Science.gov

Sample records for natural gas reburning

  1. NO{sub x} control using natural gas reburn on an industrial cyclone boiler

    SciTech Connect

    Farzan, H.; Maringo, G.J.; Beard, C.T.; Weed, G.E.; Pratapas, J.

    1996-12-31

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, has been retrofitted with the gas reburn technology developed by the Babcock and Wilcox (B and W) Company to reduce NO{sub x} emissions in order to comply with the New York State regulations adopted in conformance with the Title I of the Clean Air Act Amendments (CAAA) of 1990. At the peak load, the ozone nonattainment required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit for cyclone boilers in this regulation is 56%. Eastman Kodak Company and the Gas Research Institute (GRI) are co-sponsoring this project. Chevron has supplied the natural gas. Equipment installation for the gas reburn system was performed in a September 1995 outage. Boiler No. 43`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow (or approximately equivalent to 60 MW{sub e}). Because of the compact boiler design, there is insufficient furnace residence time to use coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Contingent upon successful completion of this gas reburn project, modification of Kodak`s other cyclone boilers to include reburn technology will be consideredd. The paper will describe B and W`s gas reburn data from a cyclone-equipped pilot facility (B and W`s Small Boiler Simulator), gas reburn system design, manufacturing, and installation information specific to Kodak`s Unit No. 43. In addition, the paper will discuss numerical modeling and the full-scale commercial boiler test results.

  2. NO{sub x} control using natural gas reburn on an industrial cyclone boiler

    SciTech Connect

    Farzan, H.; Maringo, G.J.; Beard, C.T.; Weed, G.E.; Pratapas, J.

    1997-07-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, has been retrofitted with the gas reburn. technology developed by the Babcock & Wilcox (B&W) Company to reduce NO{sub x} emissions in order to comply with the New York State regulations adopted in conformance with the Title I of the Clean Air Act Amendments (CAAA) of 1990. At the peak load, the ozone nonattainment required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit for cyclone boilers in this regulation is 56%. Eastman Kodak Company and the Gas Research Institute (GRI) are co-sponsoring this project. Chevron has supplied the natural gas. Equipment installation for the gas reburn system was performed in a September 1995 outage. Boiler No. 43`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow (or approximately equivalent to 60 MW{sub e}). Because of the compact boiler design, there is insufficient furnace residence time to use coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Contingent upon successful completion of this gas reburn project, modification of Kodak`s other cyclone boilers to include reburn technology will be considered. The paper will describe B&W`s gas reburn data from a cyclone-equipped pilot facility (B&W`s Small Boiler Simulator), gas reburn system design, manufacturing, and installation information specific to Kodak`s Unit No. 43. In addition, the paper will discuss numerical modeling and the full-scale commercial boiler test results.

  3. NATURAL GAS REBURNING FOR NOX CONTROL ON A CYCLONE-FIRED BOILER

    EPA Science Inventory

    The paper discusses natural gas reburning (fuel staging) for nitrogen oxide (NOx) control on a cyclone-fired boiler. eburning is an in-furnace NOx combustion modification technology that has been shown to reduce NOx by 50-60%. eburning is accomplished by injecting fuel downstream...

  4. Demonstration of natural gas reburn for NO{sub x} emissions reduction at Ohio Edison Company`s cyclone-fired Niles Plant Unit Number 1

    SciTech Connect

    Borio, R.W.; Lewis, R.D.; Koucky, R.W.; Lookman, A.A.; Manos, M.G.; Corfman, D.W.; Waddingham, A.L.; Johnson, S.A.

    1996-04-01

    Electric utility power plants account for about one-third of the NO{sub x} and two-thirds of the SO{sub 2} emissions in the US cyclone-fired boilers, while representing about 9% of the US coal-fired generating capacity, emit about 14% of the NO{sub x} produced by coal-fired utility boilers. Given this background, the Environmental Protection Agency, the Gas Research Institute, the Electric Power Research Institute, the Pittsburgh Energy Technology Center, and the Ohio Coal Development Office sponsored a program led by ABB Combustion Engineering, Inc. (ABB-CE) to demonstrate reburning on a cyclone-fired boiler. Ohio Edison provided Unit No. 1 at their Niles Station for the reburn demonstration along with financial assistance. The Niles Unit No. 1 reburn system was started up in September 1990. This reburn program was the first full-scale reburn system demonstration in the US. This report describes work performed during the program. The work included a review of reburn technology, aerodynamic flow model testing of reburn system design concepts, design and construction of the reburn system, parametric performance testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of the Niles No. 1 host unit, a discussion of conclusions and recommendations derived from the program, tabulation of data from parametric and long-term tests, and appendices which contain additional tabulated test results.

  5. Gas reburn retrofit on an industrial cyclone boiler

    SciTech Connect

    Farzan, H.; Latham, C.E.; Maringo, G.J.

    1996-01-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, is being retrofitted with the gas reburning technology developed by Babcock & Wilcox (B & W) to reduce NO{sub x} emissions in order to comply with the Title I, ozone nonattainment, of the Clean Air Act Amendments (CAAA) of 1990. The required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit set in New York`s regulation is about 47%. Eastman Kodak and the Gas Research Institute (GRI) are cosponsoring this project. B & W is the prime contractor and contract negotiations with Chevron as the gas supplier are presently being finalized. Equipment installation for the gas reburn system is scheduled for a September 1995 outage. No. 43 Boiler`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow or approximately equivalent to 60 MW{sub e}. Because of the compact boiler design, there is insufficient gas residence time to use pulverized coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Based on successful completion of this gas reburn project, modifying the other three cyclone boilers with gas reburn technology is anticipated. The paper will describe B & W`s gas reburn data from a cyclone-equipped pilot facility (B & W`s Small Boiler Simulator), gas reburn design information specific to Eastman Kodak No. 43 Boiler, and numerical modeling experiences based on the pilot-scale Small Boiler Simulator (SBS) results along with those from a full-scale commercial boiler.

  6. UKRAINIAN MULTI-FUEL REBURN DEMO

    EPA Science Inventory

    This research demonstrates a multi-fuel reburning system to allow the use of natural gas, fuel oil, or pulverized coal as the reburn fuel on a 300 MW wall-fired, we-bottom boiler in the Ukraine. The ability to use more than one fuel is critical to the success of reburning as a N...

  7. REBURN TECHNOLOGY FOR BOILER NOX CONTROL

    EPA Science Inventory

    The paper reports the progress principally of design-relate phases of a demonstration of reburning on a large cyclone-fired boiler, for which coal is the primary fuel and natural gas, the reburn fuel. Reburn system design criteria are presented, as well as the methodology and res...

  8. Enhancing the Use of Coals by Gas Reburning - Sorbent Injection - Volume 5 - Guideline Manual

    SciTech Connect

    None, None

    1998-09-01

    The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOx) and sulfur dioxide (SO2). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved demonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit #1, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOx. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOx to diatomic nitrogen (N2). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (SI) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve

  9. Enhancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual

    SciTech Connect

    1998-06-01

    The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved d,emonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit #1, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. `At each site where the technologies were

  10. Gas reburning in tangentially-fired, wall-fired and cyclone-fired boilers

    SciTech Connect

    May, T.J.; Rindahl, E.G.; Booker, T.

    1994-12-31

    Gas Reburning has been successfully demonstrated for over 4,428 hours on three coal fired utility boilers as of March 31, 1994. Typically, NO{sub x} reductions have been above 60% in long-term, load-following operation. The thermal performance of the boilers has been virtually unaffected by Gas Reburning. At Illinois Power`s Hennepin Station, Gas Reburning in a 71 MWe tangentially-fired boiler achieved an average NO{sub x} reduction of 67% from the original baseline NO{sub x} level of 0.75 lb NO{sub x}/10{sup 6} Btu over a one year period. The nominal natural gas input was 18% of total heat input. Even at 10% gas heat input, NO{sub x} reduction of 55% was achieved. At Public Service Company of Colorado`s Cherokee Station, a Gas Reburning-Low NO{sub x} Burner system on a 172 MWe wall-fired boiler has achieved overall NO{sub x} reductions of 60--73% in parametric and long-term testing, based on the original baseline NO{sub x} level of 0.73 lb/10{sup 6} Btu. NO{sub x} reduction is as high as 60--65% even at relatively low natural gas usage (5--10% of total heat input). The NO{sub x} reduction by Low NO{sub x} Burners alone is typically 30--40%. NO{sub x} reduction has been found to be insensitive to changes in recirculated flue gas (2--7% of total flue gas) injected with natural gas. At City Water, Light and Power Company`s Lakeside Station in Springfield, Illinois, Gas Reburning in a 33 MWe cyclone-fired boiler has achieved an average NO{sub x} reduction of 66% (range 52--77%) at gas heat inputs of 20--26% in long-term testing, based on a baseline NO{sub x} level of 1.0 lb/10{sup 6} Btu (430 mg/MJ). This paper presents a summary of the operating experience at each site and discusses the long term impacts of applying this technology to units with tangential, cyclone and wall-fired (with Low NO{sub x} Burner) configurations.

  11. DEMONSTRATION OF NATURAL GAS REBURN FOR NOX EMISSIONS REDUCTION AT OHIO EDISON COMPANY'S CYCLONE-FIRED NILES PLANT UNIT NO. 1

    EPA Science Inventory

    The report describes a demonstration of reburning on a cyclone-fired boiler. The project included a review of reburn technology, aerodynamic flow model testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of O...

  12. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect

    1998-09-01

    % reduction was met on many test runs, but at higher gas heat inputs. The impact on boiler equipment was determined to be very minimal. Toward the end of the testing, the flue gas recirculation (used to enhance gas penetration into the furnace) system was removed and new high pressure gas injectors were installed. Further, the low NOX burners were modified and gave better NO. reduction performance. These modifications resulted in a similar NO, reduction performance (64%) at a reduced level of gas heat input (-13Yo). In addition, the OFA injectors were re-designed to provide for better control of CO emissions. Although not a part of this project, the use of natural gas as the primary fuel with gas reburning was also tested. The gas/gas reburning tests demonstrated a reduction in NOX emissions of 43% (0.30 lb/1 OG Btu reduced to 0.17 lb/1 OG Btu) using 7% gas heat input. Economics are a key issue affecting technology development. Application of GR-LNB requires modifications to existing power plant equipment and as a result, the capital and operating costs depend largely on site-specific factors such as: gas availability at the site, gas to coal delivered price differential, sulfur dioxide removal requirements, windbox pressure, existing burner throat diameters, and reburn zone residence time available. Based on the results of this CCT project, EER expects that most GR-LNB installations will achieve at least 60% NOX control when firing 10-15% gas. The capital cost estimate for installing a GR-LNB system on a 300 MW, unit is approximately $25/kW. plus the cost of a gas pipeline (if required). Operating costs are almost entirely related to the differential cost of the natural gas compared to coal.

  13. Enhancing the use of coals by gas reburning-sorbent injection: Volume 3 -- Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company. Final report

    SciTech Connect

    1996-03-01

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x} and SO{sub 2} from a wall fired unit at Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the as found baseline of 0.98 lb/MBtu and to reduce emissions of SO{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an SO{sub 2} limit of 1.8 lb/MBtu, the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with SO{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The system was designed to inject sorbent at a rate corresponding to a calcium (sorbent) to sulfur (coal) molar ratio of 2.0. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

  14. Biomass Reburning - Modeling/Engineering Studies

    SciTech Connect

    Peter M. Maly; Vitali V. Lissianski; Vladimir M. Zamansky

    1998-04-30

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The second reporting period (January 1- March 31) included kinetic modeling of the reburning process while firing natural gas and biomass. Modeling was done with a kinetic mechanism that combined reactions relevant to reburning from GRI-Mech 2.11 with SNCR reactions. Experimental data obtained in a 1 MMBtu/h Boiler Simulator Facility (BSF) for reburning with natural gas and biomass were modeled using the ODF kinetic code. System was treated as a series of four one-dimensional reactors. Modeling of natural gas reburning qualitatively agrees with experimental data for a wide range of initial conditions. Modeling of furniture waste reburning does not qualitatively match experimental data due to a number of model simplifications. Future work will concentrate on improving the basic reburning model to give quantitative agreement with experiments and on search for better representation of biomass composition in kinetic modeling. Experimental data on biomass reburning are included in Appendix 3. These data were obtained during the reporting period in the scope of a coordinated program funded by the U.S. Department of Agriculture.

  15. REBURNING THERMAL AND CHEMICAL PROCESSES IN A TWO-DIMENSIONAL PILOT-SCALE SYSTEM

    EPA Science Inventory

    The paper describes an experimental investigation of the thermal and chemical processes influencing NOx reduction by natural gas reburning in a two-dimensional pilot-scale combustion system. Reburning effectiveness for initial NOx levels of 50-500 ppm and reburn stoichiometric ra...

  16. An intelligent emissions controller for fuel lean gas reburn in coal-fired power plants.

    PubMed

    Reifman, J; Feldman, E E; Wei, T Y; Glickert, R W

    2000-02-01

    The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach. Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system. PMID:10680354

  17. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65

  18. Effects of gas stream temperature on homogeneous SO{sub 2} to SO{sub 3} conversion via natural gas reburning

    SciTech Connect

    Bayless, D.J.; Khan, A.R.

    1998-07-01

    Because SO{sub 3} is more reactive than SO{sub 2}, applications for localized increases of SO{sub 3} concentrations in coal-fired power generation include lowering fly ash resistivity and improved performance of dry scrubbing systems to removal sulfur gas. Homogeneous superequilibrium of SO{sub 3} forms when SO{sub 2} passes through a flame in the presence of excess O{sub 2}. While this superequilibrium condition has been studied, little data exist about the effects of free stream gas temperature (as opposed to flame temperature) on this process. A pre-mixed methane flame was used to promote the conversion of SO{sub 2} to SO{sub 3} in a drop tube furnace with free stream gas temperatures from 450--1,000K. Experimental results form solid sampling and SO{sub 2}/SO{sub 3} measurements via wet chemistry coupled with numeric modeling of reactions and species concentrations indicate that a lower free stream temperature reduces the maximum conversion of SO{sub 2} to SO{sub 3} and considerably extends the duration of the super-equilibrium state. Results also indicate that the homogeneous enhancement of sulfur reactivity and increased duration of superequilibrium may increase sulfur capture by dry sorbents.

  19. Enhancing the use of coals by gas reburning-sorbent injection. Volume 3, Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company

    SciTech Connect

    1994-10-01

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x}, and SO{sub 2} from a wall fired unit. A GR-SI system was designed for Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The unit is rated at 117 MW(e) (net) and is front wall fired with a pulverized bituminous coal blend. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the ``as found`` baseline of 0.98 lb/MBtu (420 mg/MJ), and to reduce emissions of S0{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an S0{sub 2} limit Of 1.8 lb/MBtu (770 mg/MJ), the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. The design natural gas input corresponds to 18% of the total heat input. Burnout (overfire) air is injected at a higher elevation to burn out fuel combustible matter at a normal excess air level of 18%. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with S0{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

  20. Enhancing the use of coals by gas reburning-sorbent injection

    SciTech Connect

    Not Available

    1992-11-16

    This Clean Coal Technology project will demonstrate a combination of two developed technologies to reduce both NO[sub x] and SO[sub x] emissions: gas reburning and calcium based dry sorbent injection. The demonstrations will be conducted on two pre-NSPS utility boilers representative of the US boilers which contribute significantly to the inventory of acid rain precursor emissions: tangentially and cyclone fired units. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel (corresponding to the total heat release) in the lower furnace. Reduction of NO[sub x] to molecular nitrogen (N[sub 2]) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO[sub x] emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO[sub x]. Dry sorbent injection consists of injecting calcium based sorbents (such as limestone, dolomite, or hydrated lime) into the combustion products. For sulfation of the sorbent to CaSO[sub 4], an injection temperature of about 1230[degrees]C is optimum, but calcium-sulfur reactions can also take place at lower temperatures. Thus, the sorbent may be injected at different locations, such as with the burnout air, at the exit from the superheater, or into the ducting downstream of the air heater with H[sub 2]0 added for humidification. The calcium sulfate or sulfite products are collected together with unreacted sorbent fly ash by the electrostatic precipitator. The specific goal of this project is to demonstrate NO[sub x] and SO[sub x] emission reductions of 60 percent and 50 percent, respectively, on two coal fired utility boilers having the design characteristics mentioned above.

  1. Coal reburning application on a Cyclone boiler

    SciTech Connect

    Maringo, G.J.; Yagiela, A.S.; Newell, R.J.; Farzan, H.

    1994-12-31

    Cyclone reburn involves the injection of a supplemental fuel (natural gas, oil or coal) into the main furnace of a Cyclone-fired boiler to produce locally reducing conditions which convert NO{sub x}, generated in the main combustion zone, to molecular nitrogen, thereby reducing overall NO{sub x} emissions. The world`s only application of the Cyclone reburn technology using pulverized coal as the reburn fuel was installed at Wisconsin Power & Light`s Nelson Dewey Generating Station, Unit 2. The project was selected for demonstration under the US Department of Energy`s Clean Coal Technology Demonstration Program, Round II.

  2. Nitrogen oxide abatement by distributed fuel addition. [Reburning, mixing, effect of concentration of nitrogen

    SciTech Connect

    Wendt, J.O.L.; Mereb, J.B.

    1991-01-02

    Reburning experiments are presented in which the effect of the primary flame mode is examined. The application of reburning downstream of an axial diffusion primary flame without swirl is compared to reburning results in which the primary flame is premixed. The comparison is qualitative and is intended to examine reburning under more realistic conditions of utility boilers, where premixed flames are not common. Experimental results of reburning tests using nitrogen containing reburning fuels (ammonia doped natural gas and coal) are presented. The effect of reburning fuel type and nitrogen content on nitrogenous species profiles in the reburn zone are discussed. The last section is concerned with the applications of the kinetic model to predict overall reburning effectiveness from the primary NO level and to identify configuration for low total fixed nitrogen concentration. The effects of mixing in the early stage of reburning are examined and appropriate corrections are incorporated with the kinetic model to allow the prediction of nitrogenous species concentrations in the region where mixing effects are important. An empirical correlation is used to estimate the conversion of the total fixed nitrogen in the reburn zone to NO in the final stage of reburning. The kinetic model is also applied to the testing of hypothetical fuel-rich configurations to identify kinetic limits that would prevent further reductions in nitrogenous species.

  3. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    SciTech Connect

    None, None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was

  4. Enhancing the use of coals by gas reburning-sorbent injection

    SciTech Connect

    Not Available

    1988-12-22

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on three coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices; tangential, wall, and cyclone fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace, at the superheater exit or into the ducting following the air heater. The sorbents trap SO{sub x} as solid sulfates and sulfites, which are collected in the particulate control device.

  5. ADVANCED HETEROGENEOUS REBURN FUEL FROM COAL AND HOG MANURE

    SciTech Connect

    Melanie D. Jensen; Ronald C. Timpe; Jason D. Laumb

    2003-09-01

    This study was performed to investigate whether the nitrogen content inherent in hog manure and alkali used as a catalyst during processing could be combined with coal to produce a reburn fuel that would result in advanced reburning NO{sub x} control without the addition of either alkali or ammonia/urea. Fresh hog manure was processed in a cold-charge, 1-gal, batch autoclave system at 275 C under a reducing atmosphere in the presence of an alkali catalyst. Instead of the expected organic liquid, the resulting product was a waxy solid material. The waxy nature of the material made size reduction and feeding difficult as the material agglomerated and tended to melt, plugging the feeder. The material was eventually broken up and sized manually and a water-cooled feeder was designed and fabricated. Two reburn tests were performed in a pilot-scale combustor. The first test evaluated a reburn fuel mixture comprising lignite and air-dried, raw hog manure. The second test evaluated a reburn fuel mixture made of lignite and the processed hog manure. Neither reburn fuel reduced NO{sub x} levels in the combustor flue gas. Increased slagging and ash deposition were observed during both reburn tests. The material-handling and ash-fouling issues encountered during this study indicate that the use of waste-based reburn fuels could pose practical difficulties in implementation on a larger scale.

  6. ADVANCED BIOMASS REBURNING FOR HIGH EFFICIENCY NOx CONTROL AND BIOMASS REBURNING - MODELING/ENGINEERING STUDIES JOINT FINAL REPORT

    SciTech Connect

    Vladimir M. Zamansky; Mark S. Sheldon; Vitali V. Lissianski; Peter M. Maly; David K. Moyeda; Antonio Marquez; W. Randall Seeker

    2000-10-01

    This report presents results of studies under a Phase II SBIR program funded by the U. S. Department of Agriculture, and a closely coordinated project sponsored by the DOE National Energy Technology Laboratory (NETL, formerly FETC). The overall Phase II objective of the SBIR project is to experimentally optimize the biomass reburning technologies and conduct engineering design studies needed for process demonstration at full scale. The DOE project addresses supporting issues for the process design including modeling activities, economic studies of biomass handling, and experimental evaluation of slagging and fouling. The performance of biomass has been examined in a 300 kW (1 x 10{sup 6} Btu/hr) Boiler Simulator Facility under different experimental conditions. Fuels under investigation include furniture waste, willow wood and walnut shells. Tests showed that furniture pellets and walnut shells provided similar NO{sub x} control as that of natural gas in basic reburning at low heat inputs. Maximum NO{sub x} reduction achieved with walnut shell and furniture pellets was 65% and 58% respectively. Willow wood provided a maximum NO{sub x} reduction of 50% and was no better than natural gas at any condition tested. The efficiency of biomass increases when N-agent is injected into reburning and/or burnout zones, or along with OFA (Advanced Reburning). Co-injection of Na{sub 2}CO{sub 3} with N-agent further increases efficiency of NO{sub x} reduction. Maximum NO{sub x} reduction achieved with furniture pellets and willow wood in Advanced Reburning was 83% and 78% respectively. All combustion experiments of the Phase II project have been completed. All objectives of the experimental tasks were successfully met. The kinetic model of biomass reburning has been developed. Model agrees with experimental data for a wide range of initial conditions and thus correctly represents main features of the reburning process. Modeling suggests that the most important factors that provide

  7. PILOT SCALE PROCESS EVALUATION OF REBURNING FOR IN-FURNACE NOX REDUCTION

    EPA Science Inventory

    The report gives results of coal and natural gas reburning application tests to a pilot scale 3.0 MWt furnace to provide the scaling information required for commercial application of reburning to pulverized-coal-fired boilers. Initial parametric studies had been conducted in a 2...

  8. Temperature, velocity and Species Profile Measurements for Reburning in a Pulverized, Entrained Flow, Coal Combustor

    SciTech Connect

    Tree, D.R.

    1997-10-01

    Measurements of effluent NO{sub x}, CO, and O{sub 2} have been obtained for various reburning locations in the controlled profile reactor. the location of the reburning zone and tertiary air zone have been varied to find an optimal location for detailed reburning profile measurements. No{sub x} reduction of greater than 70% has been seen with natural gas injection in and just below the primary combustion zone. Strategic injection of the natural gas for reburning reduces the total No{sub x} reduction capability of reburning. Modeling efforts continue in trying to match the modeling solution to the detailed baseline data taken in previous measurement. The use of more accurate measured boundary conditions did not appear to improve the model predictions greatly but the use of more detailed turbulence models was found to improve the predictions, the predictions are still far from matching the combustion measurements.

  9. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    SciTech Connect

    1996-03-01

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  10. Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler; a DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2001-02-28

    The results from the GR-LNB technology demonstrated by EER at Cherokee Station approached, but did not meet, the CCT project's performance objectives. Acceptable unit operability was achieved with both the GR and the LNB components. The gas reburning component of the process appears to be broadly applicable for retrofit NO{sub x} control to most utility boilers and, in particular, to wet-bottom cyclone boilers, which are high NO{sub x} emitters and are difficult to control (LNB technology is not applicable to cyclone boilers). GR-LNB can reduce NO{sub x} to mandated emissions levels under Title IV of the CAAA without significant, adverse boiler impacts. The GR-LNB process may be applicable to boilers significantly larger than the demonstration unit, provided there is adequate dispersion and mixing of injected natural gas. Major results of the demonstration project are summarized as follows: NO{sub x}-emissions reductions averaging 64% were achieved with 12.5% gas heat input in long-term tests on a 158-MWe (net) wall-fired unit. The target reduction level of 70% was achieved only on a short-term basis with higher gas consumption. The thermal performance of coal-fired boilers is not significantly affected by GR-LNB. Convective section steam temperatures can be controlled within acceptable limits. Thermal efficiency is decreased by a small amount (about 0.8%), because of increased dry gas loss and higher moisture in the flue gas as a result of the GR process. Furnace slagging and convective section fouling can be adequately controlled. Because of the higher hydrogen/carbon (H/C) ratio of natural gas compared with coal, use of the GR process results in a modest reduction in CO{sub 2} emissions. SO{sub 2} and particulate emissions are reduced in direct proportion to the fraction of heat supplied by natural gas.

  11. Application of multifuel reburn for NOx control on a 300 MWe boiler in Ukraine. Report for October 1994--December 1995

    SciTech Connect

    Hall, R.E.; Miller, C.A.; Payne, R.; Yakushin, E.; Mospan, J.

    1996-01-01

    The paper gives results of a program to design two reburn systems for operation on 300 MWe, coal-fired utility boilers operating in Ukraine. One is a natural-gas-fired system designed by ABB Combustion Engineering, installed in September 1992, and continuing to operate with a 50 percent nitrogen oxides (NOx) reduction. The paper summarizes the natural gas reburn test results. Emphasis is placed on the second demonstration, a multifuel (natural gas, oil, and/or coal) reburn system for which a conceptual design has been completed by Energy and Environmental Research Corp. Engineering drawings are being prepared by the Karkov Design Bureau in Ukraine.

  12. TEMPERATURE, VELOCITY AND SPECIES PROFILE MEASUREMENTS FOR REBURNING IN A PULVERIZED, ENTRAINED FLOW, COAL COMBUSTOR

    SciTech Connect

    1998-10-01

    An experimental program has been completed to make detailed measurements of a pulverized coal flame with reburning and advanced reburning. Maps of species (CO, CO{sub 2}, O{sub 2} , NO, HCN, and NH{sub 3}), temperature and velocity have been obtained which consist of approximately 60 measurements across a cross sectional plane of the reactor. A total of six of these maps have been obtained. Three operating conditions for the baseline flame have been mapped, two operating conditions with reburning, and one operating condition of advanced reburning. In addition to the mapping data, effluent measurements of gaseous products were obtained for various operating conditions. This report focuses on the advanced reburning data. Advanced reburning was achieved in the reactor by injecting natural gas downstream of the primary combustion zone to form a reburning zone followed by a second injection of ammonia downstream of reburning to form an advanced reburning zone. Finally, downstream of the ammonia injection, air was injected to form a burnout or tertiary air zone. The amount of natural gas injected was characterized by the reburning zone stoichiometric ratio. The amount of ammonia injected was characterized by the ammonia to nitrogen stoichiometric ratio or NSR and by the amount of carrier gas used to transport and mix the ammonia. A matrix of operating conditions where injector position, reburning zone stoichiometric ratio, NSR, and carrier gas flow rate were varied and NO reduction was measured was completed in addition to a map of data at one operating condition. The data showed advanced reburning was more effective than either reburning or NH{sub 3} injection alone. At one advanced reburning condition over 95% NO reduction was obtained. Ammonia injection was most beneficial when following a reburning zone which was slightly lean, S.R. = 1.05, but was not very effective when following a slightly rich reburning zone, S.R. of 0.95. In the cases where advanced reburning

  13. Evaluation of gas-reburning and low NO{sub x} burners on a wall fired boiler. Progress report, January 1--March 31, 1996

    SciTech Connect

    1996-04-15

    The primary objective of this Clean Coal Technology project is to evaluate the use of Gas Reburning and Low NO{sub x} Burners (GR-LNB) for NO{sub x} emission control from a wall fired boiler. This project is being conducted in three phases at the host site, a 172 MW{sub e} wall fired boiler of Public Service Company of Colorado, Cherokee Unit 3 in Denver, Colorado: Phase I, design and permitting has been completed on June 30, 1992; Phase II, construction and start-up has been completed on September 1991; and Phase III, operation, data collection, reporting and disposition. Phase III activities during this reporting period involved the following: compilation, analysis and assembly of the final report and initiation of restoration activities; restoration of the gas reburning system involving removal of the flue gas recirculation system (permanent Second Generation Gas Reburning); and participants meeting and reburning workshop. Long term testing of the equipment demonstrated an average NO{sub x} reduction of 65% using 18% gas heat input. After removing the flue gas recirculation system, (Second Generation GR), an average NO{sub x} of 64% was achieved using 13% gas heat input. The project goal of 70% reduction was achieved, but no on an average basis due to the load requirements of the utility.

  14. Enhancing the use of coals by gas reburning-sorbent injection. Environmental monitoring quarterly report No. 9, July 1--September 30, 1992

    SciTech Connect

    Not Available

    1992-11-16

    This Clean Coal Technology project will demonstrate a combination of two developed technologies to reduce both NO{sub x} and SO{sub x} emissions: gas reburning and calcium based dry sorbent injection. The demonstrations will be conducted on two pre-NSPS utility boilers representative of the US boilers which contribute significantly to the inventory of acid rain precursor emissions: tangentially and cyclone fired units. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel (corresponding to the total heat release) in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. Dry sorbent injection consists of injecting calcium based sorbents (such as limestone, dolomite, or hydrated lime) into the combustion products. For sulfation of the sorbent to CaSO{sub 4}, an injection temperature of about 1230{degrees}C is optimum, but calcium-sulfur reactions can also take place at lower temperatures. Thus, the sorbent may be injected at different locations, such as with the burnout air, at the exit from the superheater, or into the ducting downstream of the air heater with H{sub 2}0 added for humidification. The calcium sulfate or sulfite products are collected together with unreacted sorbent fly ash by the electrostatic precipitator. The specific goal of this project is to demonstrate NO{sub x} and SO{sub x} emission reductions of 60 percent and 50 percent, respectively, on two coal fired utility boilers having the design characteristics mentioned above.

  15. REBURNING APPLICATION TO FIRETUBE PACKAGE BOILERS

    EPA Science Inventory

    The report gives results of pilot-scale experimental research that examined the physical and chemical phenomena associated with the NOx control technology of reburning applied to gas- and liquid-fired firetube package boilers. Reburning (staged fuel combustion) diverts some of th...

  16. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Final project report

    SciTech Connect

    Not Available

    1994-02-01

    As part of the US Department of Energy`s (DOE`s) Innovative Clean Coal Technology Program, under Round 2, a project for Full Scale Demonstration of Coal Reburning for Cyclone Boiler Nitrogen Oxide (NO{sub x},) Control was selected. DOE sponsored The Babcock & Wilcox (B&W) Company, with Wisconsin Power & Light (WP&L) as the host utility, to demonstrate coal reburning technology at WP&L`s 110 MW{sub c}, cyclone-fired Unit No.2 at the Nelson Dewey Generating Station in Cassville, Wisconsin. The coal reburning demonstration was justified based on two prior studies. An Electric Power Research Institute (EPRI) and B&W sponsored engineering feasibility study indicated that the majority of cyclone-equipped boilers could successfully apply reburning technology to reduce NO{sub x}, emissions by 50 to 70%. An EPRI/Gas Research Institute (GRI)/B&W pilot-scale evaluation substantiated this conclusion through pilot-scale testing in B&W`s 6 million Btu/hr Small Boiler Simulator. Three different reburning fuels, natural gas, No. 6 oil, and pulverized coal were tested. This work showed that coal as a reburning fuel performs nearly as well as gas/oil without deleterious effects of combustion efficiency. Coal was selected for a full scale demonstration since it is available to all cyclone units and represents the highest level of technical difficulty-in demonstrating the technology.

  17. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report no. 6, September 1, 1988--November 30, 1988

    SciTech Connect

    Not Available

    1988-12-22

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on three coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices; tangential, wall, and cyclone fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace, at the superheater exit or into the ducting following the air heater. The sorbents trap SO{sub x} as solid sulfates and sulfites, which are collected in the particulate control device.

  18. Natural Gas

    NASA Astrophysics Data System (ADS)

    Maddox, Robert N.; Moshfeghian, Mahmood; Ldol, James D.; Johannes, Arland H.

    Natural gas is a naturally occurring mixture of simple hydrocarbons and nonhydrocarbons that exists as a gas at ordinary pressures and temperatures. In the raw state, as produced from the earth, natural gas consists principally of methane (CH4) and ethane (C2H4), with fractional amounts of propane (C3H8), butane (C4H10), and other hydrocarbons, pentane (C5H12) and heavier. Occasionally, small traces of light aromatic hydrocarbons such as benzene and toluene may also be present.

  19. Demonstration of Orimulsion{reg{underscore}sign} reburning on a coal-fired utility boiler

    SciTech Connect

    Rostorfer, C.R.; Krueger, S.; Payne, R.

    1998-07-01

    This paper provides a summary of the Orimulsion Reburn Demonstration Project recently conducted at Illinois Power's Hennepin Power Station during September through November 1997. The demonstration consisted of three major activities: Modify the Hennepin Station Unit 1 boiler for Orimulsion reburn; Deliver Orimulsion fuel to the Station on the Illinois River via double-hulled barge; and Conduct the demonstration through a series of parametric and duration tests. Hennepin Station Unit 1 was selected to host the demonstration because it had been the site of a US DOE Clean Coal Technology (CCT) Program involving natural gas reburn in the early 1990s. Consequently, the modifications required for the Orimulsion reburn system were relatively minor since penetrations in the boiler walls existed and overfire air and flue gas recirculation fans and ducts were still in place. The reburn fuel system was designed and installed to transfer the Orimulsion from the barge and inject it into the boiler. A double-hulled barge was used to transport about 16,500 barrels of Orimulsion to the plant on the Mississippi and Illinois Rivers and served as the storage facility during the testing. Illinois bituminous coal provided approximately 80% of the unit's heat input, with Orimulsion providing approximately 20%. The objective of the project was to demonstrate NO{sub x} reductions of up to 65% from the original baseline levels with no unexpected impacts on boiler performance or operation.

