Science.gov

Sample records for natural gas fueled

  1. Convert natural gas into clean transportation fuels

    SciTech Connect

    Agee, M.A.

    1997-03-01

    A new process economically converts natural gas into synthetic transportation fuels that are free of sulfur, metals, aromatics and are clear in appearance. The process, developed by Syntroleum Corp., is energy self-sufficient and can be implemented in sizes small enough to fit a large number of the world`s gas fields. The process is described.

  2. Molten carbonate fuel cells for coal and natural gas fuels

    SciTech Connect

    Krumplet, M.; Ackerman, J.P.; Cook, G.M.; Pierce, R.D.

    1984-02-01

    System designs of molten carbonate fuel cell power plants are described for central stations using coal and on-site generators operating on natural gas. Fuel-to-busbar efficiencies are near 50% in coal based systems with turbine bottoming and in simple gas based systems. Coal based systems with more advanced but not fully developed components, and more complex gas based systems approach 60% efficiency.

  3. Molten carbonate fuel cells for coal and natural gas fuels

    SciTech Connect

    Krumpelt, M.; Cook, G.M.; Pierce, R.D.; Ackerman, J.P.

    1984-01-01

    System designs of molten carbonate fuel cell power plants are described for central stations using coal and on-site generators operating on natural gas. Fuel-to-busbar efficiencies are near 50% in coal based systems with turbine bottoming and in simple gas based systems. Coal based systems with more advanced but not fully developed components, and more complex gas based systems approach 60% efficiency.

  4. Natural gas fueling of diesel engines

    SciTech Connect

    1996-11-01

    The focus of work performed by University of British Columbia researchers was on high-pressure (late cycle) injection of NG ignited by a pilot diesel-liquid injection(diesel/gas combustion). This was compared to the case of 100% liquid diesel (baseline diesel) fueling at the same load and speed. In typical direct-injected and conventionally fueled diesel engines, fuel is injected a few degrees before the end of the compression stroke into 750--900 K air in which it vaporizes, mixed with air, and auto ignites less than 2 ms after injection begins. The objectives of the researchers` work were to investigate the ignition delay and combustion duration of diesel/gas combustion by observing diesel and diesel/gas ignition sites and flame structure; determining ignition delay and combustion duration with pilot-diesel and natural gas injections; determining whether the pilot liquid flame is substantially influenced by the gas injection; and considering whether pilot-diesel/gas combustion is dominated by premixed or diffusion combustion.

  5. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG)...

  6. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG)...

  7. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG)...

  8. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG)...

  9. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG)...

  10. Combustion gas properties. 2: Natural gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  11. Flex fuel polygeneration: Integrating renewable natural gas

    NASA Astrophysics Data System (ADS)

    Kieffer, Matthew

    Flex Fuel Polygeneration (FFPG) is the use of multiple primary energy sources for the production of multiple energy carriers to achieve increased market opportunities. FFPG allows for adjustments in energy supply to meet market fluctuations and increase resiliency to contingencies such as weather disruptions, technological changes, and variations in supply of energy resources. In this study a FFPG plant is examined that uses a combination of the primary energy sources natural gas and renewable natural gas (RNG) derived from MSW and livestock manure and converts them into energy carriers of electricity and fuels through anaerobic digestion (AD), Fischer-Tropsch synthesis (FTS), and gas turbine cycles. Previous techno-economic analyses of conventional energy production plants are combined to obtain equipment and operating costs, and then the 20-year NPVs of the FFPG plant designs are evaluated by static and stochastic simulations. The effects of changing operating parameters are investigated, as well as the number of anaerobic digestion plants on the 20-year NPV of the FTS and FFPG systems.

  12. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  13. Effect of Natural Gas Fuel Addition on the Oxidation of Fuel Cell Anode Gas

    SciTech Connect

    Randall S. Gemmen; Edward H. Robey, Jr.

    1999-11-01

    The anode exhaust gas from a fuel cell commonly has a fuel energy density between 15 and 25% that of the fuel supply, due to the incomplete oxidation of the input fuel. This exhaust gas is subsequently oxidized (catalytically or non-catalytically), and the resultant thermal energy is often used elsewhere in the fuel cell process. Alternatively, additional fuel can be added to this stream to enhance the oxidation of the stream, for improved thermal control of the power plant, or to adjust the temperature of the exhaust gas as may be required in other specialty co-generation applications. Regardless of the application, the cost of a fuel cell system can be reduced if the exhaust gas oxidation can be accomplished through direct gas phase oxidation, rather than the usual catalytic oxidation approach. Before gas phase oxidation can be relied upon however, combustor design requirements need to be understood. The work reported here examines the issue of fuel addition, primarily as related to molten-carbonate fuel cell technology. It is shown experimentally that without proper combustor design, the addition of natural gas can readily quench the anode gas oxidation. The Chemkin software routines were used to resolve the mechanisms controlling the chemical quenching. It is found that addition of natural gas to the anode exhaust increases the amount of CH3 radicals, which reduces the concentration of H and O radicals and results in decreased rates of overall fuel oxidation.

  14. PROJECTIONS OF REGIONAL FUEL OIL AND NATURAL GAS PRICES

    EPA Science Inventory

    The report presents delivered regional oil and natural gas price forecasts for the industrial and electric utility sectors. Delivered energy price projections by Federal region through the year 2045 are provided for distillate fuel oil, residual fuel oil, and natural gas. Methodo...

  15. Liquid Fuels and Natural Gas in the Americas

    EIA Publications

    2014-01-01

    The Energy Information Administration's (EIA) Liquid Fuels and Natural Gas in the Americas report, published today, is a Congressionally-requested study examining the energy trends and developments in the Americas over the past decade. The report focuses on liquid fuels and natural gas—particularly reserves and resources, production, consumption, trade, and investment—given their scale and significance to the region.

  16. Fuels Containing Methane of Natural Gas in Solution

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    2004-01-01

    While exploring ways of producing better fuels for propulsion of a spacecraft on the Mars sample return mission, a researcher at Johnson Space Center (JSC) devised a way of blending fuel by combining methane or natural gas with a second fuel to produce a fuel that can be maintained in liquid form at ambient temperature and under moderate pressure. The use of such a blended fuel would be a departure for both spacecraft engines and terrestrial internal combustion engines. For spacecraft, it would enable reduction of weights on long flights. For the automotive industry on Earth, such a fuel could be easily distributed and could be a less expensive, more efficient, and cleaner-burning alternative to conventional fossil fuels. The concept of blending fuels is not new: for example, the production of gasoline includes the addition of liquid octane enhancers. For the future, it has been commonly suggested to substitute methane or compressed natural gas for octane-enhanced gasoline as a fuel for internal-combustion engines. Unfortunately, methane or natural gas must be stored either as a compressed gas (if kept at ambient temperature) or as a cryogenic liquid. The ranges of automobiles would be reduced from their present values because of limitations on the capacities for storage of these fuels. Moreover, technical challenges are posed by the need to develop equipment to handle these fuels and, especially, to fill tanks acceptably rapidly. The JSC alternative to provide a blended fuel that can be maintained in liquid form at moderate pressure at ambient temperature has not been previously tried. A blended automotive fuel according to this approach would be made by dissolving natural gas in gasoline. The autogenous pressure of this fuel would eliminate the need for a vehicle fuel pump, but a pressure and/or flow regulator would be needed to moderate the effects of temperature and to respond to changing engine power demands. Because the fuel would flash as it entered engine

  17. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  18. Fuel tank for liquefied natural gas

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2012-01-01

    A storage tank is provided for storing liquefied natural gas on, for example, a motor vehicle such as a bus or truck. The storage tank includes a metal liner vessel encapsulated by a resin-fiber composite layer. A foam insulating layer, including an outer protective layer of epoxy or of a truck liner material, covers the composite layer. A non-conducting protective coating may be painted on the vessel between the composite layer and the vessel so as to inhibit galvanic corrosion.

  19. Storage of fuel in hydrates for natural gas vehicles (NGVs)

    SciTech Connect

    Yevi, G.Y.; Rogers, R.E.

    1996-09-01

    The need for alternative fuels to replace liquid petroleum-based fuels has been accelerated in recent years by environmental concerns, concerns of shortage of imported liquid hydrocarbon, and congressional prompting. The fact is accepted that natural gas is the cheapest, most domestically abundant, and cleanest burning of fossil fuels. However, socio-economical and technical handicaps associated with the safety and efficiency of on-board fuel storage inhibit its practical use in vehicles as an alternative fuel. A concept is presented for safely storing fuel at low pressures in the form of hydrates in natural gas vehicles. Experimental results lead to gas storage capacities of 143 to 159 volumes/volume. Vehicle travel range could be up to 204 mi. Controlled decomposition rate of hydrates is possible for feeding an automotive vehicle. Upon sudden pressure decrease in the event of a vehicle accident, the rate of release of hydrocarbons from the hydrates at constant temperature is 2.63 to 12.50% per min, slow enough to prevent an explosion or a fireball. A model is given for predicting the rates of gas release from hydrates in a vehicle wreck. A storage tank design is proposed and a process is suggested for forming and decomposing hydrates on-board vehicles. A consistent fuel composition is obtained with hydrates.

  20. Gaseous fueled vehicles: A role for natural gas and hydrogen

    SciTech Connect

    Blazek, C.F.; Jasionowski, W.J.

    1991-01-01

    The commercialization of gaseous hydrogen fueled vehicles requires both the development of hydrogen fueled vehicles and the establishment of a hydrogen fueling infrastructure. These requirements create a classic chicken and egg scenario in that manufacturers will not build and consumers will not buy vehicles without an adequate refueling infrastructure and potential refueling station operators will not invest the needed capital without an adequate market to serve. One solution to this dilemma is to create a bridging strategy whereby hydrogen is introduced gradually via another carrier. The only contending alternative fuel that can act as a bridge to hydrogen fueled vehicles is natural gas. To explore this possibility, IGT is conducting emission tests on its dedicated natural gas vehicle (NGV) test platform to determine what, if any, effects small quantities of hydrogen have on emissions and performance. Furthermore, IGT is actively developing an adsorbent based low-pressure natural gas storage system for NGV applications. This system has also shown promise as a storage media for hydrogen. A discussion of our research results in this area will be presented. Finally, a review of IGT's testing facility will be presented to indicate our capabilities in conducted natural gas/hydrogen vehicle (NGHV) research. 3 refs., 10 figs.

  1. Bioconversion of natural gas to liquid fuel: Opportunities and challenges

    SciTech Connect

    Fei, Q; Guarnieri, MT; Tao, L; Laurens, LML; Dowe, N; Pienkos, PT

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. (C) 2014 The Authors. Published by Elsevier Inc.

  2. Bioconversion of Natural Gas to Liquid Fuel. Opportunities and Challenges

    SciTech Connect

    Fei, Qiang; Guarnieri, Michael T.; Tao, Ling; Laurens, Lieve M. L.; Dowe, Nancy; Pienkos, Philip T.

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Moreover, methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. Our review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.

  3. Evaluation of Ultra Clean Fuels from Natural Gas

    SciTech Connect

    Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable

  4. Compressed natural gas fueled vehicles: The Houston experience

    SciTech Connect

    Not Available

    1993-12-31

    The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

  5. Estimating Externalities of Natural Gas Fuel Cycles, Report 4

    SciTech Connect

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1998-01-01

    This report describes methods for estimating the external costs (and possibly benefits) to human health and the environment that result from natural gas fuel cycles. Although the concept of externalities is far from simple or precise, it generally refers to effects on individuals' well being, that result from a production or market activity in which the individuals do not participate, or are not fully compensated. In the past two years, the methodological approach that this report describes has quickly become a worldwide standard for estimating externalities of fuel cycles. The approach is generally applicable to any fuel cycle in which a resource, such as coal, hydro, or biomass, is used to generate electric power. This particular report focuses on the production activities, pollution, and impacts when natural gas is used to generate electric power. In the 1990s, natural gas technologies have become, in many countries, the least expensive to build and operate. The scope of this report is on how to estimate the value of externalities--where value is defined as individuals' willingness to pay for beneficial effects, or to avoid undesirable ones. This report is about the methodologies to estimate these externalities, not about how to internalize them through regulations or other public policies. Notwithstanding this limit in scope, consideration of externalities can not be done without considering regulatory, insurance, and other considerations because these institutional factors affect whether costs (and benefits) are in fact external, or whether they are already somehow internalized within the electric power market. Although this report considers such factors to some extent, much analysis yet remains to assess the extent to which estimated costs are indeed external. This report is one of a series of reports on estimating the externalities of fuel cycles. The other reports are on the coal, oil, biomass, hydro, and nuclear fuel cycles, and on general methodology.

  6. Natural Gas for Advanced Dual-Fuel Combustion Strategies

    NASA Astrophysics Data System (ADS)

    Walker, Nicholas Ryan

    Natural gas fuels represent the next evolution of low-carbon energy feedstocks powering human activity worldwide. The internal combustion engine, the energy conversion device widely used by society for more than one century, is capable of utilizing advanced combustion strategies in pursuit of ultra-high efficiency and ultra-low emissions. Yet many emerging advanced combustion strategies depend upon traditional petroleum-based fuels for their operation. In this research the use of natural gas, namely methane, is applied to both conventional and advanced dual-fuel combustion strategies. In the first part of this work both computational and experimental studies are undertaken to examine the viability of utilizing methane as the premixed low reactivity fuel in reactivity controlled compression ignition, a leading advanced dual-fuel combustion strategy. As a result, methane is shown to be capable of significantly extending the load limits for dual-fuel reactivity controlled compression ignition in both light- and heavy-duty engines. In the second part of this work heavy-duty single-cylinder engine experiments are performed to research the performance of both conventional dual-fuel (diesel pilot ignition) and advanced dual-fuel (reactivity controlled compression ignition) combustion strategies using methane as the premixed low reactivity fuel. Both strategies are strongly influenced by equivalence ratio; diesel pilot ignition offers best performance at higher equivalence ratios and higher premixed methane ratios, whereas reactivity controlled compression ignition offers superior performance at lower equivalence ratios and lower premixed methane ratios. In the third part of this work experiments are performed in order to determine the dominant mode of heat release for both dual-fuel combustion strategies. By studying the dual-fuel homogeneous charge compression ignition and single-fuel spark ignition, strategies representative of autoignition and flame propagation

  7. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Standard No. 304; Compressed natural gas fuel... natural gas fuel container integrity. S1. Scope. This standard specifies requirements for the integrity of compressed natural gas (CNG), motor vehicle fuel containers. S2. Purpose. The purpose of this standard is...

  8. Universal natural gas fuel skids for turbine control

    SciTech Connect

    Sohne, E.R.

    1997-01-01

    Whittaker Industrial Product`s universal natural gas test cell fuel skid is designed to provide maximum capability in one package. This product incorporates an all-electric fuel metering valve, which utilizes a linear motion to provide accuracy and repeatability. The skid was specifically designed for test cell applications and is capable of testing all LM-Series GE aeroderivative gas turbine engines. Included are base applications with SAC (single annular combustor) or DLE (dry low emissions) within the same fuel skid. The DLE system incorporates a 76 mm (3 inch) diameter valve system design, to give the best dynamic response characteristics. Variations of this design have been developed to fit a number of other turbine manufacturers` applications that are currently in service. Commonality and multiple capabilities are designed to reduce the customer cost, while providing required performance. All designs are NACE compliant. In addition, the valving assemblies have been approved for CENELEC, Zone 1, Group 11B, CSA-Class 1, Div. 1, Groups C&D and CE approved. Production versions or variations of the fuel skid are being used in both power generation and pipeline compression applications. The markets served are both national and international in nature. Specific applications include liquid condensate pipeline processing stations in Norway, to pipeline compression in Spain and Italy, as well as power generation in Mexico. 4 figs.

  9. Natural-gas-fueled molten carbonate fuel cell power plant development

    SciTech Connect

    Reiser, C.A. )

    1990-12-01

    The high temperature molten carbonate fuel cell (MCFC) operating on natural gas fuel offers an exceptional opportunity for providing economically competitive, high efficiency, low emissions power generators for utilities and industrial and commercial cogenerators. The primary goal of this project is to establish a path to develop competitive natural gas fueled MCFC products with goals of less than $1000 per kW and 6000 Btu/kWhr heat rate (based on higher heating value). A coal fueled MCFC system study funded by DOE under contract AC21-MC23270 was used as a basis to define natural gas fuel products with a high degree of commonality with the coal gas systems. In this way, the natural gas systems could be derived from the DOE coal-fueled system with a minimum of non-recurring cost. The effort was carried out in three technical tasks. Task 1, Conceptual System Design Studies -- provides a conceptual design definition of a multimegawatt power plant system adapted from DOE coal-gas/natural gas design data and provides a preliminary design definition of a truck and/or rail transportable, megawatt scale power plant derived from a DOE coal-gas/natural gas power unit; Task 2, Integrated System Test Design -- provides a preliminary design of a kW-scale integrated system to resolve critical component and system integration issues specific to the natural gas products defined in Task 1; and Task 3, Critical Element Evaluation -- provides the analytical and experimental assessments of the critical non-stack components identified in Tasks 1 and 2. 32 figs., 22 tabs.

  10. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    PubMed

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-01

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process. PMID:26010031

  11. Effects of fuel nozzle design on performance of an experimental annular combustor using natural gas fuel

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Schultz, D. F.

    1972-01-01

    Tests of various fuel nozzles were conducted with natural gas fuel in a full-annulus combustor. The nozzles were designed to provide either axial, angled, or radial fuel injection. Each fuel nozzle was evaluated by measuring combustion efficiency at relatively severe combustor operating conditions. Combustor blowout and altitude ignition tests were also used to evaluate nozzle designs. Results indicate that angled injection gave higher combustion efficiency, less tendency toward combustion instability, and altitude relight characteristics equal to or superior to those of the other fuel nozzles that were tested.

  12. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    PubMed

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles. PMID:26757000

  13. Commercial ballard PEM fuel cell natural gas power plant development

    SciTech Connect

    Watkins, D.S.; Dunnison, D.; Cohen, R.

    1996-12-31

    The electric utility industry is in a period of rapid change. Deregulation, wholesale and retail wheeling, and corporate restructuring are forcing utilities to adopt new techniques for conducting their business. The advent of a more customer oriented service business with tailored solutions addressing such needs as power quality is a certain product of the deregulation of the electric utility industry. Distributed and dispersed power are fundamental requirements for such tailored solutions. Because of their modularity, efficiency and environmental benefits, fuel cells are a favored solution to implement distributed and dispersed power concepts. Ballard Power Systems has been working to develop and commercialize Proton Exchange Membrane (PEM) fuel cell power plants for stationary power markets. PEM`s capabilities of flexible operation and multiple market platforms bodes well for success in the stationary power market. Ballard`s stationary commercialization program is now in its second phase. The construction and successful operation of a 10 kW natural gas fueled, proof-of-concept power plant marked the completion of phase one. In the second phase, we are developing a 250 kW market entry power plant. This paper discusses Ballard`s power plant development plan philosophy, the benefits from this approach, and our current status.

  14. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... compressed natural gas vehicles. 571.303 Section 571.303 Transportation Other Regulations Relating to... system integrity of compressed natural gas vehicles. S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG...

  15. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... compressed natural gas vehicles. 571.303 Section 571.303 Transportation Other Regulations Relating to... system integrity of compressed natural gas vehicles. S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG...

  16. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... compressed natural gas vehicles. 571.303 Section 571.303 Transportation Other Regulations Relating to... system integrity of compressed natural gas vehicles. S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG...

  17. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  18. [Fuel substitution of vehicles by natural gas: Summaries of four final technical reports

    SciTech Connect

    1996-05-01

    This report contains summary information on three meetings and highlights of a fourth meeting held by the Society of Automotive Engineers on natural gas fueled vehicles. The meetings covered the following: Natural gas engine and vehicle technology; Safety aspects of alternately fueled vehicles; Catalysts and emission control--Meeting the legislative standards; and LNG--Strengthening the links.

  19. Development of a Liquid to Compressed Natural Gas (LCNG) Fueling Station. Final Report

    SciTech Connect

    Moore, J. A.

    1999-06-30

    The program objective was the development of equipment and processes to produce compressed natural gas (CNG) from liquified natural gas (LNG) for heavy duty vehicular applications. The interest for this technology is a result of the increased use of alternative fuels for the reduction of emissions and dependency of foreign energy. Technology of the type developed under this program is critical for establishing natural gas as an economical alternative fuel.

  20. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    PubMed

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas). PMID:21416755

  1. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250...

  2. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250...

  3. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250...

  4. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250...

  5. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250...

  6. Roadmap for Development of Natural Gas Vehicle Fueling Infrastructructure and Analysis of Vehicular Natural Gas Consumption by Niche Sector

    SciTech Connect

    Stephen C. Yborra

    2007-04-30

    Vehicular natural gas consumption is on the rise, totaling nearly 200 million GGEs in 2005, despite declines in total NGV inventory in recent years. This may be attributed to greater deployment of higher fuel use medium- and heavy-duty NGVs as compared to the low fuel use of the natural gas-powered LDVs that exited the market through attrition, many of which were bi-fuel. Natural gas station counts are down to about 1100 from their peak of about 1300. Many of the stations that closed were under-utilized or not used at all while most new stations were developed with greater attention to critical business fundamentals such as site selection, projected customer counts, peak and off-peak fueling capacity needs and total station throughput. Essentially, the nation's NGV fueling infrastructure has been--and will continue--going through a 'market correction'. While current economic fundamentals have shortened payback and improved life-cycle savings for investment in NGVs and fueling infrastructure, a combination of grants and other financial incentives will still be needed to overcome general fleet market inertia to maintain status quo. Also imperative to the market's adoption of NGVs and other alternative fueled vehicle and fueling technologies is a clear statement of long-term federal government commitment to diversifying our nation's transportation fuel use portfolio and, more specifically, the role of natural gas in that policy. Based on the current NGV market there, and the continued promulgation of clean air and transportation policies, the Western Region is--and will continue to be--the dominant region for vehicular natural gas use and growth. In other regions, especially the Northeast, Mid-Atlantic states and Texas, increased awareness and attention to air quality and energy security concerns by the public and - more important, elected officials--are spurring policies and programs that facilitate deployment of NGVs and fueling infrastructure. Because of their high

  7. Effect of gas composition on octane number of natural gas fuels. Topical report, December 1991-March 1992

    SciTech Connect

    Kubesh, J.T.

    1992-05-01

    Variations in the composition of natural gas fuels are recognized to have a significant impact on the performance of internal combustion engines. In particular, the knock resistance of the fuel is governed by its gas composition. The octane number is a standard measure of the knock resistance of a fuel, and several gas blends were tested to determine their octane numbers. Octane number of natural gas fuels was found to be dependent on gas composition. Several correlations were found between gas composition and the octane number of a fuel, which allow prediction of the motor octane number if gas composition is known. In particular, a good correlation was found between the hydrogen-carbon ratio of the fuel and the octane number. Correlations were also found between measured motor octane numbers and measured methane numbers, as well as between motor octane numbers and predicted methane numbers.

  8. Fuel composition effects on natural gas vehicle emissions

    SciTech Connect

    Blazek, C.F.; Grimes, J.; Freeman, P.; Bailey, B.K.; Colucci, C.

    1994-09-01

    Under a contract from DOE`s National Renewable Energy Laboratory (NREL) and support from Brooklyn Union Gas Company (BUG), Northern Illinois Gas Co., the Institute of Gas Technology (IGT) evaluated four state-of-the-art, electronic, closed-loop natural gas vehicle (NGV) conversion systems. The systems included an Impco electronic closed-loop system, Mogas electronic closed-loop system, Stewart and Stevenson`s GFI system, and an Automotive Natural Gas Inc. (ANGI) Level 1 electronic closed-loop conversion system. Conversion system evaluation included emission testing per 40 CFR Part 86, and driveability. All testing was performed with a 1993 Chevy Lumina equipped with a 3.1 liter MPFI V6 engine. Each system was emission tested using three different certified compositions of natural gas, representing the 10th, mean and 90th percentile gas compositions distributed in the United States. Emission testing on indolene was performed prior to conversion kit testing to establish a base emission value. Indolene testing was also performed at the end of the project when the vehicle was converted to its OEM configuration to ensure that the vehicle`s emissions were not altered during testing. The results of these tests will be presented.

  9. Performance assessment of natural gas and biogas fueled molten carbonate fuel cells in carbon capture configuration

    NASA Astrophysics Data System (ADS)

    Barelli, Linda; Bidini, Gianni; Campanari, Stefano; Discepoli, Gabriele; Spinelli, Maurizio

    2016-07-01

    The ability of MCFCs as carbon dioxide concentrator is an alternative solution among the carbon capture and storage (CCS) technologies to reduce the CO2 emission of an existing plant, providing energy instead of implying penalties. Moreover, the fuel flexibility exhibited by MCFCs increases the interest on such a solution. This paper provides the performance characterization of MCFCs operated in CCS configuration and fed with either natural gas or biogas. Experimental results are referred to a base CCS unit constituted by a MCFC stack fed from a reformer and integrated with an oxycombustor. A comparative analysis is carried out to evaluate the effect of fuel composition on energy efficiency and CO2 capture performance. A higher CO2 removal ability is revealed for the natural feeding case, bringing to a significant reduction in MCFC total area (-11.5%) and to an increase in produced net power (+13%). Moreover, the separated CO2 results in 89% (natural gas) and 86.5% (biogas) of the CO2 globally delivered by the CCS base unit. Further investigation will be carried out to provide a comprehensive assessment of the different solutions eco-efficiency considering also the biogas source and availability.

  10. Comparison of combustion characteristics of ASTM A-1, propane, and natural-gas fuels in an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.

    1973-01-01

    The performance of an annular turbojet combustor using natural-gas fuel is compared with that obtained using ASTM A-1 and propane fuels. Propane gas was used to simulate operation with vaporized kerosene fuels. The results obtained at severe operating conditions and altitude relight conditions show that natural gas is inferior to both ASTM A-1 and propane fuels. Combustion efficiencies were significantly lower and combustor pressures for relight were higher with natural-gas fuel than with the other fuels. The inferior performance of natural gas is shown to be caused by the chemical stability of the methane molecule.

  11. 40 CFR 600.306-12 - Fuel economy label-special requirements for compressed natural gas vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for compressed natural gas vehicles. 600.306-12 Section 600.306-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF... natural gas vehicles. Fuel economy labels for dedicated natural gas vehicles must meet the...

  12. 40 CFR 600.306-12 - Fuel economy label-special requirements for compressed natural gas vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for compressed natural gas vehicles. 600.306-12 Section 600.306-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF... natural gas vehicles. Fuel economy labels for dedicated natural gas vehicles must meet the...

  13. 40 CFR 600.306-12 - Fuel economy label-special requirements for compressed natural gas vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for compressed natural gas vehicles. 600.306-12 Section 600.306-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF... natural gas vehicles. Fuel economy labels for dedicated natural gas vehicles must meet the...

  14. Intermediate-sized natural gas fueled carbonate fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Sudhoff, Frederick A.; Fleming, Donald K.

    1994-04-01

    This executive summary of the report describes the accomplishments of the joint US Department of Energy's (DOE) Morgantown Energy Technology Center (METC) and M-C POWER Corporation's Cooperative Research and Development Agreement (CRADA) No. 93-013. This study addresses the intermediate power plant size between 2 megawatt (MW) and 200 MW. A 25 MW natural-gas, fueled-carbonate fuel cell power plant was chosen for this purpose. In keeping with recent designs, the fuel cell will operate under approximately three atmospheres of pressure. An expander/alternator is utilized to expand exhaust gas to atmospheric conditions and generate additional power. A steam-bottoming cycle is not included in this study because it is not believed to be cost effective for this system size. This study also addresses the simplicity and accuracy of a spreadsheet-based simulation with that of a full Advanced System for Process Engineering (ASPEN) simulation. The personal computer can fully utilize the simple spreadsheet model simulation. This model can be made available to all users and is particularly advantageous to the small business user.

  15. Development of a digital control unit to displace diesel fuel with natural gas

    SciTech Connect

    Talbott, A.D. |

    1997-03-01

    Full Circle Engineering (FCE), supported by the Colorado School of Mines (CSM), proposed a Small Business CRADA with Allied Signal Federal Manufacturing & Technologies/Kansas City (FM&T/KC) for the development of a fumigation digital control unit (DCU) that would allow the displacement of diesel fuel with natural gas. Nationwide, diesel trucks and buses consumed over 21 billion gallons of fuel in 1992. The development of systems that allow the use of alternative fuels, natural gas in particular, for transportation would significantly reduce emissions and pollutants. It would also help implement DOE`s mandate for energy security (use of domestic fuels) required by the Energy Policy Act (EPACT).

  16. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    SciTech Connect

    1995-06-01

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  17. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    SciTech Connect

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retail prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  18. Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region

    SciTech Connect

    Poyer, D.A.; Teotia, A.P.S.

    1994-08-01

    The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

  19. Economic and environmental assessment of liquefied natural gas as a supplemental aircraft fuel

    NASA Astrophysics Data System (ADS)

    Withers, Mitch R.; Malina, Robert; Gilmore, Christopher K.; Gibbs, Jonathan M.; Trigg, Chris; Wolfe, Philip J.; Trivedi, Parthsarathi; Barrett, Steven R. H.

    2014-04-01

    In 2013, natural gas is 70-80% cheaper than jet fuel on an energy basis. As an alternative aviation fuel, natural gas may reduce operating costs. In this paper, we assess the use of liquefied natural gas (LNG) as a supplemental aircraft fuel in a military context, with detailed assessments of the Lockheed Martin C-130H and C-130J transport aircraft. We estimate the cost of retrofitting these aircraft to use LNG and the savings from reduced fuel expenses. We evaluate the societal impacts of LNG within a cost-benefit framework, taking into account resource consumption, human health impacts related to air quality, and climate damage. In order to compare alternative uses of natural gas in aviation, we include in our analysis Fischer-Tropsch (FT) jet fuel from natural gas as a drop-in alternative. Uncertainty analysis is performed with Monte Carlo simulations. We find that aircraft operators can save up to 14% on fuel expenses (retrofit costs included) by employing LNG retrofits, with a 95% confidence interval of 2-23%. Society can also benefit by 12% (3-20%) from LNG use as a result of improved surface air quality, lower resource consumption, and net climate neutrality. These results are highly dependent on fuel prices, the quantity and cost of the LNG retrofits, and the frequency and length of missions. FT jet fuel is not cost-competitive with conventional fuel and results in increased fuel expenses by 17%. FT fuel provides marginal societal benefits relative to jet fuel.

  20. Performance gains by using heated natural-gas fuel in an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    A full-scale annular turbojet combustor was tested with natural gas fuel heated from ambient temperature to 800 K (980 F). In all tests, heating the fuel improved combustion efficiency. Two sets of gaseous fuel nozzles were tested. Combustion instabilities occurred with one set of nozzles at two conditions: one where the efficiency approached 100 percent with the heated fuel; the other where the efficiency was very poor with the unheated fuel. The second set of nozzles exhibited no combustion instability. Altitude relight tests with the second set showed that relight was improved and was achievable at essentially the same condition as blowout when the fuel temperature was 800 K (980 F).

  1. The 1992 natural gas vehicle challenge: EPA emissions and fuel economy testing

    NASA Astrophysics Data System (ADS)

    Bruetsch, Robert I.; Reineman, Martin E.

    1992-06-01

    The report describes the results of a student alternative fuels engineering design competition called the 1992 Natural Gas Vehicle Challenge which was held April 22 through June 1, 1992. Students from eighteen universities in the United States and four universities in Canada competed. the objective of this competition for each participating team was to convert a gaseoline-fueled General Motors (GM) Sierra pickup truck to natural gas operation and complete with students from other universities in the areas of exhaust emissions, fuel economy, performance, and design. This report also includes the comparisons between the results of the student compressed natural gas pickup truck conversions and the test results of similar gasoline-powered trucks and a dedicated compressed natural gas truck provided by General Motors.

  2. Alternative fuel trucks case studies: Running refuse haulers on compressed natural gas

    SciTech Connect

    Norton, P.; Kelly, K.

    1996-07-01

    This document details the experience of New York City`s compressed natural gas refuse haulers. These 35 ton vehicles have engines that displace 10 liters and provide 240 horsepower. Fuel economy, range, cost, maintenance, repair issues, and emissions are discussed. Photographs and figures illustrate the attributes of these alternative fuel vehicles.

  3. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report

    SciTech Connect

    Sutton, W.H.

    1997-06-30

    This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

  4. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning natural gas

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    An annular gas turbine combustor was tested with heated natural gas fuel to determine the effect of increasing fuel temperature on the formation of oxides of nitrogen. Fuel temperatures ranged from ambient to 800 K (980 F). Combustor pressure was 6 atmospheres and the inlet air temperature ranged from 589 to 894 K (600 to 1150 F). The NOx emission index increased with fuel temperature at a rate of 4 to 9 percent per 100 K (180 F), depending on the inlet air temperature. The rate of increase in NOx was lowest at the highest inlet air temperature tested.

