational fluid dynamics (CFD) code FLUENT. Calculations have been performed for 300, 1000, 3000, and 10,000 years after repository closure. Effective dispersion coefficients that can be used to calculate mass transfer in the drift have been evaluated as a function of time and boundary temperature tilt.

  3. Simulation of natural convection in a rectangular loop using finite elements

    SciTech Connect

    Pepper, D W; Hamm, L L; Kehoe, A B

    1984-01-01

    A two-dimensional finite-element analysis of natural convection in a rectangular loop is presented. A psi-omega formulation of the Boussinesque approximation to the Navier-Stokes equation is solved by the false transient technique. Streamlines and isotherms at Ra = 10/sup 4/ are shown for three different modes of heating. The results indicate that corner effects should be considered when modeling flow patterns in thermosyphons.

  4. Natural convection within a vertical finite-length channel in free space

    SciTech Connect

    Lin, S.C.; Chang, K.P.; Hung, Y.H. )

    1994-04-01

    Natural convection within a vertical finite length channel in free space is studied in this article to remove assumptions that need to be made on velocity and temperature profiles at the channel entrance. For small channel aspect ratios and low Rayleigh numbers, significant deviations of the Nusselt number and temperature distributions exist due to the effects of vertical thermal diffusion and free space stratification in the channel. A new correlation was proposed on induced Reynolds number for vertical finite length channel. 8 refs.

  5. CFD numerical simulation of air natural convection over a heated cylindrical surface

    NASA Astrophysics Data System (ADS)

    Flori, M.; Vîlceanu, L.

    2015-06-01

    In this study a CFD numerical simulation is used to describe the fluid flow and heat transfer in air surrounding a heated horizontal cylinder. The model is created in 2D space dimension involving a finite element solver of Navier-Stokes equations. As natural convection phenomenon is induced by a variable fluid density field with temperature rising, the Boussinesq approximation was coupled to the model.

  6. Protoneutron star cooling with convection: the effect of the symmetry energy.

    PubMed

    Roberts, L F; Shen, G; Cirigliano, V; Pons, J A; Reddy, S; Woosley, S E

    2012-02-10

    We model neutrino emission from a newly born neutron star subsequent to a supernova explosion to study its sensitivity to the equation of state, neutrino opacities, and convective instabilities at high baryon density. We find the time period and spatial extent over which convection operates is sensitive to the behavior of the nuclear symmetry energy at and above nuclear density. When convection ends within the protoneutron star, there is a break in the predicted neutrino emission that may be clearly observable. PMID:22401050

  7. Emergency cooling down of fast-neutron reactors by natural convection (a review)

    NASA Astrophysics Data System (ADS)

    Zhukov, A. V.; Sorokin, A. P.; Kuzina, Yu. A.

    2013-05-01

    Various methods for emergency cooling down of fast-neutron reactors by natural convection are discussed. The effectiveness of using natural convection for these purposes is demonstrated. The operating principles of different passive decay heat removal systems intended for cooling down a reactor are explained. Experimental investigations carried out in Russia for substantiating the removal of heat in cooling down fast-neutron reactors are described. These investigations include experimental works on studying thermal hydraulics in small-scale simulation facilities containing the characteristic components of a reactor (reactor core elements, above-core structure, immersed and intermediate heat exchangers, pumps, etc.). It is pointed out that a system that uses leaks of coolant between fuel assemblies holds promise for fast-neutron reactor cooldown purposes. Foreign investigations on this problem area are considered with making special emphasis on the RAMONA and NEPTUN water models. A conclusion is drawn about the possibility of using natural convection as the main method for passively removing heat in cooling down fast-neutron reactors, which is confirmed experimentally both in Russia and abroad.

  8. Experimental Investigation of the Effects of Surface Conditions on Natural Convection-Driven Evaporation

    NASA Astrophysics Data System (ADS)

    Bower, S. M.; Saylor, J. R.

    2009-11-01

    Presented are the results from an experimental investigation of the effects of surface conditions at an air/water interface on transport phenomena within the context of natural convection-driven evaporation. Experiments were conducted using tanks of heated water under several different surface conditions: 1) contamination with an oleyl alcohol monolayer, 2) contamination with a stearic acid monolayer, and 3) ``clean'' or surfactant-free. These surface conditions create the following hydrodynamic boundary conditions: 1) constant elasticity, 2) no-slip, and 3) shear-free. The effect of these boundary conditions on evaporation and air-side natural convection heat transfer is presented via the power law relationships between the Sherwood and Rayleigh numbers (for evaporation) and the Nusselt and Rayleigh numbers (for natural convection heat transfer). Additionally, infrared imagery of the water surface was collected during these experiments, yielding qualitative information on the effect of these boundary conditions on the flow near the interface. Few studies exist in which the effects of surface conditions on interfacial heat and mass transfer are investigated, making this work particularly relevant.

  9. Air cooling of a vented enclosure by combined conduction, natural convection and radiation

    SciTech Connect

    Yu, E.; Joshi, Y.K.

    1996-12-31

    A three-dimensional investigation of combined conduction, natural convection and radiation in vented enclosures is carried out. A discrete flush type heat source mounted on a vertical substrate is used to simulate an electronic component. A uniform volumetric generation rate is assumed within the heat source. Combined natural convection in the air, conduction in the heat source, the substrate and the enclosure walls, and surface radiation are solved for Rayleigh numbers at 2.6 {times} 10{sup 6} and 2.0 {times} 10{sup 7}. Radiation is incorporated based on the radiosity/irradiation approach. The resulting flow and temperature patterns are discussed, focusing on radiation and three-dimensional effects. The relative contributions of natural convection and radiation are investigated for different emissivities of internal surface of the substrate. Heat transfer rates from the substrate and other internal walls are presented to illustrate conjugate heat transfer due to combined modes. The numerical solutions are found in reasonably good agreement with the data.

  10. Parametric numerical investigaion of natural convection in a heat-generating fluid with phase transitions

    SciTech Connect

    Aksenova, A.E.; Chudanov, V.V.; Strizhov, V.F.; Vabishchevich, P.N.

    1995-09-01

    Unsteady natural convection of a heat-generating fluid with phase transitions in the enclosures of a square section with isothermal rigid walls is investigated numerically for a wide range of dimensionless parameters. The quasisteady state solutions of conjugate heat and mass transfer problem are compared with available experimental results. Correlation relations for heat flux distributions at the domain boundaries depending on Rayleigh and Ostrogradskii numbers are obtained. It is shown that generally heat transfer is governed both by natural circulation and crust formation phenomena. Results of this paper may be used for analysis of experiments with prototypic core materials.

  11. Finite element, stream function-vorticity solution of steady laminar natural convection

    NASA Astrophysics Data System (ADS)

    Stevens, W. N. R.

    1982-12-01

    Stream function-vorticity finite element solution of two-dimensional incompressible viscous flow and natural convection is considered. Steady state solutions of the natural convection problem have been obtained for a wide range of the two independent parameters. Use of boundary vorticity formulae or iterative satisfaction of the no-slip boundary condition is avoided by application of the finite element discretization and a displacement of the appropriate discrete equations. Solution is obtained by Newton-Raphson iteration of all equations simultaneously. The method then appears to give a steady solution whenever the flow is physically steady, but it does not give a steady solution when the flow is physically unsteady. In particular, no form of asymmetric differencing is required. The method offers a degree of economy over primitive variable formulations. Physical results are given for the square cavity convection problem. The paper also reports on earlier work in which the most commonly used boundary vorticity formula was found not to satisfy the no-slip condition, and in which segregated solution procedures were attempted with very minimal success.

  12. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    SciTech Connect

    Triplett, C.E.

    1996-12-01

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.

  13. An evaluation of gas transfer velocity parameterizations during natural convection using DNS

    NASA Astrophysics Data System (ADS)

    Fredriksson, Sam T.; Arneborg, Lars; Nilsson, Hâkan; Zhang, Qi; Handler, Robert A.

    2016-02-01

    Direct numerical simulations (DNS) of free surface flows driven by natural convection are used to evaluate different methods of estimating air-water gas exchange at no-wind conditions. These methods estimate the transfer velocity as a function of either the horizontal flow divergence at the surface, the turbulent kinetic energy dissipation beneath the surface, the heat flux through the surface, or the wind speed above the surface. The gas transfer is modeled via a passive scalar. The Schmidt number dependence is studied for Schmidt numbers of 7, 150 and 600. The methods using divergence, dissipation and heat flux estimate the transfer velocity well for a range of varying surface heat flux values, and domain depths. The two evaluated empirical methods using wind (in the limit of no wind) give reasonable estimates of the transfer velocity, depending however on the surface heat flux and surfactant saturation. The transfer velocity is shown to be well represented by the expression, ks=A |Bν|1/4 Sc-n, where A is a constant, B is the buoyancy flux, ν is the kinematic viscosity, Sc is the Schmidt number, and the exponent n depends on the water surface characteristics. The results suggest that A=0.39 and n≈1/2 and n≈2/3 for slip and no-slip boundary conditions at the surface, respectively. It is further shown that slip and no-slip boundary conditions predict the heat transfer velocity corresponding to the limits of clean and highly surfactant contaminated surfaces, respectively. This article was corrected on 22 MAR 2016. See the end of the full text for details.

  14. Ramp temperature and Dufour effects on transient MHD natural convection flow past an infinite vertical plate in a porous medium

    NASA Astrophysics Data System (ADS)

    Marneni, Narahari; Tippa, Sowmya; Pendyala, Rajashekhar

    2015-12-01

    Analytical investigation of the unsteady natural convection flow along an infinite vertical plate embedded in a porous medium subjected to a ramped temperature boundary condition has been performed in the presence of magnetic field, thermal radiation, heat generation or absorption, chemical reaction and Dufour effect. The governing equations for momentum, energy and concentration have been solved using the Laplace transform technique. The closed-form exact solutions for the velocity, temperature and concentration fields as well as the skin-friction, Nusselt and Sherwood numbers are obtained without any restrictions. The influence of pertinent parameters on the fluid velocity, temperature, skin-friction and Nusselt number have been discussed in detailed through graphs. The natural convection due to ramped wall temperature (RWT) has also been compared with that of the constant wall temperature (CWT). It is observed that the fluid velocity and temperature profiles are greater in case of CWT than the case of RWT. Also it is noticed that the flow accelerates with increasing values of heat source parameter, permeability parameter and Dufour number while the flow retardation is observed with increasing values of radiation parameter, magnetic field parameter and Schmidt number.

  15. Studies of heat-source driven natural convection: A numerical investigation

    NASA Technical Reports Server (NTRS)

    Emara, A. A.; Kulacki, F. A.

    1977-01-01

    Thermal convection driven by uniform volumetric energy sources was studied in a horizontal fluid layer bounded from above by a rigid, isothermal surface and from below by a rigid, zero heat-flux surface. The side walls of the fluid domain were assumed to be rigid and perfectly insulating. The computations were formally restricted to two-dimensional laminar convection but were carried out for a range of Rayleigh numbers which spans the regimes of laminar and turbulent flow. The results of the computations consists of streamline and isotherm patterns, horizontally averaged temperature distributions, and horizontally averaged Nusselt numbers at the upper surface. Flow and temperature fields do not exhibit a steady state, but horizontally averaged Nusselt numbers reach limiting, quasi-steady values for all Rayleigh numbers considered. Correlations of the Nusselt number in terms of the Rayleigh and Prandtl numbers were determined.

  16. Studies of heat source driven natural convection. Ph.D. Thesis. Technical Report, Jul. 1974 - Aug. 1975

    NASA Technical Reports Server (NTRS)

    Kulacki, F. A.; Emara, A. A.

    1975-01-01

    Natural convection energy transport in a horizontal layer of internally heated fluid was measured for Rayleigh numbers from 1890 to 2.17 x 10 to the 12th power. The fluid layer is bounded below by a rigid zero-heat-flux surface and above by a rigid constant-temperature surface. Joule heating by an alternating current passing horizontally through the layer provides the uniform volumetric energy source. The overall steady-state heat transfer coefficient at the upper surface was determined by measuring the temperature difference across the layer and power input to the fluid. The correlation between the Nusselt and Rayleigh numbers for the data of the present study and the data of the Kulacki study is given.

  17. Numerical modeling of crystal growth on a centrifuge for unstable natural convection configurations

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Downey, J. P.; Curreri, P. A.; Jones, J. C.

    1993-01-01

    The fluid mechanics associated with crystal growth processes on centrifuges is modeled using 2D and 3D models. Two-dimensional calculations show that flow bifurcations exist in such crystal growth configurations where the ampoule is oriented in the same direction as the resultant gravity vector and a temperature gradient is imposed on the melt. A scaling analysis is formulated to predict the flow transition point from the natural convection dominated regime to the Coriolis force dominated regime. Results of 3D calculations are presented for two thermal configurations of the crystal growth cell: top heated and bottom heated with respect to the centrifugal acceleration. In the top heated configuration, a substantial reduction in the convection intensity within the melt can be attained by centrifuge operations, and close to steady diffusion-limited thermal conditions can be achieved over a narrow range of the imposed microgravity level. In the bottom heated configuration the Coriolis force has a stabilizing effect on fluid motion by delaying the onset of unsteady convection.

  18. Soret and chemical reaction effects on unsteady two-dimensional natural convection along a vertical plate

    NASA Astrophysics Data System (ADS)

    Raju, S. Suresh Kumar; Narahari, M.; Pendyala, Rajashekhar

    2014-10-01

    In this paper, a numerical solution of the unsteady two-dimensional natural convection along a vertical plate in the presence of Soret and chemical reaction effects is presented. The governing non-dimensional coupled non-linear partial differential equations have been evaluated by using an implicit finite-difference technique of Crank-Nicolson scheme. Numerical predictions for the velocity, concentration, local and average skin-friction and Sherwood number for distinct values of chemical reaction parameter and Soret number are plotted graphically. It is found that the fluid velocity and concentration decreases while increasing chemical reaction parameter whereas an increase in the Soret number increases the fluid velocity and concentration.

  19. Effect of free surface shape on combined thermocapillary and natural convection

    NASA Technical Reports Server (NTRS)

    Kamotani, Yasuhiro; Platt, Jonathan

    1992-01-01

    Combined thermocapillary and natural convection in an open square cavity with differentially-heated side walls is studied numerically as well as experimentally. The test fluid is silicone oil with Prandtl number of 105. The shape of fluid-free surface is made either flat or curved to study its effect on the flow. A finite difference scheme to deal with a curved free surface is developed. The experimental results shown agree with the numerical results. With the curved-free surface, the flow and local heat transfer rate are reduced in the corner regions, and a sharp peak in heat transfer rate at the top edge of the cold wall disappears.

  20. Passive decay heat removal by natural air convection after severe accidents

    SciTech Connect

    Erbacher, F.J.; Neitzel, H.J.; Cheng, X.

    1995-09-01

    The composite containment proposed by the Research Center Karlsruhe and the Technical University Karlsruhe is to cope with severe accidents. It pursues the goal to restrict the consequences of core meltdown accidents to the reactor plant. One essential of this new containment concept is its potential to remove the decay heat by natural air convection and thermal radiation in a passive way. To investigate the coolability of such a passive cooling system and the physical phenomena involved, experimental investigations are carried out at the PASCO test facility. Additionally, numerical calculations are performed by using different codes. A satisfying agreement between experimental data and numerical results is obtained.

  1. Anomalies of the natural convection of water near 3.98°C

    NASA Astrophysics Data System (ADS)

    Baturov, L. N.; Govor, I. N.

    2016-02-01

    Natural convection of water in a cylindrical cavity with an open surface at a temperature of about 3.98°C (temperature of the maximum water density) is accompanied by typical anomalies on time dependences of temperatures of water layers. In particular, stabilization of temperature T st is observed in the bottom region of the cavity and duration of such stabilization t st may reach several hours depending on the experimental conditions. The results for solutions of sodium chloride and ethanol at a relatively low rate of water cooling show that temperature T st coincides with temperature T max corresponding to the maximum density of solutions.