  20. THREE STAGE COMBUSTION (REBURNING) TEST RESULTS FROM A 300 MW BOILER IN THE UKRAINE

    EPA Science Inventory

    The paper gives results of a program to design, install, and test a natural gas three-stage combustion (reburn) system on a 300-MWe, opposed-wall, wetbottom (slagging) coal-fired utility boiler operating in the Ukraine. The U. S. EPA sponsored this-program in support of a working...

  1. EVALUATION OF TIRE-DERIVED FUEL FOR USE IN NITROGEN OXIDE REDUCTION BY REBURNING

    EPA Science Inventory

    Tire-derived fuel (TDF) was tested in a small-scale (44 kW or 150,000 Btu/hr) combustor to determine its feasibility as a fuel for use in reburning for control of nitrogen oxide (NO). TDF was gravity-fed into upward flowing combustion gases from a primary natural gas flame doped ...

  2. Experiment and mechanism investigation on advanced reburning for NOx reduction: influence of CO and temperature

    PubMed Central

    Wang, Zhi-hua; Zhou, Jun-hu; Zhang, Yan-wei; Lu, Zhi-min; Fan, Jian-ren; Cen, Ke-fa

    2005-01-01

    Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were investigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the needed flue gas. Four kinds of pulverized coal were fed as reburning fuel at constant rate of 1g/min. The coal reburning process parameters including 15%~25% reburn heat input, temperature range from 1100 °C to 1400 °C and also the carbon in fly ash, coal fineness, reburn zone stoichiometric ratio, etc. were investigated. On the condition of 25% reburn heat input, maximum of 47% NO reduction with Yanzhou coal was obtained by pure coal reburning. Optimal temperature for reburning is about 1300 °C and fuel-rich stoichiometric ratio is essential; coal fineness can slightly enhance the reburning ability. The temperature window for ammonia injection is about 700 °C~1100 °C. CO can improve the NH3 ability at lower temperature. During advanced reburning, 72.9% NO reduction was measured. To achieve more than 70% NO reduction, Selective Non-catalytic NOx Reduction (SNCR) should need NH3/NO stoichiometric ratio larger than 5, while advanced reburning only uses common dose of ammonia as in conventional SNCR technology. Mechanism study shows the oxidization of CO can improve the decomposition of H2O, which will rich the radical pools igniting the whole reactions at lower temperatures. PMID:15682503

  3. Biomass Reburning: Modeling/Engineering Studies

    SciTech Connect

    Vladimir M. Zamansky

    1998-01-20

    Reburning is a mature fuel staging NO{sub x} control technology which has been successfully demonstrated at full scale by Energy and Environmental Research Corporation (EER) and others on numerous occasions. Based on chemical kinetic modeling and experimental combustion studies, EER is currently developing novel concepts to improve the efficiency of the basic gas reburning process and to utilize various renewable and waste fuels for NO{sub x} control. This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. Basic and advanced biomass reburning have the potential to achieve 60-90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The scope of work includes modeling studies (kinetic, CFD, and physical modeling), experimental evaluation of slagging and fouling associated with biomass reburning, and economic study of biomass handling requirements. Project participants include: EER, FETC R and D group, Niagara Mohawk Power Corporation and Antares, Inc. Most of the combustion experiments on development of biomass reburning technologies are being conducted in the scope of coordinated SBIR program funded by USDA. The first reporting period (October 1--December 31, 1997) included preparation of project management plan and organization of project kick-off meeting at DOE FETC. The quarterly report briefly describes the management plan and presents basic information about the kick-off meeting.

  4. Evaluation of gas reburning and low NO{sub x} burners on a wall-fired boiler

    SciTech Connect

    1995-06-01

    An evaluation of Gas Reburning (GR) and Low NO{sub x}, Burners (LNB) has been completed at Public Service Company of Colorado`s Cherokee Station Unit 3. The goal of the demonstration, which was carried out in a US DOE Clean Coal Technology Round 3 Program, was to reduce NO{sub x} emissions by 70%. The reduction was to be achieved from the pre-project level, prior to LNB retrofit. The GR system was supplied by Energy and Environmental Research Corporation (EER) and the LNBs were supplied by the Foster Wheeler Energy Corporation. The project was carried out in three phases in which EER designed the GR system and obtained necessary permits (Phase 1), constructed the system and completed start-up tasks (Phase 2), and evaluated its performance with both Optimization Tests and a Long-Term Demonstration (Phase 3). As directed by the cooperative agreement, environmental monitoring was conducted in each phase. Measurements were taken by plant personnel and an EER Field Testing Team and were divided into two types. ``Compliance Monitoring`` was conducted by plant personnel to satisfy requirements of regulatory agencies, while ``Supplemental Monitoring`` was conducted by EER personnel to develop a database of environmental impacts of the technology and to ensure environmental acceptability of the project. This document presents environmental monitoring data obtained during the Long-Term Testing period, April 27, 1993 to January 27, 1995. During this period, ten months of testing of the GR-LNB system was followed by a modification into a ``second-generation`` GR-LNB system, which was evaluated for six months. Compliance Monitoring was conducted primarily in two areas, air emissions and aqueous discharges.

  5. Temperature, velocity and species profile measurements for reburning in a pulverized, entrained flow, coal combustor

    SciTech Connect

    Tree, D.R.

    1999-03-01

    0.5 swirl. And finally, two maps were obtained under advanced reburning conditions both at the same operating condition of 1.05 stoichiometric ratio in the reburning zone followed by ammonia injection. Numerous effluent measurements were obtained to study the affect of natural gas injection location, stoichiometric ratio, and injection velocity on effluent NO. For advanced reburning, effluent measurements were obtained for a similar matrix of operating conditions with the additional variable of ammonia nitrogen to nitrogen in NO or nitrogen stoichiometric ratio (NSR).

  6. Experiment and mechanism investigation on advanced reburning for NO(x) reduction: influence of CO and temperature.

    PubMed

    Wang, Zhi-Hua; Zhou, Jun-Hu; Zhang, Yan-Wei; Lu, Zhi-Min; Fan, Jian-Ren; Cen, Ke-Fa

    2005-03-01

    Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were investigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the needed flue gas. Four kinds of pulverized coal were fed as reburning fuel at constant rate of 1g/min. The coal reburning process parameters including 15% approximately 25% reburn heat input, temperature range from 1100 degrees C to 1400 degrees C and also the carbon in fly ash, coal fineness, reburn zone stoichiometric ratio, etc. were investigated. On the condition of 25% reburn heat input, maximum of 47% NO reduction with Yanzhou coal was obtained by pure coal reburning. Optimal temperature for reburning is about 1300 degrees C and fuel-rich stoichiometric ratio is essential; coal fineness can slightly enhance the reburning ability. The temperature window for ammonia injection is about 700 degrees C approximately 1100 degrees C. CO can improve the NH3 ability at lower temperature. During advanced reburning, 72.9% NO reduction was measured. To achieve more than 70% NO reduction, Selective Non-catalytic NO(x) Reduction (SNCR) should need NH3/NO stoichiometric ratio larger than 5, while advanced reburning only uses common dose of ammonia as in conventional SNCR technology. Mechanism study shows the oxidization of CO can improve the decomposition of H2O, which will rich the radical pools igniting the whole reactions at lower temperatures. PMID:15682503

  7. Reburn system with feedlot biomass

    DOEpatents

    Annamalai, Kalyan; Sweeten, John M.

    2005-12-13

    The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NO.sub.x emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NO.sub.x. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.

  8. Second Generation Advanced Reburning for High Eficiency NO(x) Control

    SciTech Connect

    Zamansky, V.M.; Maly, P.M.; Sheldon, M.S.; Moyeda, D.; Gardiner, W.C., Jr.; Lissianski, V.V.

    1997-04-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The sixth reporting period (January I - March 31, 1997) included both experimental and modeling activities. New kinetic experimental data for high-temperature decomposition of sodium carbonate were obtained in a flow reactor at the University of Texas in Austin. Pilot scale combustion tests in a 1.0 MMBtu/hr Boiler Simulator Facility were continued with firing coal and using natural gas as reburn fuel. The results demonstrate that over 90% NO control is achievable by injecting one or two N-agents with sodium promoters into the reburning zone and with the overfire air. Advanced reburning technologies does not cause significant byproduct emissions. The AR kinetic model was updated to include chemical reactions of sodium carbonate decomposition. Modeling was conducted on evaluation of the effect of sodium on process kinetics in the rebuming zone. This study revealed that increasing or decreasing radical concentrations in the presence of sodium can significantly affect the reactions responsible for NO reduction under fuel-rich conditions. The effect of mixing time on performance with sodium was also evaluated. Initial activities on engineering design methodology for second generation AR improvements are described.

  9. Development of a reburning boiler process model

    SciTech Connect

    Wu, K.T.

    1992-01-30

    The overall objective of this program is to integrate EER's expertise in boiler reburning performance evaluation into a package of analytical computer tools. Specific objectives of the program are to develop a computational capability with the following features: (1) can be used to predict the impact of gas reburning application on thermal conditions in the boiler radiant furnace, and on overall boiler performance; (2) can estimate gas reburning NO{sub x} reduction effectiveness based on specific reburning configurations and furnace/boiler configurations; (3) can be used as an analytical tool to evaluate the impact of boiler process parameters (e.g., fuel switching and changes in boiler operating conditions) on boiler thermal performance; (4) is adaptable to most boiler designs (tangential and wall fire boilers) and a variety of fuels (solid, liquid, gaseous and slurried fuels); (5) is sufficiently user friendly to be exercisable by engineers with a reasonable knowledge of boilers, and with reasonable computer skills. Here, user friendly'' means that the user will be guided by computer codes during the course of setting up individual input files for the boiler performance model.

  10. Natural gas marketing II

    SciTech Connect

    Not Available

    1988-01-01

    This book covers all aspects of gas marketing, from the basic regulatory structure to the latest developments in negotiating agreements and locating markets. Topics include: Federal regulation of the gas industry; Fundamentals of gas marketing contracts; FERC actions encouraging competitive markets; Marketing conditions from the pipelines' perspective; State non-utility regulation of natural gas production, transportation, and marketing; Natural gas wellhead agreements and tariffs; Natural gas processing agreements; Effective management of producer's natural gas contracts; Producer-pipeline litigation; Natural gas purchasing from the perspective of industrial gas users; Gas marketing by co-owners: problems of disproportionate sales, gas balancing, and accounting to royalty owners; Alternatives and new directions in marketing.

  11. Application of staged combustion and reburning to the co-firing of nitrogen-containing wastes

    SciTech Connect

    Linak, W.P.; Mulholland, J.A.; McSorley, J.A.; Hall, R.E.; Srivastava, R.K.

    1991-01-01

    The paper gives results of an evaluation of a 0.6 MW precombustion chamber burner, designed for in-furnace NOx control, high combustion efficiency, and retrofit applications, for use with high nitrogen content fuel/waste mixtures. The 250- to 750-ms residence time precombustion chamber burner mounted on a prototype watertube package boiler simulator used air staging and in-furnace natural gas reburning to control NOx emissions. The paper reports results of research in which the low NOx precombustor was used to examine the co-firing characteristics of a nitrogenated pesticide, containing dinoseb (2-sec-butyl-4,6 dinitrophenol) in a fuel-oil/xylene solvent. The dinoseb formulation as fired contained 6.4% nitrogen. NO emissions without in-furnace NOx control exceeded 4400 ppm (at 0% O2). When NOx controls in the form of air staging and natural gas reburning were used, these emissions were reduced to < 150 ppm (96% reduction). Average CO and total hydrocarbon emissions were typically < 15 and 2 ppm, respectively. No dinoseb was detected in any emission sample, and the destruction efficiency was determined to be > 99.99%. Mutagenicity studies of the dinoseb emissions showed that reburning (used for NOx control) reduced the mutagenic emission factor about 60-70% from that with air staging alone.

  12. FUEL LEAN BIOMASS REBURNING IN COAL-FIRED BOILERS

    SciTech Connect

    Jeffrey J. Sweterlitsch; Robert C. Brown

    2002-07-01

    This final technical report describes research conducted between July 1, 2000, and June 30, 2002, for the project entitled ''Fuel Lean Biomass Reburning in Coal-Fired Boilers,'' DOE Award No. DE-FG26-00NT40811. Fuel Lean Biomass Reburning is a method of staging fuel within a coal-fired utility boiler to convert nitrogen oxides (NOx) to nitrogen by creating locally fuel-rich eddies, which favor the reduction of NOx, within an overall fuel lean boiler. These eddies are created by injecting a supplemental fuel source, designated as the reburn fuel, downstream of the primary combustion zone. Chopped biomass was the reburn fuel for this project. Four parameters were explored in this research: the initial oxygen concentration ranged between 1%-6%, the amount of biomass used as the reburn fuel ranged between from 0%-23% of the total % energy input, the types of biomass used were low nitrogen switchgrass and high nitrogen alfalfa, and the types of carrier gases used to inject the biomass (nitrogen and steam). Temperature profiles and final flue gas species concentrations are presented in this report. An economic evaluation of a potential full-scale installation of a Fuel-Lean Biomass Reburn system using biomass-water slurry was also performed.

  13. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions

    SciTech Connect

    Hyukjin Oh; Kalyan Annamalai; John M. Sweeten

    2008-04-15

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass, FB) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash 'fouling' were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out. 16 refs., 12 figs., 6 tabs.

  14. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions.

    PubMed

    Oh, Hyukjin; Annamalai, Kalyan; Sweeten, John M

    2008-04-01

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass [FB]) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash "fouling" were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash-fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out. PMID:18422038

  15. Heterogeneous Reburning By Mixed Fuels

    SciTech Connect

    Anderson Hall

    2009-03-31

    Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

  16. HETEROGENEOUS REBURNING BY MIXED FUELS

    SciTech Connect

    Wei-Yin Chen; Benson B. Gathitu

    2005-01-14

    Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

  17. Natural Gas Monthly

    EIA Publications

    2016-01-01

    Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

  18. Natural gas annual 1994

    SciTech Connect

    1995-11-17

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  19. Natural gas annual 1995

    SciTech Connect

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  20. Geopolitics of natural gas

    SciTech Connect

    Russell, J.

    1983-01-01

    This examines the role of gas in the world energy supply/demand. Special attention is paid to Western Europe, the Soviet Union, and the natural gas exporting countries. Forecasts of global energy demand until 2000 and data on Western Europe's proven natural gas reserves as per January 1982 are provided.

  1. Role of char during reburning of nitrogen oxides. First quarterly report, October 1, 1993--December 31, 1993

    SciTech Connect

    Chen, Wei-Yin

    1993-12-31

    Customarily, coal and lignite have not been considered viable reburning fuels for a number of reasons. NO reduction through homogeneous gas phase mechanisms is generally believed more important than the heterogeneous NO reduction on char; and coal devolatilization in the fuel rich environment generates only about 50% of the volatile hydrocarbon radicals than gaseous hydrocarbons under the same fuel-to-oxidant stoichiometry. In addition, the fuel nitrogen could result in additional nitrogen oxide emissions in the burnout stage. What has not been anticipated is the highly active nature of lignite char surface. First, it has been demonstrated in the literature that lignite char can be gasified by nitrogen oxide; second, the minerals in lignite char can catalyze the CO + NO and gasification reaction; and third, lignite char has a highly porous structure which is desirable for gas/solid reactions. The unique NO activity on char surface is expected to benefit the utilities which are involved in coal combustion and have to meet the stringent Clean Air Act Amendments of 1990. This program is aimed at a better understanding of the chemical and physical mechanisms involved in the reburning with chars. Char gasification rates will be measured with and without the presence of CO. Further, the rate of the char catalyzed CO + NO reaction will also be measured. Experiments have been conducted with a flow reactor which simulates the reburning stage. One bituminous coal and two lignites, one from North Dakota and the other from Mississippi, are used in these tasks. A unique component of this program is the use of the fractal concept in the estimations of these gas/solid reaction rates. The proposed program is designed to investigate the relative importance of these two reactions (char gasification and ash catalyzed CO + NO reactions) under reburning conditions.

  2. Thermoacoustic natural gas liquefier

    SciTech Connect

    Swift, G.; Gardner, D.; Hayden, M.; Radebaugh, R.; Wollan, J.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop a natural-gas-powered natural-gas liquefier that has absolutely no moving parts and requires no electrical power. It should have high efficiency, remarkable reliability, and low cost. The thermoacoustic natural-gas liquefier (TANGL) is based on our recent invention of the first no-moving-parts cryogenic refrigerator. In short, our invention uses acoustic phenomena to produce refrigeration from heat, with no moving parts. The required apparatus comprises nothing more than heat exchangers and pipes, made of common materials, without exacting tolerances. Its initial experimental success in a small size lead us to propose a more ambitious application: large-energy liquefaction of natural gas, using combustion of natural gas as the energy source. TANGL was designed to be maintenance-free, inexpensive, portable, and environmentally benign.

  3. World Natural Gas Model

    Energy Science and Technology Software Center (ESTSC)

    1994-12-01

    RAMSGAS, the Research and Development Analysis Modeling System World Natural Gas Model, was developed to support planning of unconventional gaseoues fuels research and development. The model is a scenario analysis tool that can simulate the penetration of unconventional gas into world markets for oil and gas. Given a set of parameter values, the model estimates the natural gas supply and demand for the world for the period from 1980 to 2030. RAMSGAS is based onmore » a supply/demand framwork and also accounts for the non-renewable nature of gas resources. The model has three fundamental components: a demand module, a wellhead production cost module, and a supply/demand interface module. The demand for gas is a product of total demand for oil and gas in each of 9 demand regions and the gas share. Demand for oil and gas is forecast from the base year of 1980 through 2030 for each demand region, based on energy growth rates and price-induced conservation. For each of 11 conventional and 19 unconventional gas supply regions, wellhead production costs are calculated. To these are added transportation and distribution costs estimates associated with moving gas from the supply region to each of the demand regions and any economic rents. Based on a weighted average of these costs and the world price of oil, fuel shares for gas and oil are computed for each demand region. The gas demand is the gas fuel share multiplied by the total demand for oil plus gas. This demand is then met from the available supply regions in inverse proportion to the cost of gas from each region. The user has almost complete control over the cost estimates for each unconventional gas source in each year and thus can compare contributions from unconventional resources under different cost/price/demand scenarios.« less

  4. Natural gas monthly

    SciTech Connect

    Not Available

    1982-11-01

    This report presents data on the supply and disposition of natural gas in the USA during July 1982, as well as data on production, storage, imports, exports, and consumption. Selected data are also presented on the activities of the major interstate pipeline companies. Volumes of natural gas in storage continue to run slightly ahead of year-ago levels, especially for interstate operators. Weighted average prices received for gas sold by major interstate pipeline companies during July of 19982 ranged from a low of $2.61 per thousand cubic feet (Mcf) for Kansas-Nebraska to a high of $7.09 per Mcf for Pacific Gas. These variations are attributable to the sources of supply available to the various pipeline companies and the market structures of each. September 1982 applications for determination of a maximum lawful price under the Natural Gas Policy Act (NGPA) increased slightly for new gas (Section 102) and decreased significantly for high-cost gas (Section 107) when compared to August. Natural gas ceiling prices prescribed by the NGPA continued to move upward through the application of prescribed monthly inflation adjustments. In the 3-year period from November 1979 through November 1982, the price ceiling for new gas, for example, increased from $2.314 to $3.249 per million (MM) Btu's. The highest ceiling price permitted under the NGPA is natural gas produced from tight formations set for November 1982 at $5.396 per MMBtu. Market natural gas production during September of 1982 was 1444 billion cubic feet (Bcf) compared to the September 1981 level of 1578 Bcf. Consumption during the same period also declined from 1266 Bcf to 1176 Bcf.

  5. Natural gas monthly

    SciTech Connect

    1996-05-01

    This document highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Data presented include volume and price, production, consumption, underground storage, and interstate pipeline activities.

  6. Natural Gas Emergencies

    MedlinePlus

    ... by the Cass (ND) and Clay (MN) Emergency Planning Partnerships. Adapted with funding provided by Fargo Cass Public Health through the Cities Readiness Initiative (CRI) English – Natural Gas Emergencies - Last ...

  7. Cyclone reburn using coal-water fuel: Pilot-scale development and testing. Final report

    SciTech Connect

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  8. Cyclone reburn using coal-water fuel: Pilot-scale development and testing

    SciTech Connect

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  9. Safer Liquid Natural Gas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    After the disaster of Staten Island in 1973 where 40 people were killed repairing a liquid natural gas storage tank, the New York Fire Commissioner requested NASA's help in drawing up a comprehensive plan to cover the design, construction, and operation of liquid natural gas facilities. Two programs are underway. The first transfers comprehensive risk management techniques and procedures which take the form of an instruction document that includes determining liquid-gas risks through engineering analysis and tests, controlling these risks by setting up redundant fail safe techniques, and establishing criteria calling for decisions that eliminate or accept certain risks. The second program prepares a liquid gas safety manual (the first of its kind).

  10. Future natural gas supplies

    NASA Astrophysics Data System (ADS)

    Despite recent optimism about the outlook for the future supply of domestic conventional natural gas, the Congressional Office of Technology Assessment (OTA) finds insufficient evidence to clearly justify either an optimistic or a pessimistic view. In a technical memorandum entitled “U.S. Natural Gas Availability: Conventional Gas Supply Through the Year 2000,” released recently by Rep. Philip R. Sharp (D-Ind,), chairman of the Subcommittee on Fossil and Synthetic Fuels of the Committee on Energy and Commerce, OTA concluded that substantial technical uncertainties prevented a reliable estimation of the likely natural gas production rates for later in this century. Even ignoring the potential for significant changes in gas prices and technology, OTA estimated that conventional gas production by the lower 48 states in the year 2000 could range from 9 to 19 trillion cubic feet (TCF) (0.25 to 0.53 trillion cubic meters), compared to 1982 production of 17.5 TCF. Similarly, production in the year 1990 could range from 13 to 20 TCF.

  11. Geopolitics of natural gas

    SciTech Connect

    Not Available

    1983-11-09

    With almost as many vital economic interests as there were attendees, two natural gas international conferences were held in North America during September and October, to share experience and forecasts. On September 26, the Canadian Energy Research Institute (CERI) and the Calgary Chamber of Commerce sponsored the International Gas Markets Conference and drew 400 persons. And on October 5-6, at the University of Colorado at Boulder, USA, the International Research Center for Energy and Economic Development (ICEED) held its Tenth International Energy Conference on Economic and Political Issues of Natural Gas in International Trade, drawing some 200 experts. The latter seminar was preceded by a two-day seminar on Asian Energy Supplies and Requirements, which also featured natural gas in many of its presentations. To provide an overview of some of these pressing questions, Energy Detente reports on these two comprehensive seminars on natural gas. This issue also presents the fuel price/tax series and the principal industrial fuel prices for the Eastern Hemisphere for November 1983.

  12. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    1998-10-20

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The forth reporting period (July 1 - September 30) included ongoing kinetic modeling of the reburning process while firing biomass. Modeling of biomass reburning concentrated on description of biomass performance at different reburning heat inputs. Reburning fuel was assumed to undergo rapid breakdown to produce various gaseous products. Modeling shows that the efficiency of biomass is affected by its composition. The kinetic model agrees with experimental data for a wide range of initial conditions and thus can be used for process optimization. Experimental data on biomass reburning are included in Appendix 2.

  13. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    1999-01-28

    This project is designed to develop engineering and modeling tools for a family of NOx control technologies utilizing biomass as a reburning fuel. The fifth reporting period (October 1 � December 31) included modeling of the Advanced Reburning (AR) process while firing biomass. Modeling of Advanced Biomass Reburning included AR-Lean, AR-Rich, and reburning + SNCR. Fuels under investigation were furniture pellets and willow wood. Modeling shows that reburning efficiency increases when N-agent is injected into reburning or OFA zones, or co-injected with OFA. The kinetic model trends qualitatively agree with experimental data for a wide range of initial conditions and thus can be used for process optimization. No patentable subject matter is disclosed in the report.

  14. Natural gas conversion process

    SciTech Connect

    Gondouin, O.M.

    1987-11-10

    An improved process for converting all natural gas hydrocarbon components with carbon numbers of 1 to 4 into liquid hydrocarbons with carbon numbers equal to or greater than 5, and into a hydrogen-rich gaseous by-product which is described comprising the following steps: A. Splitting the natural gas feed into a rich gas stream comprising C/sub 2/, C/sub 3/ and C/sub 4/ hydrocarbons and a lean gas stream comprising C/sub 1/ and C/sub 2/ hydrocarbons; B. Catalytically converting the rich gas stream in a catalytic bed reactor in which the gas-suspended solid phase is a catalyst maintained at a temperature not exceeding 600/sup 0/C.; Separating the gaseous effluent from the catalytic bed reactor into (1) a hydrogen-rich stream; (2) a lean gas stream comprising hydrogen, C/sub 1/ and C/sub 2/ hydrocarbons, (3) a rich gas stream comprising C/sub 2/ and C/sub 3/ and C/sub 4/ hydrocarbons and (4) a liquid product stream comprising C/sub 5/ + hydrocarbons; D. Pre-heating all lean gas streams, including recycle, in a furnace; E. Transferring the catalyst into a short residence time reactor; F. Reacting an ionized plasma derived from the hydrogen stream with the pre-heated lean gas stream; G. Separating the gas-solid stream resulting from the reaction into a spent catalyst phase stream and a gaseous effluent stream; H. Separating the gaseous effluent stream from the disengagement means into four streams; I. Regenerating the spent catalyst stream in a regenerator by combustion of the carbon build-up on the spent catalyst in an oxidizing gas stream; J. Transferring the regenerated catalyst back into the catalytic bed reactor and into the short residence time reactor; K. Recycling all rich gas streams obtained in steps C and H back to the catalytic bed reactor; L. Recycling the lean gas stream obtained in step H back to the pre-heating furnace of step D.

  15. Natural gas as a natural' solution

    SciTech Connect

    McCormick, W.T. Jr.

    1991-05-15

    This article promotes natural gas use as a means to cut US dependence on imported oil by some 28 percent over the next ten years, while improving energy efficiency and solving a portion of the global warming and acid rain problems. Topics of discussion include fuel substitution, the Clean Air Act, natural gas capacity and distribution, and natural gas exploration.

  16. Natural Gas Annual

    EIA Publications

    2015-01-01

    Provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by state for the current year. Summary data are presented for each state for the previous 5 years.

  17. ENHANCED COAL REBURNING IN OXIDIZING ENVIRONMENTS

    SciTech Connect

    Eric G. Eddings; Kerry Kelly; Dana W. Overacker; Christopher R. Thurston

    2004-11-01

    Conventional fuel rich coal reburning relies upon two primary mechanisms: (1) the reaction of coal volatiles with NO to form HCN, which can subsequently decay to molecular nitrogen (N{sub 2}) given sufficient residence time at a suitable temperature; and (2), additional NO reduction by reaction of NO with carbon on the coal char surfaces. Recent research has indicated the possibility of HCN release as an additional product during char oxidation, and under appropriate conditions this HCN could provide a third mechanism for reducing NO to N{sub 2}. Lab-scale experiments and kinetic calculations were carried out to identify conditions that might lead to effective coal reburning under oxidizing conditions. The results of the kinetic calculations indicated that, depending on the temperature, oxygen concentrations in the range of 200 ppm to 1000 ppm (0.1%) would provide the greatest levels of gas phase reduction of NO using HCN, and that reductions between 60-80% are possible (in the absence of heterogeneous effects). Experiments using pulverized coal in a laminar flow drop tube furnace demonstrated NO reduction levels as high as 40-50%; however, these experiments were shown to have limited gas/coal contacting. The two different experimental configurations used demonstrated a clear dependence of observed NO reduction efficiency on gas/coal loading. The laboratory results were thus extrapolated to gas/solid loadings more typical of a utility boiler, and this extrapolation indicated that greater levels of NO reductions may well be achievable in a coal-fired boiler application. It was concluded that, given a knowledge of the location of high NO concentrations (obtained for example by CFD modeling), these regions could be targeted with coal injection under slightly oxidizing conditions to obtain NO reductions in excess of the 40-50% levels obtained in the lab-scale experiments. It is recommended that further testing under conventional pulverized coal combustion conditions be

  18. US crude oil, natural gas, and natural gas liquids reserves

    SciTech Connect

    Not Available

    1990-10-05

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1989, and production volumes for the year 1989 for the total United States and for selected states and state sub-divisions. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production reported separately. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. 28 refs., 9 figs., 15 tabs.

  19. Natural gas marketing and transportation

    SciTech Connect

    Not Available

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners.

  20. Thermoacoustic natural gas liquefier

    SciTech Connect

    Swift, G.W.

    1997-05-01

    Cryenco and Los Alamos are collaborating to develop a natural-gas-powered natural-gas liquefier that will have no moving parts and require no electrical power. It will have useful efficiency, remarkable reliability, and low cost. The liquefaction of natural gas, which occurs at only 115 Kelvin at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 invention of the thermoacoustically driven orifice pulse-tube refrigerator (TA-DOPTR) provides cryogenic refrigeration with no moving parts for the first time. In short, this invention uses acoustic phenomena to produce refrigeration from heat. The required apparatus consists of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. In the Cryenco-Los Alamos collaboration, the authors are developing a version of this invention suitable for use in the natural-gas industry. The project is known as acoustic liquefier for short. The present program plans call for a two-phase development. Phase 1, with capacity of 500 gallon per day (i.e., approximately 40,000 scfd, requiring a refrigeration power of about 7 kW), is large enough to illuminate all the issues of large-scale acoustic liquefaction without undue cost, and to demonstrate the liquefaction of 60--70% of input gas, while burning 30--40%. Phase 2 will target versions of approximately 10{sup 6} scfd = 10,000 gallon per day capacity. In parallel with both, they continue fundamental research on the technology, directed toward increased efficiency, to build scientific foundations and a patent portfolio for future acoustic liquefiers.

  1. Natural gas monthly, April 1999

    SciTech Connect

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  2. Temperature, velocity and species profile measurements for reburning in a pulverized, entrained flow, coal combustor. Semi-annual report, October 30, 1995--April 30, 1996

    SciTech Connect

    Tree, D.R.; Eatough, C.

    1996-04-01

    Data for mean velocity and temperature have been obtained over a baseline matrix operating conditions for pulverized coal without reburning. The data show the reactor to be symmetrical about the axial centerline. Effluent NO{sub x} data have been seen to correlate with measured and modeled results of flow patterns within the reactor. At low swirl the fuel jet creates a downward flow at the centerline with some upward recirculation at the perimeter of the reactor near the walls. This recirculation pattern reverses as swirl is increased, changing the flame from a long toroidal shape to a flat annulus. The NO{sub x} data show a local minimum at a swirl number of 1.0 which may be primarily the result of the direction and magnitude of the recirculation zone. Gas species and coal char burnout data have begun but have not yet been completed. Velocity data and modeling results have been used in the process of validating the comprehensive combustion code and in designing the reburning hardware. The details concerning storing and delivering the reburning fuel (natural gas) have been completed and the fabrication of the hardware is underway.

  3. Natural Gas Exports from Iran

    EIA Publications

    2012-01-01

    This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.

  4. Natural gas monthly, August 1993

    SciTech Connect

    Not Available

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  5. Natural gas monthly, July 1997

    SciTech Connect

    1997-07-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is entitled ``Intricate puzzle of oil and gas reserves growth.`` A special report is included on revisions to monthly natural gas data. 6 figs., 24 tabs.

  6. Natural gas monthly, October 1996

    SciTech Connect

    1996-10-01

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  7. Natural gas monthly, September 1993

    SciTech Connect

    Not Available

    1993-09-27

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  8. Natural gas monthly, March 1994

    SciTech Connect

    Not Available

    1994-03-22

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  9. World Natural Gas, 1978

    SciTech Connect

    Not Available

    1980-07-01

    World marketed production of natural gas in 1978 totaled 51.749 trillion CF (up from 50.1 TCF in 1977); this 3.3% increase, however, was slightly lower than 1977's 3.7% rise. US production, which fell 0.3% dropped to 38.6% of the world total, while the USSR share (13.137 TCF) accounted for 25.4% (for a growth rate of 7.5%). Of the world gross production of 62.032 TCF, 69.7% came from gas wells; the remainder was associated with oil. Thirty-one percent of the 10.282 TCF difference between gross and marketed gas production was used for oil reservoir repressuring, while the balance (7.094 TCF) was vented and flared. Internationally traded gas movements rose to 11.6% of production. The Netherlands, the USSR, and Canada accounted for 30.6%, 20.1% and 14.7%, respectively, of total 1978 exports. At 0.956 TCF, LNG shipments accounted for 15.9% of world trade, a 35.2% higher share than in 1977; most of this growth was due to increased Indonesia-to-Japan volumes.

  10. Natural gas monthly, April 1995

    SciTech Connect

    1995-04-27

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 31 tabs.

  11. Natural Gas Monthly, March 1996

    SciTech Connect

    1996-03-25

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  12. Natural gas monthly: December 1993

    SciTech Connect

    Not Available

    1993-12-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. Articles are included which are designed to assist readers in using and interpreting natural gas information.

  13. Natural gas monthly, June 1993

    SciTech Connect

    Not Available

    1993-06-22

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  14. Natural gas monthly, November 1993

    SciTech Connect

    Not Available

    1993-11-29

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  15. Natural gas monthly, August 1994

    SciTech Connect

    Not Available

    1994-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  16. Natural gas monthly, June 1997

    SciTech Connect

    1997-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 24 tabs.

  17. Natural gas monthly, July 1998

    SciTech Connect

    1998-07-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

  18. Natural gas monthly, July 1993

    SciTech Connect

    Not Available

    1993-07-27

    The Natural Gas Monthly NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  19. Natural gas monthly, June 1999

    SciTech Connect

    1999-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

  20. Natural gas monthly, May 1999

    SciTech Connect

    1999-05-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  1. Natural gas monthly, December 1998

    SciTech Connect

    1998-12-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  2. Natural gas monthly, February 1999

    SciTech Connect

    1999-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  3. Natural gas monthly, January 1999

    SciTech Connect

    1999-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  4. Natural gas monthly, November 1998

    SciTech Connect

    1998-11-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 27 tabs.