  5. Fuel gas conditioning process

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  6. Operational characteristics of thin film solid oxide fuel cells with ruthenium anode in natural gas

    NASA Astrophysics Data System (ADS)

    Takagi, Yuto; Kerman, Kian; Ko, Changhyun; Ramanathan, Shriram

    2013-12-01

    Direct utilization of hydrocarbons in low temperature solid oxide fuel cells is of growing interest in the landscape of alternative energy technologies. Here, we report on performance of self-supported micro-solid oxide fuel cells (μSOFCs) with ruthenium (Ru) nano-porous thin film anodes operating in natural gas and methane. The μSOFCs consist of 8 mol% yttria-stabilized zirconia thin film electrolytes, porous platinum cathodes and porous Ru anodes, and were tested with dry natural gas and methane as fuels and air as the oxidant. At 500 °C, comparable power densities of 410 mW cm-2 and 440 mW cm-2 were obtained with dry natural gas and methane, respectively. In weakly humidified natural gas, open circuit voltage of 0.95 V at 530 °C with peak power density of 800 mW cm-2 was realized. The μSOFC was continuously operated at constant voltage of 0.7 V with methane, where quasi-periodic oscillatory behavior of the performance was observed. Through post-operation XPS studies it was found that the oxidation state of Ru anode surfaces significantly differs depending on the fuel used, oxidation being enhanced with methane or natural gas. The nature of the oscillation is discussed based on the transition in surface oxygen coverage states and electro-catalytic activity of Ru anodes.

  7. Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems

    NASA Astrophysics Data System (ADS)

    Ally, Jamie; Pryor, Trevor

    The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

  8. A solid oxide fuel cell system fed with hydrogen sulfide and natural gas

    NASA Astrophysics Data System (ADS)

    Lu, Yixin; Schaefer, Laura

    Hydrogen sulfide (H 2S) occurs naturally in crude petroleum, natural gas, volcanic gases, hot springs, and some lakes. Hydrogen sulfide can also result as a by-product from industrial activities, such as food processing, coke ovens, paper mills, tanneries, and petroleum refineries. Sometimes, it is considered to be an industrial pollutant. However, hydrogen can be decomposed from H 2S and then used as fuel for a solid oxide fuel cell (SOFC). This paper presents an examination of a simple hydrogen sulfide and natural gas-fed solid oxide fuel cell system. The possibility of utilization of hydrogen sulfide as a feedstock in a solid oxide fuel cell is discussed. A system configuration of an SOFC combined with an external H 2S decomposition device is proposed, where a certain amount of natural gas is supplied to the SOFC. The exhaust fuel gas of the SOFC is after-burned with exhaust air from the SOFC, and the heat of the combustion gas is utilized in the decomposition of H 2S in a decomposition reactor (DR) to produce hydrogen to feed the SOFC. The products are electricity and industry-usable sulfur. Through a mass and energy balance, a preliminary thermodynamic analysis of this system is performed, and the system efficiency is calculated. Also in this paper, the challenges in creating the proposed configuration are discussed, and the direction of future work is presented.

  9. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    EPA Science Inventory

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  10. A spatially resolved fuel-based inventory of Utah and Colorado oil and natural gas emissions

    NASA Astrophysics Data System (ADS)

    Gorchov Negron, A.; McDonald, B. C.; De Gouw, J. A.; Frost, G. J.

    2015-12-01

    A fuel-based approach is presented for estimating emissions from US oil and natural gas production that utilizes state-level fuel surveys of oil and gas engine activity, well-level production data, and emission factors for oil and gas equipment. Emissions of carbon dioxide (CO2) and nitrogen oxides (NOx) are mapped on a 4 km x 4 km horizontal grid for 2013-14 in Utah and Colorado. Emission sources include combustion from exploration (e.g., drilling), production (e.g., heaters, dehydrators, and compressor engines), and natural gas processing plants, which comprise a large fraction of the local combustion activity in oil and gas basins. Fuel-based emission factors of NOx are from the U.S. Environmental Protection Agency, and applied to spatially-resolved maps of CO2 emissions. Preliminary NOx emissions from this study are estimated for the Uintah Basin, Utah, to be ~5300 metric tons of NO2-equivalent in 2013. Our result compares well with an observations-based top-down emissions estimate of NOx derived from a previous study, ~4200 metric tons of NO2-equivalent. By contrast, the 2011 National Emissions Inventory estimates oil and gas emissions of NOx to be ~3 times higher than our study in the Uintah Basin. We intend to expand our fuel-based approach to map combustion-related emissions in other U.S. oil and natural gas basins and compare with additional observational datasets.

  11. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e

  12. Biomass & Natural Gas Based Hydrogen Fuel For Gas Turbine (Power Generation)

    EPA Science Inventory

    Significant progress has been made by major power generation equipment manufacturers in the development of market applications for hydrogen fuel use in gas turbines in recent years. Development of a new application using gas turbines for significant reduction of power plant CO2 e...

  13. Alternate routes for the production of fuels from coal and natural gas

    SciTech Connect

    Gray, D.; Tomlinson, G.; ElSawy, A.

    1994-06-01

    Almost all transportation worldwide is powered by high energy-density liquid hydrocarbon fuels produced from crude oil. Transportation fuels currently use over 50 percent of total world petroleum demand of 66 million barrels per day. Prior MITRE studies indicate that crude oil supply will become severely limited after the year 2030 as increasing world energy demand, driven by population growth and economic development, depletes oil resources. If conventional liquid hydrocarbon fuels that can use existing production and distribution infrastructures are still needed for transportation in the future, then alternate sources of these fuels will have to be utilized. Two such sources are natural gas and coal. Natural gas reserves worldwide are expected to last well into the 21st century, and coal resources are enormous. This paper examines the technologies for producing environmentally superior liquid transportation fuels from coal and natural gas using modern conversion technologies. Estimates of the costs of fuels from these sources are given, and the potential environmental impacts of these fuels are examined.

  14. Dual-fueling of a prechamber diesel engine with natural gas

    SciTech Connect

    Song, S.; Hill, P.G.

    1985-10-01

    The feasibility of dual-fuel operation with natural gas in a prechamber diesel engine was studied with special emphasis on fuel consumption and cylinder pressure development. The effects of air restriction, pilot diesel flow rate, and injection timing were also investigated. Near full load the fuel energy consumption rate was close to that of straight diesel operation though at part load (in the absence of air restriction) the fuel energy consumption rate was relatively high. In the absence of injection timing adjustment the maximum power output of dual-fuel operation was severely limited by the maximum cylinder pressure. Retarding the injection timing is effective in reducing the maximum cylinder pressure to a safe level. The analysis of apparent energy release indicates the differences in combustion mechanism between auto-ignition of diesel fuel in straight diesel operation and propagation of flame fronts in dual-fuel operation.

  15. New-generation diesel fuel from coal, natural gas, and other carbonaceous feedstocks

    SciTech Connect

    Winslow, J.C.; Venkataraman, V.K.; Driscoll, D.J.; Nowak, M.; Srivastava, R.D.

    1999-07-01

    The U.S. economic security will continue to be vitally linked to an efficient transportation system of air, rail, and highway vehicles that depend on a continuous supply of liquid fuels at a reasonable price and with characteristics that can help vehicle manufacturers meet increasingly strict environmental regulations. This market offers an important opportunity to improve efficiency and lower emissions. One element of an overall strategy to address this energy security issue and help meet emissions requirements is to produce, via Fischer-Tropsch (F-T) and other synthesis-gas conversion technologies, premium transportation fuels from non-petroleum feedstocks, such as coal, natural gas, and biomass. Significant advances have been, and are continuing to be made, in F-T technology development to achieve the performance and cost targets necessary for commercial deployment. The key drivers, which form the basis for this paper, include capital cost reduction, efficiency improvements, energy optimization, and exploitation of novel, high-quality products generated by the F-T conversion process. The paper discusses the development of the slurry bubble column reactor (SBCR), a critical activity that has led to the successful demonstration of methanol production from coal-derived synthesis gas at Eastman Chemical Company's Kingsport, Tennessee, facilities. Research and development currently in place is building on this success in order to apply the SBCR technology to the production of other high value fuels and fuel additives. A concept for the efficient use of coal and natural gas to coproduce electric power and high quality liquid transportation fuels in one integrated facility has also been proposed. In addition, the development of novel ceramic membrane reactor systems for conversion of natural gas to synthesis gas will be discussed. This novel process holds the potential for reducing the cost of synthesis gas production from natural gas by 25% to 50% over current the

  16. Hybrid life-cycle assessment of natural gas based fuel chains for transportation.

    PubMed

    Strømman, Anders Hammer; Solli, Christian; Hertwich, Edgar G

    2006-04-15

    This research compares the use of natural gas, methanol, and hydrogen as transportation fuels. These three fuel chains start with the extraction and processing of natural gas in the Norwegian North Sea and end with final use in Central Europe. The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. The life cycle assessment is performed by combining a process based life-cycle inventory with economic input-output data. The analysis shows that the potential climate impacts are lowest for the hydrogen fuel scenario with CO2 deposition. The hydrogen fuel chain scenario has no significant environmental disadvantage compared to the other fuel chains. Detailed analysis shows that the construction of the car contributes significantly to most impact categories. Finally, it is shown how the application of a hybrid inventory model ensures a more complete inventory description compared to standard process-based life-cycle assessment. This is particularly significant for car construction which would have been significantly underestimated in this study using standard process life-cycle assessment alone. PMID:16683626

  17. LNG (liquefied natural gas) as a fuel and refrigerant for diesel powered shrimp boats

    SciTech Connect

    Acker, G. Jr.; Brett, C.E.; Schaetzle, W.J.; Song, Y.K.

    1988-01-01

    A 3406-B Caterpillar and a 4.236 Perkins have been converted from their standard diesel configuration to dual-fuel engines. These engines operate using an aspirated charge of natural gas and a pilot charge of diesel fuel. The pilot is injected for combustion initiation, performing the same task as a spark plug in a spark ignition engine. Natural gas supplies 80% of the total heat addition at full load for both engines. The diesel fuel provides ignition, performs the function of idling the engine, and acts as a coolant for the injector tips. The diesel pilot setting remains constant throughout the operating range and provides a regular repeatable idle for the engine during no-load operation. A shrimp boat is being used to evaluate the dual-fuel system. The vessel normally carries 16000 1 of diesel fuel giving it a trip length of 14-21 days. To operate on natural gas with similar trip length requires liquification and cryogenic storage at -163/sup 0/C. This type of storage provides the necessary energy density needed for on board fuel storage. A 22 m shrimp boat will carry approximately 17000 1 of LNG in insulated tanks. Urethane insulation is used as both an insulator against heat leak and as a partial tank support structure.

  18. Assessment of institutional barriers to the use of natural gas fuel in automotive vehicle fleets

    NASA Technical Reports Server (NTRS)

    Jablonski, J.; Lent, L.; Lawrence, M.; White, L.

    1983-01-01

    Institutional barriers to the use of natural gas as a fuel for motor vehicle fleets were identified. Recommendations for barrier removal were developed. Eight types of institutional barriers were assessed: (1) lack of a national standard for the safe design and certification of natural gas vehicles and refueling stations; (2) excessively conservative or misapplied state and local regulations, including bridge and tunnel restrictions, restrictions on types of vehicles that may be fueled by natural gas, zoning regulations that prohibit operation of refueling stations, parking restrictions, application of LPG standards to LNG vehicles, and unintentionally unsafe vehicle or refueling station requirements; (3) need for clarification of EPA's tampering enforcement policy; (4) the U.S. hydrocarbon standard; (5) uncertainty concerning state utility commission jurisdiction; (6) sale for resale prohibitions imposed by natural gas utility companies or state utility commissions; (7) uncertainty of the effects of conversions to natural gas on vehicle manufactures warranties; and (8) need for a natural gas to gasoline equivalent units conversion factor for use in calculation of state road use taxes.

  19. Internal reforming for natural gas fueled molten carbonate fuel cells. Final report 1 May 80-30 Jun 81

    SciTech Connect

    Baker, B.; Burns, D.; Lee, C.; Maru, H.; Patel, P.

    1981-12-01

    A natural gas fueled molten carbonate fuel cell (MCFC) is an attractive system for efficient electricity generation. The system yields maximum efficiency while operating on internal reforming mode. Among the various configurations evaluated for internal reforming MCFC, direct internal reforming appears to be most promising. Compared to the conventional baseline external reformer system, it can save as much as 20% natural gas at reduced capital and operating costs. The feasibility of internal reforming in MCFC has been verified through laboratory-scale (10 sq cm) cell tests followed by a successful scale-up to bench-scale (300 sq cm) cell. Bench-scale cells have been operated with direct methane feed up to 2000 hours. The results of system analysis and experimental work show that a successful development of the internal reforming MCFC will result in significant savings of natural gas and a cost effective electricity generation.

  20. Hazard analysis of compressed natural gas fueling systems and fueling procedures used at retail gasoline service stations. Final report

    SciTech Connect

    1995-04-28

    An evaluation of the hazards associated with operations of a typical compressed natural gas (CNG) fueling station is presented. The evaluation includes identification of a typical CNG fueling system; a comparison of the typical system with ANSI/NFPA (American National Standards Institute/National Fire Protection Association) Standard 52, Compressed Natural Gas (CNG) Vehicular Fuel System, requirements; a review of CNG industry safety experience as identified in current literature; hazard identification of potential internal (CNG system-specific causes) and external (interface of co-located causes) events leading to potential accidents; and an analysis of potential accident scenarios as determined from the hazard evaluation. The study considers CNG dispensing equipment and associated equipment, including the compressor station, storate vessels, and fill pressure sensing system.

  1. A compact and highly efficient natural gas fuel processor for 1-kW residential polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Doohwan; Lee, Hyun Chul; Lee, Kang Hee; Kim, Soonho

    A compact and highly efficient natural gas fuel processor for 1-kW residential polymer electrolyte membrane fuel cells (PEMFCs) has been developed at the Samsung Advanced Institute of Technology (SAIT). The fuel processor, referred to as SFP-2, consists of a natural gas reformer, a water-gas shift reactor, a heat-exchanger and a burner, in which the overall integrated volume including insulation is exceptionally small, namely, about 14 l. The SFP-2 produces hydrogen at 1000 l h -1 (STP) at full load with the carbon monoxide concentration in the process gas below 7000 ppmv (dry gas base). The maximum thermal efficiency is ∼78% (lower heating value) at full load and even ∼72% at 25% partial load. This fuel processor of small size with high thermal efficiency is one of the best such technologies for the above given H 2 throughputs. The time required for starting up the SFP-2 is within 20 min with the addition of external heating for the shift reactor. No additional medium, such as nitrogen, is required either for start-up or for shut down of the SFP-2, which is an advantage for application in residential PEMFC co-generations systems.

  2. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    SciTech Connect

    Brodrick, J.R. ); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. )

    1993-02-01

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils [number sign]2 and [number sign]6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

  3. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    SciTech Connect

    Brodrick, J.R.; Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A.

    1993-02-01

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort`s electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils {number_sign}2 and {number_sign}6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

  4. Adaptation of a commercially available 200 kW natural gas fuel cell power plant for operation on a hydrogen rich gas stream

    SciTech Connect

    Maston, V.A.

    1997-12-01

    International Fuel Cells (IFC) has designed a hydrogen fueled fuel cell power plant based on a modification of its standard natural gas fueled PC25{trademark} C fuel cell power plant. The natural gas fueled PC25 C is a 200 kW, fuel cell power plant that is commercially available. The program to accomplish the fuel change involved deleting the natural gas processing elements, designing a new fuel pretreatment subsystem, modifying the water and thermal management subsystem, developing a hydrogen burner to combust unconsumed hydrogen, and modifying the control system. Additionally, the required modifications to the manufacturing and assembly procedures necessary to allow the hydrogen fueled power plant to be manufactured in conjunction with the on-going production of the standard PC25 C power plants were identified. This work establishes the design and manufacturing plan for the 200 kW hydrogen fueled PC25 power plant.

  5. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    NASA Astrophysics Data System (ADS)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  6. Analysis of liquid natural gas as a truck fuel: a system dynamics approach

    SciTech Connect

    Bray, M.A.; Sebo, D.E.; Mason, T.L.; Mills, J.I.; Rice, R.E.

    1996-10-01

    The purpose of this analysis is to evaluate the potential for growth in use of liquid natural gas (LNG) fueled trucks. . A system dynamics model was constructed for the analysis and a variety of scenarios were investigated. The analysis considers the economics of LNG fuel in the context of the trucking industry to identify barriers to the increased use of LNG trucks and potential interventions or leverage points which may overcome these barriers. The study showed that today, LNG use in trucks is not yet economically viable. A large change in the savings from fuel cost or capital cost is needed for the technology to take off. Fleet owners have no way now to benefit from the environmental benefits of LNG fuel nor do they benefit from the clean burning nature of the fuel. Changes in the fuel cost differential between diesel and LNG are not a research issue. However, quantifying the improvements in reliability and wear from the use of clean fuel could support increased maintenance and warranty periods. Many people involved in the use of LNG for trucks believe that LNG has the potential to occupy a niche within the larger diesel truck business. But if LNG in trucks can become economic, the spread of fuel stations and technology improvements could lead to LNG trucks becoming the dominant technology. An assumption in our simulation work is that LNG trucks will be purchased when economically attractive. None of the simulation results show LNG becoming economic but then only to the level of a niche market.

  7. Economical production of transportation fuels from coal, natural gas, and other carbonaceous feedstocks

    SciTech Connect

    Srivastava, R.D.; McIlvried, H.G.; Winslow, J.C.; Venkataraman, V.K.; Driscoll, D.J.

    1998-12-31

    The Nation`s economy and security will continue to be vitally linked to an efficient transportation system of air, rail, and highway vehicles that depend on a continuous supply of liquid fuels at a reasonable price and with characteristics that can help the vehicle manufacturers meet increasingly strict environmental regulations. However, an analysis of US oil production and demand shows that, between now and 2015, a significant increase in imported oil will be needed to meet transportation fuel requirements. One element of an overall Department of Energy`s (DOE) strategy to address this energy security issue while helping meet emissions requirements is to produce premium transportation fuels from non-petroleum feedstocks, such as coal, natural gas, and biomass, via Fischer-Tropsch (F-T) and other synthesis gas conversion technologies.

  8. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    SciTech Connect

    1998-05-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through April 1998.

  9. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect

    1999-12-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through November 1999.

  10. Shock wave calibration of under-expanded natural gas fuel jets

    NASA Astrophysics Data System (ADS)

    White, T. R.; Milton, B. E.

    2008-10-01

    Natural gas, a fuel abundant in nature, cannot be used by itself in conventional diesel engines because of its low cetane number. However, it can be used as the primary fuel with ignition by a pilot diesel spray. This is called dual-fuelling. The gas may be introduced either into the inlet manifold or, preferably, directly into the cylinder where it is injected as a short duration, intermittent, sonic jet. For accurate delivery in the latter case, a constant flow-rate from the injector is required into the constantly varying pressure in the cylinder. Thus, a sonic (choked) jet is required which is generally highly under-expanded. Immediately at the nozzle exit, a shock structure develops which can provide essential information about the downstream flow. This shock structure, generally referred to as a “barrel” shock, provides a key to understanding the full injection process. It is examined both experimentally and numerically in this paper.

  11. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    SciTech Connect

    Huffman, Gerald

    2012-12-31

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation's urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  12. Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I

    SciTech Connect

    1997-12-01

    This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

  13. Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles

    SciTech Connect

    Willson, B.

    1992-09-01

    This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the ``best-case`` results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author`s experience with fuel delivery systems for light-duty vehicles.

  14. Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles

    SciTech Connect

    Willson, B. )

    1992-09-01

    This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the best-case'' results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author's experience with fuel delivery systems for light-duty vehicles.

  15. Effect of water injection on nitric oxide emissions of a gas turbine combustor burning natural gas fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.

  16. NUMERICAL SIMULATIONS OF THE EFFECTS OF CHANGING FUEL FOR TURBINES FIRED BY NATURAL GAS AND SYNGAS

    SciTech Connect

    Sabau, Adrian S; Wright, Ian G

    2007-01-01

    Gas turbines in integrated gasification combined cycle (IGCC) power plants burn a fuel gas (syngas) in which the proportions of hydrocarbons, H2, CO, water vapor, and minor impurity levels may vary significantly from those in natural gas, depending on the input feed to the gasifier and the gasification process. A data structure and computational methodology is presented for the numerical simulation of a turbine thermodynamic cycle for various fuel types, air/fuel ratios, and coolant flow rates. The approach used allowed efficient handling of turbine components and different variable constraints due to fuel changes. Examples are presented for a turbine with four stages and cooled blades. The blades were considered to be cooled in an open circuit, with air provided from appropriate compressor stages. Results are presented for the temperatures of the hot gas, alloy surface (coating-superalloy interface), and coolant, as well as for cooling flow rates. Based on the results of the numerical simulations, values were calculated for the fuel flow rates, airflow ratios, and coolant flow rates required to maintain the superalloy in the first stage blade at the desired temperature when the fuel was changed from natural gas (NG) to syngas (SG). One NG case was conducted to assess the effect of coolant pressure matching between the compressor extraction points and corresponding turbine injection points. It was found that pressure matching is a feature that must be considered for high combustion temperatures. The first series of SG simulations was conducted using the same inlet mass flow and pressure ratios as those for the NG case. The results showed that higher coolant flow rates and a larger number of cooled turbine rows were needed for the SG case. Thus, for this first case, the turbine size would be different for SG than for NG. In order to maintain the original turbine configuration (i.e., geometry, diameters, blade heights, angles, and cooling circuit characteristics) for

  17. Natural Gas

    NASA Astrophysics Data System (ADS)

    Maddox, Robert N.; Moshfeghian, Mahmood; Ldol, James D.; Johannes, Arland H.

    Natural gas is a naturally occurring mixture of simple hydrocarbons and nonhydrocarbons that exists as a gas at ordinary pressures and temperatures. In the raw state, as produced from the earth, natural gas consists principally of methane (CH4) and ethane (C2H4), with fractional amounts of propane (C3H8), butane (C4H10), and other hydrocarbons, pentane (C5H12) and heavier. Occasionally, small traces of light aromatic hydrocarbons such as benzene and toluene may also be present.

  18. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    SciTech Connect

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  19. Effect of laser pulse energy on the laser ignition of compressed natural gas fueled engine

    NASA Astrophysics Data System (ADS)

    Srivastava, Dhananjay Kumar; Wintner, Ernst; Agarwal, Avinash Kumar

    2014-05-01

    Laser pulses of few a nanoseconds' duration are focused by an appropriate converging lens system, leading to breakdown of the medium (combustible gases), resulting in the formation of intense plasma. Plasma thus induced can be used to initiate the combustion of combustible air-fuel mixtures in a spark ignition engine provided the energy of the plasma spark is high enough. Laser ignition has several advantages over the conventional spark ignition system, especially in case of lean air-fuel mixture. In this study, laser ignition of compressed natural gas was investigated in a constant volume combustion chamber (CVCC) as well as in a single-cylinder engine. Flame kernel visualizations for different pulse energy of natural gas-air mixtures were carried out in the CVCC. The images of the development of early flame kernel stages and its growth with time were recorded by shadowgraphy technique. The effect of laser pulse energy on the engine combustion, performance, and emissions was investigated using different air-fuel mixtures. Increased peak cylinder pressure, higher rate of heat release, faster combustion, and increased combustion stability were observed for higher laser pulse energies. The effect of laser pulse energy on the engine-out emissions was also investigated in this study.

  20. Meeting future exhaust emissions standards using natural gas as a vehicle fuel: Lessons learned from the natural gas vehicle challenge `92

    SciTech Connect

    Rimkus, W.A.; Larsen, R.P.

    1992-09-01

    The Natural Gas Vehicle Challenge `92, organized by Argonne National Laboratory and sponsored by the US Department of Energy, the Energy, Mines, and Resources - Canada, the Society of Automotive Engineers, and many others, resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck, donated by General Motors, teams of college and university student engineers strived to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student-modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors in achieving good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  1. Meeting future exhaust emissions standards using natural gas as a vehicle fuel: Lessons learned from the natural gas vehicle challenge '92

    SciTech Connect

    Rimkus, W.A.; Larsen, R.P.

    1992-01-01

    The Natural Gas Vehicle Challenge '92, organized by Argonne National Laboratory and sponsored by the US Department of Energy, the Energy, Mines, and Resources - Canada, the Society of Automotive Engineers, and many others, resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck, donated by General Motors, teams of college and university student engineers strived to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student-modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors in achieving good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  2. A planar anode-supported Solid Oxide Fuel Cell model with internal reforming of natural gas

    NASA Astrophysics Data System (ADS)

    Chinda, P.; Chanchaona, S.; Brault, P.; Wechsatol, W.

    2011-05-01

    Solid Oxide Fuel Cells (SOFCs) are of great interest due to their high energy efficiency, low emission level, and multiple fuel utilization. SOFC can operate with various kinds of fuels such as natural gas, carbon monoxide, methanol, ethanol, and hydrocarbon compounds, and they are becoming one of the main competitors among environmentally friendly energy sources for the future. In this study, a mathematical model of a co-flow planar anode-supported solid oxide fuel cell with internal reforming of natural gas has been developed. The model simultaneously solves mass, energy transport equations, and chemical as well as electrochemical reactions. The model can effectively predict the compound species distributions as well as the cell performance under specific operating conditions. The main result is a rather small temperature gradient obtained at 800 °C with S/C = 1 in classical operating conditions. The cell performance is reported for several operating temperatures and pressures. The cell performance is specified in terms of cell voltage and power density at any specific current density. The influence of electrode microstructure on cell performance was investigated. The simulation results show that the steady state performance is almost insensitive to microstructure of cells such as porosity and tortuosity unlike the operating pressure and temperature. However, for SOFC power output enhancement, the power output could be maximized by adjusting the pore size to an optimal value, similarly to porosity and tortuosity. At standard operating pressure (1 atm) and 800 °C with 48% fuel utilization, when an output cell voltage was 0.73 V, a current density of 0.38 A cm-2 with a power density of 0.28 W cm-2 was predicted. The accuracy of the model was validated by comparing with existing experimental results from the available literature.

  3. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    SciTech Connect

    Srinivasan, K. K.; Krishnan, S. R.

    2012-05-09

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas–air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed “relative combustion phasing”). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20° to 60°BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally

  4. Fault tree analysis of fire and explosion accidents for dual fuel (diesel/natural gas) ship engine rooms

    NASA Astrophysics Data System (ADS)

    Guan, Yifeng; Zhao, Jie; Shi, Tengfei; Zhu, Peipei

    2016-07-01

    In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis. The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events. According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.

  5. Potential for compressed natural gas vehicles in centrally-fueled automobile-, truck-, and bus-fleet applications

    SciTech Connect

    Samsa, M.E.

    1991-06-01

    Two prospective alternative fuel implementation scenarios were created to quantify the potential range of compressed natural gas use in fleet vehicles including fleet automobiles; light-, medium-, and heavy-duty fleet trucks; public transit buses; and school buses. The scenarios are based principally on the clean-fuel fleet vehicle provisions contained in the Clean Air Act Amendments of 1990, the California Low Emission Vehicle Regulations, and the assumed future capability of compressed natural gas to meet various levels of tailpipe emission standards. The potential for using compressed natural gas in fleet vehicle applications varies significantly between the scenarios primarily due to assumption about differences in affected vehicle classes, timing of the regulations, and emission levels. By 2010, the potential for compressed natural gas vehicle use ranges from less than 840 thousand to more than 1.3 million fleet vehicles of all types with corresponding gas demand ranging from 140 to 200 billion cubic feet per year.

  6. Natural gas as a natural' solution

    SciTech Connect

    McCormick, W.T. Jr.

    1991-05-15

    This article promotes natural gas use as a means to cut US dependence on imported oil by some 28 percent over the next ten years, while improving energy efficiency and solving a portion of the global warming and acid rain problems. Topics of discussion include fuel substitution, the Clean Air Act, natural gas capacity and distribution, and natural gas exploration.

  7. A comparison of emissions from vehicles fueled with diesel or compressed natural gas.

    PubMed

    Hesterberg, Thomas W; Lapin, Charles A; Bunn, William B

    2008-09-01

    A comprehensive comparison of emissions from vehicles fueled with diesel or compressed natural gas (CNG) was developed from 25 reports on transit buses, school buses, refuse trucks, and passenger cars. Emissions for most compounds were highest for untreated exhaust emissions and lowest for treated exhaust CNG buses without after-treatment had the highest emissions of carbon monoxide, hydrocarbons, nonmethane hydrocarbons (NMHC), volatile organic compounds (VOCs; e.g., benzene, butadiene, ethylene, etc.), and carbonyl compounds (e.g., formaldehyde, acetaldehyde, acrolein). Diesel buses without after-treatment had the highest emissions of particulate matter and polycyclic aromatic hydrocarbons (PAHs). Exhaust after-treatments reduced most emissions to similar levels in diesel and CNG buses. Nitrogen oxides (NO(x)) and carbon dioxide (CO2) emissions were similar for most vehicle types, fuels, and exhaust after-treatments with some exceptions. Diesel school buses had higher CO2 emissions than the CNG bus. CNG transit buses and passenger cars equipped with three-way catalysts had lower NO(x) emissions. Diesel buses equipped with traps had higher nitrogen dioxide emissions. Fuel economy was best in the diesel buses not equipped with exhaust after-treatment. PMID:18800512

  8. Comparison of emissions and efficiency of a turbocharged lean-burn natural gas and Hythane-fueled engine

    SciTech Connect

    Larsen, J.F.; Wallace, J.S.

    1997-01-01

    An experiment was conducted to evaluate the potential for reduced exhaust emissions and improved efficiency, by way of lean-burn engine fueling with hydrogen supplemented natural gas (Hythane). The emissions and efficiency of the Hythane fuel (15% hydrogen, 85% natural gas by volume), were compared to the emissions and efficiency of pure natural gas using a turbocharged, spark ignition, 3.1 L, V-6 engine. The feasibility of heavy duty engine fueling with Hythane was assessed through testing conducted at engine speed and load combinations typical of heavy-duty engine operation. Comparison of the efficiency and emissions at MBT spark timing revealed that Hythane fueling of the test engine resulted in consistently lower brake specific energy consumption and emissions of total hydrocarbons (THC), carbon monoxide (CO), and carbon dioxide (CO{sub 2}), at a given equivalence ratio. There was no clear trend with respect to MBT oxides of nitrogen (NO{sub x}) emissions. It was also discovered that an improved NO{sub x}-THC tradeoff resulted when Hythane was used to fuel the test engine. Consequently, Hythane engine operating parameters can be adjusted to achieve a concurrent reduction in NO{sub x} and THC emissions relative to natural gas fueling.

  9. EVALUATION OF THE ACCEPTABILITY OF NATURAL GAS AS A MITIGATING FUEL FOR UTILITY COMBUSTION SOURCES

    EPA Science Inventory

    The paper gives preliminary findings of a joint EPA/Gas Research Institute study of methane (CH4) loss from the U.S. natural gas industry. he study, not scheduled for completion until 1992, is part of an effort to resolve the issue of CN4 emissions from natural gas production and...

  10. BIOMASS AND NATURAL GAS AS CO-FEEDSTOCKS FOR PRODUCTION OF FUEL FOR FUEL-CELL VEHICLES

    EPA Science Inventory

    The article gives results of an examination of prospects for utilizing renewable energy crops as a source of liquid fuel to mitigate greenhouse gas emissions from mobile sources and reduce dependence on imported petroleum. Fuel cells would provide an optimum vehicle technology fo...

  11. World Natural Gas Model

    Energy Science and Technology Software Center (ESTSC)

    1994-12-01

    RAMSGAS, the Research and Development Analysis Modeling System World Natural Gas Model, was developed to support planning of unconventional gaseoues fuels research and development. The model is a scenario analysis tool that can simulate the penetration of unconventional gas into world markets for oil and gas. Given a set of parameter values, the model estimates the natural gas supply and demand for the world for the period from 1980 to 2030. RAMSGAS is based onmore » a supply/demand framwork and also accounts for the non-renewable nature of gas resources. The model has three fundamental components: a demand module, a wellhead production cost module, and a supply/demand interface module. The demand for gas is a product of total demand for oil and gas in each of 9 demand regions and the gas share. Demand for oil and gas is forecast from the base year of 1980 through 2030 for each demand region, based on energy growth rates and price-induced conservation. For each of 11 conventional and 19 unconventional gas supply regions, wellhead production costs are calculated. To these are added transportation and distribution costs estimates associated with moving gas from the supply region to each of the demand regions and any economic rents. Based on a weighted average of these costs and the world price of oil, fuel shares for gas and oil are computed for each demand region. The gas demand is the gas fuel share multiplied by the total demand for oil plus gas. This demand is then met from the available supply regions in inverse proportion to the cost of gas from each region. The user has almost complete control over the cost estimates for each unconventional gas source in each year and thus can compare contributions from unconventional resources under different cost/price/demand scenarios.« less

  12. Method of generating hydrocarbon reagents from diesel, natural gas and other logistical fuels

    DOEpatents

    Herling, Darrell R.; Aardahl, Chris L.; Rozmiarek, Robert T.; Rappe, Kenneth G.; Wang, Yong; Holladay, Jamelyn D.