  2. An investigation of transitional Phenomena from Laminar to Turbulent Natural Convection using Compressible Direct Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Li, Chunggang; Tsubokura, Makoto; Complex Phenomena Unified Simulation Research Team

    2014-11-01

    The complete transition from laminar to turbulent natural convection in a long channel is investigated using compressible direct numerical simulation (DNS). Numerical methods of Roe scheme with precontioning and dual time stepping are used for addressing the flow field which is low speed but the density is variable. During the transient development, there are four stages which are laminar, unstable process, relaminarization and turbulence can be obviously identified. After reaching the quasi steady state, the laminar, transition and turbulence simultaneously coexist in the same flow field. Additionally, the comparisons of the statistics with the experimental data are also well consistent.

  3. Natural convection of silica-water nanofluids based on experimental measured thermophysical properties: critical analysis

    NASA Astrophysics Data System (ADS)

    Haddad, Zoubida; Abid, Chérifa; Mohamad, A. A.; Rahli, O.; Bawazer, S.

    2016-08-01

    An experimental and numerical study was performed to investigate the effect of different formulas for nanofluid thermal conductivity and dynamic viscosity on natural convective heat transfer. It was found that the heat transfer across the enclosure using different models can be enhanced or deteriorated with respect to the base fluid. Also, it was found that the inconsistencies in the reported thermal conductivity and dynamic viscosity from different research groups are mainly due to the characterization of the nanofluid, including determination of colloidal stability and particle size, (i.e., aggregates size) within nanofluid.

  4. Drying characteristic of barley under natural convection in a mixed-mode type solar grain dryer

    SciTech Connect

    Basunia, M.A.; Abe, T.

    1999-07-01

    Thin-layer solar drying characteristics of barley were determined at average natural air flow temperature ranging from 43.4 to 51.7 C and for relative humidities ranging from 16.5% to 37.5%. A mixed-mode type natural convection solar dryer was used for this experiment. The data of sample weight, and dry and wet bulb temperatures of the drying air were recorded continuously throughout the drying period for each test. The drying data were then fitted to the Page model. The model gave a good fit for the moisture content with an average standard error of 0.305% dry basis. The parameter N in Page's equation was assumed as a product-dependent constant which made it easy to compare the effects of independent variables on the natural convection solar drying rate without causing considerable error in predicting the drying rate for barley. A linear relationship was found between the parameter K, temperature T, and relative humidity R{sub H}.

  5. Film boiling heat transfer from a sphere in natural and forced convection of freon-113

    SciTech Connect

    Dix, D.; Orozco, J. )

    1990-01-01

    Boiling heat transfer fluxes were measured on a 3.84-cm hollow copper sphere, in both forced convection and pool boiling, as a function of angular position in Freon 113. This paper reports on forced-convection tests run at speeds of 0.5 to 1.9 m/s. These tests were conducted in the stable film boiling region of the boiling curve. Significant heat transfer rates were measured in the vapor wake region of the sphere for flow film boiling. Video observations of the boiling process revealed that the flow film boiling vapor removal mechanism consisted of periodic formation and detachment of a vapor wake in the rear of the sphere. For pool boiling it was found that the heated surface had a uniform rate of energy dissipation in the stable film boiling regime, whereas in forced convection the film boiling rate was dependent on angular position. Pool film boiling tests also showed multiple humps (more than one maximum heat flux) in the boiling curve when the liquid was subcooled.

  6. Kinetic energy cascades in quasi-geostrophic convection in a spherical shell

    NASA Astrophysics Data System (ADS)

    Reshetnyak, Maxim; Hejda, Pavel

    2012-07-01

    We consider triadic nonlinear interaction in the Navier-Stokes equation for quasi-geostrophic convection in a spherical shell. This approach helps us understand the origin of kinetic energy transport in the system and the particular scheme of mode interaction, as well as the locality of energy transfer. The peculiarity of convection in the sphere, concerned with the excitation of Rossby waves, is considered. The obtained results are compared with the results of our previous study on Cartesian geometry.

  7. Natural Convection Heat Transfer in a Rectangular Liquid Metal Pool With Bottom Heating and Top Cooling

    SciTech Connect

    Lee, Il S.; Yu, Yong H.; Son, Hyoung M.; Hwang, Jin S.; Suh, Kune Y.

    2006-07-01

    An experimental study is performed to investigate the natural convection heat transfer characteristics with subcooled coolant to create engineering database for basic applications in a lead alloy cooled reactor. Tests are performed in the ALTOS (Applied Liquid-metal Thermal Operation Study) apparatus as part of MITHOS (Metal Integrated Thermo Hydrodynamic Operation System). A relationship is determined between the Nusselt number Nu and the Rayleigh number Ra in the liquid metal rectangular pool. Results are compared with correlations and experimental data in the literature. Given the similar Ra condition, the present test results for Nu of the liquid metal pool with top subcooling are found to be similar to those predicted by the existing correlations or experiments. The current test results are utilized to develop natural convection heat transfer correlations applicable to low Prandtl number Pr fluids that are heated from below and cooled by the external coolant above. Results from this study are slated to be used in designing BORIS (Battery Optimized Reactor Integral System), a small lead cooled modular fast reactor for deployment at remote sites cycled with MOBIS (Modular Optimized Brayton Integral System) for electricity generation, tied with NAVIS (Naval Application Vessel Integral System) for ship propulsion, joined with THAIS (Thermochemical Hydrogen Acquisition Integral System) for hydrogen production, and coupled with DORIS (Desalination Optimized Reactor Integral System) for seawater desalination. Tests are performed with Wood's metal (Pb-Bi-Sn-Cd) filling a rectangular pool whose lower surface is heated and upper surface cooled by forced convection of water. The test section is 20 cm long, 11.3 cm high and 15 cm wide. The simulant has a melting temperature of 78 deg. C. The constant temperature and heat flux condition was realized for the bottom heating once the steady state had been met. The test parameters include the heated bottom surface temperature

  8. Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection.

    PubMed

    Mayor, T S; Couto, S; Psikuta, A; Rossi, R M

    2015-12-01

    The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s(-1)) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 10(2)-3 × 10(5)). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow

  9. Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection

    NASA Astrophysics Data System (ADS)

    Mayor, T. S.; Couto, S.; Psikuta, A.; Rossi, R. M.

    2015-12-01

    The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s-1) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 102-3 × 105). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow patterns and

  10. Clausius-Clapeyron Scaling of Convective Available Potential Energy (CAPE) in Cloud-Resolving Simulations

    NASA Astrophysics Data System (ADS)

    Seeley, J.; Romps, D. M.

    2015-12-01

    Recent work by Singh and O'Gorman has produced a theory for convective available potential energy (CAPE) in radiative-convective equilibrium. In this model, the atmosphere deviates from a moist adiabat—and, therefore, has positive CAPE—because entrainment causes evaporative cooling in cloud updrafts, thereby steepening their lapse rate. This has led to the proposal that CAPE increases with global warming because the strength of evaporative cooling scales according to the Clausius-Clapeyron (CC) relation. However, CAPE could also change due to changes in cloud buoyancy and changes in the entrainment rate, both of which could vary with global warming. To test the relative importance of changes in CAPE due to CC scaling of evaporative cooling, changes in cloud buoyancy, and changes in the entrainment rate, we subject a cloud-resolving model to a suite of natural (and unnatural) forcings. We find that CAPE changes are primarily driven by changes in the strength of evaporative cooling; the effect of changes in the entrainment rate and cloud buoyancy are comparatively small. This builds support for CC scaling of CAPE.

  11. Comparative measurements of natural convection heat transfer in channels by holographic interferometry and schlieren

    NASA Astrophysics Data System (ADS)

    Ambrosini, Dario; Tanda, Giovanni

    2006-01-01

    In this work, natural convection heat transfer in vertical channels is experimentally investigated by applying different optical techniques, namely holographic interferometry and schlieren. Both these techniques are based on the temperature dependence of the air refractive index but they detect different optical quantities and their use involves different instrumentation and optical components. Optical methods, non-intrusive in nature, are particularly suitable for the visualization of flow and thermal fields as witnessed by their increasing use in a range of scientific and engineering disciplines; for this reason, the introduction of these experimental tools into a laboratory course can be of high value. Physics and engineering students can get familiarized with optical techniques, grasp the basics of thermal phenomena, usually elusive, which can be more easily understood if they are made visible, and begin to master digital image analysis, a key skill in laboratory activities. A didactic description of holographic interferometry and schlieren is provided and experimental results obtained for vertical, smooth and rib-roughened channels with asymmetrical heating are presented. A comparison between distributions of the local heat transfer coefficient (or its dimensionless counterpart, the Nusselt number) revealed good agreement between the results separately obtained by the two techniques, thus proving their suitability for investigating free convection heat transfer in channels.

  12. Study on natural convection capability of liquid gallium for passive decay heat removal system (PDHRS)

    SciTech Connect

    Kang, S.; Ha, K. S.; Lee, S. W.; Park, S. D.; Kim, S. M.; Seo, H.; Kim, J. H.; Bang, I. C.

    2012-07-01

    The safety issues of the SFRs are important due to the fact that it uses sodium as a nuclear coolant, reacting vigorously with water and air. For that reason, there are efforts to seek for alternative candidates of liquid metal coolants having excellent heat transfer property and to adopt improved safety features to the SFR concepts. This study considers gallium as alternative liquid metal coolant applicable to safety features in terms of chemical activity issue of the sodium and aims to experimentally investigate the natural convection capability of gallium as a feasibility study for the development of gallium-based passive safety features in SFRs. In this paper, the design and construction of the liquid gallium natural convection loop were carried out. The experimental results of heat transfer coefficient of liquid gallium resulting in heat removal {approx}2.53 kW were compared with existing correlations and they were much lower than the correlations. To comparison of the experimental data with computer code analysis, gallium property code was developed for employing MARS-LMR (Korea version of RELAP) based on liquid gallium as working fluid. (authors)

  13. Experimental study of natural convection enhancement using a Fe3O4-water based magnetic nanofluid.

    PubMed

    Stoian, Floriana D; Holotescu, Sorin

    2012-10-01

    The effect of nanoparticles dispersed in a carrier fluid on the natural convection heat transfer is still raising controversies. While the reported experimental results show no improvement or even worsening of the heat transfer performance of nanofluids, the numerical simulations show an increase of the heat transfer coefficient, at least for certain ranges of Ra number. We report an experimental investigation regarding the natural convection heat transfer performance of a Fe3O4-water based nanofluid, in a cylindrical enclosure. The fluid was heated linearly from the bottom wall using an electric heater and cooled from the upper wall by a constant flow of water, such that a constant temperature difference between the upper and bottom walls was obtained at steady-state. The experiment was also carried out using water, in order to observe the effect of the addition of Fe3O4 nanoparticles on the heat transfer coefficient. Several regimes were tested, both for water and nanofluid. The experimental results showed that values obtained for the heat transfer coefficient for Fe3O4-water nanofluid were higher than those for water, at the same temperature difference. The present experimental results are also compared with our previous work and the reference literature. PMID:23421199

  14. A new look at natural convection from isothermal vertical parallel plates

    SciTech Connect

    Li, H.H.; Chung, B.T.F.

    1996-12-31

    Natural convection between isothermal plates is solved numerically by applying the full Navier-Stokes equations. The elliptic formulation allows separating the effect of the Rayleigh number, Ra, and the aspect ratio, L/B. Calculations are made on a wide range of the Rayleigh number and the aspect ratio, and the Nusselt number is provided as a function of both Ra and B/L. The conventional correlations in the literature presenting the Nusselt number in terms of a single parameter, RaB/L, have been found inaccurate. At a small value of RaB/L, multiple values of Nusselt number are obtained for different combinations of Ra and B/L. Previous results are found to be the special cases of the present study. A minimum Rayleigh number is also obtained above which a fully-developed flow is possible. To simulate the natural convective flow, the ambient pressure is given at the exit while the pressure at the entrance is related to the ambient pressure by the Bernoulli equation. Velocities at the entrance and exit are also solved from the Navier-Stokes equations.

  15. Application of dynamic global-coefficient subgrid-scale models to turbulent natural convection in an enclosed tall cavity

    NASA Astrophysics Data System (ADS)

    Lau, G. E.; Yeoh, G. H.; Timchenko, V.; Reizes, J. A.

    2012-09-01

    Large-eddy simulations examining natural convection in an enclosed cavity with the simultaneous presence of laminar, transitional, and turbulent flow regimes were conducted. The Rayleigh number based on height of the cavity is 4.6 × 1010. Different dynamic global-coefficient procedures to compute the Vreman [A. W. Vreman, "An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications," Phys. Fluids 16, 3670 (2004)] model coefficient were implemented for the subgrid-scale tensors in both the momentum and energy equations. Based on comparison with experimental and existing numerical data, it is shown that the dynamic model derived from the "global equilibrium" hypothesis gives favorable results in the mean flow and turbulence quantities. Nevertheless, because of higher subgrid-scale dissipation, transition to a turbulent flow is postponed when the Vreman model coefficient is either uniform or determined dynamically using the Germano identity approach. This suggests that much finer grid is desired when using these models in order to better capture the weak transitional boundary layer. Further, by exploring the instantaneous flow dynamics, it is demonstrated that characteristics of the coherent structures which resemble streaks in forced convection boundary layers are somewhat dissimilar in the different models.

  16. Role of Induced Magnetic Field on Transient Natural Convection Flow in a Vertical Channel: The Riemann Sum Approximation Approach

    NASA Astrophysics Data System (ADS)

    Jha, B. K.; Sani, I.

    2015-02-01

    This paper investigates the role of induced magnetic field on a transient natural convection flow of an electrically conducting, incompressible and viscous fluid in a vertical channel formed by two infinite vertical parallel plates. The transient flow formation inside the channel is due to sudden asymmetric heating of channel walls. The time dependent momentum, energy and magnetic induction equations are solved semi-analytically using the Laplace transform technique along with the Riemann-sum approximation method. The solutions obtained are validated by comparisons with the closed form solutions obtained for the steady states which have been derived separately and also by the implicit finite difference method. Graphical results for the temperature, velocity, induced magnetic field, current density, and skin-friction based on the semi-analytical solutions are presented and discussed.

  17. Thermal analysis of a fully wet porous radial fin with natural convection and radiation using the spectral collocation method

    NASA Astrophysics Data System (ADS)

    Khani, F.; Darvishi, M. T.; Gorla, R. S.. R.; Gireesha, B. J.

    2016-05-01

    Heat transfer with natural convection and radiation effect on a fully wet porous radial fin is considered. The radial velocity of the buoyancy driven flow at any radial location is obtained by applying Darcy's law. The obtained non-dimensionalized ordinary differential equation involving three highly nonlinear terms is solved numerically with the spectral collocation method. In this approach, the dimensionless temperature is approximated by Chebyshev polynomials and discretized by Chebyshev-Gausse-Lobatto collocation points. A particular algorithm is used to reduce the nonlinearity of the conservation of energy equation. The present analysis characterizes the effect of ambient temperature in different ways and it provides a better picture regarding the effect of ambient temperature on the thermal performance of the fin. The profiles for temperature distributions and dimensionless base heat flow are obtained for different parameters which influence the heat transfer rate.

  18. Natural and mixed convection in the cylindrical pool of TRIGA reactor

    NASA Astrophysics Data System (ADS)

    Henry, R.; Tiselj, I.; Matkovič, M.

    2016-05-01

    Temperature fields within the pool of the JSI TRIGA MARK II nuclear research reactor were measured to collect data for validation of the thermal hydraulics computational model of the reactor tank. In this context temperature of the coolant was measured simultaneously at sixty different positions within the pool during steady state operation and two transients. The obtained data revealed local peculiarities of the cooling water dynamics inside the pool and were used to estimate the coolant bulk velocity above the reactor core. Mixed natural and forced convection in the pool were simulated with a Computational Fluid Dynamics code. A relatively simple CFD model based on Unsteady RANS turbulence model was found to be sufficient for accurate prediction of the temperature fields in the pool during the reactor operation. Our results show that the simple geometry of the TRIGA pool reactor makes it a suitable candidate for a simple natural circulation benchmark in cylindrical geometry.