  5. Thermoacoustic natural gas liquefier

    SciTech Connect

    Swift, G.W.

    1995-06-01

    In collaboration with Cryenco Inc. and NIST-Boulder, we intend to develop a natural gas-powered natural-gas liquefier which has absolutely no moving parts and requires no electrical power. It will have high efficiency, remarkable reliability, and low cost. Progress on the liquefier to be constructed at Cryenco continues satisfactorily. The thermoacoustic driver is still ahead of the pulse tube refrigerator, because of NIST`s schedule. We completed the thermoacoustics design in the fall of 1994, with Los Alamos providing physics input and checks of all aspects, and Cryenco providing engineering to ASME code, drafting, etc. Completion of this design represents a significant amount of work, especially in view of the many unexpected problems encountered. Meanwhile, Cryenco and NIST have almost completed the design of the pulse tube refrigerator. At Los Alamos, we have assembled a half-size scale model of the thermoacoustic portion of the 500 gal/day TANGL. This scale model will enable easy experimentation in harmonic suppression techniques, new stack geometries, new heat-exchanger geometries, resonator coiling, and other areas. As of March 1995, the scale model is complete and we are performing routine debugging tests and modifications.

  6. Natural gas monthly, June 1996

    SciTech Connect

    1996-06-24

    The natural gas monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article for this month is Natural Gas Industry Restructuring and EIA Data Collection.

  7. Natural gas monthly, November 1996

    SciTech Connect

    1996-11-01

    The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``US natural gas imports and exports-1995``. 6 figs., 24 tabs.

  8. Natural gas monthly, August 1995

    SciTech Connect

    1995-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

  9. Natural gas monthly: April 1996

    SciTech Connect

    1996-04-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article focuses on preliminary highlights from the 1995 natural gas industry. 7 figs., 25 tabs.

  10. Natural Gas Monthly, October 1993

    SciTech Connect

    Not Available

    1993-11-10

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature articles are: US Production of Natural Gas from Tight Reservoirs: and Expanding Rule of Underground Storage.

  11. Natural gas monthly, April 1997

    SciTech Connect

    1997-04-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.

  12. Natural gas monthly, October 1997

    SciTech Connect

    1997-10-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article in this issue is a special report, ``Comparison of Natural Gas Storage Estimates from the EIA and AGA.`` 6 figs., 26 tabs.

  13. Natural gas monthly, June 1994

    SciTech Connect

    Not Available

    1994-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is the executive summary from Natural Gas 1994: Issues and Trends. 6 figs., 31 tabs.

  14. Natural gas monthly, May 1997

    SciTech Connect

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  15. Natural gas monthly, December 1997

    SciTech Connect

    1997-12-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The article this month is entitled ``Recent Trends in Natural Gas Spot Prices.`` 6 figs., 27 tabs.

  16. Modeling of the reburning process using sewage sludge-derived syngas

    SciTech Connect

    Werle, Sebastian

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Gasification provides an attractive method for sewage sludges treatment. Black-Right-Pointing-Pointer Gasification generates a fuel gas (syngas) which can be used as a reburning fuel. Black-Right-Pointing-Pointer Reburning potential of sewage sludge gasification gases was defined. Black-Right-Pointing-Pointer Numerical simulation of co-combustion of syngases in coal fired boiler has been done. Black-Right-Pointing-Pointer Calculation shows that analysed syngases can provide higher than 80% reduction of NO{sub x}. - Abstract: Gasification of sewage sludge can provide clean and effective reburning fuel for combustion applications. The motivation of this work was to define the reburning potential of the sewage sludge gasification gas (syngas). A numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was done. All calculations were performed using the Chemkin programme and a plug-flow reactor model was used. The calculations were modelled using the GRI-Mech 2.11 mechanism. The highest conversions for nitric oxide (NO) were obtained at temperatures of approximately 1000-1200 K. The combustion of hard coal with sewage sludge-derived syngas reduces NO emissions. The highest reduction efficiency (>90%) was achieved when the molar flow ratio of the syngas was 15%. Calculations show that the analysed syngas can provide better results than advanced reburning (connected with ammonia injection), which is more complicated process.

  17. Natural gas monthly, April 1998

    SciTech Connect

    1998-04-01

    This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration (EIA). Estimates extend through April 1998 for many data series. The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, feature articles are presented designed to assist readers in using and interpreting natural gas information. This issue contains the special report, ``Natural Gas 1997: A Preliminary Summary.`` This report provides information on natural gas supply and disposition for the year 1997, based on monthly data through December from EIA surveys. 6 figs., 28 tabs.

  18. SECOND GENERATION ADVANCED REBURNING FOR HIGH EFFICIENCY NOx CONTROL

    SciTech Connect

    1998-07-30

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The third reporting period in Phase II (April 1--June 30, 1998) included experimental activities at pilot scale and comparison of the results with full-scale data. The pilot scale tests were performed with the objective of simulating furnace conditions of ongoing full-scale tests at the Greenidge boiler No. 6 owned and operated by NYSEG and defining the processes controlling AR performance to subsequently improve the performance. The tests were conducted in EER' s Boiler Simulator Facility. The main fuel pulsing system was used at the BSF to control the degree of unmixedness, thus providing control over furnace gas O{sub 2} and CO concentrations. Results on AR-Lean, presented in the previous quarterly report, were compared with full-scale data. Performance of reburn+SNCR was tested to predict NO{sub x} control at Greenidge. The results of the BSF reburn+SNCR simulation tests demonstrated that there are synergistic advantages of using these two technologies in series. In particular, injection of overfire air provides additional mixing that reduces negative effects on AR performance at the temperature regime of the Greenidge boiler.

  19. Natural gas monthly, April 1994

    SciTech Connect

    Not Available

    1994-04-26

    The National Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  20. Liquefied Natural Gas Transfer

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Chicago Bridge & Iron Company's tanks and associated piping are parts of system for transferring liquefied natural gas from ship to shore and storing it. LNG is a "cryogenic" fluid meaning that it must be contained and transferred at very low temperatures, about 260 degrees below Fahrenheit. Before the LNG can be pumped from the ship to the storage tanks, the two foot diameter transfer pipes must be cooled in order to avoid difficulties associated with sharp differences of temperature between the supercold fluid and relatively warm pipes. Cooldown is accomplished by sending small steady flow of the cryogenic substance through the pipeline; the rate of flow must be precisely controlled or the transfer line will be subjected to undesirable thermal stress.

  1. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    Vladimir Zamansky; Chris Lindsey; Vitali Lissianski

    2000-01-28

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the ninth reporting period (September 27--December 31, 1999), EER prepared a paper Kinetic Model of Biomass Reburning and submitted it for publication and presentation at the 28th Symposium (International) on Combustion, University of Edinburgh, Scotland, July 30--August 4, 2000. Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. A preliminary report is included in this quarterly report.

  2. 75 FR 73071 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... Energy Regulatory Commission Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas... Abandonment Project proposed by Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas... affecting the quality of the human environment. The EA has been placed in the public files of the FERC...

  3. Role of char during reburning of Nnitrogen oxides. Second quarterly report, 1996

    SciTech Connect

    Chen, Wei-Yin; Fan, L.T.; Lu, Te-Chang; Tang, Lin; Meng, Fang

    1996-07-01

    Reburning is an emerging three-stage combustion technology designed for the reduction of NO by introducing a small amount of reburning fuel above the primary flame where the majority of NO is chemically reduced to nitrogen. While coal, in general, has not been considered an effective reburning fuel, research at the University of Mississippi suggested that lignite has a reburning efficiency even higher than that of methane. Furthermore, heterogeneous mechanisms are more important than homogeneous mechanisms for char/NO reaction. The objectives of this research are to investigate: (1) implications of pore structure analysis, (2) parameters governing heterogeneous reactions, and (3) estimation of rates of NO reduction and mass transfer limitations. Experiments have been performed in a flow reactor with a simulated fuel gas at a stoichiometric ratio (SR) 1.1. Reburning fuels in this study include chars derived from Pittsburgh No.8 bituminous coal and Mississippi lignite. Chars were produced in N{sub 2} by suspending a sample basket in a tube furnace. Pore structure analyses include BET-N{sub 2}, BET-CO{sub 2}, and DR-CO{sub 2} surface pore size distribution, micropore volume, total pore volume, and average pore radius. These studies suggest that neither BET-N{sub 2} nor DR- CO{sub 2} surface area is a normalization factor of chars of different origin. Reaction with NO leads to closures of pores, which may be contributed by formation of surface complexes.

  4. Natural gas monthly, May 1995

    SciTech Connect

    1995-05-24

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  5. Natural gas monthly, February 1996

    SciTech Connect

    1996-03-01

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  6. Natural gas monthly, February 1994

    SciTech Connect

    Not Available

    1994-02-25

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

  7. Natural gas monthly, March 1998

    SciTech Connect

    1998-03-01

    The March 1998 edition of the Natural Gas Monthly highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. This report also features an article on the correction of errors in the drilling activity estimates series, and in-depth drilling activity data. 6 figs., 28 tabs.

  8. Natural gas monthly, October 1995

    SciTech Connect

    1995-10-23

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary of the terms used in this report is provided to assist readers in understanding the data presented in this publication. 6 figs., 30 tabs.

  9. Natural gas monthly, January 1994

    SciTech Connect

    Not Available

    1994-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured article for this month is on US coalbed methane production.

  10. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    Vladimir Zamansky; Chris Lindsey

    1999-10-29

    This project is designed to develop engineering and modeling tools for a family of NO{sub x}control technologies utilizing biomass as a reburning fuel. During the eighth reporting period (July 1--September 26, 1999), Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. This report includes summary of the findings; complete information will be submitted in the next Quarterly Report.

  11. Biomass reburning - Modeling/engineering studies

    SciTech Connect

    Sheldon, M.; Marquez, A.; Zamansky, V.

    2000-07-27

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the eleventh reporting period (April 1--June 30, 2000), EER and NETL R&D group continued to work on Tasks 2, 3, 4, and 5. This report includes results from Task 3 physical modeling of the introduction of biomass reburning in a working coal-fired utility boiler.

  12. Natural gas conversion process

    SciTech Connect

    Not Available

    1991-01-01

    The main objective is to design and operate a laboratory apparatus for the catalytic reforming of natural gas in order to provide data for a large-scale process. To accelerate the assembly and calibration of this equipment, a request has been made to the Lawrence Berkeley Laboratory for assistance, under the DOE's Industrial Visitor Exchange Program. Pr. Heinz Heinemann (Catalysis), Dr. John Apps (Geochemistry) and Dr. Robert Fulton (Mechanical Engineering) have expressed interest in supporting our request. Pr. Heinemann's recent results on the conversion of Petroleum Coke residues into CO2 and H2 mixtures using highly basic metal oxides catalysts, similar to ours, are very encouraging regarding the possibility of converting the Coke residue on our catalyst into Syngas in the Regenerator/riser, as proposed. To minimize Coke formation in the vapor phase, by the Plasmapyrolytic Methane Conversion reactions, the experimental data of H. Drost et al. (Ref. 12) have been reviewed. Work is underway to design equipment for the safe and non-polluting disposal of the two gaseous product streams of the flow loop. 2 refs.

  13. Natural gas monthly, October 1991

    SciTech Connect

    Not Available

    1991-11-05

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. 16 figs., 33 tabs.

  14. Natural Gas Emergencies

    MedlinePlus

    ... before you dig on your property. If you smell gas outdoors, move away from the area until you no longer smell the gas and call 911. Do not return ... it is safe to do so. If you smell gas indoors, get outside immediately, leaving doors open ...

  15. Natural gas pipeline technology overview.

    SciTech Connect

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies

  16. Natural gas leak mapper

    DOEpatents

    Reichardt, Thomas A.; Luong, Amy Khai; Kulp, Thomas J.; Devdas, Sanjay

    2008-05-20

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  17. Natural gas monthly, February 1998

    SciTech Connect

    1998-02-01

    This issue of the Natural Gas Monthly (NGM) presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through February 1998 for many data series, and through November 1997 for most natural gas prices. Highlights of the natural gas data contained in this issue are: Preliminary estimates for January and February 1998 show that dry natural gas production, net imports, and consumption are all within 1 percent of their levels in 1997. Warmer-than-normal weather in recent months has resulted in lower consumption of natural gas by the residential sector and lower net withdrawals of gas from under round storage facilities compared with a year ago. This has resulted in an estimate of the amount of working gas in storage at the end of February 1998 that is 18 percent higher than in February 1997. The national average natural gas wellhead price is estimated to be $3.05 per thousand cubic feet in November 1997, 7 percent higher than in October. The cumulative average wellhead price for January through November 1997 is estimated to be $2.42 per thousand cubic feet, 17 percent above that of the same period in 1996. This price increase is far less than 36-percent rise that occurred between 1995 and 1996. 6 figs., 26 tabs.

  18. Role of char during reburning of nitrogen oxides. Sixth quarterly report, January 1, 1995--March 31, 1995

    SciTech Connect

    Chen, W.Y.; Ma, L.; Fan, L.T.

    1995-04-30

    The regulations established by the Clean Air Act Amendments of 1990 in the United States mean that a single NO{sub x} control technology is not likely to be sufficient for boilers in the ozone non-attainment areas. Reburning is an emerging three-stage combustion technology designed for the reduction of NO by introducing a small amount of reburning fuel above the primary flame where the majority of NO is chemically reduced to nitrogen. While coal, in general, has not been considered an effective reburning fuel, our recent research suggested that lignite has a reburning efficiency even higher than that of methane. The objectives of this research are to investigate (1) the relative importance of heterogeneous and homogeneous phase reactions, and (2) the role of CaO in the catalysis of char gasification by NO in reburning environment. Experiments have been performed with a flow reactor with a simulated flue gas at a stoichiometric ratio (SR). Reburning fuels in this study include methane, Pittsburgh No. 8 bituminous coal, Mississippi lignite, North Dakota lignite, chars derived from the coal and lignites, and the bituminous coal char impregnated with Can. Chars were produced in N{sub 2} by suspending a sample basket in a 3{double_prime} tube furnace. The impregnation technique follows that developed for the catalysis of carbon oxidation.

  19. Natural Gas Industry and Markets

    EIA Publications

    2006-01-01

    This special report provides an overview of the supply and disposition of natural gas in 2004 and is intended as a supplement to the Energy Information Administration's (EIA) Natural Gas Annual 2004 (NGA). Unless otherwise stated, all data and figures in this report are based on summary statistics published in the NGA 2004.

  20. Natural gas monthly, July 1990

    SciTech Connect

    Not Available

    1990-10-03

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

  1. Natural gas monthly, August 1990

    SciTech Connect

    Not Available

    1990-11-05

    This report highlights activities, events, and analyses of interest to public and private sector oganizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 33 tabs.

  2. Natural Gas Energy Educational Kit.

    ERIC Educational Resources Information Center

    American Gas Association, Arlington, VA. Educational Services.

    Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of…

  3. Natural gas monthly, December 1996

    SciTech Connect

    1996-12-01

    This document highlights activities, events, and analysis of interest to the public and private sector associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

  4. Evaluation of Biomass Gasification to Produce Reburning Fuel for Coal-Fired Boilers

    EPA Science Inventory

    Gasification and reburning testing with biomass and other wastes is of interest to both the U.S. EPA and the Italian Ministry of the Environment & Territory. Gasification systems that use biofuels or wastes as feedstock can provide a clean, efficient source of synthesis gas and p...

  5. Natural Gas Hydrates Update 1998-2000

    EIA Publications

    2001-01-01

    Significant events have transpired on the natural gas hydrate research and development front since "Future Supply Potential of Natural Gas Hydrates" appeared in Natural Gas 1998 Issues and Trends and in the Potential Gas Committee's 1998 biennial report.

  6. Compressed natural gas measurement issues

    SciTech Connect

    Blazek, C.F.; Kinast, J.A.; Freeman, P.M.

    1993-12-31

    The Natural Gas Vehicle Coalition`s Measurement and Metering Task Group (MMTG) was established on July 1st, 1992 to develop suggested revisions to National Institute of Standards & Technology (NIST) Handbook 44-1992 (Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices) and NIST Handbook 130-1991 (Uniform Laws & Regulations). Specifically, the suggested revisions will address the sale and measurement of compressed natural gas when sold as a motor vehicle fuel. This paper briefly discusses the activities of the MMTG and its interaction with NIST. The paper also discusses the Institute of Gas Technology`s (IGT) support of the MMTG in the area of natural gas composition, their impact on metering technology applicable to high pressure fueling stations as well as conversion factors for the establishment of ``gallon gasoline equivalent`` of natural gas. The final portion of this paper discusses IGT`s meter research activities and its meter test facility.

  7. Crude oil and natural gas pricing. Chapters 300 to 499: natural gas liquids, natural gas

    SciTech Connect

    Kelly, P.D.

    1980-01-01

    This text analyzes the federal statutes and regulations that affect the pricing and allocation of crude oil, natural gas, and natural gas liquids. It does not cover refined products or imported crude oil except where necessary to place major decisions in historical context. Chapter 300 concerns natural gas liquids. For historical rather than logical reasons, these are regulated as an offshoot of crude oil controls rather than as a by-product of natural gas production. In December 1979, the Economic Regulatory Administration (ERA) deregulated butane and natural gasoline. However, it did not amend 10 CFR 212.161-212.173, and it did not deregulate propane or propane mixtures. Decontrol will be covered in the first update to this book. Chapters 400 to 468 concern natural gas. Although a great deal of attention has been focused on the Natural Gas Policy Act (NGPA), there has been no satisfactory description of the extent to which the Natural Gas Act (NGA; passed in 1938 and amended by the Phillips decision in 1954) still applies. This is quite a problem, since the NGPA is written in vague terms that encourage producers to disregard the NGA. The problem is compounded by the Federal Power Commission's (FPC) approach to regulatory development, which has scattered crucial regulations throughout 18 CFR. All Federal Energy Regulatory Commission (FERC) natural gas production regulations should be repealed, arranged into a systematic grouping, and reissued in a consolidated subpart of 18 CFR. Shortly after the publication of this text, the author will petition the FERC to commence a rulemaking proceeding to that effect. Chapters 480 to 498 will cover the use of natural gas. These chapters will be issued in the first revision to this text as general summaries since the programs do not directly affect gas producers.

  8. 75 FR 13524 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... Energy Regulatory Commission Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental Gas Pipe Line Company, LLC, Enterprise Field Services, LLC; Notice of Application March 16, 2010. Take notice that on March 5, 2010, Northern Natural Gas...

  9. North American Natural Gas Markets

    SciTech Connect

    Not Available

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  10. North American Natural Gas Markets

    SciTech Connect

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  11. Natural Gas Monthly August 1998

    SciTech Connect

    1998-08-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. Explanatory notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication.

  12. Gas Hydrate Storage of Natural Gas

    SciTech Connect

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  13. Natural gas monthly, November 1997

    SciTech Connect

    1997-11-01

    This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through November for many data series, and through August for most natural gas prices. Highlights of the most recent data estimates are: (1) Preliminary estimates of dry natural gas production and total consumption available through November 1997 indicate that both series are on track to end the year at levels close to those of 1996. Cumulative dry production is one-half percent higher than in 1996 and consumption is one-half percent lower. (2) Natural gas production is estimated to be 52.6 billion cubic feet per day in November 1997, the highest rate since March 1997. (3) After falling 8 percent in July 1997, the national average wellhead price rose 10 percent in August 1997, reaching an estimated $2.21 per thousand cubic feet. (4) Milder weather in November 1997 compared to November 1996 has resulted in significantly lower levels of residential consumption of natural gas and net storage withdrawls than a year ago. The November 1997 estimates of residential consumption and net withdrawls are 9 and 20 percent lower, respectively, than in November 1996.

  14. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    Vitali V. Lissianski; Vladimir M. Zamansky

    1999-04-29

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The sixth reporting period (January 1--March 31, 1999) included CFD modeling and assessment of available experimental and modeling data on biomass reburning. Experimental and modeling data obtained within scope of this and Phase II SBIR USDA projects were reviewed and analyzed. This work was necessary to summarize available data and to make decision about additional efforts that are necessary for successful completion of the DOE FETC project. These efforts resulted in preparation of the paper entitled ''Kinetic Study of Biomass Reburning'' which was presented at the 1999 Joint Meeting of the United States Sections of the Combustion Institute. The paper is included in Attachment A.

  15. Natural gas conversion process

    SciTech Connect

    Gondouin, M.

    1991-01-01

    Work continued on Task No. 3. Particular attention was given to the back pressure control at the two gaseous effluent outlets and to the incineration of these effluents prior to their disposal. Temperature of the riser/regenerator and steam requirements were predicted from the gasification kinetics of coke and of coal char experimentally determined at atmospheric pressure, but at somewhat lower temperatures by H. Heinemann. The results of interactions of CH4 molecules with a Hydrogen Plasma in the adsorbed layer at the surface of refractory oxides were compared with those in the gas phase in order to select the optimum temperature range in the Cyclone reactor.

  16. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    SciTech Connect

    Vladimir Zamansky; Vitali Lissianski; Pete Maly; Richard Koppang

    2002-09-10

    This project develops Fuel-Flexible Reburning (FFR) technology that is an improved version of conventional reburning. In FFR solid fuel is partially gasified before injection into the reburning zone of a boiler. Partial gasification of the solid fuel improves efficiency of NO{sub x} reduction and decreases LOI by increasing fuel reactivity. Objectives of this project were to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized LOI and move the FFR technology to the demonstration and commercialization stage. All project objectives and technical performance goals have been met, and competitive advantages of FFR have been demonstrated. The work included a combination of experimental and modeling studies designed to identify optimum process conditions, confirm the process mechanism and to estimate cost effectiveness of the FFR technology. Experimental results demonstrated that partial gasification of a solid fuel prior to injection into the reburning zone improved the efficiency of NO{sub x} reduction and decreased LOI. Several coals with different volatiles content were tested. Testing suggested that incremental increase in the efficiency of NO{sub x} reduction due to coal gasification was more significant for coals with low volatiles content. Up to 14% increase in the efficiency of NO{sub x} reduction in comparison with basic reburning was achieved with coal gasification. Tests also demonstrated that FFR improved efficiency of NO{sub x} reduction for renewable fuels with high fuel-N content. Modeling efforts focused on the development of the model describing reburning with gaseous gasification products. Modeling predicted that the composition of coal gasification products depended on temperature. Comparison of experimental results and modeling predictions suggested that the heterogeneous NO{sub x} reduction on the surface of char played important role. Economic analysis confirmed

  17. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    Vladimir Zamansky; David Moyeda; Mark Sheldon

    2000-04-28

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the tenth reporting period (January 1-March 31, 2000), EER and NETL R and D group continued to work on Tasks 2, 3, 4, and 5. Information regarding these tasks will be included in the next Quarterly Report. This report includes (Appendix 1) a conceptual design study for the introduction of biomass reburning in a working coal-fired utility boiler. This study was conducted under the coordinated SBIR program funded by the U. S. Department of Agriculture.

  18. Effect of chemistry and turbulence on NO formation in oxygen-natural gas flames

    NASA Technical Reports Server (NTRS)

    Samaniego, J. -M.; Egolfopoulos, F. N.; Bowman, C. T.

    1996-01-01

    The effects of chemistry and turbulence on NO formation in oxygen-natural turbulent diffusion flames gas flames have been investigated. The chemistry of nitric oxides has been studied numerically in the counterflow configuration. Systematic calculations with the GRI 2.11 mechanism for combustion of methane and NO chemistry were conducted to provide a base case. It was shown that the 'simple' Zeldovich mechanism accounts for more than 75% of N2 consumption in the flame in a range of strain-rates varying between 10 and 1000 s-l. The main shortcomings of this mechanism are: 1) overestimation (15%) of the NO production rate at low strain-rates because it does not capture the reburn due to the hydrocarbon chemistry, and 2) underestimation (25%) of the NO production rate at high strainrates because it ignores NO production through the prompt mechanism. Reburn through the Zeldovich mechanism alone proves to be significant at low strain-rates. A one-step model based on the Zeldovich mechanism and including reburn has been developed. It shows good agreement with the GRI mechanism at low strain-rates but underestimates significantly N2 consumption (about 50%) at high strain-rates. The role of turbulence has been assessed by using an existing 3-D DNS data base of a diffusion flame in decaying turbulence. Two PDF closure models used in practical industrial codes for turbulent NO formation have been tested. A simpler version of the global one-step chemical scheme for NO compared to that developed in this study was used to test the closure assumptions of the PDF models, because the data base could not provide all the necessary ingredients. Despite this simplification, it was possible to demonstrate that the current PDF models for NO overestimate significantly the NO production rate due to the fact that they neglect the correlations between the fluctuations in oxygen concentration and temperature. A single scalar PDF model for temperature that accounts for such correlations based

  19. Natural gas monthly, March 1999

    SciTech Connect

    1999-03-01

    This issue of the Natural Gas Monthly contains estimates for March 1999 for many natural gas data series at the national level. Estimates of national natural gas prices are available through December 1998 for most series. Highlights of the data contained in this issue are listed below. Preliminary data indicate that the national average wellhead price for 1998 declined to 16% from the previous year ($1.96 compared to $2.32 per thousand cubic feet). At the end of March, the end of the 1998--1999 heating season, the level of working gas in underground natural gas storage facilities is estimated to be 1,354 billion cubic feet, 169 billion cubic feet higher than at the end of March 1998. Gas consumption during the first 3 months of 1999 is estimated to have been 179 billion cubic feet higher than in the same period in 1998. Most of this increase (133 billion cubic feet) occurred in the residential sector due to the cooler temperatures in January and February compared to the same months last year. According to the National Weather Service, heating degree days in January 1999 were 15% greater than the previous year while February recorded a 5% increase.

  20. Natural Gas Supply SBIR Program

    SciTech Connect

    Shoemaker, H.D.; Gwilliam, W.J.

    1995-07-01

    The Small Business Innovation Research (SBIR) program was created in 1982 by Public Law 97-219 and reauthorized in 1992 until the year 2000 by Public Law 102-564. The purposes of the new law are to (1) expand and improve the SBIR program, 2) emphasize the program`s goal of increasing private sector commercialization of technology developed through Federal R&D, (3) increase small business participation in Federal R&D, and (4) improve the Federal Government`s dissemination of information concerning the SBIR program. DOE`s SBIR pro-ram has two features that are unique. In the 1995 DOE SBIR solicitation, the DOE Fossil Energy topics were: environmental technology for natural gas, oil, and coal; advanced recovery of oil; natural gas supply; natural gas utilization; advanced coal-based power systems; and advanced fossil fuels research. The subtopics for this solicitation`s Natural Gas Supply topic are (1) drilling, completion, and stimulation; (2) low-permeability Formations; (3) delivery and storage; and (4) natural gas upgrading.

  1. Reducing GHG emissions by co-utilization of coal with natural gas or biomass

    SciTech Connect

    Smith, I.M.

    2004-07-01

    Energy reserves price and security of supply issues are discussed in the context of the prospects for coal and policies to reduce greenhouse gas (GHG) emissions. Coal is projected to remain a major source of energy, with most of the demand growth in developing countries. Currently available power-generating technologies, deploying coal with natural gas or biomass, are examined. Examples of successful, partial substitution of coal by other fuels in power stations are highlighted, including the GHG emissions reductions achieved as well as the costs where available. Among various options, hybrid gasification and parallel cofiring of coal with biomass and natural gas appear to have the greatest potential to reduce GHG emissions. Much may also be achieved by cofiring, reburning, and repowering with gas turbines. The best method differs between different power systems. Co-utilization of biomass with coal is a least-cost option to reduce GHG emissions where the fuel prices are comparable, usually due to subsidies or taxes. The role of biomass is likely to increase due to greater use of subsidies, carbon taxes, and emissions trading within the context of the Kyoto Protocol. This should provide opportunities for clean coal technology transfer and diffusion, including biomass co-utilization. 32 refs., 1 fig., 3 tabs.

  2. Natural gas monthly, February 1997

    SciTech Connect

    1997-02-01

    This issue of the Natural Gas Monthly presents estimates of natural gas supply and consumption through February 1997. Estimates of natural gas prices are through November 1996 except electric utility prices that are through October 1996. Cumulatively for January through February 1997, the daily average rates for several data series remain close to those of 1996. (Comparing daily rates accounts for the fact that February 1996 had 29 days.) Daily total consumption for January through February is estimated to be 83 billion cubic feet per day, 1 percent higher than during the same period in 1996. Similarly, the estimate of average daily production of 53 billion cubic feet is 1.5 percent higher than in 1996, while daily net imports during the first 2 months of 1997 are virtually unchanged from 1996.

  3. Nitrogen removal from natural gas

    SciTech Connect

    1997-04-01

    According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

  4. Turbulent Mixing Effects in NOx Control via Reburning

    NASA Astrophysics Data System (ADS)

    Cha, C. M.; Kosály, G.; Kramlich, J. C.

    1997-11-01

    An integral model of a turbulent, reacting jet, based on the Two-Stage Lagrangian (TSL) model of Broadwell and Lutz, is used to gain insight into how mixing influences performance in a reburning application. Reburning is a promising NO_ x control technology for industrial furnaces that has been demonstrated at full-scale in a number of embodiments. Past work on reburning have applied plug-flow reactor (PFR) modeling, which assumes the fuel and oxidizer to be perfectly premixed initially and a perfectly mixed volume of the reacting species thereafter, in order to concentrate on the understanding of the underlying (reburning) kinetics. However, PFR predictions of reburning efficiency yield results which are far below the experimental data. Present results account for finite-rate mixing and yield, thereby, improved predictions over those from PFR calculations. The cause of the improved reburning performance in a delayed mixing environment is discussed and a number of parametric studies are reported.

  5. Natural gas monthly, January 1997

    SciTech Connect

    1997-01-01

    This publication, the Natural Gas Monthly, presents the most recent data on natural gas supply, consumption, and prices from the Energy Information Administration (EIA). Of special interest in this issue are two articles summarizing reports recently published by EIA. The articles are {open_quotes}Natural Gas Productive Capacity{close_quotes} and {open_quotes}Outlook for Natural Gas Through 2015,{close_quotes} both of which precede the {open_quotes}Highlights{close_quotes} section. With this issue, January 1997, changes have been made to the format of the Highlights section and to several of the tabular and graphical presentations throughout the publication. The changes to the Highlights affect the discussion of developments in the industry and the presentation of weekly storage data. An overview of the developments in the industry is now presented in a brief summary followed by specific discussions of supply, end-use consumption, and prices. Spot and futures prices are discussed as appropriate in the Price section, together with wellhead and consumer prices.

  6. Staff Handbook on Natural Gas.

    ERIC Educational Resources Information Center

    Gorges, H. A., Ed.; Raine, L. P., Ed.

    The Department of Commerce created a Natural Gas Action Group early in the fall of 1975 to assist industrial firms and the communities they serve to cope with the effects of potentially severe and crippling curtailment situations. This action group was trained to assess a specific local situation, review the potential for remedial action and…

  7. EIA's Natural Gas Production Data

    EIA Publications

    2009-01-01

    This special report examines the stages of natural gas processing from the wellhead to the pipeline network through which the raw product becomes ready for transportation and eventual consumption, and how this sequence is reflected in the data published by the Energy Information Administration (EIA).

  8. Natural Gas Multi-Year Program Plan

    SciTech Connect

    1997-12-01

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

  9. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    SciTech Connect

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  10. Apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles

    DOEpatents

    Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

    2007-05-29

    A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

  11. SUMMARY REPORT CONTROL OF NOX EMISSIONS BY REBURNING

    EPA Science Inventory

    This report covers NOx control employing reburning technology: A new, effective method of controlling NOx emissions from a wide range of stationary combustion sources including large, coal-fired, utility boilers. Although reburning potentially is applicable ...

  12. Natural gas 1995: Issues and trends

    SciTech Connect

    1995-11-01

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  13. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  14. Gas supplies of interstate/natural gas pipeline companies 1989

    SciTech Connect

    Not Available

    1990-12-18

    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  15. Compressed natural gas (CNG) measurement

    SciTech Connect

    Husain, Z.D.; Goodson, F.D.

    1995-12-01

    The increased level of environmental awareness has raised concerns about pollution. One area of high attention is the internal combustion engine. The internal combustion engine in and of itself is not a major pollution threat. However, the vast number of motor vehicles in use release large quantities of pollutants. Recent technological advances in ignition and engine controls coupled with unleaded fuels and catalytic converters have reduced vehicular emissions significantly. Alternate fuels have the potential to produce even greater reductions in emissions. The Natural Gas Vehicle (NGV) has been a significant alternative to accomplish the goal of cleaner combustion. Of the many alternative fuels under investigation, compressed natural gas (CNG) has demonstrated the lowest levels of emission. The only vehicle certified by the State of California as an Ultra Low Emission Vehicle (ULEV) was powered by CNG. The California emissions tests of the ULEV-CNG vehicle revealed the following concentrations: Non-Methane Hydrocarbons 0.005 grams/mile Carbon Monoxide 0.300 grams/mile Nitrogen Oxides 0.040 grams/mile. Unfortunately, CNG vehicles will not gain significant popularity until compressed natural gas is readily available in convenient locations in urban areas and in proximity to the Interstate highway system. Approximately 150,000 gasoline filling stations exist in the United States while number of CNG stations is about 1000 and many of those CNG stations are limited to fleet service only. Discussion in this paper concentrates on CNG flow measurement for fuel dispensers. Since the regulatory changes and market demands affect the flow metering and dispenser station design those aspects are discussed. The CNG industry faces a number of challenges.

  16. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet...

  17. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet...

  18. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet...

  19. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet...

  20. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet...

  1. Natural Gas Market Centers: A 2008 Update

    EIA Publications

    2009-01-01

    This special report looks at the current status of market centers in today's natural gas marketplace, examining their role and their importance to natural gas shippers, pipelines, and others involved in the transportation of natural gas over the North American pipeline network.