    2010-06-29

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  13. Method of Generating Hydrocarbon Reagents from Diesel, Natural Gas and Other Logistical Fuels

    DOEpatents

    Herling, Darrell R [Richland, WA; Aardahl, Chris L [Richland, WA; Rozmiarek, Robert T [Middleton, WI; Rappe, Kenneth G [Richland, WA; Wang, Yong [Richland, WA; Holladay, Jamelyn D [Kennewick, WA

    2008-10-14

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  14. Competitiveness of small power plants using ambient pressure, air-blown gasifiers. Final report. [Seven 50 MW designs using fuel gas, fuel oil, natural gas and coal

    SciTech Connect

    Boulay, R.B.; Chen, H.T.; Harvey, L.E.; Losovsky, M.L.

    1986-02-01

    Small power plants have become more attractive to utilities recently for a variety of reasons, including the desire to minimize new plant investment and to tailor increases in generation base to smaller annual load growths. The study presented herein is an analysis and comparison of seven different 50 MW commercially available power plants designs, including four utilizing ambient pressure, air-blown, fixed-bed coal gasifiers for fuel supply. Plant designs, capital costs, and busbar electricity costs for each plant are presented. The results of the study indicate that nominal 50 MW coal gasification based power plants, when using commercially available, ambient pressure, air-blown, fixed-bed gasifiers, are not competitive with conventional coal-fired steam plants or combined cycle plants fueled with fuel oil or natural gas. Capital costs, heat rates, and operating costs are higher for the coal gasification based plants. This leads to costs-of-electricity for gasification based plants that range from 18 to 59% higher than costs of electricity produced in conventional plants. The two major influences leading to high costs of the gasification based plants are the small size of a gasification train (about 5 MW) and the need to compress the ambient pressure gas to required combustion pressure. 47 figs., 89 tabs.

  15. Low temperature combustion using nitrogen enrichment to mitigate NOx from large bore natural gas fueled engines.

    SciTech Connect

    Biruduganti, M.; Gupta, S.; Sekar, R.; Energy Systems

    2010-01-01

    Low temperature combustion is identified as one of the pathways to meet the mandatory ultra low NO{sub x} emissions levels set by the regulatory agencies. Exhaust gas recirculation (EGR) is a well known technique to realize low NO{sub x} emissions. However, EGR has many built-in adverse ramifications that negate its advantages in the long term. This paper discusses nitrogen enrichment of intake air using air separation membranes as a better alternative to the mature EGR technique. This investigation was undertaken to determine the maximum acceptable level of nitrogen enrichment of air for a single-cylinder spark-ignited natural gas engine. NO{sub x} reduction as high as 70% was realized with a modest 2% nitrogen enrichment while maintaining power density and simultaneously improving fuel conversion efficiency (FCE). Any enrichment beyond this level degraded engine performance in terms of power density, FCE, and unburned hydrocarbon emissions. The effect of ignition timing was also studied with and without N{sub 2} enrichment. Finally, lean burn versus stoichiometric operation utilizing nitrogen enrichment was compared. Analysis showed that lean burn operation along with nitrogen enrichment is one of the effective pathways for realizing better FCE and lower NO{sub x} emissions.

  16. Natural gas marketing and transportation

    SciTech Connect

    Not Available

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners.

  17. Development of a dry low-NOx gas turbine combustor for a natural-gas fueled 2MW co-generation system

    SciTech Connect

    Mori, Masaaki; Sato, Hiroshi

    1998-07-01

    A dry low-NOx gas turbine combustor has been developed for natural-gas fueled co-generation systems in the power range of 1--4MW. The combustor. called the Double Swirler Combustor, uses the lean premixed combustion to reduce NOx emission. The combustor is characterized by two staged lean premixed combustion with two coaxial annular burners and a simple fuel control system without the complex variable geometry. Substantially low NOx level has been achieved to meet the strict NOx regulation to co-generation systems in Japan. High combustion efficiency has been obtained for a wide operating range. In 1994, Tokyo Gas and Ishikawajima-Harima Heavy Industries initiated a collaborative program to develop a natural-gas fueled low NOx gas turbine engine for new 2MW class co-generation system, named IM270. The Double Swirler Combustor, originally developed by Tokyo Gas, was introduced into the natural gas fueled version of the IM270. Engine test of the first production unit was successfully conducted to confirm substantially low NOx level of less than 15 ppm (O{sub 2} = 16%) with the output power of more than 2MW. Test for the durability and the reliability of the system is being conducted at Tokyo Gas Negishi LNG Terminal in Kanagawa, Japan and successful results have been so far obtained.

  18. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    SciTech Connect

    Moses, L. Ng; Chien-Liang Lin; Ya-Tang Cheng

    1996-12-31

    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  19. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    SciTech Connect

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  20. Methyl chloride via oxyhydrochlorination of methane: A building block for chemicals and fuels from natural gas. Environmental assessment

    SciTech Connect

    1996-09-01

    DOE`s natural gas mission, in partnership with its stakeholders, is to undertake and promote activities to maximize the Nation`s ability to supply, transport, and use natural gas to encourage economic growth, enhance energy interests security, and improve the environment. In implementing this mission, DOE has been involved in promoting domestic natural gas as a clean, abundant, and reliable source of energy. In particular, DOE is interested in technologies capable of converting natural gas to other valuable resources, such as transportation fuels, hydrogen, and premium chemicals. The purpose of the proposed action is to further examine the potential of one such technology for natural gas conversion. Over the past five years, DOE`s Pittsburgh Energy Technology Center has supported a research program to determine the feasibility of producing methyl chloride (CH{sub 3}Cl), a key ingredient used in the silicone industry, directly from methane (the primary component of natural gas) via an oxyhydrochlorination (OHC) process. As a result of this research program the OHC process is now ready for further development. The proposed action would advance the OHC natural gas conversion technology to an integrated engineering-scale process at the Dow Corning plant in Carrollton, Kentucky.

  1. Bounding the climate viability of natural gas as a bridge fuel to displace coal

    NASA Astrophysics Data System (ADS)

    Hausfather, Z.

    2015-12-01

    Natural gas has significant potential carbon benefits over coal when used for electricity generation, but these benefits can be offset by emissions of fugitive methane or delays in the adoption of near-zero carbon technologies. We analyze the time-evolution of radiative forcing from both natural gas and coal-based electricity generation by calculating average radiative forcing over an interval of time from greenhouse gas emissions under a range of assumptions for fugitive methane leakage, electricity generation efficiency, and delays in the adoption of near-zero carbon technologies. We find that leakage rates of between 5.2% and 9.9% are required for natural gas to result in greater mean forcing than coal over the next 100 years. We show that natural gas infrastructure with modest leakage could remain in place for 1.5-2.4 times the time interval that coal generation would have persisted prior to replacement with near-zero carbon technologies before the climate benefits of replacing coal with natural gas are negated. Natural gas can serve a viable bridge away from coal-based generation if avoiding longer-term climate impacts is prioritized, fugitive methane emissions are minimized, and the large-scale transition to near-zero carbon alternatives is unlikely to happen in the near-term.

  2. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    SciTech Connect

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  3. Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas

    SciTech Connect

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2008-10-15

    Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

  4. Preliminary Design Study of Medium Sized Gas Cooled Fast Reactor with Natural Uranium as Fuel Cycle Input

    NASA Astrophysics Data System (ADS)

    Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.

    2010-06-01

    In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.

  5. Preliminary Design Study of Medium Sized Gas Cooled Fast Reactor with Natural Uranium as Fuel Cycle Input

    SciTech Connect

    Meriyanti; Su'ud, Zaki; Rijal, K.; Zuhair; Ferhat, A.; Sekimoto, H.

    2010-06-22

    In this study a feasibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850 deg. C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticality was obtained for this reactor.

  6. Accounting for fuel price risk when comparing renewable togas-fired generation: the role of forward natural gas prices

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2004-07-17

    Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then--contrary to common practice--any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000-2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation.

  7. Climate impacts of air quality policy: switching to a natural gas-fueled public transportation system in New Delhi.

    PubMed

    Reynolds, Conor C O; Kandlikar, Milind

    2008-08-15

    Between 2001 and 2003, public transport vehicles in New Delhi were required to switch their fuel to natural gas in an attemptto reduce their air pollution impacts. This study examines the climatic impacts of New Delhi's fuel switching policy, and outlines implications for such efforts in rapidly industrializing countries. Natural gas is mostly composed of methane, an important greenhouse gas. Emitted aerosols (black carbon, particulate organic carbon, and sulfate) also cause radiative forcing. We find that methane and black carbon emissions are critical contributors to the change in carbon dioxide equivalent [CO2(e)] emissions. In New Delhi, the switch to natural gas results in a 30% increase in CO2(e) when the impact of aerosols is not considered. However, when aerosol emissions are taken into account in our model, the net effect of the switch is estimated to be a 10% reduction in CO2(e), and there may be as much as a 30% reduction in CO2(e). There is significant potential for emissions reductions through the United Nations Framework Convention on Climate Change (UNFCCC) Clean Development Mechanism for such fuel switching projects. PMID:18767636

  8. Combustion Characteristics and Performance of Low-Swirl Injectors with Natural Gas and Alternative Fuels At Elevated Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Beerer, David Joseph

    Stationary power-generating gas turbines in the United States have historically been fueled with natural gas, but due to its increasing price and the need to reduce carbon emissions, interest in alternative fuels is increasing. In order to effectively operate engines with these fuels their combustion characteristics need be well understood, especially at elevated pressures and temperatures. In this dissertation, the performance of blends of natural gas / methane with hydrogen and carbon dioxide, to simulate syngas and biogas, are evaluated in a model low-swirl stabilized combustor inside an optically accessible high-pressure vessel. The flashback and lean blow out limits, along with pollutant emissions, flow field, and turbulent displacement flame speeds, are measured as a function of fuel composition, pressure, inlet temperature, firing temperature, and flow rate in the range from 1 to 8 atm, 294 to 600K, 1350 to 1950K, and 20 to 60 m/s, respectively. These properties are quantified as a function of the inlet parameters. The lean blow-out limits are independent of pressure and inlet temperature but are weakly dependent on velocity. NOX emissions for both fuels were found to be exponentially dependent upon firing temperature, but emissions for the high-hydrogen flames were consistently higher than those of natural gas flames. The flashback limits for a 90%/10% (by volume) hydrogen/methane mixture increase with velocity and inlet temperature, but decrease with pressure. Correspondingly, the flame position progresses toward the combustor nozzle with increasing pressure and flame temperature, but away with increasing inlet temperature and velocity. Flashback occurred when the leading edge of the flame entered the nozzle. Local displacement turbulent flame speeds scale linearly with the turbulent fluctuating velocities, u', at the leading edge of the flame. Turbulent flame speeds for high-hydrogen fuels are twice that of natural gas for the same inlet conditions. The

  9. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    SciTech Connect

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  10. Construction and start-up of a 250 kW natural gas fueled MCFC demonstration power plant

    SciTech Connect

    Figueroa, R.A.; Carter, J.; Rivera, R.; Otahal, J.

    1996-12-31

    San Diego Gas & Electric (SDG&E) is participating with M-C Power in the development and commercialization program of their internally manifolded heat exchanger (IMHEX{reg_sign}) carbonate fuel cell technology. Development of the IMHEX technology base on the UNOCAL test facility resulted in the demonstration of a 250 kW thermally integrated power plant located at the Naval Air Station at Miramar, California. The members of the commercialization team lead by M-C Power (MCP) include Bechtel Corporation, Stewart & Stevenson Services, Inc., and Ishikawajima-Harima Heavy Industries (IHI). MCP produced the fuel cell stack, Bechtel was responsible for the process engineering including the control system, Stewart & Stevenson was responsible for packaging the process equipment in a skid (pumps, desulfurizer, gas heater, turbo, heat exchanger and stem generator), IHI produced a compact flat plate catalytic reformer operating on natural gas, and SDG&E assumed responsibility for plant construction, start-up and operation of the plant.

  11. Geopolitics of natural gas

    SciTech Connect

    Not Available

    1983-11-09

    With almost as many vital economic interests as there were attendees, two natural gas international conferences were held in North America during September and October, to share experience and forecasts. On September 26, the Canadian Energy Research Institute (CERI) and the Calgary Chamber of Commerce sponsored the International Gas Markets Conference and drew 400 persons. And on October 5-6, at the University of Colorado at Boulder, USA, the International Research Center for Energy and Economic Development (ICEED) held its Tenth International Energy Conference on Economic and Political Issues of Natural Gas in International Trade, drawing some 200 experts. The latter seminar was preceded by a two-day seminar on Asian Energy Supplies and Requirements, which also featured natural gas in many of its presentations. To provide an overview of some of these pressing questions, Energy Detente reports on these two comprehensive seminars on natural gas. This issue also presents the fuel price/tax series and the principal industrial fuel prices for the Eastern Hemisphere for November 1983.

  12. Sensitivity of natural gas HCCI combustion to fuel and operating parameters using detailed kinetic modeling

    SciTech Connect

    Aceves, S; Dibble, R; Flowers, D; Smith, J R; Westbrook, C K

    1999-07-19

    This paper uses the HCT (Hydrodynamics, Chemistry and Transport) chemical kinetics code to analyze natural gas HCCI combustion in an engine. The HCT code has been modified to better represent the conditions existing inside an engine, including a wall heat transfer correlation. Combustion control and low power output per displacement remain as two of the biggest challenges to obtaining satisfactory performance out of an HCCI engine, and these are addressed in this paper. The paper considers the effect of natural gas composition on HCCI combustion, and then explores three control strategies for HCCI engines: DME (dimethyl ether) addition, intake heating and hot EGR addition. The results show that HCCI combustion is sensitive to natural gas composition, and an active control may be required to compensate for possible changes in composition. The three control strategies being considered have a significant effect in changing the combustion parameters for the engine, and should be able to control HCCI combustion.

  13. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions

  14. Fuel gas from biodigestion

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. C.; Wolverton, B. C.

    1979-01-01

    Biodigestion apparatus produces fuel gas (primarily methane) for domestic consumption, by anaerobic bacterial digestion of organic matter such as aquatic vegetation. System includes 3,786-1 cylindrical container, mechanical agitator, and simple safe gas collector for short term storage.

  15. Environmental benefits of replacing fuel oil by natural gas in the metropolitan region of Sao Paulo, Brazil

    SciTech Connect

    Kondo, S.; Assuncao, J.V. de

    1998-12-31

    The Metropolitan Region of Sao Paulo (Brazil) has a population 16.322 million people (1995 estimate) living in an area of 8,051 km2 with most of them concentrated in the city of Sao Paulo with 9.8 million people and 4.6 million cars. Although with an air quality better than some other Latin American megacities such as Mexico and Santiago do Chile, the air quality still exceeds the national air quality standards. In 2/17/1993 Brazilian Petroleum Company (PETROBRAS) and the Bolivian Petroleum Company (Yacimientos Petroliferos Fiscales Bolivianos -- YPFB) signed an agreement to bring natural gas from Bolivia to the south and southeast of Brazil. The end of the construction of the gas pipeline will be in 1999, and it will deliver 4 million Nm3/day of natural gas to COMGAS Sao Paulo State Gas Company. This amount will increase to 8.1 million Nm3/day by the year 2006, that will be sufficient to supply the Sao Paulo Metropolitan Region market need at that time. In this study an estimate of the influence in the air quality was performed supposing the substitution of fuel oil by natural gas in industry and also in diesel buses. The results showed that there will be benefits in relation to sulfur dioxide, PM10, greenhouse gases and trace elements, and negligible effects in relation to NO{sub x}, NMTOC and carbon monoxide.

  16. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    NASA Astrophysics Data System (ADS)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen

  17. Magnesium carbide synthesis from methane and magnesium oxide - a potential methodology for natural gas conversion to premium fuels and chemicals

    SciTech Connect

    Diaz, A.F.; Modestino, A.J.; Howard, J.B.

    1995-12-31

    Diversification of the raw materials base for manufacturing premium fuels and chemicals offers U.S. and international consumers economic and strategic benefits. Extensive reserves of natural gas in the world provide a valuable source of clean gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion processes, natural gas offers the prospect of improving flexibility in liquid fuels and chemicals manufacture, and thus, the opportunity to complement, supplement, or displace petroleum-based production as economic and strategic considerations require. The composition of natural gas varies from reservoir to reservoir but the principal hydrocarbon constituent is always methane (CH{sub 4}). With its high hydrogen-to-carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products. However, methane is a very chemically stable molecule and, thus, is not readily transformed to other molecules or easily reformed to its elements (H{sub 2} and carbon). In many cases, further research is needed to augment selectivity to desired product(s), increase single-pass conversions, or improve economics (e.g. there have been estimates of $50/bbl or more for liquid products) before the full potential of these methodologies can be realized on a commercial scale. With the trade-off between gas conversion and product selectivity, a major challenge common to many of these technologies is to simultaneously achieve high methane single-pass conversions and high selectivity to desired products. Based on the results of the scoping runs, there appears to be strong indications that a breakthrough has finally been achieved in that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated.

  18. Natural gas marketing II

    SciTech Connect

    Not Available

    1988-01-01

    This book covers all aspects of gas marketing, from the basic regulatory structure to the latest developments in negotiating agreements and locating markets. Topics include: Federal regulation of the gas industry; Fundamentals of gas marketing contracts; FERC actions encouraging competitive markets; Marketing conditions from the pipelines' perspective; State non-utility regulation of natural gas production, transportation, and marketing; Natural gas wellhead agreements and tariffs; Natural gas processing agreements; Effective management of producer's natural gas contracts; Producer-pipeline litigation; Natural gas purchasing from the perspective of industrial gas users; Gas marketing by co-owners: problems of disproportionate sales, gas balancing, and accounting to royalty owners; Alternatives and new directions in marketing.

  19. Future natural gas supplies

    NASA Astrophysics Data System (ADS)

    Despite recent optimism about the outlook for the future supply of domestic conventional natural gas, the Congressional Office of Technology Assessment (OTA) finds insufficient evidence to clearly justify either an optimistic or a pessimistic view. In a technical memorandum entitled “U.S. Natural Gas Availability: Conventional Gas Supply Through the Year 2000,” released recently by Rep. Philip R. Sharp (D-Ind,), chairman of the Subcommittee on Fossil and Synthetic Fuels of the Committee on Energy and Commerce, OTA concluded that substantial technical uncertainties prevented a reliable estimation of the likely natural gas production rates for later in this century. Even ignoring the potential for significant changes in gas prices and technology, OTA estimated that conventional gas production by the lower 48 states in the year 2000 could range from 9 to 19 trillion cubic feet (TCF) (0.25 to 0.53 trillion cubic meters), compared to 1982 production of 17.5 TCF. Similarly, production in the year 1990 could range from 13 to 20 TCF.

  20. Can switching fuels save water? A life cycle quantification of freshwater consumption for Texas coal- and natural gas-fired electricity

    NASA Astrophysics Data System (ADS)

    Grubert, Emily A.; Beach, Fred C.; Webber, Michael E.

    2012-12-01

    Thermal electricity generation is a major consumer of freshwater for cooling, fuel extraction and air emissions controls, but the life cycle water impacts of different fossil fuel cycles are not well understood. Much of the existing literature relies on decades-old estimates for water intensity, particularly regarding water consumed for fuel extraction. This work uses contemporary data from specific resource basins and power plants in Texas to evaluate water intensity at three major stages of coal and natural gas fuel cycles: fuel extraction, power plant cooling and power plant emissions controls. In particular, the water intensity of fuel extraction is quantified for Texas lignite, conventional natural gas and 11 unconventional natural gas basins in Texas, including major second-order impacts associated with multi-stage hydraulic fracturing. Despite the rise of this water-intensive natural gas extraction method, natural gas extraction appears to consume less freshwater than coal per unit of energy extracted in Texas because of the high water intensity of Texas lignite extraction. This work uses new resource basin and power plant level water intensity data to estimate the potential effects of coal to natural gas fuel switching in Texas’ power sector, a shift under consideration due to potential environmental benefits and very low natural gas prices. Replacing Texas’ coal-fired power plants with natural gas combined cycle plants (NGCCs) would reduce annual freshwater consumption in the state by an estimated 53 billion gallons per year, or 60% of Texas coal power’s water footprint, largely due to the higher efficiency of NGCCs.

  1. A Study of Pollutant Formation from the Lean Premixed Combustion of Gaseous Fuel Alternatives to Natural Gas

    NASA Astrophysics Data System (ADS)

    Fackler, Keith Boyd, Jr.

    The goal of this research is to identify how nitrogen oxide (NO x) emissions and flame stability (blowout) are impacted by the use of fuels that are alternatives to typical pipeline natural gas. The research focuses on lean, premixed combustors that are typically used in state-of-the-art natural gas fueled systems. An idealized laboratory lean premixed combustor, specifically the jet-stirred reactor, is used for experimental data. A series of models, including those featuring detailed fluid dynamics and those focusing on detailed chemistry, are used to interpret the data and understand the underlying chemical kinetic reasons for differences in emissions between the various fuel blends. An ultimate goal is to use these data and interpretive tools to develop a way to predict the emission and stability impacts of changing fuels within practical combustors. All experimental results are obtained from a high intensity, single-jet stirred reactor (JSR). Five fuel categories are studied: (1) pure H 2, (2) process and refinery gas, including combinations of H2, CH4, C2H6, and C3H8, (3) oxygen blown gasified coal/petcoke composed of H2, CO, and CO2, (4) landfill and digester gas composed of CH4, CO2, and N2, and (5) liquified natural gas (LNG)/shale/associated gases composed of CH4, C2H6, and C3 H8. NOx measurements are taken at a nominal combustion temperature of 1800 K, atmospheric pressure, and a reactor residence time of 3 ms. This is done to focus the results on differences caused by fuel chemistry by comparing all fuels at a common temperature, pressure, and residence time. This is one of the few studies in the literature that attempts to remove these effects when studying fuels varying in composition. Additionally, the effects of changing temperature and residence time are investigated for selected fuels. At the nominal temperature and residence time, the experimental and modeling results show the following trends for NOx emissions as a function of fuel type: 1.) NOx

  2. Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    NASA Technical Reports Server (NTRS)

    Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.

    1984-01-01

    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.

  3. An assessment of air emissions from liquefied natural gas ships using different power systems and different fuels.

    PubMed

    Afon, Yinka; Ervin, David

    2008-03-01

    The shipping industry has been an unrecognized source of criteria pollutants: nitrogen oxides (NOx), volatile organic compounds, coarse particulate matter (PM10), fine particulate matter (PM2.5), sulfur dioxide (SO2), and carbon monoxide (CO). Liquefied natural gas (LNG) has traditionally been transported via steam turbine (ST) ships. Recently, LNG shippers have begun using dual-fuel diesel engines (DFDEs) to propel and offload their cargoes. Both the conventional ST boilers and DFDE are capable of burning a range of fuels, from heavy fuel oil to boil-off-gas (BOG) from the LNG load. In this paper a method for estimating the emissions from ST boilers and DFDEs during LNG offloading operations at berth is presented, along with typical emissions from LNG ships during offloading operations under different scenarios ranging from worst-case fuel oil combustion to the use of shore power. The impact on air quality in nonattainment areas where LNG ships call is discussed. Current and future air pollution control regulations for ocean-going vessels (OGVs) such as LNG ships are also discussed. The objective of this study was to estimate and compare emissions of criteria pollutants from conventional ST and DFDE ships using different fuels. The results of this study suggest that newer DFDE ships have lower SO2 and PM2.5/PM10 emissions, conventional ST ships have lower NOx, volatile organic compound, and CO emissions; and DFDE ships utilizing shore power at berth produce no localized emissions because they draw their required power from the local electric grid. PMID:18376643

  4. Compressed natural gas measurement issues

    SciTech Connect

    Blazek, C.F.; Kinast, J.A.; Freeman, P.M.

    1993-12-31

    The Natural Gas Vehicle Coalition`s Measurement and Metering Task Group (MMTG) was established on July 1st, 1992 to develop suggested revisions to National Institute of Standards & Technology (NIST) Handbook 44-1992 (Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices) and NIST Handbook 130-1991 (Uniform Laws & Regulations). Specifically, the suggested revisions will address the sale and measurement of compressed natural gas when sold as a motor vehicle fuel. This paper briefly discusses the activities of the MMTG and its interaction with NIST. The paper also discusses the Institute of Gas Technology`s (IGT) support of the MMTG in the area of natural gas composition, their impact on metering technology applicable to high pressure fueling stations as well as conversion factors for the establishment of ``gallon gasoline equivalent`` of natural gas. The final portion of this paper discusses IGT`s meter research activities and its meter test facility.

  5. Gas-phase reactions of methane and natural-gas with air and steam in non-catalytic regions of a solid-oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Gupta, Gaurav K.; Hecht, Ethan S.; Zhu, Huayang; Dean, Anthony M.; Kee, Robert J.

    This paper uses a large elementary reaction mechanism to study the homogeneous chemistry of methane and natural-gas mixed with air and steam. Temperatures and residence times are chosen to represent SOFC operating conditions, including within feed lines that may be at elevated temperature but without any electrochemical or catalytic interactions. Mole fractions of six major species (CH 4, O 2, H 2O, H 2, CO, and CO 2) are presented as contour maps as functions of temperature, residence time, and initial fuel mixture compositions. In addition, deposit propensity is predicted by the sum of mole fractions of all species containing five or more carbon atoms, designated as C5+ . Comparison with chemical equilibrium predictions shows that the homogeneous reactions are far from equilibrium. These results indicate that the composition of the fuel mixture entering the active SOFC region might be significantly different from that originally entering the fuel cell.

  6. Landfill gas cleanup for fuel cells

    SciTech Connect

    1995-08-01

    EPRI is to test the feasibility of using a carbonate fuel cell to generate electricity from landfill gas. Landfills produce a substantial quantity of methane gas, a natural by-product of decaying organic wastes. Landfill gas, however, contains sulfur and halogen compounds, which are known contaminants to fuel cells and their fuel processing equipment. The objective of this project is to clean the landfill gas well enough to be used by the fuel cell without making the process prohibitively expensive. The cleanup system tested in this effort could also be adapted for use with other fuel cells (e.g., solid oxide, phosphoric acid) running on landfill gas.

  7. Climate and health relevant emissions from in-use Indian three-wheelers fueled by natural gas and gasoline.

    PubMed

    Reynolds, Conor C O; Grieshop, Andrew P; Kandlikar, Milind

    2011-03-15

    Auto-rickshaws in India use different fuels and engine technologies, with varying emissions and implications for air quality and climate change. Chassis dynamometer emission testing was conducted on 30 in-use auto-rickshaws to quantify the impact of switching from gasoline to compressed natural gas (CNG) in spark-ignition engines. Thirteen test vehicles had two-stroke CNG engines (CNG-2S) and 17 had four-stroke CNG engines (CNG-4S), of which 11 were dual-fuel and operable on a back-up gasoline (petrol) system (PET-4S). Fuel-based emission factors were determined for gaseous pollutants (CO(2), CH(4), NO(X), THC, and CO) and fine particulate matter (PM(2.5)). Intervehicle variability was high, and for most pollutants there was no significant difference (95% confidence level) between "old" (1998-2001) and "new" (2007-2009) age-groups within a given fuel-technology class. Mean fuel-based PM(2.5) emission factor (mean (95% confidence interval)) for CNG-2S (14.2 g kg(-1) (6.2-26.7)) was almost 30 times higher than for CNG-4S (0.5 g kg(-1) (0.3-0.9)) and 12 times higher than for PET-4S (1.2 g kg(-1) (0.8-1.7)). Global warming commitment associated with emissions from CNG-2S was more than twice that from CNG-4S or PET-4S, due mostly to CH(4) emissions. Comprehensive measurements and data should drive policy interventions rather than assumptions about the impacts of clean fuels. PMID:21322628

  8. A Study of Pollutant Formation from the Lean Premixed Combustion of Gaseous Fuel Alternatives to Natural Gas

    NASA Astrophysics Data System (ADS)

    Fackler, Keith Boyd, Jr.

    The goal of this research is to identify how nitrogen oxide (NO x) emissions and flame stability (blowout) are impacted by the use of fuels that are alternatives to typical pipeline natural gas. The research focuses on lean, premixed combustors that are typically used in state-of-the-art natural gas fueled systems. An idealized laboratory lean premixed combustor, specifically the jet-stirred reactor, is used for experimental data. A series of models, including those featuring detailed fluid dynamics and those focusing on detailed chemistry, are used to interpret the data and understand the underlying chemical kinetic reasons for differences in emissions between the various fuel blends. An ultimate goal is to use these data and interpretive tools to develop a way to predict the emission and stability impacts of changing fuels within practical combustors. All experimental results are obtained from a high intensity, single-jet stirred reactor (JSR). Five fuel categories are studied: (1) pure H 2, (2) process and refinery gas, including combinations of H2, CH4, C2H6, and C3H8, (3) oxygen blown gasified coal/petcoke composed of H2, CO, and CO2, (4) landfill and digester gas composed of CH4, CO2, and N2, and (5) liquified natural gas (LNG)/shale/associated gases composed of CH4, C2H6, and C3 H8. NOx measurements are taken at a nominal combustion temperature of 1800 K, atmospheric pressure, and a reactor residence time of 3 ms. This is done to focus the results on differences caused by fuel chemistry by comparing all fuels at a common temperature, pressure, and residence time. This is one of the few studies in the literature that attempts to remove these effects when studying fuels varying in composition. Additionally, the effects of changing temperature and residence time are investigated for selected fuels. At the nominal temperature and residence time, the experimental and modeling results show the following trends for NOx emissions as a function of fuel type: 1.) NOx

  9. A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels

    SciTech Connect

    Tao, Greg, G.

    2007-03-31

    A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

  10. Natural Gas Monthly

    EIA Publications

    2016-01-01

    Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

  11. Natural gas annual 1994

    SciTech Connect

    1995-11-17

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  12. Natural gas annual 1995

    SciTech Connect

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  13. Methyl chloride via oxyhydrochlorination of methane: A building block for chemicals and fuels from natural gas

    SciTech Connect

    Benson, R.L.; Brown, S.S.D.; Ferguson, S.P.; Jarvis, R.F. Jr.

    1995-12-31

    The objectives of this program are to (a) develop a process for converting natural gas to methyl chloride via an oxyhydrochlorination route using highly selective, stable catalysts in a fixed-bed, (b) design a reactor capable of removing the large amount of heat generated in the process so as to control the reaction, (c) develop a recovery system capable of removing the methyl chloride from the product stream and (d) determine the economics and commercial viability of the process. The general approach has been as follows: (a) design and build a laboratory scale reactor, (b) define and synthesize suitable OHC catalysts for evaluation, (c) select first generation OHC catalyst for Process Development Unit (PDU) trials, (d) design, construct and startup PDU, (e) evaluate packed bed reactor design, (f) optimize process, in particular, product recovery operations, (g) determine economics of process, (h) complete preliminary engineering design for Phase II and (i) make scale-up decision and formulate business plan for Phase II. Conclusions regarding process development and catalyst development are presented.

  14. Evaluation of emission toxicity of urban bus engines: compressed natural gas and comparison with liquid fuels.

    PubMed

    Turrio-Baldassarri, Luigi; Battistelli, Chiara Laura; Conti, Luigi; Crebelli, Riccardo; De Berardis, Barbara; Iamiceli, Anna Laura; Gambino, Michele; Iannaccone, Sabato

    2006-02-15

    Emissions from a spark-ignition (SI) heavy-duty (HD) urban bus engine with a three-way catalyst (TWC), fuelled with compressed natural gas (CNG), were chemically analyzed and tested for genotoxicity. The results were compared with those obtained in a previous study on an equivalent diesel engine, fuelled with diesel oil (D) and a blend of the same with 20% vegetable oil (B20). Experimental procedures were identical, so that emission levels of the CNG engine were exactly comparable to the ones of the diesel engine. The experimental design was focused on carcinogenic compounds and genotoxic activity of exhausts. The results obtained show that the SI CNG engine emissions, with respect to the diesel engine fuelled with D, were nearly 50 times lower for carcinogenic polycyclic aromatic hydrocarbons (PAHs), 20 times lower for formaldehyde, and more than 30 times lower for particulate matter (PM). A 20-30 fold reduction of genotoxic activity was estimated from tests performed. A very high reduction of nitrogen oxides (NO(X)) was also measured. The impact of diesel powered transport on urban air quality, and the potential benefits deriving from the use of CNG for public transport, are discussed. PMID:16442433

  15. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the high pressure side of the fuel system in accordance with the vehicle manufacturer's recommendation... reduce deaths and injuries occurring from fires that result from fuel leakage during and after motor... components used to store or supply CNG to a vehicle's engine. Dedicated CNG vehicle means a vehicle...

  16. Development of an ultra-safe, ultra-low emissions natural gas-fueled bus. Phase 1: Systems design -- Final report

    SciTech Connect

    Kubesh, J.

    1995-05-01

    The National Renewable Energy Laboratory (NREL) contracted with Southwest Research Institute (SwRI) to develop an ultra-safe, ultra-low emissions natural gas-fueled school bus. To develop the bus, SwRI teamed with Blue Bird, Incorporated, a school bus manufacturer, Deere Power Systems Group, an engine manufacturer, and CNG Cylinder Company, a supplier of compressed natural gas storage and handling systems. The primary focus of work for Phase 1 was the design of the component systems, i.e. vehicle, engine, and fuel storage systems. The bus chassis prototype is expected to be completed by the middle of July, 1995. A complete prototype vehicle body and chassis should be delivered to SwRI by the beginning of December, 1995. This prototype vehicle will include the new compressed natural gas cylinders and associated fuel storage system hardware which has been designed by CNG Cylinder Company.