  19. Convective kinetic energy equation under the mass-flux subgrid-scale parameterization

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2015-03-01

    The present paper originally derives the convective kinetic energy equation under mass-flux subgrid-scale parameterization in a formal manner based on the segmentally-constant approximation (SCA). Though this equation is long since presented by Arakawa and Schubert (1974), a formal derivation is not known in the literature. The derivation of this formulation is of increasing interests in recent years due to the fact that it can explain basic aspects of the convective dynamics such as discharge-recharge and transition from shallow to deep convection. The derivation is presented in two manners: (i) for the case that only the vertical component of the velocity is considered and (ii) the case that both the horizontal and vertical components are considered. The equation reduces to the same form as originally presented by Arakwa and Schubert in both cases, but with the energy dissipation term defined differently. In both cases, nevertheless, the energy "dissipation" (loss) term consists of the three principal contributions: (i) entrainment-detrainment, (ii) outflow from top of convection, and (iii) pressure effects. Additionally, inflow from the bottom of convection contributing to a growth of convection is also formally counted as a part of the dissipation term. The eddy dissipation is also included for a completeness. The order-of-magnitude analysis shows that the convective kinetic energy "dissipation" is dominated by the pressure effects, and it may be approximately described by Rayleigh damping with a constant time scale of the order of 102-103 s. The conclusion is also supported by a supplementary analysis of a cloud-resolving model (CRM) simulation. The Appendix discusses how the loss term ("dissipation") of the convective kinetic energy is qualitatively different from the conventional eddy-dissipation process found in turbulent flows.

  20. Plume generation in natural thermal convection at high Rayleigh and Prandtl numbers

    NASA Astrophysics Data System (ADS)

    Lithgow-Bertelloni, C.; Richards, M. A.; Conrad, C. P.; Griffiths, R. W.

    2001-05-01

    We study natural thermal convection of a fluid (corn syrup) with a large Prandtl number (103 107) and temperature-dependent viscosity. The experimental tank (1 × 1 × 0.3m) is heated from below with insulating top and side boundaries, so that the fluid experiences secular heating as experiments proceed. This setup allows a focused study of thermal plumes from the bottom boundary layer over a range of Rayleigh numbers relevant to convective plumes in the deep interior of the Earth's mantle. The effective value of Ra, based on the viscosity of the fluid at the interior temperature, varies from 105 at the beginning to almost 108 toward the end of the experiments. Thermals (plumes) from the lower boundary layer are trailed by continuous conduits with long residence times. Plumes dominate flow in the tank, although there is a weaker large-scale circulation induced by material cooling at the imperfectly insulating top and sidewalls. At large Ra convection is extremely time-dependent and exhibits episodic bursts of plumes, separated by periods of quiescence. This bursting behaviour probably results from the inability of the structure of the thermal boundary layer and its instabilities to keep pace with the rate of secular change in the value of Ra. The frequency of plumes increases and their size decreases with increasing Ra, and we characterize these changes via in situ thermocouple measurements, shadowgraph videos, and videos of liquid crystal films recorded during several experiments. A scaling analysis predicts observed changes in plume head and tail radii with increasing Ra. Since inertial effects are largely absent no transition to ‘hard’ thermal turbulence is observed, in contrast to a previous conclusion from numerical calculations at similar Rayleigh numbers. We suggest that bursting behaviour similar to that observed may occur in the Earth's mantle as it undergoes secular cooling on the billion-year time scale.

  1. Developing natural convection in a fluid layer with localized heating and large viscosity variation

    SciTech Connect

    Hickox, C.E.; Chu, Tze Yao.

    1991-01-01

    Numerical simulations and laboratory experiments are used to elucidate aspects of transient natural convection in a magma chamber. The magma chamber is modeled as a horizontal fluid layer confined within an enclosure of square planform and heated from below by a strip heater centered on the lower boundary of the enclosure. The width of the strip heater and the depth of the fluid layer are one-fourth of the layer width. Corn syrup is used as the working fluid in order to approximate the large viscosity variation with temperature and the large Prandtl number typical of magma. The quiescent, uniform, fluid layer is subjected to instantaneous heating from the strip heater producing a transient flow which is dominated by two counter-rotating convective cells. Experimentally determined characteristics of the developing flow are compared with numerical simulations carried out with a finite element computer program. The results of numerical simulations are in essential agreement with experimental data. Differences between the numerical simulations and experimental measurements are conjectured to result from non-ideal effects present in the experiment which are difficult to represent accurately in a numerical simulation.

  2. Developing natural convection in a fluid layer with localized heating and large viscosity variation

    NASA Astrophysics Data System (ADS)

    Hickox, C. E.; Chu, Tze Yao

    Numerical simulations and laboratory experiments are used to elucidate aspects of transient natural convection in a magma chamber. The magma chamber is modeled as a horizontal fluid layer confined within an enclosure of square planform and heated from below by a strip heater centered on the lower boundary of the enclosure. The width of the strip heater and the depth of the fluid layer are one-fourth of the layer width. Corn syrup is used as the working fluid in order to approximate the large viscosity variation with temperature and the large Prandtl number typical of magma. The quiescent, uniform, fluid layer is subjected to instantaneous heating from the strip heater producing a transient flow which is dominated by two counter-rotating convective cells. Experimentally determined characteristics of the developing flow are compared with numerical simulations carried out with a finite element computer program. The results of numerical simulations are in essential agreement with experimental data. Differences between the numerical simulations and experimental measurements are conjectured to result from non-ideal effects present in the experiment which are difficult to represent accurately in a numerical simulation.

  3. Blade-to-coolant heat-transfer results and operating data from a natural-convection water-cooled single-stage turbine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Freche, John C

    1951-01-01

    Blade-to-coolant heat-transfer data and operating data were obtained with a natural-convection water-cooled turbine over range of turbine speeds and inlet-gas temperatures. The convective coefficients were correlated by the general relation for natural-convection heat transfer. The turbine data were displaced from a theoretical equation for natural convection heat transfer in the turbulent region and from natural-convection data obtained with vertical cylinders and plates; possible disruption of natural convection circulation within the blade coolant passages was thus indicated. Comparison of non dimensional temperature-ratio parameters for the blade leading edge, midchord, and trailing edge indicated that the blade cooling effectiveness is greatest at the midchord and least at the trailing edge.

  4. The effect of perturbations of convective energy transport on the luminosity and radius of the Sun

    NASA Technical Reports Server (NTRS)

    Endal, A. S.; Twigg, L. W.

    1982-01-01

    The response of solar models to perturbations of the efficiency of convective energy transport is studied for a number of cases. Such perturbations primarily effect the shallow superadiabatic layer of the convective envelope (at depth of approx. 1000 km below the photosphere). Independent of the details of the perturbation scheme, the resulting change in the solar radius is always very small compared to the change in luminosity. This appears to be true for any physical mechanism of solar variability which operates in the outer layers of the convection zone. Changes of the solar radius have been inferred from historical observations of solar eclipses. Considering the constraints on concurrent luminosity changes, this type of solar variability must be indicative of changes in the solar structure at substantial depths below the superadiabatic layer of the convective envelope.

  5. Thermally induced depolarization in terbium gallium garnet ceramics rod with natural convection cooling

    NASA Astrophysics Data System (ADS)

    Slezak, Ondrej; Yasuhara, Ryo; Lucianetti, Antonio; Vojna, David; Mocek, Tomas

    2015-06-01

    Thermal birefringence-induced depolarization in terbium gallium garnet (TGG) ceramic rods has been numerically evaluated for the geometry and heating conditions in a previous experiment. In this model, the spatially resolved heat transfer coefficient corresponding to natural convection cooling and the offset of the beam from the rotational axis of the rod have been incorporated and the realistic beam profile used in the experiment has been considered. A resulting beam depolarization ratio of 4.3 × 10-4 has been calculated for an input power of 117 W. The results were found to be in good agreement with the measured values. Furthermore, a parametric study of the depolarization ratio for higher input powers has been performed leading to a depolarization ratio of 3.3 × 10-2 for 1 kW input power.

  6. MHD natural convection flow along a vertical wavy surface with heat generation and pressure work

    NASA Astrophysics Data System (ADS)

    Alim, M. A.; Kabir, K. H.; Andallah, L. S.

    2016-07-01

    In this paper, the influence of pressure work on MHD natural convection flow of viscous incompressible fluid along a uniformly heated vertical wavy surface with heat generation has been investigated. The governing boundary layer equations are first transformed into a non-dimensional form using suitable set of dimensionless variables. The resulting nonlinear system of partial differential equations are mapped into the domain of a vertical flat plate and then solved numerically employing the implicit finite difference method, known as Keller-box scheme. The numerical results for the velocity profiles, temperature profiles, skin friction coefficient, the rate of heat transfers, the streamlines and the isotherms are shown graphically and skin friction coefficient and rate of heat transfer have been shown in tabular form for different values of the selective set of parameters consisting of pressure work parameter Ge, the magnetic parameter M, Prandtl number Pr, heat generation parameter Q and the amplitude of the wavy surface.

  7. Two- and three-dimensional natural and mixed convection simulation using modular zonal models

    SciTech Connect

    Wurtz, E.; Nataf, J.M.; Winkelmann, F.

    1996-07-01

    We demonstrate the use of the zonal model approach, which is a simplified method for calculating natural and mixed convection in rooms. Zonal models use a coarse grid and use balance equations, state equations, hydrostatic pressure drop equations and power law equations of the form {ital m} = {ital C}{Delta}{sup {ital n}}. The advantage of the zonal approach and its modular implementation are discussed. The zonal model resolution of nonlinear equation systems is demonstrated for three cases: a 2-D room, a 3-D room and a pair of 3-D rooms separated by a partition with an opening. A sensitivity analysis with respect to physical parameters and grid coarseness is presented. Results are compared to computational fluid dynamics (CFD) calculations and experimental data.

  8. Analysis on the similarity between steel ladles and hot-water models regarding natural convection phenomena

    NASA Astrophysics Data System (ADS)

    Liviu, Pascu; Adriana, Putan; Vasile, Putan; Alina, Lascutoni

    2012-09-01

    The similarity between steel ladles and hot water model regarding natural convection phenomena has been analyzed through examination of the numerical solutions of turbulent Navier-Stokes partial differential equations governing the phenomena in question. Key similarity criteria for non-isothermal physical modeling of steel ladles with hot-water models have been derived as Frm = Frp and (β∇T)m = (β∇T)p where the subscript m and p stand for the water model and the prototype steel ladle, respectively. Accordingly, appropriate conditions fulfilling the above criteria, such as model size, water temperature, time scale factor and the scale factor of boundary heat loss fluxes, have been proposed and discussed.

  9. Computational analysis of non-isothermal temperature distribution on natural convection in nanofluid filled enclosures

    NASA Astrophysics Data System (ADS)

    Oztop, Hakan F.; Abu-Nada, Eiyad; Varol, Yasin; Al-Salem, Khaled

    2011-04-01

    In this study, the problem of steady state natural convection in an enclosure filled with a nanofluid has been analyzed numerically by using heating and cooling by sinusoidal temperature profiles on one side. The governing partial differential equations, in terms of the dimensionless stream function-vorticity and temperature, are solved numerically using the finite volume method for various inclination angles 0∘≤ϕ≤90∘, different types of nanoparticles (TiO 2 and Al 2O 3) and fractions of nanoparticles 0≤φ≤0.1, whereas the range of the Rayleigh number Ra is 10 3-10 5. It is found that the addition of nanoparticles into water affects the fluid flow and temperature distribution especially for higher Rayleigh numbers. An enhancement in heat transfer rate was registered for the whole range of Rayleigh numbers. However, low Rayleigh numbers show more enhancement compared to high Rayleigh numbers.

  10. Natural convection mass transfer on a vertical steel structure submerged in a molten aluminum pool

    SciTech Connect

    Cheung, F.B.; Yang, B.C.; Shiah, S.W.; Cho, D.H.; Tan, M.J.

    1995-02-01

    The process of dissolution mass transport along a vertical steel structure submerged in a large molten aluminum pool is studied theoretically. A mathematical model is developed from the conservation laws and thermodynamic principles, taking full account of the density variation in the dissolution boundary layer due to concentration differences. Also accounted for are the influence of the solubility of the wall material on species transfer and the motion of the solid/liquid interface at the dissolution front. The governing equations are solved by a combined analytical-numerical technique to determine the characteristics of the dissolution boundary layer and the rate of natural convection mass transfer. Based upon the numerical results, a correlation for the average Sherwood number is obtained. It is found that the Sherwood number depends strongly on the saturated concentration of the substrate at the moving dissolution front but is almost independent of the freestream velocity.

  11. Design and Scaling of the Natural Convection Shutdown Heat Removal Test Facility

    SciTech Connect

    Lisowski, Darius D.; Gerardi, Craig D.; Bremer, Nathan C.; Farmer, Mitchell T.

    2014-01-01

    The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (ANL) reflects a 1/2 scale model of one conceptual design for passive safety in advanced reactors. The project was initiated in 2010 primarily to conduct ex-vessel, passive decay heat removal experiments in support of the Advanced Reactor Concepts (ARC), Small Modular Reactor (SMR), and Next Generation Nuclear Plant (NGNP) programs while also generating data for code validation purposes. The facility successfully demonstrated scoping objectives in late 2013, and is expected to begin testing by early 2014. The following paper summarizes some of the key design and scaling considerations used in construction of the experimental facility, along with an overview of the current instrumentation and data acquisition methods. Details of the distributed fiber optic temperature system will be presented, which introduces a level of data density suitable for CFD validation and is a first-of-its-kind for largescale thermal hydraulics facilities.

  12. Natural convection flow in a square cavity revisited: Laminar and turbulent models with wall functions

    NASA Astrophysics Data System (ADS)

    Barakos, G.; Mitsoulis, E.; Assimacopoulos, D.

    1994-04-01

    Numerical simulations have been undertaken for the benchmark problem of natural convection flow in a square cavity. The control volume method is used to solve the conservation equations for laminar and turbulent flows for a series of Rayleigh numbers (Ra) reaching values up to 10(exp 10). The k-epsilon model has been used for turbulence modelling with and without logarithmic wall functions. Uniform and non-uniform (stretched) grids have been employed with increasing density to guarantee accurate solutions, especially near the walls for high Ra-values. ADI and SIP solvers are implemented to accelerate convergence. Excellent agreement is obtained with previous numerical solutions, while some discrepancies with others for high Ra-values may be due to a possibly different implementation of the wall functions. Comparisons with experimental data for heat transfer (Nusselt number) clearly demonstrates the limitations of the standard k-epsilon model with logarithmic wall functions, which gives significant overpredictions.

  13. Parallel Computations of Natural Convection Flow in a Tall Cavity Using an Explicit Finite Element Method

    SciTech Connect

    Dunn, T.A.; McCallen, R.C.

    2000-10-17

    The Galerkin Finite Element Method was used to predict a natural convection flow in an enclosed cavity. The problem considered was a differentially heated, tall (8:1), rectangular cavity with a Rayleigh number of 3.4 x 10{sup 5} and Prandtl number of 0.71. The incompressible Navier-Stokes equations were solved using a Boussinesq approximation for the buoyancy force. The algorithm was developed for efficient use on massively parallel computer systems. Emphasis was on time-accurate simulations. It was found that the average temperature and velocity values can be captured with a relatively coarse grid, while the oscillation amplitude and period appear to be grid sensitive and require a refined computation.

  14. Natural convection in binary gases driven by combined horizontal thermal and vertical solutal gradients

    SciTech Connect

    Weaver, J.A.; Viskanta, R. )

    1992-01-01

    An investigation of natural convection is presented to examine the influence of a horizontal temperature gradient and a concentration gradient occurring from the bottom to the cold wall in a cavity. As the solutal buoyancy force changes from augmenting to opposing the thermal buoyancy force, the fluid motion switches from unicellular to multicellular flow (fluid motion is up the cold wall and down the hot wall for the bottom counterrotating flow cell). Qualitatively, the agreement between predicted streamlines and smoke flow patterns is generally good. In contrast, agreement between measured and predicted temperature and concentration distributions ranges from fair to poor. Part of the discrepancy can be attributed to experimental error. However, there remains considerable discrepancy between data and predictions due to the idealizations of the mathematical model, which examines only first-order physical effects. An unsteady flow, variable thermophysical properties, conjugate effects, species interdiffusion, and radiation were not accounted for in the model. 31 refs.

  15. Turbulent natural convection between a perforated vertical cylinder and a surrounding array

    SciTech Connect

    McEligot, D.M.; Stoots, C.M.; Christenson, W.A.; O'Brien, J.E.; Mecham, D.C.; Lussie, W.G.