  2. Development of a reburning boiler process model. First quarterly progress report, October 1, 1991--December 31, 1991

    SciTech Connect

    Wu, K.T.

    1992-01-30

    The overall objective of this program is to integrate EER`s expertise in boiler reburning performance evaluation into a package of analytical computer tools. Specific objectives of the program are to develop a computational capability with the following features: (1) can be used to predict the impact of gas reburning application on thermal conditions in the boiler radiant furnace, and on overall boiler performance; (2) can estimate gas reburning NO{sub x} reduction effectiveness based on specific reburning configurations and furnace/boiler configurations; (3) can be used as an analytical tool to evaluate the impact of boiler process parameters (e.g., fuel switching and changes in boiler operating conditions) on boiler thermal performance; (4) is adaptable to most boiler designs (tangential and wall fire boilers) and a variety of fuels (solid, liquid, gaseous and slurried fuels); (5) is sufficiently user friendly to be exercisable by engineers with a reasonable knowledge of boilers, and with reasonable computer skills. Here, ``user friendly`` means that the user will be guided by computer codes during the course of setting up individual input files for the boiler performance model.

  3. Natural gas: Formation of hydrates -- Transportation

    SciTech Connect

    Bhaskara Rao, B.K.

    1998-07-01

    The significant growth of Natural gas based industries in India and elsewhere obviously forced the industry to hunt for new fields and sources. This has naturally led to the phenomenal growth of gas networks. The transportation of gas over thousands of kilometers through caprious ambient conditions requires a great effort. Many difficulties such as condensation of light liquids (NGLS), choking of lines due to formation of hydrates, improper distribution of gas into branches are experienced during pipe line transportation of Natural gas. The thermodynamic conditions suitable for formation of solid hydrates have been derived depending upon the constituents of natural gas. Further effects of branching in pipe line transportation have been discussed.

  4. Contracts for the new natural gas business

    SciTech Connect

    Haedicke, M.E.

    1992-01-01

    Two major developments in the natural gas industry are causing fundamental changes in natural gas contracts. The first development, financial markets for natural gas, began only recently. On April 3, 1990, the New York Mercantile Exchange (NYMEX) began trading natural gas futures for a twelve month forward period. On the opening day, 925 contracts were traded. Recently, 18,344 contracts were traded in a single day, and gas 4 futures on NYMEX are now traded for an eighteen month forward period. At the same time, the market for off-exchange products, such as natural gas swaps and trade options, has expanded considerably. Shortly, it will be hard to imagine life in the natural gas business without the emerging financial markets for natural gas, if that time has not already occurred. The second major development, deregulation of the gas industry, began with the passage of the Natural Gas Policy Act of 1978. Each of the two developments provides a catalyst for fundamental changes in natural gas contracts. This article explores the impact of these two developments on long-term fixed-price physical gas contracts and the future direction of long-term fixed-price gas contracts.

  5. U.S. Natural Gas Markets: Mid-Term Prospects for Natural Gas Supply

    EIA Publications

    2001-01-01

    This service report describes the recent behavior of natural gas markets with respect to natural gas prices, their potential future behavior, the potential future supply contribution of liquefied natural gas and increased access to federally restricted resources, and the need for improved natural gas data.

  6. 75 FR 70350 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Maritime Administration Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License.... Coast Guard received an application from Liberty Natural Gas LLC for all Federal authorizations required... the transportation, storage, and further handling of oil or natural gas for transportation to...

  7. 78 FR 38309 - Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... Energy Regulatory Commission Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida... Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124; on behalf of itself, Southern Natural Gas Company, L.L.C., and Florida Gas Transmission Company, LLC, (collectively,...

  8. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    SciTech Connect

    Not Available

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  9. The domestic natural gas shortage in China

    NASA Astrophysics Data System (ADS)

    Guo, Ting

    This thesis analyzes the domestic shortage in the Chinese natural gas market. Both the domestic supply and demand of natural gas are growing fast in China. However, the supply cannot catch up with the demand. Under the present pricing mechanism, the Chinese natural gas market cannot get the equilibrium by itself. Expensive imports are inadequate to fill the increasing gap between the domestic demand and supply. Therefore, the shortage problem occurs. Since the energy gap can result in the arrested development of economics, the shortage problem need to be solved. This thesis gives three suggestions to solve the problem: the use of Unconventional Gas, Natural Gas Storage and Pricing Reform.

  10. Analysis of Restricted Natural Gas Supply Cases

    EIA Publications

    2004-01-01

    The four cases examined in this study have progressively greater impacts on overall natural gas consumption, prices, and supply. Compared to the Annual Energy Outlook 2004 reference case, the no Alaska pipeline case has the least impact; the low liquefied natural gas case has more impact; the low unconventional gas recovery case has even more impact; and the combined case has the most impact.

  11. Global Natural Gas Market Trends, 2. edition

    SciTech Connect

    2007-07-15

    The report provides an overview of major trends occurring in the natural gas industry and includes a concise look at the drivers behind recent rapid growth in gas usage and the challenges faced in meeting that growth. Topics covered include: an overview of Natural Gas including its history, the current market environment, and its future market potential; an analysis of the overarching trends that are driving a need for change in the Natural Gas industry; a description of new technologies being developed to increase production of Natural Gas; an evaluation of the potential of unconventional Natural Gas sources to supply the market; a review of new transportation methods to get Natural Gas from producing to consuming countries; a description of new storage technologies to support the increasing demand for peak gas; an analysis of the coming changes in global Natural Gas flows; an evaluation of new applications for Natural Gas and their impact on market sectors; and, an overview of Natural Gas trading concepts and recent changes in financial markets.

  12. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  13. Natural gas: An international perspective

    SciTech Connect

    Mabro, R.

    1986-01-01

    This book is concerned with: the prospects for trade in Western Europe, Japan, the USA and the Third World; the controversial gas pricing issue; and the influence of politics on gas investment and trade. The difficulties of devising fair and enforceable gas contracts between producing and importing countries and the problems arising from government intervention in international negotiations on gas contracts are also considered.

  14. Natural gas 1998: Issues and trends

    SciTech Connect

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs.

  15. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    SciTech Connect

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  16. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    SciTech Connect

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  17. Natural gas annual 1993 supplement: Company profiles

    SciTech Connect

    Not Available

    1995-02-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  18. Underground natural gas storage reservoir management

    SciTech Connect

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  19. Coal reburning for cost effective NO{sub x} compliance

    SciTech Connect

    Folsom, B.A.; Sommer, T.M.; Engelhardt, D.A.; Moyeda, D.K.; Rock, R.G.; Hunsicker, S.; Watts, J.U.

    1996-12-01

    This paper presents the application of micronized coal reburning to a cyclone-fired boiler in order to meet RACT emissions requirements in New York State. Discussed in the paper are reburning technology, the use of a coal micronizer, and the application of the technology to an Eastman Kodak unit. The program is designed to demonstrate the economical reduction of NO{sub x} emissions without adverse impact to the boiler.

  20. SEAPORT LIQUID NATURAL GAS STUDY

    SciTech Connect

    COOK,Z.

    1999-02-01

    The Seaport Liquid Natural Gas Study has attempted to evaluate the potential for using LNG in a variety of heavy-duty vehicle and equipment applications at the Ports of Los Angeles and Oakland. Specifically, this analysis has focused on the handling and transport of containerized cargo to, from and within these two facilities. In terms of containerized cargo throughput, Los Angeles and Oakland are the second and sixth busiest ports in the US, respectively, and together handle nearly 4.5 million TEUs per year. At present, the landside handling and transportation of containerized cargo is heavily dependent on diesel-powered, heavy-duty vehicles and equipment, the utilization of which contributes significantly to the overall emissions impact of port-related activities. Emissions from diesel units have been the subject of increasing scrutiny and regulatory action, particularly in California. In the past two years alone, particulate matter from diesel exhaust has been listed as a toxic air contaminant by CAM, and major lawsuits have been filed against several of California's largest supermarket chains, alleging violation of Proposition 65 statutes in connection with diesel emissions from their distribution facilities. CARE3 has also indicated that it may take further regulatory action relating to the TAC listing. In spite of these developments and the very large diesel emissions associated with port operations, there has been little AFV penetration in these applications. Nearly all port operators interviewed by CALSTART expressed an awareness of the issues surrounding diesel use; however, none appeared to be taking proactive steps to address them. Furthermore, while a less controversial issue than emissions, the dominance of diesel fuel use in heavy-duty vehicles contributes to a continued reliance on imported fuels. The increasing concern regarding diesel use, and the concurrent lack of alternative fuel use and vigorous emissions reduction activity at the Ports provide

  1. Natural gas annual 1994: Volume 2

    SciTech Connect

    1995-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data fro the Nation from 1930 to 1994, and by State from 1967 to 1994.

  2. Natural gas monthly, September 1990. [Contains Glossary

    SciTech Connect

    Not Available

    1990-11-30

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 7 figs., 33 tabs.

  3. Arctic Oil and Natural Gas Potential

    EIA Publications

    2009-01-01

    This paper examines the discovered and undiscovered Arctic oil and natural gas resource base with respect to their location and concentration. The paper also discusses the cost and impediments to developing Arctic oil and natural gas resources, including those issues associated with environmental habitats and political boundaries.

  4. Majors' Shift to Natural Gas, The

    EIA Publications

    2001-01-01

    The Majors' Shift to Natural Gas investigates the factors that have guided the United States' major energy producers' growth in U.S. natural gas production relative to oil production. The analysis draws heavily on financial and operating data from the Energy Information Administration's Financial Reporting System (FRS)

  5. Natural gas monthly, October 1990. [Contains glossary

    SciTech Connect

    Not Available

    1990-12-28

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 7 figs., 34 tabs.

  6. Catalytic decomposition of petroleum into natural gas

    SciTech Connect

    Mango, F.D.; Hightower, J.

    1997-12-01

    Petroleum is believed to be unstable in the earth, decomposing to lighter hydrocarbons at temperatures > 150{degrees}C. Oil and gas deposits support this view: gas/oil ratios and methane concentrations tend to increase with depth above 150{degrees}C. Although oil cracking is suggested and receives wide support, laboratory pyrolysis does not give products resembling natural gas. Moreover, it is doubtful that the light hydrocarbons in wet gas (C{sub 2}-C{sub 4}) could decompose over geologic time to dry gas (>95% methane) without catalytic assistance. We now report the catalytic decomposition of crude oil to a gas indistinguishable from natural gas. Like natural gas in deep basins, it becomes progressively enriched in methane: initially 90% (wet gas) to a final composition of 100% methane (dry gas). To our knowledge, the reaction is unprecedented and unexpectedly robust (conversion of oil to gas is 100% in days, 175{degrees}C) with significant implications regarding the stability of petroleum in sedimentary basins. The existence or nonexistence of oil in the deep subsurface may not depend on the thermal stability of hydrocarbons as currently thought. The critical factor could be the presence of transition metal catalysts which destabilize hydrocarbons and promote their decomposition to natural gas.

  7. Natural gas 1994: Issues and trends

    SciTech Connect

    Not Available

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

  8. How EIA Estimates Natural Gas Production

    EIA Publications

    2004-01-01

    The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing states and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The states and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

  9. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir M. Zamansky; Peter M. Maly; Vitali V. Lissianski; Mark S. Sheldon; David Moyeda; Roy Payne

    2001-06-30

    This project develops a family of novel Second Generation Advanced Reburning (SGAR) NO{sub x} control technologies, which can achieve 95% NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction (SCR). The conventional Advanced Reburning (AR) process integrates basic reburning and N-agent injection. The SGAR systems include six AR variants: (1) AR-Lean--injection of the N-agent and promoter along with overfire air; (2) AR-Rich--injection of N-agent and promoter into the reburning zone; (3) Multiple Injection Advanced Reburning (MIAR)--injection of N-agents and promoters both into the reburning zone and with overfire air; (4) AR-Lean + Promoted SNCR--injection of N-agents and promoters with overfire air and into the temperature zone at which Selective Non-Catalytic Reduction (SNCR) is effective; (5) AR-Rich + Promoted SNCR--injection of N-agents and promoters into the reburning zone and into the SNCR zone; and (6) Promoted Reburning + Promoted SNCR--basic or promoted reburning followed by basic or promoted SNCR process. The project was conducted in two phases over a five-year period. The work included a combination of analytical and experimental studies to confirm the process mechanisms, identify optimum process configurations, and develop a design methodology for full-scale applications. Phase I was conducted from October, 1995 to September, 1997 and included both analytical studies and tests in bench and pilot-scale test rigs. Phase I moved AR technology to Maturity Level III-Major Subsystems. Phase II is conducted over a 45 month period (October, 1997-June, 2001). Phase II included evaluation of alternative promoters, development of alternative reburning fuel and N-Agent jet mixing systems, and scale up. The goal of Phase II was to move the technology to Maturity Level I-Subscale Integrated System. Tests in combustion facility ranging in firing rate from 0.1 x 10{sup 6} to 10 x 10{sup 6} Btu/hr demonstrated the

  10. Natural gas monthly, September 1991. [Contains glossary

    SciTech Connect

    Not Available

    1991-10-18

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production distribution consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia.

  11. 76 FR 4417 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Maritime Administration Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License... Deepwater Port License Application. The application describes an offshore natural gas deepwater port... appeared in the Federal Register on April 11, 2000 (65 FR 19477), see PRIVACY ACT. You may view...

  12. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    SciTech Connect

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  13. Natural gas vehicles : Status, barriers, and opportunities.

    SciTech Connect

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  14. Energy resource potential of natural gas hydrates

    USGS Publications Warehouse

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  15. Natural gas contracts in efficient portfolios

    SciTech Connect

    Sutherland, R.J.

    1994-12-01

    This report addresses the {open_quotes}contracts portfolio{close_quotes} issue of natural gas contracts in support of the Domestic Natural Gas and Oil Initiative (DGOI) published by the U.S. Department of Energy in 1994. The analysis is a result of a collaborative effort with the Public Service Commission of the State of Maryland to consider {open_quotes}reforms that enhance the industry`s competitiveness{close_quotes}. The initial focus of our collaborative effort was on gas purchasing and contract portfolios; however, it became apparent that efficient contracting to purchase and use gas requires a broader consideration of regulatory reform. Efficient portfolios are obtained when the holder of the portfolio is affected by and is responsible for the performance of the portfolio. Natural gas distribution companies may prefer a diversity of contracts, but the efficient use of gas requires that the local distribution company be held accountable for its own purchases. Ultimate customers are affected by their own portfolios, which they manage efficiently by making their own choices. The objectives of the DGOI, particularly the efficient use of gas, can be achieved when customers have access to suppliers of gas and energy services under an improved regulatory framework. The evolution of the natural gas market during the last 15 years is described to account for the changing preferences toward gas contracts. Long-term contracts for natural gas were prevalent before the early 1980s, primarily because gas producers had few options other than to sell to a single pipeline company, and this pipeline company, in turn, was the only seller to a gas distribution company.

  16. North American Natural Gas Markets. Volume 1

    SciTech Connect

    Not Available

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  17. North American Natural Gas Markets. Volume 2

    SciTech Connect

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  18. The Canoe Ridge Natural Gas Storage Project

    SciTech Connect

    Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

    2003-06-18

    In 1999 the Pacific Gas and Electric Gas Transmission Northwest (GTN) drilled a borehole to investigate the feasibility of developing a natural gas-storage facility in a structural dome formed in Columbia River basalts in the Columbia Basin of south-central Washington State. The proposed aquifer storage facility will be an unconventional one where natural gas will be initially injected (and later retrieved) in one or multiple previous horizons (interflow zones) that are confined between deep (>700 meters) basalt flows of the Columbia River Basalt Group. This report summarizes the results of joint investigations on that feasibility study by GTN and the US Department of Energy.

  19. Refueling stations for natural gas vehicles

    SciTech Connect

    Blazek, C.F.; Kinast, J.A.; Biederman, R.T.; Jasionowski, W.

    1991-01-01

    The unavailability of natural gas vehicle (NGV) refueling stations constitutes one of the major barriers to the wide spread utilization of natural gas in the transportation market. The purpose of this paper is to review and evaluate the current technical and economic status of compressed natural gas vehicle refueling stations and to identify the components or design features that offer the greatest potential for performance improvements and/or cost reductions. Both fast-fill- and slow-fill-type refueling systems will be discussed. 4 refs., 10 figs., 6 tabs.

  20. Natural Gas Engine Development Gaps (Presentation)

    SciTech Connect

    Zigler, B.T.

    2014-03-01

    A review of current natural gas vehicle offerings is presented for both light-duty and medium- and heavy-duty applications. Recent gaps in the marketplace are discussed, along with how they have been or may be addressed. The stakeholder input process for guiding research and development needs via the Natural Gas Vehicle Technology Forum (NGVTF) to the U.S. Department of Energy and the California Energy Commission is reviewed. Current high-level natural gas engine development gap areas are highlighted, including efficiency, emissions, and the certification process.

  1. Natural gas annual 1992: Volume 1

    SciTech Connect

    Not Available

    1993-11-22

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

  2. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2002-06-01

    A new project was initiated this quarter to develop gas/liquid membranes for natural gas upgrading. Efforts have concentrated on legal agreements, including alternative field sites. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

  3. Well log evaluation of natural gas hydrates

    SciTech Connect

    Collett, T.S.

    1992-10-01

    Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

  4. Well log evaluation of natural gas hydrates

    SciTech Connect

    Collett, T.S.

    1992-10-01

    Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence? Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

  5. Incremental natural gas resources through infield reserve growth/secondary natural gas recovery. [Compartmented natural gas reservoir

    SciTech Connect

    Finley, R.J.; Levey, R.A.

    1992-01-01

    The objectives of the Infield Growth/Secondary Natural Gas Recovery project have been: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document practical, field-oriented examples of reserve growth from fluvial and deltaic sandstones of the Texas gulf coast basin and to use these gas reservoirs as a natural laboratory for developing concepts and testing applications of both tools and techniques to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify secondary gas. Accomplishments are presented for: reservoir characterization; integrated formation evaluation and engineering testing; compartmented reservoir simulator; and reservoir geophysics.

  6. Natural gas-assisted steam electrolyzer

    DOEpatents

    Pham, Ai-Quoc; Wallman, P. Henrik; Glass, Robert S.

    2000-01-01

    An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

  7. Analysis of Adsorbed Natural Gas Tank Technology

    NASA Astrophysics Data System (ADS)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  8. Combustion gas properties. 2: Natural gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  9. Natural gas 1996 - issues and trends

    SciTech Connect

    1996-12-01

    This publication presents a summary of the latest data and information relating to the U.S. natural gas industry, including prices, production, transmission, consumption, and financial aspects of the industry.

  10. Method for dismantling a natural gas holder

    SciTech Connect

    Settlemier, B.R.; Bone, S.R.; Tolivaisa, J.; Nugent, J.E.

    1990-10-30

    This patent describes a method of dismantling a natural gas holder. The holder has vertical support columns disposed around the periphery of the holder to which the enclosure shell of the holder is attached.

  11. A historical analysis of natural gas demand

    NASA Astrophysics Data System (ADS)

    Dalbec, Nathan Richard

    This thesis analyzes demand in the US energy market for natural gas, oil, and coal over the period of 1918-2013 and examines their price relationship over the period of 2007-2013. Diagnostic tests for time series were used; Augmented Dickey-Fuller, Kwiatkowski-Phillips-Schmidt-Shin, Johansen cointegration, Granger Causality and weak exogeneity tests. Directed acyclic graphs were used as a complimentary test for endogeneity. Due to the varied results in determining endogeneity, a seemingly unrelated regression model was used which assumes all right hand side variables in the three demand equations were exogenous. A number of factors were significant in determining demand for natural gas including its own price, lagged demand, a number of structural break dummies, and trend, while oil indicate some substitutability with natural gas. An error correction model was used to examine the price relationships. Natural gas price was found not to have a significant cointegrating vector.

  12. Natural gas flow through critical nozzles

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1969-01-01

    Empirical method for calculating both the mass flow rate and upstream volume flow rate through critical flow nozzles is determined. Method requires knowledge of the composition of natural gas, and of the upstream pressure and temperature.

  13. Natural gas annual 1992: Supplement: Company profiles

    SciTech Connect

    Not Available

    1994-01-01

    The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

  14. Natural gas 1992: Issues and trends

    SciTech Connect

    Not Available

    1993-03-01

    This report provides an overview of the natural gas industry in 1991 and 1992, focusing on trends in production, consumption, and pricing of natural gas and how they reflect the regulatory and legislative changes of the past decade (Chapter 1). Also presented are details of FERC Order 636 and the Energy Policy Act of 1992, as well as pertinent provisions of the Clean Air Act Amendments of 1990 (Chapter 2). In addition, the report highlights a range of issues affecting the industry, including: Trends in wellhead prices and natural gas supply activities (Chapter 3); Recent rate design changes for interstate pipeline companies (Chapter 4); Benefits to consumers from the more competitive marketplace (Chapter 5); Pipeline capacity expansions during the past 2 years (Chapter 6); Increasing role of the natural gas futures market (Chapter 7).

  15. Natural gas at thermodynamic equilibrium Implications for the origin of natural gas

    PubMed Central

    2009-01-01

    It is broadly accepted that so-called 'thermal' gas is the product of thermal cracking, 'primary' thermal gas from kerogen cracking, and 'secondary' thermal gas from oil cracking. Since thermal cracking of hydrocarbons does not generate products at equilibrium and thermal stress should not bring them to equilibrium over geologic time, we would not expect methane, ethane, and propane to be at equilibrium in subsurface deposits. Here we report compelling evidence of natural gas at thermodynamic equilibrium. Molecular compositions are constrained to equilibrium, and isotopic compositions are also under equilibrium constraints: The functions [(CH4)*(C3H8)] and [(C2H6)2] exhibit a strong nonlinear correlation (R2 = 0.84) in which the quotient Q progresses to K as wet gas progresses to dry gas. There are striking similarities between natural gas and catalytic gas generated from marine shales. A Devonian/Mississippian New Albany shale generates gas with Q converging on K over time as wet gas progresses to dry gas at 200°C. The position that thermal cracking is the primary source of natural gas is no longer tenable. It is challenged by its inability to explain the composition of natural gas, natural gases at thermodynamic equilibrium, and by the existence of a catalytic path to gas that better explains gas compositions. PMID:19531233

  16. Convert natural gas into clean transportation fuels

    SciTech Connect

    Agee, M.A.

    1997-03-01

    A new process economically converts natural gas into synthetic transportation fuels that are free of sulfur, metals, aromatics and are clear in appearance. The process, developed by Syntroleum Corp., is energy self-sufficient and can be implemented in sizes small enough to fit a large number of the world`s gas fields. The process is described.

  17. Waste Coal Fines Reburn for NOx and Mercury Emission Reduction

    SciTech Connect

    Stephen Johnson; Chetan Chothani; Bernard Breen

    2008-04-30

    Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury

  18. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2003-04-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Potting and module materials testing were initiated. Preliminary design

  19. 78 FR 46581 - Orders Granting Authority To Import and Export Natural Gas, and To Import Liquefied Natural Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Granting Authority To Import and Export Natural Gas, and To Import Liquefied Natural Gas During June 2013... authority to import and export natural gas and to import liquefied natural gas. These orders are summarized... of Fossil Energy, Office of Natural Gas Regulatory Activities, Docket Room 3E-033, Forrestal...

  20. 77 FR 19277 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During February 2012 FE..., ULC 12-13-NG ENCANA NATURAL GAS INC 11-163-NG ALCOA INC 12-11-NG JPMORGAN LNG CO 12-15-LNG CNE GAS... 2012, it issued Orders granting authority to import and export natural gas and liquefied natural...

  1. 78 FR 35014 - Orders Granting Authority to Import and Export Natural Gas, and to Import Liquefied Natural Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... Granting Authority to Import and Export Natural Gas, and to Import Liquefied Natural Gas During April 2013... INC 13-41-NG CASCADE NATURAL GAS CORPORATION 13-43-NG ENCANA MARKETING (USA) INC 13-44-NG CITIGROUP... natural gas and to import liquefied natural gas. These orders are summarized in the attached appendix...

  2. 77 FR 31838 - Notice of Orders Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... of Orders Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas During April... Capital International, LLC....... 12-33-NG Phillips 66 Company 12-34-NG Northwest Natural Gas Company 12..., it issued Orders granting authority to import and export natural gas and liquefied natural gas....

  3. Will Abundant Natural Gas Solve Climate Change?

    NASA Astrophysics Data System (ADS)

    McJeon, H. C.; Edmonds, J.; Bauer, N.; Leon, C.; Fisher, B.; Flannery, B.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; Riahi, K.; Rogner, H.; Tavoni, M.

    2015-12-01

    The rapid deployment of hydraulic fracturing and horizontal drilling technologies enabled the production of previously uneconomic shale gas resources in North America. Global deployment of these advanced gas production technologies could bring large influx of economically competitive unconventional gas resources to the energy system. It has been hoped that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions, which in turn could reduce climate forcing. Other researchers countered that the non-CO2 greenhouse gas (GHG) emissions associated with shale gas production make its lifecycle emissions higher than those of coal. In this study, we employ five state-of-the-art integrated assessment models (IAMs) of energy-economy-climate systems to assess the full impact of abundant gas on climate change. The models show large additional natural gas consumption up to +170% by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2% to +11%), and a majority of the models reported a small increase in climate forcing (from -0.3% to +7%) associated with the increased use of abundant gas. Our results show that while globally abundant gas may substantially change the future energy market equilibrium, it will not significantly mitigate climate change on its own in the absence of climate policies.

  4. Centrifuge for separating helium from natural gas

    SciTech Connect

    Theyse, F.H.; Kelling, F.E.T.

    1980-01-08

    Ultra Centrifuge Nederland N.V.'s improved centrifuge for separating helium from natural gas comprises a hollow cylindrical rotor, designated as a separating drum, within a stationary housing. Natural gas liquids that condense under pressure in the separating drum pass through openings in the drum into the space between the drum and housing. In this space, a series of openings, or throttling restrictors, allows the liquids to expand and return to gas. The gaseous component that does not liquefy in the drum remains separate for drawing off.

  5. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory

  6. Natural Gas Hydrates: Occurrence, Distribution, and Detection

    NASA Astrophysics Data System (ADS)

    Paull, Charles K.; Dillon, William P.

    We publish this volume at a time when there is a growing interest in gas hydrates and major expansion in international research efforts. The first recognition of natural gas hydrate on land in Arctic conditions was in the mid-1960s (by I. Makogon) and in the seabed environment only in the early 1970s, after natural seafloor gas hydrate was drilled on the Blake Ridge during Deep Sea Drilling Project Leg 11. Initial scientific investigations were slow to develop because the study of natural gas hydrates is unusually challenging. Gas hydrate exists in nature in conditions of temperature and pressure where human beings cannot survive, and if gas hydrate is transported from its region of stability to normal Earth-surface conditions, it dissociates. Thus, in contrast to most minerals, we cannot depend on drilled samples to provide accurate estimates of the amount of gas hydrate present. Even the heat and changes in chemistry (methane saturation, salinity, etc.) introduced by the drilling process affect the gas hydrate, independent of the changes brought about by moving a sample to the surface. Gas hydrate has been identified in nature generally by inference from indirect evidence in drilling data or by using remotely sensed indications, mostly from seismic data. Obviously, the established techniques ofgeologic analysis, which require direct observation and sampling, do not apply to gas hydrate studies, and controversy has surrounded many interpretations. Pressure/temperature conditions appropriate for the existence of gas hydrate occur over the greater part of the shallow subsurface of the Earth beneath the ocean at water depths exceeding about 500 m (shallower beneath colder Arctic seas) and on land beneath high-latitude permafrost. Gas hydrate actually will be present in such conditions, however, only where methane is present at high concentrations. In the Arctic, these methane concentrations are often associated with petroleum deposits, whereas at continental margins

  7. Natural Gas Pipeline and System Expansions

    EIA Publications

    1997-01-01

    This special report examines recent expansions to the North American natural gas pipeline network and the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.

  8. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2003-01-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.

  9. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2002-06-30

    Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

  10. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2002-06-01

    Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment has been initiated. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.

  11. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2002-10-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.

  12. Natural gas outstrips oil as energy source

    SciTech Connect

    Not Available

    1981-06-01

    Natural gas (all of it domestically produced) was the largest single source of Pakistan's 1980 energy supply, contributing 40.1% of the total, compared with 37.4% for oil, 16.6% for hydroelectricity, 5.6% for coal, and 0.3% for LP-gas, plus a very small amount of nuclear power. In 1979, gas accounted for 37.6% of the total and oil for 38.9%. Eighty percent of Pakistan's total natural gas production of nearly 300 billion CF came from the Sui field in central Pakistan, which is being developed by Pakistan Petroleum Ltd. The balance was produced in Esso's Mari field and the Oil and Gas Development Commission's Sari and Hundi fields.

  13. Coal reburning for cyclone boiler NO sub x control demonstration

    SciTech Connect

    Haggard, R.W. Jr.

    1991-01-01

    It is the objective of the Coal Reburning for Cyclone Boiler NOx Control Project to fully establish that the coal reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NOx emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NOx emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  14. Coal reburning for cyclone boiler NO sub x control demonstration

    SciTech Connect

    Not Available

    1991-01-01

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  15. Role of char during reburning of nitrogen oxides. Ninth quarterly report, October 1, 1995--December 31, 1995

    SciTech Connect

    Chen, Wei-Yin; Lu, Te-Chang; Fan, L.T.; Yashima, Mutsuo

    1996-01-31

    During this quarter, we have investigated rates and product compositions of NO reduction on chars in gases. N{sub 2} and CO{sub 2} internal surface areas of chars, selected from runs of various pyrolysis and reaction conditions have been measured to assist in interpreting the experimental results. Implications of Langmuir- Hinshelwood mechanisms and mass transfer limitations were examined. Oxidants suppress NO reduction on bituminous coal char more than on lignite char. Observations suggest that NO adsorption and desorption of stable surface oxygen complexes are potentially important rate- limiting steps and may be catalyzed by mineral matter during reburning with lignite char. Relative inert nature of lignite char to CO{sub 2} presence may have potential value in use of fuel system involving both solid and volatile fuels. Lignite char produced at 950 C and zero holding time has higher reactivity than that produced at 1100 C and 5 min holding time. Bituminous coal chars produced at these two conditions, however, have similar reactivity with NO. Internal surface areas of both type chars vary with pyrolysis conditions and gas composition in the subsequent reaction. When oxidants are introduced in the feed, internal surface areas of these two chars vary in opposite directions.

  16. Geologic studies of deep natural gas resources

    USGS Publications Warehouse

    Dyman, T. S., (Edited By); Kuuskraa, V.A.

    2001-01-01

    In 1995, the USGS estimated a mean resource of 114 trillion cubic feet of undiscovered technically recoverable natural gas in plays deeper than 15,000 feet/4,572 meters in onshore regions of the United States. This volume summarizes major conclusions of ongoing work. Chapters A and B address the areal extent of drilling and distribution of deep basins in the U.S. Chapter C summarizes distribution of deep sedimentary basins and potential for deep gas in the former Soviet Union. Chapters D and E are geochemical papers addressing source-rock issues and deep gas generation. Chapter F develops a probabilistic method for subdividing gas resources into depth slices, and chapter G analyzes the relative uncertainty of estimates of deep gas in plays in the Gulf Coast Region. Chapter H evaluates the mechanism of hydrogenation of deep, high-rank spent kerogen by water, with subsequent generation of methane-rich HC gas.

  17. 78 FR 21349 - Orders Granting Authority To Import and Export Natural Gas, To Export Liquefied Natural Gas, To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Granting Authority To Import and Export Natural Gas, To Export Liquefied Natural Gas, To Export Compressed Natural Gas, Vacating Prior Authority and Denying Request for Rehearing During January 2013 ] FE Docket... GAS LLC 12-168-CNG MERRILL LYNCH COMMODITIES CANADA, ULC 12-169-NG GAS NATURAL PUERTO RICO INC...

  18. Role of char during reburning of nitrogen oxides. Seventh quarterly progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Wei-Yin Chen; Te-Chang Lu; Fan, L.T.; Yashima, M.

    1995-08-11

    The progress in this quarter includes four parts. In the first segment, the implications of our data reported in the List quarter are discussed further. BET N{sub 2} surface area does not seems to be the only contributing factor to the remarkable activity of lignite char during reburning, and chars of different origins probably have different controlling steps in the overall surface reaction mechanisms. Unlike NO reduction in the gas phase, oxygen inhibits the heterogeneous mechanisms. The second part of this report justifies the use of our laminar flow reactor system for the measurement of reaction rate. Dispersion model is used in the analysis. An expression relating the rate constant with the experimentally obtainable NO conversion for our flow reactor have been derived. Rates of NO/char reaction for six series of experiments have been measured over the temperature range 800 to 1100{degrees}C. These six series of experiments have been conducted with two different chars, one bituminous coal char and one lignite char, and three different levels of feed NO concentrations, 200, 400 and 1000 ppm. Results from the comparison of char activities suggest that, in the absence of O{sub 2} and CO{sub 2}, the origin of char is not a significant factor for NO reduction. The CO/CO{sub 2} ratio in the products is higher than one under all test conditions, but the ratio increases with increasing feed NO concentrations. Recoveries of oxygen form the lignite char at temperatures above 1050{degrees}C is higher than 1 indicating gasification of organic oxygen in the char. Surface areas of selected chars after devolatilization and after reburning have been analyzed by BET in N{sub 2}. Results indicated char surface area changes after reburning, which is caused either by the higher temperature of reburning or by surface reaction.

  19. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    SciTech Connect

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-02-09

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

  20. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    PubMed

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas. PMID:22107036

  1. 77 FR 12274 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During January 2012.... DOMINION COVE POINT LNG, LP 11-98-LNG ENERGY PLUS NATURAL GAS LLC 11-155-NG BROOKFIELD ENERGY MARKETING L.P... 2012, it issued Orders granting authority to import and export natural gas and liquefied natural...