  17. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet...

  18. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet...

  19. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet...

  20. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet...

  1. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet...

  2. Thermodynamic and transport properties of air and its products of combustion with ASTMA-A-1 fuel and natural gas at 20, 30, and 40 atmospheres

    NASA Technical Reports Server (NTRS)

    Poferl, D. J.; Svehla, R. A.

    1973-01-01

    The isentropic exponent, molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, Prandtl number, and enthalpy were calculated for air, the combustion products of ASTM-A-1 jet fuel and air, and the combustion products of natural gas and air. The properties were calculated over a temperature range from 300 to 2800 K in 100 K increments and for pressures of 20, 30 and 40 atmospheres. The data for natural gas and ASTM-A-1 were calculated for fuel-air ratios from zero to stoichiometric in 0.01 increments.

  3. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  4. Fuel Interchangeability Considerations for Gas Turbine Combustion

    SciTech Connect

    Ferguson, D.H.

    2007-10-01

    In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

  5. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Record time, temperature, and pressure readings at 30 second intervals, beginning when the fire is ignited and continuing until the pressure release device releases. S8.3.7Duration of exposure to fire... reduce deaths and injuries occurring from fires that result from fuel leakage during and after...

  6. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Record time, temperature, and pressure readings at 30 second intervals, beginning when the fire is ignited and continuing until the pressure release device releases. S8.3.7Duration of exposure to fire... reduce deaths and injuries occurring from fires that result from fuel leakage during and after...

  7. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Record time, temperature, and pressure readings at 30 second intervals, beginning when the fire is ignited and continuing until the pressure release device releases. S8.3.7Duration of exposure to fire... reduce deaths and injuries occurring from fires that result from fuel leakage during and after...

  8. 49 CFR 571.304 - Standard No. 304; Compressed natural gas fuel container integrity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Record time, temperature, and pressure readings at 30 second intervals, beginning when the fire is ignited and continuing until the pressure release device releases. S8.3.7Duration of exposure to fire... reduce deaths and injuries occurring from fires that result from fuel leakage during and after...

  9. Geopolitics of natural gas

    SciTech Connect

    Russell, J.

    1983-01-01

    This examines the role of gas in the world energy supply/demand. Special attention is paid to Western Europe, the Soviet Union, and the natural gas exporting countries. Forecasts of global energy demand until 2000 and data on Western Europe's proven natural gas reserves as per January 1982 are provided.

  10. Liquid natural gas as a transportation fuel in the heavy trucking industry. Second quarterly progress report, [October 1, 1994-- December 30, 1994

    SciTech Connect

    Sutton, W.H.

    1994-12-01

    Emphasis of this project focuses on LNG research issues in use of liquefied natural as a transportation fuel in heavy trucking industry. These issues maybe categorized as: task 1--direct diesel replacement with LNG fuel; and task 2--short and long term storage. Accomplishments for these tasks are discussed. Task 1 consists of atomization, fundamentals of direct replacement, and distribution of emissions. Task 2 includes modified adsorbents, vent gas, and LNG storage at moderate conditions.

  11. The efficient use of natural gas in transportation

    SciTech Connect

    Stodolsky, F.; Santini, D.J.

    1992-04-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  12. The efficient use of natural gas in transportation

    SciTech Connect

    Stodolsky, F.; Santini, D.J.

    1992-01-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  13. System Design of a Natural Gas PEM Fuel Cell Power Plant for Buildings

    SciTech Connect

    Joe Ferrall, Tim Rehg, Vesna Stanic

    2000-09-30

    The following conclusions are made based on this analysis effort: (1) High-temperature PEM data are not available; (2) Stack development effort for Phase II is required; (3) System results are by definition preliminary, mostly due to the immaturity of the high-temperature stack; other components of the system are relatively well defined; (4) The Grotthuss conduction mechanism yields the preferred system characteristics; the Grotthuss conduction mechanism is also much less technically mature than the vehicle mechanism; (5) Fuel processor technology is available today and can be procured for Phase II (steam or ATR); (6) The immaturity of high-temperature membrane technology requires that a robust system design be developed in Phase II that is capable of operating over a wide temperature and pressure range - (a) Unpressurized or Pressurized PEM (Grotthuss mechanism) at 140 C, Highest temperature most favorable, Lowest water requirement most favorable, Pressurized recommended for base loaded operation, Unpressurized may be preferred for load following; (b) Pressurized PEM (vehicle mechanism) at about 100 C, Pressure required for saturation, Fuel cell technology currently available, stack development required. The system analysis and screening evaluation resulted in the identification of the following components for the most promising system: (1) Steam reforming fuel processor; (2) Grotthuss mechanism fuel cell stack operating at 140 C; (3) Means to deliver system waste heat to a cogeneration unit; (4) Pressurized system utilizing a turbocompressor for a base-load power application. If duty cycling is anticipated, the benefits of compression may be offset due to complexity of control. In this case (and even in the base loaded case), the turbocompressor can be replaced with a blower for low-pressure operation.

  14. Fuel gas desulfurization

    DOEpatents

    Yang, Ralph T.; Shen, Ming-Shing

    1981-01-01

    A method for removing sulfurous gases such as H.sub.2 S and COS from a fuel gas is disclosed wherein limestone particulates containing iron sulfide provide catalytic absorption of the H.sub.2 S and COS by the limestone. The method is effective at temperatures of 400.degree. C. to 700.degree. C. in particular.

  15. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    SciTech Connect

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal,; Monado, Fiber; Sekimoto, Hiroshi

    2012-06-06

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

  16. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    NASA Astrophysics Data System (ADS)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal, Monado, Fiber; Sekimoto, Hiroshi

    2012-06-01

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of ith region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

  17. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    NASA Astrophysics Data System (ADS)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Aziz, Ferhat; Permana, Sidik; Sekimoto, Hiroshi

    2014-02-01

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  18. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    SciTech Connect

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik; Aziz, Ferhat; Sekimoto, Hiroshi

    2014-02-12

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  19. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    SciTech Connect

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  20. Thermoacoustic natural gas liquefier

    SciTech Connect

    Swift, G.; Gardner, D.; Hayden, M.; Radebaugh, R.; Wollan, J.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop a natural-gas-powered natural-gas liquefier that has absolutely no moving parts and requires no electrical power. It should have high efficiency, remarkable reliability, and low cost. The thermoacoustic natural-gas liquefier (TANGL) is based on our recent invention of the first no-moving-parts cryogenic refrigerator. In short, our invention uses acoustic phenomena to produce refrigeration from heat, with no moving parts. The required apparatus comprises nothing more than heat exchangers and pipes, made of common materials, without exacting tolerances. Its initial experimental success in a small size lead us to propose a more ambitious application: large-energy liquefaction of natural gas, using combustion of natural gas as the energy source. TANGL was designed to be maintenance-free, inexpensive, portable, and environmentally benign.

  1. Methods for quantifying variability and uncertainty in AP-42 emission factors: case studies for natural gas-fueled engines.

    PubMed

    Frey, H Christopher; Li, Song

    2003-12-01

    Quantitative methods for characterizing variability and uncertainty were applied to case studies of oxides of nitrogen and total organic carbon emission factors for lean-burn natural gas-fueled internal combustion engines. Parametric probability distributions were fit to represent inter-engine variability in specific emission factors. Bootstrap simulation was used to quantify uncertainty in the fitted cumulative distribution function and in the mean emission factor. Some methodological challenges were encountered in analyzing the data. For example, in one instance, five data points were available, with each data point representing a different market share. Therefore, an approach was developed in which parametric distributions were fitted to population-weighted data. The uncertainty in mean emission factors ranges from as little as approximately +/-10% to as much as -90 to +180%. The wide range of uncertainty in some emission factors emphasizes the importance of recognizing and accounting for uncertainty in emissions estimates. The skewness in some uncertainty estimates illustrates the importance of using numerical simulation approaches that do not impose restrictive symmetry assumptions on the confidence interval for the mean. In this paper, the quantitative method, the analysis results, and key findings are presented. PMID:14700131

  2. An economic feasibility analysis of distributed electric power generation based upon the Natural Gas-Fired Fuel Cell: a model of the operations cost.

    SciTech Connect

    Not Available

    1993-06-30

    This model description establishes the revenues, expenses incentives and avoided costs of Operation of a Natural Gas-Fired Fuel Cell-Based. Fuel is the major element of the cost of operation of a natural gas-fired fuel cell. Forecasts of the change in the price of this commodity a re an important consideration in the ownership of an energy conversion system. Differences between forecasts, the interests of the forecaster or geographical areas can all have significant effects on imputed fuel costs. There is less effect on judgments made on the feasibility of an energy conversion system since changes in fuel price can affect the cost of operation of the alternatives to the fuel cell in a similar fashion. The forecasts used in this model are only intended to provide the potential owner or operator with the means to examine alternate future scenarios. The operations model computes operating costs of a system suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

  3. Natural gas monthly

    SciTech Connect

    Not Available

    1982-11-01

    This report presents data on the supply and disposition of natural gas in the USA during July 1982, as well as data on production, storage, imports, exports, and consumption. Selected data are also presented on the activities of the major interstate pipeline companies. Volumes of natural gas in storage continue to run slightly ahead of year-ago levels, especially for interstate operators. Weighted average prices received for gas sold by major interstate pipeline companies during July of 19982 ranged from a low of $2.61 per thousand cubic feet (Mcf) for Kansas-Nebraska to a high of $7.09 per Mcf for Pacific Gas. These variations are attributable to the sources of supply available to the various pipeline companies and the market structures of each. September 1982 applications for determination of a maximum lawful price under the Natural Gas Policy Act (NGPA) increased slightly for new gas (Section 102) and decreased significantly for high-cost gas (Section 107) when compared to August. Natural gas ceiling prices prescribed by the NGPA continued to move upward through the application of prescribed monthly inflation adjustments. In the 3-year period from November 1979 through November 1982, the price ceiling for new gas, for example, increased from $2.314 to $3.249 per million (MM) Btu's. The highest ceiling price permitted under the NGPA is natural gas produced from tight formations set for November 1982 at $5.396 per MMBtu. Market natural gas production during September of 1982 was 1444 billion cubic feet (Bcf) compared to the September 1981 level of 1578 Bcf. Consumption during the same period also declined from 1266 Bcf to 1176 Bcf.

  4. Automotive gas turbine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. (Inventor)

    1978-01-01

    A fuel control system is reported for automotive-type gas turbines and particulary advanced gas turbines utilizing variable geometry components to improve mileage and reduce pollution emission. The fuel control system compensates for fuel density variations, inlet temperature variations, turbine vane actuation, acceleration, and turbine braking. These parameters are utilized to control various orifices, spool valves and pistons.

  5. Natural gas monthly

    SciTech Connect

    1996-05-01

    This document highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Data presented include volume and price, production, consumption, underground storage, and interstate pipeline activities.

  6. Natural Gas Emergencies

    MedlinePlus

    ... by the Cass (ND) and Clay (MN) Emergency Planning Partnerships. Adapted with funding provided by Fargo Cass Public Health through the Cities Readiness Initiative (CRI) English – Natural Gas Emergencies - Last ...

  7. Analysis of Adsorbed Natural Gas Tank Technology

    NASA Astrophysics Data System (ADS)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  8. Natural Gas Supply SBIR Program

    SciTech Connect

    Shoemaker, H.D.; Gwilliam, W.J.

    1995-07-01

    The Small Business Innovation Research (SBIR) program was created in 1982 by Public Law 97-219 and reauthorized in 1992 until the year 2000 by Public Law 102-564. The purposes of the new law are to (1) expand and improve the SBIR program, 2) emphasize the program`s goal of increasing private sector commercialization of technology developed through Federal R&D, (3) increase small business participation in Federal R&D, and (4) improve the Federal Government`s dissemination of information concerning the SBIR program. DOE`s SBIR pro-ram has two features that are unique. In the 1995 DOE SBIR solicitation, the DOE Fossil Energy topics were: environmental technology for natural gas, oil, and coal; advanced recovery of oil; natural gas supply; natural gas utilization; advanced coal-based power systems; and advanced fossil fuels research. The subtopics for this solicitation`s Natural Gas Supply topic are (1) drilling, completion, and stimulation; (2) low-permeability Formations; (3) delivery and storage; and (4) natural gas upgrading.

  9. Apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles

    DOEpatents

    Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

    2007-05-29

    A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

  10. Variability in natural gas fuel composition and its effects on the performance of catalytic combustion systems. Final report for period September 18, 1998 - September 17, 2000

    SciTech Connect

    Ginter, David; Simchick, Chuck; Schlatter, Jim

    2002-03-01

    Natural gas is composed primarily of methane with small amounts of higher hydrocarbons and diluents, which vary by region and over time. Compositions of natural gas from domestic and worldwide sources were surveyed with respect to content of higher hydrocarbons and diluents. The survey showed slight compositional variability between most of the gases, with a small fraction of them containing significantly larger contents of higher hydrocarbons than the mean. As gas-fired turbines will be used for power generation all over the world, they will need to tolerate operation with fuels with a wide variety of compositions, particularly with respect to the concentration of higher hydrocarbons and diluents. Subscale catalytic combustion modules typical of those used in gas turbine power generation with ultra low emissions of pollutants were tested in a subscale test system with natural gas alone and with added known levels of hydrocarbon compounds and diluents. The range of compositions tested contained the range observed in the survey. Test results were used to calculate the effect of composition on catalyst performance. The compositional variability is of little consequence to the catalyst for most of the gases in the survey, including nearly all of the gases delivered in the U.S. To accommodate the remaining gases, the catalyst inlet temperature must be lowered to maintain combustor durability. These results support commercial acceptance of catalytic combustion systems for use in natural gas fired turbines in distributed power generation with ultra low NO{sub x} emissions.

  11. Studying the characteristics of a 5 kW power installation on solid-oxide fuel cells with steam reforming of natural gas

    NASA Astrophysics Data System (ADS)

    Munts, V. A.; Volkova, Yu. V.; Plotnikov, N. S.; Dubinin, A. M.; Tuponogov, V. G.; Chernishev, V. A.

    2015-11-01

    The results from tests of a 5 kW power plant on solid-oxide fuel cells (SOFCs), in which natural gas is used as fuel, are presented. The installation's process circuit, the test procedure, and the analysis of the obtained results are described. The characteristics of the power plant developed by the Ural Industrial Company are investigated in four steady-state modes of its operation: with the SOFC nominal power capacity utilized by 40% (2 kW), 60% (3 kW), 90% (4.5 kW) and 110% (5.4 kW) (the peaking mode). The electrical and thermodynamic efficiencies are calculated for all operating modes, and the most efficient mode, in which the electrical efficiency reached almost 70%, is determined. The air excess coefficient and heat loss with flue gases q 2 are determined, and it is revealed that the heat loss q 5 decreases from 40 to 25% with increasing the load. Thermal balances are drawn up for the following components of the system the reformer, the SOFC battery, the catalytic burner for afterburning anode gases, the heat exchanger for heating the cathode air and the mixture of natural gas and steam, and the actual fuel utilization rates in the electrochemical generator are calculated. An equation for the resulting natural gas steam reforming reaction was obtained based on the results from calculating the equilibrium composition of reforming products for the achieved temperatures at the reformer outlet t 3.

  12. 26 CFR 48.4041-21 - Compressed natural gas (CNG).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Compressed natural gas (CNG). 48.4041-21 Section... natural gas (CNG). (a) Delivery of CNG into the fuel supply tank of a motor vehicle or motorboat—(1) Imposition of tax. Tax is imposed on the delivery of compressed natural gas (CNG) into the fuel supply...

  13. 26 CFR 48.4041-21 - Compressed natural gas (CNG).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Compressed natural gas (CNG). 48.4041-21... natural gas (CNG). (a) Delivery of CNG into the fuel supply tank of a motor vehicle or motorboat—(1) Imposition of tax. Tax is imposed on the delivery of compressed natural gas (CNG) into the fuel supply...

  14. 26 CFR 48.4041-21 - Compressed natural gas (CNG).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Compressed natural gas (CNG). 48.4041-21... natural gas (CNG). (a) Delivery of CNG into the fuel supply tank of a motor vehicle or motorboat—(1) Imposition of tax. Tax is imposed on the delivery of compressed natural gas (CNG) into the fuel supply...

  15. 26 CFR 48.4041-21 - Compressed natural gas (CNG).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Compressed natural gas (CNG). 48.4041-21... natural gas (CNG). (a) Delivery of CNG into the fuel supply tank of a motor vehicle or motorboat—(1) Imposition of tax. Tax is imposed on the delivery of compressed natural gas (CNG) into the fuel supply...

  16. Safer Liquid Natural Gas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    After the disaster of Staten Island in 1973 where 40 people were killed repairing a liquid natural gas storage tank, the New York Fire Commissioner requested NASA's help in drawing up a comprehensive plan to cover the design, construction, and operation of liquid natural gas facilities. Two programs are underway. The first transfers comprehensive risk management techniques and procedures which take the form of an instruction document that includes determining liquid-gas risks through engineering analysis and tests, controlling these risks by setting up redundant fail safe techniques, and establishing criteria calling for decisions that eliminate or accept certain risks. The second program prepares a liquid gas safety manual (the first of its kind).

  17. Compressed natural gas (CNG) measurement

    SciTech Connect

    Husain, Z.D.; Goodson, F.D.

    1995-12-01

    The increased level of environmental awareness has raised concerns about pollution. One area of high attention is the internal combustion engine. The internal combustion engine in and of itself is not a major pollution threat. However, the vast number of motor vehicles in use release large quantities of pollutants. Recent technological advances in ignition and engine controls coupled with unleaded fuels and catalytic converters have reduced vehicular emissions significantly. Alternate fuels have the potential to produce even greater reductions in emissions. The Natural Gas Vehicle (NGV) has been a significant alternative to accomplish the goal of cleaner combustion. Of the many alternative fuels under investigation, compressed natural gas (CNG) has demonstrated the lowest levels of emission. The only vehicle certified by the State of California as an Ultra Low Emission Vehicle (ULEV) was powered by CNG. The California emissions tests of the ULEV-CNG vehicle revealed the following concentrations: Non-Methane Hydrocarbons 0.005 grams/mile Carbon Monoxide 0.300 grams/mile Nitrogen Oxides 0.040 grams/mile. Unfortunately, CNG vehicles will not gain significant popularity until compressed natural gas is readily available in convenient locations in urban areas and in proximity to the Interstate highway system. Approximately 150,000 gasoline filling stations exist in the United States while number of CNG stations is about 1000 and many of those CNG stations are limited to fleet service only. Discussion in this paper concentrates on CNG flow measurement for fuel dispensers. Since the regulatory changes and market demands affect the flow metering and dispenser station design those aspects are discussed. The CNG industry faces a number of challenges.

  18. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995

    SciTech Connect

    Sutton, W.H.

    1995-12-31

    This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

  19. Natural gas conversion process

    SciTech Connect

    Gondouin, O.M.

    1987-11-10

    An improved process for converting all natural gas hydrocarbon components with carbon numbers of 1 to 4 into liquid hydrocarbons with carbon numbers equal to or greater than 5, and into a hydrogen-rich gaseous by-product which is described comprising the following steps: A. Splitting the natural gas feed into a rich gas stream comprising C/sub 2/, C/sub 3/ and C/sub 4/ hydrocarbons and a lean gas stream comprising C/sub 1/ and C/sub 2/ hydrocarbons; B. Catalytically converting the rich gas stream in a catalytic bed reactor in which the gas-suspended solid phase is a catalyst maintained at a temperature not exceeding 600/sup 0/C.; Separating the gaseous effluent from the catalytic bed reactor into (1) a hydrogen-rich stream; (2) a lean gas stream comprising hydrogen, C/sub 1/ and C/sub 2/ hydrocarbons, (3) a rich gas stream comprising C/sub 2/ and C/sub 3/ and C/sub 4/ hydrocarbons and (4) a liquid product stream comprising C/sub 5/ + hydrocarbons; D. Pre-heating all lean gas streams, including recycle, in a furnace; E. Transferring the catalyst into a short residence time reactor; F. Reacting an ionized plasma derived from the hydrogen stream with the pre-heated lean gas stream; G. Separating the gas-solid stream resulting from the reaction into a spent catalyst phase stream and a gaseous effluent stream; H. Separating the gaseous effluent stream from the disengagement means into four streams; I. Regenerating the spent catalyst stream in a regenerator by combustion of the carbon build-up on the spent catalyst in an oxidizing gas stream; J. Transferring the regenerated catalyst back into the catalytic bed reactor and into the short residence time reactor; K. Recycling all rich gas streams obtained in steps C and H back to the catalytic bed reactor; L. Recycling the lean gas stream obtained in step H back to the pre-heating furnace of step D.

  20. Natural Gas Annual

    EIA Publications

    2015-01-01

    Provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by state for the current year. Summary data are presented for each state for the previous 5 years.

  1. US crude oil, natural gas, and natural gas liquids reserves

    SciTech Connect

    Not Available

    1990-10-05

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1989, and production volumes for the year 1989 for the total United States and for selected states and state sub-divisions. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production reported separately. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. 28 refs., 9 figs., 15 tabs.

  2. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas

    SciTech Connect

    Not Available

    1993-12-01

    As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

  3. Thermoacoustic natural gas liquefier

    SciTech Connect

    Swift, G.W.

    1997-05-01

    Cryenco and Los Alamos are collaborating to develop a natural-gas-powered natural-gas liquefier that will have no moving parts and require no electrical power. It will have useful efficiency, remarkable reliability, and low cost. The liquefaction of natural gas, which occurs at only 115 Kelvin at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 invention of the thermoacoustically driven orifice pulse-tube refrigerator (TA-DOPTR) provides cryogenic refrigeration with no moving parts for the first time. In short, this invention uses acoustic phenomena to produce refrigeration from heat. The required apparatus consists of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. In the Cryenco-Los Alamos collaboration, the authors are developing a version of this invention suitable for use in the natural-gas industry. The project is known as acoustic liquefier for short. The present program plans call for a two-phase development. Phase 1, with capacity of 500 gallon per day (i.e., approximately 40,000 scfd, requiring a refrigeration power of about 7 kW), is large enough to illuminate all the issues of large-scale acoustic liquefaction without undue cost, and to demonstrate the liquefaction of 60--70% of input gas, while burning 30--40%. Phase 2 will target versions of approximately 10{sup 6} scfd = 10,000 gallon per day capacity. In parallel with both, they continue fundamental research on the technology, directed toward increased efficiency, to build scientific foundations and a patent portfolio for future acoustic liquefiers.

  4. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    SciTech Connect

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less

  5. Natural gas monthly, April 1999

    SciTech Connect

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  6. Natural gas vehicles : Status, barriers, and opportunities.

    SciTech Connect

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  7. Fuel cell gas management system

    DOEpatents

    DuBose, Ronald Arthur

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  8. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines

    SciTech Connect

    2008-12-01

    General Electric Global Research will define, develop, and test new fuel nozzle technology concepts for gas turbine operation on a wide spectrum of opportunity fuels and/or fuel blends. This will enable gas turbine operation on ultra-low Btu fuel streams such as very weak natural gas, highly-diluted industrial process gases, or gasified waste streams that are out of the capability range of current turbine systems.

  9. Natural Gas Exports from Iran

    EIA Publications

    2012-01-01

    This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.

  10. Natural gas monthly, August 1993

    SciTech Connect

    Not Available

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  11. Natural gas monthly, July 1997

    SciTech Connect

    1997-07-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is entitled ``Intricate puzzle of oil and gas reserves growth.`` A special report is included on revisions to monthly natural gas data. 6 figs., 24 tabs.

  12. Natural gas monthly, October 1996

    SciTech Connect

    1996-10-01

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  13. Natural gas monthly, September 1993

    SciTech Connect

    Not Available

    1993-09-27

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  14. Natural gas monthly, March 1994

    SciTech Connect

    Not Available

    1994-03-22

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  15. World Natural Gas, 1978

    SciTech Connect

    Not Available

    1980-07-01

    World marketed production of natural gas in 1978 totaled 51.749 trillion CF (up from 50.1 TCF in 1977); this 3.3% increase, however, was slightly lower than 1977's 3.7% rise. US production, which fell 0.3% dropped to 38.6% of the world total, while the USSR share (13.137 TCF) accounted for 25.4% (for a growth rate of 7.5%). Of the world gross production of 62.032 TCF, 69.7% came from gas wells; the remainder was associated with oil. Thirty-one percent of the 10.282 TCF difference between gross and marketed gas production was used for oil reservoir repressuring, while the balance (7.094 TCF) was vented and flared. Internationally traded gas movements rose to 11.6% of production. The Netherlands, the USSR, and Canada accounted for 30.6%, 20.1% and 14.7%, respectively, of total 1978 exports. At 0.956 TCF, LNG shipments accounted for 15.9% of world trade, a 35.2% higher share than in 1977; most of this growth was due to increased Indonesia-to-Japan volumes.

  16. FUEL GAS ENVIRONMENTAL IMPACT

    EPA Science Inventory

    The report gives results of continued investigation and further definition of the potential environmental and economic benefits of integrated coal gasification/gas cleanup/combined gas and steam cycle power plants. Reported refinements in plant operating characteristics lower hea...

  17. Natural gas monthly, April 1995

    SciTech Connect

    1995-04-27

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 31 tabs.

  18. Natural Gas Monthly, March 1996

    SciTech Connect

    1996-03-25

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  19. Natural gas monthly: December 1993

    SciTech Connect

    Not Available

    1993-12-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. Articles are included which are designed to assist readers in using and interpreting natural gas information.

  20. Natural gas monthly, June 1993

    SciTech Connect

    Not Available

    1993-06-22

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  1. Natural gas monthly, November 1993

    SciTech Connect

    Not Available

    1993-11-29

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  2. Natural gas monthly, August 1994

    SciTech Connect

    Not Available

    1994-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  3. Natural gas monthly, June 1997

    SciTech Connect

    1997-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 24 tabs.

  4. Natural gas monthly, July 1998

    SciTech Connect

    1998-07-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

  5. Natural gas monthly, July 1993

    SciTech Connect

    Not Available

    1993-07-27

    The Natural Gas Monthly NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  6. Natural gas monthly, June 1999

    SciTech Connect

    1999-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

  7. Natural gas monthly, May 1999

    SciTech Connect

    1999-05-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  8. Natural gas monthly, December 1998

    SciTech Connect

    1998-12-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  9. Natural gas monthly, February 1999

    SciTech Connect

    1999-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  10. Natural gas monthly, January 1999

    SciTech Connect

    1999-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  11. Natural gas monthly, November 1998

    SciTech Connect

    1998-11-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 27 tabs.

  12. Compressed gas fuel storage system

    SciTech Connect

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  13. Gas only nozzle fuel tip

    DOEpatents

    Bechtel, William Theodore; Fitts, David Orus; DeLeonardo, Guy Wayne

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  14. The study of capability natural uranium as fuel cycle input for long life gas cooled fast reactors with helium as coolant

    NASA Astrophysics Data System (ADS)

    Ariani, Menik; Satya, Octavianus Cakra; Monado, Fiber; Su'ud, Zaki; Sekimoto, Hiroshi

    2016-03-01

    The objective of the present research is to assess the feasibility design of small long-life Gas Cooled Fast Reactor with helium as coolant. GCFR included in the Generation-IV reactor systems are being developed to provide sustainable energy resources that meet future energy demand in a reliable, safe, and proliferation-resistant manner. This reactor can be operated without enrichment and reprocessing forever, once it starts. To obtain the capability of consuming natural uranium as fuel cycle input modified CANDLE burn-up scheme was adopted in this system with different core design. This study has compared the core with three designs of core reactors with the same thermal power 600 MWth. The fuel composition each design was arranged by divided core into several parts of equal volume axially i.e. 6, 8 and 10 parts related to material burn-up history. The fresh natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions, i.e. shifted the core of the region (i) into region (i+1) region after the end of 10 years burn-up cycle. The calculation results shows that for the burn-up strategy on "Region-8" and "Region-10" core designs, after the reactors start-up the operation furthermore they only needs natural uranium supply to the next life operation until one period of refueling (10 years).

  15. Thermoacoustic natural gas liquefier

    SciTech Connect

    Swift, G.W.

    1995-06-01

    In collaboration with Cryenco Inc. and NIST-Boulder, we intend to develop a natural gas-powered natural-gas liquefier which has absolutely no moving parts and requires no electrical power. It will have high efficiency, remarkable reliability, and low cost. Progress on the liquefier to be constructed at Cryenco continues satisfactorily. The thermoacoustic driver is still ahead of the pulse tube refrigerator, because of NIST`s schedule. We completed the thermoacoustics design in the fall of 1994, with Los Alamos providing physics input and checks of all aspects, and Cryenco providing engineering to ASME code, drafting, etc. Completion of this design represents a significant amount of work, especially in view of the many unexpected problems encountered. Meanwhile, Cryenco and NIST have almost completed the design of the pulse tube refrigerator. At Los Alamos, we have assembled a half-size scale model of the thermoacoustic portion of the 500 gal/day TANGL. This scale model will enable easy experimentation in harmonic suppression techniques, new stack geometries, new heat-exchanger geometries, resonator coiling, and other areas. As of March 1995, the scale model is complete and we are performing routine debugging tests and modifications.

  16. Natural gas monthly, June 1996

    SciTech Connect

    1996-06-24

    The natural gas monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article for this month is Natural Gas Industry Restructuring and EIA Data Collection.

  17. Natural gas monthly, November 1996

    SciTech Connect

    1996-11-01

    The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``US natural gas imports and exports-1995``. 6 figs., 24 tabs.

  18. Natural gas monthly, August 1995

    SciTech Connect

    1995-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

  19. Natural gas monthly: April 1996

    SciTech Connect

    1996-04-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article focuses on preliminary highlights from the 1995 natural gas industry. 7 figs., 25 tabs.

  20. Natural Gas Monthly, October 1993

    SciTech Connect

    Not Available

    1993-11-10

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature articles are: US Production of Natural Gas from Tight Reservoirs: and Expanding Rule of Underground Storage.

  1. Natural gas monthly, April 1997

    SciTech Connect

    1997-04-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.

  2. Natural gas monthly, October 1997

    SciTech Connect

    1997-10-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article in this issue is a special report, ``Comparison of Natural Gas Storage Estimates from the EIA and AGA.`` 6 figs., 26 tabs.

  3. Natural gas monthly, June 1994

    SciTech Connect

    Not Available

    1994-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is the executive summary from Natural Gas 1994: Issues and Trends. 6 figs., 31 tabs.

  4. Natural gas monthly, May 1997

    SciTech Connect

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  5. Natural gas monthly, December 1997

    SciTech Connect

    1997-12-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The article this month is entitled ``Recent Trends in Natural Gas Spot Prices.`` 6 figs., 27 tabs.

  6. Natural gas monthly, April 1998

    SciTech Connect

    1998-04-01

    This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration (EIA). Estimates extend through April 1998 for many data series. The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, feature articles are presented designed to assist readers in using and interpreting natural gas information. This issue contains the special report, ``Natural Gas 1997: A Preliminary Summary.`` This report provides information on natural gas supply and disposition for the year 1997, based on monthly data through December from EIA surveys. 6 figs., 28 tabs.

  7. Natural gas monthly, April 1994

    SciTech Connect

    Not Available

    1994-04-26

    The National Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  8. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  9. Natural Gas Storage Research at Savannah River National Laboratory

    SciTech Connect

    Anton, Don; Sulic, Martin; Tamburello, David A.

    2015-05-04

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  10. Emissions of toxic pollutants from compressed natural gas and low sulfur diesel-fueled heavy-duty transit buses tested over multiple driving cycles.

    PubMed

    Kado, Norman Y; Okamoto, Robert A; Kuzmicky, Paul A; Kobayashi, Reiko; Ayala, Alberto; Gebel, Michael E; Rieger, Paul L; Maddox, Christine; Zafonte, Leo

    2005-10-01

    The number of heavy-duty vehicles using alternative fuels such as compressed natural gas (CNG) and new low-sulfur diesel fuel formulations and equipped with after-treatment devices are projected to increase. However, few peer-reviewed studies have characterized the emissions of particulate matter (PM) and other toxic compounds from these vehicles. In this study, chemical and biological analyses were used to characterize the identifiable toxic air pollutants emitted from both CNG and low-sulfur-diesel-fueled heavy-duty transit buses tested on a chassis dynamometer over three transient driving cycles and a steady-state cruise condition. The CNG bus had no after-treatment, and the diesel bus was tested first equipped with an oxidation catalyst (OC) and then with a catalyzed diesel particulate filter (DPF). Emissions were analyzed for PM, volatile organic compounds (VOCs; determined on-site), polycyclic aromatic hydrocarbons (PAHs), and mutagenic activity. The 2000 model year CNG-fueled vehicle had the highest emissions of 1,3-butadiene, benzene, and carbonyls (e.g., formaldehyde) of the three vehicle configurations tested in this study. The 1998 model year diesel bus equipped with an OC and fueled with low-sulfur diesel had the highest emission rates of PM and PAHs. The highest specific mutagenic activities (revertants/microg PM, or potency) and the highest mutagen emission rates (revertants/mi) were from the CNG bus in strain TA98 tested over the New York Bus (NYB) driving cycle. The 1998 model year diesel bus with DPF had the lowest VOCs, PAH, and mutagenic activity emission. In general, the NYB driving cycle had the highest emission rates (g/mi), and the Urban Dynamometer Driving Schedule (UDDS) had the lowest emission rates for all toxics tested over the three transient test cycles investigated. Also, transient emissions were, in general, higher than steady-state emissions. The emissions of toxic compounds from an in-use CNG transit bus (without an oxidation

  11. Systems for delivering liquified natural gas to an engine

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; O'Brien, James E.; Siahpush, Ali S.; Brown, Kevin B.