    1992-01-01

    A number of situations can be hypothesized to occur in an advanced or special purpose nuclear reactor such that the core is filled with a gas but there is no forced flow to remove the thermal energy evolved. Experiments were conducted by resistively hearing a vertical circular cylinder of length-to-diameter ratio of about 160 centered inside a concentric perforated tube which was, in turn, surrounded by three larger diameter tubes cooled internally with water flow. The ratio of the test section temperature to the cooling tube temperature was varied up to 2.6; and the Rayleigh number, based on tube diameter and properties evaluated at the cooling tube temperature, ranged from 2.9 x 10{sup 4} to 9.2 x 10{sup 5}. Results indicate that the convective heat transfer parameters for the perforated tube are about fifteen per cent higher than for the smooth bare tube centered in the same position relative to the array. The Nusselt number for convective heat transfer across the annulus between the heated test section and the perforated tube corresponded to parallel laminar flow.

  16. Turbulent natural convection between a perforated vertical cylinder and a surrounding array

    SciTech Connect

    McEligot, D.M.; Stoots, C.M.; Christenson, W.A.; O`Brien, J.E.; Mecham, D.C.; Lussie, W.G.

    1992-09-01

    A number of situations can be hypothesized to occur in an advanced or special purpose nuclear reactor such that the core is filled with a gas but there is no forced flow to remove the thermal energy evolved. Experiments were conducted by resistively hearing a vertical circular cylinder of length-to-diameter ratio of about 160 centered inside a concentric perforated tube which was, in turn, surrounded by three larger diameter tubes cooled internally with water flow. The ratio of the test section temperature to the cooling tube temperature was varied up to 2.6; and the Rayleigh number, based on tube diameter and properties evaluated at the cooling tube temperature, ranged from 2.9 x 10{sup 4} to 9.2 x 10{sup 5}. Results indicate that the convective heat transfer parameters for the perforated tube are about fifteen per cent higher than for the smooth bare tube centered in the same position relative to the array. The Nusselt number for convective heat transfer across the annulus between the heated test section and the perforated tube corresponded to parallel laminar flow.

  17. Natural convection heat transfer on two horizontal cylinders in liquid sodium

    SciTech Connect

    Hata, K.; Shiotsu, M.; Takeuchi, Y.

    1995-09-01

    Natural convection heat transfer on two horizontal 7.6 mm diameter test cylinders assembled with the ratio of the distance between each cylinder axis to the cylinder diameter, S/D, of 2 in liquid sodium was studied experimentally and theoretically. The heat transfer coefficients on the cylinder surface due to the same heat inputs ranging from 1.0 X 10{sup 7} to 1.0 x 10{sup 9} W/m{sup 3} were obtained experimentally for various setting angeles, {gamma}, between vertical direction and the plane including both of these cylinder axis over the range of zero to 90{degrees}. Theoretical equations for laminar natural convection heat transfer from the two horizontal cylinders were numerically solved for the same conditions as the experimental ones considering the temperature dependence of thermophysical properties concerned. The average Nusselt numbers, Nu, values on the Nu versus modified Rayleigh number, R{sub f}, graph. The experimental values of Nu for the upper cylinder are about 20% lower than those for the lower cylinder at {gamma} = 0{degrees} for the range of R{sub f} tested here. The value of Nu for the upper cylinder becomes higher and approaches that for the lower cylinder with the increase in {gamma} over range of 0 to 90{degrees}. The values of Nu for the lower cylinder at each {gamma} are almost in agreement with those for a single cylinder. The theoretical values of Nu on two cylinders except those for R{sub f}<4 at {gamma} = 0{degrees} are in agreement with the experimental data at each {gamma} with the deviations less than 15%. Correlations for Nu on the upper and lower cylinders were obtained as functions of S/D and {gamma} based n the theoretical solutions for the S/D ranged over 1.5 to 4.0.

  18. Premonsoon estimates of convective available potential energy over the oceanic region surrounding the Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Alappattu, Denny P.; Kunhikrishnan, P. K.

    2009-04-01

    Convective available potential energy (CAPE) and convective inhibition energy (CIN) are important parameters in determining the stability of the atmosphere for moist convection. This paper presents the estimates of CAPE and CIN during the premonsoon season over the oceanic region surrounding the Indian subcontinent. The high-resolution radiosonde data used in this study were collected as a part of the Integrated Campaign for Aerosols gases and Radiation Budget (ICARB; March-May 2006), which covered the Bay of Bengal, Arabian Sea, and parts of North Indian Ocean. We discuss the spatiotemporal variability of CAPE and CIN during the premonsoon period and investigate the role of boundary layer, as well as free tropospheric parameters in controlling the CAPE and CIN values. During the convective event of 9 April the sensors on board the ship recorded 4 mm of rain and an overall reduction of CAPE by 620 J kg-1 was seen. This corroborates with the concept that CAPE generated by the nonconvective processes is consumed by the convection for its intensification. However, the observed reduction in CAPE after this convective event is much less compared to the monsoon season reported elsewhere. CIN was found to be anticorrelated with the free convection depth (FCD), which is the distance through which the parcel ascends by its own buoyancy. Thus the variability in CAPE and CIN is found to be interlinked through the FCD. Apart from this, contribution to total CAPE from various levels are also estimated, which shows that the CAPE in the middle levels contributes most toward the total CAPE. Our investigations show that although the CAPE and CIN are related to the tropospheric parameters like temperature lapse rate, the variability in CAPE and CIN is essentially determined by the moisture in the atmospheric boundary layer. As the equivalent potential temperature (θE) in the ABL increases, CAPE increases, favoring the development of convection.

  19. Thermodynamics of convective circulations

    NASA Astrophysics Data System (ADS)

    Adams, D. K.; Renno, N. O.

    2003-04-01

    The heat engine framework has proven successful for studies of atmospheric phenomena ranging from small to large scales. At large scales, the heat engine framework provides estimates of convective available potential energy, convective velocities, and fractional area covered by convection. At the smaller end of the spectrum, the framework provides estimates of the intensity of convective vortices such as dust devils and waterspouts. The heat engine framework sheds light on the basic physics of planetary atmospheres. In particular, it allows the calculation of their thermodynamic efficiency. Indeed, this is a fundamental number for atmospheric circulations because it quantifies the amount of heat that is converted into kinetic energy. As such, it is a valuable number not only for comparison of models with nature, but also for the intercomparison of models. In the present study, we generalize the heat engine framework to large-scale circulations, both open (e.g., the Hadley circulation) and closed (e.g., the general circulation) and apply it to an idealized global climate model to ascertain the thermodynamic efficiency of model circulations, both global and regional. Our results show that the thermodynamic efficiency is sensitive to model resolution and provides a baseline for minimum model resolution in climate studies. The value of the thermodynamic efficiency of convective circulations in nature is controversial. It has been suggested that both nature and numerical models are extremely irreversible. We show that both the global and the Hadley circulation of the idealized model are, to a first approximation, reversible.

  20. Energy generation in convective shells of low mass, low metallicity stars

    SciTech Connect

    Bazan, G. . Dept. of Astronomy); Lattanzio, J.C. )

    1989-11-10

    We report on the non-negligible energy generation from the {sup 13}C neutron source and neutron capture reactions in low mass, low metallicity AGB stars. About 10{sup 4} L{sub {circle dot}} are generated within the thermal pulse convective shell by the combination of the {sup 13}C({alpha}, n){sup 16}O rate and the sum of the Y(Z,A)(n,{gamma})Y(Z,A + 1) reactions and beta decays. The inclusion of this energy source in an AGB thermal pulse evolution is shown to alter the evolution of the convective shell boundaries, and, hence, how the {sup 13}C is ingested into the convective shell. Also, the duration of the pulse itself is reduced by the additional energy input. The nucleosynthetic consequences are discussed for these evolutionary changes. 17 refs., 5 figs.

  1. Double diffusive natural convection in solar ponds with nonlinear temperature and salinity profiles

    SciTech Connect

    Kirkpatrick, A.T.; Gordon, R.F.; Johnson, D.H.

    1986-08-01

    A solar pond can be used as a thermal energy source provided that convective instabilities do not occur. This paper experimentally examines the stability of a fluid layer with nonlinear salinity and temperature profiles. A nonlinear salt profile was set up in a fluid layer, and the water was heated by a solar radiation simulator. Three stability experiments were conducted. Instabilities occurred at the location of the weakest salinity gradient, and were confined to a thin region, as predicted by theory. A local length scale was used to produce a stability parameter, the ratio of thermal to solute Rayleigh numbers. It is shown that for nonconstant solute and temperature gradients, the appropriate length scale is based on the radius of curvature of the salinity distribution. With this choice of a length scale, good agreement was found between theory and experiment for the onset of an instability.

  2. Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase Lattice Boltzmann method.

    PubMed

    Qi, Cong; He, Yurong; Yan, Shengnan; Tian, Fenglin; Hu, Yanwei

    2013-01-01

    Considering interaction forces (gravity and buoyancy force, drag force, interaction potential force, and Brownian force) between nanoparticles and a base fluid, a two-phase Lattice Boltzmann model for natural convection of nanofluid is developed in this work. It is applied to investigate the natural convection in a square enclosure (the left wall is kept at a high constant temperature (TH), and the top wall is kept at a low constant temperature (TC)) filled with Al2O3/H2O nanofluid. This model is validated by comparing numerical results with published results, and a satisfactory agreement is shown between them. The effects of different nanoparticle fractions and Rayleigh numbers on natural convection heat transfer of nanofluid are investigated. It is found that the average Nusselt number of the enclosure increases with increasing nanoparticle volume fraction and increases more rapidly at a high Rayleigh number. Also, the effects of forces on nanoparticle volume fraction distribution in the square enclosure are studied in this paper. It is found that the driving force of the temperature difference has the biggest effect on nanoparticle volume fraction distribution. In addition, the effects of interaction forces on flow and heat transfer are investigated. It is found that Brownian force, interaction potential force, and gravity-buoyancy force have positive effects on the enhancement of natural convective heat transfer, while drag force has a negative effect. PMID:23374509

  3. Transport Phenomena Projects: Natural Convection between Porous, Concentric Cylinders--A Method to Learn and to Innovate

    ERIC Educational Resources Information Center

    Saatadjian, Esteban; Lesage, Francois; Mota, Jose Paulo B.

    2013-01-01

    A project that involves the numerical simulation of transport phenomena is an excellent method to teach this subject to senior/graduate chemical engineering students. The subject presented here has been used in our senior/graduate course, it concerns the study of natural convection heat transfer between two concentric, horizontal, saturated porous…

  4. The nature of the sunspot phenomenon. II - Internal overstable modes. [convectively driven Alfven wave role

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1974-01-01

    It had been pointed out by Parker (1974) that the basic cause of the sunspot phenomenon is the enhanced heat transport in the magnetic field of the sunspot. The enhanced transport occurs through convective overstability which operates as a heat engine generating Alfven waves. The characteristics of the convective forces present are investigated along with questions concerning overstability and convectively driven Alfven waves. Relations regarding instability and convectively driven surface waves are discussed and attention is given to individual overstable Alfven modes. It is found that the form of an Alfven wave in the absence of convective forces is entirely arbitrary, so that waves with any arbitrary profile can be fitted into a vertical column of the field without disturbing the fluid outside. With the introduction of convective forces the situation changes so that the presence of lateral boundaries alters the form of the basic wave modes.

  5. Thermocapillary convection around gas bubbles: an important natural effect for the enhancement of heat transfer in liquids under microgravity.

    PubMed

    Betz, J; Straub, J

    2002-10-01

    In the presence of a temperature gradient at a liquid-gas or liquid-liquid interface, thermocapillary or Marangoni convection develops. This convection is a special type of natural convection that was not paid much attention in heat transfer for a long time, although it is strong enough to drive liquids against the direction of buoyancy on Earth. In a microgravity environment, however, it is the remaining mode of natural convection and supports heat and mass transfer. During boiling in microgravity it was observed at subcooled liquid conditions. Therefore, the question arises about its contribution to heat transfer without phase change. Thermocapillary convection was quantitatively studied at single gas bubbles in various liquids, both experimentally and numerically. A two-dimensional mathematical model described in this article was developed. The coupled mechanism of heat transfer and fluid flow in pure liquids around a single gas bubble was simulated with a control-volume FE-method. The simulation was accompanied and compared with experiments on Earth. The numerical results are in good accordance with the experiments performed on Earth at various Marangoni numbers using various alcohols of varying chain length and Prandtl numbers. As well as calculations on Earth, the numerical method also allows simulations at stationary spherical gas bubbles in a microgravity environment. The results demonstrate that thermocapillary convection is a natural heat transfer mechanism that can partially replace the buoyancy in a microgravity environment, if extreme precautions are taken concerning the purity of the liquids, because impurities accumulate predominantly at the interface. Under Earth conditions, an enhancement of the heat transfer in a liquid volume is even found in the case where thermocapillary flow is counteracted by buoyancy. In particular, the obstructing influence of surface active substances could be observed during the experiments on Earth in water and also in

  6. Natural Neutrino Dark Energy

    SciTech Connect

    Gurwich, Ilya

    2010-06-23

    1 construct a general description for neutrino dark energy models, that do not require exotic particles or strange couplings. With the help of the above, this class of models is reduced to a single function with several constraints. It is shown that these models lead to some concrete predictions that can be verified (or disproved) within the next decade, using results from PLANK, EUCLID and JDEM.

  7. Numerical study of natural convection in a horizontal cylinder filled with water-based alumina nanofluid

    NASA Astrophysics Data System (ADS)

    Meng, Xiangyin; Li, Yan

    2015-03-01

    Natural heat convection of water-based alumina (Al2O3/water) nanofluids (with volume fraction 1% and 4%) in a horizontal cylinder is numerically investigated. The whole three-dimensional computational fluid dynamics (CFD) procedure is performed in a completely open-source way. Blender, enGrid, OpenFOAM and ParaView are employed for geometry creation, mesh generation, case simulation and post process, respectively. Original solver `buoyantBoussinesqSimpleFoam' is selected for the present study, and a temperature-dependent solver `buoyantBoussinesqSimpleTDFoam' is developed to ensure the simulation is more realistic. The two solvers are used for same cases and compared to corresponding experimental results. The flow regime in these cases is laminar (Reynolds number is 150) and the Rayleigh number range is 0.7 × 107 ~ 5 × 107. By comparison, the average natural Nusselt numbers of water and Al2O3/water nanofluids are found to increase with the Rayleigh number. At the same Rayleigh number, the Nusselt number is found to decrease with nanofluid volume fraction. The temperature-dependent solver is found better for water and 1% Al2O3/water nanofluid cases, while the original solver is better for 4% Al2O3/water nanofluid cases. Furthermore, due to strong three-dimensional flow features in the horizontal cylinder, three-dimensional CFD simulation is recommended instead of two-dimensional simplifications.

  8. Effects of electrode location on EHD-enhanced natural convection in an enclosure

    SciTech Connect

    Liu, K.S.; Lai, F.C.

    1997-07-01

    Numerical results are presented for natural convection in an enclosure under the influence of electric field. The geometry considered is a two-dimensional cavity with an aspect ratio of 5. The electrical field is generated by positive corona from an electrode wire charged with a high dc voltage. Three wire locations have been considered, which result in symmetric and non-symmetric electric fields. Numerical calculations have covered a wide range of parameters (i.e., V{sub o} = 12, 15 and 18 kV, 10{sup 3} {le} Ra {le} 10{sup 6}). In the presence of electric field, the flow and temperature fields may reach a steady, steady-periodic or non-periodic state. For low Rayleigh numbers, it is observed that the flow and temperature fields are basically oscillatory in nature. When the Rayleigh number is sufficiently increased, a steady state may be reached. Due to the oscillatory flows, there is a significant increase in heat transfer. It is found that heat transfer enhancement increases with the applied voltage but decreases with the Rayleigh number. In addition, it is found that heat transfer enhancement can be maximized by placing the electrode toward the leading edge of the heat transfer surface, that is, to perturb the thermal boundary layer as early as it begins to develop.

  9. Natural Gas Energy Educational Kit.

    ERIC Educational Resources Information Center

    American Gas Association, Arlington, VA. Educational Services.

    Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of…

  10. Effects of finiteness on the thermo-fluid-dynamics of natural convection above horizontal plates

    NASA Astrophysics Data System (ADS)

    Guha, Abhijit; Sengupta, Sayantan

    2016-06-01

    A rigorous and systematic computational and theoretical study, the first of its kind, for the laminar natural convective flow above rectangular horizontal surfaces of various aspect ratios ϕ (from 1 to ∞) is presented. Two-dimensional computational fluid dynamic (CFD) simulations (for ϕ → ∞) and three-dimensional CFD simulations (for 1 ≤ ϕ < ∞) are performed to establish and elucidate the role of finiteness of the horizontal planform on the thermo-fluid-dynamics of natural convection. Great care is taken here to ensure grid independence and domain independence of the presented solutions. The results of the CFD simulations are compared with experimental data and similarity theory to understand how the existing simplified results fit, in the appropriate limiting cases, with the complex three-dimensional solutions revealed here. The present computational study establishes the region of a high-aspect-ratio planform over which the results of the similarity theory are approximately valid, the extent of this region depending on the Grashof number. There is, however, a region near the edge of the plate and another region near the centre of the plate (where a plume forms) in which the similarity theory results do not apply. The sizes of these non-compliance zones decrease as the Grashof number is increased. The present study also shows that the similarity velocity profile is not strictly obtained at any location over the plate because of the entrainment effect of the central plume. The 3-D CFD simulations of the present paper are coordinated to clearly reveal the separate and combined effects of three important aspects of finiteness: the presence of leading edges, the presence of planform centre, and the presence of physical corners in the planform. It is realised that the finiteness due to the presence of physical corners in the planform arises only for a finite value of ϕ in the case of 3-D CFD simulations (and not in 2-D CFD simulations or similarity theory

  11. Natural convection flows and associated heat transfer processes in room fires

    NASA Astrophysics Data System (ADS)

    Sargent, William Stapf

    This report presents the results of experimental investigations of natural convection flows and associated heat transfer processes produced by small fires in rooms with a single door or window opening. Calculation procedures have been developed to model the major aspects of these flows.Two distinct sets of experiments were undertaken.First, in a roughly 1/4 scale facility, a slightly dense solution of brine was allowed to flow into a tank of fresh water. The resulting density difference produced a flow which simulated a very small fire in a room with adiabatic walls. Second, in an approximately 1/2 scale test room, a nearly stoichioinetric mixture of air and natural gas was burned at floor level to model moderate strength fires. In this latter facility, we directly measured the heat conducted through the walls, in addition to determining the gas temperature and composition throughout the room.These two facilities complemented each other. The former offered good flow visualization and allowed us to observe the basic flow phenomena in the absence of heat transfer effects. On the other hand, the latter, which involved relatively larger fires, was a more realistic simulation of an actual room fire, and allowed us to calculate the convective heat transfer to the ceiling and walls. In addition, the stronger sources present in these 1/2 scale tests produced significant secondary flows. These secondary flows along with heat transfer effects act to modify the gas temperature or density profiles within the room from those observed in the 1/4 scale experiments.Several calculation procedures have been developed, based on the far field properties of plumes when the density differences are small (the Boussinesq approximation). The simple point source plume solution is used along with hydraulic analysis of flow through an orifice to estimate the temperatures of the hot ceiling layer gas and of the cooler floor zone fluid, as well as the height of the interface between them. A

  12. Convective available potential energy in the environment of oceanic and continental clouds: Correction and comments

    NASA Technical Reports Server (NTRS)

    Lucas, Christopher; Zipser, Edward J.; Lemone, Margaret A.

    1994-01-01

    In 1980, Zipser and LeMone estimated the convective available potential energy (CAPE) for the Thunderstorm Project cumulonimbus environment to be about 3000 J per kg. By assuming the most adiabat reported by Byers and Braham (1949) to be that of an undilute parcel rather than a reference moist adiabat, a significant error was introduced. On the basis of recent calculations made under similar conditions in Oklahoma and Florida, CAPE is now estimated to be considerably lower. These lower CAPE estimates shed doubt on the suggestion that differences in CAPE account for differences in the vertical velocities in convective updrafts over land and over the ocean.

  13. Natural convection from a heat source in a top-vented enclosure

    SciTech Connect

    Myrum, T.A. )

    1990-08-01

    Natural convection from a heated disk situated at the bottom of a top-vented enclosure was studied experimentally. The experiments were performed in water (Pr {congruent} 5) for parametric variations of the vent opening size, inner enclosure height, and disk-to-enclosure-wall temperature difference (Rayleigh number). For comparison purposes, baseline data were obtained for an unvented enclosure and for the infinite case (no enclosure). The heat transfer data were supplemented by cross-vent temperature measurements and by flow visualization using the thymol-blue electrochemical technique. The experiments demonstrated that, for the range of parameters considered, the average Nusselt numbers could be correlate using a single correlation to within 8%. It was also found that the presence of the enclosure (vented or unvented) acted to reduce the Nusselt number, especially at the lower Rayleigh numbers. Flow visualization experiments revealed an unstable flow pattern in the vicinity of the vent that fluctuated in a nonperiodic manner between four basic modes. Temperature measurements revealed asymmetric mean cross-vent temperature profiles, with the mean temperature level increasing with decreasing vent size. The intensity of the temperature fluctuations in the vent opening also increased with decreasing vent size.

  14. Temperature-Programmed Natural Convection for Micromixing and Biochemical Reaction in a Single Microfluidic Chamber

    PubMed Central

    Kim, Sung-Jin; Wang, Fang; Burns, Mark A.; Kurabayashi, Katsuo

    2009-01-01

    Micromixing is a crucial step for biochemical reactions in microfluidic networks. A critical challenge is that the system containing micromixers needs numerous pumps, chambers, and channels not only for the micromixing but also for the biochemical reactions and detections. Thus, a simple and compatible design of the micromixer element for the system is essential. Here, we propose a simple, yet effective, scheme that enables micromixing and a biochemical reaction in a single microfluidic chamber without using any pumps. We accomplish this process by using natural convection in conjunction with alternating heating of two heaters for efficient micromixing, and by regulating capillarity for sample transport. As a model application, we demonstrate micromixing and subsequent polymerase chain reaction (PCR) for an influenza viral DNA fragment. This process is achieved in a platform of a microfluidic cartridge and a microfabricated heating-instrument with a fast thermal response. Our results will significantly simplify micromixing and a subsequent biochemical reaction that involves reagent heating in microfluidic networks. PMID:19419189

  15. Experimental study of natural convection melting of ice in salt solutions

    SciTech Connect

    Fang, L.J.; Cheung, F.B.; Linehan, J.H.; Pedersen, D.R.

    1984-01-01

    The solid-liquid interface morphology and the micro-physical process near the moving phase boundary during natural convection melting of a horizontal layer of ice by an overlying pool of salt solution were studied experimentally. A cathetometer which amplifies the interface region was used to measure the ice melting rate. Also measured were the temperature transients of the liquid pool. Within the temperature and the density ratio ranges explored, the ice melting rate was found to be very sensitive to the ratio of pool-to-ice melt density but independent of pool-to-ice temperature difference. By varying the density ratio, three different flow regimes and morphologies of the solid-liquid interface were observed, with melt streamers emanating from the crests of the wavy interface into the pool in all three cases. The measured wavelengths (spacing) between the streamers for four different pairs of materials were correlated with the density ratio and found to agree favorably with the predictions of Taylor instability theory.

  16. Radial segregation induced by natural convection and melt/solid interface shape in vertical Bridgman growth

    NASA Technical Reports Server (NTRS)

    Chang, C. J.; Brown, R. A.

    1983-01-01

    The roles of natural convection in the melt and the shape of the melt/solid interface on radial dopant segregation are analyzed for a prototype of vertical Bridgman crystal growth system by finite element methods that solve simultaneously for the velocity field in the melt, the shape of the solidification isotherm, and the temperature distribution in both phases. Results are presented for crystal and melt with thermophysical properties similar to those of gallium-doped germanium in Bridgman configurations with melt below (thermally destabilizing) and above (stabilizing) the crystal. Steady axisymmetric flow are classified according to Rayleigh number as either being nearly the growth velocity, having a weak cellular structure or having large amplitude cellular convention. The flows in the two Bridgman configurations are driven by different temperature gradients and are in opposite directions. Finite element calculations for the transport of a dilute dopant by these flow fields reveal radial segregation levels as large as sixty percent of the mean concentration. Segregation is found most severe at an intermediate value of Rayleigh number above which the dopant distribution along the interface levels as the intensity of the flow increases.

  17. Natural convection inside a porous trapezoidal enclosure with wavy top surface

    NASA Astrophysics Data System (ADS)

    Eshon, Sehrina Muzahid; Mustafa, Rakib; Hasan, Mohammad Nasim

    2016-07-01

    The aim of the present work is analysis of heat flow during natural convection inside a trapezoidal porous cavity having wavy top surface. The bottom wall of the cavity is sinusoidally heated whereas the top wall is kept at constant low temperature and the side walls are maintained adiabatic. The physical problem has been represented mathematically by various governing equations along with the corresponding boundary conditions and hence solved by using Galerkin Finite Element scheme. Numerical simulations were carried out and the flow and thermal fields inside the cavity were analyzed in terms of distribution of isothermal lines (θ), streamlines (ψ) and heatlines (Π). To compare heat transfer characteristics local Nusselt number (Nu), and average Nusselt number (Nuavg) along the hot bottom wall are studied for various system parameters, such as, Rayleigh number (Ra) and Darcy number (Da). The range of Ra, Da considered in the present study are as follows; 104 ≤ Ra ≤ 106, 10-5 ≤ Da ≤ 10-3. The present study has been conducted for the trapezoidal cavity being filled with two different types of fluids; water (Pr = 7.2), and molten gallium (Pr = 0.026). It has been found that an increase in flow intensity and heat transfer occurs at higher Rayleigh number (Ra) and Darcy number (Da) whereas the effect of Prandtl number (Pr) is somewhat negligible.

  18. Experimental study of the steady natural convection in a horizontal annulus with irregular boundaries

    SciTech Connect

    Boyd, R.D.

    1980-01-01

    The natural convective heat transfer across an annulus with irregular boundaries was studied using a Mach-Zehnder interferometer. The annulus was formed by an inner hexagonal cylinder and an outer concentric circular cylinder. This configuration models, in two dimensions, a liquid metal fast breeder reactor spent fuel subassembly inside a shipping container. During the test, the annulus was filled with a single gas, either neon, air, argon, krypton, or xenon, at a pressure of about 0.5 MPa. From temperature measurements, both local and mean Nusselt numbers (Nu/sub ..delta../) at the surface of the inner cylinder were evaluated, with the mean Rayleigh number (anti Ra/sub ..delta../) varying from 4.54 x 10/sup 4/ to 0.915 x 10/sup 6/ (..delta.. is the local gas width). The data correlation for the mean Nusselt and Rayleigh numbers is given by anti Nu/sub ..delta../ = 0.183 anti Ra/sub ..delta..//sup 0/ /sup 310/.

  19. Experimental and numerical study of turbulent natural convection in an open cubic cavity

    NASA Astrophysics Data System (ADS)

    Maytorena, V. M.; Piña-Ortiz, A.; Hinojosa, J. F.

    2015-09-01

    Study of natural convection in an open cubic cavity with side length of 1 m is presented. The experimental setup was built with the air as the heat transfer fluid. The vertical wall opposite to the aperture is subjected to uniform heat flux condition with the four different heat flux values in the range 55-333 W/m2, whereas the remaining walls were kept thermally insulated. The temperature at discrete locations inside the cavity was obtained which followed evaluation of heat transfer coefficient and Rayleigh number. The thermal and flow analysis in 3-D was based on the standard k-ɛ turbulence model and implemented using CFD software Fluent 6.3. The spatial distribution for temperature, velocity and turbulent viscosity are determined and analyzed in the perspective of experimental observations. The experimentally determined ranges of Rayleigh number, Nusselt number and heat transfer coefficient are 1.66 × 1011-7.1 × 1011, 185.94-243.31 and 4.88-6.83 W/m2 K, respectively. The observed maximum difference between the experimental and numerical values for heat transfer coefficient and Nusselt number are 10.8 and 14 % respectively.

  20. Characterization of Fuego for laminar and turbulent natural convection heat transfer.

    SciTech Connect

    Francis, Nicholas Donald, Jr.

    2005-08-01

    A computational fluid dynamics (CFD) analysis is conducted for internal natural convection heat transfer using the low Mach number code Fuego. The flow conditions under investigation are primarily laminar, transitional, or low-intensity level turbulent flows. In the case of turbulent boundary layers at low-level turbulence or transitional Reynolds numbers, the use of standard wall functions no longer applies, in general, for wall-bounded flows. One must integrate all the way to the wall in order to account for gradients in the dependent variables in the viscous sublayer. Fuego provides two turbulence models in which resolution of the near-wall region is appropriate. These models are the v2-f turbulence model and a Launder-Sharma, low-Reynolds number turbulence model. Two standard geometries are considered: the annulus formed between horizontal concentric cylinders and a square enclosure. Each geometry emphasizes wall shear flow and complexities associated with turbulent or near turbulent boundary layers in contact with a motionless core fluid. Overall, the Fuego simulations for both laminar and turbulent flows compared well to measured data, for both geometries under investigation, and to a widely accepted commercial CFD code (FLUENT).

  1. Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium

    PubMed Central

    2013-01-01

    The unsteady natural convection heat transfer of nanofluid along a vertical plate embedded in porous medium is investigated. The Darcy-Forchheimer model is used to formulate the problem. Thermal conductivity and viscosity models based on a wide range of experimental data of nanofluids and incorporating the velocity-slip effect of the nanoparticle with respect to the base fluid, i.e., Brownian diffusion is used. The effective thermal conductivity of nanofluid in porous media is calculated using copper powder as porous media. The nonlinear governing equations are solved using an unconditionally stable implicit finite difference scheme. In this study, six different types of nanofluids have been compared with respect to the heat transfer enhancement, and the effects of particle concentration, particle size, temperature of the plate, and porosity of the medium on the heat transfer enhancement and skin friction coefficient have been studied in detail. It is found that heat transfer rate increases with the increase in particle concentration up to an optimal level, but on the further increase in particle concentration, the heat transfer rate decreases. For a particular value of particle concentration, small-sized particles enhance the heat transfer rates. On the other hand, skin friction coefficients always increase with the increase in particle concentration and decrease in nanoparticle size. PMID:23391481

  2. Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium

    NASA Astrophysics Data System (ADS)

    Uddin, Ziya; Harmand, Souad

    2013-02-01

    The unsteady natural convection heat transfer of nanofluid along a vertical plate embedded in porous medium is investigated. The Darcy-Forchheimer model is used to formulate the problem. Thermal conductivity and viscosity models based on a wide range of experimental data of nanofluids and incorporating the velocity-slip effect of the nanoparticle with respect to the base fluid, i.e., Brownian diffusion is used. The effective thermal conductivity of nanofluid in porous media is calculated using copper powder as porous media. The nonlinear governing equations are solved using an unconditionally stable implicit finite difference scheme. In this study, six different types of nanofluids have been compared with respect to the heat transfer enhancement, and the effects of particle concentration, particle size, temperature of the plate, and porosity of the medium on the heat transfer enhancement and skin friction coefficient have been studied in detail. It is found that heat transfer rate increases with the increase in particle concentration up to an optimal level, but on the further increase in particle concentration, the heat transfer rate decreases. For a particular value of particle concentration, small-sized particles enhance the heat transfer rates. On the other hand, skin friction coefficients always increase with the increase in particle concentration and decrease in nanoparticle size.