  2. Venezuela natural gas for vehicles project

    SciTech Connect

    Marsicobetre, D.; Molero, T.

    1998-12-31

    The Natural Gas for Vehicles (NGV) Project in Venezuela describes the development and growth of the NGV project in the country. Venezuela is a prolific oil producer with advanced exploration, production, refining and solid marketing infrastructure. Gas production is 5.2 Bscfd. The Venezuelan Government and the oil state owned company Petroleos de Venezuela (PDVSA), pursued the opportunity of using natural gas for vehicles based on the huge amounts of gas reserves present and produced every day associated with the oil production. A nationwide gas pipeline network crosses the country from south to west reaching the most important cities and serving domestic and industrial purposes but there are no facilities to process or export liquefied natural gas. NGV has been introduced gradually in Venezuela over the last eight years by PDVSA. One hundred forty-five NGV stations have been installed and another 25 are under construction. Work done comprises displacement or relocation of existing gasoline equipment, civil work, installation and commissioning of equipment. The acceptance and usage of the NGV system is reflected in the more than 17,000 vehicles that have been converted to date using the equivalent of 2,000 bbl oil/day.

  3. Natural gas: oversupply is still a problem

    SciTech Connect

    Parent, L.V.

    1986-02-01

    Prices for natural gas at the wellhead, city gate and burner tip peaked in 1984-1985. Market softness and surplus capability (the bubble) were the contributing factors. This year, it is expected that these same factors, plus the pressure of increased imports from Canada, will drive marginal prices down even further, to below $1.75 per MCF before the market finally finds bottom. Spot sales in 1985, at ever lower prices, proliferated as producers engaging in severe gas-to-gas competition sought buyers for new gas and for old gas released under the provisions of FERC's (Federal Energy Regulatory Commission) special marketing programs (SMPS). However, while certain users are enjoying or have enjoyed low cost gas made available through gas-to-gas competition, the market itself is not going anywhere. Year-to-year sales are down and show no real prospect of any improvement in 1986. The economy, which is geared to conservation and energy efficiency, is without expectations for significant gains this year and will not use more gas simply because it is cheaper.

  4. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  5. The efficient use of natural gas in transportation

    SciTech Connect

    Stodolsky, F.; Santini, D.J.

    1992-04-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  6. The efficient use of natural gas in transportation

    SciTech Connect

    Stodolsky, F.; Santini, D.J.

    1992-01-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  7. Development of a thermoacoustic natural gas liquefier.

    SciTech Connect

    Wollan, J. J.; Swift, G. W.; Backhaus, S. N.; Gardner, D. L.

    2002-01-01

    Praxair, in conjunction with the Los Alamos National Laboratory, is developing a new technology, thermoacoustic heat engines and refrigerators, for liquefaction of natural gas. This is the only technology capable of producing refrigeration power at cryogenic temperatures with no moving parts. A prototype, with a projected natural gas liquefaction capacity of 500 gallons/day, has been built and tested. The power source is a natural gas burner. Systems will be developed with liquefaction capacities up to 10,000 to 20,000 gallons per day. The technology, the development project, accomplishments and applications are discussed. In February 2001 Praxair, Inc. purchased the acoustic heat engine and refrigeration development program from Chart Industries. Chart (formerly Cryenco, which Chart purchased in 1997) and Los Alamos had been working on the technology development program since 1994. The purchase included assets and intellectual property rights for thermoacoustically driven orifice pulse tube refrigerators (TADOPTR), a new and revolutionary Thermoacoustic Stirling Heat Engine (TASHE) technology, aspects of Orifice Pulse Tube Refrigeration (OPTR) and linear motor compressors as OPTR drivers. Praxair, in cooperation with Los Alamos National Laboratory (LANL), the licensor of the TADOPTR and TASHE patents, is continuing the development of TASHE-OPTR natural gas powered, natural gas liquefiers. The liquefaction of natural gas, which occurs at -161 C (-259 F) at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 TADOPTR invention by Drs. Greg Swift (LANL) and Ray Radebaugh (NIST) demonstrated the first technology to produce cryogenic refrigeration with no moving parts. Thermoacoustic engines and refrigerators use acoustic phenomena to produce refrigeration from heat. The basic driver and refrigerator consist of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances

  8. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2003-10-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. A Haz

  9. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2003-07-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. Potting

  10. Natural gas decontrol. Talk has little effect on NGPA applications. [Natural Gas Policy Act of 1978

    SciTech Connect

    Mickey, V.

    1981-05-01

    Even though the possibility of decontrol of natural gas prices is being discussed, applications under the Natural Gas Policy Act of 1978 continue to flood the Texas Railroad Commission. As of mid-March, 33,965 applications had been filed with the TRC seeking ceiling price designations under the Act. During the first part of the year, the commission sponsored seminars in different parts of the state to explain the provisions of the Act and the commission's procedures in handling applications filed under the NGPA. Title 1 of the NGPA contains the wellhead pricing provisions. Eight major categories of domestically-produced gas with certain statutory maximum price levels are applied to all first sales. In Texas the TRC has jurisdiction over 4 of these categories: Section 102 - new natural gas; Section 103 - new, onshore production natural gas; Section 107 - high-cost natural gas; and Section 108 - stripper well natural gas. The Federal Energy Regulatory Commission in Washington has jurisdiction over the other categories which include: Section 104 - sales of natural gas dedicated to interstate commerce; Section 105 - sales under existing intrastate contracts; Section 106 - sales under roll-over contracts; and Section 109 - other categories.

  11. Natural gas pipeline leaks across Washington, DC.

    PubMed

    Jackson, Robert B; Down, Adrian; Phillips, Nathan G; Ackley, Robert C; Cook, Charles W; Plata, Desiree L; Zhao, Kaiguang

    2014-01-01

    Pipeline safety in the United States has increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. To reduce pipeline leakage and increase consumer safety, we deployed a Picarro G2301 Cavity Ring-Down Spectrometer in a car, mapping 5893 natural gas leaks (2.5 to 88.6 ppm CH4) across 1500 road miles of Washington, DC. The δ(13)C-isotopic signatures of the methane (-38.2‰ ± 3.9‰ s.d.) and ethane (-36.5 ± 1.1 s.d.) and the CH4:C2H6 ratios (25.5 ± 8.9 s.d.) closely matched the pipeline gas (-39.0‰ and -36.2‰ for methane and ethane; 19.0 for CH4/C2H6). Emissions from four street leaks ranged from 9200 to 38,200 L CH4 day(-1) each, comparable to natural gas used by 1.7 to 7.0 homes, respectively. At 19 tested locations, 12 potentially explosive (Grade 1) methane concentrations of 50,000 to 500,000 ppm were detected in manholes. Financial incentives and targeted programs among companies, public utility commissions, and scientists to reduce leaks and replace old cast-iron pipes will improve consumer safety and air quality, save money, and lower greenhouse gas emissions. PMID:24432903

  12. Natural gas strategic plan and program crosscut plans

    SciTech Connect

    1995-06-01

    The natural gas strategic plan recognizes the challenges and opportunities facing increased U.S. natural gas use. Focus areas of research include natural gas supply, delivery, and storage, power generation, industrial, residential and commercial, natural gas vehicles, and the environment. Historical aspects, mission, situation analysis, technology trends, strategic issues, performance indicators, technology program overviews, and forecasting in the above areas are described.

  13. 7 CFR 2900.4 - Natural gas requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Natural gas requirements. 2900.4 Section 2900.4..., DEPARTMENT OF AGRICULTURE ESSENTIAL AGRICULTURAL USES AND VOLUMETRIC REQUIREMENTS-NATURAL GAS POLICY ACT § 2900.4 Natural gas requirements. For purposes of Section 401(c), NGPA, the natural gas requirements...

  14. 7 CFR 2900.4 - Natural gas requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Natural gas requirements. 2900.4 Section 2900.4..., DEPARTMENT OF AGRICULTURE ESSENTIAL AGRICULTURAL USES AND VOLUMETRIC REQUIREMENTS-NATURAL GAS POLICY ACT § 2900.4 Natural gas requirements. For purposes of Section 401(c), NGPA, the natural gas requirements...

  15. 7 CFR 2900.4 - Natural gas requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Natural gas requirements. 2900.4 Section 2900.4..., DEPARTMENT OF AGRICULTURE ESSENTIAL AGRICULTURAL USES AND VOLUMETRIC REQUIREMENTS-NATURAL GAS POLICY ACT § 2900.4 Natural gas requirements. For purposes of Section 401(c), NGPA, the natural gas requirements...

  16. 77 FR 69781 - Enhanced Natural Gas Market Transparency

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... Pipeline Posting Requirements under Section 23 of the Natural Gas Act, Order No. 720, 73 FR 73494 (Dec. 2...; ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission 18 CFR Part 152 Enhanced Natural Gas Market... regulations under the natural gas market transparency provisions of section 23 of the Natural Gas Act...

  17. 7 CFR 2900.4 - Natural gas requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Natural gas requirements. 2900.4 Section 2900.4..., DEPARTMENT OF AGRICULTURE ESSENTIAL AGRICULTURAL USES AND VOLUMETRIC REQUIREMENTS-NATURAL GAS POLICY ACT § 2900.4 Natural gas requirements. For purposes of Section 401(c), NGPA, the natural gas requirements...

  18. 7 CFR 2900.4 - Natural gas requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Natural gas requirements. 2900.4 Section 2900.4..., DEPARTMENT OF AGRICULTURE ESSENTIAL AGRICULTURAL USES AND VOLUMETRIC REQUIREMENTS-NATURAL GAS POLICY ACT § 2900.4 Natural gas requirements. For purposes of Section 401(c), NGPA, the natural gas requirements...

  19. Mitchell firmly retrenched in natural gas services

    SciTech Connect

    Share, J.

    1997-09-01

    The past three years, Mitchell Energy and Development Corp. has undergone a massive restructuring that has changed the face of one of the nation`s largest and best-known natural gas/natural gas liquids companies. Facing a rapidly changing industry that frequently has been stung by volatile swings in energy markets, management of the independent company, founded by George Mitchell in 1946, sold off $300 million in non-core assets; reduced its long-term debt by $400 million; instituted a hiring freeze and reduced its workforce by a third, from 2,900 to 1,950, over the last three years. Mitchell negotiated a buyout of its hugely profitable North Texas gas sales contract with Natural Gas Pipeline Company of America as a means of easing its transition to a market-sensitive price environment and reducing its debt. Mitchell also took operational control. Finally, Mitchell has left the real estate business, culminating July 31 with the sale of its real estate subsidiary, The Woodlands Corporation, for $543 million ($460 million net after-tax), further reducing its workforce to 1,100. On Aug. 18, the company said it will use the proceeds to repurchase common stock, retire another $200 million of public debt, make asset niche energy acquisitions and increase capital spending for existing programs. The result is a renewed focus on its exploration and production and gas gathering, processing and marketing businesses.

  20. Coal or natural gas for ecofuel production

    SciTech Connect

    Geertsema, A.

    1998-07-01

    The paper reviews the technology of the Fischer-Tropsch synthesis used in the Sasal plant in South Africa. It discusses environmental aspects and economics of new FT facilities for the production of diesel fuels. Several projects are briefly described which use this technology for natural gas conversion.

  1. New Methodology for Natural Gas Production Estimates

    EIA Publications

    2010-01-01

    A new methodology is implemented with the monthly natural gas production estimates from the EIA-914 survey this month. The estimates, to be released April 29, 2010, include revisions for all of 2009. The fundamental changes in the new process include the timeliness of the historical data used for estimation and the frequency of sample updates, both of which are improved.

  2. Natural gas annual 1992. Volume 2

    SciTech Connect

    Not Available

    1993-11-22

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data for the Nation from 1930 to 1992, and by State from 1967 to 1992. The Supplement of this report presents profiles of selected companies.

  3. Bibliography on Liquefied Natural Gas (LNG) safety

    NASA Technical Reports Server (NTRS)

    Ordin, P. M.

    1976-01-01

    Approximately 600 citations concerning safety of liquefied natural gas and liquid methane are presented. Each entry includes the title, author, abstract, source, description of figures, key references, and major descriptors for retrieving the document. An author index is provided as well as an index of descriptors.

  4. Mexican demand for US natural gas

    SciTech Connect

    Kanter, M.A.; Kier, P.H.

    1993-09-01

    This study describes the Mexican natural gas industry as it exists today and the factors that have shaped the evolution of the industry in the past or that are expected to influence its progress; it also projects production and use of natural gas and estimates the market for exports of natural gas from the United States to Mexico. The study looks ahead to two periods, a near term (1993--1995) and an intermediate term (1996--2000). The bases for estimates under two scenarios are described. Under the conservative scenario, exports of natural gas from the United States would decrease from the 1992 level of 250 million cubic feet per day (MMCF/d), would return to that level by 1995, and would reach about 980 MMCF/D by 2000. Under the more optimistic scenario, exports would decrease in 1993 and would recover and rise to about 360 MMCF/D in 1995 and to 1,920 MMCF/D in 2000.

  5. Teaching about Natural Gas and the Environment.

    ERIC Educational Resources Information Center

    Shewell, John

    1994-01-01

    This article contains a foldout entitled Natural Gas and the Environment for use in helping students become more aware of the relationships that exist between humans and the environment. Suggestions for classroom integration of this subject into your curriculum are also provided. (ZWH)

  6. Minimizing liquid contaminants in natural gas liquids

    SciTech Connect

    Brown, R.L.; Wines, T.H.; Williamson, K.M.

    1996-12-31

    In processing natural gas liquids, significant contamination occurs with liquid dispersions and emulsions. Natural gas liquids (NGL) and liquid petroleum gas (LPG) streams are treated with caustic to remove residual organic sulfur compounds such as mercaptans and with amines to remove hydrogen sulfide. In both cases a liquid/liquid contactor is used. Significant amounts of the caustic or amine can be carried over into the product stream in process units that are running at rates above design capacity, are treating high sulfur feed stocks, or have other operational problems. The carried over liquid results in off-spec products, excessive loses of caustic or amine, and can cause operating problems in downstream processes. In addition, water is a significant contaminant which can cause LPG and natural gasoline to be off-specification. This paper discusses a new technique for separating very stable liquid dispersions of caustic, amine, or water from natural gas liquids using liquid/liquid cartridge coalescers constructed with specially formulated polymer and fluoropolymer medium with enhanced surface properties. In addition, factors influencing the coalescer mechanism will be discussed including interfacial tension, concentration of surface active compounds, steric repulsion, and electrostatic charge affects. Results from field tests, operating data from commercial installations, and economic benefits will also be presented.

  7. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1999-06-01

    Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

  8. Optimize control of natural gas plants

    SciTech Connect

    Treiber, S.; Walker, J.; Tremblay, M. de ); Delgadillo, R.L.; Velasquez, R.N.; Valarde, M.J.G. )

    1994-04-01

    Multivariable constraint control (MCS) has a very beneficial and profitable impact on the operation of natural gas plants. The applications described operate completely within a distributed control system (DCS) or programmable logic controllers (PLCs). That makes MCS accessible to almost all gas plant operators. The technology's relative ease of use, low maintenance effort and software sensor,'' make it possible to operate these control applications without increasing technical support staff. MCS improves not only profitability but also regulatory compliance of gas plants. It has been applied to fractionation units, cryogenic units, amine treaters, sulfur recovery units and utilities. The application typically pay for the cost of software and engineering in less than one month. If a DCS is installed within such a project the advanced control applications can generate a payout in less than one year. In the case here (an application on the deethanizers of a 500 MMscfd gas plant) product revenue increased by over $2 million/yr.

  9. 78 FR 19696 - Orders Granting Authority To Import and Export Natural Gas, To Import Liquefied Natural Gas, To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Granting Authority To Import and Export Natural Gas, To Import Liquefied Natural Gas, To Export Liquefied Natural Gas and Vacating Prior Authority During December 2012 FE Docket Nos. DIAMOND CAPITAL INTERNATIONAL... during December 2012, it issued orders granting authority to import and export natural gas and...

  10. Method and apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles

    DOEpatents

    Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

    2005-05-31

    A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

  11. Natural gas legislation: a consumer's perspective

    SciTech Connect

    Lemon, J.R.

    1983-08-01

    This report evaluates three major legislative proposals: accelerated decontrol of both old and new wellhead prices as proposed by the Reagan administration (S.615, H.R. 1760); imposition of new natural gas price controls at lower levels as proposed by Congressman Gephardt (H.R. 2154); and conversion of interstate gas pipelines to common carriage as proposed by Senators Dixon and Percy and by Congressman Corcoran (S. 1119, H.R. 2565). The reference or base case scenario used in the evaluation is a continuation of the Natural Gas Policy Act of 1978 (NGPA) with no legislative modifications. First, projections of wellhead and burner-tip natural gas prices are presented for the period 1983-1990, and then consumer benefits under the different scenarios are estimated. All projections presented assume that legislation takes effect as of January 1, 1983 and that normal weather patterns are experienced. All prices identified in the report are given in 1982 dollars unless otherwise indicated. 5 figs., 1 tab.

  12. Natural gas cleanup by means of membranes.

    PubMed

    Ohlrogge, Klaus; Brinkmann, Torsten

    2003-03-01

    This paper deals with the use of membranes for hydrocarbon dewpointing and dehydration of natural gas. Based on experience gained from membrane applications in separating organic vapors from off-gas and process streams, as well as the dehydration of compressed air, membranes have been developed and tested for use in high pressure applications. Membranes and membrane modules have been modified to withstand the high operating pressure. Calculation programs were developed to understand the separation performance and to provide the necessary information for optimizing membrane design. A real challenge was the introduction of the vacuum mode dehydration operation in order to achieve the highest possible dewpoint reduction with minimum methane loss. PMID:12783826

  13. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1999-04-30

    In March, work continued on characterizing probabilities for determining natural fracturing associated with the GGRB for the Upper Cretaceous tight gas plays. Structural complexity, based on potential field data and remote sensing data was completed. A resource estimate for the Frontier and Mesa Verde play was also completed. Further, work was also conducted to determine threshold economics for the play based on limited current production in the plays in the Wamsutter Ridge area. These analyses culminated in a presentation at FETC on 24 March 1999 where quantified natural fracture domains, mapped on a partition basis, which establish ''sweet spot'' probability for natural fracturing, were reviewed. That presentation is reproduced here as Appendix 1. The work plan for the quarter of January 1, 1999--March 31, 1999 comprised five tasks: (1) Evaluation of the GGRB partitions for structural complexity that can be associated with natural fractures, (2) Continued resource analysis of the balance of the partitions to determine areas with higher relative gas richness, (3) Gas field studies, (4) Threshold resource economics to determine which partitions would be the most prospective, and (5) Examination of the area around the Table Rock 4H well.

  14. Natural gas fueling of diesel engines

    SciTech Connect

    1996-11-01

    The focus of work performed by University of British Columbia researchers was on high-pressure (late cycle) injection of NG ignited by a pilot diesel-liquid injection(diesel/gas combustion). This was compared to the case of 100% liquid diesel (baseline diesel) fueling at the same load and speed. In typical direct-injected and conventionally fueled diesel engines, fuel is injected a few degrees before the end of the compression stroke into 750--900 K air in which it vaporizes, mixed with air, and auto ignites less than 2 ms after injection begins. The objectives of the researchers` work were to investigate the ignition delay and combustion duration of diesel/gas combustion by observing diesel and diesel/gas ignition sites and flame structure; determining ignition delay and combustion duration with pilot-diesel and natural gas injections; determining whether the pilot liquid flame is substantially influenced by the gas injection; and considering whether pilot-diesel/gas combustion is dominated by premixed or diffusion combustion.

  15. Gas supplies of interstate natural gas pipeline companies, 1983

    SciTech Connect

    Pridgen, V.

    1984-11-01

    This report provides information on the total reserves, production, and deliverability capabilities of the 86 interstate pipeline companies required to file the Federal Energy Regulatory Commission (FERC) Form 15, Interstate Pipeline's Annual Report of Gas Supply. Total dedicated domestic gas reserves, owned by or under contract to the interstate pipeline companies, decreased in 1983 by 4.2 trillion cubic feet (Tcf), or 4.3%, from 98.7 Tcf at the beginning of the year to 94.5 Tcf at the end of the year. A 5-year tabulation shows that dedicated domestic gas reserves increased slightly from 94.0 Tcf at the beginning of 1979 to 94.5 Tcf at the end of 1983, an increase of 0.5 Tcf, or 0.5%. Total gas purchased and produced from the dedicated domestic gas reserves in 1983 was 9.5 Tcf, down 13.1% from the 10.9 Tcf reported in the preceding year. The 1983 ratio of total dedicated domestic reserves to production was 10.0, significantly above the 9.0 ratio reported for 1982. Net revisions to dedicated domestic gas reserves during 1983 are calculated at -0.5 Tcf, as compared to 1.4 Tcf in 1982. Total interstate reserve additions during 1983 are reported to be 5.8 Tcf, compared to additions of 9.9 Tcf in 1982. Total natural gas imported by interstate pipeline companies from two foreign sources, Canada and Mexico, was 0.8 Tcf, 7.4% of the total gas produced and purchased in 1983. Imports of LNG from Algeria totaled only 0.09 Tcf. Total deliveries are projected to decline from 12.9 Tcf in 1984 to 7.1 Tcf by 1988. This decline is driven by the projected decline in domestic reserve deliverability. Deliveries from foreign and other sources are expected to remain relatively constant over the 5-year period. 8 figures, 18 tables.

  16. Incremental natural gas resources through infield reserve growth/secondary natural gas recovery

    SciTech Connect

    Finley, R.J.; Levey, R.A.

    1992-08-01

    The objectives of the Infield Growth/Secondary Natural Gas Recovery project have been: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document practical, field-oriented examples of reserve growth from fluvial and deltaic sandstones of the Texas gulf coast basin and to use these gas reservoirs as a natural laboratory for developing concepts and testing applications of both tools and techniques to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify secondary gas. Accomplishments are presented for: reservoir characterization; integrated formation evaluation and engineering testing; compartmented reservoir simulator; and reservoir geophysics.

  17. Incremental natural gas resources through infield reserve growth/secondary natural gas recovery

    SciTech Connect

    Finley, R.J.; Levey, R.A.; Hardage, B.A.

    1993-12-31

    The primary objective of the Infield Reserve Growth/Secondary Natural Gas Recovery (SGR) project is to develop, test, and verify technologies and methodologies with near- to midterm potential for maximizing the recovery of natural gasfrom conventional reservoirs in known fields. Additional technical and technology transfer objectives of the SGR project include: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas gulf coast basin as a natural laboratory for developing concepts and testing applications to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to a wide array of natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow units and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify incremental, or secondary, gas.

  18. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2007-03-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The SWC represents a partnership between U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the NETL. This document serves as the twelfth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Drafting and releasing the 2007 Request for Proposals; (2) Securing a meeting facility, scheduling and drafting plans for the 2007 Spring Proposal Meeting; (3) Conducting elections and announcing representatives for the four 2007-2008 Executive Council seats; (4) 2005 Final Project Reports; (5) Personal Digital Assistant Workshops scheduled; and (6) Communications and outreach.

  19. Natural gas storage in bedded salt formations

    SciTech Connect

    Macha, G.

    1996-09-01

    In 1990 Western Resources Inc. (WRI) identified the need for additional natural gas storage capacity for its intrastate natural gas system operated in the state of Kansas. Western Resources primary need was identified as peak day deliverability with annual storage balancing a secondary objective. Consequently, an underground bedded salt storage facility, Yaggy Storage Field, was developed and placed in operation in November 1993. The current working capacity of the new field is 2.1 BCF. Seventy individual caverns are in service on the 300 acre site. The caverns vary in size from 310,000 CF to 2,600,000 CF. Additional capacity can be added on the existing acreage by increasing the size of some of the smaller existing caverns by further solution mining and by development of an additional 30 potential well sites on the property.

  20. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1998-11-30

    The goal of the work this quarter has been to partition and high-grade the Greater Green River basin for exploration efforts in the Upper Cretaceous tight gas play and to initiate resource assessment of the basin. The work plan for the quarter of July 1-September 30, 1998 comprised three tasks: (1) Refining the exploration process for deep, naturally fractured gas reservoirs; (2) Partitioning of the basin based on structure and areas of overpressure; (3) Examination of the Kinney and Canyon Creek fields with respect to the Cretaceous tight gas play and initiation of the resource assessment of the Vermilion sub-basin partition (which contains these two fields); and (4) Initiation analysis of the Deep Green River Partition with respect to the Stratos well and assessment of the resource in the partition.

  1. Natural Gas Pipeline Network: Changing and Growing

    EIA Publications

    1996-01-01

    This chapter focuses upon the capabilities of the national natural gas pipeline network, examining how it has expanded during this decade and how it may expand further over the coming years. It also looks at some of the costs of this expansion, including the environmental costs which may be extensive. Changes in the network as a result of recent regional market shifts are also discussed.

  2. California Natural Gas Pipelines: A Brief Guide

    SciTech Connect

    Neuscamman, Stephanie; Price, Don; Pezzola, Genny; Glascoe, Lee

    2013-01-22

    The purpose of this document is to familiarize the reader with the general configuration and operation of the natural gas pipelines in California and to discuss potential LLNL contributions that would support the Partnership for the 21st Century collaboration. First, pipeline infrastructure will be reviewed. Then, recent pipeline events will be examined. Selected current pipeline industry research will be summarized. Finally, industry acronyms are listed for reference.

  3. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-09-30

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the tenth quarterly technical progress report for the SWC. Key activities for this reporting period include: {lg_bullet} 2004 SWC Final Project Reports distribution; {lg_bullet} Exhibit and present at the Midcontinent Oil and Gas Prospect Fair, Great Bend, KS, September 12, 2006; {lg_bullet} Participate and showcase current and past projects at the 2006 Oklahoma Oil and Gas Trade Expo, Oklahoma City, OK, October 26, 2006; {lg_bullet} Finalize agenda and identify exhibitors for the northeastern US, Fall SWC Technical Transfer Workshop, Pittsburghhh, PA, November 9, 2006; {lg_bullet} Continue distribution of the public broadcast documentary, ''Independent Oil: Rediscovering American's Forgotten Wells''; {lg_bullet} Communications/outreach; and {lg_bullet} New members update.

  4. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  5. Natural-gas supply-and-demand problems

    SciTech Connect

    Hatamian, H.

    1998-01-01

    World natural-gas consumption quadrupled in the 30 years from 1966 to 1996, and natural gas now provides 22% of the total world energy demand. The security of natural-gas supply is paramount and rests with the suppliers and the consumers. This paper gives an overview of world natural-gas supply and demand and examines the main supply problems. The most important nonpredictable variables in natural-gas supply are worldwide gas price and political stability, particularly in regions with high reserves. Other important considerations are the cost of development/processing and the transport of natural gas to market, which can be difficult to maintain if pipelines pass through areas of political instability. Another problem is that many countries lack the infrastructure and capital for effective development of their natural-gas industry. Unlike oil, the cost of transportation of natural gas is very high, and, surprisingly, only approximately 16% of the total world production currently is traded internationally.

  6. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  7. 18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources... INTERPRETATIONS Statements of General Policy and Interpretations Under the Natural Gas Act § 2.78 Utilization and conservation of natural resources—natural gas. (a)(1) The national interests in the development and...

  8. 18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources... INTERPRETATIONS Statements of General Policy and Interpretations Under the Natural Gas Act § 2.78 Utilization and conservation of natural resources—natural gas. (a)(1) The national interests in the development and...

  9. 18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources... INTERPRETATIONS Statements of General Policy and Interpretations Under the Natural Gas Act § 2.78 Utilization and conservation of natural resources—natural gas. (a)(1) The national interests in the development and...

  10. 18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources... INTERPRETATIONS Statements of General Policy and Interpretations Under the Natural Gas Act § 2.78 Utilization and conservation of natural resources—natural gas. (a)(1) The national interests in the development and...

  11. 18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources... INTERPRETATIONS Statements of General Policy and Interpretations Under the Natural Gas Act § 2.78 Utilization and conservation of natural resources—natural gas. (a)(1) The national interests in the development and...

  12. A study of natural gas origins in China

    SciTech Connect

    Xu Yongchang; Shen Ping

    1996-10-01

    The Chinese government has supported the development of the natural gas industry since the sixth {open_quotes}Five-Year Plan{close_quotes} (1981-1985) by studying natural gas and its origin, one of the key research projects in technology and science. This ongoing research has shown that natural gases in China are composed of three types: coal-type gas related to coal measures; high-temperature pyrolytic gas related to Paleozoic carbonates; and oil-type gas, which occurs in oil fields related to Cenozoic and Mesozoic lacustrine sediments. Each of these three types constitutes about one-third of the total observed reserves of natural gas in China. Since 1990, we have proposed a new genetic theory of natural gas multisource overlap and multistage continuity; a new biogenic-thermocatalytic transitional zone gas; and comprehensively identifying coal-type gas, which plays an important role in exploring for natural gas.

  13. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-12-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The SWC represents a partnership between U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the NETL. This document serves as the eleventh quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Organizing and hosting the Fall SWC Technology Transfer Workshop for the northeastern U.S., in Pittsburgh, PA, on November 9, 2006, and organizing and identifying projects to exhibit during the SWC/Gas Storage Technology Consortium (GSTC) joint reception on November 8, 2006; (2) Distributing a paper copy of the Texas Tech 2004 Final Report and a revised, complete compact disc of all 2004 final reports; (3) Invoicing current and potential members for FY2007; (4) Soliciting nominations for the 2007-2008 Executive Council seats; and (5) Communications and outreach.

  14. Flex fuel polygeneration: Integrating renewable natural gas

    NASA Astrophysics Data System (ADS)

    Kieffer, Matthew

    Flex Fuel Polygeneration (FFPG) is the use of multiple primary energy sources for the production of multiple energy carriers to achieve increased market opportunities. FFPG allows for adjustments in energy supply to meet market fluctuations and increase resiliency to contingencies such as weather disruptions, technological changes, and variations in supply of energy resources. In this study a FFPG plant is examined that uses a combination of the primary energy sources natural gas and renewable natural gas (RNG) derived from MSW and livestock manure and converts them into energy carriers of electricity and fuels through anaerobic digestion (AD), Fischer-Tropsch synthesis (FTS), and gas turbine cycles. Previous techno-economic analyses of conventional energy production plants are combined to obtain equipment and operating costs, and then the 20-year NPVs of the FFPG plant designs are evaluated by static and stochastic simulations. The effects of changing operating parameters are investigated, as well as the number of anaerobic digestion plants on the 20-year NPV of the FTS and FFPG systems.

  15. Gas exchange measurements in natural systems

    SciTech Connect

    Broecker, W.S.; Peng, T.H.

    1983-01-01

    Direct knowledge of the rates of gas exchange in lakes and the ocean is based almost entirely on measurements of the isotopes /sup 14/C, /sup 222/Rn and /sup 3/He. The distribution of natural radiocarbon has yielded the average rate of CO/sub 2/ exchange for the ocean and for several closed basin lakes. That of bomb produced radiocarbon has been used in the same systems. The /sup 222/Rn to /sup 226/Ra ratio in open ocean surface water has been used to give local short term gas exchange rates. The radon method generally cannot be used in lakes, rivers, estuaries or shelf areas because of the input of radon from sediments. A few attempts have been made to use the excess /sup 3/He produced by decay of bomb produced tritium in lakes to give gas transfer rates. The uncertainty in the molecular diffusivity of helium and in the diffusivity dependence of the rate of gas transfer holds back the application of this method. A few attempts have been made to enrich the surface waters of small lakes with /sup 226/Ra and /sup 3/H in order to allow the use of the /sup 222/Rn and /sup 3/He methods. While these studies give broadly concordant results, many questions remain unanswered. The wind velocity dependence of gas exchange rate has yet to be established in field studies. The dependence of gas exchange rate on molecular diffusivity also remains in limbo. Finally, the degree of enhancement of CO/sub 2/ exchange through chemical reactions has been only partially explored. 49 references, 2 figures, 2 tables.

  16. Global Liquefied Natural Gas Market: Status and Outlook, The

    EIA Publications

    2003-01-01

    The Global Liquefied Natural Gas Market: Status & Outlook was undertaken to characterize the global liquefied natural gas (LNG) market and to examine recent trends and future prospects in the LNG market.

  17. LED-based NDIR natural gas analyzer

    NASA Astrophysics Data System (ADS)

    Fanchenko, Sergey; Baranov, Alexander; Savkin, Alexey; Sleptsov, Vladimir

    2016-03-01

    A new generation of the light-emitting diodes (LEDs) and photodiodes (PDs) was used recently to develop an open path non-dispersive infrared (NDIR) methane analyzer. The first open path detector prototype was constructed using LEDs for measurement and reference channels, accordingly, and first measurements for methane gas have been performed using optical paths of the order of several meters [3]. The natural gas consists of several first alkanes, mainly methane, and it is important to have a possibility of measuring all of them. In the present work we report the results of NDIR measurements for propane-butane mixture and new measurements of methane using LEDs for measurement and reference channels at 2300 and 1700 nm wavelengths, accordingly. The necessity of the double beam scheme is demonstrated and obtained results for methane and propane-butane mixture are compared.