    2000-01-01

    A fuel delivery system includes a fuel tank configured to receive liquid natural gas. A first conduit extends from a vapor holding portion of the fuel tank to an economizer valve. A second conduit extends from a liquid holding portion of the fuel tank to the economizer valve. Fluid coupled to the economizer valve is a vaporizer which is heated by coolant from the engine and is positioned below the fuel tank. The economizer valve selectively withdraws either liquid natural gas or vaporized natural gas from the fuel tank depending on the pressure within the vapor holding portion of the fuel tank. A delivery conduit extends from the vaporizer to the engine. A return conduit having a check valve formed therein extends from the delivery conduit to the vapor holding portion of the fuel tank for pressurizing the fuel tank.

  12. Study of a blast-furnace smelting technology which involves the injection of pulverized-coal fuel, natural gas, and an oxygen-enriched blast into the hearth

    SciTech Connect

    Ryzhenkov, A.N.; Yaroshevskii, S.L.; Zamuruev, V.P.; Popov, V.E.; Afanas'eva, Z.K.

    2006-05-15

    Studies were made of features of a blast-furnace smelting technology that involves the injection of natural gas (NG), oxygen (O{sub 2}) and pulverized-coal fuel (PCF) into the hearth. The technology has been implemented in the compensation and overcompensation regimes, which has made it possible to maintain or improve the gas dynamics of the furnace, the conditions for the reduction of iron oxides, the heating of the charge, and PCF combustion in the tuyere zone as PCF consumption is increased and coke use is decreased. Under the given conditions, with the blast having an oxygen content of 25.64-25.7%, the hearth injection of 131-138 kg PCF and 65-69 m{sup 3} NG for each ton of pig iron has made it possible to reduce coke consumption by 171-185 kg/ton pig (30.2-32.7%), reduce the consumption of comparison fuel by 36-37 kg/ton (5.2-5.3%), and lower the production cost of the pig iron by 43-49 hryvnas/ton (3.7-6.4%). Here, furnace productivity has increased 3.8-6.5%, while the quality of the conversion pig iron remains the same as before. Measures are being implemented to further increase the level and efficiency of PCF use.

  13. Development of an ultra-safe, ultra-low-emissions natural gas-fueled school bus: Phase 2, prototype hardware development

    SciTech Connect

    Kubesh, J.

    1996-04-01

    This report summarizes work done on Phase 2, ``Prototype Hardware Development`` of Southwest Research Institute (SwRI) Project No. 03-6871, ``Development of an Ultra-Safe, Ultra-Low-Emissions Alternative-Fueled School Bus``. A prototype school bus was designed and constructed. This bus incorporated many new technologies to increase the safety of the bus passengers as well as pedestrians boarding and leaving the bus. These technologies emphasized increased visibility between the bus driver and pedestrians or vehicles, and included the use of high intensity discharge lighting, pedestrian and vehicle detection systems, and remote-mounted cameras. Passenger safety was also stressed, with the application of seat belts and improved emergency exits and lighting. A natural gas-fueled engine was developed for powering the bus. The development process focused primarily on improvements to the lean operation of the engine and control system advancements. The control system development included investigations into alternative control algorithms for steady-state and transient operation, various fuel metering devices, as well as new methods for wastegate control, knock and misfire detection, and catalyst monitoring. Both the vehicle and engine systems represent state-of-the-art technologies. Integration of the vehicle and engine is planned for the next phase of the project, followed by a demonstration test of the overall vehicle system.

  14. Fuel gas systems

    SciTech Connect

    Wise, D.L.

    1983-01-01

    This book is concerned with the production of methane and alcohol fuels from biomass. Topics considered include the potential of biomass, biogas digester design, the treatment of waste water using the upflow anaerobic sludge blanket process, methane from crop-grown biomass, methane production from agricultural residues, the anaerobic digestion process, the anaerobic digestion of organic wastes, cogeneration using biogas, and resource availability.

  15. Liquefied Natural Gas Transfer

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Chicago Bridge & Iron Company's tanks and associated piping are parts of system for transferring liquefied natural gas from ship to shore and storing it. LNG is a "cryogenic" fluid meaning that it must be contained and transferred at very low temperatures, about 260 degrees below Fahrenheit. Before the LNG can be pumped from the ship to the storage tanks, the two foot diameter transfer pipes must be cooled in order to avoid difficulties associated with sharp differences of temperature between the supercold fluid and relatively warm pipes. Cooldown is accomplished by sending small steady flow of the cryogenic substance through the pipeline; the rate of flow must be precisely controlled or the transfer line will be subjected to undesirable thermal stress.

  16. Assessment of air quality after the implementation of compressed natural gas (CNG) as fuel in public transport in Delhi, India.

    PubMed

    Ravindra, Khaiwal; Wauters, Eric; Tyagi, Sushil K; Mor, Suman; Van Grieken, René

    2006-04-01

    Public transport in Delhi was amended by the Supreme Court of India to use Compressed Natural Gas (CNG) instead of diesel or petrol. After the implementation of CNG since April 2001, Delhi has the highest fraction of CNG-run public vehicles in the world and most of them were introduced within 20 months. In the present study, the concentrations of various criteria air pollutants (SPM, PM(10), CO, SO(2) and NO(x)) and organic pollutants such as benzene, toluene, xylene (BTX) and polycyclic aromatic hydrocarbons (PAHs) were assessed before and after the implementation of CNG. A decreasing trend was found for PAHs, SO(2) and CO concentrations, while the NO(x) level was increased in comparison to those before the implementation of CNG. Further, SPM, PM(10), and BTX concentrations showed no significant change after the implementation of CNG. However, the BTX concentration demonstrated a clear relation with the benzene content of gasoline. In addition to the impact of the introduction of CNG the daily variation in PAHs levels was also studied and the PAHs concentrations were observed to be relatively high between 10 pm to 6 am, which gives a proof of a relation with the limited day entry and movement of heavy vehicles in Delhi. PMID:16614782

  17. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  18. Coal or natural gas for ecofuel production

    SciTech Connect

    Geertsema, A.

    1998-07-01

    The paper reviews the technology of the Fischer-Tropsch synthesis used in the Sasal plant in South Africa. It discusses environmental aspects and economics of new FT facilities for the production of diesel fuels. Several projects are briefly described which use this technology for natural gas conversion.

  19. Industrial fuel gas plant project. Phase II. Memphis industrial fuel gas plant. Final report. [U-GAS process

    SciTech Connect

    Not Available

    1983-01-01

    The Industrial Fuel Gas Plant produces a nominal 50 billion Btu/day of product gas. The entire IFG production will be sold to MLGW. Under normal conditions, 20% of the output of the plant will be sold by MLGW to the local MAPCO refinery and exchanged for pipeline quality refinery gas. The MAPCO refinery gas will be inserted into the Memphis Natural Gas Distribution System. A portion (normally 10%) of the IFG output of the plant will be diverted to a Credit Generation Unit, owned by MLGW, where the IFG will be upgraded to pipeline quality (950 Btu/SCF). This gas will be inserted into MLGW's Natural Gas Distribution System. The remaining output of the IFG plant (gas with a gross heating value of 300 Btu/SCF) will be sold by MLGW as Industrial Fuel Gas. During periods when the IFG plant is partially or totally off-stream, natural gas from the Memphis Natural Gas Distribution System will be sent to an air mixing unit where the gas will be diluted to a medium Btu content and distributed to the IFG customers. Drawing 2200-1-50-00104 is the plant block flow diagram showing the process sequence and process related support facilities of this industrial plant. Each process unit as well as each process-related support facility is described briefly.

  20. Installation of 200 kW UTC PC-25 Natural Gas Fuel Cell At City of Anaheim Police Station

    SciTech Connect

    Dina Predisik

    2006-09-15

    The City of Anaheim Public Utilities Department (Anaheim) has been providing electric service to Anaheim residents and businesses for over a century. As a city in a high-growth region, identifying sources of reliable energy to meet demand is a constant requirement. Additionally, as more power generation is needed, locating generating stations locally is a difficult proposition and must consider environmental and community impacts. Anaheim believes benefits can be achieved by implementing new distributed generation technologies to supplement central plants, helping keep pace with growing demand for power. If the power is clean, then it can be delivered with minimal environmental impact. Anaheim started investigating fuel cell technology in 2000 and decided a field demonstration of a fuel cell power plant would help determine how the technology can best serve Anaheim. As a result, Anaheim completed the project under this grant as a way to gain installation and operating experience about fuel cells and fuel cell capabilities. Anaheim also hopes to help others learn more about fuel cells by providing information about this project to the public. Currently, Anaheim has hosted a number of requested tours at the project site, and information about the project can be found on Anaheim Public Utilities RD&D Project website. The Anaheim project was completed in four phases including: research and investigation, purchase, design, and construction. The initial investigative phase started in 2000 and the construction of the project was completed in February 2005. Since acceptance and startup of the fuel cell, the system has operated continuously at an availability of 98.4%. The unit provides an average of about 4,725 kilowatthours a day to the Utilities' generation resources. Anaheim is tracking the operation of the fuel cell system over the five-year life expectancy of the fuel stack and will use the information to determine how fuel cells can serve Anaheim as power generators.

  1. 75 FR 73071 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... Energy Regulatory Commission Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas... Abandonment Project proposed by Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas... affecting the quality of the human environment. The EA has been placed in the public files of the FERC...

  2. A model of the Capital Cost of a natural gas-fired fuel cell based Central Utilities Plant

    SciTech Connect

    Not Available

    1993-06-30

    This model defines the methods used to estimate the cost associated with acquisition and installation of capital equipment of the fuel cell systems defined by the central utility plant model. The capital cost model estimates the cost of acquiring and installing the fuel cell unit, and all auxiliary equipment such as a boiler, air conditioning, hot water storage, and pumps. The model provides a means to adjust initial cost estimates to consider learning associated with the projected level of production and installation of fuel cell systems. The capital cost estimate is an input to the cost of ownership analysis where it is combined with operating cost and revenue model estimates.

  3. Fuel savings with conventional hot water space heating systems by incorporating a natural gas powered heat pump. Preliminary project: Development of heat pump technology

    NASA Astrophysics Data System (ADS)

    Vanheyden, L.; Evertz, E.

    1980-12-01

    Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.

  4. Environmental consequences of increased natural-gas usage

    SciTech Connect

    Cole, F. )

    1993-01-01

    Energy use is the primary cause of many environmental problems in the United States and around the world. Fossil fuels, including coal, oil, and natural gas, supply roughly 90 percent of our energy needs in the United States, and they are directly responsible for urban and industrial air pollution and acid rain. Combustion emissions from fossil fuels also contribute to the Earth's greenhouse effect, and they may play an important role in ozone depletion in the stratosphere, and oxidant depletion in the troposphere. Natural gas, which is mostly methane, is the least polluting of the fossil fuels. Upon combustion, natural gas produces lower CO[sub 2], CO, NO[sub x], SO[sub 2], and particulate emissions than either oil or coal. This means that substitution of natural gas for oil and coal can help mitigate air pollution and the human contribution to the greenhouse effect. However, methane is itself a potent greenhouse gas, and increased production and consumption of natural gas must be conducted in such a way that gas leakages are minimized. Natural gas compares well to the other fossil fuels in terms of water quality, preservation of natural ecosystems, and safety. These combined advantages may give natural gas a more prominent role in the US energy mix. Like other fossil fuels though, natural gas is nonrenewable and, therefore, not a permanent solution to our energy needs. 40 refs., 15 figs., 1 tab.

  5. Feasibility study for alternate fuels production: unconventional natural gas from wastewater treatment plants. Volume II, Appendix D. Final report

    SciTech Connect

    Overly, P.; Tawiah, K.

    1981-12-01

    Data are presented from a study performed to determined the feasibility of recovering methane from sewage at a typical biological secondary wastewater treatment plant. Three tasks are involved: optimization of digester gas; digester gas scrubbing; and application to the East Bay Municipal Utility District water pollution control plant. Results indicate that excess digester gas can be used economically at the wastewater treatment plant and that distribution and scrubbing can be complex and costly. (DMC) 193 references, 93 figures, 26 tables.

  6. Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell

    NASA Astrophysics Data System (ADS)

    1994-03-01

    The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimates of the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

  7. Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report

    SciTech Connect

    Not Available

    1994-03-01

    The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

  8. Greenhouse gas impacts of natural gas: Influence of deployment choice, methane leak rate, and methane GWP

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.

    2015-12-01

    Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.

  9. Natural gas monthly, May 1995

    SciTech Connect

    1995-05-24

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  10. Natural gas monthly, February 1996

    SciTech Connect

    1996-03-01

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  11. Natural gas monthly, February 1994

    SciTech Connect

    Not Available

    1994-02-25

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

  12. Natural gas monthly, March 1998

    SciTech Connect

    1998-03-01

    The March 1998 edition of the Natural Gas Monthly highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. This report also features an article on the correction of errors in the drilling activity estimates series, and in-depth drilling activity data. 6 figs., 28 tabs.

  13. Natural gas monthly, October 1995

    SciTech Connect

    1995-10-23

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary of the terms used in this report is provided to assist readers in understanding the data presented in this publication. 6 figs., 30 tabs.

  14. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas

    PubMed Central

    2012-01-01

    Background One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used − rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. Results High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than

  15. Natural gas monthly, January 1994

    SciTech Connect

    Not Available

    1994-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured article for this month is on US coalbed methane production.

  16. Natural gas conversion process

    SciTech Connect

    Not Available

    1991-01-01

    The main objective is to design and operate a laboratory apparatus for the catalytic reforming of natural gas in order to provide data for a large-scale process. To accelerate the assembly and calibration of this equipment, a request has been made to the Lawrence Berkeley Laboratory for assistance, under the DOE's Industrial Visitor Exchange Program. Pr. Heinz Heinemann (Catalysis), Dr. John Apps (Geochemistry) and Dr. Robert Fulton (Mechanical Engineering) have expressed interest in supporting our request. Pr. Heinemann's recent results on the conversion of Petroleum Coke residues into CO2 and H2 mixtures using highly basic metal oxides catalysts, similar to ours, are very encouraging regarding the possibility of converting the Coke residue on our catalyst into Syngas in the Regenerator/riser, as proposed. To minimize Coke formation in the vapor phase, by the Plasmapyrolytic Methane Conversion reactions, the experimental data of H. Drost et al. (Ref. 12) have been reviewed. Work is underway to design equipment for the safe and non-polluting disposal of the two gaseous product streams of the flow loop. 2 refs.

  17. Natural gas monthly, October 1991

    SciTech Connect

    Not Available

    1991-11-05

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. 16 figs., 33 tabs.

  18. Natural Gas Emergencies

    MedlinePlus

    ... before you dig on your property. If you smell gas outdoors, move away from the area until you no longer smell the gas and call 911. Do not return ... it is safe to do so. If you smell gas indoors, get outside immediately, leaving doors open ...

  19. Natural gas pipeline technology overview.

    SciTech Connect

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies

  20. Fracture mechanics analysis of NGV fuel cylinders. Part 1. Steel cylinders. Topical report, August 1989-February 1993. [NGV (Natural Gas Vehicles)

    SciTech Connect

    Connolly, M.P.; Hudak, S.J.; Roy, S.

    1993-02-01

    Compressed natural gas (CNG) cylinders for natural gas vehicles (NGVs) are subject to a combination of pressure cycles, associated with periodic refueling, and a potentially corrosive CNG environment. Under these conditions it has been shown that the life of the cylinder is governed by the corrosion-fatigue crack growth of internal flaws such as voids, pits or folds that may be present after manufacture. For NGV applications, these cylinders are required to operate for at least 15 years and the report, through a detailed fracture mechanics analysis, describes approaches to achieving the desired life. The analysis shows that a 15 year cylinder life can be obtained by using quality control to ensure that no initial defects greater than 0.045 in. X 0.090 in. exist after manufacture. Alternatively, gas drying can be used at the distribution stations to reduce the detrimental effects of the remaining CNG impurities, and thereby, produce long cylinder lives. The analysis also considers the role of in-service inspection/retest and shows that in-service NDE has little advantage, either technically or economically, for ensuring the fitness-for-service of steel NGV cylinders. The analysis also shows that hydrostatic testing of cylinders, either at manufacture or in service, is ineffective for detecting fatigue cracks and therefore should not be implemented as part of a fitness-for-service plan for NGV fuel cylinders. The issue of cylinder geometry was also considered and the analysis shows that improperly designed flat-bottomed CNG cylinders can result in premature fatigue failures originating at the inner wall in the transition region between the cylinder end and sidewall.

  1. SEAPORT LIQUID NATURAL GAS STUDY

    SciTech Connect

    COOK,Z.

    1999-02-01

    The Seaport Liquid Natural Gas Study has attempted to evaluate the potential for using LNG in a variety of heavy-duty vehicle and equipment applications at the Ports of Los Angeles and Oakland. Specifically, this analysis has focused on the handling and transport of containerized cargo to, from and within these two facilities. In terms of containerized cargo throughput, Los Angeles and Oakland are the second and sixth busiest ports in the US, respectively, and together handle nearly 4.5 million TEUs per year. At present, the landside handling and transportation of containerized cargo is heavily dependent on diesel-powered, heavy-duty vehicles and equipment, the utilization of which contributes significantly to the overall emissions impact of port-related activities. Emissions from diesel units have been the subject of increasing scrutiny and regulatory action, particularly in California. In the past two years alone, particulate matter from diesel exhaust has been listed as a toxic air contaminant by CAM, and major lawsuits have been filed against several of California's largest supermarket chains, alleging violation of Proposition 65 statutes in connection with diesel emissions from their distribution facilities. CARE3 has also indicated that it may take further regulatory action relating to the TAC listing. In spite of these developments and the very large diesel emissions associated with port operations, there has been little AFV penetration in these applications. Nearly all port operators interviewed by CALSTART expressed an awareness of the issues surrounding diesel use; however, none appeared to be taking proactive steps to address them. Furthermore, while a less controversial issue than emissions, the dominance of diesel fuel use in heavy-duty vehicles contributes to a continued reliance on imported fuels. The increasing concern regarding diesel use, and the concurrent lack of alternative fuel use and vigorous emissions reduction activity at the Ports provide

  2. Natural gas leak mapper

    DOEpatents

    Reichardt, Thomas A.; Luong, Amy Khai; Kulp, Thomas J.; Devdas, Sanjay

    2008-05-20

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  3. Natural gas monthly, February 1998

    SciTech Connect

    1998-02-01

    This issue of the Natural Gas Monthly (NGM) presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through February 1998 for many data series, and through November 1997 for most natural gas prices. Highlights of the natural gas data contained in this issue are: Preliminary estimates for January and February 1998 show that dry natural gas production, net imports, and consumption are all within 1 percent of their levels in 1997. Warmer-than-normal weather in recent months has resulted in lower consumption of natural gas by the residential sector and lower net withdrawals of gas from under round storage facilities compared with a year ago. This has resulted in an estimate of the amount of working gas in storage at the end of February 1998 that is 18 percent higher than in February 1997. The national average natural gas wellhead price is estimated to be $3.05 per thousand cubic feet in November 1997, 7 percent higher than in October. The cumulative average wellhead price for January through November 1997 is estimated to be $2.42 per thousand cubic feet, 17 percent above that of the same period in 1996. This price increase is far less than 36-percent rise that occurred between 1995 and 1996. 6 figs., 26 tabs.

  4. Natural Gas Industry and Markets

    EIA Publications

    2006-01-01

    This special report provides an overview of the supply and disposition of natural gas in 2004 and is intended as a supplement to the Energy Information Administration's (EIA) Natural Gas Annual 2004 (NGA). Unless otherwise stated, all data and figures in this report are based on summary statistics published in the NGA 2004.

  5. Natural gas monthly, July 1990

    SciTech Connect

    Not Available

    1990-10-03

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

  6. Natural gas monthly, August 1990

    SciTech Connect

    Not Available

    1990-11-05

    This report highlights activities, events, and analyses of interest to public and private sector oganizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 33 tabs.

  7. Natural Gas Energy Educational Kit.

    ERIC Educational Resources Information Center

    American Gas Association, Arlington, VA. Educational Services.

    Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of…

  8. Natural gas monthly, December 1996

    SciTech Connect

    1996-12-01

    This document highlights activities, events, and analysis of interest to the public and private sector associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

  9. Comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG) used by transit agencies in Texas. Research report

    SciTech Connect

    Lede, N.W.

    1997-09-01

    This study is a detailed comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG). The study provides data on two alternative fuels used by transit agencies in Texas. First, we examine the `state-of-the- art` in alternative fuels to established a framework for the study. Efforts were made to examine selected characteristics of two types of natural gas demonstrations in terms of the following properties: energy source characteristics, vehicle performance and emissions, operations, maintenance, reliability, safety costs, and fuel availability. Where feasible, two alternative fuels were compared with conventional gasoline and diesel fuel. Environmental considerations relative to fuel distribution and use are analyzed, with a focus on examining flammability an other safety-related issues. The objectives of the study included: (1) assess the state-of-the-art and document relevant findings pertaining to alternative fuels; (2) analyze and synthesize existing databases on two natural gas alternatives: liquefied natural gas (LNG) and compressed natural gas (CNG): and (3) compare two alterative fuels used by transit properties in Texas, and address selected aspects of alternative fuels such as energy source characteristics, vehicle performance and emissions, safety, costs, maintenance and operations, environmental and related issues.

  10. New roles for natural gas in the 1990s

    SciTech Connect

    Soeder, D.J. )

    1990-05-01

    A probable increase in the use of natural gas is predicted to occur over the next decade because heightened concerns by the public over air quality are likely to place severe constraints on increased use of coal and petroleum as primary fuels. Congress and the states appear to be preparing to legislate new clean air standards that will be difficult to achieve under present economic conditions using the current mix of hydrocarbon fuels. Natural gas is a favorable fuel for several reasons. Because it has a high hydrogen-to-carbon ratio, it produces the least amount of carbon dioxide per calorie of any of the hydrocarbon fuels. Combustion of gas in modern burners does not produce significant CO, NO{sub x}, SO{sub 2}, or any of the complex photochemicals responsible for smog and ozone pollution. Supplies of gas are plentiful, with a total domestic recoverable resource base of over 980 tcf estimated by the Potential Gas Agency. Additional gas, not counted in reserve estimates, is present in abandoned fields, where secondary recovery techniques may produce significant quantities. A promising area for increased natural gas usage in the next decade is electrical power generation, either by substituting gas for oil and coal as a boiler fuel or by generating electricity directly using chemical fuel cells powered by natural gas and air. Natural gas-fueled vehicles are another favored technology, due to very low emission levels and because natural gas can be run in a standard automotive engine with only minor mechanical modifications. Vehicles must carry compressed natural gas in high-pressure cylinders, but adsorptive materials are being developed to transport significant quantities at reduced pressure. Current technology can pack a 2,400-psi volume-equivalent of natural gas onto adsorptive material in the same space at only 500 psi.

  11. Power Gas and Combined Cycles: Clean Power From Fossil Fuels

    ERIC Educational Resources Information Center

    Metz, William D.

    1973-01-01

    The combined-cycle system is currently regarded as a useful procedure for producing electricity. This system can burn natural gas and oil distillates in addition to coal. In the future when natural gas stocks will be low, coal may become an important fuel for such systems. Considerable effort must be made for research on coal gasification and…

  12. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  13. Natural Gas Hydrates Update 1998-2000

    EIA Publications

    2001-01-01

    Significant events have transpired on the natural gas hydrate research and development front since "Future Supply Potential of Natural Gas Hydrates" appeared in Natural Gas 1998 Issues and Trends and in the Potential Gas Committee's 1998 biennial report.

  14. State policies and requirements for management of uranium mining and milling in New Mexico. Volume IV. The supply of electric power and natural gas fuel as possible constraints on uranium production

    SciTech Connect

    Page, G.B.

    1980-04-01

    The report contained in this volume considers the availability of electric power to supply uranium mines and mills. The report, submited to Sandia Laboratories by the New Mexico Department of Energy and Minerals (EMD), is reproduced without modification. The state concludes that the supply of power, including natural gas-fueled production, will not constrain uranium production.

  15. Demonstration of a Low-NOx Heavy-Duty Natural Gas Engine

    SciTech Connect

    Not Available

    2004-02-01

    Results of a Next Generation Natural Gas Vehicle engine research project: A Caterpillar C-12 natural gas engine with Clean Air Power Dual-Fuel technology and exhaust gas recirculation demonstrated low NOx and PM emissions.

  16. Gas turbine engine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. S. (Inventor)

    1973-01-01

    A variable orifice system is described that is responsive to compressor inlet pressure and temperature, compressor discharge pressure and rotational speed of a gas-turbine engine. It is incorporated into a hydraulic circuit that includes a zero gradient pump driven at a speed proportional to the speed of the engine. The resulting system provides control of fuel rate for starting, steady running, acceleration and deceleration under varying altitudes and flight speeds.

  17. Method and apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles

    DOEpatents

    Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

    2005-05-31

    A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

  18. The role of natural gas as a primary fuel in the near future, including comparisons of acquisition, transmission and waste handling costs of as with competitive alternatives.

    PubMed

    Liang, Fang-Yu; Ryvak, Marta; Sayeed, Sara; Zhao, Nick

    2012-01-01

    Natural gas comprises about a quarter of the United States' energy use. It is more environmentally friendly than oil and coal due to lower carbon dioxide (CO2) emissions per unit, less costly per unit of energy and more readily available domestically in abundant supply. However, due to a number of barriers in the political, infrastructural, pricing and other arenas, the use of natural gas as a significant energy source in the United States has been limited. In our paper, we highlight the favorable qualities of natural gas and its benefits for the consumer, producer, and environment, having compared the costs of the various components of the natural gas business such as drilling and transport to that of coal and oil. Moreover, we touch upon the major issues that have prevented a more prevalent use of the gas, such as the fact that the infrastructure of natural gas is more costly since it is transported though pipelines whereas other energy sources such as oil and coal have flexible systems that use trains, trucks and ships. In addition, the powerful lobbies of the coal and oil businesses, along with the inertia in the congress to pass a national climate change bill further dampens incentives for these industries to invest in natural gas, despite its various attractive qualities. We also include discussions of policy proposals to incentive greater use of natural gas in the future. PMID:22540989

  19. The role of natural gas as a primary fuel in the near future, including comparisons of acquisition, transmission and waste handling costs of as with competitive alternatives

    PubMed Central

    2012-01-01

    Natural gas comprises about a quarter of the United States’ energy use. It is more environmentally friendly than oil and coal due to lower carbon dioxide (CO2) emissions per unit, less costly per unit of energy and more readily available domestically in abundant supply. However, due to a number of barriers in the political, infrastructural, pricing and other arenas, the use of natural gas as a significant energy source in the United States has been limited. In our paper, we highlight the favorable qualities of natural gas and its benefits for the consumer, producer, and environment, having compared the costs of the various components of the natural gas business such as drilling and transport to that of coal and oil. Moreover, we touch upon the major issues that have prevented a more prevalent use of the gas, such as the fact that the infrastructure of natural gas is more costly since it is transported though pipelines whereas other energy sources such as oil and coal have flexible systems that use trains, trucks and ships. In addition, the powerful lobbies of the coal and oil businesses, along with the inertia in the congress to pass a national climate change bill further dampens incentives for these industries to invest in natural gas, despite its various attractive qualities. We also include discussions of policy proposals to incentive greater use of natural gas in the future. PMID:22540989

  20. Greater focus needed on methane leakage from natural gas infrastructure.

    PubMed

    Alvarez, Ramón A; Pacala, Stephen W; Winebrake, James J; Chameides, William L; Hamburg, Steven P

    2012-04-24

    Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH(4) leakage were capped at a level 45-70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH(4) losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. PMID:22493226

  1. Greater focus needed on methane leakage from natural gas infrastructure

    PubMed Central

    Alvarez, Ramón A.; Pacala, Stephen W.; Winebrake, James J.; Chameides, William L.; Hamburg, Steven P.

    2012-01-01

    Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. PMID:22493226

  2. Crude oil and natural gas pricing. Chapters 300 to 499: natural gas liquids, natural gas

    SciTech Connect

    Kelly, P.D.

    1980-01-01

    This text analyzes the federal statutes and regulations that affect the pricing and allocation of crude oil, natural gas, and natural gas liquids. It does not cover refined products or imported crude oil except where necessary to place major decisions in historical context. Chapter 300 concerns natural gas liquids. For historical rather than logical reasons, these are regulated as an offshoot of crude oil controls rather than as a by-product of natural gas production. In December 1979, the Economic Regulatory Administration (ERA) deregulated butane and natural gasoline. However, it did not amend 10 CFR 212.161-212.173, and it did not deregulate propane or propane mixtures. Decontrol will be covered in the first update to this book. Chapters 400 to 468 concern natural gas. Although a great deal of attention has been focused on the Natural Gas Policy Act (NGPA), there has been no satisfactory description of the extent to which the Natural Gas Act (NGA; passed in 1938 and amended by the Phillips decision in 1954) still applies. This is quite a problem, since the NGPA is written in vague terms that encourage producers to disregard the NGA. The problem is compounded by the Federal Power Commission's (FPC) approach to regulatory development, which has scattered crucial regulations throughout 18 CFR. All Federal Energy Regulatory Commission (FERC) natural gas production regulations should be repealed, arranged into a systematic grouping, and reissued in a consolidated subpart of 18 CFR. Shortly after the publication of this text, the author will petition the FERC to commence a rulemaking proceeding to that effect. Chapters 480 to 498 will cover the use of natural gas. These chapters will be issued in the first revision to this text as general summaries since the programs do not directly affect gas producers.

  3. 75 FR 13524 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... Energy Regulatory Commission Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental Gas Pipe Line Company, LLC, Enterprise Field Services, LLC; Notice of Application March 16, 2010. Take notice that on March 5, 2010, Northern Natural Gas...

  4. North American Natural Gas Markets

    SciTech Connect

    Not Available

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  5. North American Natural Gas Markets

    SciTech Connect

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  6. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, P.; George, R.A.

    1999-07-27

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

  7. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, Prabhakar; George, Raymond A.

    1999-01-01

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

  8. Natural Gas Monthly August 1998

    SciTech Connect

    1998-08-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. Explanatory notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication.

  9. Gas Hydrate Storage of Natural Gas

    SciTech Connect

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  10. Using Natural Gas for Vehicles: Comparing Three Technologies

    SciTech Connect

    2015-12-01

    Natural gas could be used as a transportation fuel, especially with the recent expansion of U.S. resource and production. This could mean burning natural gas in an internal combustion engine like most of the vehicles on the road today. Or, with the advanced vehicles now becoming available, other pathways are possible to use natural gas for personal vehicles. This fact sheet summarizes a comparison of efficiency and environmental metrics for three possible options.

  11. Natural gas monthly, November 1997

    SciTech Connect

    1997-11-01

    This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through November for many data series, and through August for most natural gas prices. Highlights of the most recent data estimates are: (1) Preliminary estimates of dry natural gas production and total consumption available through November 1997 indicate that both series are on track to end the year at levels close to those of 1996. Cumulative dry production is one-half percent higher than in 1996 and consumption is one-half percent lower. (2) Natural gas production is estimated to be 52.6 billion cubic feet per day in November 1997, the highest rate since March 1997. (3) After falling 8 percent in July 1997, the national average wellhead price rose 10 percent in August 1997, reaching an estimated $2.21 per thousand cubic feet. (4) Milder weather in November 1997 compared to November 1996 has resulted in significantly lower levels of residential consumption of natural gas and net storage withdrawls than a year ago. The November 1997 estimates of residential consumption and net withdrawls are 9 and 20 percent lower, respectively, than in November 1996.

  12. Fuel-cycle greenhouse gas emissions from alternative fuels in Australian heavy vehicles

    NASA Astrophysics Data System (ADS)

    Beer, Tom; Grant, Tim; Williams, David; Watson, Harry

    This paper quantifies the expected pre-combustion and combustion emissions of greenhouse gases from Australian heavy vehicles using alternative fuels. We use the term exbodied emissions for these full fuel-cycle emissions. The fuels examined are low sulfur diesel (LSD), ultra-low sulfur diesel (ULS), compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), ethanol (from lignocellulose), biodiesel and waste oil. Biodiesel and ethanol have the lowest exbodied greenhouse gas emissions (in grams greenhouse gases per kilometre travelled). Biodiesel reduces exbodied greenhouse gas emissions from 41% to 51% whereas ethanol reduces emissions by 49-55%. In fact, both emit larger quantities of CO 2 than conventional fuels, but as most of the CO 2 is from renewable carbon stocks that fraction is not counted towards the greenhouse gas emissions from the fuel. The gaseous fuels (LPG, CNG) come next with emissions that range from 88% to 92% of diesel. The emissions of greenhouse gases from diesel are reduced if waste oil is used as a diesel extender, but the processing energy required to generate LSD and ULS in Australia increase their greenhouse gas emissions compared to diesel fuel. The extra energy required liquefy and cool LNG means that it has the highest exbodied greenhouse gas emissions of the fuels that were considered.