  3. Natural convection in a differentially heated square enclosure with a solid polygon.

    PubMed

    Roslan, R; Saleh, H; Hashim, I

    2014-01-01

    The aim of the present numerical study is to analyze the conjugate natural convection heat transfer in a differentially heated square enclosure containing a conductive polygon object. The left wall is heated and the right wall is cooled, while the horizontal walls are kept adiabatic. The COMSOL Multiphysics software is applied to solve the dimensionless governing equations. The governing parameters considered are the polygon type, 3 ≤ N ≤ ∞, the horizontal position, 0.25 ≤ X 0 ≤ 0.75, the polygon size, 0 ≤ A ≤ π/16, the thermal conductivity ratio, 0.1 ≤ K r ≤ 10.0, and the Rayleigh number, 10(3) ≤ Ra ≤ 10(6). The critical size of the solid polygon was found exists at low conductivities. The heat transfer rate increases with the increase of the size of the solid polygon, until it reaches its maximum value. Here, the size of the solid polygon is reaches its critical value. Further, beyond this critical size of the solid polygon, will decrease the heat transfer rate. PMID:24991643

  4. Numerical and experimental studies of the natural convection within a horizontal cylinder

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Sabol, A. P.; Boney, L. R.

    1974-01-01

    Numerical solutions are obtained for the quasi-compressible Navier-Stokes equations governing the time-dependent natural convection within a horizontal cylinder. The early flow development and wall heat transfer are obtained after a uniformly cold wall is imposed as a boundary condition on the cylinder. Results are also obtained for a time-varying cold wall as a boundary condition with windward explicit differencing used for the numerical solutions. The viscous truncation error associated with this scheme is controlled so that first-order accuracy is maintained in time and space. Experiments within a small-scale instrumented horizontal cylinder revealed the time development of the temperature distribution across the boundary layer as well as the decay of wall heat transfer with time. Agreement between temperature distributions obtained experimentally and numerically was generally good. The time decay of the dimensionless ratio of the Nusselt number to the one-fourth power of the Grashof number is found both numerically and experimentally, and good agreement is obtained between these two results over most of the cylinder wall.

  5. Numerical investigation of natural convection of nanoparticle enhanced ionic liquids (NEILs) in enclosure heated from below

    NASA Astrophysics Data System (ADS)

    Paul, Titan C.; Morshed, A. K. M. M.; Khan, Jamil A.

    2016-07-01

    The paper presents the numerical simulation of natural convection heat transfer of Al2O3 nanoparticle enhanced N-butyl-N-methylpyrrolidinium bis{trifluoromethyl)sulfonyl} imide ([C4mpyrr][NTf2]) ionic liquid. The simulation was performed in three different enclosures (aspect ratio: 0.5, 1, and 1.5) with heated from below. The temperature dependent thermophysical properties of base ionic liquids (ILs) and nanoparticle enhanced ionic liquids (NEILs) were applied in the numerical simulation. The numerical results were compared with the experimental result. The numerical results show that at a certain Rayleigh number NEILs has a lower Nusselt number compared to the base IL which are consistent with the experimental results. But the percentage of degradation is much less on the numerical results compared to the experimental. However the numerical results match well with the predicted model of using thermophysical properties of NEILs. From these observations it can be concluded that the extra degradation in the experimental results may occur due the particle-fluid interaction, clustering and sedimentation of nanoparticles.

  6. Numerical modeling of a lead melting front under the influence of natural convection

    NASA Astrophysics Data System (ADS)

    Coulson, Ryan

    This work presents a study of the Effective Heat Capacity (EHC) method applied to the numerical simulation of the interface between a solid and a naturally convecting pool of liquid lead under pseudo-steady-state and transient conditions using COMSOL Multiphysics. The EHC method is implemented as a temperature dependent pseudo-material with discontinuities in the heat capacity, dynamic viscosity, and thermal conductivity to simulate the melting front. The approach is validated with experimental data for a vertical melting front between two walls. The hot wall heat flux and the cold wall temperature are adjusted until the numerical model that best matches the experimental data is found. The best case boundary conditions then serve as the control in subsequent studies of key modeling parameters, including the mesh refinement, the discontinuity width and location, the maximum allowable time step, and the jump in dynamic viscosity. An extra fine mesh with a maximum element size of 1.24 * 10--3 m2 results in the most accurate model. For pseudo-steady-state models the width and location of the discontinuity does not affect the results substantially but it does affect the settling times and transient behavior of the models. The maximum allowable time step is dependent on the mesh resolution. The behavior of the pseudo-solid transitions from solid to liquid when the dynamic viscosity is less then 1.0 * 104 Pa · s.

  7. Study of natural convection cooling of a nanofluid subjected to a magnetic field

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Ahmed; Mejri, Imen; Omri, Ahmed

    2016-06-01

    This paper presents a numerical study of natural convection cooling of water-Al2O3 nanofluid by two heat sinks vertically attached to the horizontal walls of a cavity subjected to a magnetic field. The left wall is hot, the right wall is cold, while the horizontal walls are insulated. Lattice Boltzmann method (LBM) is applied to solve the coupled equations of flow and temperature fields. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number of the base fluid, Ra =103 to 105, Hartmann number varied from Ha = 0 to 60 and the solid volume fraction of nanoparticles between ϕ = 0 and 6%. In order to investigate the effect of heat sinks location, three different configurations of heat sinks are considered. The effects of Rayleigh numbers, Hartmann number and heat sinks location on the streamlines, isotherms, Nusselt number are investigated. Results show that the heat transfer rate decreases with the increase of Hartmann number and increases with the rise of Rayleigh number. In addition it is observed that the average Nusselt number increases linearly with the increase of the nanoparticles solid volume fraction. Also, results show that the heat sinks positions greatly influence the heat transfer rate depending on the Hartmann number, Rayleigh number and nanoparticle solid volume fraction.

  8. CFD Calculation of Internal Natural Convection in the Annulus between Horizontal Concentric Cylinders

    SciTech Connect

    N.D. Francis, Jr; M.T. Itamura; S.W. Webb; D.L. James

    2002-10-01

    The objective of this heat transfer and fluid flow study is to assess the ability of a computational fluid dynamics (CFD) code to reproduce the experimental results, numerical simulation results, and heat transfer correlation equations developed in the literature for natural convection heat transfer within the annulus of horizontal concentric cylinders. In the literature, a variety of heat transfer expressions have been developed to compute average equivalent thermal conductivities. However, the expressions have been primarily developed for very small inner and outer cylinder radii and gap-widths. In this comparative study, interest is primarily focused on large gap widths (on the order of half meter or greater) and large radius ratios. From the steady-state CFD analysis it is found that the concentric cylinder models for the larger geometries compare favorably to the results of the Kuehn and Goldstein correlations in the Rayleigh number range of about 10{sup 5} to 10{sup 8} (a range that encompasses the laminar to turbulent transition). For Rayleigh numbers greater than 10{sup 8}, both numerical simulations and experimental data (from the literature) are consistent and result in slightly lower equivalent thermal conductivities than those obtained from the Kuehn and Goldstein correlations.

  9. Natural Convection in a Differentially Heated Square Enclosure with a Solid Polygon

    PubMed Central

    Roslan, R.; Saleh, H.; Hashim, I.

    2014-01-01

    The aim of the present numerical study is to analyze the conjugate natural convection heat transfer in a differentially heated square enclosure containing a conductive polygon object. The left wall is heated and the right wall is cooled, while the horizontal walls are kept adiabatic. The COMSOL Multiphysics software is applied to solve the dimensionless governing equations. The governing parameters considered are the polygon type, 3 ≤ N ≤ ∞, the horizontal position, 0.25 ≤ X 0 ≤ 0.75, the polygon size, 0 ≤ A ≤ π/16, the thermal conductivity ratio, 0.1 ≤ K r ≤ 10.0, and the Rayleigh number, 103 ≤ Ra ≤ 106. The critical size of the solid polygon was found exists at low conductivities. The heat transfer rate increases with the increase of the size of the solid polygon, until it reaches its maximum value. Here, the size of the solid polygon is reaches its critical value. Further, beyond this critical size of the solid polygon, will decrease the heat transfer rate. PMID:24991643

  10. Natural convection heat transfer from a horizontal wavy surface in a porous enclosure

    SciTech Connect

    Murthy, P.V.S.N.; Kumar, B.V.R.; Singh, P.

    1997-02-07

    The effect of surface undulations on the natural convection heat transfer from an isothermal surface in a Darcian fluid-saturated porous enclosure has been numerically analyzed using the finite element method on a graded nonuniform mesh system. The flow-driving Rayleigh number Ra together with the geometrical parameters of wave amplitude a, wave phase {phi}, and the number of waves N considered in the horizontal dimension of the cavity are found to influence the flow and heat transfer process in the enclosure. For Ra around 50 and above, the phenomenon of flow separation and reattachment is noticed on the walls of the enclosure. A periodic shift in the reattachment point from the bottom wall to the adjacent walls in the clockwise direction, leading to the manifestation of cycles of unicellular and bicellular clockwise and counterclockwise flows, is observed, with the phase varying between 0{degree} and 350{degree}. The counterflow in the secondary circulation zone is intensified with the increase in the value of Ra. The counterflow on the wavy wall hinders the heat transfer into the system. An increase in either wave amplitude or the number of waves considered per unit length decreases the global heat flux into the system. Only marginal changes in global heat flux are noticed with increasing Ra. On the whole, the comparison of global heat flux results in the wavy wall case with those of the horizontal flat wall case shows that, in a porous enclosure, the wavy wall reduces the heat transfer into the system.

  11. Numerical study of natural convection in a horizontal cylinder filled with water-based alumina nanofluid.

    PubMed

    Meng, Xiangyin; Li, Yan

    2015-01-01

    Natural heat convection of water-based alumina (Al2O3/water) nanofluids (with volume fraction 1% and 4%) in a horizontal cylinder is numerically investigated. The whole three-dimensional computational fluid dynamics (CFD) procedure is performed in a completely open-source way. Blender, enGrid, OpenFOAM and ParaView are employed for geometry creation, mesh generation, case simulation and post process, respectively. Original solver 'buoyantBoussinesqSimpleFoam' is selected for the present study, and a temperature-dependent solver 'buoyantBoussinesqSimpleTDFoam' is developed to ensure the simulation is more realistic. The two solvers are used for same cases and compared to corresponding experimental results. The flow regime in these cases is laminar (Reynolds number is 150) and the Rayleigh number range is 0.7 × 10(7) ~ 5 × 10(7). By comparison, the average natural Nusselt numbers of water and Al2O3/water nanofluids are found to increase with the Rayleigh number. At the same Rayleigh number, the Nusselt number is found to decrease with nanofluid volume fraction. The temperature-dependent solver is found better for water and 1% Al2O3/water nanofluid cases, while the original solver is better for 4% Al2O3/water nanofluid cases. Furthermore, due to strong three-dimensional flow features in the horizontal cylinder, three-dimensional CFD simulation is recommended instead of two-dimensional simplifications. PMID:25852431

  12. Afghanistan's energy and natural resources

    SciTech Connect

    Balcome-Rawding, R.; Porter, K.C.

    1989-10-01

    This study provides a resource perspective from which to better plan the necessary steps toward the viable reconstruction and economic development of post war Afghanistan. The vast availability of natural resources affords the opportunity to formulate a framework upon which Afghanistan can grow and prosper in the future. The paper includes the following sections: Historical Overview: Thwarted Opportunities; Natural Resources: A Survey of Possibilities; The Future: Post War Rehabilitation and Reconstruction; and Conclusions: Future Energy Sources.

  13. A new concept to harvest thermal energy using pyroeletric effect and Rayleigh-Benard convections

    NASA Astrophysics Data System (ADS)

    Zahra El fatnani, Fatima; Guyomar, Daniel; Belhora, Fouad; Mazroui, M'hammed; Boughaleb, Yahia; Hajjaji, Abdelowahed

    2016-08-01

    Thermal energy is one of the ambient energy sources surely exploitable but it has not drawn as much interest as mechanical energy. Our work aims to use thermal energy and to show that it is an important source for producing electrical energy using the pyroelectric effect. More precisely, we present in this paper a new concept to harvest thermal energy using the pyroelectric effect and Rayleigh-Benard convections. In fact, the convections will be created inside an oil bath, which can keep the pyroelectric element under temperature fluctuations (heating and cooling), making it possible to generate voltage by the pyroelectric effect. Our experimental findings show that with this original concept, based on Rayleigh-Benard convections, we harvested 0.28mW; this value was also improved by using the SSHI technique, which allows us to increase it up to 0.55mW. This obtained value of power is a heavy amount, which will certainly be useful in an extensive range of applications, including sensors and infrared detection. These results shed light on the thermoelectric energy conversion by PZT ceramic buzzer having the pyroelectric property, using a constant heat source.

  14. Performance characteristics of a thermal energy storage module - A transient PCM/forced convection conjugate analysis

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1991-01-01

    The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.

  15. Experimental observations of double diffusive natural convection in solar ponds with nonlinear salinity profiles

    SciTech Connect

    Kirkpatrick, A.T.; Gordon, R.F.; Johnson, D.H.

    1985-04-01

    A solar pond can be used as a thermal energy source provided that convective instabilities do not occur. This paper experimentally examines the stability of a fluid layer with nonlinear salinity profiles. A nonlinear salt profile was set up in a 0.7m x 0.7m x 1.4m deep tank, and the water was heated by a solar radiation simulator. Three experiments were conducted, each over a time scale of about one week. An instability was produced in two of the experiments. The instabilities occurred at the location of the weakest salinity gradient, and were confined to a narrow depth, as predicted by theory. A local length scale was used to produce a stability parameter, the ratio of thermal to solute Rayleigh numbers. It is shown that for nonlinear solute gradients, the appropriate length scale is based on the radius of curvature of the salinity distribution. With this choice of a length scale, good agreement was found between theory and experiment for the onset of an instability. However, only fair agreement was obtained for the disturbance frequency.

  16. Kinetic energy budgets in areas of intense convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Berecek, E. M.; Ebel, D. M.; Jedlovec, G. J.

    1980-01-01

    A kinetic energy budget analysis of the AVE-SESAME 1 period which coincided with the deadly Red River Valley tornado outbreak is presented. Horizontal flux convergence was found to be the major kinetic energy source to the region, while cross contour destruction was the major sink. Kinetic energy transformations were dominated by processes related to strong jet intrusion into the severe storm area. A kinetic energy budget of the AVE 6 period also is presented. The effects of inherent rawinsonde data errors on widely used basic kinematic parameters, including velocity divergence, vorticity advection, and kinematic vertical motion are described. In addition, an error analysis was performed in terms of the kinetic energy budget equation. Results obtained from downward integration of the continuity equation to obtain kinematic values of vertical motion are described. This alternate procedure shows promising results in severe storm situations.

  17. A convective-like energy-stable open boundary condition for simulations of incompressible flows

    NASA Astrophysics Data System (ADS)

    Dong, S.

    2015-12-01

    We present a new energy-stable open boundary condition, and an associated numerical algorithm, for simulating incompressible flows with outflow/open boundaries. This open boundary condition ensures the energy stability of the system, even when strong vortices or backflows occur at the outflow boundary. Under certain situations it can be reduced to a form that can be analogized to the usual convective boundary condition. One prominent feature of this boundary condition is that it provides a control over the velocity on the outflow/open boundary. This is not available with the other energy-stable open boundary conditions from previous works. Our numerical algorithm treats the proposed open boundary condition based on a rotational velocity-correction type strategy. It gives rise to a Robin-type condition for the discrete pressure and a Robin-type condition for the discrete velocity on the outflow/open boundary, respectively at the pressure and the velocity sub-steps. We present extensive numerical experiments on a canonical wake flow and a jet flow in open domain to test the effectiveness and performance of the method developed herein. Simulation results are compared with the experimental data as well as with other previous simulations to demonstrate the accuracy of the current method. Long-time simulations are performed for a range of Reynolds numbers, at which strong vortices and backflows occur at the outflow/open boundaries. The results show that our method is effective in overcoming the backflow instability, and that it allows for the vortices to discharge from the domain in a fairly natural fashion even at high Reynolds numbers.