  18. CO Methanation for Synthetic Natural Gas Production.

    PubMed

    Kambolis, Anastasios; Schildhauer, Tilman J; Kröcher, Oliver

    2015-01-01

    Energy from woody biomass could supplement renewable energy production towards the replacement of fossil fuels. A multi-stage process involving gasification of wood and then catalytic transformation of the producer gas to synthetic natural gas (SNG) represents progress in this direction. SNG can be transported and distributed through the existing pipeline grid, which is advantageous from an economical point of view. Therefore, CO methanation is attracting a great deal of attention and much research effort is focusing on the understanding of the process steps and its further development. This short review summarizes recent efforts at Paul Scherrer Institute on the understanding of the reaction mechanism, the catalyst deactivation, and the development of catalytic materials with benign properties for CO methanation. PMID:26598405

  19. Environmental data energy technology characterizations: natural gas

    SciTech Connect

    Not Available

    1980-04-01

    Environmental Data Energy Technology Characterizations are publications which are intended to provide policy analysts and technical analysts with basic environmental data associated with key energy technologies. This publication provides backup documentation on natural gas. The transformation of the energy in gas into a more useful form is described in this document in terms of major activity areas in the gas cycle; that is, in terms of activities which produce either an energy product or a fuel leading to the production of an energy product in a different form. The activities discussed in this document are exploration, extraction, purification, power-plants, storage and transportation of natural gas. These activities represent both well-documented and non-documented activity areas. The former activities are characterized in terms of actual operating data with allowance for future modification where appropriate. Emissions are assumed to conform to environmental standards. The other activity areas examined are those like exploration and extraction, where reliance on engineering studies provided the data. The organization of the chapters in this volume is designed to support the tabular presentation in the summary. Each chapter begins with a brief description of the activity under consideration. The standard characteristics, size, availability, mode of functioning, and place in the fuel cycle are presented. Next, major legislative and/or technological factors influencing the commercial operation of the activity are offered. Discussions of resources consumed, residuals produced, and economics follow. To aid in comparing and linking the different activity areas, data for each area are normalized to 10/sup 12/ Btu of energy output from the activity.

  20. Expansion of the U.S. Natural Gas Pipeline Network

    EIA Publications

    2009-01-01

    Additions in 2008 and Projects through 2011. This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives.

  1. 18 CFR 157.210 - Mainline natural gas facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Mainline natural gas... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC... GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7 of the Natural...

  2. 78 FR 51716 - Northern Natural Gas Company; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... Energy Regulatory Commission Northern Natural Gas Company; Notice of Application Take notice that on August 1, 2013, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124, filed an application pursuant to section 7(c) of the Natural Gas Act and part 157 of the...

  3. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG)...

  4. 78 FR 8501 - Northern Natural Gas Company; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... Energy Regulatory Commission Northern Natural Gas Company; Notice of Application Take notice that on January 18, 2013, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124, filed in Docket No. CP13-53-000, an application pursuant to section 7(c) of the Natural Gas Act...

  5. 75 FR 2130 - Southern Natural Gas Company; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... Energy Regulatory Commission Southern Natural Gas Company; Notice of Application January 6, 2010. Take notice that on December 29, 2009, Southern Natural Gas Company (Southern), 569 Brookwood Village, Suite... section 7(b) of the Natural Gas Act (NGA) and Part 157 of the Commission's regulations, for an...

  6. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG)...

  7. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG)...

  8. 26 CFR 48.4041-21 - Compressed natural gas (CNG).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Compressed natural gas (CNG). 48.4041-21 Section... natural gas (CNG). (a) Delivery of CNG into the fuel supply tank of a motor vehicle or motorboat—(1) Imposition of tax. Tax is imposed on the delivery of compressed natural gas (CNG) into the fuel supply...

  9. 75 FR 48321 - Corning Natural Gas Corporation; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... Energy Regulatory Commission Corning Natural Gas Corporation; Notice of Application August 4, 2010. Take notice that on July 26, 2010, Corning Natural Gas Corporation (Corning), 330 W. William Street, Corning... Natural Gas Act (NGA) requesting the determination of a service area with which Corning may,...

  10. 18 CFR 157.210 - Mainline natural gas facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Mainline natural gas... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC... GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7 of the Natural...

  11. 26 CFR 48.4041-21 - Compressed natural gas (CNG).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Compressed natural gas (CNG). 48.4041-21... natural gas (CNG). (a) Delivery of CNG into the fuel supply tank of a motor vehicle or motorboat—(1) Imposition of tax. Tax is imposed on the delivery of compressed natural gas (CNG) into the fuel supply...

  12. 77 FR 35958 - Northern Natural Gas Company; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Energy Regulatory Commission Northern Natural Gas Company; Notice of Application Take notice that on May 30, 2012, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124... regulations and section 7(b) of the Natural Gas Act, to abandon by sale to DKM Enterprises, LLC (DKM)...

  13. 18 CFR 157.210 - Mainline natural gas facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Mainline natural gas... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC... GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7 of the Natural...

  14. 76 FR 18213 - Corning Natural Gas Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Energy Regulatory Commission Corning Natural Gas Corporation; Notice of Filing Take notice that on March 23, 2011, Corning Natural Gas Corporation submitted a revised baseline filing of their Statement of Operating Conditions for services provided under section 311 of the Natural Gas Policy Act of 1978...

  15. 76 FR 12721 - Northern Natural Gas Company; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... Energy Regulatory Commission Northern Natural Gas Company; Notice of Application Take notice that on February 18, 2011, Northern Natural Gas Company (Northern), 1111 South 103 Street, Omaha, Nebraska 68124-1000, filed in Docket No. CP11-98-000, an application pursuant to section 7(b) of the Natural Gas...

  16. 18 CFR 157.210 - Mainline natural gas facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Mainline natural gas... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC... GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7 of the Natural...

  17. 75 FR 35779 - Northern Natural Gas Company; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... Energy Regulatory Commission Northern Natural Gas Company; Notice of Application June 16, 2010. Take notice that on June 2, 2010, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha... Natural Gas Act, for a certificate of public convenience and necessity authorizing the increase...

  18. 26 CFR 48.4041-21 - Compressed natural gas (CNG).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Compressed natural gas (CNG). 48.4041-21... natural gas (CNG). (a) Delivery of CNG into the fuel supply tank of a motor vehicle or motorboat—(1) Imposition of tax. Tax is imposed on the delivery of compressed natural gas (CNG) into the fuel supply...

  19. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG)...

  20. 26 CFR 48.4041-21 - Compressed natural gas (CNG).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Compressed natural gas (CNG). 48.4041-21... natural gas (CNG). (a) Delivery of CNG into the fuel supply tank of a motor vehicle or motorboat—(1) Imposition of tax. Tax is imposed on the delivery of compressed natural gas (CNG) into the fuel supply...

  1. 75 FR 67352 - Liberty Natural Gas, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... Energy Regulatory Commission Liberty Natural Gas, LLC; Notice of Application October 26, 2010. On October 14, 2010, Liberty Natural Gas, LLC (Liberty) filed with the Federal Energy Regulatory Commission (Commission) an application under section 7 of the Natural Gas Act and section 157 of the...

  2. 18 CFR 157.210 - Mainline natural gas facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Mainline natural gas... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC... GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7 of the Natural...

  3. 49 CFR 393.68 - Compressed natural gas fuel containers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Compressed natural gas fuel containers. 393.68... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Fuel Systems § 393.68 Compressed natural gas fuel containers. (a) Applicability. The rules in this section apply to compressed natural gas (CNG)...

  4. Natural Gas Market Centers and Hubs: A 2003 Update

    EIA Publications

    2003-01-01

    This special report looks at the current status of market centers/hubs in today's natural gas marketplace, examining their role and their importance to natural gas shippers, marketers, pipelines, and others involved in the transportation of natural gas over the North American pipeline network.

  5. Liquefied Natural Gas (LNG) dispenser verification device

    NASA Astrophysics Data System (ADS)

    Xiong, Maotao; Yang, Jie-bin; Zhao, Pu-jun; Yu, Bo; Deng, Wan-quan

    2013-01-01

    The composition of working principle and calibration status of LNG (Liquefied Natural Gas) dispenser in China are introduced. According to the defect of weighing method in the calibration of LNG dispenser, LNG dispenser verification device has been researched. The verification device bases on the master meter method to verify LNG dispenser in the field. The experimental results of the device indicate it has steady performance, high accuracy level and flexible construction, and it reaches the international advanced level. Then LNG dispenser verification device will promote the development of LNG dispenser industry in China and to improve the technical level of LNG dispenser manufacture.

  6. Coal or natural gas for ecofuel production

    SciTech Connect

    Geertsema, A.

    1998-04-01

    Given the extensive available resources of coal and, to a lesser extent, natural gas, the challenge to access these resources in a way that balances growth and conservation in a responsible way, is a tough technological task. On the one hand there is the inadverterable and undesirable liberation of CO{sub 2} when carbon is used and on the other hand it is reasonable to assume that hydrocarbon liquids will, for the foreseeable future, remain the backbone of the supply of energy to automotive vehicles. It is therefore necessary that options for improved environmental performance of such fuels are developed and considered for application where the economics would permit it.

  7. Risk management of liquefied natural gas installations

    NASA Technical Reports Server (NTRS)

    Fedor, O. H.; Parsons, W. N.; Coutinho, J. De C.

    1976-01-01

    In connection with the construction of four major liquefied natural gas (LNG) facilities in New York City, the New York City Fire Commissioner has asked NASA for assistance. It was decided that the Kennedy Space Center should develop a risk management system (RMS) for the use of the New York Fire Department (NYFD). The RMS provides for a published set of safety regulations by the NYFD. A description of the RMS is presented as an example of an application of aerospace technology to a civilian sector, namely LNG facilities.

  8. Lightweight Tanks for Storing Liquefied Natural Gas

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2008-01-01

    Single-walled, jacketed aluminum tanks have been conceived for storing liquefied natural gas (LNG) in LNG-fueled motor vehicles. Heretofore, doublewall steel tanks with vacuum between the inner and outer walls have been used for storing LNG. In comparison with the vacuum- insulated steel tanks, the jacketed aluminum tanks weigh less and can be manufactured at lower cost. Costs of using the jacketed aluminum tanks are further reduced in that there is no need for the vacuum pumps heretofore needed to maintain vacuum in the vacuum-insulated tanks.

  9. Natural gas and oil technology partnership support

    SciTech Connect

    Schmidt, T.W.

    1996-06-01

    The Natural Gas and Oil Technology Partnership expedites development and transfer of advanced technologies through technical interactions and collaborations between the national laboratories and the petroleum industry - majors, independents, service companies, and universities. The Partnership combines the expertise, equipment, facilities, and technologies of the Department of Energy`s national laboratories with those of the US petroleum industry. The laboratories utilize unique capabilities developed through energy and defense R&D including electronics, instrumentation, materials, computer hardware and software, engineering, systems analysis, physics, and expert systems. Industry contributes specialized knowledge and resources and prioritizes Partnership activities.

  10. Fuel tank for liquefied natural gas

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2012-01-01

    A storage tank is provided for storing liquefied natural gas on, for example, a motor vehicle such as a bus or truck. The storage tank includes a metal liner vessel encapsulated by a resin-fiber composite layer. A foam insulating layer, including an outer protective layer of epoxy or of a truck liner material, covers the composite layer. A non-conducting protective coating may be painted on the vessel between the composite layer and the vessel so as to inhibit galvanic corrosion.

  11. Regasification of liquefied natural gas and hydrogen

    NASA Astrophysics Data System (ADS)

    Tonkonog, V. G.; Tukmakov, A. L.; Muchitova, K. M.; Agalakov, U. A.; Serazetdinov, F. Sh; Gromov, B. C.

    2016-06-01

    Liquefied natural gas and hydrogen gasification process is suggested, in which vapor phase is generated by the decrease of internal energy of the liquid. Methane and hydrogen gasification processes have been numerically modeled. Flow rates of the methane and hydrogen through choke channel were defined. A satisfactory match between the modeled and experimental data for liquid nitrogen has been acquired. Technical suitability of the suggested process is proved. Based on the initial parameters of the cryogenic fluid, the amount of vapor phase is 5-20% of the flow rate.

  12. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    SciTech Connect

    Larsen, R.; Rimkus, W. ); Davies, J. ); Zammit, M. ); Patterson, P. )

    1992-01-01

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  13. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    SciTech Connect

    Larsen, R.; Rimkus, W.; Davies, J.; Zammit, M.; Patterson, P.

    1992-02-01

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  14. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    NASA Astrophysics Data System (ADS)

    Larsen, R.; Rimkus, W.; Davies, J.; Zammit, M.; Patterson, P.

    1992-02-01

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6-11, 1991, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control was included in the performance testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  15. Environmental effects of submarine seeping natural gas

    NASA Astrophysics Data System (ADS)

    Dando, P. R.; Hovland, M.

    1992-10-01

    It is suspected that most shallow reservoirs of natural gas vent to the surface to some degree. This seeping may be through diffusion of dissolved gas or by a flow of gas bubbles which entrain interstitial water during the rise through the sediments to the surface. Methane bubbles dissolved other gases, notably hydrogen sulphide and carbon dioxide, during their ascent. Under suitable temperature-pressure conditions gas hydrates may be formed close to or at the seabed Black suphide-rich sediments and mats of sulphur oxidizing bacteria are frequently observed close to the sediments surface at seep sites, including a sharp oxic/anoxic boundary. Animal species associated with these gas seeps include both species which obtain nutrition from symbiotic methane-oxidizing bacteria and species with symbolic sulphur-oxidizing bacteria. It is suspected that at some microseepage an enhanced biomass of meiofauna and macrofauna is supported by a food chain based on free-living and symbiotic sulphur-oxidizing and methane-oxidizing bacteria. The most common seep-related features of sea floor topography are local depressions including pockmark craters. Winnowing of the sediment during their creation leads to an accumulation of larger detritis in the depressions. Where the deprssions overlies salt diapirs they may be filled with hypersaline solutions. In some areas dome-shaped features are associated with seepage and these may be colonized by coral reefs. Other reefs, "hard-grounds", columnar and disc-shaped protrusions, all formed of carbonate-cemented sediments, are common on the sea floor in seep areas. Much of the carbonate appears to be derived from carbon dioxide formed as a result of methane oxidation. The resulting hard-bottoms on the sea floor are often colonized by species not found on the neighboring soft-bottoms. As a result seep areas may be characterized by the presence of a rich epifauna.

  16. Natural gas gathering and transportation issues, 1998 Texas perspective

    SciTech Connect

    Kitchens, R.L.

    1998-12-31

    In 1996 and 1997, the natural gas industry was intensely focused on the debate surrounding proposed new rules governing the gathering and transportation of natural gas in Texas by the Railroad Commission. This paper reviews that debate and several other regulatory issues that could impact the natural gas and gas processing industries over the next few years. In addition to the review of the Code of Conduct, this paper focuses on results of the informal complaint process, implementation of new legislation requiring the approval of construction of sour gas pipelines and several other natural gas related issues.

  17. Gasoline from natural gas by sulfur processing

    SciTech Connect

    Erekson, E.J.; Miao, F.Q.

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogen production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.

  18. Competitive position of natural gas: Industrial baking

    SciTech Connect

    Minsker, B.S.; Salama, S.Y.

    1988-01-01

    Industrial baking is one of the largest natural gas consumers in the food industry. In 1985, bread, rolls, cookies, and crackers accounted for over 82 percent of all baked goods production. Bread accounting for 46 percent of all production. The baking industry consumed approximately 16 trillion Btu in 1985. About 93 percent was natural gas, while distillate fuel oil accounted for seven percent, and electricity accounted for much less than one percent. The three main types of baking ovens are the single lap, tunnel, and Lanham ovens. In the single lap oven, trays carry the product back and forth through the baking chamber once. The single lap oven is the most common type of oven and is popular due to its long horizontal runs, extensive steam zone, and simple construction. The tunnel oven is slightly more efficient and more expensive that the single lap oven. IN the tunnel oven, the hearth is a motorized conveyor which passes in a straight line through a series of heating zones, with loading and unloading occurring at opposite ends of the oven. The advantages of the tunnel oven include flexibility with respect to pan size and simple, accurate top and bottom heat control. The tunnel oven is used exclusively in the cookie and cracker baking, with the product being deposited directly on the oven band. The most recently developed type of oven is the Lanham oven. The Lanham oven is the most efficient type of oven, with a per pound energy consumption approaching the practical minimum for baking bread. Between one--half and two--thirds of all new industrial baking ovens are Lanham ovens. In the Lanham oven, the product enters the oven near the top of the chamber, spirals down through a series of heating zones, and exits near the bottom of the oven. The oven is gas--fired directly by ribbon burners. 31 refs.

  19. Mathematical simulation of the process of condensing natural gas

    NASA Astrophysics Data System (ADS)

    Tastandieva, G. M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of "cooling down" liquefied natural gas in terms of its partial evaporation with low cost energy.

  20. Dioxin and fly ash free incineration by ash pelletization and reburning.

    PubMed

    Kobylecki, R P; Ohira, K; Ito, I; Fujiwara, N; Horio, M

    2001-11-01

    Dioxins (DXNs) in municipal waste incinerator fly ash were effectively reduced by pelletizing the mixture of ash, cement, and sodium phosphate and reburning the pellets in a laboratory scale bubbling fluidized bed (BFB) furnace. Three types of pellets--A, B and C, of various sizes and compositions were used in the experiments. The efficiency of DXN reduction in the pellet matrix was proportional to the incineration time, temperature, and degree of pellet incineration. At 700 degrees C and incineration time sufficient for a complete burnout, the efficiency of DXN reduction in the pellets of type A and C was found to be 99.9% and 99.7%, respectively. Correspondingly, the DXN concentration in the pellets decreased from 862 ng TEQ/kg to 0.9 ng TEQ/kg for pellets A and 2.2 ng TEQ/kg for pellets C. The residual concentration of coplanar polychlorinated biphenyls (coplanar PCBs) was below 0.2 ng TEQ/kg and 0.4 ng TEQ/kg, respectively. Assuming a tortuosity factor of tau = 3 and the reaction rate constants of 0.013 m/s (at 700 degrees C) and 0.025 m/s (at 800 degrees C), the experimental pellet incineration times were reasonably predicted by using the shrinking core model. Possible DXN evaporation from the pellets was also studied. The amount of DXNs in the flue gas captured by an impinger trap was less than 3% when the reactor was operated at 700 and 800 degrees C. The described method of fly ash pelletization and reburning seems to be a relatively easy and inexpensive way to reduce both the emission of DXNs and the amount of fly ash. PMID:11718348

  1. Integrating climate forecasts and natural gas supply information into a natural gas purchasing decision

    NASA Astrophysics Data System (ADS)

    Changnon, David; Ritsche, Michael; Elyea, Karen; Shelton, Steve; Schramm, Kevin

    2000-09-01

    This paper illustrates a key lesson related to most uses of long-range climate forecast information, namely that effective weather-related decision-making requires understanding and integration of weather information with other, often complex factors. Northern Illinois University's heating plant manager and staff meteorologist, along with a group of meteorology students, worked together to assess different types of available information that could be used in an autumn natural gas purchasing decision. Weather information assessed included the impact of ENSO events on winters in northern Illinois and the Climate Prediction Center's (CPC) long-range climate outlooks. Non-weather factors, such as the cost and available supplies of natural gas prior to the heating season, contribute to the complexity of the natural gas purchase decision. A decision tree was developed and it incorporated three parts: (a) natural gas supply levels, (b) the CPC long-lead climate outlooks for the region, and (c) an ENSO model developed for DeKalb. The results were used to decide in autumn whether to lock in a price or ride the market each winter. The decision tree was tested for the period 1995-99, and returned a cost-effective decision in three of the four winters.

  2. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1998-11-30

    The work plan for October 1, 1997 to September 30, 1998 consisted of investigation of a number of topical areas. These topical areas were reported in four quarterly status reports, which were submitted to DOE earlier. These topical areas are reviewed in this volume. The topical areas covered during the year were: (1) Development of preliminary tests of a production method for determining areas of natural fracturing. Advanced Resources has demonstrated that such a relationship exists in the southern Piceance basin tight gas play. Natural fracture clusters are genetically related to stress concentrations (also called stress perturbations) associated with local deformation such a faulting. The mechanical explanation of this phenomenon is that deformation generally initiates at regions where the local stress field is elevated beyond the regional. (2) Regional structural and geologic analysis of the Greater Green River Basin (GGRB). Application of techniques developed and demonstrated during earlier phases of the project for sweet-spot delineation were demonstrated in a relatively new and underexplored play: tight gas from continuous-typeUpper Cretaceous reservoirs of the Greater Green River Basin (GGRB). The effort included data acquisition/processing, base map generation, geophysical and remote sensing analysis and the integration of these data and analyses. (3) Examination of the Table Rock field area in the northern Washakie Basin of the Greater Green River Basin. This effort was performed in support of Union Pacific Resources- and DOE-planned horizontal drilling efforts. The effort comprised acquisition of necessary seismic data and depth-conversion, mapping of major fault geometry, and analysis of displacement vectors, and the development of the natural fracture prediction. (4) Greater Green River Basin Partitioning. Building on fundamental fracture characterization work and prior work performed under this contract, namely structural analysis using satellite and

  3. Development of natural gas vehicles in China

    SciTech Connect

    Zongmin, Cheng

    1996-12-31

    Past decade and current status of development of natural gas vehicles (NGVs) in China is described. By the end of 1995, 35 CNG refueling stations and 9 LPG refueling stations had been constructed in 12 regions, and 33,100 vehicles had been converted to run on CNG or LPG. China`s automobile industry, a mainstay of the national economy, is slated for accelerated development over next few years. NGVs will help to solve the problems of environment protection, GHGs mitigation, and shortage of oil supply. The Chinese government has started to promote the development of NGVs. Projects, investment demand, GHG mitigation potential, and development barriers are discussed. China needs to import advanced foreign technologies of CNGs. China`s companies expect to cooperate with foreign partners for import of CNG vehicle refueling compressors, conversions, and light cylinders, etc.

  4. Production of Substitute Natural Gas from Coal

    SciTech Connect

    Andrew Lucero

    2009-01-31

    The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon from the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.

  5. INVENTORY OF METHANE LOSSES FROM THE NATURAL GAS INDUSTRY

    EPA Science Inventory

    The paper gives the second year's results of an ongoing 4-year program undertaken jointly by the Gas Research Institute and the U.S. EPA to assess the methane (CH4) losses from the U.S. natural gas industry. he program's objective is to assess the acceptability of natural gas as ...

  6. Greater focus needed on methane leakage from natural gas infrastructure.

    PubMed

    Alvarez, Ramón A; Pacala, Stephen W; Winebrake, James J; Chameides, William L; Hamburg, Steven P

    2012-04-24

    Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH(4) leakage were capped at a level 45-70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH(4) losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. PMID:22493226

  7. Greater focus needed on methane leakage from natural gas infrastructure

    PubMed Central

    Alvarez, Ramón A.; Pacala, Stephen W.; Winebrake, James J.; Chameides, William L.; Hamburg, Steven P.

    2012-01-01

    Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. PMID:22493226

  8. IMPROVED NATURAL GAS STORAGE WELL REMEDIATION

    SciTech Connect

    James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

    2001-12-01

    This report summarizes the research conducted during Budget Period One on the project ''Improved Natural Gas Storage Well Remediation''. The project team consisted of Furness-Newburge, Inc., the technology developer; TechSavants, Inc., the technology validator; and Nicor Technologies, Inc., the technology user. The overall objectives for the project were: (1) To develop, fabricate and test prototype laboratory devices using sonication and underwater plasma to remove scale from natural gas storage well piping and perforations; (2) To modify the laboratory devices into units capable of being used downhole; (3) To test the capability of the downhole units to remove scale in an observation well at a natural gas storage field; (4) To modify (if necessary) and field harden the units and then test the units in two pressurized injection/withdrawal gas storage wells; and (5) To prepare the project's final report. This report covers activities addressing objectives 1-3. Prototype laboratory units were developed, fabricated, and tested. Laboratory testing of the sonication technology indicated that low-frequency sonication was more effective than high-frequency (ultrasonication) at removing scale and rust from pipe sections and tubing. Use of a finned horn instead of a smooth horn improves energy dispersal and increases the efficiency of removal. The chemical data confirmed that rust and scale were removed from the pipe. The sonication technology showed significant potential and technical maturity to warrant a field test. The underwater plasma technology showed a potential for more effective scale and rust removal than the sonication technology. Chemical data from these tests also confirmed the removal of rust and scale from pipe sections and tubing. Focusing of the underwater plasma's energy field through the design and fabrication of a parabolic shield will increase the technology's efficiency. Power delivered to the underwater plasma unit by a sparkplug repeatedly was

  9. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  10. Greenhouse gas impacts of natural gas: Influence of deployment choice, methane leak rate, and methane GWP

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.

    2015-12-01

    Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.

  11. 10 CFR 221.11 - Natural gas and ethane.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural...

  12. 10 CFR 221.11 - Natural gas and ethane.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural...

  13. 10 CFR 221.11 - Natural gas and ethane.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural...

  14. 10 CFR 221.11 - Natural gas and ethane.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural...

  15. 10 CFR 221.11 - Natural gas and ethane.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural...

  16. Natural gas recovery, storage, and utilization SBIR program

    SciTech Connect

    Shoemaker, H.D.

    1993-12-31

    A Fossil Energy natural-gas topic has been a part of the DOE Small Business Innovation Research (SBIR) program since 1988. To date, 50 Phase SBIR natural-gas applications have been funded. Of these 50, 24 were successful in obtaining Phase II SBIR funding. The current Phase II natural-gas research projects awarded under the SBIR program and managed by METC are presented by award year. The presented information on these 2-year projects includes project title, awardee, and a project summary. The 1992 Phase II projects are: landfill gas recovery for vehicular natural gas and food grade carbon dioxide; brine disposal process for coalbed gas production; spontaneous natural as oxidative dimerization across mixed conducting ceramic membranes; low-cost offshore drilling system for natural gas hydrates; motorless directional drill for oil and gas wells; and development of a multiple fracture creation process for stimulation of horizontally drilled wells.The 1993 Phase II projects include: process for sweetening sour gas by direct thermolysis of hydrogen sulfide; remote leak survey capability for natural gas transport storage and distribution systems; reinterpretation of existing wellbore log data using neural-based patter recognition processes; and advanced liquid membrane system for natural gas purification.

  17. Environmental consequences of increased natural-gas usage

    SciTech Connect

    Cole, F. )

    1993-01-01

    Energy use is the primary cause of many environmental problems in the United States and around the world. Fossil fuels, including coal, oil, and natural gas, supply roughly 90 percent of our energy needs in the United States, and they are directly responsible for urban and industrial air pollution and acid rain. Combustion emissions from fossil fuels also contribute to the Earth's greenhouse effect, and they may play an important role in ozone depletion in the stratosphere, and oxidant depletion in the troposphere. Natural gas, which is mostly methane, is the least polluting of the fossil fuels. Upon combustion, natural gas produces lower CO[sub 2], CO, NO[sub x], SO[sub 2], and particulate emissions than either oil or coal. This means that substitution of natural gas for oil and coal can help mitigate air pollution and the human contribution to the greenhouse effect. However, methane is itself a potent greenhouse gas, and increased production and consumption of natural gas must be conducted in such a way that gas leakages are minimized. Natural gas compares well to the other fossil fuels in terms of water quality, preservation of natural ecosystems, and safety. These combined advantages may give natural gas a more prominent role in the US energy mix. Like other fossil fuels though, natural gas is nonrenewable and, therefore, not a permanent solution to our energy needs. 40 refs., 15 figs., 1 tab.

  18. Transition metal catalysis in the generation of natural gas

    SciTech Connect

    Mango, F.D.

    1995-12-31

    The view that natural gas is thermolytic, coming from decomposing organic debris, has remained almost unchallenged for nearly half a century. Disturbing contradictions exist, however: Oil is found at great depth, at temperatures where only gas should exist and oil and gas deposits show no evidence of the thermolytic debris indicative of oil decomposing to gas. Moreover, laboratory attempts to duplicate the composition of natural gas, which is typically between 60 and 95+ wt% methane in C{sub 1}-C{sub 4}, have produced insufficient amounts of methane (10 to 60%). It has been suggested that natural gas may be generated catalytically, promoted by the transition metals in carbonaceous sedimentary rocks. This talk will discuss experimental results that support this hypothesis. Various transition metals, as pure compounds and in source rocks, will be shown to generate a catalytic gas that is identical to natural gas. Kinetic results suggest robust catalytic activity under moderate catagenetic conditions.

  19. Africa's natural gas: potentialities and letdowns

    SciTech Connect

    Baladian, K.

    1983-11-01

    Although Africa has experienced 10 times less hydrocarbon exploration than Western Europe, its proved gas reserves already amount to 220-223 trillion CF or 7% of world reserves, while Europe holds 6% or 167 TCF. Yet Africa marketed only 1.3 TCF in 1982 against Europe's 6.5 TCF. Because of the lack of domestic demand for gas, Africa flares up to 21% of its gas output. Algeria is the continent's primary gas consumer, with Egypt, Libya, and Nigeria trying to expand local gas markets. The vast majority of marketed African gas goes to Europe, either as gas sent through the Trans-Med pipeline or as LNG via tanker.

  20. 75 FR 42432 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... Transmission Company, LLC, Transcontinental Gas Pipe Line Company, LLC, and Enterprise Field Services, LLC..., LLC, and Enterprise Field Services, LLC, collectively referred to as the Applicants, in Refugio County... scoping process the Commission will use to gather input from the public and interested agencies on...

  1. Natural Gas Industry Restructuring and EIA Data Collection

    EIA Publications

    1996-01-01

    The Energy Information Administration's (EIA) Reserves and Natural Gas Division has undertaken an in-depth reevaluation of its programs in an effort to improve the focus and quality of the natural gas data that it gathers and reports. This article is to inform natural gas data users of proposed changes and of the opportunity to provide comments and input on the direction that EIA is taking to improve its data.

  2. Using Natural Gas for Vehicles: Comparing Three Technologies

    SciTech Connect

    2015-12-01

    Natural gas could be used as a transportation fuel, especially with the recent expansion of U.S. resource and production. This could mean burning natural gas in an internal combustion engine like most of the vehicles on the road today. Or, with the advanced vehicles now becoming available, other pathways are possible to use natural gas for personal vehicles. This fact sheet summarizes a comparison of efficiency and environmental metrics for three possible options.

  3. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industry-driven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  4. Computer program for natural gas flow through nozzles

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1972-01-01

    Subroutines, FORTRAN 4 type, were developed for calculating isentropic natural gas mass flow rate through nozzle. Thermodynamic functions covering compressibility, entropy, enthalpy, and specific heat are included.

  5. Environmental policy and regulatory constraints to natural gas production.

    SciTech Connect

    Elcock, D.

    2004-12-17

    For the foreseeable future, most of the demand for natural gas in the United States will be met with domestic resources. Impediments, or constraints, to developing, producing, and delivering these resources can lead to price increases or supply disruptions. Previous analyses have identified lack of access to natural gas resources on federal lands as such an impediment. However, various other environmental constraints, including laws, regulations, and implementation procedures, can limit natural gas development and production on both federal and private lands. This report identifies and describes more than 30 environmental policy and regulatory impediments to domestic natural gas production. For each constraint, the source and type of impact are presented, and when the data exist, the amount of gas affected is also presented. This information can help decision makers develop and support policies that eliminate or reduce the impacts of such constraints, help set priorities for regulatory reviews, and target research and development efforts to help the nation meet its natural gas demands.

  6. Stability of natural gas in the deep subsurface

    SciTech Connect

    Barker, C.

    1996-07-01

    Natural gas is becoming increasingly important as a fuel because of its widespread occurrence and because it has a less significant environmental impact than oil. Many of the known gas accumulations were discovered by accident during exploration for oil, but with increasing demand for gas, successful exploration will require a clearer understanding of the factors that control gas distribution and gas composition. Natural gas is generated by three main processes. In oxygen-deficient, sulfate-free, shallow (few thousand feet) environments bacteria generate biogenic gas that is essentially pure methane with no higher hydrocarbons ({open_quotes}dry gas{close_quotes}). Gas is also formed from organic matter ({open_quotes}kerogen{close_quotes}), either as the initial product from the thermal breakdown of Type III, woody kerogens, or as the final hydrocarbon product from all kerogen types. In addition, gas can be formed by the thermal cracking of crude oil in the deep subsurface. The generation of gas from kerogen requires higher temperatures than the generation of oil. Also, the cracking of oil to gas requires high temperatures, so that there is a general trend from oil to gas with increasing depth. This produces a well-defined {open_quotes}floor for oil{close_quotes}, below which crude oil is not thermally stable. The possibility of a {open_quotes}floor for gas{close_quotes} is less well documented and understanding the limits on natural gas occurrence was one of the main objectives of this research.

  7. Methane hydrates and the future of natural gas

    USGS Publications Warehouse

    Ruppel, Carolyn

    2011-01-01

    For decades, gas hydrates have been discussed as a potential resource, particularly for countries with limited access to conventional hydrocarbons or a strategic interest in establishing alternative, unconventional gas reserves. Methane has never been produced from gas hydrates at a commercial scale and, barring major changes in the economics of natural gas supply and demand, commercial production at a large scale is considered unlikely to commence within the next 15 years. Given the overall uncertainty still associated with gas hydrates as a potential resource, they have not been included in the EPPA model in MITEI’s Future of Natural Gas report. Still, gas hydrates remain a potentially large methane resource and must necessarily be included in any consideration of the natural gas supply beyond two decades from now.

  8. BPACK -- A computer model package for boiler reburning/co-firing performance evaluations. User`s manual, Volume 1

    SciTech Connect

    Wu, K.T.; Li, B.; Payne, R.

    1992-06-01

    This manual presents and describes a package of computer models uniquely developed for boiler thermal performance and emissions evaluations by the Energy and Environmental Research Corporation. The model package permits boiler heat transfer, fuels combustion, and pollutant emissions predictions related to a number of practical boiler operations such as fuel-switching, fuels co-firing, and reburning NO{sub x} reductions. The models are adaptable to most boiler/combustor designs and can handle burner fuels in solid, liquid, gaseous, and slurried forms. The models are also capable of performing predictions for combustion applications involving gaseous-fuel reburning, and co-firing of solid/gas, liquid/gas, gas/gas, slurry/gas fuels. The model package is conveniently named as BPACK (Boiler Package) and consists of six computer codes, of which three of them are main computational codes and the other three are input codes. The three main codes are: (a) a two-dimensional furnace heat-transfer and combustion code: (b) a detailed chemical-kinetics code; and (c) a boiler convective passage code. This user`s manual presents the computer model package in two volumes. Volume 1 describes in detail a number of topics which are of general users` interest, including the physical and chemical basis of the models, a complete description of the model applicability, options, input/output, and the default inputs. Volume 2 contains a detailed record of the worked examples to assist users in applying the models, and to illustrate the versatility of the codes.