  13. Condensation of natural gas or methane into gasoline range hydrocarbons

    SciTech Connect

    Olah, G. A.

    1985-04-23

    This invention relates to a new process for the direct conversion of natural gas or methane into gasoline-range hydrocarbons (i.e., synthetic transportation fuels or lower olefins) via catalytic condensation using superacid catalysts.

  14. Theories and Conflict: The Origins of Natural Gas. Instructional Materials.

    ERIC Educational Resources Information Center

    Anderson, Susan

    This unit explores a recent and controversial theory of the origin of much of the Earth's natural gas and oil. The materials provided will give students the opportunity to: (1) gain an understanding of science and what is involved in the acceptance or rejection of theories; (2) learn about fossil fuels, especially natural gas; (3) learn the…

  15. Natural gas vehicles stall on way to market

    SciTech Connect

    Gushee, D.E.

    1995-08-01

    The outlook for increased use of natural gas for fueling autos depends primarily on comparative fuel prices and comparative vehicle prices, according to David E. Gushee, a senior fellow in environmental policy at the Library of Congress in Washington, D.C. Compressed natural gas may be a more efficient fuel than gasoline, but costs of fuel distribution and engine design can add significantly to its total price. Currently, natural gas is less expensive than gasoline at the retail level, but this price advantage depends on government and industry subsidies. For natural gas to stay competitive in the future, these subsidies likely will have to continue, says Gushee. The pump price of natural gas will have to remain low if natural gas-powered vehicles are to succeed in the market place, because such vehicles currently cost about $2,500 to $5,000 more than a comparable gasoline-powered car. Gushee says that even with mass production, the projected price difference will be about $800 per car. The challenges facing compressed natural gas are daunting, especially considering that even in nations where natural gas receives significant tax advantages, its penetration has not exceeded 15 percent.

  16. Natural gas conversion process

    SciTech Connect

    Gondouin, M.

    1991-01-01

    Work continued on Task No. 3. Particular attention was given to the back pressure control at the two gaseous effluent outlets and to the incineration of these effluents prior to their disposal. Temperature of the riser/regenerator and steam requirements were predicted from the gasification kinetics of coke and of coal char experimentally determined at atmospheric pressure, but at somewhat lower temperatures by H. Heinemann. The results of interactions of CH4 molecules with a Hydrogen Plasma in the adsorbed layer at the surface of refractory oxides were compared with those in the gas phase in order to select the optimum temperature range in the Cyclone reactor.

  17. Liquid natural gas as a transportation fuel in the heavy trucking industry. Fourth quarterly progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Sutton, W.H.

    1995-09-01

    This project encompasses the first year of a proposed three year project with emphasis focused on LNG research issues that may be categorized as direct diesel replacement with LNG fuel, and long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

  18. Thermophysical problems of the application freezing fuels for the aircraft gas-turbine engines (AGTE)

    SciTech Connect

    Janovsky, L.S.; Mitin, M.B.; Antonov, A.N.; Abashina, L.W.

    1996-12-31

    Authors of this paper analyzed results of mathematical researches of thermophysical problems of freezing and cryogenic fuels application for the aircraft gas-turbine engines (AGTE). These fuels are derived from hydrogen, propane, natural gas (methane) and oil gas (freezing mixture of hydrocarbons C{sub 2}-C{sub 10}). At present use of alternative fuels in AGTE is of great interest.

  19. Natural gas monthly, March 1999

    SciTech Connect

    1999-03-01

    This issue of the Natural Gas Monthly contains estimates for March 1999 for many natural gas data series at the national level. Estimates of national natural gas prices are available through December 1998 for most series. Highlights of the data contained in this issue are listed below. Preliminary data indicate that the national average wellhead price for 1998 declined to 16% from the previous year ($1.96 compared to $2.32 per thousand cubic feet). At the end of March, the end of the 1998--1999 heating season, the level of working gas in underground natural gas storage facilities is estimated to be 1,354 billion cubic feet, 169 billion cubic feet higher than at the end of March 1998. Gas consumption during the first 3 months of 1999 is estimated to have been 179 billion cubic feet higher than in the same period in 1998. Most of this increase (133 billion cubic feet) occurred in the residential sector due to the cooler temperatures in January and February compared to the same months last year. According to the National Weather Service, heating degree days in January 1999 were 15% greater than the previous year while February recorded a 5% increase.

  20. U.S. Natural Gas Markets: Recent Trends and Prospects for the Future

    EIA Publications

    2001-01-01

    The purpose of this study is to examine recent trends and prospects for the future of the U.S. natural gas market. Natural gas prices rose dramatically in 2000 and remained high through the first part of 2001, raising concerns about the future of natural gas prices and potential for natural gas to fuel the growth of the U.S. economy.

  1. Natural gas monthly, February 1997

    SciTech Connect

    1997-02-01

    This issue of the Natural Gas Monthly presents estimates of natural gas supply and consumption through February 1997. Estimates of natural gas prices are through November 1996 except electric utility prices that are through October 1996. Cumulatively for January through February 1997, the daily average rates for several data series remain close to those of 1996. (Comparing daily rates accounts for the fact that February 1996 had 29 days.) Daily total consumption for January through February is estimated to be 83 billion cubic feet per day, 1 percent higher than during the same period in 1996. Similarly, the estimate of average daily production of 53 billion cubic feet is 1.5 percent higher than in 1996, while daily net imports during the first 2 months of 1997 are virtually unchanged from 1996.

  2. Fuel gas combustion research at METC

    SciTech Connect

    Norton, T.S.

    1995-06-01

    The in-house combustion research program at METC is an integral part of many METC activities, providing support to METC product teams, project managers, and external industrial and university partners. While the majority of in-house combustion research in recent years has been focussed on the lean premixed combustion of natural gas fuel for Advanced Turbine Systems (ATS) applications, increasing emphasis is being placed on issues of syngas combustion, as the time approaches when the ATS and coal-fired power systems programs will reach convergence. When the METC syngas generator is built in 1996, METC will have the unique combination of mid-scale pressurized experimental facilities, a continuous syngas supply with variable ammonia loading, and a team of people with expertise in low-emissions combustion, chemical kinetics, combustion modeling, combustion diagnostics, and the control of combustion instabilities. These will enable us to investigate such issues as the effects of pressure, temperature, and fuel gas composition on the rate of conversion of fuel nitrogen to NOx, and on combustion instabilities in a variety of combustor designs.

  3. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  4. Nitrogen removal from natural gas

    SciTech Connect

    1997-04-01

    According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

  5. Advanced Liquid Natural Gas Onboard Storage System

    SciTech Connect

    Greg Harper; Charles Powars

    2003-10-31

    Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is

  6. FUEL CELL ENERGY RECOVERY FROM LANDFILL GAS

    EPA Science Inventory

    International Fuel Cells Corporation is conducting a US Environmental Protection Agency (EPA) sponsored program to demonstrate energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The US EPA is interested in fuel cells for this application b...

  7. Natural gas monthly, January 1997

    SciTech Connect

    1997-01-01

    This publication, the Natural Gas Monthly, presents the most recent data on natural gas supply, consumption, and prices from the Energy Information Administration (EIA). Of special interest in this issue are two articles summarizing reports recently published by EIA. The articles are {open_quotes}Natural Gas Productive Capacity{close_quotes} and {open_quotes}Outlook for Natural Gas Through 2015,{close_quotes} both of which precede the {open_quotes}Highlights{close_quotes} section. With this issue, January 1997, changes have been made to the format of the Highlights section and to several of the tabular and graphical presentations throughout the publication. The changes to the Highlights affect the discussion of developments in the industry and the presentation of weekly storage data. An overview of the developments in the industry is now presented in a brief summary followed by specific discussions of supply, end-use consumption, and prices. Spot and futures prices are discussed as appropriate in the Price section, together with wellhead and consumer prices.

  8. Staff Handbook on Natural Gas.

    ERIC Educational Resources Information Center

    Gorges, H. A., Ed.; Raine, L. P., Ed.

    The Department of Commerce created a Natural Gas Action Group early in the fall of 1975 to assist industrial firms and the communities they serve to cope with the effects of potentially severe and crippling curtailment situations. This action group was trained to assess a specific local situation, review the potential for remedial action and…

  9. EIA's Natural Gas Production Data

    EIA Publications

    2009-01-01

    This special report examines the stages of natural gas processing from the wellhead to the pipeline network through which the raw product becomes ready for transportation and eventual consumption, and how this sequence is reflected in the data published by the Energy Information Administration (EIA).

  10. Natural Gas Multi-Year Program Plan

    SciTech Connect

    1997-12-01

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

  11. Alternative fuels and chemicals from synthesis gas

    SciTech Connect

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  12. Alternative Fuels and Chemicals From Synthesis Gas

    SciTech Connect

    1998-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  13. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    Unknown

    1998-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  14. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    Unknown

    1999-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  15. Alternative Fuels and Chemicals from Synthesis Gas

    SciTech Connect

    Peter Tijrn

    2003-01-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  16. LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE

    SciTech Connect

    Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

    2004-08-01

    In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

  17. Thermodynamic analysis of alternative marine fuels for marine gas turbine power plants

    NASA Astrophysics Data System (ADS)

    El Gohary, Mohamed M.; Ammar, Nader R.

    2016-03-01

    The marine shipping industry faces challenges to reduce engine exhaust emissions and greenhouse gases (GHGs) from ships, and in particular, carbon dioxide. International regulatory bodies such as the International Maritime Organization and National Environmental Agencies of many countries have issued rules and regulations to drastically reduce GHG and emissions emanating from marine sources. This study investigates the possibility of using natural gas and hydrogen as alternative fuels to diesel oil for marine gas turbines and uses a mathematical model to assess the effect of these alternative fuels on gas turbine thermodynamic performance. Results show that since natural gas is categorized as a hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using natural gas was close to that of the diesel case. However, the gas turbine thermal efficiency was found to be slightly lower for natural gas and hydrogen fuels compared to diesel fuel.

  18. Combustion of coal gas fuels in a staged combustor

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  19. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    SciTech Connect

    Larsen, R.; Rimkus, W. ); Davies, J. ); Zammit, M. ); Patterson, P. )

    1992-01-01

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  20. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    SciTech Connect

    Larsen, R.; Rimkus, W.; Davies, J.; Zammit, M.; Patterson, P.

    1992-02-01

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  1. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    NASA Astrophysics Data System (ADS)

    Larsen, R.; Rimkus, W.; Davies, J.; Zammit, M.; Patterson, P.

    1992-02-01

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6-11, 1991, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control was included in the performance testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  2. Life cycle water consumption for shale gas and conventional natural gas.

    PubMed

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas. PMID:24004382

  3. Coal or natural gas for ecofuel production

    SciTech Connect

    Geertsema, A.

    1998-04-01

    Given the extensive available resources of coal and, to a lesser extent, natural gas, the challenge to access these resources in a way that balances growth and conservation in a responsible way, is a tough technological task. On the one hand there is the inadverterable and undesirable liberation of CO{sub 2} when carbon is used and on the other hand it is reasonable to assume that hydrocarbon liquids will, for the foreseeable future, remain the backbone of the supply of energy to automotive vehicles. It is therefore necessary that options for improved environmental performance of such fuels are developed and considered for application where the economics would permit it.

  4. Lightweight Tanks for Storing Liquefied Natural Gas

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2008-01-01

    Single-walled, jacketed aluminum tanks have been conceived for storing liquefied natural gas (LNG) in LNG-fueled motor vehicles. Heretofore, doublewall steel tanks with vacuum between the inner and outer walls have been used for storing LNG. In comparison with the vacuum- insulated steel tanks, the jacketed aluminum tanks weigh less and can be manufactured at lower cost. Costs of using the jacketed aluminum tanks are further reduced in that there is no need for the vacuum pumps heretofore needed to maintain vacuum in the vacuum-insulated tanks.

  5. Combustion of Illinois coals and chars with natural gas

    SciTech Connect

    Buckius, R.O.

    1991-01-01

    There are applications where the combined combustion of coal and natural gas offers potential advantages over the use of either coal or natural gas alone. For example, low volatile coals or low volatile chars derived from treatment or gasification processes can be of limited use during to their poor flammability characteristics. However, the use of natural gas in conjunction with the solid fuel can provide the necessary volatiles'' to enhance the combustion. In addition, natural gas provides a clean fuel source of fuel which, in cofiring situations, can extend the usefulness of coals with high sulfur content. The addition of natural gas may reduce SO{sub x} emission through increased sulfur retention in the ash and reduce NO{sub x} emissions by varying local stoichiometry and temperature levels. In this research program, studies of combined coal and natural gas combustion will provide particle ignition, burnout rates and ash characterization, that will help clarify the effect of coal and natural gas and identify the controlling parameters and mechanisms.

  6. Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control

    NASA Astrophysics Data System (ADS)

    Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.

    2015-06-01

    The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.

  7. Alternative fuels and chemicals from synthesis gas

    SciTech Connect

    Unknown

    1998-12-01

    A DOE/PETC funded study was conducted to examine the use of a liquid phase mixed alcohol synthesis (LPMAS) plant to produce gasoline blending ethers. The LPMAS plant was integrated into three utilization scenarios: a coal fed IGCC power plant, a petroleum refinery using coke as a gasification feedstock, and a standalone natural gas fed partial oxidation plant. The objective of the study was to establish targets for the development of catalysts for the LPMAS reaction. In the IGCC scenario, syngas conversions need only be moderate because unconverted syngas is utilized by the combined cycle system. A once through LPMAS plant achieving syngas conversions in the range of 38--49% was found to be suitable. At a gas hourly space velocity of 5,000 sL/Kg-hr and a methanol:isobutanol selectivity ratio of 1.03, the target catalyst productivity ranges from 370 to 460 g iBuOH/Kg-hr. In the petroleum refinery scenario, high conversions ({approximately}95%) are required to avoid overloading the refinery fuel system with low Btu content unconverted syngas. To achieve these high conversions with the low H{sub 2}/CO ratio syngas, a recycle system was required (because of the limit imposed by methanol equilibrium), steam was injected into the LPMAS reactor, and CO{sub 2} was removed from the recycle loop. At the most economical recycle ratio, the target catalyst productivity is 265 g iBuOH/Kg-hr. In the standalone LPMAS scenario, essentially complete conversions are required to achieve a fuel balanced plant. At the most economical recycle ratio, the target catalyst productivity is 285 g iBuOH/Kg-hr. The economics of this scenario are highly dependent on the cost of the natural gas feedstock and the location of the plant. For all three case scenarios, the economics of a LPMAS plant is marginal at current ether market prices. Large improvements over demonstrated catalyst productivity and alcohol selectivity are required.

  8. Development of a thermoacoustic natural gas liquefier.

    SciTech Connect

    Wollan, J. J.; Swift, G. W.; Backhaus, S. N.; Gardner, D. L.

    2002-01-01

    . The liquefier development program is divided into two components: Thermoacoustically driven refrigerators and linear motor driven refrigerators (LOPTRs). LOPTR technology will, for the foreseeable future, be limited to natural gas liquefaction capacities on the order of hundreds of gallons per day. TASHE-OPTR technology is expected to achieve liquefaction capacities of tens of thousands of gallons per day. This paper will focus on the TASHE-OPTR technology because its natural gas liquefaction capacity has greater market opportunity. LOPTR development will be mentioned briefly. The thermoacoustically driven refrigerator development program is now in the process of demonstrating the technology at a capacity of about 500 gallon/day (gpd) i.e., approximately 42,000 standard cubic feet/day, which requires about 7 kW of refrigeration power. This capacity is big enough to illuminate the issues of large-scale acoustic liquefaction at reasonable cost and to demonstrate the liquefaction of about 70% of an input gas stream, while burning about 30%. Subsequent to this demonstration a system with a capacity of approximately 10{sup 6} standard cubic feet/day (scfd) = 10,000 gpd with a projected liquefaction rate of about 85% of the input gas stream will be developed. When commercialized, the TASHE-OPTRs will be a totally new type of heat-driven cryogenic refrigerator, with projected low manufacturing cost, high reliability, long life, and low maintenance. A TASHE-OPTR will be able to liquefy a broad range of gases, one of the most important being natural gas (NG). Potential NG applications range from distributed liquefaction of pipeline gas as fuel for heavy-duty fleet and long haul vehicles to large-scale liquefaction at on-shore and offshore gas wellheads. An alternative to the thermoacoustic driver, but with many similar technical and market advantages, is the linear motor compressor. Linear motors convert electrical power directly into oscillating linear, or axial, motion

  9. Utilization of alternative marine fuels for gas turbine power plant onboard ships

    NASA Astrophysics Data System (ADS)

    El Gohary, M. Morsy; Seddiek, Ibrahim Sadek

    2013-03-01

    Marine transportation industry is undergoing a number of problems. Some of these problems are associated with conventional marine fuel-oils. Many researchers have showed that fuel-oil is considered as the main component that causes both environmental and economic problems, especially with the continuous rising of fuel cost. This paper investigates the capability of using natural gas and hydrogen as alternative fuel instead of diesel oil for marine gas turbine, the effect of the alternative fuel on gas turbine thermodynamic performance and the employed mathematical model. The results showed that since the natural gas is categorized as hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using the natural gas was found to be close to the diesel case performance. The gas turbine thermal efficiency was found to be 1% less in the case of hydrogen compared to the original case of diesel.

  10. FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES

    SciTech Connect

    Don Ferguson; Geo. A. Richard; Doug Straub

    2008-06-13

    In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for today’s engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

  11. Coal/biomass fuels and the gas turbine: Utilization of solid fuels and their derivatives

    SciTech Connect

    DeCorso, M.; Newby, R.; Anson, D.; Wenglarz, R.; Wright, I.

    1996-06-01

    This paper discusses key design and development issues in utilizing coal and other solid fuels in gas turbines. These fuels may be burned in raw form or processed to produce liquids or gases in more or less refined forms. The use of such fuels in gas turbines requires resolution of technology issues which are of little or no consequence for conventional natural gas and refined oil fuels. For coal, these issues are primarily related to the solid form in which coal is naturally found and its high ash and contaminant levels. Biomass presents another set of issues similar to those of coal. Among the key areas discussed are effects of ash and contaminant level on deposition, corrosion, and erosion of turbine hot parts, with particular emphasis on deposition effects.

  12. CO Methanation for Synthetic Natural Gas Production.

    PubMed

    Kambolis, Anastasios; Schildhauer, Tilman J; Kröcher, Oliver

    2015-01-01

    Energy from woody biomass could supplement renewable energy production towards the replacement of fossil fuels. A multi-stage process involving gasification of wood and then catalytic transformation of the producer gas to synthetic natural gas (SNG) represents progress in this direction. SNG can be transported and distributed through the existing pipeline grid, which is advantageous from an economical point of view. Therefore, CO methanation is attracting a great deal of attention and much research effort is focusing on the understanding of the process steps and its further development. This short review summarizes recent efforts at Paul Scherrer Institute on the understanding of the reaction mechanism, the catalyst deactivation, and the development of catalytic materials with benign properties for CO methanation. PMID:26598405

  13. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    SciTech Connect

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  14. Environmental data energy technology characterizations: natural gas

    SciTech Connect

    Not Available

    1980-04-01

    Environmental Data Energy Technology Characterizations are publications which are intended to provide policy analysts and technical analysts with basic environmental data associated with key energy technologies. This publication provides backup documentation on natural gas. The transformation of the energy in gas into a more useful form is described in this document in terms of major activity areas in the gas cycle; that is, in terms of activities which produce either an energy product or a fuel leading to the production of an energy product in a different form. The activities discussed in this document are exploration, extraction, purification, power-plants, storage and transportation of natural gas. These activities represent both well-documented and non-documented activity areas. The former activities are characterized in terms of actual operating data with allowance for future modification where appropriate. Emissions are assumed to conform to environmental standards. The other activity areas examined are those like exploration and extraction, where reliance on engineering studies provided the data. The organization of the chapters in this volume is designed to support the tabular presentation in the summary. Each chapter begins with a brief description of the activity under consideration. The standard characteristics, size, availability, mode of functioning, and place in the fuel cycle are presented. Next, major legislative and/or technological factors influencing the commercial operation of the activity are offered. Discussions of resources consumed, residuals produced, and economics follow. To aid in comparing and linking the different activity areas, data for each area are normalized to 10/sup 12/ Btu of energy output from the activity.

  15. Changing prospects for natural gas in the United States.

    PubMed

    Burnet, W M; D Ban, T S

    1989-04-21

    Natural gas has emerged as one of the primary options for satisfying the need for environmentally clean energy: the resource base is large, it is the cleanest burning of the fossil fuels, and it can be used efficiently. New engine, combustion, and energy conversion technologies are emerging that will result in use of natural gas in electric generation, emissions reduction, transportation, and residential and commercial cooling. PMID:17738301

  16. Fueling efficiency of gas puffing in ASDEX

    NASA Astrophysics Data System (ADS)

    Mayer, H.-M.; Wagner, F.; Becker, G.; Behringer, K.; Campbell, D.; Eberhagen, A.; Engelhardt, W.; Fussman, G.; Gehre, O.; Gierke, G. v.; Glock, E.; Haas, G.; Huang, M.; Karger, F.; Keilhacker, M.; Klüber, O.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Schneider, F.; Siller, G.; Steuer, K.-H.; Venus, G.

    1982-12-01

    The fueling efficiency for gas puffing, i.e. the fraction of the external gas flux that is ionized inside the separatrix, is reduced in divertor discharges since part of it is ionized in the scrape-off layer and pumped off by the divertor. The fueling efficiency is determined by switching-off the gas feed during the stationary phase of a discharge and dividing the time derivative of the total number of particles inside the separatrix by the external gas flux. The determination of this time derivative must take into account profile changes. In ASDEX the fueling efficiency ranges from close to 1.0 for discharges with a stainless steel poloidal limiter and decreases to about 0.2 at high densities ( 6 × 10 13 cm -3 line average) for diverted discharges. These results are compared with estimates of the fueling efficiency which include molecular disintegration, plasma albedo for neutral atoms and imperfect wall reflection.

  17. Natural gas 1995: Issues and trends

    SciTech Connect

    1995-11-01

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  18. LANDFILL GAS PRETREATMENT FOR FUEL CELL APPLICATIONS

    EPA Science Inventory

    The paper discusses the U.S. EPA's program, underway at International Fuel Cells Corporation, to demonstrate landfill methane control and the fuel cell energy recovery concept. In this program, two critical issues are being addressed: (1) a landfill gas cleanup method that would ...

  19. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    EPA Science Inventory

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  20. Combustion of coal-gas fuels in a staged combustor

    SciTech Connect

    Rosfjord, T J; McVey, J B; Sederquist, R A; Schultz, D F

    1982-01-01

    Gaseous fuels produced from coal resources have been considered for use in industrial gas turbines. Such fuels generally have heating values much lower than the typical gaseous fuel, natural gas; the low heating value could result in unstable or inefficient combustion. Additionally, coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable NO/sub x/ exhaust emission levels. Previous investigations have indicated that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low NO/sub x/ emission operation for coal-derived liquid fuels containing up to 0.8-wt % nitrogen. An experimental program has been conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7% ammonia are presented. The test results permit the following conclusions to be drawn: (1) Staged, rich-lean combustion represents the desirable approach to achieve ultra-low NO/sub x/ and CO emissions for coal gas fuels with heating values of 210 kJ/mol (238 Btu/scf) or higher. (2) Lean combustion represents the desirable approach to achieve ultra-low NO/sub x/ and CO emissions for coal gas fuels with low heating values (84 kJ/mol (95 Btu/scf)). (3) Staged combustion has the ability to limit NH/sub 3/ to NO/sub x/ conversion rates to less than 5%. NO/sub x/ emissions below the EPA limit can readily be achieved.

  1. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  2. Stability of natural gas in the deep subsurface

    SciTech Connect

    Barker, C.

    1996-07-01

    Natural gas is becoming increasingly important as a fuel because of its widespread occurrence and because it has a less significant environmental impact than oil. Many of the known gas accumulations were discovered by accident during exploration for oil, but with increasing demand for gas, successful exploration will require a clearer understanding of the factors that control gas distribution and gas composition. Natural gas is generated by three main processes. In oxygen-deficient, sulfate-free, shallow (few thousand feet) environments bacteria generate biogenic gas that is essentially pure methane with no higher hydrocarbons ({open_quotes}dry gas{close_quotes}). Gas is also formed from organic matter ({open_quotes}kerogen{close_quotes}), either as the initial product from the thermal breakdown of Type III, woody kerogens, or as the final hydrocarbon product from all kerogen types. In addition, gas can be formed by the thermal cracking of crude oil in the deep subsurface. The generation of gas from kerogen requires higher temperatures than the generation of oil. Also, the cracking of oil to gas requires high temperatures, so that there is a general trend from oil to gas with increasing depth. This produces a well-defined {open_quotes}floor for oil{close_quotes}, below which crude oil is not thermally stable. The possibility of a {open_quotes}floor for gas{close_quotes} is less well documented and understanding the limits on natural gas occurrence was one of the main objectives of this research.

  3. Gas supplies of interstate/natural gas pipeline companies 1989

    SciTech Connect

    Not Available

    1990-12-18

    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  4. Gas may be answer to world`s fuel needs

    SciTech Connect

    Nakicenovic, N.; Nolan, L.

    1995-08-01

    Natural gas could become the major energy source of the 21st century, serving as a {open_quotes}bridge{close_quotes} fuel from the use of fossil fuels today to renewable energy sources tomorrow, say Nebojsa Nakicenovic and Lucy Nolan. Nakicenovic is a project leader and Nolan is a former research assistant for the Environmentally Compatible Energy Strategies Project at an Austrian research institute. The use of nuclear energy will by stymied by public opposition, costs, and waste-storage problems; renewable energy technology, on the other hand, must still overcome many technological barriers. Natural gas, then, is likely to become our next dominant energy source. {open_quotes}The development of a methane economy, led by increased use of natural gas, could provide another important step in the world`s century-old stride toward a carbon-free economy,{close_quotes} the authors conclude.

  5. Natural Gas Market Centers: A 2008 Update

    EIA Publications

    2009-01-01

    This special report looks at the current status of market centers in today's natural gas marketplace, examining their role and their importance to natural gas shippers, pipelines, and others involved in the transportation of natural gas over the North American pipeline network.

  6. Alternative Fuels and Chemicals from Synthesis Gas

    SciTech Connect

    1998-12-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE�s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  7. Fuel Cells on Bio-Gas (Presentation)

    SciTech Connect

    Remick, R. J.

    2009-03-04

    The conclusions of this presentation are: (1) Fuel cells operating on bio-gas offer a pathway to renewable electricity generation; (2) With federal incentives of $3,500/kW or 30% of the project costs, reasonable payback periods of less than five years can be achieved; (3) Tri-generation of electricity, heat, and hydrogen offers an alternative route to solving the H{sub 2} infrastructure problem facing fuel cell vehicle deployment; and (4) DOE will be promoting bio-gas fuel cells in the future under its Market Transformation Programs.

  8. Natural gas imports and exports: First quarter report 1995

    SciTech Connect

    1995-07-01

    The Office of Fuels Programs prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports with the OFP. This quarter`s focus is market penetration of gas imports into New England. Attachments show the following: % takes to maximum firm contract levels and weighted average per unit price for the long-term importers, volumes and prices of gas purchased by long-term importers and exporters, volumes and prices for gas imported on short-term or spot market basis, and gas exported short-term to Canada and Mexico.

  9. H. R. 2185: a bill to repeal certain sections of the Powerplant and Industrial Fuel Use Act of 1978 and to repeal the incremental pricing requirements of the Natural Gas Policy Act of 1978. Introduced in the House of Representatives, Ninety-Ninth Congress, First Session, April 23, 1985

    SciTech Connect

    Not Available

    1985-01-01

    The Natural Gas Utilization Act of 1985 (H.R.2185) reflects the finding that there is no longer a need to limit the use of natural gas. However, it is necessary to remove legislative barriers that either limit or prohibit its use by consumers who can now benefit from market forces which affect competitive energy pricing. The bill repeals several portions of the Power Plant and Industrial Fuel Use Act of 1978 to allow industrial and electric power plants to use natural gas. It also repeals those portions of Title II of the Natural Gas Policy Act of 1978 which require incremental pricing.

  10. Operating a fuel cell using landfill gas

    SciTech Connect

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  11. Natural gas: Formation of hydrates -- Transportation

    SciTech Connect

    Bhaskara Rao, B.K.

    1998-07-01

    The significant growth of Natural gas based industries in India and elsewhere obviously forced the industry to hunt for new fields and sources. This has naturally led to the phenomenal growth of gas networks. The transportation of gas over thousands of kilometers through caprious ambient conditions requires a great effort. Many difficulties such as condensation of light liquids (NGLS), choking of lines due to formation of hydrates, improper distribution of gas into branches are experienced during pipe line transportation of Natural gas. The thermodynamic conditions suitable for formation of solid hydrates have been derived depending upon the constituents of natural gas. Further effects of branching in pipe line transportation have been discussed.

  12. SOLID GAS SUSPENSION NUCLEAR FUEL ASSEMBLY

    DOEpatents

    Schluderberg, D.C.; Ryon, J.W.

    1962-05-01

    A fuel assembly is designed for use in a gas-suspension cooled nuclear fuel reactor. The coolant fluid is an inert gas such as nitrogen or helium with particles such as carbon suspended therein. The fuel assembly is contained within an elongated pressure vessel extending down into the reactor. The fuel portion is at the lower end of the vessel and is constructed of cylindrical segments through which the coolant passes. Turbulence promotors within the passageways maintain the particles in agitation to increase its ability to transfer heat away from the outer walls. Shielding sections and alternating passageways above the fueled portion limit the escape of radiation out of the top of the vessel. (AEC)

  13. Contracts for the new natural gas business

    SciTech Connect

    Haedicke, M.E.

    1992-01-01

    Two major developments in the natural gas industry are causing fundamental changes in natural gas contracts. The first development, financial markets for natural gas, began only recently. On April 3, 1990, the New York Mercantile Exchange (NYMEX) began trading natural gas futures for a twelve month forward period. On the opening day, 925 contracts were traded. Recently, 18,344 contracts were traded in a single day, and gas 4 futures on NYMEX are now traded for an eighteen month forward period. At the same time, the market for off-exchange products, such as natural gas swaps and trade options, has expanded considerably. Shortly, it will be hard to imagine life in the natural gas business without the emerging financial markets for natural gas, if that time has not already occurred. The second major development, deregulation of the gas industry, began with the passage of the Natural Gas Policy Act of 1978. Each of the two developments provides a catalyst for fundamental changes in natural gas contracts. This article explores the impact of these two developments on long-term fixed-price physical gas contracts and the future direction of long-term fixed-price gas contracts.

  14. Replacing coal with natural gas would reduce warming

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-08-01

    A debate has raged in the past couple of years as to whether natural gas is better or worse overall than coal and oil from a global warming perspective. The back-and-forth findings have been due to the timelines taken into consideration, the details of natural gas extraction, and the electricity-generating efficiency of various fuels. An analysis by Cathles, which focuses exclusively on potential warming and ignores secondary considerations, such as economic, political, or other environmental concerns, finds that natural gas is better for electricity generation than coal and oil under all realistic circumstances. To come to this conclusion, the author considered three different future fuel consumption scenarios: (1) a business-as-usual case, which sees energy generation capacity continue at its current pace with its current energy mix until the middle of the century, at which point the implementation of low-carbon energy sources dominates and fossil fuel-derived energy production declines; (2) a gas substitution scenario, where natural gas replaces all coal power production and any new oil-powered facilities, with the same midcentury shift; and (3) a low-carbon scenario, where all electricity generation is immediately and aggressively switched to non-fossil fuel sources such as solar, wind, and nuclear.

  15. U.S. Natural Gas Markets: Mid-Term Prospects for Natural Gas Supply

    EIA Publications

    2001-01-01

    This service report describes the recent behavior of natural gas markets with respect to natural gas prices, their potential future behavior, the potential future supply contribution of liquefied natural gas and increased access to federally restricted resources, and the need for improved natural gas data.

  16. 75 FR 70350 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Maritime Administration Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License.... Coast Guard received an application from Liberty Natural Gas LLC for all Federal authorizations required... the transportation, storage, and further handling of oil or natural gas for transportation to...