  18. The halt of deep convection in the Greenland Sea: A natural experiment for the study of their causes and effects.

    NASA Astrophysics Data System (ADS)

    Somavilla Cabrillo, Raquel; Schauer, Ursula; Budeus, Gedeon; Latarius, Katrin

    2015-04-01

    There are only a few sites where the deep ocean is ventilated from the surface. The responsible process known as deep convection is recognized to be a key process on the Earth's climate system, but still it is scarcely observed, and its good representation by global oceanographic and climate models remains unclear. In the Arctic Ocean, the halt of deep convection in the Greenland Sea during the last three decades serves as a natural experiment to study: (1) the conditions that drive the occurrence or not of deep convection and (2) the effects of the halt of deep convection on the thermohaline properties of the deep water masses and circulation both locally and in adjacent ocean basins. Combining oceanic and atmospheric in-situ data together with reanalysis data, we observe that not only on average the winter net heat losses from the ocean to the atmosphere (Qo) have decreased during the last three decades in the Greenland Sea (ΔQo (before the 1980s- after the 1980s) = 25 Wm-2) but the intensity and number of strong cooling events (Qo ≥ 800Wm-2). This last value for convection reaching 2000 m in the Greenland Sea seems critical to make the mixed layer deepening from being a non-penetrative process to one arrested by baroclinic instabilities. Besides, changes in the wind stress curl and preconditioning for deep convection have occurred, hindering also the occurrence of deep convection. Concerning the effects of the halt of deep convection, hydrographic data reveal that the temperature between 2000 meters depth and the sea floor has risen by 0.3 °C in the last 30 years, which is ten times higher than the temperature increase in the global ocean on average, and salinity rose by 0.02 because import of relatively warm and salty Arctic Ocean deep waters continued. The necessary transports to explain the observed changes suggest an increase of Arctic Ocean deep water transport that would have compensated the decrease in deep water formation rate after the 1980s. The

  19. Natural Convection in a rotating multilayer spherical shell system with self gravity

    NASA Astrophysics Data System (ADS)

    Lira Rangel, Francisco Javier; Avila Rodriguez, Ruben; Cabello Gonzalez, Ares

    2015-11-01

    The onset of thermal convection in rotating multilayer spherical shells is investigated. Similar to the the terrestrial planets structure (core-mantle-ocean/atmosphere), the system is composed of three concentric shells. The first spherical gap has an aspect ratio equal to 0.35, the middle gap has an aspect ratio of 0.44 and the third gap has an aspect ratio equal to 0.8.The inner and the outer spherical gaps confine Boussinesq fluids while the middle spherical gap is treated as a thermal conductor solid. The investigation shows the Taylor and Rayleigh numbers that allows the onset of thermal convection in the two fluid gaps. Additionally the convective patterns, the temperature fields and the heat fluxes are presented in the most inner and outer spherical gaps. Convection is driven by the temperature difference between the most inner and outer spheres and a gravitational field which varies like 1 / r and 1 /r3 . The fluid equations are solved by using the spectral element method (SEM) and the mesh is generated by using the cubed-sphere algorithm to avoid the singularity at the poles. To the knowledge of the authors the convection-conduction-convection problem presented in this paper has not been investigated previously. This project is sponsored by PAPIIT DGAPA UNAM.

  20. Analytical solution of steady natural convection in an annular porous medium evaluated with a symbolic algebra code

    SciTech Connect

    Mojtabi, A. ); Charrier-Mojtabi, M.C. )

    1992-11-01

    Natural convection flows in a cylindrical annular porous medium have been studied extensively over the last twenty years. The main results concern the two-dimensional steady state. Several techniques have been developed, such as the finite difference method (Caltagirone, 1976), the finite element method (Mojtabi et al., 1987), and the spectral method (Charrier-Mojtabi and Caltagirone, 1980; Rao et al., 1987; Himasekhar and Bau, 1988; Charrier-Mojtabi et al., 1991). 6 refs., 3 tabs.

  1. Geometric aspect and buoyancy effects on nature convection flow in the complex annuli filled with micropolar fluids

    NASA Astrophysics Data System (ADS)

    Chen, Wen Ruey

    2015-11-01

    This paper studies the steady laminar natural convection of micropolar fluids in the complex annuli between the inner sphere and outer vertical cylinder to present a numerical analysis of the flow and heat transfer characteristics with buoyancy effects. Computations were carried out systematically by the several different parameters of geometric ratio, micropolar material parameter and Rayleigh number to determine the average Nusselt number and the skin friction coefficient on the flow and the thermal fields.

  2. Laminar natural convection heat transfer and air flow in three-dimensional cubic enclosures with a partially heated wall

    NASA Astrophysics Data System (ADS)

    Mellah, S.; Ben-Cheikh, N.; Ben-Beya, B.; Lili, T.

    2015-03-01

    In the present study, a finite volume computational procedure and a full multigrid technique are used to investigate laminar natural convection in partially heated cubic enclosures. Effects of heated strip disposition in the enclosure on the heat transfer rate are studied. Results are presented in the form of flow lines, isotherms plots, average Nusselt numbers, and average temperature on the heat source surface. Statistical distributions of temperature and average velocity fields and their root-mean-square values are presented and discussed.

  3. The effect of heterogeneity on the character of density-driven natural convection of CO 2 overlying a brine layer

    NASA Astrophysics Data System (ADS)

    Farajzadeh, R.; Ranganathan, P.; Zitha, P. L. J.; Bruining, J.

    2011-03-01

    The efficiency of mixing in density-driven natural-convection is largely governed by the aquifer permeability, which is heterogeneous in practice. The character (fingering, stable mixing or channeling) of flow-driven mixing processes depends primarily on the permeability heterogeneity character of the aquifer, i.e., on its degree of permeability variance (Dykstra-Parsons coefficient) and the correlation length. Here we follow the ideas of Waggoner et al. (1992) [13] to identify different flow regimes of a density-driven natural convection flow by numerical simulation. Heterogeneous fields are generated with the spectral method of Shinozuka and Jan (1972) [13], because the method allows the use of power-law variograms. In this paper, we extended the classification of Waggoner et al. (1992) [13] for the natural convection phenomenon, which can be used as a tool in selecting optimal fields with maximum transfer rates of CO 2 into water. We observe from our simulations that the rate of mass transfer of CO 2 into water is higher for heterogeneous media.

  4. The study and development of the empirical correlations equation of natural convection heat transfer on vertical rectangular sub-channels

    NASA Astrophysics Data System (ADS)

    Kamajaya, Ketut; Umar, Efrizon; Sudjatmi, K. S.

    2012-06-01

    This study focused on natural convection heat transfer using a vertical rectangular sub-channel and water as the coolant fluid. To conduct this study has been made pipe heaters are equipped with thermocouples. Each heater is equipped with five thermocouples along the heating pipes. The diameter of each heater is 2.54 cm and 45 cm in length. The distance between the central heating and the pitch is 29.5 cm. Test equipment is equipped with a primary cooling system, a secondary cooling system and a heat exchanger. The purpose of this study is to obtain new empirical correlations equations of the vertical rectangular sub-channel, especially for the natural convection heat transfer within a bundle of vertical cylinders rectangular arrangement sub-channels. The empirical correlation equation can support the thermo-hydraulic analysis of research nuclear reactors that utilize cylindrical fuel rods, and also can be used in designing of baffle-free vertical shell and tube heat exchangers. The results of this study that the empirical correlation equations of natural convection heat transfer coefficients with rectangular arrangement is Nu = 6.3357 (Ra.Dh/x)0.0740.

  5. Numerical analysis of two dimensional natural convection heat transfer following a contained explosion

    NASA Astrophysics Data System (ADS)

    Manson, Steven James

    The Pantex facility near Amarillo, Texas, is the only U.S. site charged with the disassembly of nuclear weapons. Concerns over the safety of weapons handling procedures are now being revisited, due to the enhanced safety requirements of the peace time disassembly effort. This research is a detailed examination of one possible nuclear weapons-related accident. In this hypothetical accident, a chemical explosion equivalent to over 50 kilos of TNT destroys unassembled nuclear weapons components, and may potentially result in some amount of plutonium reaching the environment. Previous attempts to simulate this accident have centered around the one-dimensional node and branch approach of the MELCOR code. This approach may be adequate in calculating pressure driven flow through narrow rampways and leak sites, however, its one-dimensionality does not allow it to accurately calculate the multi-dimensional aspects of heat transfer. This research effort uses an axi-symmetric stream function---vorticity formulation of the Navier-Stokes equations to model a Pantex cell building following a successfully contained chemical explosion. This allows direct calculation of the heat transfer within the cell room during the transient. The tool that was developed to perform this analysis is called PET (Post-Explosion Transient), and it simulates natural convection thermal hydraulics taking into account temperature-related fluid density differences, variable fluid transport properties, and a non-linear equation of state. Results obtained using the PET code indicate that previous analyses by other researchers using the MELCOR code have been overly conservative in estimating the effects of cell room heat transfer. An increase in the calculated heat transfer coefficient of approximately 20% is indicated. This has been demonstrated to significantly decrease the projected consequences of the hypothetical accident.

  6. Multiple Solutions in Natural Convection in an Air Filled Square Enclosure: Fractal Dimension of Attractors

    NASA Astrophysics Data System (ADS)

    Aklouche Benouaguef, S.; Zeghmati, B.; Bouhadef, K.; Daguenet, M.

    In this study, we investigated numerically the transient natural convection in a square cavity with two horizontal adiabatic sides and vertical walls composed of two regions of same size maintained at different temperatures. The flow has been assumed to be laminar and bi-dimensional. The governing equations written in dimensionless form and expressed in terms of stream function and vorticity, have been solved using the Alternating Direction Implicit (ADI) method and the GAUSS elimination method. Calculations were performed for air (Pr = 0.71), with a Rayleigh number varying from 2.5x105 to 3.7x106. We analysed the effect of the Rayleigh number on the route to the chaos of the system. The first transition has been found from steady-state to oscillatory flow and the second is a subharmonic bifurcation as the Rayleigh number is increased further. For sufficiently small Rayleigh numbers, present results show that the flow is characterized by four cells with horizontal and vertical symmetric axes. The attractor bifurcates from a stable fixed point to a limit cycle for a Rayleigh number varying from 2.5x105 to 2.51x105. A limit cycle settles from Ra = 3x105 and persists until Ra = 5x105. At a Rayleigh number of 2.5x105 the temporal evolution of the Nusselt number Nu(t) was stationary. As the Rayleigh number increases, the flow becomes unstable and bifurcates to a time periodic solution at a critical Rayleigh number between 2.5x105 and 2.51x105. After the first HOPF bifurcation at Ra = 2.51x105, the oscillatory flow undergoes several bifurcations and ultimately evolves into a chaotic flow.

  7. Convection in molten pool created by a concentrated energy flux on a solid metal target

    SciTech Connect

    Dikshit, B.; Zende, G. R.; Bhatia, M. S.; Suri, B. M.

    2009-08-15

    During surface evaporation of metals by use of a concentrated energy flux such as electron beam or lasers, a liquid metal pool having a very high temperature gradient is formed around the hot zone created by the beam. Due to temperature dependence of surface tension, density, and depression of the evaporating surface caused by back pressure of the emitted vapor in this molten pool, a strong convective current sets in the molten pool. A proposition is made that this convection may pass through three different stages during increase in the electron beam power depending upon dominance of the various driving forces. To confirm this, convective heat transfer is quantified in terms of dimensionless Nusselt number and its evolution with power is studied in an experiment using aluminum, copper, and zirconium as targets. These experimentally determined values are also compared to the theoretical values predicted by earlier researchers to test the validity of their assumptions and to know about the type of flow in the melt pool. Thus, conclusion about the physical characteristics of flow in the molten pool of metals could be drawn by considering the roles of surface tension and curvature of the evaporating surface on the evolution of convective heat transfer.

  8. The nature and geochemical role of density convection in the East European evaporite basin

    NASA Astrophysics Data System (ADS)

    Popov, V. G.; Abdrakhmanov, R. F.; Puchkov, V. N.

    2015-09-01

    The role of the gravitation factor in the formation of the hydrostratisphere in the East European evaporate basin is considered. The features of Paleozoic sedimentation are characterized, as are the mechanism and litho-hydrogeochemical effects of the density concentration convection of mother brines of the Low-Permian salt-bearing basin to the underlying terrigenous-carbonate Paleozoic and Proterozoic layers. It is shown that the convection processes resulted in the formation of multicomponent calcium chloride brines prevailing in the sedimentary layer of the basis; they also caused the metasomatic dolomitization of limestones with growth of their filtration capacity.

  9. Porous media flow problems: natural convection and one-dimensional flow of a non-Newtonian fluid

    SciTech Connect

    Walker, K.L.

    1980-01-01

    Two fluid problems in porous media are studied: natural convection of a Newtonian fluid and one-dimensional flow of a non-Newtonian fluid. Convection in a rectangular porous cavity driven by heating in the horizontal is analyzed by a number of different techniques which yield a fairly complete description of the 2-dimensional solutions. The solutions are governed by 2 dimensionless parameters: the Darcy-Rayleigh number R and cavity aspect ratio A. The flow behavior of a dilute solution of polyacrylamide in corn syrup flowing through porous media also is studied. Measurements of the pressure drop and flow rate are made for the solution flowing through a packed bed of glass beads. At low velocities the pressure drop as a function of velocity is the same as that for a Newtonian fluid of equal viscosity. At higher flow rates the non-Newtonian fluid exhibited significantly higher pressure drops than a Newtonian fluid.

  10. Nature of Convective Instabilities in Explosive Volcanic Clouds Inferred by Analog Experiments

    NASA Astrophysics Data System (ADS)

    Carazzo, G.; Jellinek, M.

    2009-12-01

    Understanding the mechanisms controlling the dynamics of a volcanic cloud generated by the rise and spread of an explosive eruption is a central issue in volcanology for the assessment of associated hazards. The last decades have seen the development of sophisticated numerical simulations and particle-tracking models with the aim of better understanding and forecasting the transport and sedimentation of the solid fraction in the cloud. In these models, the lateral spreading of an umbrella cloud is strongly influenced by stratospheric winds and its loss of mass with time is assumed be controlled by the opposing effects of particles settling and turbulent diffusion. However, recent observations suggest that additional spatially complex and time-dependent phenomena may govern the dynamics in a volcanic cloud. Here we investigate the mechanisms governing the lateral transport and residence time of ash in the atmosphere using analog experiments. In these experiments, a mixture of small particles and fresh water is injected upwards at a fixed rate into a chamber containing a salt water layer beneath a fresh water layer. Our results show that the formation of a thin particle-rich layer at the base of the cloud (a particle boundary layer) can dramatically modify its dynamics and lead to a variety of behaviors not detected previously. Depending on the conditions imposed at the source and on the magnitude of the density gradient in the environment, the cloud may either break up into discrete layers or release material as dense batches of particle-laden fluid. In natural eruptions the formation of this dense layer is found to be mainly controlled by the grain size distribution and to a lesser extent the altitude reached by the plume. An exhaustive review of field data available in the literature suggests that several past eruptions meet the required conditions to form a particle boundary layer. This study shows that large convective instabilities induced by the presence of a

  11. Eulerian-Lagrangian solution of the convection-dispersion equation in natural co-ordinates.

    USGS Publications Warehouse

    Cheng, R.T.; Casulli, V.; Milford, S.N.

    1984-01-01

    The vast majority of numerical investigations of transport phenomena use an Eulerian formulation for the convenience that the computational grids are fixed in space. An Eulerian-Lagrangian method (ELM) of solution for the convection-dispersion equation is discussed and analyzed. The ELM uses the Lagrangian concept in an Eulerian computational grid system.-from Authors

  12. Roles of divergent and rotational winds in the kinetic energy balance during intense convective activity

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Browning, P. A.

    1983-01-01

    Contributions of divergent and rotational wind components to the synoptic-scale kinetic energy balance are described using rawinsonde data at 3 and 6 h intervals from NASA's fourth Atmospheric Variability experiment. Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclosed storm-induced, upper level wind maxima located poleward of convection. Although small in magnitude, the divergent wind component played an important role in the cross-contour generation and horizontal flux divergence of kinetic energy. The importance of V(D) appears directly related to the presence and intensity of convection. Although K(D) usually comprised less than 10 percent of the total kinetic energy content, generation of kinetic energy by V(D) was a major factor in the creation of upper-level wind maxima to the north of the storm complexes. Omission of the divergent wind apparently would lead to serious misrepresentations of the energy balance. A random error analysis is presented to assess confidence limits in the various energy parameters.