  9. Method for mapping a natural gas leak

    DOEpatents

    Reichardt, Thomas A.; Luong, Amy Khai; Kulp, Thomas J.; Devdas, Sanjay

    2009-02-03

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formatted into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimposed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  10. New roles for natural gas in the 1990s

    SciTech Connect

    Soeder, D.J. )

    1990-05-01

    A probable increase in the use of natural gas is predicted to occur over the next decade because heightened concerns by the public over air quality are likely to place severe constraints on increased use of coal and petroleum as primary fuels. Congress and the states appear to be preparing to legislate new clean air standards that will be difficult to achieve under present economic conditions using the current mix of hydrocarbon fuels. Natural gas is a favorable fuel for several reasons. Because it has a high hydrogen-to-carbon ratio, it produces the least amount of carbon dioxide per calorie of any of the hydrocarbon fuels. Combustion of gas in modern burners does not produce significant CO, NO{sub x}, SO{sub 2}, or any of the complex photochemicals responsible for smog and ozone pollution. Supplies of gas are plentiful, with a total domestic recoverable resource base of over 980 tcf estimated by the Potential Gas Agency. Additional gas, not counted in reserve estimates, is present in abandoned fields, where secondary recovery techniques may produce significant quantities. A promising area for increased natural gas usage in the next decade is electrical power generation, either by substituting gas for oil and coal as a boiler fuel or by generating electricity directly using chemical fuel cells powered by natural gas and air. Natural gas-fueled vehicles are another favored technology, due to very low emission levels and because natural gas can be run in a standard automotive engine with only minor mechanical modifications. Vehicles must carry compressed natural gas in high-pressure cylinders, but adsorptive materials are being developed to transport significant quantities at reduced pressure. Current technology can pack a 2,400-psi volume-equivalent of natural gas onto adsorptive material in the same space at only 500 psi.

  11. Advanced Liquid Natural Gas Onboard Storage System

    SciTech Connect

    Greg Harper; Charles Powars

    2003-10-31

    Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is

  12. Assessing climate benefits of natural gas and coal electricity generation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaochun; Myhrvold, Nathan; Caldeira, Ken

    2015-04-01

    A transition from a system of coal electricity generation to near-zero emission electricity generation will be central to any effort to mitigate climate change. Natural gas is increasingly seen as a 'bridge fuel' for transitions form coal to near-zero emission energy sources. However, various studies use different metrics to estimate the climate impact of natural gas utilization, and led to differing conclusions. Thus, there is a need to identify the key factors affecting the climate effects of natural gas and coal electricity production, and to present these climate effects in as clear and transparent a way as possible. Here, we identify power plant efficiency and methane leakage rate as the key factors that explain most of the variance in greenhouse gas emissions by natural gas and coal power plants. We then develop a power plant GHG emission model, apply available life-cycle parameters to calculate associated CO2 and CH4 emissions and assess climate effects. Simple underlying physical changes can be obscured by abstract evaluation metrics, thus we base our discussion on temperature changes over time. We find that, during the period of plant operation, if there is substantial natural gas leakage, natural gas plants can produce greater near-term warming than a coal plant with the same power output. If leakage rates can be made to be low and efficiency high, natural gas plants can produce some reduction in near-term warming. However, without carbon capture and storage natural gas power plants cannot achieve the deep reductions that would be required to avoid substantial contribution to additional global warming. Achieving climate benefits from the use of natural gas depends on building high-efficiency natural gas plants, controlling methane leakage, and on developing a policy environment that assures a transition to future lower-emission technologies. For more information please see http://iopscience.iop.org/1748-9326/9/11/114022/article .

  13. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  14. Research and Development Concerning Coalbed Natural Gas

    SciTech Connect

    William Ruckelshaus

    2008-09-30

    The Powder River Basin in northeastern Wyoming is one of the most active areas of coalbed natural gas (CBNG) development in the western United States. This resource provides clean energy but raises environmental concerns. Primary among these is the disposal of water that is co-produced with the gas during depressurization of the coal seam. Beginning with a few producing wells in Wyoming's Powder River Basin (PRB) in 1987, CBNG well numbers in this area increased to over 13,600 in 2004, with projected growth to 20,900 producing wells in the PRB by 2010. CBNG development is continuing apace since 2004, and CBNG is now being produced or evaluated in four other Wyoming coal basins in addition to the PRB, with roughly 3500-4000 new CBNG wells permitted statewide each year since 2004. This is clearly a very valuable source of clean fuel for the nation, and for Wyoming the economic benefits are substantial. For instance, in 2003 alone the total value of Wyoming CBNG production was about $1.5 billion, with tax and royalty income of about $90 million to counties, $140 million to the state, and $27 million to the federal government. In Wyoming, cumulative CBNG water production from 1987 through December 2004 was just over 380,000 acre-feet (2.9 billion barrels), while producing almost 1.5 trillion cubic feet (tcf) of CBNG gas statewide. Annual Wyoming CBNG water production in 2003 was 74,457 acre-feet (577 million barrels). Total production of CBNG water across all Wyoming coal fields could total roughly 7 million acre-feet (55.5 billion barrels), if all of the recoverable CBNG in the projected reserves of 31.7 tcf were produced over the coming decades. Pumping water from coals to produce CBNG has been designated a beneficial water use by the Wyoming State Engineer's Office (SEO), though recently the SEO has limited this beneficial use designation by requiring a certain gas/water production ratio. In the eastern part of the PRB where CBNG water is generally of good quality

  15. 77 FR 51795 - Coordination Between Natural Gas and Electricity Markets

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... Conferences) ( http://elibrary.ferc.gov/idmws/common/opennat.asp?fileID=13023450 ); 77 FR 41184 (July 12, 2012) ( http://www.gpo.gov/fdsys/pkg/FR-2012-07-12/pdf/2012-16997.pdf ). \\2\\ Coordination between Natural Gas... Energy Regulatory Commission Coordination Between Natural Gas and Electricity Markets Supplemental...

  16. Natural gas imports and exports. Second quarter report

    SciTech Connect

    1997-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the second quarter of 1997 (April through June).

  17. Natural Gas Storage Research at Savannah River National Laboratory

    SciTech Connect

    Anton, Don; Sulic, Martin; Tamburello, David A.

    2015-05-04

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  18. Theories and Conflict: The Origins of Natural Gas. Instructional Materials.

    ERIC Educational Resources Information Center

    Anderson, Susan

    This unit explores a recent and controversial theory of the origin of much of the Earth's natural gas and oil. The materials provided will give students the opportunity to: (1) gain an understanding of science and what is involved in the acceptance or rejection of theories; (2) learn about fossil fuels, especially natural gas; (3) learn the…

  19. 75 FR 80486 - Corning Natural Gas Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Corning Natural Gas Corporation; Notice of Filing December 15, 2010. Take notice that on December 13, 2010, Corning Natural Gas Corporation resubmitted marked and clean...

  20. Natural gas vehicles stall on way to market

    SciTech Connect

    Gushee, D.E.

    1995-08-01

    The outlook for increased use of natural gas for fueling autos depends primarily on comparative fuel prices and comparative vehicle prices, according to David E. Gushee, a senior fellow in environmental policy at the Library of Congress in Washington, D.C. Compressed natural gas may be a more efficient fuel than gasoline, but costs of fuel distribution and engine design can add significantly to its total price. Currently, natural gas is less expensive than gasoline at the retail level, but this price advantage depends on government and industry subsidies. For natural gas to stay competitive in the future, these subsidies likely will have to continue, says Gushee. The pump price of natural gas will have to remain low if natural gas-powered vehicles are to succeed in the market place, because such vehicles currently cost about $2,500 to $5,000 more than a comparable gasoline-powered car. Gushee says that even with mass production, the projected price difference will be about $800 per car. The challenges facing compressed natural gas are daunting, especially considering that even in nations where natural gas receives significant tax advantages, its penetration has not exceeded 15 percent.

  1. Natural Gas Transportation - Infrastructure Issues and Operational Trends

    EIA Publications

    2001-01-01

    This report examines how well the current national natural gas pipeline network has been able to handle today's market demand for natural gas. In addition, it identifies those areas of the country where pipeline utilization is continuing to grow rapidly and where new pipeline capacity is needed or is planned over the next several years.

  2. PROJECTIONS OF REGIONAL FUEL OIL AND NATURAL GAS PRICES

    EPA Science Inventory

    The report presents delivered regional oil and natural gas price forecasts for the industrial and electric utility sectors. Delivered energy price projections by Federal region through the year 2045 are provided for distillate fuel oil, residual fuel oil, and natural gas. Methodo...

  3. Procedure for preparation for shipment of natural gas storage vessel

    NASA Technical Reports Server (NTRS)

    Amawd, A. M.

    1974-01-01

    A method for preparing a natural gas storage vessel for shipment is presented. The gas is stored at 3,000 pounds per square inch. The safety precautions to be observed are emphasized. The equipment and process for purging the tank and sampling the exit gas flow are described. A diagram of the pressure vessel and the equipment is provided.

  4. An econometric analysis of the market for natural gas futures

    SciTech Connect

    Walls, W.D.

    1995-12-31

    This research tests a form of the efficient markets hypothesis in the market for natural gas futures. Unlike other studies of future markets, the test for market efficiency is conducted at numerous locations which comprise the natural gas spot market in addition to the delivery location specified in the futures contract. Natural gas spot and futures prices are found to be nonstationary and accordingly are modeled using recently developed maximum likelihood cointegrated with nearly all of the spot market prices across the national network of gas pipelines. The hypothesis of market efficiency can be rejected in 3 of the 13 spot markets. 29 refs., 1 fig., 2 tabs.

  5. An ionic liquid process for mercury removal from natural gas.

    PubMed

    Abai, Mahpuzah; Atkins, Martin P; Hassan, Amiruddin; Holbrey, John D; Kuah, Yongcheun; Nockemann, Peter; Oliferenko, Alexander A; Plechkova, Natalia V; Rafeen, Syamzari; Rahman, Adam A; Ramli, Rafin; Shariff, Shahidah M; Seddon, Kenneth R; Srinivasan, Geetha; Zou, Yiran

    2015-05-14

    Efficient scrubbing of mercury vapour from natural gas streams has been demonstrated both in the laboratory and on an industrial scale, using chlorocuprate(II) ionic liquids impregnated on high surface area porous solid supports, resulting in the effective removal of mercury vapour from natural gas streams. This material has been commercialised for use within the petroleum gas production industry, and has currently been running continuously for three years on a natural gas plant in Malaysia. Here we report on the chemistry underlying this process, and demonstrate the transfer of this technology from gram to ton scale. PMID:25722100

  6. Coal reburning for cost-effective NO{sub x} compliance

    SciTech Connect

    Folsom, B.A.; Sommer, T.M.; Engelhardt, D.A.; Moyeda, D.K.; Rock, R.G.; O`Dea, D.T.; Hunsicker, S.; Watts, J.U.

    1997-12-31

    This paper presents the application of micronized coal reburning to a cyclone-fired boiler in order to meet RACT emissions requirements in New York State. Discussed in the paper are reburning technology, the use of a coal micronizer, and the application of the technology to an Eastman Kodak unit. The program is designed to demonstrate the economical reduction of NO{sub x} emissions without adverse impact to the boiler.

  7. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    EPA Science Inventory

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  8. Natural gas imports and exports, first quarter report 2000

    SciTech Connect

    2000-06-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the 5 most recent reporting quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico.

  9. Natural gas imports and exports, third quarter report 2000

    SciTech Connect

    2000-12-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the 5 most recent quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico.

  10. Natural gas imports and exports, fourth quarter report 1999

    SciTech Connect

    2000-03-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico.

  11. Natural gas hydrates and the mystery of the Bermuda Triangle

    SciTech Connect

    Gruy, H.J.

    1998-03-01

    Natural gas hydrates occur on the ocean floor in such great volumes that they contain twice as much carbon as all known coal, oil and conventional natural gas deposits. Releases of this gas caused by sediment slides and other natural causes have resulted in huge slugs of gas saturated water with density too low to float a ship, and enough localized atmospheric contamination to choke air aspirated aircraft engines. The unexplained disappearances of ships and aircraft along with their crews and passengers in the Bermuda Triangle may be tied to the natural venting of gas hydrates. The paper describes what gas hydrates are, their formation and release, and their possible link to the mystery of the Bermuda Triangle.

  12. North American Natural Gas Markets: Selected technical studies

    SciTech Connect

    Huntington, H.G.; Schuler, G.E.

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  13. North American Natural Gas Markets: Selected technical studies. Volume 3

    SciTech Connect

    Huntington, H.G.; Schuler, G.E.

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  14. Development of a natural Gas Systems Analysis Model (GSAM)

    SciTech Connect

    Godec, M.; Haas, M.; Pepper, W.; Rose, J.

    1993-12-31

    Recent dramatic changes in natural gas markets have significant implications for the scope and direction of DOE`s upstream as well as downstream natural gas R&D. Open access transportation changes the way gas is bought and sold. The end of the gas deliverability surplus requires increased reserve development above recent levels. Increased gas demand for power generation and other new uses changes the overall demand picture in terms of volumes, locations and seasonality. DOE`s Natural Gas Strategic Plan requires that its R&D activities be evaluated for their ability to provide adequate supplies of reasonably priced gas. Potential R&D projects are to be evaluated using a full fuel cycle, benefit-cost approach to estimate likely market impact as well as technical success. To assure R&D projects are evaluated on a comparable basis, METC has undertaken the development of a comprehensive natural gas technology evaluation framework. Existing energy systems models lack the level of detail required to estimate the impact of specific upstream natural gas technologies across the known range of geological settings and likely market conditions. Gas Systems Analysis Model (GSAM) research during FY 1993 developed and implemented this comprehensive, consistent natural gas system evaluation framework. Rather than a isolated research activity, however, GSAM represents the integration of many prior and ongoing natural gas research efforts. When complete, it will incorporate the most current resource base description, reservoir modeling, technology characterization and other geologic and engineering aspects developed through recent METC and industry gas R&D programs.

  15. System and method for producing substitute natural gas from coal

    DOEpatents

    Hobbs, Raymond

    2012-08-07

    The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

  16. Conventional natural gas resource potential, Alaska North Slope

    USGS Publications Warehouse

    Houseknecht, David W.

    2004-01-01

    An estimate of total natural gas resource potential of northern Alaska can be obtained by summing known gas reserves in oil and gas fields (35 TCF), mean estimates of undiscovered nonassociated (61 TCF) and associated (12 TCF) gas resources in NPRA, and mean estimates of undiscovered nonassociated (4 TCF) and associated (5 TCF) gas resources in the 1002 area of ANWR; this yields a total of 117 TCF. When estimates of undiscovered gas resources for non-Federal lands are released in 2005, that total will increase by a non-trivial amount. Thus, the conventional natural gas resource potential of onshore and State offshore areas totals well over 100 TCF. The inclusion of the MMS mean estimate (96 TCF) for undiscovered gas resources in the Beaufort and Chukchi planning areas of the Federal offshore extends that total above 200 TCF.

  17. Plentiful natural gas headed for big growth in Mideast

    SciTech Connect

    Hamid, S.H.; Aitani, A.M. )

    1995-01-23

    Natural gas is increasingly becoming a major contributor in the industrial development of most Middle Eastern countries. Demand there will rise steeply in coming years. This is because of the abundant and growing natural gas resources in the region, the economic benefits of using local resources, as well as increased emphasis on a cleaner environment. Today, proved reserves of natural gas in the Middle East are 45 trillion cu meters (tcm), or 1,488 trillion cu ft (tcf). This is over 30% of the world's natural gas reserves. A table presents data on reserves and production of natural gas in the region. About 20% of this gross production is rein-injecting for oil field pressure maintenance, 13% is flared or vented, and 7% is accounted as losses. The remaining 60% represents consumption in power generation, water desalination, petrochemicals and fertilizers production, aluminum and copper smelting, and fuel for refineries and other industries. The use of natural gas in these various industries is discussed. Thirteen tables present data on gas consumption by country and sector, power generation capacity, major chemicals derived from natural gas, and petrochemical plant capacities.

  18. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    PubMed

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-01

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process. PMID:26010031

  19. 18 CFR 382.202 - Annual charges under the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. 382.202 Section 382.202... GENERAL RULES ANNUAL CHARGES Annual Charges § 382.202 Annual charges under the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. The adjusted costs of administration of the natural...

  20. 18 CFR 382.202 - Annual charges under the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. 382.202 Section 382.202... GENERAL RULES ANNUAL CHARGES Annual Charges § 382.202 Annual charges under the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. The adjusted costs of administration of the natural...

  1. 18 CFR 382.202 - Annual charges under the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. 382.202 Section 382.202... GENERAL RULES ANNUAL CHARGES Annual Charges § 382.202 Annual charges under the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. The adjusted costs of administration of the natural...

  2. 18 CFR 382.202 - Annual charges under the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. 382.202 Section 382.202... GENERAL RULES ANNUAL CHARGES Annual Charges § 382.202 Annual charges under the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. The adjusted costs of administration of the natural...

  3. 18 CFR 382.202 - Annual charges under the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. 382.202 Section 382.202... GENERAL RULES ANNUAL CHARGES Annual Charges § 382.202 Annual charges under the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. The adjusted costs of administration of the natural...

  4. Low-Quality Natural Gas Sulfur Removal/Recovery System

    SciTech Connect

    Lokhandwala, K.A.; Ringer, M.; Wijams, H.; Baker, R.W.

    1997-10-01

    Natural gas provides more than one-fifth of all the primary energy used in the United States. Much raw gas is `subquality`, that is, it exceeds the pipeline specifications for nitrogen, carbon dioxide, and/or hydrogen sulfide content, and much of this low-quality natural gas cannot be produced economically with present processing technology. Against this background, a number of industry-wide trends are affecting the natural gas industry. Despite the current low price of natural gas, long-term demand is expected to outstrip supply, requiring new gas fields to be developed. Several important consequences will result. First, gas fields not being used because of low-quality products will have to be tapped. In the future, the proportion of the gas supply that must be treated to remove impurities prior to delivery to the pipeline will increase substantially. The extent of treatment required to bring the gas up to specification will also increase. Gas Research Institute studies have shown that a substantial capital investment in facilities is likely to occur over the next decade. The estimated overall investment for all gas processing facilities up to the year 2000 alone is approximates $1.2 Billion, of which acid gas removal and sulfur recovery are a significant part in terms of invested capital. This large market size and the known shortcomings of conventional processing techniques will encourage development and commercialization of newer technologies such as membrane processes. Second, much of today`s gas production is from large, readily accessible fields. As new reserves are exploited, more gas will be produced from smaller fields in remote or offshore locations. The result is an increasing need for technology able to treat small-scale gas streams.

  5. A trend discontinuity: The mystery of natural gas prices

    SciTech Connect

    Steffes, D.W.

    1995-12-01

    For the last fifteen years, the natural gas price forecasting experts have had a terrible record of forecasting future natural gas prices. (In the early 80`s, the gas price was forecasted to be over $10/MMBtu in the late 80`s). To make matters even worse, they can`t seem to understand why the price is what it is, even in hindsight. If these experts can`t even get it right in hindsight, how can one ever expect to get it right in foresight? It is concluded that the traditional laws of supply and demand don`t work very well in this new quasi-regulated natural gas industry. Evidently, Social Influences and Political Influences are more important than the Economic Influence on natural gas prices.

  6. The Development Path for Hydrate Natural Gas

    NASA Astrophysics Data System (ADS)

    Johnson, A. H.; Max, M. D.

    2008-12-01

    The question of when gas hydrate will become a commercially viable resource most concerns those nations with the most severe energy deficiencies. With the vast potential attributed to gas hydrate as a new gas play, the interest is understandable. Yet the resource potential of gas hydrate has persistently remained just over the horizon. While technical and economic hurdles have pushed back the timeline for development, considerable progress has been made in the past five years. An important lesson learned is that an analysis of the factors that control the formation of high grade hydrate deposits must be carried out so that both exploration and recovery scenarios can be modeled and engineered. Commercial hydrate development requires high concentrations of hydrate in porous, permeable reservoirs. It is only from such deposits that gas may be recovered in commercial quantities. While it is unrealistic to consider the global potential of gas hydrate to be in the hundreds of thousands of tcfs, there is a strong potential in the hundreds of tcfs or thousands of tcfs. Press releases from several national gas hydrate research programs have reported gas hydrate "discoveries". These are, in fact, hydrate shows that provide proof of the presence of hydrate where it may previously only have been predicted. Except in a few isolated areas, valid resource assessments remain to be accomplished through the identification of suitable hosts for hydrate concentrations such as sandstone reservoirs. A focused exploration effort based on geological and depositional characteristics is needed that addresses hydrate as part of a larger petroleum system. Simply drilling in areas that have identifiable bottom simulating reflectors (BSRs) is unlikely to be a viable exploration tool. It is very likely that with drilling on properly identified targets, commercial development could become a reality in less than a decade.

  7. Combustion of Illinois coals and chars with natural gas

    SciTech Connect

    Buckius, R.O.

    1991-01-01

    There are applications where the combined combustion of coal and natural gas offers potential advantages over the use of either coal or natural gas alone. For example, low volatile coals or low volatile chars derived from treatment or gasification processes can be of limited use during to their poor flammability characteristics. However, the use of natural gas in conjunction with the solid fuel can provide the necessary volatiles'' to enhance the combustion. In addition, natural gas provides a clean fuel source of fuel which, in cofiring situations, can extend the usefulness of coals with high sulfur content. The addition of natural gas may reduce SO{sub x} emission through increased sulfur retention in the ash and reduce NO{sub x} emissions by varying local stoichiometry and temperature levels. In this research program, studies of combined coal and natural gas combustion will provide particle ignition, burnout rates and ash characterization, that will help clarify the effect of coal and natural gas and identify the controlling parameters and mechanisms.

  8. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect

    Vladimir M. Zamansky; Vitali V. Lissianski

    1999-12-31

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+ NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction. The ninth reporting period in Phase II (October 1-December 31, 1999) included preparation of the 10 x 10{sup 6} Btu/hr Tower Furnace for tests and setting the SGAR model to predict process performance under Tower Furnace conditions. Based on results of previous work, a paper has been prepared and submitted for the presentation at the 28 Symposium (International) on Combustion to be held at the University of Edinburgh, Scotland.

  9. Regional limitations on the hedging effectiveness of natural gas futures

    SciTech Connect

    Brinkmann, E.J.; Rabinovitch, R.

    1995-12-31

    This paper examines the extent to which limitations in the transportation system for the natural gas market in the United States narrows the effectiveness of the NYMEX natural gas future contract as a hedging instrument and why a second contract with a different delivery point was approved during 1995. We find that the NYMEX contract is an effective hedging instrument for gas sold into pipelines for consumption in southern, eastern and Midwestern states, but does not provide an effective hedge for gas sold for Rocky Mountain and West Coast states. 10 refs., 3 tabs.

  10. Operation and planning of coordinated natural gas and electricity infrastructures

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaping

    Natural gas is becoming rapidly the optimal choice for fueling new generating units in electric power system driven by abundant natural gas supplies and environmental regulations that are expected to cause coal-fired generation retirements. The growing reliance on natural gas as a dominant fuel for electricity generation throughout North America has brought the interaction between the natural gas and power grids into sharp focus. The primary concern and motivation of this research is to address the emerging interdependency issues faced by the electric power and natural gas industry. This thesis provides a comprehensive analysis of the interactions between the two systems regarding the short-term operation and long-term infrastructure planning. Natural gas and renewable energy appear complementary in many respects regarding fuel price and availability, environmental impact, resource distribution and dispatchability. In addition, demand response has also held the promise of making a significant contribution to enhance system operations by providing incentives to customers for a more flat load profile. We investigated the coordination between natural gas-fired generation and prevailing nontraditional resources including renewable energy, demand response so as to provide economical options for optimizing the short-term scheduling with the intense natural gas delivery constraints. As the amount and dispatch of gas-fired generation increases, the long-term interdependency issue is whether there is adequate pipeline capacity to provide sufficient gas to natural gas-fired generation during the entire planning horizon while it is widely used outside the power sector. This thesis developed a co-optimization planning model by incorporating the natural gas transportation system into the multi-year resource and transmission system planning problem. This consideration would provide a more comprehensive decision for the investment and accurate assessment for system adequacy and

  11. Compressed natural gas vehicles motoring towards a green Beijing

    SciTech Connect

    Yang, Ming; Kraft-Oliver, T.; Guo Xiao Yan

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  12. DEVELOPMENT OF A THERMOACOUSTIC NATURAL GAS LIQUEFIER-UPDATE

    SciTech Connect

    J. WOLLAN; G. SWIFT

    2001-05-01

    Thermoacoustic heat engines and refrigerators are being developed for liquefaction of natural gas. This is the only technology capable of producing refrigeration power at cryogenic temperatures with no moving parts. A prototype, with a projected natural gas liquefaction capacity of 500 gallons/day, has been built and tested. The power source is a natural gas burner. Systems are developed with liquefaction capacities up to 10,000 to 20,000 gallons per day. The technology, the development project, accomplishments and applications are discussed.

  13. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2004-10-01

    Efforts this quarter have concentrated on design and planning for of a 50 MM scf/d dehydration skid testing at ChevronTexaco's Headlee Gas Plant in Odessa, TX. Potting and module materials testing concluded. Construction of the bench-scale equipment continued and a pre-engineering study on a subsea application of the technology was performed cofunded contracts with Research Partnership for Secure Energy for America and Gas Research Institute. GTI has decreased the effort under this contract pending DOE's obligation of the total contract funding.

  14. Natural gas hydrates on the North Slope of Alaska

    SciTech Connect

    Collett, T.S.

    1991-01-01

    Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances often have been regarded as a potential (unconventional) source of natural gas. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic including Siberia, the Mackenzie River Delta, and the North Slope of Alaska. On the North Slope, the methane-hydrate stability zone is areally extensive beneath most of the coastal plain province and has thicknesses as great as 1000 meters in the Prudhoe Bay area. Gas hydrates have been identified in 50 exploratory and production wells using well-log responses calibrated to the response of an interval in one well where gas hydrates were recovered in a core by ARCO Alaska and EXXON. Most of these gas hydrates occur in six laterally continuous Upper Cretaceous and lower Tertiary sandstone and conglomerate units; all these gas hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River Oil Field and the western part of the Prudhoe Bay Oil Field. The volume of gas within these gas hydrates is estimated to be about 1.0 {times} 10{sup 12} to 1.2 {times} 10{sup 12} cubic meters (37 to 44 trillion cubic feet), or about twice the volume of conventional gas in the Prudhoe Bay Field. Geochemical analyses of well samples suggest that the identified hydrates probably contain a mixture of deep-source thermogenic gas and shallow microbial gas that was either directly converted to gas hydrate or first concentrated in existing traps and later converted to gas hydrate. The thermogenic gas probably migrated from deeper reservoirs along the same faults thought to be migration pathways for the large volumes of shallow, heavy oil that occur in this area. 51 refs., 11 figs., 3 tabs.

  15. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  16. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  17. Life cycle water consumption for shale gas and conventional natural gas.

    PubMed

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas. PMID:24004382

  18. Assessment of the possibility of forecasting future natural gas curtailments

    SciTech Connect

    Lemont, S.

    1980-01-01

    This study provides a preliminary assessment of the potential for determining probabilities of future natural-gas-supply interruptions by combining long-range weather forecasts and natural-gas supply/demand projections. An illustrative example which measures the probability of occurrence of heating-season natural-gas curtailments for industrial users in the southeastern US is analyzed. Based on the information on existing long-range weather forecasting techniques and natural gas supply/demand projections enumerated above, especially the high uncertainties involved in weather forecasting and the unavailability of adequate, reliable natural-gas projections that take account of seasonal weather variations and uncertainties in the nation's energy-economic system, it must be concluded that there is little possibility, at the present time, of combining the two to yield useful, believable probabilities of heating-season gas curtailments in a form useful for corporate and government decision makers and planners. Possible remedial actions are suggested that might render such data more useful for the desired purpose in the future. The task may simply require the adequate incorporation of uncertainty and seasonal weather trends into modeling systems and the courage to report projected data, so that realistic natural gas supply/demand scenarios and the probabilities of their occurrence will be available to decision makers during a time when such information is greatly needed.

  19. Natural Gas Value-Chain and Network Assessments

    SciTech Connect

    Kobos, Peter H.; Outkin, Alexander V.; Beyeler, Walter E.; Walker, LaTonya Nicole; Malczynski, Leonard A.; Myerly, Melissa M.; Vargas, Vanessa N.; Tenney, Craig M.; Borns, David J.

    2015-09-01

    The current expansion of natural gas (NG) development in the United States requires an understanding of how this change will affect the natural gas industry, downstream consumers, and economic growth in order to promote effective planning and policy development. The impact of this expansion may propagate through the NG system and US economy via changes in manufacturing, electric power generation, transportation, commerce, and increased exports of liquefied natural gas. We conceptualize this problem as supply shock propagation that pushes the NG system and the economy away from its current state of infrastructure development and level of natural gas use. To illustrate this, the project developed two core modeling approaches. The first is an Agent-Based Modeling (ABM) approach which addresses shock propagation throughout the existing natural gas distribution system. The second approach uses a System Dynamics-based model to illustrate the feedback mechanisms related to finding new supplies of natural gas - notably shale gas - and how those mechanisms affect exploration investments in the natural gas market with respect to proven reserves. The ABM illustrates several stylized scenarios of large liquefied natural gas (LNG) exports from the U.S. The ABM preliminary results demonstrate that such scenario is likely to have substantial effects on NG prices and on pipeline capacity utilization. Our preliminary results indicate that the price of natural gas in the U.S. may rise by about 50% when the LNG exports represent 15% of the system-wide demand. The main findings of the System Dynamics model indicate that proven reserves for coalbed methane, conventional gas and now shale gas can be adequately modeled based on a combination of geologic, economic and technology-based variables. A base case scenario matches historical proven reserves data for these three types of natural gas. An environmental scenario, based on implementing a $50/tonne CO 2 tax results in less proven

  20. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2005-01-01

    Efforts this quarter have concentrated on design of and planning for a 50 MM scf/d dehydration skid testing at ChevronTexaco's Headlee Gas Plant in Odessa, TX. Potting and module materials testing concluded. Construction of the bench-scale equipment continued. GTI has decreased the effort under this contract pending DOE's obligation of the total contract funding.

  1. Natural gas imports and exports: First quarter report 1995

    SciTech Connect

    1995-07-01

    The Office of Fuels Programs prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports with the OFP. This quarter`s focus is market penetration of gas imports into New England. Attachments show the following: % takes to maximum firm contract levels and weighted average per unit price for the long-term importers, volumes and prices of gas purchased by long-term importers and exporters, volumes and prices for gas imported on short-term or spot market basis, and gas exported short-term to Canada and Mexico.

  2. Natural gas odor level testing: Instruments and applications

    SciTech Connect

    Roberson, E.H.

    1995-12-01

    An odor in natural and LP gases is necessary. The statistics are overwhelming; when gas customers can smell a leak before the percentage of gas in air reaches a combustible mixture, the chances of an accident are greatly reduced. How do gas companies determine if there is sufficient odor reaching every gas customers home? Injection equipment is important. The rate and quality of odorant is important. Nevertheless, precision odorization alone does not guarantee that customers` homes always have gas with a readily detectable odor. To secure that goal, odor monitoring instruments are necessary.

  3. EVALUATION OF BIOMSS AND COAL SLURRIES AS FUEL-LEAN REBURN FUELS

    SciTech Connect

    Vijay K. Sethi

    2006-11-06

    Breen Energy Solutions (BES) and Western Research Institute (WRI) tested biomass and coal slurries and other carbonaceous substances such as fuel oil/water emulsions as NO{sub x} reburn fuel in the combustion test facility (CTF). The overall goal of the project was to determine the NO{sub x} reduction potential of various biomass and coal reburn fuels, and to identify the optimum conditions for NO{sub x} control. Specific objectives were to inject biomass, biosolids, coal, biomass/coal, and biosolids/coal slurries into the upper furnace of CTF and determine the resulting NO{sub x} reductions and CO emissions, to identify optimum injection rates and injection locations for these reburn fuels, and to install a reaction zone stabilizer device in CTF and determine its effectiveness in reducing CO and further reducing NO{sub x}. Combustion tests achieved 40% to 60% NO{sub x} reductions with 10% to 20% reburn fuel heat input. The project has demonstrated the technical feasibility of in-situ gasification of slurries including pulverized coal and 75% pulverized coal/25% biosolids by weight, and the ability to utilize the gasification products as NO{sub x} reburn fuel. This work also demonstrated that pulverized coal/water slurries can be successfully gasified and used as reburn fuels, and there is no need for use of micronized coal. Very good burnout of the pulverized coal slurry was demonstrated in this work. Similarly, the project has demonstrated the technical feasibility of in-situ gasification of oil/water emulsion and the ability to utilize the associated gasification products as NO{sub x} reburn fuel.

  4. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1998-09-30

    The work plan for the quarter of October 1, 1997--December 31, 1997 consisted of two tasks: (1) Present results of Rulison field test at various conferences, seminars, and to Barrett Resources and Snyder Oil Co. and (2) Continue work into developing a predictive quantitative method for locating fault-related natural fractures. The first task was completed during this reporting period. The second task continues the beginning of quantitative fracture mechanics analysis of the geologic processes that are involved for the development of fault-related natural fractures. The goal of this work is to develop a predictive capability of locating natural fractures prior to drilling.

  5. Pyrolysis property of pulverized coal in an entrained flow reactor during coal reburning

    SciTech Connect

    Lu, P.; Xu, S.R.; Zhu, X.M.