  17. Operation and planning of coordinated natural gas and electricity infrastructures

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaping

    Natural gas is becoming rapidly the optimal choice for fueling new generating units in electric power system driven by abundant natural gas supplies and environmental regulations that are expected to cause coal-fired generation retirements. The growing reliance on natural gas as a dominant fuel for electricity generation throughout North America has brought the interaction between the natural gas and power grids into sharp focus. The primary concern and motivation of this research is to address the emerging interdependency issues faced by the electric power and natural gas industry. This thesis provides a comprehensive analysis of the interactions between the two systems regarding the short-term operation and long-term infrastructure planning. Natural gas and renewable energy appear complementary in many respects regarding fuel price and availability, environmental impact, resource distribution and dispatchability. In addition, demand response has also held the promise of making a significant contribution to enhance system operations by providing incentives to customers for a more flat load profile. We investigated the coordination between natural gas-fired generation and prevailing nontraditional resources including renewable energy, demand response so as to provide economical options for optimizing the short-term scheduling with the intense natural gas delivery constraints. As the amount and dispatch of gas-fired generation increases, the long-term interdependency issue is whether there is adequate pipeline capacity to provide sufficient gas to natural gas-fired generation during the entire planning horizon while it is widely used outside the power sector. This thesis developed a co-optimization planning model by incorporating the natural gas transportation system into the multi-year resource and transmission system planning problem. This consideration would provide a more comprehensive decision for the investment and accurate assessment for system adequacy and

  18. 78 FR 38309 - Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... Energy Regulatory Commission Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida... Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124; on behalf of itself, Southern Natural Gas Company, L.L.C., and Florida Gas Transmission Company, LLC, (collectively,...

  19. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.8 Prohibitions against excessive use of petroleum or natural gas... use of petroleum or natural gas in such powerplant in amounts exceeding the minimum amount necessary... feasible for the unit to use a mixture of petroleum or natural gas and coal or another alternate fuel as...

  20. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.8 Prohibitions against excessive use of petroleum or natural gas... use of petroleum or natural gas in such powerplant in amounts exceeding the minimum amount necessary... feasible for the unit to use a mixture of petroleum or natural gas and coal or another alternate fuel as...

  1. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.8 Prohibitions against excessive use of petroleum or natural gas... use of petroleum or natural gas in such powerplant in amounts exceeding the minimum amount necessary... feasible for the unit to use a mixture of petroleum or natural gas and coal or another alternate fuel as...

  2. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.8 Prohibitions against excessive use of petroleum or natural gas... use of petroleum or natural gas in such powerplant in amounts exceeding the minimum amount necessary... feasible for the unit to use a mixture of petroleum or natural gas and coal or another alternate fuel as...

  3. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.8 Prohibitions against excessive use of petroleum or natural gas... use of petroleum or natural gas in such powerplant in amounts exceeding the minimum amount necessary... feasible for the unit to use a mixture of petroleum or natural gas and coal or another alternate fuel as...

  4. Assessing climate benefits of natural gas and coal electricity generation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaochun; Myhrvold, Nathan; Caldeira, Ken

    2015-04-01

    A transition from a system of coal electricity generation to near-zero emission electricity generation will be central to any effort to mitigate climate change. Natural gas is increasingly seen as a 'bridge fuel' for transitions form coal to near-zero emission energy sources. However, various studies use different metrics to estimate the climate impact of natural gas utilization, and led to differing conclusions. Thus, there is a need to identify the key factors affecting the climate effects of natural gas and coal electricity production, and to present these climate effects in as clear and transparent a way as possible. Here, we identify power plant efficiency and methane leakage rate as the key factors that explain most of the variance in greenhouse gas emissions by natural gas and coal power plants. We then develop a power plant GHG emission model, apply available life-cycle parameters to calculate associated CO2 and CH4 emissions and assess climate effects. Simple underlying physical changes can be obscured by abstract evaluation metrics, thus we base our discussion on temperature changes over time. We find that, during the period of plant operation, if there is substantial natural gas leakage, natural gas plants can produce greater near-term warming than a coal plant with the same power output. If leakage rates can be made to be low and efficiency high, natural gas plants can produce some reduction in near-term warming. However, without carbon capture and storage natural gas power plants cannot achieve the deep reductions that would be required to avoid substantial contribution to additional global warming. Achieving climate benefits from the use of natural gas depends on building high-efficiency natural gas plants, controlling methane leakage, and on developing a policy environment that assures a transition to future lower-emission technologies. For more information please see http://iopscience.iop.org/1748-9326/9/11/114022/article .

  5. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    SciTech Connect

    Not Available

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  6. Plentiful natural gas headed for big growth in Mideast

    SciTech Connect

    Hamid, S.H.; Aitani, A.M. )

    1995-01-23

    Natural gas is increasingly becoming a major contributor in the industrial development of most Middle Eastern countries. Demand there will rise steeply in coming years. This is because of the abundant and growing natural gas resources in the region, the economic benefits of using local resources, as well as increased emphasis on a cleaner environment. Today, proved reserves of natural gas in the Middle East are 45 trillion cu meters (tcm), or 1,488 trillion cu ft (tcf). This is over 30% of the world's natural gas reserves. A table presents data on reserves and production of natural gas in the region. About 20% of this gross production is rein-injecting for oil field pressure maintenance, 13% is flared or vented, and 7% is accounted as losses. The remaining 60% represents consumption in power generation, water desalination, petrochemicals and fertilizers production, aluminum and copper smelting, and fuel for refineries and other industries. The use of natural gas in these various industries is discussed. Thirteen tables present data on gas consumption by country and sector, power generation capacity, major chemicals derived from natural gas, and petrochemical plant capacities.

  7. The domestic natural gas shortage in China

    NASA Astrophysics Data System (ADS)

    Guo, Ting

    This thesis analyzes the domestic shortage in the Chinese natural gas market. Both the domestic supply and demand of natural gas are growing fast in China. However, the supply cannot catch up with the demand. Under the present pricing mechanism, the Chinese natural gas market cannot get the equilibrium by itself. Expensive imports are inadequate to fill the increasing gap between the domestic demand and supply. Therefore, the shortage problem occurs. Since the energy gap can result in the arrested development of economics, the shortage problem need to be solved. This thesis gives three suggestions to solve the problem: the use of Unconventional Gas, Natural Gas Storage and Pricing Reform.

  8. Combustion characteristics of gas turbine alternative fuels

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1987-01-01

    An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.

  9. Little study sees large growth in Asian natural gas market

    SciTech Connect

    O'Driscoll, M.

    1993-06-03

    Power capacity additions in Asia will at least triple by 2010, and Arthur D. Little Inc. predicts natural gas can pick up a good 15 percent of that market. The study predicts Asia potentially will need 720 gigawatts of new power generation by 2010, of which 15 percent may be gas-based. This represents a market three times the size of the US market in the same period, and would require more than $1 trillion in investment to finance the power generation projects alone. Six forces are driving new market opportunities for natural gas in Asia, and have set the stage for major investments in Asian gas-based power generation. They are: New technologies; growing environmental pressures; privatization; alternative energy pricing; gas availability; and continued economic growth. Japan, South Korea and Taiwan already have large, well-established markets for both gas and power that provide minimal opportunities for foreign investment. But the rest of Asia - specifically, India, Pakistan, the Philippines, Vietnam, Indonesia, Malaysia, the People's Republic of China, Thailand, Bangladesh and Myanmar - is still relatively undeveloped, the study said, and gas is emerging as an energy import substitute or export earner. The study found those countries will turn increased environmental awareness and concern into legislation as their economic prosperity grows, leading to a higher future value for natural gas relative to other fuels. Stricter emissions standards will favor gas over diesel, fuel oil and coal.

  10. Analysis of Restricted Natural Gas Supply Cases

    EIA Publications

    2004-01-01

    The four cases examined in this study have progressively greater impacts on overall natural gas consumption, prices, and supply. Compared to the Annual Energy Outlook 2004 reference case, the no Alaska pipeline case has the least impact; the low liquefied natural gas case has more impact; the low unconventional gas recovery case has even more impact; and the combined case has the most impact.

  11. Global Natural Gas Market Trends, 2. edition

    SciTech Connect

    2007-07-15

    The report provides an overview of major trends occurring in the natural gas industry and includes a concise look at the drivers behind recent rapid growth in gas usage and the challenges faced in meeting that growth. Topics covered include: an overview of Natural Gas including its history, the current market environment, and its future market potential; an analysis of the overarching trends that are driving a need for change in the Natural Gas industry; a description of new technologies being developed to increase production of Natural Gas; an evaluation of the potential of unconventional Natural Gas sources to supply the market; a review of new transportation methods to get Natural Gas from producing to consuming countries; a description of new storage technologies to support the increasing demand for peak gas; an analysis of the coming changes in global Natural Gas flows; an evaluation of new applications for Natural Gas and their impact on market sectors; and, an overview of Natural Gas trading concepts and recent changes in financial markets.

  12. Gasoline from natural gas by sulfur processing

    SciTech Connect

    Erekson, E.J.; Miao, F.Q.

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogen production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.

  13. Solid fuel volatilization to produce synthesis gas

    SciTech Connect

    Schmidt, Lanny D.; Dauenhauer, Paul J.; Degenstein, Nick J.; Dreyer, Brandon J.; Colby, Joshua L.

    2014-07-29

    A method comprising contacting a carbon and hydrogen-containing solid fuel and a metal-based catalyst in the presence of oxygen to produce hydrogen gas and carbon monoxide gas, wherein the contacting occurs at a temperature sufficiently high to prevent char formation in an amount capable of stopping production of the hydrogen gas and the carbon monoxide gas is provided. In one embodiment, the metal-based catalyst comprises a rhodium-cerium catalyst. Embodiments further include a system for producing syngas. The systems and methods described herein provide shorter residence time and high selectivity for hydrogen and carbon monoxide.

  14. 40 CFR 600.206-93 - Calculation and use of fuel economy values for gasoline-fueled, diesel-fueled, electric, alcohol...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... values for gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual fuel, and natural gas dual fuel vehicle configurations. 600.206-93 Section 600.206-93 Protection of... gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual fuel,...

  15. Development of a natural Gas Systems Analysis Model (GSAM)

    SciTech Connect

    Godec, M.; Haas, M.; Pepper, W.; Rose, J.

    1993-12-31

    Recent dramatic changes in natural gas markets have significant implications for the scope and direction of DOE`s upstream as well as downstream natural gas R&D. Open access transportation changes the way gas is bought and sold. The end of the gas deliverability surplus requires increased reserve development above recent levels. Increased gas demand for power generation and other new uses changes the overall demand picture in terms of volumes, locations and seasonality. DOE`s Natural Gas Strategic Plan requires that its R&D activities be evaluated for their ability to provide adequate supplies of reasonably priced gas. Potential R&D projects are to be evaluated using a full fuel cycle, benefit-cost approach to estimate likely market impact as well as technical success. To assure R&D projects are evaluated on a comparable basis, METC has undertaken the development of a comprehensive natural gas technology evaluation framework. Existing energy systems models lack the level of detail required to estimate the impact of specific upstream natural gas technologies across the known range of geological settings and likely market conditions. Gas Systems Analysis Model (GSAM) research during FY 1993 developed and implemented this comprehensive, consistent natural gas system evaluation framework. Rather than a isolated research activity, however, GSAM represents the integration of many prior and ongoing natural gas research efforts. When complete, it will incorporate the most current resource base description, reservoir modeling, technology characterization and other geologic and engineering aspects developed through recent METC and industry gas R&D programs.

  16. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  17. Natural gas: An international perspective

    SciTech Connect

    Mabro, R.

    1986-01-01

    This book is concerned with: the prospects for trade in Western Europe, Japan, the USA and the Third World; the controversial gas pricing issue; and the influence of politics on gas investment and trade. The difficulties of devising fair and enforceable gas contracts between producing and importing countries and the problems arising from government intervention in international negotiations on gas contracts are also considered.

  18. 40 CFR 60.4325 - What emission limits must I meet for NOX if my turbine burns both natural gas and distillate oil...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... NOX if my turbine burns both natural gas and distillate oil (or some other combination of fuels)? 60... both natural gas and distillate oil (or some other combination of fuels)? You must meet the emission... percent natural gas, you must meet the corresponding limit for a natural gas-fired turbine when you...

  19. 40 CFR 60.4325 - What emission limits must I meet for NOX if my turbine burns both natural gas and distillate oil...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NOX if my turbine burns both natural gas and distillate oil (or some other combination of fuels)? 60... both natural gas and distillate oil (or some other combination of fuels)? You must meet the emission... percent natural gas, you must meet the corresponding limit for a natural gas-fired turbine when you...

  20. 40 CFR 60.4325 - What emission limits must I meet for NOX if my turbine burns both natural gas and distillate oil...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NOX if my turbine burns both natural gas and distillate oil (or some other combination of fuels)? 60... both natural gas and distillate oil (or some other combination of fuels)? You must meet the emission... percent natural gas, you must meet the corresponding limit for a natural gas-fired turbine when you...

  1. 40 CFR 60.4325 - What emission limits must I meet for NOX if my turbine burns both natural gas and distillate oil...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NOX if my turbine burns both natural gas and distillate oil (or some other combination of fuels)? 60... both natural gas and distillate oil (or some other combination of fuels)? You must meet the emission... percent natural gas, you must meet the corresponding limit for a natural gas-fired turbine when you...

  2. 40 CFR 60.4325 - What emission limits must I meet for NOX if my turbine burns both natural gas and distillate oil...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NOX if my turbine burns both natural gas and distillate oil (or some other combination of fuels)? 60... both natural gas and distillate oil (or some other combination of fuels)? You must meet the emission... percent natural gas, you must meet the corresponding limit for a natural gas-fired turbine when you...

  3. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  4. Convergence and Divergence of Crude Oil and Natural Gas Prices

    NASA Astrophysics Data System (ADS)

    Romagus, George M.

    This research investigates the possibility that WTI crude oil and Henry Hub natural gas prices share a stable link. Economic theory suggests that the two commodities are linked by both supply and demand given that the commodities can be coproduced and many consumers have the ability to switch between the fuels. In general, it would appear that the two commodities support this theory with natural gas prices tracking crude oil prices fairly well until late 2008. However, since the end of 2008 the two price series have diverged and appear to move independently of each other. Reduced fuel switching capabilities in U.S. industry and electric power generation coupled with increased technology and production from shale formations have potentially changed the driving force behind natural gas prices. However, a severe recession has impacted world economies over the same time period making the cause of the disparity between crude oil and natural gas prices unclear. Therefore, this research analyzed the possible long-term link between the two commodities over two timeframes. Using an error correction model that includes exogenous factors affecting the short-run dynamics of natural gas prices over the period January 1999 through September 2008, I find evidence of a long-run cointegrating relationship between natural gas and crude oil prices. Additionally, crude oil prices are found to be weakly exogenous to the system, suggesting causality runs from crude oil to natural gas prices. Extending this series through February 2012 yields much weaker evidence of a cointegrating relationship and provides evidence for the decoupling crude oil and natural gas prices.

  5. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  6. Advanced Coal-Fueled Gas Turbine Program

    SciTech Connect

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  7. Competitive position of natural gas: Industrial baking

    SciTech Connect

    Minsker, B.S.; Salama, S.Y.

    1988-01-01

    Industrial baking is one of the largest natural gas consumers in the food industry. In 1985, bread, rolls, cookies, and crackers accounted for over 82 percent of all baked goods production. Bread accounting for 46 percent of all production. The baking industry consumed approximately 16 trillion Btu in 1985. About 93 percent was natural gas, while distillate fuel oil accounted for seven percent, and electricity accounted for much less than one percent. The three main types of baking ovens are the single lap, tunnel, and Lanham ovens. In the single lap oven, trays carry the product back and forth through the baking chamber once. The single lap oven is the most common type of oven and is popular due to its long horizontal runs, extensive steam zone, and simple construction. The tunnel oven is slightly more efficient and more expensive that the single lap oven. IN the tunnel oven, the hearth is a motorized conveyor which passes in a straight line through a series of heating zones, with loading and unloading occurring at opposite ends of the oven. The advantages of the tunnel oven include flexibility with respect to pan size and simple, accurate top and bottom heat control. The tunnel oven is used exclusively in the cookie and cracker baking, with the product being deposited directly on the oven band. The most recently developed type of oven is the Lanham oven. The Lanham oven is the most efficient type of oven, with a per pound energy consumption approaching the practical minimum for baking bread. Between one--half and two--thirds of all new industrial baking ovens are Lanham ovens. In the Lanham oven, the product enters the oven near the top of the chamber, spirals down through a series of heating zones, and exits near the bottom of the oven. The oven is gas--fired directly by ribbon burners. 31 refs.

  8. Natural gas 1998: Issues and trends

    SciTech Connect

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs.

  9. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    SciTech Connect

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  10. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    SciTech Connect

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  11. Landfill gas pretreatment for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Sandelli, G. J.; Trocciola, J. C.; Spiegel, R. J.

    1994-04-01

    The US Environmental Protection Agency (EPA) has proposed regulations (1) to control air emissions from municipal solid waste landfills. If these regulations are adopted, they would require waste methane mitigation in order to prevent emission into the atmosphere and reduce the effect on global warming. One potential use of the waste methane is in a device which produces energy, the fuel cell. This device would reduce air emissions affecting global warming, acid rain, and other health and environmental issues. By producing useable energy, it would also reduce our dependency on foreign oil. This paper discusses the US EPA program underway at International Fuel Cells Corporation to demonstrate landfill methane control, and the fuel cell energy recovery concept. In this program, two critical issues needed to be addressed: (1) a landfill gas cleanup method that would remove contaminants from the gas sufficient for fuel cell operation; and (2) successful operation of a commercial fuel cell power plant on that lower-heating value waste methane gas.

  12. Building a Business Case for Compressed Natural Gas in Fleet Applications

    SciTech Connect

    Mitchell, G.

    2015-03-19

    Natural gas is a clean-burning, abundant, and domestically produced source of energy. Compressed natural gas (CNG) has recently garnered interest as a transportation fuel because of these attributes and because of its cost savings and price stability compared to conventional petroleum fuels. The National Renewable Energy Laboratory (NREL) developed the Vehicle Infrastructure and Cash-Flow Evaluation (VICE) model to help businesses and fleets evaluate the financial soundness of CNG vehicle and CNG fueling infrastructure projects.

  13. Natural gas annual 1993 supplement: Company profiles

    SciTech Connect

    Not Available

    1995-02-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  14. Underground natural gas storage reservoir management

    SciTech Connect

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  15. Production of Substitute Natural Gas from Coal

    SciTech Connect

    Andrew Lucero

    2009-01-31

    The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon from the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.

  16. Towards a fundamental understanding of natural gas hydrates.

    PubMed

    Koh, Carolyn A

    2002-05-01

    Gas clathrate hydrates were first identified in 1810 by Sir Humphrey Davy. However, it is believed that other scientists, including Priestley, may have observed their existence before this date. They are solid crystalline inclusion compounds consisting of polyhedral water cavities which enclathrate small gas molecules. Natural gas hydrates are important industrially because the occurrence of these solids in subsea gas pipelines presents high economic loss and ecological risks, as well as potential safety hazards to exploration and transmission personnel. On the other hand, they also have technological importance in separation processes, fuel transportation and storage. They are also a potential fuel resource because natural deposits of predominantly methane hydrate are found in permafrost and continental margins. To progress with understanding and tackling some of the technological challenges relating to natural gas hydrate formation, inhibition and decomposition one needs to develop a fundamental understanding of the molecular mechanisms involved in these processes. This fundamental understanding is also important to the broader field of inclusion chemistry. The present article focuses on the application of a range of physico-chemical techniques and approaches for gaining a fundamental understanding of natural gas hydrate formation, decomposition and inhibition. This article is complementary to other reviews in this field, which have focused more on the applied, engineering and technological aspects of clathrate hydrates. PMID:12122641

  17. The Spatial Footprint of Natural Gas-Fired Electricity

    NASA Astrophysics Data System (ADS)

    Jordaan, S. M.; Heath, G.; Macknick, J.; Mohammadi, E.; Ben-Horin, D.; Urrea, V.; Marceau, D.

    2015-12-01

    Consistent comparisons of the amount of land required for different electricity generation technologies are challenging because land use associated with fossil fuel acquisition and delivery has not been well characterized or empirically grounded. This research focuses on improving estimates of the life cycle land use of natural gas-fired electricity (m2/MWh generated) through the novel combination of inventories of natural gas-related infrastructure, satellite imagery analysis and gas production estimates. We focus on seven counties that represent 98% of the total gas production in the Barnett Shale (Texas), evaluating over 500 sites across five life cycle stages (gas production, gathering, processing, transmission, and power generation as well as produced water disposal). We find that a large fraction of total life cycle land use is related to gathering (midstream) infrastructure, particularly pipelines; access roads related to all stages also contribute a large life cycle share. Results were sensitive to several inputs, including well lifetime, pipeline right of way, number of wells per site, variability of heat rate for electricity generation, and facility lifetime. Through this work, we have demonstrated a novel, highly-resolved and empirical method for estimating life cycle land use from natural gas infrastructure in an important production region. When replicated for other gas production regions and other fuels, the results can enable more empirically-grounded and robust comparisons of the land footprint of alternative energy choices.

  18. Effects of natural gas composition on ignition delay under diesel conditions

    SciTech Connect

    Naber, J.D.; Siebers, D.L.; Di Julio, S.S.; Westbrook, C.K.

    1993-12-03

    Effects of variations in natural gas composition on autoignition of natural gas under direct-injection (DI) diesel engine conditions were studied experimentally in a constant-volume combustion vessel and computationally using a chemical kinetic model. Four fuel blends were investigated: pure methane, a capacity weighted mean natural gas, a high ethane content natural gas, and a natural gas with added propane typical of peak shaving conditions. Experimentally measured ignition delays were longest for pure methane and became progressively shorter as ethane and propane concentrations increased. At conditions characteristic of a DI compression ignition natural gas engine at Top Dead Center (CR=23:1, p = 6.8 MPa, T = 1150K), measured ignition delays for the four fuels varied from 1.8 ms for the peak shaving and high ethane gases to 2.7 ms for pure methane. Numerically predicted variations in ignition delay as a function of natural gas composition agreed with these measurements.

  19. Gas-Fast Reactor Fuel Fabrication

    SciTech Connect

    Randall Fielding; Mitchell Meyer; Ramprashad Prabhakaran; Jim Miller; Sean McDeavitt

    2005-11-01

    The gas-cooled fast reactor is a high temperature helium cooled Generation IV reactor concept. Operating parameters for this type of reactor are well beyond those of current fuels so a novel fuel must be developed. One fuel concept calls for UC particles dispersed throughout a SiC matrix. This study examines a hybrid reaction bonding process as a possible fabrication route for this fuel. Processing parameters are also optimized. The process combines carbon and SiC powders and a carbon yielding polymer. In order to obtain dense reaction bonded SiC samples the porosity to carbon ratio in the preform must be large enough to accommodate SiC formation from the carbon present in the sample, however too much porosity reduces mechanical integrity which leads to poor infiltration properties . The porosity must also be of a suitable size to allow silicon transport throughout the sample but keep residual silicon to a minimum.

  20. Low pressure storage of natural gas on activated carbon

    NASA Astrophysics Data System (ADS)

    Wegrzyn, J.; Wiesmann, H.; Lee, T.

    The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

  1. Natural gas annual 1994: Volume 2

    SciTech Connect

    1995-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data fro the Nation from 1930 to 1994, and by State from 1967 to 1994.

  2. Natural gas monthly, September 1990. [Contains Glossary

    SciTech Connect

    Not Available

    1990-11-30

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 7 figs., 33 tabs.

  3. Arctic Oil and Natural Gas Potential

    EIA Publications

    2009-01-01

    This paper examines the discovered and undiscovered Arctic oil and natural gas resource base with respect to their location and concentration. The paper also discusses the cost and impediments to developing Arctic oil and natural gas resources, including those issues associated with environmental habitats and political boundaries.

  4. Majors' Shift to Natural Gas, The

    EIA Publications

    2001-01-01

    The Majors' Shift to Natural Gas investigates the factors that have guided the United States' major energy producers' growth in U.S. natural gas production relative to oil production. The analysis draws heavily on financial and operating data from the Energy Information Administration's Financial Reporting System (FRS)

  5. Natural gas monthly, October 1990. [Contains glossary

    SciTech Connect

    Not Available

    1990-12-28

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 7 figs., 34 tabs.

  6. Catalytic decomposition of petroleum into natural gas

    SciTech Connect

    Mango, F.D.; Hightower, J.

    1997-12-01

    Petroleum is believed to be unstable in the earth, decomposing to lighter hydrocarbons at temperatures > 150{degrees}C. Oil and gas deposits support this view: gas/oil ratios and methane concentrations tend to increase with depth above 150{degrees}C. Although oil cracking is suggested and receives wide support, laboratory pyrolysis does not give products resembling natural gas. Moreover, it is doubtful that the light hydrocarbons in wet gas (C{sub 2}-C{sub 4}) could decompose over geologic time to dry gas (>95% methane) without catalytic assistance. We now report the catalytic decomposition of crude oil to a gas indistinguishable from natural gas. Like natural gas in deep basins, it becomes progressively enriched in methane: initially 90% (wet gas) to a final composition of 100% methane (dry gas). To our knowledge, the reaction is unprecedented and unexpectedly robust (conversion of oil to gas is 100% in days, 175{degrees}C) with significant implications regarding the stability of petroleum in sedimentary basins. The existence or nonexistence of oil in the deep subsurface may not depend on the thermal stability of hydrocarbons as currently thought. The critical factor could be the presence of transition metal catalysts which destabilize hydrocarbons and promote their decomposition to natural gas.

  7. Natural gas 1994: Issues and trends

    SciTech Connect

    Not Available

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

  8. How EIA Estimates Natural Gas Production

    EIA Publications

    2004-01-01

    The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing states and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The states and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

  9. Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks

    NASA Astrophysics Data System (ADS)

    Chen, Q.-S.; Wegrzyn, J.; Prasad, V.

    2004-10-01

    Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boil-off gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel.

  10. 40 CFR 600.206-93 - Calculation and use of fuel economy values for gasoline-fueled, diesel-fueled, electric, alcohol...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... values for gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual fuel, and natural gas dual fuel vehicle configurations. 600.206-93 Section 600.206-93 Protection of... for gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual...

  11. Natural gas monthly, September 1991. [Contains glossary

    SciTech Connect

    Not Available

    1991-10-18

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production distribution consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia.

  12. Effect of Energy Efficiency Standards on Natural Gas Prices

    SciTech Connect

    Carnall, Michael; Dale, Larry; Lekov, Alex

    2011-07-26

    A primary justification for the establishment of energy efficiency standards for home appliances is the existence of information deficiencies and externalities in the market for appliances. For example, when a long-term homeowner purchases a new gas-fired water heater, she will maximize the value of her purchase by comparing the life-cycle cost of ownership of available units, including both total installed cost - purchase price plus installation costs - and operating cost in the calculus. Choice of the appliance with the lowest life-cycle costs leads to the most economically efficient balance between capital cost and fuel cost. However, if the purchaser's expected period of ownership is shorter than the useful life of the appliance, or the purchaser does not pay for the fuel used by the appliance, as is often the case with rental property, fuel cost will be external to her costs, biasing her decision toward spending less on fuel efficiency and resulting in the purchase of an appliance with greater than optimal fuel usage. By imposing an efficiency standard on appliances, less efficient appliances are made unavailable, precluding less efficient purchases and reducing fuel usage. The reduction in fuel demanded by residential users affects the total demand for such fuels as natural gas, for example. Reduced demand implies that residential customers are willing to purchase less gas at each price level. That is, the demand curve, labeled D{sub 0} in Figure 1, shifts to the left to D{sub 1}. If there is no change in the supply function, the supply curve will intersect the demand curve at a lower price. Residential demand is only one component of the total demand for natural gas. It is possible that total demand will decline very little if demand in other sectors increases substantially in response to a decline in the price. If demand does decrease, modeling studies generally confirm the intuition that reductions in demand for natural gas will result in reductions in its

  13. 76 FR 4417 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Maritime Administration Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License... Deepwater Port License Application. The application describes an offshore natural gas deepwater port... appeared in the Federal Register on April 11, 2000 (65 FR 19477), see PRIVACY ACT. You may view...

  14. A Review of Materials for Gas Turbines Firing Syngas Fuels

    SciTech Connect

    Gibbons, Thomas; Wright, Ian G

    2009-05-01

    Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

  15. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    SciTech Connect

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  16. 76 FR 18749 - National Fuel Gas Supply Corporation; Notice Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... Energy Regulatory Commission National Fuel Gas Supply Corporation; Notice Application Take notice that on March 7, 2011, National Fuel Gas Supply Corporation (National Fuel), filed an application in Docket No... Access Project. National Fuel requests authorization to: (1) Construct a new compressor station in...

  17. Supersonic gas injector for plasma fueling

    SciTech Connect

    Soukhanovskii, V A; Kugel, H W; Kaita, R; Roquemore, A L; Bell, M; Blanchard, W; Bush, C; Gernhardt, R; Gettelfinger, G; Gray, T; Majeski, R; Menard, J; Provost, T; Sichta, P; Raman, R

    2005-09-30

    A supersonic gas injector (SGI) has been developed for fueling and diagnostic applications on the National Spherical Torus Experiment (NSTX). It is comprised of a graphite converging-diverging Laval nozzle and a commercial piezoelectric gas valve mounted on a movable probe at a low field side midplane port location. Also mounted on the probe is a diagnostic package: a Langmuir probe, two thermocouples and five pickup coils for measuring toroidal, radial, vertical magnetic field components and magnetic fluctuations at the location of the SGI tip. The SGI flow rate is up to 4 x 10{sup 21} particles/s, comparable to conventional NSTX gas injectors. The nozzle operates in a pulsed regime at room temperature and a reservoir gas pressure up to 0.33 MPa. The deuterium jet Mach number of about 4, and the divergence half-angle of 5{sup o}-25{sup o} have been measured in laboratory experiments simulating NSTX environment. In initial NSTX experiments reliable operation of the SGI and all mounted diagnostics at distances 1-20 cm from the plasma separatrix has been demonstrated. The SGI has been used for fueling of ohmic and 2-4 MW NBI heated L- and H-mode plasmas. Fueling efficiency in the range 0.1-0.3 has been obtained from the plasma electron inventory analysis.

  18. Analysis of natural gas supply strategies at Fort Drum

    SciTech Connect

    Stucky, D.J.; Shankle, S.A.; Anderson, D.M.

    1992-07-01

    This analysis investigates strategies for Fort Drum to acquire a reliable natural gas supply while reducing its gas supply costs. The purpose of this study is to recommend an optimal supply mix based on the life-cycle costs of each strategy analyzed. In particular, this study is intended to provide initial guidance as to whether or not the building and operating of a propane-air mixing station is a feasible alternative to the current gas acquisition strategy. The analysis proceeded by defining the components of supply (gas purchase, gas transport, supplemental fuel supply); identifying alternative options for each supply component; constructing gas supply strategies from different combinations of the options available for each supply component and calculating the life-cycle costs of each supply strategy under a set of different scenarios reflecting the uncertainty of future events.

  19. High resolution modeling of the effects of alternative fuels use on urban air quality: introduction of natural gas vehicles in Barcelona and Madrid Greater Areas (Spain).

    PubMed

    Gonçalves, María; Jiménez-Guerrero, Pedro; Baldasano, José M

    2009-01-01

    The mitigation of the effects of on-road traffic emissions on urban air pollution is currently an environmental challenge. Air quality modeling has become a powerful tool to design environment-related strategies. A wide range of options is being proposed; such as the introduction of natural gas vehicles (NGV), biofuels or hydrogen vehicles. The impacts on air quality of introducing specific NGV fleets in Barcelona and Madrid (Spain) are assessed by means of the WRF-ARW/HERMES/CMAQ modeling system with high spatial-temporal resolution (1 km(2), 1 h). Seven emissions scenarios are defined taking into account the year 2004 vehicle fleet composition of the study areas and groups of vehicles susceptible of change under a realistic perspective. O(3) average concentration rises up to 1.3% in Barcelona and up to 2.5% in Madrid when introducing the emissions scenarios, due to the NO(x) reduction in VOC-controlled areas. Nevertheless, NO(2), PM10 and SO(2) average concentrations decrease, up to 6.1%, 1.5% and 6.6% in Barcelona and up to 20.6%, 8.7% and 14.9% in Madrid, respectively. Concerning SO(2) and PM10 reductions the most effective single scenario is the introduction of 50% of NGV instead of the oldest commercial vehicles; it also reduces NO(2) concentrations in Barcelona, however in Madrid lower levels are attained when substituting 10% of the private cars. This work introduces the WRF-ARW/HERMES/CMAQ modeling system as a useful management tool and proves that the air quality improvement plans must be designed considering the local characteristics. PMID:19022477

  20. Modeling of gas turbine fuel nozzle spray

    SciTech Connect

    Rizk, N.K.; Chin, J.S.; Razdan, M.K.

    1997-01-01

    Satisfactory performance of the gas turbine combustor relies on the careful design of various components, particularly the fuel injector. It is, therefore, essential to establish a fundamental basis for fuel injection modeling that involves various atomization processes. A two-dimensional fuel injection model has been formulated to simulate the airflow within and downstream of the atomizer and address the formation and breakup of the liquid sheet formed at the atomizer exit. The sheet breakup under the effects of airblast, fuel pressure, or the combined atomization mode of the air-assist type is considered in the calculation. The model accounts for secondary breakup of drops and the stochastic Lagrangian treatment of spray. The calculation of spray evaporation addresses both droplet heat-up and steady-state mechanisms, and fuel vapor concentration is based on the partial pressure concept. An enhanced evaporation model has been developed that accounts for multicomponent, finite mass diffusivity and conductivity effects, and addresses near-critical evaporation. The present investigation involved predictions of flow and spray characteristics of two distinctively different fuel atomizers under both nonreacting and reacting conditions. The predictions of the continuous phase velocity components and the spray mean drop sizes agree well with the detailed measurements obtained for the two atomizers, which indicates the model accounts for key aspects of atomization. The model also provides insight into ligament formation and breakup at the atomizer exit and the initial drop sizes formed in the atomizer near field region where measurements are difficult to obtain. The calculations of the reacting spray show the fuel-rich region occupied most of the spray volume with two-peak radial gas temperature profiles. The results also provided local concentrations of unburned hydrocarbon and CO in atomizer flowfield.