  13. Performance Analysis and Parametric Study of a Natural Convection Solar Air Heater With In-built Oil Storage

    NASA Astrophysics Data System (ADS)

    Dhote, Yogesh; Thombre, Shashikant

    2016-05-01

    This paper presents the thermal performance of the proposed double flow natural convection solar air heater with in-built liquid (oil) sensible heat storage. Unused engine oil was used as thermal energy storage medium due to its good heat retaining capacity even at high temperatures without evaporation. The performance evaluation was carried out for a day of the month March for the climatic conditions of Nagpur (India). A self reliant computational model was developed using computational tool as C++. The program developed was self reliant and compute the performance parameters for any day of the year and would be used for major cities in India. The effect of change in storage oil quantity and the inclination (tilt angle) on the overall efficiency of the solar air heater was studied. The performance was tested initially at different storage oil quantities as 25, 50, 75 and 100 l for a plate spacing of 0.04 m with an inclination of 36o. It has been found that the solar air heater gives the best performance at a storage oil quantity of 50 l. The performance of the proposed solar air heater is further tested for various combinations of storage oil quantity (50, 75 and 100 l) and the inclination (0o, 15o, 30o, 45o, 60o, 75o, 90o). It has been found that the proposed solar air heater with in-built oil storage shows its best performance for the combination of 50 l storage oil quantity and 60o inclination. Finally the results of the parametric study was also presented in the form of graphs carried out for a fixed storage oil quantity of 25 l, plate spacing of 0.03 m and at an inclination of 36o to study the behaviour of various heat transfer and fluid flow parameters of the solar air heater.

  14. Supergranular Convection

    NASA Astrophysics Data System (ADS)

    Udayashankar, Paniveni

    2015-12-01

    Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Here the opacity is so large that heat flux transport is mainly by convection rather than by photon diffusion. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection , Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni

  15. Upscale energy transfer in three-dimensional rapidly rotating turbulent convection.

    PubMed

    Rubio, Antonio M; Julien, Keith; Knobloch, Edgar; Weiss, Jeffrey B

    2014-04-11

    Rotating Rayleigh-Bénard convection exhibits, in the limit of rapid rotation, a turbulent state known as geostrophic turbulence. This state is present for sufficiently large Rayleigh numbers representing the thermal forcing of the system, and is characterized by a leading order balance between the Coriolis force and pressure gradient. This turbulent state is itself unstable to the generation of depth-independent or barotropic vortex structures of ever larger scale through a process known as spectral condensation. This process involves an inverse cascade mechanism with a positive feedback loop whereby large-scale barotropic vortices organize small scale convective eddies. In turn, these eddies provide a dynamically evolving energy source for the large-scale barotropic component. Kinetic energy spectra for the barotropic dynamics are consistent with a k-3 downscale enstrophy cascade and an upscale cascade that steepens to k-3 as the box-scale condensate forms. At the same time the flow maintains a baroclinic convective component with an inertial range consistent with a k-5/3 spectrum. The condensation process resembles a similar process in two dimensions but is fully three-dimensional. PMID:24765971

  16. Application of Karhunen-Loève Expansions for the Dynamic Analysis of a Natural Convection Loop for Known Heat Flux

    NASA Astrophysics Data System (ADS)

    Hummel, Tobias; Pacheco-Vega, Arturo

    2012-11-01

    In the present study we use Karhunen-Loève (KL) expansions to model the dynamic behavior of a single-phase natural convection loop. The loop is filled with an incompressible fluid that exchanges heat through the walls of its toroidal shape. Influx and efflux of energy take place at different parts of the loop. The focus here is a sinusoidal variation of the heat flux exchanged with the environment for three different scenarios; i.e., stable, limit cycles and chaos. For the analysis, one-dimensional models, in which the tilt angle and the amplitude of the heat flux are used as parameters, were first developed under suitable assumptions and then solved numerically to generate the data from which the KL-based models could be constructed. The method of snapshots, along with a Galerkin projection, was then used to find the basis functions and corresponding constants of each expansion, thus producing the optimal representation of the system. Results from this study indicate that the dimension of the KL-based dynamical system depends on the linear stability of the steady states; the number of basis functions necessary to describe the system increases with increased complexity of the system operation. When compared to typical dynamical systems based on Fourier expansions the KL-based models are, in general, more compact and equally accurate in the dynamic description of the natural convection loop.

  17. Why does tropical convective available potential energy (CAPE) increase with warming?

    NASA Astrophysics Data System (ADS)

    Seeley, Jacob T.; Romps, David M.

    2015-12-01

    Recent work has produced a theory for tropical convective available potential energy (CAPE) that highlights the Clausius-Clapeyron (CC) scaling of the atmosphere's saturation deficit as a driver of increases in CAPE with warming. Here we test this so-called "zero-buoyancy" theory for CAPE by modulating the saturation deficit of cloud-resolving simulations of radiative-convective equilibrium in two ways: changing the sea surface temperature (SST) and changing the environmental relative humidity (RH). For earthlike and warmer SSTs, undilute parcel buoyancy in the lower troposphere is insensitive to increasing SST because of a countervailing CC scaling that balances the increase in the saturation deficit; however, buoyancy increases dramatically with SST in the upper troposphere. Conversely, in the RH experiment, undilute buoyancy throughout the troposphere increases monotonically with decreasing RH. We show that the zero-buoyancy theory successfully predicts these contrasting behaviors, building confidence that it describes the fundamental physics of CAPE and its response to warming.

  18. Three-dimensional natural convection of a fluid with temperature-dependent viscosity in an enclosure with localized heating

    SciTech Connect

    Torczynski, J.R.; Henderson, J.A.; O`Hern, T.J.; Chu, T.Y.; Blanchat, T.K.

    1994-01-01

    Three-dimensional natural convection of a fluid in an enclosure is examined. The geometry is motivated by a possible magmaenergy extraction system, and the fluid is a magma simulant and has a highly temperature-dependent viscosity. Flow simulations are performed for enclosures with and without a cylinder, which represents the extractor, using the finite-element code FIDAP (Fluid Dynamics International). The presence of the cylinder completely alters the flow pattern. Flow-visualization and PIV experiments are in qualitative agreement wit the simulations.

  19. The nature of symmetric instability and its similarity to convective and inertial instability

    NASA Technical Reports Server (NTRS)

    Xu, Q.; Clark, J. H. E.

    1985-01-01

    It is shown that there exists a local similarity among SI (Symmetric Instability), BI (Buoyancy or Convective Instability), and II (Inertial Instability) even for fully nonlinear viscous motion. The most unstable slope angles for SI and Moist SI motions are analyzed based on parcel energetics. These considerations also suggest qualitatively that CSI (Conditional SI) circulations will be slantwise and lie between the moist most unstable slope and dry least stable slope of the basic state.

  20. On the episodic nature of derecho-producing convective systems in the United States

    NASA Astrophysics Data System (ADS)

    Ashley, Walker S.; Mote, Thomas L.; Bentley, Mace L.

    2005-11-01

    Convectively generated windstorms occur over broad temporal and spatial scales; however, one of the larger-scale and most intense of these windstorms has been given the name derecho. This study illustrates the tendency for derecho-producing mesoscale convective systems to group together across the United States - forming a derecho series. The derecho series is recognized as any succession of derechos that develop within a similar synoptic environment with no more than 72 h separating individual events. A derecho dataset for the period 1994-2003 was assembled to investigate the groupings of these extremely damaging convective wind events. Results indicate that over 62% of the derechos in the dataset were members of a derecho series. On average, nearly six series affected the United States annually. Most derecho series consisted of two or three events; though, 14 series during the period of record contained four or more events. Two separate series involved nine derechos within a period of nine days. Analyses reveal that derecho series largely frequent regions of the Midwest, Ohio Valley, and the south-central Great Plains during May, June, and July. Results suggest that once a derecho occurred during May, June, or July, there was a 58% chance that this event was the first of a series of two or more, and about a 46% chance that this was the first of a derecho series consisting of three or more events. The derecho series climatology reveals that forecasters in regions frequented by derechos should be prepared for the probable regeneration of a derecho-producing convective system after an initial event occurs. Copyright

  1. Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure

    NASA Astrophysics Data System (ADS)

    Beckermann, C.; Ramadhyani, S.; Viskanta, R.

    1987-05-01

    A numerical and experimental study is performed to analyze the steady-state natural convection fluid flow and heat transfer in a vertical rectangular enclosure that is partially filled with a vertical layer of a fluid-saturated porous medium. The flow in the porous layer is modeled utilizing the Brinkman-Forchheimer-extended Darcy equations. The numerical model is verified by conducting a number of experiments, with spherical glass beads as the porous medium and water and glycerin as the fluids, in rectangular test cells. The agreement between the flow visualization results and temperature measurements and the numerical model is, in general, good. It is found that the amount of fluid penetrating from the fluid region into the porous layer depends strongly on the Darcy (Da) and Rayleigh (Ra) numbers. For a relatively low product of Ra x Da, the flow takes place primarily in the fluid layer, and heat transfer in the porous layer is by conduction only. On other hand, fluid penetration into a relatively highly permeable porous layer has a significant impact on the natural convection flow patterns in the entire enclosure.

  2. Emissivity measurements in support of experiments on natural convection between a vertical cylinder and a surrounding array

    SciTech Connect

    O`Brien, J.E.

    1991-12-01

    Experimental measurements of surface emissivities of three metallic samples have been obtained in support of an experiment aimed at determining natural convection and total heat transfer for a heated vertical cylinder surrounded by an array of cooled vertical tubes. In some cases, the heated stainless steel cylinder was shrouded by a perforated aluminum outer cylinder. The surrounding cooled tubes were also aluminum. In this experiment, heat transfer from the heated tube and the surrounding outer cylinder will occur by a combination of natural convection and radiation. At temperatures near the melting point of aluminum, the radiant contribution is particularly important, accounting for 50% or more of the total heat transfer. Consequently, accurate knowledge of surface emissivities of the heated rods, outer cylinders and surrounding structures is needed in order to predict the system thermal response during the transient. Direct measurements of surface emissivities have been obtained for one stainless steel and two aluminum samples. The measurements were obtained using an infrared pyrometer sensitive to the 8--14 {mu}m wavelength range. A procedure for estimating total hemispherical emissivities based on the measured spectral, normal results is also provided.

  3. Emissivity measurements in support of experiments on natural convection between a vertical cylinder and a surrounding array

    NASA Astrophysics Data System (ADS)

    Obrien, J. E.

    1991-12-01

    Experimental measurements of surface emissivities of three metallic samples have been obtained in support of an experiment aimed at determining natural convection and total heat transfer for a heated vertical cylinder surrounded by an array of cooled vertical tubes. In some cases, the heated stainless steel cylinder was shrouded by a perforated aluminum outer cylinder. The surrounding cooled tubes were also aluminum. In this experiment, heat transfer from the heated tube and the surrounding outer cylinder will occur by a combination of natural convection and radiation. At temperatures near the melting point of aluminum, the radiant contribution is particularly important, accounting for 50 percent or more of the total heat transfer. Consequently, accurate knowledge of surface emissivities of the heated rods, outer cylinders and surrounding structures is needed in order to predict the system thermal response during the transient. Direct measurements of surface emissivities have been obtained for one stainless steel and two aluminum samples. The measurements were obtained using an infrared pyrometer sensitive to the 8-14 micron wavelength range. A procedure for estimating total hemispherical emissivities based on the measured spectral, normal results is also provided.

  4. Numerical Bifurcation Study of Natural Convection in a Layer of Fluid Subject to Spatially Distributed Heating

    NASA Astrophysics Data System (ADS)

    Asgarian, A.; Hossain, M. Z.; Floryan, J. M.

    2011-11-01

    We present the numerical investigation of Rayleigh-Benard convection (RBC) in a slot whose bottom wall is subject to a long-wavelength heating and the upper wall is isothermal. It is shown that multiple flow structures associated with the same conditions can be produced by changing the history of the heating; this history can be controlled by using different initialization conditions, different continuation strategies in the parameters space as well as by using different numerical solvers. The observed flow structures can be categorized into two generic groups, i.e. symmetric and asymmetric flow structures.

  5. Natural convection for supercritical conditions in oscillatory microgravity environment (g-jitter)

    NASA Astrophysics Data System (ADS)

    Wadih, M.; Roux, B.

    The onset condition of convective motions is analyzed for unsteady (periodic) microgravity environment (g-jitter). The method developed in a previous work by the authors is applied to the case of homogeneous fluid layer confined in a long vertical cylinder submitted to an adverse axial temperature gradient. The residual gravity is assumed to be a combination of sinusoidal oscillations around a nonzero mean value and periodic fluctuations (peaks) of small amplitudes. The critical conditions are determined for two different wall conductances (a perfectly conducting and insulating-wall), and the effect of the Prandtl number is emphasized for a large range of modulation frequencies from g to 1 Khz.

  6. Hydromagnetic natural convection flow between vertical parallel plates with time-periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Adesanya, S. O.; Oluwadare, E. O.; Falade, J. A.; Makinde, O. D.

    2015-12-01

    In this paper, the free convective flow of magnetohydrodynamic fluid through a channel with time periodic boundary condition is investigated by taking the effects of Joule dissipation into consideration. Based on simplifying assumptions, the coupled governing equations are reduced to a set of nonlinear boundary valued problem. Approximate solutions are obtained by using semi-analytical Adomian decomposition method. The effect of pertinent parameters on the fluid velocity, temperature distribution, Nusselt number and skin friction are presented graphically and discussed. The result of the computation shows that an increase in the magnetic field intensity has significant influence on the fluid flow.

  7. Influence of Natural Convection and Thermal Radiation Multi-Component Transport in MOCVD Reactors

    NASA Technical Reports Server (NTRS)

    Lowry, S.; Krishnan, A.; Clark, I.

    1999-01-01

    The influence of Grashof and Reynolds number in Metal Organic Chemical Vapor (MOCVD) reactors is being investigated under a combined empirical/numerical study. As part of that research, the deposition of Indium Phosphide in an MOCVD reactor is modeled using the computational code CFD-ACE. The model includes the effects of convection, conduction, and radiation as well as multi-component diffusion and multi-step surface/gas phase chemistry. The results of the prediction are compared with experimental data for a commercial reactor and analyzed with respect to the model accuracy.

  8. A heat exchanger between forced flow helium gas at 14 to 18 K andliquid hydrogen at 20 K circulated by natural convection

    SciTech Connect

    Green, M.A.; Ishimoto, S.; Lau, W.; Yang, S.

    2003-09-15

    The Muon Ionization Cooling Experiment (MICE) has three 350-mm long liquid hydrogen absorbers to reduce the momentum of 200 MeV muons in all directions. The muons are then re-accelerated in the longitudinal direction by 200 MHz RF cavities. The result is cooled muons with a reduced emittance. The energy from the muons is taken up by the liquid hydrogen in the absorber. The hydrogen in the MICE absorbers is cooled by natural convection to the walls of the absorber that are in turn cooled by helium gas that enters at 14 K. This report describes the MICE liquid hydrogen absorber and the heat exchanger between the liquid hydrogen and the helium gas that flows through passages in the absorber wall.

  9. Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.

    PubMed

    Sekhar, Y Raja; Sharma, K V; Kamal, Subhash

    2016-05-01

    The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids. PMID:26593731

  10. Buoyancy-Driven Natural Convection of Liquid Helium in an Electron Bubble Chamber

    SciTech Connect

    Ju, Y. L.; Dodd, J. R.; Willis, W. J.

    2006-04-27

    A small liquid helium test chamber with 1.5 L active volume has been designed and constructed, to make the fundamental measurements of physical properties of electron bubble transports in liquid helium, aimed at developing a new cryogenic neutrino detector, using liquid helium as the detecting medium, for the detection of solar neutrinos. The test chamber is a double-walled cylindrical container equipped with five optical windows and ten high voltage cables. A LN2/LHe cryostat and a needle valve for vapor helium cooling are used to provide a 1.7{approx}4.5 K low temperature environments for the test chamber. One of key issues for the cryogenic design and experimental sensitivity of electron bubble tracking is that of keeping a thermally uniform liquid helium bath. The external heat loads to the chamber will generate a buoyancy-induced convection of liquid helium, which will carry the electron bubbles and accelerate or decelerate their transportation and therefore must be reduced to the minimum, so that the slow motion of the electron bubbles will not be confused by this effect. This paper will present the computational simulation and analysis on thermal convection and uniformity of the test chamber.