    2009-01-15

    Rapid pyrolysis of several kinds of Chinese pulverized coals under the different conditions of coal reburning was systematically investigated in an entrained flow reactor (EFR). The morphological changes of chars formed from the devolatilized coal particles were analyzed. The mass loss of coal particles and the release fraction of some elements such as carbon, hydrogen, and nitrogen in devoatilized coal at high-temperature flue gas were studied. The influences of coal types, pyrolysis temperature, devolatilized atmosphere, and coal particle size on pyrolysis properties were analyzed. The experimental results indicate that increasing the initial volatile matters of pulverized coal and pyrolysis temperature and decreasing the size of the coal particles, results in (1) increasing the percentage of coal mass loss and release fraction of carbon, hydrogen, and nitrogen in coal, and (2) increasing the H/C ratios in char. The release fraction of hydrogen is noticeably larger than the percentage of coal mass loss and release fraction of C and N, which is basically the same as the percentage of coal mass loss.

  6. Condensation of natural gas or methane into gasoline range hydrocarbons

    SciTech Connect

    Olah, G. A.

    1985-04-23

    This invention relates to a new process for the direct conversion of natural gas or methane into gasoline-range hydrocarbons (i.e., synthetic transportation fuels or lower olefins) via catalytic condensation using superacid catalysts.

  7. Use of Laboratory-Supplied Natural Gas in Breakthrough Phenomena.

    ERIC Educational Resources Information Center

    Eiceman, G. A.; And Others

    1985-01-01

    Natural gas from regular commercial lines contains enough carbon-8 and above hydrocarbon contaminants to serve as a satisfactory sample for breakthrough experiments. Procedures used, typical results obtained, and theoretical background information are provided. (JN)

  8. World Energy Projection System Plus Model Documentation: Natural Gas Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Natural Gas Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  9. Trends in U.S. Residential Natural Gas Consumption

    EIA Publications

    2010-01-01

    This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census division (1998 through 2009).

  10. Risk management technique for liquefied natural gas facilities

    NASA Technical Reports Server (NTRS)

    Fedor, O. H.; Parsons, W. N.

    1975-01-01

    Checklists have been compiled for planning, design, construction, startup and debugging, and operation of liquefied natural gas facilities. Lists include references to pertinent safety regulations. Methods described are applicable to handling of other hazardous materials.

  11. International Natural Gas Model 2011, Model Documentation Report

    EIA Publications

    2013-01-01

    This report documents the objectives, analytical approach and development of the International Natural Gas Model (INGM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  12. A Geographic Approach to the Study of Natural Gas.

    ERIC Educational Resources Information Center

    Sheskin, Ira M.

    1980-01-01

    Provides information, tips, references, and materials to high school and college level geography teachers on developing a unit on natural gas. Data are presented in the form of tables, maps, figures, and textual analysis. (Author/DB)

  13. Liquid absorbent solutions for separating nitrogen from natural gas

    DOEpatents

    Friesen, Dwayne T.; Babcock, Walter C.; Edlund, David J.; Lyon, David K.; Miller, Warren K.

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  14. In situ bioremediation of chlorinated solvent with natural gas

    SciTech Connect

    Rabold, D.E.

    1996-12-31

    A bioremediation system for the removal of chlorinated solvents from ground water and sediments is described. The system involves the the in-situ injection of natural gas (as a microbial nutrient) through an innovative configuration of horizontal wells.

  15. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2004-07-01

    Efforts this quarter have concentrated on design and planning for of a 50 MM scf/d dehydration skid testing at ChevronTexaco's Headlee Gas Plant in Odessa, TX. Potting and module materials testing continued. Construction of the bench-scale equipment continued. Additional funding to support the test was obtained through a contract with Research Partnership for Secure Energy for America. GTI has decreased the effort under this contract pending DOE's obligation of the total contract funding.

  16. Changing prospects for natural gas in the United States.

    PubMed

    Burnet, W M; D Ban, T S

    1989-04-21

    Natural gas has emerged as one of the primary options for satisfying the need for environmentally clean energy: the resource base is large, it is the cleanest burning of the fossil fuels, and it can be used efficiently. New engine, combustion, and energy conversion technologies are emerging that will result in use of natural gas in electric generation, emissions reduction, transportation, and residential and commercial cooling. PMID:17738301

  17. Effect of Increased Natural Gas Exports on Domestic Energy Markets

    EIA Publications

    2012-01-01

    This report responds to an August 2011 request from the Department of Energy's Office of Fossil Energy (DOE\\/FE) for an analysis of "the impact of increased domestic natural gas demand, as exports." Appendix A provides a copy of the DOE\\/FE request letter. Specifically, DOE\\/FE asked the U.S. Energy Information Administration (EIA) to assess how specified scenarios of increased natural gas exports could affect domestic energy markets, focusing on consumption, production, and prices.

  18. Convergence and Divergence of Crude Oil and Natural Gas Prices

    NASA Astrophysics Data System (ADS)

    Romagus, George M.

    This research investigates the possibility that WTI crude oil and Henry Hub natural gas prices share a stable link. Economic theory suggests that the two commodities are linked by both supply and demand given that the commodities can be coproduced and many consumers have the ability to switch between the fuels. In general, it would appear that the two commodities support this theory with natural gas prices tracking crude oil prices fairly well until late 2008. However, since the end of 2008 the two price series have diverged and appear to move independently of each other. Reduced fuel switching capabilities in U.S. industry and electric power generation coupled with increased technology and production from shale formations have potentially changed the driving force behind natural gas prices. However, a severe recession has impacted world economies over the same time period making the cause of the disparity between crude oil and natural gas prices unclear. Therefore, this research analyzed the possible long-term link between the two commodities over two timeframes. Using an error correction model that includes exogenous factors affecting the short-run dynamics of natural gas prices over the period January 1999 through September 2008, I find evidence of a long-run cointegrating relationship between natural gas and crude oil prices. Additionally, crude oil prices are found to be weakly exogenous to the system, suggesting causality runs from crude oil to natural gas prices. Extending this series through February 2012 yields much weaker evidence of a cointegrating relationship and provides evidence for the decoupling crude oil and natural gas prices.

  19. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  20. Hidden help for New England from natural gas decontrol

    SciTech Connect

    Brooks, S.H.

    1982-10-04

    Once the November elections are over, politicians will look again at a windfall profits tax on deregulated natural gas as a revenue source to balance the 10% personal tax cut scheduled for 1983. This would make New England's economy more competitive because the region consumes relatively little gas and already pays a high price for what it does consume. Of the pending decisions that will affect federal revenues, gas decontrol will have the greatest benefit for New England. (DCK)

  1. Molten carbonate fuel cells for coal and natural gas fuels

    SciTech Connect

    Krumplet, M.; Ackerman, J.P.; Cook, G.M.; Pierce, R.D.

    1984-02-01

    System designs of molten carbonate fuel cell power plants are described for central stations using coal and on-site generators operating on natural gas. Fuel-to-busbar efficiencies are near 50% in coal based systems with turbine bottoming and in simple gas based systems. Coal based systems with more advanced but not fully developed components, and more complex gas based systems approach 60% efficiency.

  2. Molten carbonate fuel cells for coal and natural gas fuels

    SciTech Connect

    Krumpelt, M.; Cook, G.M.; Pierce, R.D.; Ackerman, J.P.

    1984-01-01

    System designs of molten carbonate fuel cell power plants are described for central stations using coal and on-site generators operating on natural gas. Fuel-to-busbar efficiencies are near 50% in coal based systems with turbine bottoming and in simple gas based systems. Coal based systems with more advanced but not fully developed components, and more complex gas based systems approach 60% efficiency.

  3. Nitrogen removal from natural gas using two types of membranes

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Wijmans, Johannes G.; Da Costa, Andre R.

    2003-10-07

    A process for treating natural gas or other methane-rich gas to remove excess nitrogen. The invention relies on two-stage membrane separation, using methane-selective membranes for the first stage and nitrogen-selective membranes for the second stage. The process enables the nitrogen content of the gas to be substantially reduced, without requiring the membranes to be operated at very low temperatures.

  4. Natural gas imports and exports. Fourth quarter report

    SciTech Connect

    1995-12-31

    This report summarizes the data provided by companies authorized to import or export natural gas. Data includes volume and price for long term and short term, and gas exported to Canada and Mexico on a short term or spot market basis.

  5. ANALYSIS OF EMISSIONS FROM RESIDENTIAL NATURAL GAS FURNACES

    EPA Science Inventory

    The paper gives emissions data from residential natural-gas furnaces and compares selected data to emissions data from residential oil furnaces and woodstoves. atural-gas furnace emissions data are given for carbon monoxide (CO), unburned hydrocarbons, aldehydes, volatile and sem...

  6. Benefit assessment of solar-augmented natural gas systems

    NASA Technical Reports Server (NTRS)

    Davis, E. S.; French, R. L.; Sohn, R. L.

    1980-01-01

    Report details how solar-energy-augmented system can reduce natural gas consumption by 40% to 70%. Applications discussed include: domestic hot water system, solar-assisted gas heat pumps, direct heating from storage tank. Industrial uses, solar-assisted appliances, and economic factors are discussed.

  7. ARPA-E: Creating Practical, Affordable Natural Gas Storage Solutions

    ScienceCinema

    Boysen, Dane; Loukus, Josh; Hansen, Rita

    2014-03-13

    Allowing people to refuel natural gas vehicles at home could revolutionize the way we power our cars and trucks. Currently, our nation faces two challenges in enabling natural gas for transportation. The first is improving the way gas tanks are built for natural gas vehicles; they need to be conformable, allowing them to fit tightly into the vehicle. The second challenge is improving the way those tanks are refueled while maintaining cost-effectiveness, safety, and reliability. This video highlights two ARPA-E project teams with innovative solutions to these challenges. REL is addressing the first challenge by developing a low-cost, conformable natural gas tank with an interconnected core structure. Oregon State University and OnBoard Dynamics are addressing the second challenge by developing a self-refueling natural gas vehicle that integrates a compressor into its engine-using one of the engine's cylinders to compress gas eliminates the need for an expensive at-home refueling system. These two distinct technologies from ARPA-E's MOVE program illustrate how the Agency takes a multi-pronged approach to problem solving and innovation.

  8. ARPA-E: Creating Practical, Affordable Natural Gas Storage Solutions

    SciTech Connect

    Boysen, Dane; Loukus, Josh; Hansen, Rita

    2014-02-24

    Allowing people to refuel natural gas vehicles at home could revolutionize the way we power our cars and trucks. Currently, our nation faces two challenges in enabling natural gas for transportation. The first is improving the way gas tanks are built for natural gas vehicles; they need to be conformable, allowing them to fit tightly into the vehicle. The second challenge is improving the way those tanks are refueled while maintaining cost-effectiveness, safety, and reliability. This video highlights two ARPA-E project teams with innovative solutions to these challenges. REL is addressing the first challenge by developing a low-cost, conformable natural gas tank with an interconnected core structure. Oregon State University and OnBoard Dynamics are addressing the second challenge by developing a self-refueling natural gas vehicle that integrates a compressor into its engine-using one of the engine's cylinders to compress gas eliminates the need for an expensive at-home refueling system. These two distinct technologies from ARPA-E's MOVE program illustrate how the Agency takes a multi-pronged approach to problem solving and innovation.

  9. Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency

    SciTech Connect

    Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

    2004-12-21

    Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy and energy efficiency identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) and energy efficiency (EE) can hedge natural gas price risk in more than one way, but this paper touches on just one potential benefit: displacement of gas-fired electricity generation, which reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE and EE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE and EE. This paper summarizes recent studies that have evaluated the gas-price-reduction effect of RE and EE deployment, analyzes the results of these studies in light of economic theory and other research, reviews the reasonableness of the effect as portrayed in modeling studies, and develops a simple tool that can be used to evaluate the impact of RE and EE on gas prices without relying on a complex national energy model. Key findings are summarized.

  10. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    1998-09-30

    During this quarter, work began on the regional structural and geologic analysis of the greater Green River basin (GGRB) in southwestern Wyoming, northwestern Colorado and northeastern Utah. The ultimate objective of the regional analysis is to apply the techniques developed and demonstrated during earlier phases of the project to sweet-spot delineation in a relatively new and underexplored play: tight gas from continuous-type Upper Cretaceous reservoirs of the GGRB. The primary goal of this work is to partition and high-grade the greater Green River basin for exploration efforts in the Cretaceous tight gas play. The work plan for the quarter of January 1, 1998--March 31, 1998 consisted of three tasks: (1) Acquire necessary data and develop base map of study area; (2) Process data for analysis; and (3) Initiate structural study. The first task and second tasks were completed during this reporting period. The third task was initiated and work continues.

  11. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect

    Decker, D.

    1995-05-01

    Exploration strategies are needed to identify subtle basement features critical to locating fractured regions in advance of drilling in tight gas reservoirs. The Piceance Basin served as a demonstration site for an analysis utilizing aeromagnetic surveys, remote sensing, Landsat Thematic Mapper, and Side Looking Airborne Radar imagery for the basin and surrounding areas. Spatially detailed aeromagnetic maps were used to to interpret zones of basement structure.

  12. LNG systems for natural gas propelled ships

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Duda, P.; Polinski, J.; Skrzypacz, J.

    2015-12-01

    In order to reduce the atmospheric pollution generated by ships, the International Marine Organization has established Emission Controlled Areas. In these areas, nitrogen oxides, sulphur oxides and particulates emission is strongly controlled. From the beginning of 2015, the ECA covers waters 200 nautical miles from the coast of the US and Canada, the US Caribbean Sea area, the Baltic Sea, the North Sea and the English Channel. From the beginning of 2020, strong emission restrictions will also be in force outside the ECA. This requires newly constructed ships to be either equipped with exhaust gas cleaning devices or propelled with emission free fuels. In comparison to low sulphur Marine Diesel and Marine Gas Oil, LNG is a competitive fuel, both from a technical and economical point of view. LNG can be stored in vacuum insulated tanks fulfilling the difficult requirements of marine regulations. LNG must be vaporized and pressurized to the pressure which is compatible with the engine requirements (usually a few bar). The boil-off must be controlled to avoid the occasional gas release to the atmosphere. This paper presents an LNG system designed and commissioned for a Baltic Sea ferry. The specific technical features and exploitation parameters of the system will be presented. The impact of strict marine regulations on the system's thermo-mechanical construction and its performance will be discussed. The review of possible flow-schemes of LNG marine systems will be presented with respect to the system's cost, maintenance, and reliability.

  13. Control method for mixed refrigerant based natural gas liquefier

    DOEpatents

    Kountz, Kenneth J.; Bishop, Patrick M.

    2003-01-01

    In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.

  14. Little study sees large growth in Asian natural gas market

    SciTech Connect

    O'Driscoll, M.

    1993-06-03

    Power capacity additions in Asia will at least triple by 2010, and Arthur D. Little Inc. predicts natural gas can pick up a good 15 percent of that market. The study predicts Asia potentially will need 720 gigawatts of new power generation by 2010, of which 15 percent may be gas-based. This represents a market three times the size of the US market in the same period, and would require more than $1 trillion in investment to finance the power generation projects alone. Six forces are driving new market opportunities for natural gas in Asia, and have set the stage for major investments in Asian gas-based power generation. They are: New technologies; growing environmental pressures; privatization; alternative energy pricing; gas availability; and continued economic growth. Japan, South Korea and Taiwan already have large, well-established markets for both gas and power that provide minimal opportunities for foreign investment. But the rest of Asia - specifically, India, Pakistan, the Philippines, Vietnam, Indonesia, Malaysia, the People's Republic of China, Thailand, Bangladesh and Myanmar - is still relatively undeveloped, the study said, and gas is emerging as an energy import substitute or export earner. The study found those countries will turn increased environmental awareness and concern into legislation as their economic prosperity grows, leading to a higher future value for natural gas relative to other fuels. Stricter emissions standards will favor gas over diesel, fuel oil and coal.

  15. THREE-STAGE COMBUSTION (REBURNING) ON A FULL SCALE OPERATING BOILER IN THE U.S.S.R.

    EPA Science Inventory

    The report gives results of a program to complete preliminary design of a three- stage combustion (reburn) system for nitrogen oxide (NOx) emissions control on an operating boiler in the U. S.S. R. he program to design the reburn system consisted of five tasks: visiting the Ladyz...

  16. BENCH-SCALE PROCESS EVALUATION OF REBURNING AND SORBENT INJECTION FOR IN-FURNACE NOX/SOX REDUCTION

    EPA Science Inventory

    The report gives results of combining reburning with the injection of calcium-based sorbents to investigate the potential for combined NOx and SOx reduction. Reburning, applied to pulverized-coal-fired utility boilers, involves injecting a secondary fuel above the main firing zon...

  17. The carbon isotopic composition of catalytic gas: A comparative analysis with natural gas

    SciTech Connect

    Mango, F.D.; Elrod, L.W.

    1999-04-01

    Tee idea that natural gas is the thermal product of organic decomposition has persisted for over half a century. Crude oil is thought to be an important source of gas, cracking to wet gas above 150 C, and dry gas above 200 C. But there is little evidence to support this view. For example, crude oil is proving to be more stable than previously thought and projected to remain intact over geologic time at typical reservoir temperature. Moreover, when oil does crack, the products do not resemble natural gas. Oil to gas could be catalytic, however, promoted by the transition metals in carbonaceous sediments. This would explain the low temperatures at which natural gas forms, and the high amounts of methane. This idea gained support recently when the natural progression of oil to dry gas was duplicated in the laboratory catalytically. The authors report here the isotopic composition of catalytic gas generated from crude oil and pure hydrocarbons between 150 and 200 C. {delta}{sup 13}C for C{sub 1} through C{sub 5} was linear with 1/n (n = carbon number) in accordance with theory and typically seen in natural gases. Over extended reaction, isobutane and isopentane remained lighter than their respective normal isomers and the isotopic differentials were constant as all isomers became heavier over time. Catalytic methane, initially {minus}51.87{per_thousand} (oil = {minus}22.5{per_thousand}), progressed to a final composition of {minus}26.94{per_thousand}, similar to the maturity trend seen in natural gases: {minus}50{per_thousand} to {minus}20{per_thousand}. Catalytic gas is thus identical to natural gas in molecular and isotopic composition adding further support to the view that catalysis by transition metals may be a significant source of natural gas.

  18. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2004-04-01

    Efforts this quarter have concentrated on field site selection. ChevronTexaco has signed a contract with Kvaerner process Systems for the 50 MM scf/d dehydration skid at their Headlee Gas Plant in Odessa, TX for a commercial-scale test. This will allow the test to go forth. A new test schedule was established with testing beyond the existing contract completion date. Potting and module materials testing continued. Construction of the bench-scale equipment was started. Additional funding to support the test was obtained through a contract with Research Partnership for Secure Energy for America.

  19. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    SciTech Connect

    Howard S. Meyer

    2004-01-01

    Efforts this quarter have concentrated on field site selection. ChevronTexaco has signed a contract with Kvaerner process Systems for the 50 MM scf/d dehydration skid at their Headlee Gas Plant in Odessa, TX for a commercial-scale test. This will allow the test to go forth. A new test schedule was established with testing beyond the existing contract completion date. Potting and module materials testing continued. Construction of the bench-scale equipment was started. Additional funding to support the test was obtained through a contract with Research Partnership for Secure Energy for America.

  20. Radon gas distribution in natural gas processing facilities and workplace air environment.

    PubMed

    Al-Masri, M S; Shwiekani, R

    2008-04-01

    Evaluation was made of the distribution of radon gas and radiation exposure rates in the four main natural gas treatment facilities in Syria. The results showed that radiation exposure rates at contact of all equipment were within the natural levels (0.09-0.1 microSvh(-1)) except for the reflex pumps where a dose rate value of 3 microSvh(-1) was recorded. Radon concentrations in Syrian natural gas varied between 15.4 Bq m(-3) and 1141 Bq m(-3); natural gas associated with oil production was found to contain higher concentrations than the non-associated natural gas. In addition, radon concentrations were higher in the central processing facilities than the wellheads; these high levels are due to pressurizing and concentrating processes that enhance radon gas and its decay products. Moreover, the lowest 222Rn concentration was in the natural gas fraction used for producing sulfur; a value of 80 Bq m(-3) was observed. On the other hand, maximum radon gas and its decay product concentrations in workplace air environments were found to be relatively high in the gas analysis laboratories; a value of 458 Bq m(-3) was observed. However, all reported levels in the workplaces in the four main stations were below the action level set by IAEA for chronic exposure situations involving radon, which is 1000 Bq m(-3). PMID:17905489

  1. The natural gas revolution -- Scale, cost and uncertainty

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Francis

    2013-03-01

    Over the past decade, the natural gas industry landscape in North America has undergone tremendous change. The focus of exploration and production has shifted from ``conventional'' to ``unconventional'' resources, and in particular to shale formations. The fact that some shale formations contain significant volumes of gas-in-place has been known for as long as gas production has taken place - these rocks have always been viewed as the source rock for conventional gas resources. What changed over the past decade is that it became possible to recover this gas directly from the source rock at economically attractive production rates. Horizontal drilling and hydraulic fracturing technologies were key to these developments. This presentation will describe how the unlocking of shale gas through horizontal drilling and fracturing has changed perspectives regarding the scale of the overall recoverable natural gas resource in the United States. The potential impact of shale gas on the global gas resource will also be described. The results of volumetric assessments of recoverable shale gas will be presented and the critical issue of uncertainty surrounding these estimates will be highlighted. The economics of shale gas relative to conventional resources in the United States will be described, and this will be compared with the economics of gas elsewhere in the world. In discussing the economics of shale gas, the very important issue of intra and inter-play well-to-well performance variability will be highlighted. The presentation will also describe some of the major environmental concerns that surround that shale gas production. The issue of water intensity in hydraulic fracturing operations will be examined, as will the concerns regarding surface and subsurface water contamination. The debate regarding the GHG footprint of hydraulic fracturing operations will be described and an assessment of ``potential'' and ``actual'' fugitive methane emissions from hydraulic fracturing

  2. 40 CFR Table W - 7 of Subpart W-Default Methane Emission Factors for Natural Gas Distribution

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Factors for Natural Gas Distribution W Table W Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas... for Natural Gas Distribution Natural gas distribution Emission factor (scf/hour/component)...

  3. Centrifuge for separating helium from natural gas

    SciTech Connect

    Kelling, F.E.; Theyse, F.H.

    1980-01-08

    A centrifuge is claimed for the separation of gaseous mixtures with a rotor inside a housing, comprising a hollow, cylindrical or nearly cylindrical rotorpart also called a separating drum, in which drum a gaseous component may condense as a liquid. This liquid is admitted thereafter through openings in the drum to the space between drum and housing. In this space are formed a sequence of narrow openings, so called restrictors in which the liquid is brought to expansion, returning to gas form. These restrictors act also as bearings for the drum. The gaseous component that does not liquefy in the drum is drawn off.

  4. Liquid Fuels and Natural Gas in the Americas

    EIA Publications

    2014-01-01

    The Energy Information Administration's (EIA) Liquid Fuels and Natural Gas in the Americas report, published today, is a Congressionally-requested study examining the energy trends and developments in the Americas over the past decade. The report focuses on liquid fuels and natural gas—particularly reserves and resources, production, consumption, trade, and investment—given their scale and significance to the region.

  5. EIA responds to Nature article on shale gas projections

    EIA Publications

    2014-01-01

    EIA has responded to a December 4, 2014 Nature article on projections of shale gas production made by EIA and by the Bureau of Economic Geology of the University of Texas at Austin (BEG/UT) with a letter to the editors of Nature. BEG/UT has also responded to the article in their own letter to the editor.

  6. Assessment finds more natural gas resources but less oil

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-05-01

    The latest report on undiscovered conventional oil and gas resources outside the United States estimates that there are more undiscovered and technically recoverable natural gas and natural gas liquids (NGLs) but less oil than had previously been thought. The 18 April report, issued by the U.S. Geological Survey (USGS) as part of its World Petroleum Resource Project, estimates that there are 5606 trillion cubic feet of natural gas, compared with 4669 trillion cubic feet in the previous assessment, in 2000, and 167 billion barrels of NGLs compared with an earlier 207 billion barrels. The assessment also estimates that there are 565 billion barrels of oil compared with an earlier 649 billion. About 75% of those resources outside the United States are located in four regions: South America and the Caribbean, sub-Saharan Africa, the Middle East and North Africa, and the Arctic provinces portion of North America, according to the new assessment.

  7. Improving emissions factors for estimating urban natural gas leakage

    NASA Astrophysics Data System (ADS)

    Phillips, Nathan

    2013-04-01

    Emissions factors for pipeline natural gas leaks are in need of refinement. In addition to limitations from the small sample sizes of leaks that were initially used to develop emissions factors, a further limitation to emissions factors is lack of knowledge of characteristic statistical distributions of pipeline leak rates. For example, leaks were implicitly assumed to be normally distributed so that an average leak rate was used for pipelines of a given construction. Our natural gas leak data from Boston, USA, in which we found over 3,000 natural gas leaks, indicates that leaks rates are highly skewed, with relatively few leaks likely contributing disproportionately to the total. The long-tailed distribution of gas leak rates is mirrored by a similarly skewed distribution of surface methane concentrations in air. These data suggest that emissions factors should be based on correctly specified statistical distributions, and that fixing relatively few large leaks first may provide the most environmental benefit per cost.

  8. Low-quality natural gas sulfur removal/recovery

    SciTech Connect

    Damon, D.A.; Siwajek, L.A.; Klint, B.W.

    1993-12-31

    Low quality natural gas processing with the integrated CFZ/CNG Claus process is feasible for low quality natural gas containing 10% or more of CO{sub 2}, and any amount of H{sub 2}S. The CNG Claus process requires a minimum CO{sub 2} partial pressure in the feed gas of about 100 psia (15% CO{sub 2} for a 700 psia feed gas) and also can handle any amount of H{sub 2}S. The process is well suited for handling a variety of trace contaminants usually associated with low quality natural gas and Claus sulfur recovery. The integrated process can produce high pressure carbon dioxide at purities required by end use markets, including food grade CO{sub 2}. The ability to economically co-produce high pressure CO{sub 2} as a commodity with significant revenue potential frees process economic viability from total reliance on pipeline gas, and extends the range of process applicability to low quality gases with relatively low methane content. Gases with high acid gas content and high CO{sub 2} to H{sub 2}S ratios can be economically processed by the CFZ/CNG Claus and CNG Claus processes. The large energy requirements for regeneration make chemical solvent processing prohibitive. The cost of Selexol physical solvent processing of the LaBarge gas is significantly greater than the CNG/CNG Claus and CNG Claus processes.

  9. Comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG) used by transit agencies in Texas. Research report

    SciTech Connect

    Lede, N.W.

    1997-09-01

    This study is a detailed comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG). The study provides data on two alternative fuels used by transit agencies in Texas. First, we examine the `state-of-the- art` in alternative fuels to established a framework for the study. Efforts were made to examine selected characteristics of two types of natural gas demonstrations in terms of the following properties: energy source characteristics, vehicle performance and emissions, operations, maintenance, reliability, safety costs, and fuel availability. Where feasible, two alternative fuels were compared with conventional gasoline and diesel fuel. Environmental considerations relative to fuel distribution and use are analyzed, with a focus on examining flammability an other safety-related issues. The objectives of the study included: (1) assess the state-of-the-art and document relevant findings pertaining to alternative fuels; (2) analyze and synthesize existing databases on two natural gas alternatives: liquefied natural gas (LNG) and compressed natural gas (CNG): and (3) compare two alterative fuels used by transit properties in Texas, and address selected aspects of alternative fuels such as energy source characteristics, vehicle performance and emissions, safety, costs, maintenance and operations, environmental and related issues.

  10. Energy project: petroleum and natural gas in Egypt; Linear-programming analysis of the use of natural gas in Egypt

    SciTech Connect

    Woodruff, D.S.

    1982-11-01

    Natural gas use in Egypt, although still in its infancy, has risen rapidly during the past few years and even larger increases are expected. The extent to which natural gas usage can improve Egypt's foreign-exchange position by allowing greater exports of oil is herein examined. A linear-programming model is used to identify shadow prices for natural gas production and transportation costs and for the world market costs of other fuels. The model thus determines the minimum foreign exchange costs needed to operate the Egyptian natural gas industry and other Egyptian sectors that have the option of using natural gas (the fertilizer, electric power generation, Helwan iron and steel, cement, and residential and commercial sectors). Only existing production facilities are considered. Results show that the most important application for natural gas is in the manufacture of cement; use in iron and steel production is indicated when electricity demand is low or coal prices are high. A 17-item bibliography (1972-1982) is appended.

  11. Natural gas imports and exports. First quarter report, 1998

    SciTech Connect

    1998-08-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the first quarter of 1998 (January through March). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  12. Natural gas imports and exports. First quarter report 1997

    SciTech Connect

    1997-09-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico. 14 figs., 9 tabs.

  13. Natural gas imports and exports: Third quarter report, 1998

    SciTech Connect

    1998-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the third quarter of 1998 (July--September). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent calendar quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  14. Natural gas imports and exports. Second quarter report, 1998

    SciTech Connect

    1998-11-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepared quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the second quarter of 1998 (April through June). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  15. Natural gas imports and exports. Fourth quarter report, 1998

    SciTech Connect

    1998-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the fourth quarter of 1998 (October through December). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  16. Natural gas imports and exports. Third quarter report 1997

    SciTech Connect

    1998-01-01

    This quarterly report, prepared by The Office of Natural Gas and Petroleum Import and Export Activities, summarizes the data provided by companies authorized to import or export natural gas. Numerical data are presented in four attachments, each of which is comprised of a series of tables. Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent calendar quarters. Volumes and prices of gas purchased by long-term importers and exporters during the past year are given in Attachment B. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D lists gas exported on a short-term or spot market basis to Canada and Mexico. Highlights of the report are very briefly summarized.

  17. Genetic types of natural gas and filling patterns in Daniudi gas field, Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Quanyou; Jin, Zhijun; Meng, Qingqiang; Wu, Xiaoqi; Jia, Huichong

    2015-08-01

    The genetic types, source precursors and filling pattern of natural gas in the Upper Carboniferous Taiyuan Formation, Lower Permian Shanxi Formation and Lower Shihezi Formation gas reservoirs of Daniudi gas field were investigated using chemical composition as well as carbon and hydrogen isotopic compositions. Geochemical analysis of natural gases in 25 representative wells shows that natural gas in the Daniudi gas field is composed predominantly of hydrocarbons with a dryness coefficient of 0.884-0.978. The carbon isotopic values of ethane and propane are higher than -28‰ and -25‰, respectively, and the hydrogen isotopic values of methane are lower than -180‰, indicating that natural gas in the Daniudi field is a typical coal-type gas, derived mainly from humic organic matter in the transitional facies of the Carboniferous-Permian age. Hydrogen isotopic values of CH4 and H2 display a good positive correlation, suggesting that both were controlled by thermal maturity. When the mixing of ethane generated from mudstone and coal with the same kerogen type and similar thermal maturity occurred, the carbon isotopic values of ethane barely reflect the thermal maturity. Although the fractionation of hydrogen isotopes of ethane is significantly higher than that of carbon, hydrogen isotopic values of ethane in natural gas reservoirs evidently are not related to thermal maturity. The Daniudi natural gas reservoirs represent both self-sourced and near-source accumulations. The natural gas accumulations in the Late Triassic-Early Jurassic periods are mainly of the self-sourced type, while accumulations in the Late Jurassic-Early Cretaceous period comprise both self-sourced and near-source patterns, and the natural gas reservoirs formed after the Late Cretaceous period are mainly of the near-source type.

  18. Autothermal Reforming of Natural Gas to Synthesis Gas

    SciTech Connect

    Steven F. Rice; David P. Mann

    2007-04-13

    This Project Final Report serves to document the project structure and technical results achieved during the 3-year project titled Advanced Autothermal Reformer for US Dept of Energy Office of Industrial Technology. The project was initiated in December 2001 and was completed March 2005. It was a joint effort between Sandia National Laboratories (Livermore, CA), Kellogg Brown & Root LLC (KBR) (Houston, TX) and Süd-Chemie (Louisville, KY). The purpose of the project was to develop an experimental capability that could be used to examine the propensity for soot production in an Autothermal Reformer (ATR) during the production of hydrogen-carbon monoxide synthesis gas intended for Gas-to-Liquids (GTL) applications including ammonia, methanol, and higher hydrocarbons. The project consisted of an initial phase that was focused on developing a laboratory-scale ATR capable of reproducing conditions very similar to a plant scale unit. Due to budget constraints this effort was stopped at the advanced design stages, yielding a careful and detailed design for such a system including ATR vessel design, design of ancillary feed and let down units as well as a PI&D for laboratory installation. The experimental effort was then focused on a series of measurements to evaluate rich, high-pressure burner behavior at pressures as high as 500 psi. The soot formation measurements were based on laser attenuation at a view port downstream of the burner. The results of these experiments and accompanying calculations show that soot formation is primarily dependent on oxidation stoichiometry. However, steam to carbon ratio was found to impact soot production as well as burner stability. The data also showed that raising the operating pressure while holding mass flow rates constant results in considerable soot formation at desirable feed ratios. Elementary reaction modeling designed to illuminate the role of CO2 in the burner feed showed that the conditions in the burner allow for the direct

  19. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    SciTech Connect

    Parks, II, James E; Storey, John Morse; Theiss, Timothy J; Ponnusamy, Senthil; Ferguson, Harley Douglas; Williams, Aaron M; Tassitano, James B

    2007-09-01

    Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the

  20. Natural multiparticle entanglement in a Fermi gas.

    PubMed

    Lunkes, Christian; Brukner, Caslav; Vedral, Vlatko

    2005-07-15

    We investigate multipartite entanglement in a noninteracting fermion gas, as a function of fermion separation, starting from the many particle fermion density matrix. We prove that all multiparticle entanglement can be built only out of two-fermion entanglement. Although from the Pauli exclusion principle we would always expect entanglement to decrease with fermion distance, we surprisingly find the opposite effect for certain fermion configurations. The von Neumann entropy is found to be proportional to the volume for a large number of particles even when they are arbitrarily close to each other. We will illustrate our results using different configurations of two, three, and four fermions at zero temperature although all our results can be applied to any temperature and any number of particles. PMID:16090728