  1. MERCURY IN PETROLEUM AND NATURAL GAS: ESTIMATION OF EMISSIONS FROM PRODUCTION, PROCESSING, AND COMBUSTION

    EPA Science Inventory

    Mercury is a trace component of all fossil fuels including natural gas, gas condensates, crude oil, coal, tar sands and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of the mercury they contain to the atmospheric environment b...

  2. Development of an Integrated Performance Model for TRISO-Coated Gas Reactor Particle Fuel

    SciTech Connect

    Petti, David Andrew; Miller, Gregory Kent; Martin, David George; Maki, John Thomas

    2005-05-01

    The success of gas reactors depends upon the safety and quality of the coated particle fuel. The understanding and evaluation of this fuel requires development of an integrated mechanistic fuel performance model that fully describes the mechanical and physico-chemical behavior of the fuel particle under irradiation. Such a model, called PARFUME (PARticle Fuel ModEl), is being developed at the Idaho National Engineering and Environmental Laboratory. PARFUME is based on multi-dimensional finite element modeling of TRISO-coated gas reactor fuel. The goal is to represent all potential failure mechanisms and to incorporate the statistical nature of the fuel. The model is currently focused on carbide, oxide nd oxycarbide uranium fuel kernels, while the coating layers are the classical IPyC/SiC/OPyC. This paper reviews the current status of the mechanical aspects of the model and presents results of calculations for irradiations from the New Production Modular High Temperature Gas Reactor program.

  3. Energy resource potential of natural gas hydrates

    USGS Publications Warehouse

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  4. Hydraulic fracturing for natural gas: impact on health and environment.

    PubMed

    Carpenter, David O

    2016-03-01

    Shale deposits exist in many parts of the world and contain relatively large amounts of natural gas and oil. Recent technological developments in the process of horizontal hydraulic fracturing (hydrofracturing or fracking) have suddenly made it economically feasible to extract natural gas from shale. While natural gas is a much cleaner burning fuel than coal, there are a number of significant threats to human health from the extraction process as currently practiced. There are immediate threats to health resulting from air pollution from volatile organic compounds, which contain carcinogens such as benzene and ethyl-benzene, and which have adverse neurologic and respiratory effects. Hydrogen sulfide, a component of natural gas, is a potent neuro- and respiratory toxin. In addition, levels of formaldehyde are elevated around fracking sites due to truck traffic and conversion of methane to formaldehyde by sunlight. There are major concerns about water contamination because the chemicals used can get into both ground and surface water. Much of the produced water (up to 40% of what is injected) comes back out of the gas well with significant radioactivity because radium in subsurface rock is relatively water soluble. There are significant long-term threats beyond cancer, including exacerbation of climate change due to the release of methane into the atmosphere, and increased earthquake activity due to disruption of subsurface tectonic plates. While fracking for natural gas has significant economic benefits, and while natural gas is theoretically a better fossil fuel as compared to coal and oil, current fracking practices pose significant adverse health effects to workers and near-by residents. The health of the public should not be compromized simply for the economic benefits to the industry. PMID:26943595

  5. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  6. Development of the Low Swirl Injector for Fuel-Flexible GasTurbines

    SciTech Connect

    Littlejohn, D.; Cheng, R.K.; Nazeer,W.A.; Smith, K.O

    2007-02-14

    Industrial gas turbines are primarily fueled with natural gas. However, changes in fuel cost and availability, and a desire to control carbon dioxide emissions, are creating pressure to utilize other fuels. There is an increased interest in the use of fuels from coal gasification, such as syngas and hydrogen, and renewable fuels, such as biogas and biodiesel. Current turbine fuel injectors have had years of development to optimize their performance with natural gas. The new fuels appearing on the horizon can have combustion properties that differ substantially from natural gas. Factors such as turbulent flame speed, heat content, autoignition characteristics, and range of flammability must be considered when evaluating injector performance. The low swirl injector utilizes a unique flame stabilization mechanism and is under development for gas turbine applications. Its design and mode of operation allow it to operate effectively over a wide range of conditions. Studies conducted at LBNL indicate that the LSI can operate on fuels with a wide range of flame speeds, including hydrogen. It can also utilize low heat content fuels, such as biogas and syngas. We will discuss the low swirl injector operating parameters, and how the LSC performs with various alternative fuels.

  7. Energy project: petroleum and natural gas in Egypt; Linear-programming analysis of the use of natural gas in Egypt

    SciTech Connect

    Woodruff, D.S.

    1982-11-01

    Natural gas use in Egypt, although still in its infancy, has risen rapidly during the past few years and even larger increases are expected. The extent to which natural gas usage can improve Egypt's foreign-exchange position by allowing greater exports of oil is herein examined. A linear-programming model is used to identify shadow prices for natural gas production and transportation costs and for the world market costs of other fuels. The model thus determines the minimum foreign exchange costs needed to operate the Egyptian natural gas industry and other Egyptian sectors that have the option of using natural gas (the fertilizer, electric power generation, Helwan iron and steel, cement, and residential and commercial sectors). Only existing production facilities are considered. Results show that the most important application for natural gas is in the manufacture of cement; use in iron and steel production is indicated when electricity demand is low or coal prices are high. A 17-item bibliography (1972-1982) is appended.

  8. Natural gas contracts in efficient portfolios

    SciTech Connect

    Sutherland, R.J.

    1994-12-01

    This report addresses the {open_quotes}contracts portfolio{close_quotes} issue of natural gas contracts in support of the Domestic Natural Gas and Oil Initiative (DGOI) published by the U.S. Department of Energy in 1994. The analysis is a result of a collaborative effort with the Public Service Commission of the State of Maryland to consider {open_quotes}reforms that enhance the industry`s competitiveness{close_quotes}. The initial focus of our collaborative effort was on gas purchasing and contract portfolios; however, it became apparent that efficient contracting to purchase and use gas requires a broader consideration of regulatory reform. Efficient portfolios are obtained when the holder of the portfolio is affected by and is responsible for the performance of the portfolio. Natural gas distribution companies may prefer a diversity of contracts, but the efficient use of gas requires that the local distribution company be held accountable for its own purchases. Ultimate customers are affected by their own portfolios, which they manage efficiently by making their own choices. The objectives of the DGOI, particularly the efficient use of gas, can be achieved when customers have access to suppliers of gas and energy services under an improved regulatory framework. The evolution of the natural gas market during the last 15 years is described to account for the changing preferences toward gas contracts. Long-term contracts for natural gas were prevalent before the early 1980s, primarily because gas producers had few options other than to sell to a single pipeline company, and this pipeline company, in turn, was the only seller to a gas distribution company.

  9. Gas Conversion Systems Reclaim Fuel for Industry

    NASA Technical Reports Server (NTRS)

    2015-01-01

    A human trip to Mars will require astronauts to utilize resources on the Red Planet to generate oxygen and fuel for the ride home, among other things. Lakewood, Colorado-based Pioneer Energy has worked under SBIR agreements with Johnson Space Center to develop technology for those purposes, and now uses a commercialized version of the technology to recover oil and gas that would otherwise be wasted at drilling sites.

  10. North American Natural Gas Markets. Volume 1

    SciTech Connect

    Not Available

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  11. North American Natural Gas Markets. Volume 2

    SciTech Connect

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  12. The Canoe Ridge Natural Gas Storage Project

    SciTech Connect

    Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

    2003-06-18

    In 1999 the Pacific Gas and Electric Gas Transmission Northwest (GTN) drilled a borehole to investigate the feasibility of developing a natural gas-storage facility in a structural dome formed in Columbia River basalts in the Columbia Basin of south-central Washington State. The proposed aquifer storage facility will be an unconventional one where natural gas will be initially injected (and later retrieved) in one or multiple previous horizons (interflow zones) that are confined between deep (>700 meters) basalt flows of the Columbia River Basalt Group. This report summarizes the results of joint investigations on that feasibility study by GTN and the US Department of Energy.

  13. Liquefaction of remote sources of natural gas. Final report

    SciTech Connect

    Rogers, D.W.

    1981-12-01

    The objective was to determine the technical and financial feasibility of liquefying remote reserves of natural gas and transporting the liquefied product to users. The proposed methodology included efforts to (1) identify any prohibitive or limiting laws and/or regulations; (2) identify sufficient unutilized reserves in remote areas to justify further investigation; (3) identify existing portable liquefaction equipment (or an interested manufacturer that could supply the needed equipment) to obtain cost and performance data; (4) determine site preparation, supply and production costs for use in assessing economic feasibility; and (5) identify potential users. The conclusion is that the liquefaction of natural gas in remote areas of Appalachia is not economically feasible as long as an adequate and reliable supply of pipeline gas is perceived to be available for the forseable future and the price per Btu of pipeline gas remains so far below other fuels. 3 tables.

  14. Refueling stations for natural gas vehicles

    SciTech Connect

    Blazek, C.F.; Kinast, J.A.; Biederman, R.T.; Jasionowski, W.

    1991-01-01

    The unavailability of natural gas vehicle (NGV) refueling stations constitutes one of the major barriers to the wide spread utilization of natural gas in the transportation market. The purpose of this paper is to review and evaluate the current technical and economic status of compressed natural gas vehicle refueling stations and to identify the components or design features that offer the greatest potential for performance improvements and/or cost reductions. Both fast-fill- and slow-fill-type refueling systems will be discussed. 4 refs., 10 figs., 6 tabs.

  15. Natural Gas Engine Development Gaps (Presentation)

    SciTech Connect

    Zigler, B.T.

    2014-03-01

    A review of current natural gas vehicle offerings is presented for both light-duty and medium- and heavy-duty applications. Recent gaps in the marketplace are discussed, along with how they have been or may be addressed. The stakeholder input process for guiding research and development needs via the Natural Gas Vehicle Technology Forum (NGVTF) to the U.S. Department of Energy and the California Energy Commission is reviewed. Current high-level natural gas engine development gap areas are highlighted, including efficiency, emissions, and the certification process.

  16. Natural gas annual 1992: Volume 1

    SciTech Connect

    Not Available

    1993-11-22

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

  17. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2002-06-01

    A new project was initiated this quarter to develop gas/liquid membranes for natural gas upgrading. Efforts have concentrated on legal agreements, including alternative field sites. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

  18. Well log evaluation of natural gas hydrates

    SciTech Connect

    Collett, T.S.

    1992-10-01

    Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

  19. Well log evaluation of natural gas hydrates

    SciTech Connect

    Collett, T.S.

    1992-10-01

    Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence? Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

  20. Incremental natural gas resources through infield reserve growth/secondary natural gas recovery. [Compartmented natural gas reservoir

    SciTech Connect

    Finley, R.J.; Levey, R.A.

    1992-01-01

    The objectives of the Infield Growth/Secondary Natural Gas Recovery project have been: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document practical, field-oriented examples of reserve growth from fluvial and deltaic sandstones of the Texas gulf coast basin and to use these gas reservoirs as a natural laboratory for developing concepts and testing applications of both tools and techniques to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify secondary gas. Accomplishments are presented for: reservoir characterization; integrated formation evaluation and engineering testing; compartmented reservoir simulator; and reservoir geophysics.

  1. Low emissions combustor development for an industrial gas turbine to utilize LCV fuel gas

    SciTech Connect

    Kelsall, G.J.; Smith, M.A. . Coal Research Establishment); Cannon, M.F. . Aero and Technology Products)

    1994-07-01

    Advanced coal-based power generation systems such as the British Coal Topping Cycle offer the potential for high-efficiency electricity generation with minimum environmental impact. An important component of the Topping cycle program is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at a turbine inlet temperature of 1,260 C (2,300 F), with minimum pollutant emissions, is a key R and D issue. A phased combustor development program is underway burning low calorific value fuel gas (3.6--4.1 MJ/m[sup 3]) with low emissions, particularly NO[sub x] derived from fuel-bound nitrogen. The first phase of the combustor development program has now been completed using a generic tubo-annular, prototype combustor design. Tests were carried out at combustor loading and Mach numbers considerably greater than the initial design values. Combustor performance at these conditions was encouraging. The second phase of the program is currently in progress. This will assess, initially, an improved variant of the prototype combustor operating at conditions selected to represent a particular medium sized industrial gas turbine. This combustor will also be capable of operating using natural gas as an auxiliary fuel, to suite the start-up procedure for the Topping Cycle. The paper presents the Phase 1 test program results for the prototype combustor. Design of the modified combustor for Phase 2 of the development program is discussed, together with preliminary combustor performance results.

  2. Natural gas contracts in an emerging competitive market

    SciTech Connect

    Sutherland, R.J.

    1992-11-01

    Natural gas is being viewed by many as the fuel of the 1990s and beyond because of its environmental qualities, relatively low cost and significant domestic resource base. However, in the Fall of 1991, a group of electric utility executives met with then Deputy Secretary of Energy Henson Moore and asserted that an inability to obtain long term gas contracts meant that supplies are unreliable and construction of gas-fueled generating stations is being discouraged. This study was requested by the Deputy Secretary to address the issues surrounding long-term gas contracts and supply reliability. The relationship between supply reliability and contracts is explained in terms of the number of buyers and sellers in a market. With the appropriate state regulatory policies, utilities can contract for gas and obtain reliable supplies at competitive market prices. Public utility commissioners are encouraged to permit utilities a free choice in signing gas contracts, but to allow only competitive market prices to be reflected in allowable fuel costs.

  3. Natural gas contracts in an emerging competitive market

    SciTech Connect

    Sutherland, R.J.

    1992-01-01

    Natural gas is being viewed by many as the fuel of the 1990s and beyond because of its environmental qualities, relatively low cost and significant domestic resource base. However, in the Fall of 1991, a group of electric utility executives met with then Deputy Secretary of Energy Henson Moore and asserted that an inability to obtain long term gas contracts meant that supplies are unreliable and construction of gas-fueled generating stations is being discouraged. This study was requested by the Deputy Secretary to address the issues surrounding long-term gas contracts and supply reliability. The relationship between supply reliability and contracts is explained in terms of the number of buyers and sellers in a market. With the appropriate state regulatory policies, utilities can contract for gas and obtain reliable supplies at competitive market prices. Public utility commissioners are encouraged to permit utilities a free choice in signing gas contracts, but to allow only competitive market prices to be reflected in allowable fuel costs.

  4. An economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell: a model of a central utility plant.

    SciTech Connect

    Not Available

    1993-06-30

    This central utilities plant model details the major elements of a central utilities plant for several classes of users. The model enables the analyst to select optional, cost effective, plant features that are appropriate to a fuel cell application. These features permit the future plant owner to exploit all of the energy produced by the fuel cell, thereby reducing the total cost of ownership. The model further affords the analyst an opportunity to identify avoided costs of the fuel cell-based power plant. This definition establishes the performance and capacity information, appropriate to the class of user, to support the capital cost model and the feasibility analysis. It is detailed only to the depth required to identify the major elements of a fuel cell-based system. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

  5. Natural gas-assisted steam electrolyzer

    DOEpatents

    Pham, Ai-Quoc; Wallman, P. Henrik; Glass, Robert S.

    2000-01-01

    An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

  6. Natural gas 1996 - issues and trends

    SciTech Connect

    1996-12-01

    This publication presents a summary of the latest data and information relating to the U.S. natural gas industry, including prices, production, transmission, consumption, and financial aspects of the industry.

  7. Method for dismantling a natural gas holder

    SciTech Connect

    Settlemier, B.R.; Bone, S.R.; Tolivaisa, J.; Nugent, J.E.

    1990-10-30

    This patent describes a method of dismantling a natural gas holder. The holder has vertical support columns disposed around the periphery of the holder to which the enclosure shell of the holder is attached.

  8. A historical analysis of natural gas demand

    NASA Astrophysics Data System (ADS)

    Dalbec, Nathan Richard

    This thesis analyzes demand in the US energy market for natural gas, oil, and coal over the period of 1918-2013 and examines their price relationship over the period of 2007-2013. Diagnostic tests for time series were used; Augmented Dickey-Fuller, Kwiatkowski-Phillips-Schmidt-Shin, Johansen cointegration, Granger Causality and weak exogeneity tests. Directed acyclic graphs were used as a complimentary test for endogeneity. Due to the varied results in determining endogeneity, a seemingly unrelated regression model was used which assumes all right hand side variables in the three demand equations were exogenous. A number of factors were significant in determining demand for natural gas including its own price, lagged demand, a number of structural break dummies, and trend, while oil indicate some substitutability with natural gas. An error correction model was used to examine the price relationships. Natural gas price was found not to have a significant cointegrating vector.

  9. Natural gas flow through critical nozzles

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1969-01-01

    Empirical method for calculating both the mass flow rate and upstream volume flow rate through critical flow nozzles is determined. Method requires knowledge of the composition of natural gas, and of the upstream pressure and temperature.

  10. Natural gas annual 1992: Supplement: Company profiles

    SciTech Connect

    Not Available

    1994-01-01

    The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

  11. Natural gas 1992: Issues and trends

    SciTech Connect

    Not Available

    1993-03-01

    This report provides an overview of the natural gas industry in 1991 and 1992, focusing on trends in production, consumption, and pricing of natural gas and how they reflect the regulatory and legislative changes of the past decade (Chapter 1). Also presented are details of FERC Order 636 and the Energy Policy Act of 1992, as well as pertinent provisions of the Clean Air Act Amendments of 1990 (Chapter 2). In addition, the report highlights a range of issues affecting the industry, including: Trends in wellhead prices and natural gas supply activities (Chapter 3); Recent rate design changes for interstate pipeline companies (Chapter 4); Benefits to consumers from the more competitive marketplace (Chapter 5); Pipeline capacity expansions during the past 2 years (Chapter 6); Increasing role of the natural gas futures market (Chapter 7).

  12. Natural gas at thermodynamic equilibrium Implications for the origin of natural gas

    PubMed Central

    2009-01-01

    It is broadly accepted that so-called 'thermal' gas is the product of thermal cracking, 'primary' thermal gas from kerogen cracking, and 'secondary' thermal gas from oil cracking. Since thermal cracking of hydrocarbons does not generate products at equilibrium and thermal stress should not bring them to equilibrium over geologic time, we would not expect methane, ethane, and propane to be at equilibrium in subsurface deposits. Here we report compelling evidence of natural gas at thermodynamic equilibrium. Molecular compositions are constrained to equilibrium, and isotopic compositions are also under equilibrium constraints: The functions [(CH4)*(C3H8)] and [(C2H6)2] exhibit a strong nonlinear correlation (R2 = 0.84) in which the quotient Q progresses to K as wet gas progresses to dry gas. There are striking similarities between natural gas and catalytic gas generated from marine shales. A Devonian/Mississippian New Albany shale generates gas with Q converging on K over time as wet gas progresses to dry gas at 200°C. The position that thermal cracking is the primary source of natural gas is no longer tenable. It is challenged by its inability to explain the composition of natural gas, natural gases at thermodynamic equilibrium, and by the existence of a catalytic path to gas that better explains gas compositions. PMID:19531233

  13. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    SciTech Connect

    Parks, II, James E; Storey, John Morse; Theiss, Timothy J; Ponnusamy, Senthil; Ferguson, Harley Douglas; Williams, Aaron M; Tassitano, James B

    2007-09-01

    Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the

  14. Production of Renewable Natural Gas from Waste Biomass

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Suresh, S.; Arisutha, S.

    2013-03-01

    Biomass energy is expected to make a major contribution to the replacement of fossil fuels. Methane produced from biomass is referred to as bio-methane, green gas, bio-substitute natural gas or renewable natural gas (RNG) when it is used as a transport fuel. Research on upgrading of the cleaned producer gas to RNG is still ongoing. The present study deals with the conversion of woody biomass into fuels, RNG using gasifier. The various effects of parameters like temperature, pressure, and tar formation on conversion were also studied. The complete carbon conversion was observed at 480 °C and tar yield was significantly less. When biomass was gasified with and without catalyst at about 28 s residence time, ~75 % (w/w) and 88 % (w/w) carbon conversion for without and with catalyst was observed. The interest in RNG is growing; several initiatives to demonstrate the thermal-chemical conversion of biomass into methane and/or RNG are under development.

  15. Department of Energy power generation programs for natural gas

    SciTech Connect

    Bajura, R.A.

    1995-04-01

    The U.S. Department of Energy (DOE) is sponsoring two major programs to develop high efficiency, natural gas fueled power generation technologies. These programs are the Advanced Turbine Systems (ATS) Program and the Fuel Cell Program. While natural gas is gaining acceptance in the electric power sector, the improved technology from these programs will make gas an even more attractive fuel, particularly in urban areas where environmental concerns are greatest. Under the auspices of DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE), the 8-year ATS Program is developing and will demonstrate advanced gas turbine power systems for both large central power systems and smaller industrial-scale systems. The large-scale systems will have efficiencies significantly greater than 60 percent, while the industrial-scale systems will have efficiencies with at least an equivalent 15 percent increase over the best 1992-vintage technology. The goal is to have the system ready for commercial offering by the year 2000.

  16. Clean Cities ozone air quality attainment and maintenance strategies that employ alternative fuel vehicles, with special emphasis on natural gas and propane

    SciTech Connect

    Santini, D.J.; Saricks, C.L.

    1998-08-04

    Air quality administrators across the nation are coming under greater pressure to find new strategies for further reducing automotive generated non-methane hydrocarbon (NMHC) and nitrogen oxide (NOx) emissions. The US Environmental Protection Agency (EPA) has established stringent emission reduction requirements for ozone non-attainment areas that have driven the vehicle industry to engineer vehicles meeting dramatically tightened standards. This paper describes an interim method for including alternative-fueled vehicles (AFVs) in the mix of strategies to achieve local and regional improvements in ozone air quality. This method could be used until EPA can develop the Mobile series of emissions estimation models to include AFVs and until such time that detailed work on AFV emissions totals by air quality planners and emissions inventory builders is warranted. The paper first describes the challenges confronting almost every effort to include AFVs in targeted emissions reduction programs, but points out that within these challenges resides an opportunity. Next, it discusses some basic relationships in the formation of ambient ozone from precursor emissions. It then describes several of the salient provisions of EPA`s new voluntary emissions initiative, which is called the Voluntary Mobile Source Emissions Reduction Program (VMEP). Recent emissions test data comparing gaseous-fuel light-duty AFVs with their gasoline-fueled counterparts is examined to estimate percent emissions reductions achievable with CNG and LPG vehicles. Examples of calculated MOBILE5b emission rates that would be used for summer ozone season planning purposes by an individual Air Quality Control Region (AQCR) are provided. A method is suggested for employing these data to compute appropriate voluntary emission reduction credits where such (lighter) AFVs would be acquired. It also points out, but does not quantify, the substantial reduction credits potentially achievable by substituting gaseous-fueled

  17. Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines

    SciTech Connect

    Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

    2007-03-01

    Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGL’s) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical “LNG like” fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

  18. Evaluation of the Effects of Natural Gas Contaminants on Corrosion in Compressed Natural Gas Storage Systems - Phase II

    SciTech Connect

    Lyle, F.F. Jr.

    1988-01-01

    This report describes a research program that was conducted to define natural gas contaminant levels necessary to insure that internal corrosion of compressed natural gas (CNG) cylinders does not constitute a hazard over the lifetimes of the cylinders. A literature search was performed and companies in the natural gas transmission and distribution industries were contacted: to identify and determine the composition ranges of contaminants in natural gases; and to obtain information regarding corrosion damage of CNG cylinders and cylinder materials. Corrosion and stress corrosion cracking (SCC) tests were performed on the cylinder materials most widely used in CNG cylinders in the United States (4130X and 15B30 steels and 6061-T6 aluminum alloy). Tests were conducted in: natural gases from several producing wells and from an interstate pipeline; and in aqueous solutions saturated with varying concentrations of natural gas contaminants. Also, metallurgical analyses of nine (eight steel and one aluminum), used CNG cylinders were performed. Limiting concentrations of hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}), and other CNG contaminants necessary to prevent internal corrosion of CNG fuel and storage cylinders were defined. This knowledge will minimize potential hazards of using CNG as a vehicle fuel. It should also lead to reduced costs of CNG use, since it has been shown that reduction of contaminants to the very low levels currently specified by the U.S. Department of Transportation (DOT) and the Canadian Transport Commission (CTC) is not necessary. A gas-quality standard based on program results is recommended. The National Fire Protection Association (NFPA) has adopted the recommended gas-quality standard.

  19. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2003-04-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Potting and module materials testing were initiated. Preliminary design

  20. 78 FR 46581 - Orders Granting Authority To Import and Export Natural Gas, and To Import Liquefied Natural Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Granting Authority To Import and Export Natural Gas, and To Import Liquefied Natural Gas During June 2013... authority to import and export natural gas and to import liquefied natural gas. These orders are summarized... of Fossil Energy, Office of Natural Gas Regulatory Activities, Docket Room 3E-033, Forrestal...

  1. 77 FR 19277 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During February 2012 FE..., ULC 12-13-NG ENCANA NATURAL GAS INC 11-163-NG ALCOA INC 12-11-NG JPMORGAN LNG CO 12-15-LNG CNE GAS... 2012, it issued Orders granting authority to import and export natural gas and liquefied natural...

  2. 78 FR 35014 - Orders Granting Authority to Import and Export Natural Gas, and to Import Liquefied Natural Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... Granting Authority to Import and Export Natural Gas, and to Import Liquefied Natural Gas During April 2013... INC 13-41-NG CASCADE NATURAL GAS CORPORATION 13-43-NG ENCANA MARKETING (USA) INC 13-44-NG CITIGROUP... natural gas and to import liquefied natural gas. These orders are summarized in the attached appendix...

  3. 77 FR 31838 - Notice of Orders Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... of Orders Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas During April... Capital International, LLC....... 12-33-NG Phillips 66 Company 12-34-NG Northwest Natural Gas Company 12..., it issued Orders granting authority to import and export natural gas and liquefied natural gas....

  4. Will Abundant Natural Gas Solve Climate Change?

    NASA Astrophysics Data System (ADS)

    McJeon, H. C.; Edmonds, J.; Bauer, N.; Leon, C.; Fisher, B.; Flannery, B.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; Riahi, K.; Rogner, H.; Tavoni, M.

    2015-12-01

    The rapid deployment of hydraulic fracturing and horizontal drilling technologies enabled the production of previously uneconomic shale gas resources in North America. Global deployment of these advanced gas production technologies could bring large influx of economically competitive unconventional gas resources to the energy system. It has been hoped that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions, which in turn could reduce climate forcing. Other researchers countered that the non-CO2 greenhouse gas (GHG) emissions associated with shale gas production make its lifecycle emissions higher than those of coal. In this study, we employ five state-of-the-art integrated assessment models (IAMs) of energy-economy-climate systems to assess the full impact of abundant gas on climate change. The models show large additional natural gas consumption up to +170% by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2% to +11%), and a majority of the models reported a small increase in climate forcing (from -0.3% to +7%) associated with the increased use of abundant gas. Our results show that while globally abundant gas may substantially change the future energy market equilibrium, it will not significantly mitigate climate change on its own in the absence of climate policies.

  5. Centrifuge for separating helium from natural gas

    SciTech Connect

    Theyse, F.H.; Kelling, F.E.T.

    1980-01-08

    Ultra Centrifuge Nederland N.V.'s improved centrifuge for separating helium from natural gas comprises a hollow cylindrical rotor, designated as a separating drum, within a stationary housing. Natural gas liquids that condense under pressure in the separating drum pass through openings in the drum into the space between the drum and housing. In this space, a series of openings, or throttling restrictors, allows the liquids to expand and return to gas. The gaseous component that does not liquefy in the drum remains separate for drawing off.

  6. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an alternate... natural gas, or both, in amounts exceeding the minimum amount necessary to maintain reliability...

  7. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an alternate... natural gas, or both, in amounts exceeding the minimum amount necessary to maintain reliability...

  8. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an alternate... natural gas, or both, in amounts exceeding the minimum amount necessary to maintain reliability...

  9. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an alternate... natural gas, or both, in amounts exceeding the minimum amount necessary to maintain reliability...

  10. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an alternate... natural gas, or both, in amounts exceeding the minimum amount necessary to maintain reliability...

  11. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory

  12. Natural Gas Hydrates: Occurrence, Distribution, and Detection

    NASA Astrophysics Data System (ADS)

    Paull, Charles K.; Dillon, William P.

    We publish this volume at a time when there is a growing interest in gas hydrates and major expansion in international research efforts. The first recognition of natural gas hydrate on land in Arctic conditions was in the mid-1960s (by I. Makogon) and in the seabed environment only in the early 1970s, after natural seafloor gas hydrate was drilled on the Blake Ridge during Deep Sea Drilling Project Leg 11. Initial scientific investigations were slow to develop because the study of natural gas hydrates is unusually challenging. Gas hydrate exists in nature in conditions of temperature and pressure where human beings cannot survive, and if gas hydrate is transported from its region of stability to normal Earth-surface conditions, it dissociates. Thus, in contrast to most minerals, we cannot depend on drilled samples to provide accurate estimates of the amount of gas hydrate present. Even the heat and changes in chemistry (methane saturation, salinity, etc.) introduced by the drilling process affect the gas hydrate, independent of the changes brought about by moving a sample to the surface. Gas hydrate has been identified in nature generally by inference from indirect evidence in drilling data or by using remotely sensed indications, mostly from seismic data. Obviously, the established techniques ofgeologic analysis, which require direct observation and sampling, do not apply to gas hydrate studies, and controversy has surrounded many interpretations. Pressure/temperature conditions appropriate for the existence of gas hydrate occur over the greater part of the shallow subsurface of the Earth beneath the ocean at water depths exceeding about 500 m (shallower beneath colder Arctic seas) and on land beneath high-latitude permafrost. Gas hydrate actually will be present in such conditions, however, only where methane is present at high concentrations. In the Arctic, these methane concentrations are often associated with petroleum deposits, whereas at continental margins

  13. Optimization of manifold design for 1 kW-class flat-tubular solid oxide fuel cell stack operating on reformed natural gas

    NASA Astrophysics Data System (ADS)

    Rashid, Kashif; Dong, Sang Keun; Khan, Rashid Ali; Park, Seung Hwan

    2016-09-01

    This study focuses on optimizing the manifold design for a 1 kW-class flat-tubular solid oxide fuel cell stack by performing extensive three-dimensional numerical simulations on numerous manifold designs. The stack flow uniformity and the standard flow deviation indexes are implemented to characterize the flow distributions in the stack and among the channels of FT-SOFC's, respectively. The results of the CFD calculations demonstrate that the remodeled manifold without diffuser inlets and 6 mm diffuser front is the best among investigated designs with uniformity index of 0.996 and maximum standard flow deviation of 0.423%. To understand the effect of manifold design on the performance of stack, both generic and developed manifold designs are investigated by applying electrochemical and internal reforming reactions modeling. The simulation results of the stack with generic manifold are validated using experimental data and then validated models are adopted to simulate the stack with the developed manifold design. The results reveal that the stack with developed manifold design achieves more uniform distribution of species, temperature, and current density with comparatively lower system pressure drop. In addition, the results also showed ∼8% increase in the maximum output power due to the implementation of uniform fuel velocity distributions in the cells.

  14. Natural Gas Pipeline and System Expansions

    EIA Publications

    1997-01-01

    This special report examines recent expansions to the North American natural gas pipeline network and the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.

  15. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2003-01-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.

  16. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2002-06-30

    Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

  17. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2002-06-01

    Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment has been initiated. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

  18. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2002-10-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.

  19. Natural gas outstrips oil as energy source

    SciTech Connect

    Not Available

    1981-06-01

    Natural gas (all of it domestically produced) was the largest single source of Pakistan's 1980 energy supply, contributing 40.1% of the total, compared with 37.4% for oil, 16.6% for hydroelectricity, 5.6% for coal, and 0.3% for LP-gas, plus a very small amount of nuclear power. In 1979, gas accounted for 37.6% of the total and oil for 38.9%. Eighty percent of Pakistan's total natural gas production of nearly 300 billion CF came from the Sui field in central Pakistan, which is being developed by Pakistan Petroleum Ltd. The balance was produced in Esso's Mari field and the Oil and Gas Development Commission's Sari and Hundi fields.

  20. Organic acids emissions from natural-gas-fed engines

    NASA Astrophysics Data System (ADS)

    Zervas, Efthimios; Tazerout, Mohand

    A natural-gas-fed spark-ignition engine, operating under lean conditions, is used for the study of the organic acids exhaust emissions. These pollutants are collected by passing a sample of exhaust gas into deionised water. The final solution is directly analysed by HPLC/UV at 204 nm. Only formic acid is emitted in detectable concentration under the experimental conditions used. Its concentration decreases with the three engine operating parameters studied: spark advance, volumetric efficiency and fuel/air equivalence ratio. Exhaust formic acid concentration is also linked with exhaust oxygen concentration and exhaust temperature. A comparison with other engines (SI engines fed with gasoline and compression ignition engines) from bibliographic data proves that natural-gas-fed engines emit less organic acids than the other two types of engines.